1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211 struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215 };
216
event_function(void * info)217 static int event_function(void *info)
218 {
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 perf_ctx_unlock(cpuctx, task_ctx);
259
260 return ret;
261 }
262
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct perf_cpu_context *cpuctx;
268 struct event_function_struct efs = {
269 .event = event,
270 .func = func,
271 .data = data,
272 };
273
274 if (!event->parent) {
275 /*
276 * If this is a !child event, we must hold ctx::mutex to
277 * stabilize the event->ctx relation. See
278 * perf_event_ctx_lock().
279 */
280 lockdep_assert_held(&ctx->mutex);
281 }
282
283 if (!task) {
284 cpu_function_call(event->cpu, event_function, &efs);
285 return;
286 }
287
288 if (task == TASK_TOMBSTONE)
289 return;
290
291 again:
292 if (!task_function_call(task, event_function, &efs))
293 return;
294
295 local_irq_disable();
296 cpuctx = this_cpu_ptr(&perf_cpu_context);
297 perf_ctx_lock(cpuctx, ctx);
298 /*
299 * Reload the task pointer, it might have been changed by
300 * a concurrent perf_event_context_sched_out().
301 */
302 task = ctx->task;
303 if (task == TASK_TOMBSTONE)
304 goto unlock;
305 if (ctx->is_active) {
306 perf_ctx_unlock(cpuctx, ctx);
307 local_irq_enable();
308 goto again;
309 }
310 func(event, NULL, ctx, data);
311 unlock:
312 perf_ctx_unlock(cpuctx, ctx);
313 local_irq_enable();
314 }
315
316 /*
317 * Similar to event_function_call() + event_function(), but hard assumes IRQs
318 * are already disabled and we're on the right CPU.
319 */
event_function_local(struct perf_event * event,event_f func,void * data)320 static void event_function_local(struct perf_event *event, event_f func, void *data)
321 {
322 struct perf_event_context *ctx = event->ctx;
323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
324 struct task_struct *task = READ_ONCE(ctx->task);
325 struct perf_event_context *task_ctx = NULL;
326
327 lockdep_assert_irqs_disabled();
328
329 if (task) {
330 if (task == TASK_TOMBSTONE)
331 return;
332
333 task_ctx = ctx;
334 }
335
336 perf_ctx_lock(cpuctx, task_ctx);
337
338 task = ctx->task;
339 if (task == TASK_TOMBSTONE)
340 goto unlock;
341
342 if (task) {
343 /*
344 * We must be either inactive or active and the right task,
345 * otherwise we're screwed, since we cannot IPI to somewhere
346 * else.
347 */
348 if (ctx->is_active) {
349 if (WARN_ON_ONCE(task != current))
350 goto unlock;
351
352 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
353 goto unlock;
354 }
355 } else {
356 WARN_ON_ONCE(&cpuctx->ctx != ctx);
357 }
358
359 func(event, cpuctx, ctx, data);
360 unlock:
361 perf_ctx_unlock(cpuctx, task_ctx);
362 }
363
364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
365 PERF_FLAG_FD_OUTPUT |\
366 PERF_FLAG_PID_CGROUP |\
367 PERF_FLAG_FD_CLOEXEC)
368
369 /*
370 * branch priv levels that need permission checks
371 */
372 #define PERF_SAMPLE_BRANCH_PERM_PLM \
373 (PERF_SAMPLE_BRANCH_KERNEL |\
374 PERF_SAMPLE_BRANCH_HV)
375
376 enum event_type_t {
377 EVENT_FLEXIBLE = 0x1,
378 EVENT_PINNED = 0x2,
379 EVENT_TIME = 0x4,
380 /* see ctx_resched() for details */
381 EVENT_CPU = 0x8,
382 EVENT_CGROUP = 0x10,
383 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
384 };
385
386 /*
387 * perf_sched_events : >0 events exist
388 */
389
390 static void perf_sched_delayed(struct work_struct *work);
391 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
393 static DEFINE_MUTEX(perf_sched_mutex);
394 static atomic_t perf_sched_count;
395
396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
397
398 static atomic_t nr_mmap_events __read_mostly;
399 static atomic_t nr_comm_events __read_mostly;
400 static atomic_t nr_namespaces_events __read_mostly;
401 static atomic_t nr_task_events __read_mostly;
402 static atomic_t nr_freq_events __read_mostly;
403 static atomic_t nr_switch_events __read_mostly;
404 static atomic_t nr_ksymbol_events __read_mostly;
405 static atomic_t nr_bpf_events __read_mostly;
406 static atomic_t nr_cgroup_events __read_mostly;
407 static atomic_t nr_text_poke_events __read_mostly;
408 static atomic_t nr_build_id_events __read_mostly;
409
410 static LIST_HEAD(pmus);
411 static DEFINE_MUTEX(pmus_lock);
412 static struct srcu_struct pmus_srcu;
413 static cpumask_var_t perf_online_mask;
414 static struct kmem_cache *perf_event_cache;
415
416 /*
417 * perf event paranoia level:
418 * -1 - not paranoid at all
419 * 0 - disallow raw tracepoint access for unpriv
420 * 1 - disallow cpu events for unpriv
421 * 2 - disallow kernel profiling for unpriv
422 */
423 int sysctl_perf_event_paranoid __read_mostly = 2;
424
425 /* Minimum for 512 kiB + 1 user control page */
426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
427
428 /*
429 * max perf event sample rate
430 */
431 #define DEFAULT_MAX_SAMPLE_RATE 100000
432 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
433 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
434
435 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
436
437 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
438 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
439
440 static int perf_sample_allowed_ns __read_mostly =
441 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
442
update_perf_cpu_limits(void)443 static void update_perf_cpu_limits(void)
444 {
445 u64 tmp = perf_sample_period_ns;
446
447 tmp *= sysctl_perf_cpu_time_max_percent;
448 tmp = div_u64(tmp, 100);
449 if (!tmp)
450 tmp = 1;
451
452 WRITE_ONCE(perf_sample_allowed_ns, tmp);
453 }
454
455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
456
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)457 int perf_proc_update_handler(struct ctl_table *table, int write,
458 void *buffer, size_t *lenp, loff_t *ppos)
459 {
460 int ret;
461 int perf_cpu = sysctl_perf_cpu_time_max_percent;
462 /*
463 * If throttling is disabled don't allow the write:
464 */
465 if (write && (perf_cpu == 100 || perf_cpu == 0))
466 return -EINVAL;
467
468 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 if (ret || !write)
470 return ret;
471
472 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
473 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
474 update_perf_cpu_limits();
475
476 return 0;
477 }
478
479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
480
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)481 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
482 void *buffer, size_t *lenp, loff_t *ppos)
483 {
484 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
485
486 if (ret || !write)
487 return ret;
488
489 if (sysctl_perf_cpu_time_max_percent == 100 ||
490 sysctl_perf_cpu_time_max_percent == 0) {
491 printk(KERN_WARNING
492 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
493 WRITE_ONCE(perf_sample_allowed_ns, 0);
494 } else {
495 update_perf_cpu_limits();
496 }
497
498 return 0;
499 }
500
501 /*
502 * perf samples are done in some very critical code paths (NMIs).
503 * If they take too much CPU time, the system can lock up and not
504 * get any real work done. This will drop the sample rate when
505 * we detect that events are taking too long.
506 */
507 #define NR_ACCUMULATED_SAMPLES 128
508 static DEFINE_PER_CPU(u64, running_sample_length);
509
510 static u64 __report_avg;
511 static u64 __report_allowed;
512
perf_duration_warn(struct irq_work * w)513 static void perf_duration_warn(struct irq_work *w)
514 {
515 printk_ratelimited(KERN_INFO
516 "perf: interrupt took too long (%lld > %lld), lowering "
517 "kernel.perf_event_max_sample_rate to %d\n",
518 __report_avg, __report_allowed,
519 sysctl_perf_event_sample_rate);
520 }
521
522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
523
perf_sample_event_took(u64 sample_len_ns)524 void perf_sample_event_took(u64 sample_len_ns)
525 {
526 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
527 u64 running_len;
528 u64 avg_len;
529 u32 max;
530
531 if (max_len == 0)
532 return;
533
534 /* Decay the counter by 1 average sample. */
535 running_len = __this_cpu_read(running_sample_length);
536 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
537 running_len += sample_len_ns;
538 __this_cpu_write(running_sample_length, running_len);
539
540 /*
541 * Note: this will be biased artifically low until we have
542 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
543 * from having to maintain a count.
544 */
545 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
546 if (avg_len <= max_len)
547 return;
548
549 __report_avg = avg_len;
550 __report_allowed = max_len;
551
552 /*
553 * Compute a throttle threshold 25% below the current duration.
554 */
555 avg_len += avg_len / 4;
556 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
557 if (avg_len < max)
558 max /= (u32)avg_len;
559 else
560 max = 1;
561
562 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
563 WRITE_ONCE(max_samples_per_tick, max);
564
565 sysctl_perf_event_sample_rate = max * HZ;
566 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
567
568 if (!irq_work_queue(&perf_duration_work)) {
569 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
570 "kernel.perf_event_max_sample_rate to %d\n",
571 __report_avg, __report_allowed,
572 sysctl_perf_event_sample_rate);
573 }
574 }
575
576 static atomic64_t perf_event_id;
577
578 static void update_context_time(struct perf_event_context *ctx);
579 static u64 perf_event_time(struct perf_event *event);
580
perf_event_print_debug(void)581 void __weak perf_event_print_debug(void) { }
582
perf_clock(void)583 static inline u64 perf_clock(void)
584 {
585 return local_clock();
586 }
587
perf_event_clock(struct perf_event * event)588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 return event->clock();
591 }
592
593 /*
594 * State based event timekeeping...
595 *
596 * The basic idea is to use event->state to determine which (if any) time
597 * fields to increment with the current delta. This means we only need to
598 * update timestamps when we change state or when they are explicitly requested
599 * (read).
600 *
601 * Event groups make things a little more complicated, but not terribly so. The
602 * rules for a group are that if the group leader is OFF the entire group is
603 * OFF, irrespecive of what the group member states are. This results in
604 * __perf_effective_state().
605 *
606 * A futher ramification is that when a group leader flips between OFF and
607 * !OFF, we need to update all group member times.
608 *
609 *
610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611 * need to make sure the relevant context time is updated before we try and
612 * update our timestamps.
613 */
614
615 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)616 __perf_effective_state(struct perf_event *event)
617 {
618 struct perf_event *leader = event->group_leader;
619
620 if (leader->state <= PERF_EVENT_STATE_OFF)
621 return leader->state;
622
623 return event->state;
624 }
625
626 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 enum perf_event_state state = __perf_effective_state(event);
630 u64 delta = now - event->tstamp;
631
632 *enabled = event->total_time_enabled;
633 if (state >= PERF_EVENT_STATE_INACTIVE)
634 *enabled += delta;
635
636 *running = event->total_time_running;
637 if (state >= PERF_EVENT_STATE_ACTIVE)
638 *running += delta;
639 }
640
perf_event_update_time(struct perf_event * event)641 static void perf_event_update_time(struct perf_event *event)
642 {
643 u64 now = perf_event_time(event);
644
645 __perf_update_times(event, now, &event->total_time_enabled,
646 &event->total_time_running);
647 event->tstamp = now;
648 }
649
perf_event_update_sibling_time(struct perf_event * leader)650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 struct perf_event *sibling;
653
654 for_each_sibling_event(sibling, leader)
655 perf_event_update_time(sibling);
656 }
657
658 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 if (event->state == state)
662 return;
663
664 perf_event_update_time(event);
665 /*
666 * If a group leader gets enabled/disabled all its siblings
667 * are affected too.
668 */
669 if ((event->state < 0) ^ (state < 0))
670 perf_event_update_sibling_time(event);
671
672 WRITE_ONCE(event->state, state);
673 }
674
675 /*
676 * UP store-release, load-acquire
677 */
678
679 #define __store_release(ptr, val) \
680 do { \
681 barrier(); \
682 WRITE_ONCE(*(ptr), (val)); \
683 } while (0)
684
685 #define __load_acquire(ptr) \
686 ({ \
687 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
688 barrier(); \
689 ___p; \
690 })
691
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
693 {
694 struct perf_event_pmu_context *pmu_ctx;
695
696 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
697 if (cgroup && !pmu_ctx->nr_cgroups)
698 continue;
699 perf_pmu_disable(pmu_ctx->pmu);
700 }
701 }
702
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
704 {
705 struct perf_event_pmu_context *pmu_ctx;
706
707 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
708 if (cgroup && !pmu_ctx->nr_cgroups)
709 continue;
710 perf_pmu_enable(pmu_ctx->pmu);
711 }
712 }
713
714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
716
717 #ifdef CONFIG_CGROUP_PERF
718
719 static inline bool
perf_cgroup_match(struct perf_event * event)720 perf_cgroup_match(struct perf_event *event)
721 {
722 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
723
724 /* @event doesn't care about cgroup */
725 if (!event->cgrp)
726 return true;
727
728 /* wants specific cgroup scope but @cpuctx isn't associated with any */
729 if (!cpuctx->cgrp)
730 return false;
731
732 /*
733 * Cgroup scoping is recursive. An event enabled for a cgroup is
734 * also enabled for all its descendant cgroups. If @cpuctx's
735 * cgroup is a descendant of @event's (the test covers identity
736 * case), it's a match.
737 */
738 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
739 event->cgrp->css.cgroup);
740 }
741
perf_detach_cgroup(struct perf_event * event)742 static inline void perf_detach_cgroup(struct perf_event *event)
743 {
744 css_put(&event->cgrp->css);
745 event->cgrp = NULL;
746 }
747
is_cgroup_event(struct perf_event * event)748 static inline int is_cgroup_event(struct perf_event *event)
749 {
750 return event->cgrp != NULL;
751 }
752
perf_cgroup_event_time(struct perf_event * event)753 static inline u64 perf_cgroup_event_time(struct perf_event *event)
754 {
755 struct perf_cgroup_info *t;
756
757 t = per_cpu_ptr(event->cgrp->info, event->cpu);
758 return t->time;
759 }
760
perf_cgroup_event_time_now(struct perf_event * event,u64 now)761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
762 {
763 struct perf_cgroup_info *t;
764
765 t = per_cpu_ptr(event->cgrp->info, event->cpu);
766 if (!__load_acquire(&t->active))
767 return t->time;
768 now += READ_ONCE(t->timeoffset);
769 return now;
770 }
771
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
773 {
774 if (adv)
775 info->time += now - info->timestamp;
776 info->timestamp = now;
777 /*
778 * see update_context_time()
779 */
780 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
781 }
782
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
784 {
785 struct perf_cgroup *cgrp = cpuctx->cgrp;
786 struct cgroup_subsys_state *css;
787 struct perf_cgroup_info *info;
788
789 if (cgrp) {
790 u64 now = perf_clock();
791
792 for (css = &cgrp->css; css; css = css->parent) {
793 cgrp = container_of(css, struct perf_cgroup, css);
794 info = this_cpu_ptr(cgrp->info);
795
796 __update_cgrp_time(info, now, true);
797 if (final)
798 __store_release(&info->active, 0);
799 }
800 }
801 }
802
update_cgrp_time_from_event(struct perf_event * event)803 static inline void update_cgrp_time_from_event(struct perf_event *event)
804 {
805 struct perf_cgroup_info *info;
806
807 /*
808 * ensure we access cgroup data only when needed and
809 * when we know the cgroup is pinned (css_get)
810 */
811 if (!is_cgroup_event(event))
812 return;
813
814 info = this_cpu_ptr(event->cgrp->info);
815 /*
816 * Do not update time when cgroup is not active
817 */
818 if (info->active)
819 __update_cgrp_time(info, perf_clock(), true);
820 }
821
822 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
824 {
825 struct perf_event_context *ctx = &cpuctx->ctx;
826 struct perf_cgroup *cgrp = cpuctx->cgrp;
827 struct perf_cgroup_info *info;
828 struct cgroup_subsys_state *css;
829
830 /*
831 * ctx->lock held by caller
832 * ensure we do not access cgroup data
833 * unless we have the cgroup pinned (css_get)
834 */
835 if (!cgrp)
836 return;
837
838 WARN_ON_ONCE(!ctx->nr_cgroups);
839
840 for (css = &cgrp->css; css; css = css->parent) {
841 cgrp = container_of(css, struct perf_cgroup, css);
842 info = this_cpu_ptr(cgrp->info);
843 __update_cgrp_time(info, ctx->timestamp, false);
844 __store_release(&info->active, 1);
845 }
846 }
847
848 /*
849 * reschedule events based on the cgroup constraint of task.
850 */
perf_cgroup_switch(struct task_struct * task)851 static void perf_cgroup_switch(struct task_struct *task)
852 {
853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
854 struct perf_cgroup *cgrp;
855
856 /*
857 * cpuctx->cgrp is set when the first cgroup event enabled,
858 * and is cleared when the last cgroup event disabled.
859 */
860 if (READ_ONCE(cpuctx->cgrp) == NULL)
861 return;
862
863 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
864
865 cgrp = perf_cgroup_from_task(task, NULL);
866 if (READ_ONCE(cpuctx->cgrp) == cgrp)
867 return;
868
869 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
870 perf_ctx_disable(&cpuctx->ctx, true);
871
872 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
873 /*
874 * must not be done before ctxswout due
875 * to update_cgrp_time_from_cpuctx() in
876 * ctx_sched_out()
877 */
878 cpuctx->cgrp = cgrp;
879 /*
880 * set cgrp before ctxsw in to allow
881 * perf_cgroup_set_timestamp() in ctx_sched_in()
882 * to not have to pass task around
883 */
884 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
885
886 perf_ctx_enable(&cpuctx->ctx, true);
887 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
888 }
889
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)890 static int perf_cgroup_ensure_storage(struct perf_event *event,
891 struct cgroup_subsys_state *css)
892 {
893 struct perf_cpu_context *cpuctx;
894 struct perf_event **storage;
895 int cpu, heap_size, ret = 0;
896
897 /*
898 * Allow storage to have sufficent space for an iterator for each
899 * possibly nested cgroup plus an iterator for events with no cgroup.
900 */
901 for (heap_size = 1; css; css = css->parent)
902 heap_size++;
903
904 for_each_possible_cpu(cpu) {
905 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
906 if (heap_size <= cpuctx->heap_size)
907 continue;
908
909 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
910 GFP_KERNEL, cpu_to_node(cpu));
911 if (!storage) {
912 ret = -ENOMEM;
913 break;
914 }
915
916 raw_spin_lock_irq(&cpuctx->ctx.lock);
917 if (cpuctx->heap_size < heap_size) {
918 swap(cpuctx->heap, storage);
919 if (storage == cpuctx->heap_default)
920 storage = NULL;
921 cpuctx->heap_size = heap_size;
922 }
923 raw_spin_unlock_irq(&cpuctx->ctx.lock);
924
925 kfree(storage);
926 }
927
928 return ret;
929 }
930
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)931 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
932 struct perf_event_attr *attr,
933 struct perf_event *group_leader)
934 {
935 struct perf_cgroup *cgrp;
936 struct cgroup_subsys_state *css;
937 struct fd f = fdget(fd);
938 int ret = 0;
939
940 if (!f.file)
941 return -EBADF;
942
943 css = css_tryget_online_from_dir(f.file->f_path.dentry,
944 &perf_event_cgrp_subsys);
945 if (IS_ERR(css)) {
946 ret = PTR_ERR(css);
947 goto out;
948 }
949
950 ret = perf_cgroup_ensure_storage(event, css);
951 if (ret)
952 goto out;
953
954 cgrp = container_of(css, struct perf_cgroup, css);
955 event->cgrp = cgrp;
956
957 /*
958 * all events in a group must monitor
959 * the same cgroup because a task belongs
960 * to only one perf cgroup at a time
961 */
962 if (group_leader && group_leader->cgrp != cgrp) {
963 perf_detach_cgroup(event);
964 ret = -EINVAL;
965 }
966 out:
967 fdput(f);
968 return ret;
969 }
970
971 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
973 {
974 struct perf_cpu_context *cpuctx;
975
976 if (!is_cgroup_event(event))
977 return;
978
979 event->pmu_ctx->nr_cgroups++;
980
981 /*
982 * Because cgroup events are always per-cpu events,
983 * @ctx == &cpuctx->ctx.
984 */
985 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
986
987 if (ctx->nr_cgroups++)
988 return;
989
990 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
991 }
992
993 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
995 {
996 struct perf_cpu_context *cpuctx;
997
998 if (!is_cgroup_event(event))
999 return;
1000
1001 event->pmu_ctx->nr_cgroups--;
1002
1003 /*
1004 * Because cgroup events are always per-cpu events,
1005 * @ctx == &cpuctx->ctx.
1006 */
1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1008
1009 if (--ctx->nr_cgroups)
1010 return;
1011
1012 cpuctx->cgrp = NULL;
1013 }
1014
1015 #else /* !CONFIG_CGROUP_PERF */
1016
1017 static inline bool
perf_cgroup_match(struct perf_event * event)1018 perf_cgroup_match(struct perf_event *event)
1019 {
1020 return true;
1021 }
1022
perf_detach_cgroup(struct perf_event * event)1023 static inline void perf_detach_cgroup(struct perf_event *event)
1024 {}
1025
is_cgroup_event(struct perf_event * event)1026 static inline int is_cgroup_event(struct perf_event *event)
1027 {
1028 return 0;
1029 }
1030
update_cgrp_time_from_event(struct perf_event * event)1031 static inline void update_cgrp_time_from_event(struct perf_event *event)
1032 {
1033 }
1034
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1036 bool final)
1037 {
1038 }
1039
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1041 struct perf_event_attr *attr,
1042 struct perf_event *group_leader)
1043 {
1044 return -EINVAL;
1045 }
1046
1047 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1049 {
1050 }
1051
perf_cgroup_event_time(struct perf_event * event)1052 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1053 {
1054 return 0;
1055 }
1056
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1058 {
1059 return 0;
1060 }
1061
1062 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1064 {
1065 }
1066
1067 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 }
1071
perf_cgroup_switch(struct task_struct * task)1072 static void perf_cgroup_switch(struct task_struct *task)
1073 {
1074 }
1075 #endif
1076
1077 /*
1078 * set default to be dependent on timer tick just
1079 * like original code
1080 */
1081 #define PERF_CPU_HRTIMER (1000 / HZ)
1082 /*
1083 * function must be called with interrupts disabled
1084 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1086 {
1087 struct perf_cpu_pmu_context *cpc;
1088 bool rotations;
1089
1090 lockdep_assert_irqs_disabled();
1091
1092 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1093 rotations = perf_rotate_context(cpc);
1094
1095 raw_spin_lock(&cpc->hrtimer_lock);
1096 if (rotations)
1097 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1098 else
1099 cpc->hrtimer_active = 0;
1100 raw_spin_unlock(&cpc->hrtimer_lock);
1101
1102 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1103 }
1104
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1106 {
1107 struct hrtimer *timer = &cpc->hrtimer;
1108 struct pmu *pmu = cpc->epc.pmu;
1109 u64 interval;
1110
1111 /*
1112 * check default is sane, if not set then force to
1113 * default interval (1/tick)
1114 */
1115 interval = pmu->hrtimer_interval_ms;
1116 if (interval < 1)
1117 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1118
1119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1120
1121 raw_spin_lock_init(&cpc->hrtimer_lock);
1122 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1123 timer->function = perf_mux_hrtimer_handler;
1124 }
1125
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1127 {
1128 struct hrtimer *timer = &cpc->hrtimer;
1129 unsigned long flags;
1130
1131 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1132 if (!cpc->hrtimer_active) {
1133 cpc->hrtimer_active = 1;
1134 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1136 }
1137 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1138
1139 return 0;
1140 }
1141
perf_mux_hrtimer_restart_ipi(void * arg)1142 static int perf_mux_hrtimer_restart_ipi(void *arg)
1143 {
1144 return perf_mux_hrtimer_restart(arg);
1145 }
1146
perf_pmu_disable(struct pmu * pmu)1147 void perf_pmu_disable(struct pmu *pmu)
1148 {
1149 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1150 if (!(*count)++)
1151 pmu->pmu_disable(pmu);
1152 }
1153
perf_pmu_enable(struct pmu * pmu)1154 void perf_pmu_enable(struct pmu *pmu)
1155 {
1156 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1157 if (!--(*count))
1158 pmu->pmu_enable(pmu);
1159 }
1160
perf_assert_pmu_disabled(struct pmu * pmu)1161 static void perf_assert_pmu_disabled(struct pmu *pmu)
1162 {
1163 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1164 }
1165
perf_pmu_read(struct perf_event * event)1166 static inline void perf_pmu_read(struct perf_event *event)
1167 {
1168 if (event->state == PERF_EVENT_STATE_ACTIVE)
1169 event->pmu->read(event);
1170 }
1171
get_ctx(struct perf_event_context * ctx)1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 refcount_inc(&ctx->refcount);
1175 }
1176
alloc_task_ctx_data(struct pmu * pmu)1177 static void *alloc_task_ctx_data(struct pmu *pmu)
1178 {
1179 if (pmu->task_ctx_cache)
1180 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1181
1182 return NULL;
1183 }
1184
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1185 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1186 {
1187 if (pmu->task_ctx_cache && task_ctx_data)
1188 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1189 }
1190
free_ctx(struct rcu_head * head)1191 static void free_ctx(struct rcu_head *head)
1192 {
1193 struct perf_event_context *ctx;
1194
1195 ctx = container_of(head, struct perf_event_context, rcu_head);
1196 kfree(ctx);
1197 }
1198
put_ctx(struct perf_event_context * ctx)1199 static void put_ctx(struct perf_event_context *ctx)
1200 {
1201 if (refcount_dec_and_test(&ctx->refcount)) {
1202 if (ctx->parent_ctx)
1203 put_ctx(ctx->parent_ctx);
1204 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1205 put_task_struct(ctx->task);
1206 call_rcu(&ctx->rcu_head, free_ctx);
1207 }
1208 }
1209
1210 /*
1211 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1212 * perf_pmu_migrate_context() we need some magic.
1213 *
1214 * Those places that change perf_event::ctx will hold both
1215 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1216 *
1217 * Lock ordering is by mutex address. There are two other sites where
1218 * perf_event_context::mutex nests and those are:
1219 *
1220 * - perf_event_exit_task_context() [ child , 0 ]
1221 * perf_event_exit_event()
1222 * put_event() [ parent, 1 ]
1223 *
1224 * - perf_event_init_context() [ parent, 0 ]
1225 * inherit_task_group()
1226 * inherit_group()
1227 * inherit_event()
1228 * perf_event_alloc()
1229 * perf_init_event()
1230 * perf_try_init_event() [ child , 1 ]
1231 *
1232 * While it appears there is an obvious deadlock here -- the parent and child
1233 * nesting levels are inverted between the two. This is in fact safe because
1234 * life-time rules separate them. That is an exiting task cannot fork, and a
1235 * spawning task cannot (yet) exit.
1236 *
1237 * But remember that these are parent<->child context relations, and
1238 * migration does not affect children, therefore these two orderings should not
1239 * interact.
1240 *
1241 * The change in perf_event::ctx does not affect children (as claimed above)
1242 * because the sys_perf_event_open() case will install a new event and break
1243 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1244 * concerned with cpuctx and that doesn't have children.
1245 *
1246 * The places that change perf_event::ctx will issue:
1247 *
1248 * perf_remove_from_context();
1249 * synchronize_rcu();
1250 * perf_install_in_context();
1251 *
1252 * to affect the change. The remove_from_context() + synchronize_rcu() should
1253 * quiesce the event, after which we can install it in the new location. This
1254 * means that only external vectors (perf_fops, prctl) can perturb the event
1255 * while in transit. Therefore all such accessors should also acquire
1256 * perf_event_context::mutex to serialize against this.
1257 *
1258 * However; because event->ctx can change while we're waiting to acquire
1259 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1260 * function.
1261 *
1262 * Lock order:
1263 * exec_update_lock
1264 * task_struct::perf_event_mutex
1265 * perf_event_context::mutex
1266 * perf_event::child_mutex;
1267 * perf_event_context::lock
1268 * mmap_lock
1269 * perf_event::mmap_mutex
1270 * perf_buffer::aux_mutex
1271 * perf_addr_filters_head::lock
1272 *
1273 * cpu_hotplug_lock
1274 * pmus_lock
1275 * cpuctx->mutex / perf_event_context::mutex
1276 */
1277 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1278 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1279 {
1280 struct perf_event_context *ctx;
1281
1282 again:
1283 rcu_read_lock();
1284 ctx = READ_ONCE(event->ctx);
1285 if (!refcount_inc_not_zero(&ctx->refcount)) {
1286 rcu_read_unlock();
1287 goto again;
1288 }
1289 rcu_read_unlock();
1290
1291 mutex_lock_nested(&ctx->mutex, nesting);
1292 if (event->ctx != ctx) {
1293 mutex_unlock(&ctx->mutex);
1294 put_ctx(ctx);
1295 goto again;
1296 }
1297
1298 return ctx;
1299 }
1300
1301 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1302 perf_event_ctx_lock(struct perf_event *event)
1303 {
1304 return perf_event_ctx_lock_nested(event, 0);
1305 }
1306
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1307 static void perf_event_ctx_unlock(struct perf_event *event,
1308 struct perf_event_context *ctx)
1309 {
1310 mutex_unlock(&ctx->mutex);
1311 put_ctx(ctx);
1312 }
1313
1314 /*
1315 * This must be done under the ctx->lock, such as to serialize against
1316 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1317 * calling scheduler related locks and ctx->lock nests inside those.
1318 */
1319 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1320 unclone_ctx(struct perf_event_context *ctx)
1321 {
1322 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1323
1324 lockdep_assert_held(&ctx->lock);
1325
1326 if (parent_ctx)
1327 ctx->parent_ctx = NULL;
1328 ctx->generation++;
1329
1330 return parent_ctx;
1331 }
1332
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1333 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1334 enum pid_type type)
1335 {
1336 u32 nr;
1337 /*
1338 * only top level events have the pid namespace they were created in
1339 */
1340 if (event->parent)
1341 event = event->parent;
1342
1343 nr = __task_pid_nr_ns(p, type, event->ns);
1344 /* avoid -1 if it is idle thread or runs in another ns */
1345 if (!nr && !pid_alive(p))
1346 nr = -1;
1347 return nr;
1348 }
1349
perf_event_pid(struct perf_event * event,struct task_struct * p)1350 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1351 {
1352 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1353 }
1354
perf_event_tid(struct perf_event * event,struct task_struct * p)1355 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1356 {
1357 return perf_event_pid_type(event, p, PIDTYPE_PID);
1358 }
1359
1360 /*
1361 * If we inherit events we want to return the parent event id
1362 * to userspace.
1363 */
primary_event_id(struct perf_event * event)1364 static u64 primary_event_id(struct perf_event *event)
1365 {
1366 u64 id = event->id;
1367
1368 if (event->parent)
1369 id = event->parent->id;
1370
1371 return id;
1372 }
1373
1374 /*
1375 * Get the perf_event_context for a task and lock it.
1376 *
1377 * This has to cope with the fact that until it is locked,
1378 * the context could get moved to another task.
1379 */
1380 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1381 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1382 {
1383 struct perf_event_context *ctx;
1384
1385 retry:
1386 /*
1387 * One of the few rules of preemptible RCU is that one cannot do
1388 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1389 * part of the read side critical section was irqs-enabled -- see
1390 * rcu_read_unlock_special().
1391 *
1392 * Since ctx->lock nests under rq->lock we must ensure the entire read
1393 * side critical section has interrupts disabled.
1394 */
1395 local_irq_save(*flags);
1396 rcu_read_lock();
1397 ctx = rcu_dereference(task->perf_event_ctxp);
1398 if (ctx) {
1399 /*
1400 * If this context is a clone of another, it might
1401 * get swapped for another underneath us by
1402 * perf_event_task_sched_out, though the
1403 * rcu_read_lock() protects us from any context
1404 * getting freed. Lock the context and check if it
1405 * got swapped before we could get the lock, and retry
1406 * if so. If we locked the right context, then it
1407 * can't get swapped on us any more.
1408 */
1409 raw_spin_lock(&ctx->lock);
1410 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1411 raw_spin_unlock(&ctx->lock);
1412 rcu_read_unlock();
1413 local_irq_restore(*flags);
1414 goto retry;
1415 }
1416
1417 if (ctx->task == TASK_TOMBSTONE ||
1418 !refcount_inc_not_zero(&ctx->refcount)) {
1419 raw_spin_unlock(&ctx->lock);
1420 ctx = NULL;
1421 } else {
1422 WARN_ON_ONCE(ctx->task != task);
1423 }
1424 }
1425 rcu_read_unlock();
1426 if (!ctx)
1427 local_irq_restore(*flags);
1428 return ctx;
1429 }
1430
1431 /*
1432 * Get the context for a task and increment its pin_count so it
1433 * can't get swapped to another task. This also increments its
1434 * reference count so that the context can't get freed.
1435 */
1436 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1437 perf_pin_task_context(struct task_struct *task)
1438 {
1439 struct perf_event_context *ctx;
1440 unsigned long flags;
1441
1442 ctx = perf_lock_task_context(task, &flags);
1443 if (ctx) {
1444 ++ctx->pin_count;
1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 return ctx;
1448 }
1449
perf_unpin_context(struct perf_event_context * ctx)1450 static void perf_unpin_context(struct perf_event_context *ctx)
1451 {
1452 unsigned long flags;
1453
1454 raw_spin_lock_irqsave(&ctx->lock, flags);
1455 --ctx->pin_count;
1456 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1457 }
1458
1459 /*
1460 * Update the record of the current time in a context.
1461 */
__update_context_time(struct perf_event_context * ctx,bool adv)1462 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1463 {
1464 u64 now = perf_clock();
1465
1466 lockdep_assert_held(&ctx->lock);
1467
1468 if (adv)
1469 ctx->time += now - ctx->timestamp;
1470 ctx->timestamp = now;
1471
1472 /*
1473 * The above: time' = time + (now - timestamp), can be re-arranged
1474 * into: time` = now + (time - timestamp), which gives a single value
1475 * offset to compute future time without locks on.
1476 *
1477 * See perf_event_time_now(), which can be used from NMI context where
1478 * it's (obviously) not possible to acquire ctx->lock in order to read
1479 * both the above values in a consistent manner.
1480 */
1481 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1482 }
1483
update_context_time(struct perf_event_context * ctx)1484 static void update_context_time(struct perf_event_context *ctx)
1485 {
1486 __update_context_time(ctx, true);
1487 }
1488
perf_event_time(struct perf_event * event)1489 static u64 perf_event_time(struct perf_event *event)
1490 {
1491 struct perf_event_context *ctx = event->ctx;
1492
1493 if (unlikely(!ctx))
1494 return 0;
1495
1496 if (is_cgroup_event(event))
1497 return perf_cgroup_event_time(event);
1498
1499 return ctx->time;
1500 }
1501
perf_event_time_now(struct perf_event * event,u64 now)1502 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1503 {
1504 struct perf_event_context *ctx = event->ctx;
1505
1506 if (unlikely(!ctx))
1507 return 0;
1508
1509 if (is_cgroup_event(event))
1510 return perf_cgroup_event_time_now(event, now);
1511
1512 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1513 return ctx->time;
1514
1515 now += READ_ONCE(ctx->timeoffset);
1516 return now;
1517 }
1518
get_event_type(struct perf_event * event)1519 static enum event_type_t get_event_type(struct perf_event *event)
1520 {
1521 struct perf_event_context *ctx = event->ctx;
1522 enum event_type_t event_type;
1523
1524 lockdep_assert_held(&ctx->lock);
1525
1526 /*
1527 * It's 'group type', really, because if our group leader is
1528 * pinned, so are we.
1529 */
1530 if (event->group_leader != event)
1531 event = event->group_leader;
1532
1533 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1534 if (!ctx->task)
1535 event_type |= EVENT_CPU;
1536
1537 return event_type;
1538 }
1539
1540 /*
1541 * Helper function to initialize event group nodes.
1542 */
init_event_group(struct perf_event * event)1543 static void init_event_group(struct perf_event *event)
1544 {
1545 RB_CLEAR_NODE(&event->group_node);
1546 event->group_index = 0;
1547 }
1548
1549 /*
1550 * Extract pinned or flexible groups from the context
1551 * based on event attrs bits.
1552 */
1553 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1554 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1555 {
1556 if (event->attr.pinned)
1557 return &ctx->pinned_groups;
1558 else
1559 return &ctx->flexible_groups;
1560 }
1561
1562 /*
1563 * Helper function to initializes perf_event_group trees.
1564 */
perf_event_groups_init(struct perf_event_groups * groups)1565 static void perf_event_groups_init(struct perf_event_groups *groups)
1566 {
1567 groups->tree = RB_ROOT;
1568 groups->index = 0;
1569 }
1570
event_cgroup(const struct perf_event * event)1571 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1572 {
1573 struct cgroup *cgroup = NULL;
1574
1575 #ifdef CONFIG_CGROUP_PERF
1576 if (event->cgrp)
1577 cgroup = event->cgrp->css.cgroup;
1578 #endif
1579
1580 return cgroup;
1581 }
1582
1583 /*
1584 * Compare function for event groups;
1585 *
1586 * Implements complex key that first sorts by CPU and then by virtual index
1587 * which provides ordering when rotating groups for the same CPU.
1588 */
1589 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1590 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1591 const struct cgroup *left_cgroup, const u64 left_group_index,
1592 const struct perf_event *right)
1593 {
1594 if (left_cpu < right->cpu)
1595 return -1;
1596 if (left_cpu > right->cpu)
1597 return 1;
1598
1599 if (left_pmu) {
1600 if (left_pmu < right->pmu_ctx->pmu)
1601 return -1;
1602 if (left_pmu > right->pmu_ctx->pmu)
1603 return 1;
1604 }
1605
1606 #ifdef CONFIG_CGROUP_PERF
1607 {
1608 const struct cgroup *right_cgroup = event_cgroup(right);
1609
1610 if (left_cgroup != right_cgroup) {
1611 if (!left_cgroup) {
1612 /*
1613 * Left has no cgroup but right does, no
1614 * cgroups come first.
1615 */
1616 return -1;
1617 }
1618 if (!right_cgroup) {
1619 /*
1620 * Right has no cgroup but left does, no
1621 * cgroups come first.
1622 */
1623 return 1;
1624 }
1625 /* Two dissimilar cgroups, order by id. */
1626 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1627 return -1;
1628
1629 return 1;
1630 }
1631 }
1632 #endif
1633
1634 if (left_group_index < right->group_index)
1635 return -1;
1636 if (left_group_index > right->group_index)
1637 return 1;
1638
1639 return 0;
1640 }
1641
1642 #define __node_2_pe(node) \
1643 rb_entry((node), struct perf_event, group_node)
1644
__group_less(struct rb_node * a,const struct rb_node * b)1645 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1646 {
1647 struct perf_event *e = __node_2_pe(a);
1648 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1649 e->group_index, __node_2_pe(b)) < 0;
1650 }
1651
1652 struct __group_key {
1653 int cpu;
1654 struct pmu *pmu;
1655 struct cgroup *cgroup;
1656 };
1657
__group_cmp(const void * key,const struct rb_node * node)1658 static inline int __group_cmp(const void *key, const struct rb_node *node)
1659 {
1660 const struct __group_key *a = key;
1661 const struct perf_event *b = __node_2_pe(node);
1662
1663 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1664 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1665 }
1666
1667 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1668 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1669 {
1670 const struct __group_key *a = key;
1671 const struct perf_event *b = __node_2_pe(node);
1672
1673 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1674 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1675 b->group_index, b);
1676 }
1677
1678 /*
1679 * Insert @event into @groups' tree; using
1680 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1681 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1682 */
1683 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1684 perf_event_groups_insert(struct perf_event_groups *groups,
1685 struct perf_event *event)
1686 {
1687 event->group_index = ++groups->index;
1688
1689 rb_add(&event->group_node, &groups->tree, __group_less);
1690 }
1691
1692 /*
1693 * Helper function to insert event into the pinned or flexible groups.
1694 */
1695 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1696 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1697 {
1698 struct perf_event_groups *groups;
1699
1700 groups = get_event_groups(event, ctx);
1701 perf_event_groups_insert(groups, event);
1702 }
1703
1704 /*
1705 * Delete a group from a tree.
1706 */
1707 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1708 perf_event_groups_delete(struct perf_event_groups *groups,
1709 struct perf_event *event)
1710 {
1711 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1712 RB_EMPTY_ROOT(&groups->tree));
1713
1714 rb_erase(&event->group_node, &groups->tree);
1715 init_event_group(event);
1716 }
1717
1718 /*
1719 * Helper function to delete event from its groups.
1720 */
1721 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1722 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1723 {
1724 struct perf_event_groups *groups;
1725
1726 groups = get_event_groups(event, ctx);
1727 perf_event_groups_delete(groups, event);
1728 }
1729
1730 /*
1731 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1732 */
1733 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1734 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1735 struct pmu *pmu, struct cgroup *cgrp)
1736 {
1737 struct __group_key key = {
1738 .cpu = cpu,
1739 .pmu = pmu,
1740 .cgroup = cgrp,
1741 };
1742 struct rb_node *node;
1743
1744 node = rb_find_first(&key, &groups->tree, __group_cmp);
1745 if (node)
1746 return __node_2_pe(node);
1747
1748 return NULL;
1749 }
1750
1751 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1752 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1753 {
1754 struct __group_key key = {
1755 .cpu = event->cpu,
1756 .pmu = pmu,
1757 .cgroup = event_cgroup(event),
1758 };
1759 struct rb_node *next;
1760
1761 next = rb_next_match(&key, &event->group_node, __group_cmp);
1762 if (next)
1763 return __node_2_pe(next);
1764
1765 return NULL;
1766 }
1767
1768 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1769 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1770 event; event = perf_event_groups_next(event, pmu))
1771
1772 /*
1773 * Iterate through the whole groups tree.
1774 */
1775 #define perf_event_groups_for_each(event, groups) \
1776 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1777 typeof(*event), group_node); event; \
1778 event = rb_entry_safe(rb_next(&event->group_node), \
1779 typeof(*event), group_node))
1780
1781 /*
1782 * Add an event from the lists for its context.
1783 * Must be called with ctx->mutex and ctx->lock held.
1784 */
1785 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1786 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1787 {
1788 lockdep_assert_held(&ctx->lock);
1789
1790 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1791 event->attach_state |= PERF_ATTACH_CONTEXT;
1792
1793 event->tstamp = perf_event_time(event);
1794
1795 /*
1796 * If we're a stand alone event or group leader, we go to the context
1797 * list, group events are kept attached to the group so that
1798 * perf_group_detach can, at all times, locate all siblings.
1799 */
1800 if (event->group_leader == event) {
1801 event->group_caps = event->event_caps;
1802 add_event_to_groups(event, ctx);
1803 }
1804
1805 list_add_rcu(&event->event_entry, &ctx->event_list);
1806 ctx->nr_events++;
1807 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1808 ctx->nr_user++;
1809 if (event->attr.inherit_stat)
1810 ctx->nr_stat++;
1811
1812 if (event->state > PERF_EVENT_STATE_OFF)
1813 perf_cgroup_event_enable(event, ctx);
1814
1815 ctx->generation++;
1816 event->pmu_ctx->nr_events++;
1817 }
1818
1819 /*
1820 * Initialize event state based on the perf_event_attr::disabled.
1821 */
perf_event__state_init(struct perf_event * event)1822 static inline void perf_event__state_init(struct perf_event *event)
1823 {
1824 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1825 PERF_EVENT_STATE_INACTIVE;
1826 }
1827
__perf_event_read_size(u64 read_format,int nr_siblings)1828 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1829 {
1830 int entry = sizeof(u64); /* value */
1831 int size = 0;
1832 int nr = 1;
1833
1834 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835 size += sizeof(u64);
1836
1837 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838 size += sizeof(u64);
1839
1840 if (read_format & PERF_FORMAT_ID)
1841 entry += sizeof(u64);
1842
1843 if (read_format & PERF_FORMAT_LOST)
1844 entry += sizeof(u64);
1845
1846 if (read_format & PERF_FORMAT_GROUP) {
1847 nr += nr_siblings;
1848 size += sizeof(u64);
1849 }
1850
1851 /*
1852 * Since perf_event_validate_size() limits this to 16k and inhibits
1853 * adding more siblings, this will never overflow.
1854 */
1855 return size + nr * entry;
1856 }
1857
__perf_event_header_size(struct perf_event * event,u64 sample_type)1858 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1859 {
1860 struct perf_sample_data *data;
1861 u16 size = 0;
1862
1863 if (sample_type & PERF_SAMPLE_IP)
1864 size += sizeof(data->ip);
1865
1866 if (sample_type & PERF_SAMPLE_ADDR)
1867 size += sizeof(data->addr);
1868
1869 if (sample_type & PERF_SAMPLE_PERIOD)
1870 size += sizeof(data->period);
1871
1872 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1873 size += sizeof(data->weight.full);
1874
1875 if (sample_type & PERF_SAMPLE_READ)
1876 size += event->read_size;
1877
1878 if (sample_type & PERF_SAMPLE_DATA_SRC)
1879 size += sizeof(data->data_src.val);
1880
1881 if (sample_type & PERF_SAMPLE_TRANSACTION)
1882 size += sizeof(data->txn);
1883
1884 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1885 size += sizeof(data->phys_addr);
1886
1887 if (sample_type & PERF_SAMPLE_CGROUP)
1888 size += sizeof(data->cgroup);
1889
1890 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1891 size += sizeof(data->data_page_size);
1892
1893 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1894 size += sizeof(data->code_page_size);
1895
1896 event->header_size = size;
1897 }
1898
1899 /*
1900 * Called at perf_event creation and when events are attached/detached from a
1901 * group.
1902 */
perf_event__header_size(struct perf_event * event)1903 static void perf_event__header_size(struct perf_event *event)
1904 {
1905 event->read_size =
1906 __perf_event_read_size(event->attr.read_format,
1907 event->group_leader->nr_siblings);
1908 __perf_event_header_size(event, event->attr.sample_type);
1909 }
1910
perf_event__id_header_size(struct perf_event * event)1911 static void perf_event__id_header_size(struct perf_event *event)
1912 {
1913 struct perf_sample_data *data;
1914 u64 sample_type = event->attr.sample_type;
1915 u16 size = 0;
1916
1917 if (sample_type & PERF_SAMPLE_TID)
1918 size += sizeof(data->tid_entry);
1919
1920 if (sample_type & PERF_SAMPLE_TIME)
1921 size += sizeof(data->time);
1922
1923 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1924 size += sizeof(data->id);
1925
1926 if (sample_type & PERF_SAMPLE_ID)
1927 size += sizeof(data->id);
1928
1929 if (sample_type & PERF_SAMPLE_STREAM_ID)
1930 size += sizeof(data->stream_id);
1931
1932 if (sample_type & PERF_SAMPLE_CPU)
1933 size += sizeof(data->cpu_entry);
1934
1935 event->id_header_size = size;
1936 }
1937
1938 /*
1939 * Check that adding an event to the group does not result in anybody
1940 * overflowing the 64k event limit imposed by the output buffer.
1941 *
1942 * Specifically, check that the read_size for the event does not exceed 16k,
1943 * read_size being the one term that grows with groups size. Since read_size
1944 * depends on per-event read_format, also (re)check the existing events.
1945 *
1946 * This leaves 48k for the constant size fields and things like callchains,
1947 * branch stacks and register sets.
1948 */
perf_event_validate_size(struct perf_event * event)1949 static bool perf_event_validate_size(struct perf_event *event)
1950 {
1951 struct perf_event *sibling, *group_leader = event->group_leader;
1952
1953 if (__perf_event_read_size(event->attr.read_format,
1954 group_leader->nr_siblings + 1) > 16*1024)
1955 return false;
1956
1957 if (__perf_event_read_size(group_leader->attr.read_format,
1958 group_leader->nr_siblings + 1) > 16*1024)
1959 return false;
1960
1961 /*
1962 * When creating a new group leader, group_leader->ctx is initialized
1963 * after the size has been validated, but we cannot safely use
1964 * for_each_sibling_event() until group_leader->ctx is set. A new group
1965 * leader cannot have any siblings yet, so we can safely skip checking
1966 * the non-existent siblings.
1967 */
1968 if (event == group_leader)
1969 return true;
1970
1971 for_each_sibling_event(sibling, group_leader) {
1972 if (__perf_event_read_size(sibling->attr.read_format,
1973 group_leader->nr_siblings + 1) > 16*1024)
1974 return false;
1975 }
1976
1977 return true;
1978 }
1979
perf_group_attach(struct perf_event * event)1980 static void perf_group_attach(struct perf_event *event)
1981 {
1982 struct perf_event *group_leader = event->group_leader, *pos;
1983
1984 lockdep_assert_held(&event->ctx->lock);
1985
1986 /*
1987 * We can have double attach due to group movement (move_group) in
1988 * perf_event_open().
1989 */
1990 if (event->attach_state & PERF_ATTACH_GROUP)
1991 return;
1992
1993 event->attach_state |= PERF_ATTACH_GROUP;
1994
1995 if (group_leader == event)
1996 return;
1997
1998 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1999
2000 group_leader->group_caps &= event->event_caps;
2001
2002 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2003 group_leader->nr_siblings++;
2004 group_leader->group_generation++;
2005
2006 perf_event__header_size(group_leader);
2007
2008 for_each_sibling_event(pos, group_leader)
2009 perf_event__header_size(pos);
2010 }
2011
2012 /*
2013 * Remove an event from the lists for its context.
2014 * Must be called with ctx->mutex and ctx->lock held.
2015 */
2016 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2017 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2018 {
2019 WARN_ON_ONCE(event->ctx != ctx);
2020 lockdep_assert_held(&ctx->lock);
2021
2022 /*
2023 * We can have double detach due to exit/hot-unplug + close.
2024 */
2025 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2026 return;
2027
2028 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2029
2030 ctx->nr_events--;
2031 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2032 ctx->nr_user--;
2033 if (event->attr.inherit_stat)
2034 ctx->nr_stat--;
2035
2036 list_del_rcu(&event->event_entry);
2037
2038 if (event->group_leader == event)
2039 del_event_from_groups(event, ctx);
2040
2041 /*
2042 * If event was in error state, then keep it
2043 * that way, otherwise bogus counts will be
2044 * returned on read(). The only way to get out
2045 * of error state is by explicit re-enabling
2046 * of the event
2047 */
2048 if (event->state > PERF_EVENT_STATE_OFF) {
2049 perf_cgroup_event_disable(event, ctx);
2050 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2051 }
2052
2053 ctx->generation++;
2054 event->pmu_ctx->nr_events--;
2055 }
2056
2057 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2058 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2059 {
2060 if (!has_aux(aux_event))
2061 return 0;
2062
2063 if (!event->pmu->aux_output_match)
2064 return 0;
2065
2066 return event->pmu->aux_output_match(aux_event);
2067 }
2068
2069 static void put_event(struct perf_event *event);
2070 static void event_sched_out(struct perf_event *event,
2071 struct perf_event_context *ctx);
2072
perf_put_aux_event(struct perf_event * event)2073 static void perf_put_aux_event(struct perf_event *event)
2074 {
2075 struct perf_event_context *ctx = event->ctx;
2076 struct perf_event *iter;
2077
2078 /*
2079 * If event uses aux_event tear down the link
2080 */
2081 if (event->aux_event) {
2082 iter = event->aux_event;
2083 event->aux_event = NULL;
2084 put_event(iter);
2085 return;
2086 }
2087
2088 /*
2089 * If the event is an aux_event, tear down all links to
2090 * it from other events.
2091 */
2092 for_each_sibling_event(iter, event->group_leader) {
2093 if (iter->aux_event != event)
2094 continue;
2095
2096 iter->aux_event = NULL;
2097 put_event(event);
2098
2099 /*
2100 * If it's ACTIVE, schedule it out and put it into ERROR
2101 * state so that we don't try to schedule it again. Note
2102 * that perf_event_enable() will clear the ERROR status.
2103 */
2104 event_sched_out(iter, ctx);
2105 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2106 }
2107 }
2108
perf_need_aux_event(struct perf_event * event)2109 static bool perf_need_aux_event(struct perf_event *event)
2110 {
2111 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2112 }
2113
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2114 static int perf_get_aux_event(struct perf_event *event,
2115 struct perf_event *group_leader)
2116 {
2117 /*
2118 * Our group leader must be an aux event if we want to be
2119 * an aux_output. This way, the aux event will precede its
2120 * aux_output events in the group, and therefore will always
2121 * schedule first.
2122 */
2123 if (!group_leader)
2124 return 0;
2125
2126 /*
2127 * aux_output and aux_sample_size are mutually exclusive.
2128 */
2129 if (event->attr.aux_output && event->attr.aux_sample_size)
2130 return 0;
2131
2132 if (event->attr.aux_output &&
2133 !perf_aux_output_match(event, group_leader))
2134 return 0;
2135
2136 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2137 return 0;
2138
2139 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2140 return 0;
2141
2142 /*
2143 * Link aux_outputs to their aux event; this is undone in
2144 * perf_group_detach() by perf_put_aux_event(). When the
2145 * group in torn down, the aux_output events loose their
2146 * link to the aux_event and can't schedule any more.
2147 */
2148 event->aux_event = group_leader;
2149
2150 return 1;
2151 }
2152
get_event_list(struct perf_event * event)2153 static inline struct list_head *get_event_list(struct perf_event *event)
2154 {
2155 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2156 &event->pmu_ctx->flexible_active;
2157 }
2158
2159 /*
2160 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2161 * cannot exist on their own, schedule them out and move them into the ERROR
2162 * state. Also see _perf_event_enable(), it will not be able to recover
2163 * this ERROR state.
2164 */
perf_remove_sibling_event(struct perf_event * event)2165 static inline void perf_remove_sibling_event(struct perf_event *event)
2166 {
2167 event_sched_out(event, event->ctx);
2168 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2169 }
2170
perf_group_detach(struct perf_event * event)2171 static void perf_group_detach(struct perf_event *event)
2172 {
2173 struct perf_event *leader = event->group_leader;
2174 struct perf_event *sibling, *tmp;
2175 struct perf_event_context *ctx = event->ctx;
2176
2177 lockdep_assert_held(&ctx->lock);
2178
2179 /*
2180 * We can have double detach due to exit/hot-unplug + close.
2181 */
2182 if (!(event->attach_state & PERF_ATTACH_GROUP))
2183 return;
2184
2185 event->attach_state &= ~PERF_ATTACH_GROUP;
2186
2187 perf_put_aux_event(event);
2188
2189 /*
2190 * If this is a sibling, remove it from its group.
2191 */
2192 if (leader != event) {
2193 list_del_init(&event->sibling_list);
2194 event->group_leader->nr_siblings--;
2195 event->group_leader->group_generation++;
2196 goto out;
2197 }
2198
2199 /*
2200 * If this was a group event with sibling events then
2201 * upgrade the siblings to singleton events by adding them
2202 * to whatever list we are on.
2203 */
2204 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2205
2206 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2207 perf_remove_sibling_event(sibling);
2208
2209 sibling->group_leader = sibling;
2210 list_del_init(&sibling->sibling_list);
2211
2212 /* Inherit group flags from the previous leader */
2213 sibling->group_caps = event->group_caps;
2214
2215 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2216 add_event_to_groups(sibling, event->ctx);
2217
2218 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2219 list_add_tail(&sibling->active_list, get_event_list(sibling));
2220 }
2221
2222 WARN_ON_ONCE(sibling->ctx != event->ctx);
2223 }
2224
2225 out:
2226 for_each_sibling_event(tmp, leader)
2227 perf_event__header_size(tmp);
2228
2229 perf_event__header_size(leader);
2230 }
2231
2232 static void sync_child_event(struct perf_event *child_event);
2233
perf_child_detach(struct perf_event * event)2234 static void perf_child_detach(struct perf_event *event)
2235 {
2236 struct perf_event *parent_event = event->parent;
2237
2238 if (!(event->attach_state & PERF_ATTACH_CHILD))
2239 return;
2240
2241 event->attach_state &= ~PERF_ATTACH_CHILD;
2242
2243 if (WARN_ON_ONCE(!parent_event))
2244 return;
2245
2246 lockdep_assert_held(&parent_event->child_mutex);
2247
2248 sync_child_event(event);
2249 list_del_init(&event->child_list);
2250 }
2251
is_orphaned_event(struct perf_event * event)2252 static bool is_orphaned_event(struct perf_event *event)
2253 {
2254 return event->state == PERF_EVENT_STATE_DEAD;
2255 }
2256
2257 static inline int
event_filter_match(struct perf_event * event)2258 event_filter_match(struct perf_event *event)
2259 {
2260 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2261 perf_cgroup_match(event);
2262 }
2263
2264 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2265 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2266 {
2267 struct perf_event_pmu_context *epc = event->pmu_ctx;
2268 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2269 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2270
2271 // XXX cpc serialization, probably per-cpu IRQ disabled
2272
2273 WARN_ON_ONCE(event->ctx != ctx);
2274 lockdep_assert_held(&ctx->lock);
2275
2276 if (event->state != PERF_EVENT_STATE_ACTIVE)
2277 return;
2278
2279 /*
2280 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2281 * we can schedule events _OUT_ individually through things like
2282 * __perf_remove_from_context().
2283 */
2284 list_del_init(&event->active_list);
2285
2286 perf_pmu_disable(event->pmu);
2287
2288 event->pmu->del(event, 0);
2289 event->oncpu = -1;
2290
2291 if (event->pending_disable) {
2292 event->pending_disable = 0;
2293 perf_cgroup_event_disable(event, ctx);
2294 state = PERF_EVENT_STATE_OFF;
2295 }
2296
2297 if (event->pending_sigtrap) {
2298 event->pending_sigtrap = 0;
2299 if (state != PERF_EVENT_STATE_OFF &&
2300 !event->pending_work &&
2301 !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2302 event->pending_work = 1;
2303 } else {
2304 local_dec(&event->ctx->nr_pending);
2305 }
2306 }
2307
2308 perf_event_set_state(event, state);
2309
2310 if (!is_software_event(event))
2311 cpc->active_oncpu--;
2312 if (event->attr.freq && event->attr.sample_freq)
2313 ctx->nr_freq--;
2314 if (event->attr.exclusive || !cpc->active_oncpu)
2315 cpc->exclusive = 0;
2316
2317 perf_pmu_enable(event->pmu);
2318 }
2319
2320 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2321 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2322 {
2323 struct perf_event *event;
2324
2325 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2326 return;
2327
2328 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2329
2330 event_sched_out(group_event, ctx);
2331
2332 /*
2333 * Schedule out siblings (if any):
2334 */
2335 for_each_sibling_event(event, group_event)
2336 event_sched_out(event, ctx);
2337 }
2338
2339 #define DETACH_GROUP 0x01UL
2340 #define DETACH_CHILD 0x02UL
2341 #define DETACH_DEAD 0x04UL
2342 #define DETACH_EXIT 0x08UL
2343
2344 /*
2345 * Cross CPU call to remove a performance event
2346 *
2347 * We disable the event on the hardware level first. After that we
2348 * remove it from the context list.
2349 */
2350 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2351 __perf_remove_from_context(struct perf_event *event,
2352 struct perf_cpu_context *cpuctx,
2353 struct perf_event_context *ctx,
2354 void *info)
2355 {
2356 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2357 enum perf_event_state state = PERF_EVENT_STATE_OFF;
2358 unsigned long flags = (unsigned long)info;
2359
2360 if (ctx->is_active & EVENT_TIME) {
2361 update_context_time(ctx);
2362 update_cgrp_time_from_cpuctx(cpuctx, false);
2363 }
2364
2365 /*
2366 * Ensure event_sched_out() switches to OFF, at the very least
2367 * this avoids raising perf_pending_task() at this time.
2368 */
2369 if (flags & DETACH_EXIT)
2370 state = PERF_EVENT_STATE_EXIT;
2371 if (flags & DETACH_DEAD) {
2372 event->pending_disable = 1;
2373 state = PERF_EVENT_STATE_DEAD;
2374 }
2375 event_sched_out(event, ctx);
2376 perf_event_set_state(event, min(event->state, state));
2377 if (flags & DETACH_GROUP)
2378 perf_group_detach(event);
2379 if (flags & DETACH_CHILD)
2380 perf_child_detach(event);
2381 list_del_event(event, ctx);
2382
2383 if (!pmu_ctx->nr_events) {
2384 pmu_ctx->rotate_necessary = 0;
2385
2386 if (ctx->task && ctx->is_active) {
2387 struct perf_cpu_pmu_context *cpc;
2388
2389 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2390 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2391 cpc->task_epc = NULL;
2392 }
2393 }
2394
2395 if (!ctx->nr_events && ctx->is_active) {
2396 if (ctx == &cpuctx->ctx)
2397 update_cgrp_time_from_cpuctx(cpuctx, true);
2398
2399 ctx->is_active = 0;
2400 if (ctx->task) {
2401 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2402 cpuctx->task_ctx = NULL;
2403 }
2404 }
2405 }
2406
2407 /*
2408 * Remove the event from a task's (or a CPU's) list of events.
2409 *
2410 * If event->ctx is a cloned context, callers must make sure that
2411 * every task struct that event->ctx->task could possibly point to
2412 * remains valid. This is OK when called from perf_release since
2413 * that only calls us on the top-level context, which can't be a clone.
2414 * When called from perf_event_exit_task, it's OK because the
2415 * context has been detached from its task.
2416 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2417 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2418 {
2419 struct perf_event_context *ctx = event->ctx;
2420
2421 lockdep_assert_held(&ctx->mutex);
2422
2423 /*
2424 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2425 * to work in the face of TASK_TOMBSTONE, unlike every other
2426 * event_function_call() user.
2427 */
2428 raw_spin_lock_irq(&ctx->lock);
2429 if (!ctx->is_active) {
2430 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2431 ctx, (void *)flags);
2432 raw_spin_unlock_irq(&ctx->lock);
2433 return;
2434 }
2435 raw_spin_unlock_irq(&ctx->lock);
2436
2437 event_function_call(event, __perf_remove_from_context, (void *)flags);
2438 }
2439
2440 /*
2441 * Cross CPU call to disable a performance event
2442 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2443 static void __perf_event_disable(struct perf_event *event,
2444 struct perf_cpu_context *cpuctx,
2445 struct perf_event_context *ctx,
2446 void *info)
2447 {
2448 if (event->state < PERF_EVENT_STATE_INACTIVE)
2449 return;
2450
2451 if (ctx->is_active & EVENT_TIME) {
2452 update_context_time(ctx);
2453 update_cgrp_time_from_event(event);
2454 }
2455
2456 perf_pmu_disable(event->pmu_ctx->pmu);
2457
2458 if (event == event->group_leader)
2459 group_sched_out(event, ctx);
2460 else
2461 event_sched_out(event, ctx);
2462
2463 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2464 perf_cgroup_event_disable(event, ctx);
2465
2466 perf_pmu_enable(event->pmu_ctx->pmu);
2467 }
2468
2469 /*
2470 * Disable an event.
2471 *
2472 * If event->ctx is a cloned context, callers must make sure that
2473 * every task struct that event->ctx->task could possibly point to
2474 * remains valid. This condition is satisfied when called through
2475 * perf_event_for_each_child or perf_event_for_each because they
2476 * hold the top-level event's child_mutex, so any descendant that
2477 * goes to exit will block in perf_event_exit_event().
2478 *
2479 * When called from perf_pending_irq it's OK because event->ctx
2480 * is the current context on this CPU and preemption is disabled,
2481 * hence we can't get into perf_event_task_sched_out for this context.
2482 */
_perf_event_disable(struct perf_event * event)2483 static void _perf_event_disable(struct perf_event *event)
2484 {
2485 struct perf_event_context *ctx = event->ctx;
2486
2487 raw_spin_lock_irq(&ctx->lock);
2488 if (event->state <= PERF_EVENT_STATE_OFF) {
2489 raw_spin_unlock_irq(&ctx->lock);
2490 return;
2491 }
2492 raw_spin_unlock_irq(&ctx->lock);
2493
2494 event_function_call(event, __perf_event_disable, NULL);
2495 }
2496
perf_event_disable_local(struct perf_event * event)2497 void perf_event_disable_local(struct perf_event *event)
2498 {
2499 event_function_local(event, __perf_event_disable, NULL);
2500 }
2501
2502 /*
2503 * Strictly speaking kernel users cannot create groups and therefore this
2504 * interface does not need the perf_event_ctx_lock() magic.
2505 */
perf_event_disable(struct perf_event * event)2506 void perf_event_disable(struct perf_event *event)
2507 {
2508 struct perf_event_context *ctx;
2509
2510 ctx = perf_event_ctx_lock(event);
2511 _perf_event_disable(event);
2512 perf_event_ctx_unlock(event, ctx);
2513 }
2514 EXPORT_SYMBOL_GPL(perf_event_disable);
2515
perf_event_disable_inatomic(struct perf_event * event)2516 void perf_event_disable_inatomic(struct perf_event *event)
2517 {
2518 event->pending_disable = 1;
2519 irq_work_queue(&event->pending_irq);
2520 }
2521
2522 #define MAX_INTERRUPTS (~0ULL)
2523
2524 static void perf_log_throttle(struct perf_event *event, int enable);
2525 static void perf_log_itrace_start(struct perf_event *event);
2526
2527 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2528 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2529 {
2530 struct perf_event_pmu_context *epc = event->pmu_ctx;
2531 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2532 int ret = 0;
2533
2534 WARN_ON_ONCE(event->ctx != ctx);
2535
2536 lockdep_assert_held(&ctx->lock);
2537
2538 if (event->state <= PERF_EVENT_STATE_OFF)
2539 return 0;
2540
2541 WRITE_ONCE(event->oncpu, smp_processor_id());
2542 /*
2543 * Order event::oncpu write to happen before the ACTIVE state is
2544 * visible. This allows perf_event_{stop,read}() to observe the correct
2545 * ->oncpu if it sees ACTIVE.
2546 */
2547 smp_wmb();
2548 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2549
2550 /*
2551 * Unthrottle events, since we scheduled we might have missed several
2552 * ticks already, also for a heavily scheduling task there is little
2553 * guarantee it'll get a tick in a timely manner.
2554 */
2555 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2556 perf_log_throttle(event, 1);
2557 event->hw.interrupts = 0;
2558 }
2559
2560 perf_pmu_disable(event->pmu);
2561
2562 perf_log_itrace_start(event);
2563
2564 if (event->pmu->add(event, PERF_EF_START)) {
2565 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2566 event->oncpu = -1;
2567 ret = -EAGAIN;
2568 goto out;
2569 }
2570
2571 if (!is_software_event(event))
2572 cpc->active_oncpu++;
2573 if (event->attr.freq && event->attr.sample_freq)
2574 ctx->nr_freq++;
2575
2576 if (event->attr.exclusive)
2577 cpc->exclusive = 1;
2578
2579 out:
2580 perf_pmu_enable(event->pmu);
2581
2582 return ret;
2583 }
2584
2585 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2586 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2587 {
2588 struct perf_event *event, *partial_group = NULL;
2589 struct pmu *pmu = group_event->pmu_ctx->pmu;
2590
2591 if (group_event->state == PERF_EVENT_STATE_OFF)
2592 return 0;
2593
2594 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2595
2596 if (event_sched_in(group_event, ctx))
2597 goto error;
2598
2599 /*
2600 * Schedule in siblings as one group (if any):
2601 */
2602 for_each_sibling_event(event, group_event) {
2603 if (event_sched_in(event, ctx)) {
2604 partial_group = event;
2605 goto group_error;
2606 }
2607 }
2608
2609 if (!pmu->commit_txn(pmu))
2610 return 0;
2611
2612 group_error:
2613 /*
2614 * Groups can be scheduled in as one unit only, so undo any
2615 * partial group before returning:
2616 * The events up to the failed event are scheduled out normally.
2617 */
2618 for_each_sibling_event(event, group_event) {
2619 if (event == partial_group)
2620 break;
2621
2622 event_sched_out(event, ctx);
2623 }
2624 event_sched_out(group_event, ctx);
2625
2626 error:
2627 pmu->cancel_txn(pmu);
2628 return -EAGAIN;
2629 }
2630
2631 /*
2632 * Work out whether we can put this event group on the CPU now.
2633 */
group_can_go_on(struct perf_event * event,int can_add_hw)2634 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2635 {
2636 struct perf_event_pmu_context *epc = event->pmu_ctx;
2637 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2638
2639 /*
2640 * Groups consisting entirely of software events can always go on.
2641 */
2642 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2643 return 1;
2644 /*
2645 * If an exclusive group is already on, no other hardware
2646 * events can go on.
2647 */
2648 if (cpc->exclusive)
2649 return 0;
2650 /*
2651 * If this group is exclusive and there are already
2652 * events on the CPU, it can't go on.
2653 */
2654 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2655 return 0;
2656 /*
2657 * Otherwise, try to add it if all previous groups were able
2658 * to go on.
2659 */
2660 return can_add_hw;
2661 }
2662
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2663 static void add_event_to_ctx(struct perf_event *event,
2664 struct perf_event_context *ctx)
2665 {
2666 list_add_event(event, ctx);
2667 perf_group_attach(event);
2668 }
2669
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2670 static void task_ctx_sched_out(struct perf_event_context *ctx,
2671 enum event_type_t event_type)
2672 {
2673 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2674
2675 if (!cpuctx->task_ctx)
2676 return;
2677
2678 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2679 return;
2680
2681 ctx_sched_out(ctx, event_type);
2682 }
2683
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2684 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2685 struct perf_event_context *ctx)
2686 {
2687 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2688 if (ctx)
2689 ctx_sched_in(ctx, EVENT_PINNED);
2690 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2691 if (ctx)
2692 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2693 }
2694
2695 /*
2696 * We want to maintain the following priority of scheduling:
2697 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2698 * - task pinned (EVENT_PINNED)
2699 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2700 * - task flexible (EVENT_FLEXIBLE).
2701 *
2702 * In order to avoid unscheduling and scheduling back in everything every
2703 * time an event is added, only do it for the groups of equal priority and
2704 * below.
2705 *
2706 * This can be called after a batch operation on task events, in which case
2707 * event_type is a bit mask of the types of events involved. For CPU events,
2708 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2709 */
2710 /*
2711 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2712 * event to the context or enabling existing event in the context. We can
2713 * probably optimize it by rescheduling only affected pmu_ctx.
2714 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2715 static void ctx_resched(struct perf_cpu_context *cpuctx,
2716 struct perf_event_context *task_ctx,
2717 enum event_type_t event_type)
2718 {
2719 bool cpu_event = !!(event_type & EVENT_CPU);
2720
2721 /*
2722 * If pinned groups are involved, flexible groups also need to be
2723 * scheduled out.
2724 */
2725 if (event_type & EVENT_PINNED)
2726 event_type |= EVENT_FLEXIBLE;
2727
2728 event_type &= EVENT_ALL;
2729
2730 perf_ctx_disable(&cpuctx->ctx, false);
2731 if (task_ctx) {
2732 perf_ctx_disable(task_ctx, false);
2733 task_ctx_sched_out(task_ctx, event_type);
2734 }
2735
2736 /*
2737 * Decide which cpu ctx groups to schedule out based on the types
2738 * of events that caused rescheduling:
2739 * - EVENT_CPU: schedule out corresponding groups;
2740 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2741 * - otherwise, do nothing more.
2742 */
2743 if (cpu_event)
2744 ctx_sched_out(&cpuctx->ctx, event_type);
2745 else if (event_type & EVENT_PINNED)
2746 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2747
2748 perf_event_sched_in(cpuctx, task_ctx);
2749
2750 perf_ctx_enable(&cpuctx->ctx, false);
2751 if (task_ctx)
2752 perf_ctx_enable(task_ctx, false);
2753 }
2754
perf_pmu_resched(struct pmu * pmu)2755 void perf_pmu_resched(struct pmu *pmu)
2756 {
2757 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2758 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2759
2760 perf_ctx_lock(cpuctx, task_ctx);
2761 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2762 perf_ctx_unlock(cpuctx, task_ctx);
2763 }
2764
2765 /*
2766 * Cross CPU call to install and enable a performance event
2767 *
2768 * Very similar to remote_function() + event_function() but cannot assume that
2769 * things like ctx->is_active and cpuctx->task_ctx are set.
2770 */
__perf_install_in_context(void * info)2771 static int __perf_install_in_context(void *info)
2772 {
2773 struct perf_event *event = info;
2774 struct perf_event_context *ctx = event->ctx;
2775 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2776 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2777 bool reprogram = true;
2778 int ret = 0;
2779
2780 raw_spin_lock(&cpuctx->ctx.lock);
2781 if (ctx->task) {
2782 raw_spin_lock(&ctx->lock);
2783 task_ctx = ctx;
2784
2785 reprogram = (ctx->task == current);
2786
2787 /*
2788 * If the task is running, it must be running on this CPU,
2789 * otherwise we cannot reprogram things.
2790 *
2791 * If its not running, we don't care, ctx->lock will
2792 * serialize against it becoming runnable.
2793 */
2794 if (task_curr(ctx->task) && !reprogram) {
2795 ret = -ESRCH;
2796 goto unlock;
2797 }
2798
2799 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2800 } else if (task_ctx) {
2801 raw_spin_lock(&task_ctx->lock);
2802 }
2803
2804 #ifdef CONFIG_CGROUP_PERF
2805 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2806 /*
2807 * If the current cgroup doesn't match the event's
2808 * cgroup, we should not try to schedule it.
2809 */
2810 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2811 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2812 event->cgrp->css.cgroup);
2813 }
2814 #endif
2815
2816 if (reprogram) {
2817 ctx_sched_out(ctx, EVENT_TIME);
2818 add_event_to_ctx(event, ctx);
2819 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2820 } else {
2821 add_event_to_ctx(event, ctx);
2822 }
2823
2824 unlock:
2825 perf_ctx_unlock(cpuctx, task_ctx);
2826
2827 return ret;
2828 }
2829
2830 static bool exclusive_event_installable(struct perf_event *event,
2831 struct perf_event_context *ctx);
2832
2833 /*
2834 * Attach a performance event to a context.
2835 *
2836 * Very similar to event_function_call, see comment there.
2837 */
2838 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2839 perf_install_in_context(struct perf_event_context *ctx,
2840 struct perf_event *event,
2841 int cpu)
2842 {
2843 struct task_struct *task = READ_ONCE(ctx->task);
2844
2845 lockdep_assert_held(&ctx->mutex);
2846
2847 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2848
2849 if (event->cpu != -1)
2850 WARN_ON_ONCE(event->cpu != cpu);
2851
2852 /*
2853 * Ensures that if we can observe event->ctx, both the event and ctx
2854 * will be 'complete'. See perf_iterate_sb_cpu().
2855 */
2856 smp_store_release(&event->ctx, ctx);
2857
2858 /*
2859 * perf_event_attr::disabled events will not run and can be initialized
2860 * without IPI. Except when this is the first event for the context, in
2861 * that case we need the magic of the IPI to set ctx->is_active.
2862 *
2863 * The IOC_ENABLE that is sure to follow the creation of a disabled
2864 * event will issue the IPI and reprogram the hardware.
2865 */
2866 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2867 ctx->nr_events && !is_cgroup_event(event)) {
2868 raw_spin_lock_irq(&ctx->lock);
2869 if (ctx->task == TASK_TOMBSTONE) {
2870 raw_spin_unlock_irq(&ctx->lock);
2871 return;
2872 }
2873 add_event_to_ctx(event, ctx);
2874 raw_spin_unlock_irq(&ctx->lock);
2875 return;
2876 }
2877
2878 if (!task) {
2879 cpu_function_call(cpu, __perf_install_in_context, event);
2880 return;
2881 }
2882
2883 /*
2884 * Should not happen, we validate the ctx is still alive before calling.
2885 */
2886 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2887 return;
2888
2889 /*
2890 * Installing events is tricky because we cannot rely on ctx->is_active
2891 * to be set in case this is the nr_events 0 -> 1 transition.
2892 *
2893 * Instead we use task_curr(), which tells us if the task is running.
2894 * However, since we use task_curr() outside of rq::lock, we can race
2895 * against the actual state. This means the result can be wrong.
2896 *
2897 * If we get a false positive, we retry, this is harmless.
2898 *
2899 * If we get a false negative, things are complicated. If we are after
2900 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2901 * value must be correct. If we're before, it doesn't matter since
2902 * perf_event_context_sched_in() will program the counter.
2903 *
2904 * However, this hinges on the remote context switch having observed
2905 * our task->perf_event_ctxp[] store, such that it will in fact take
2906 * ctx::lock in perf_event_context_sched_in().
2907 *
2908 * We do this by task_function_call(), if the IPI fails to hit the task
2909 * we know any future context switch of task must see the
2910 * perf_event_ctpx[] store.
2911 */
2912
2913 /*
2914 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2915 * task_cpu() load, such that if the IPI then does not find the task
2916 * running, a future context switch of that task must observe the
2917 * store.
2918 */
2919 smp_mb();
2920 again:
2921 if (!task_function_call(task, __perf_install_in_context, event))
2922 return;
2923
2924 raw_spin_lock_irq(&ctx->lock);
2925 task = ctx->task;
2926 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2927 /*
2928 * Cannot happen because we already checked above (which also
2929 * cannot happen), and we hold ctx->mutex, which serializes us
2930 * against perf_event_exit_task_context().
2931 */
2932 raw_spin_unlock_irq(&ctx->lock);
2933 return;
2934 }
2935 /*
2936 * If the task is not running, ctx->lock will avoid it becoming so,
2937 * thus we can safely install the event.
2938 */
2939 if (task_curr(task)) {
2940 raw_spin_unlock_irq(&ctx->lock);
2941 goto again;
2942 }
2943 add_event_to_ctx(event, ctx);
2944 raw_spin_unlock_irq(&ctx->lock);
2945 }
2946
2947 /*
2948 * Cross CPU call to enable a performance event
2949 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2950 static void __perf_event_enable(struct perf_event *event,
2951 struct perf_cpu_context *cpuctx,
2952 struct perf_event_context *ctx,
2953 void *info)
2954 {
2955 struct perf_event *leader = event->group_leader;
2956 struct perf_event_context *task_ctx;
2957
2958 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2959 event->state <= PERF_EVENT_STATE_ERROR)
2960 return;
2961
2962 if (ctx->is_active)
2963 ctx_sched_out(ctx, EVENT_TIME);
2964
2965 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2966 perf_cgroup_event_enable(event, ctx);
2967
2968 if (!ctx->is_active)
2969 return;
2970
2971 if (!event_filter_match(event)) {
2972 ctx_sched_in(ctx, EVENT_TIME);
2973 return;
2974 }
2975
2976 /*
2977 * If the event is in a group and isn't the group leader,
2978 * then don't put it on unless the group is on.
2979 */
2980 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2981 ctx_sched_in(ctx, EVENT_TIME);
2982 return;
2983 }
2984
2985 task_ctx = cpuctx->task_ctx;
2986 if (ctx->task)
2987 WARN_ON_ONCE(task_ctx != ctx);
2988
2989 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2990 }
2991
2992 /*
2993 * Enable an event.
2994 *
2995 * If event->ctx is a cloned context, callers must make sure that
2996 * every task struct that event->ctx->task could possibly point to
2997 * remains valid. This condition is satisfied when called through
2998 * perf_event_for_each_child or perf_event_for_each as described
2999 * for perf_event_disable.
3000 */
_perf_event_enable(struct perf_event * event)3001 static void _perf_event_enable(struct perf_event *event)
3002 {
3003 struct perf_event_context *ctx = event->ctx;
3004
3005 raw_spin_lock_irq(&ctx->lock);
3006 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3007 event->state < PERF_EVENT_STATE_ERROR) {
3008 out:
3009 raw_spin_unlock_irq(&ctx->lock);
3010 return;
3011 }
3012
3013 /*
3014 * If the event is in error state, clear that first.
3015 *
3016 * That way, if we see the event in error state below, we know that it
3017 * has gone back into error state, as distinct from the task having
3018 * been scheduled away before the cross-call arrived.
3019 */
3020 if (event->state == PERF_EVENT_STATE_ERROR) {
3021 /*
3022 * Detached SIBLING events cannot leave ERROR state.
3023 */
3024 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3025 event->group_leader == event)
3026 goto out;
3027
3028 event->state = PERF_EVENT_STATE_OFF;
3029 }
3030 raw_spin_unlock_irq(&ctx->lock);
3031
3032 event_function_call(event, __perf_event_enable, NULL);
3033 }
3034
3035 /*
3036 * See perf_event_disable();
3037 */
perf_event_enable(struct perf_event * event)3038 void perf_event_enable(struct perf_event *event)
3039 {
3040 struct perf_event_context *ctx;
3041
3042 ctx = perf_event_ctx_lock(event);
3043 _perf_event_enable(event);
3044 perf_event_ctx_unlock(event, ctx);
3045 }
3046 EXPORT_SYMBOL_GPL(perf_event_enable);
3047
3048 struct stop_event_data {
3049 struct perf_event *event;
3050 unsigned int restart;
3051 };
3052
__perf_event_stop(void * info)3053 static int __perf_event_stop(void *info)
3054 {
3055 struct stop_event_data *sd = info;
3056 struct perf_event *event = sd->event;
3057
3058 /* if it's already INACTIVE, do nothing */
3059 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3060 return 0;
3061
3062 /* matches smp_wmb() in event_sched_in() */
3063 smp_rmb();
3064
3065 /*
3066 * There is a window with interrupts enabled before we get here,
3067 * so we need to check again lest we try to stop another CPU's event.
3068 */
3069 if (READ_ONCE(event->oncpu) != smp_processor_id())
3070 return -EAGAIN;
3071
3072 event->pmu->stop(event, PERF_EF_UPDATE);
3073
3074 /*
3075 * May race with the actual stop (through perf_pmu_output_stop()),
3076 * but it is only used for events with AUX ring buffer, and such
3077 * events will refuse to restart because of rb::aux_mmap_count==0,
3078 * see comments in perf_aux_output_begin().
3079 *
3080 * Since this is happening on an event-local CPU, no trace is lost
3081 * while restarting.
3082 */
3083 if (sd->restart)
3084 event->pmu->start(event, 0);
3085
3086 return 0;
3087 }
3088
perf_event_stop(struct perf_event * event,int restart)3089 static int perf_event_stop(struct perf_event *event, int restart)
3090 {
3091 struct stop_event_data sd = {
3092 .event = event,
3093 .restart = restart,
3094 };
3095 int ret = 0;
3096
3097 do {
3098 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3099 return 0;
3100
3101 /* matches smp_wmb() in event_sched_in() */
3102 smp_rmb();
3103
3104 /*
3105 * We only want to restart ACTIVE events, so if the event goes
3106 * inactive here (event->oncpu==-1), there's nothing more to do;
3107 * fall through with ret==-ENXIO.
3108 */
3109 ret = cpu_function_call(READ_ONCE(event->oncpu),
3110 __perf_event_stop, &sd);
3111 } while (ret == -EAGAIN);
3112
3113 return ret;
3114 }
3115
3116 /*
3117 * In order to contain the amount of racy and tricky in the address filter
3118 * configuration management, it is a two part process:
3119 *
3120 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3121 * we update the addresses of corresponding vmas in
3122 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3123 * (p2) when an event is scheduled in (pmu::add), it calls
3124 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3125 * if the generation has changed since the previous call.
3126 *
3127 * If (p1) happens while the event is active, we restart it to force (p2).
3128 *
3129 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3130 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3131 * ioctl;
3132 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3133 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3134 * for reading;
3135 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3136 * of exec.
3137 */
perf_event_addr_filters_sync(struct perf_event * event)3138 void perf_event_addr_filters_sync(struct perf_event *event)
3139 {
3140 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3141
3142 if (!has_addr_filter(event))
3143 return;
3144
3145 raw_spin_lock(&ifh->lock);
3146 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3147 event->pmu->addr_filters_sync(event);
3148 event->hw.addr_filters_gen = event->addr_filters_gen;
3149 }
3150 raw_spin_unlock(&ifh->lock);
3151 }
3152 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3153
_perf_event_refresh(struct perf_event * event,int refresh)3154 static int _perf_event_refresh(struct perf_event *event, int refresh)
3155 {
3156 /*
3157 * not supported on inherited events
3158 */
3159 if (event->attr.inherit || !is_sampling_event(event))
3160 return -EINVAL;
3161
3162 atomic_add(refresh, &event->event_limit);
3163 _perf_event_enable(event);
3164
3165 return 0;
3166 }
3167
3168 /*
3169 * See perf_event_disable()
3170 */
perf_event_refresh(struct perf_event * event,int refresh)3171 int perf_event_refresh(struct perf_event *event, int refresh)
3172 {
3173 struct perf_event_context *ctx;
3174 int ret;
3175
3176 ctx = perf_event_ctx_lock(event);
3177 ret = _perf_event_refresh(event, refresh);
3178 perf_event_ctx_unlock(event, ctx);
3179
3180 return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(perf_event_refresh);
3183
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3184 static int perf_event_modify_breakpoint(struct perf_event *bp,
3185 struct perf_event_attr *attr)
3186 {
3187 int err;
3188
3189 _perf_event_disable(bp);
3190
3191 err = modify_user_hw_breakpoint_check(bp, attr, true);
3192
3193 if (!bp->attr.disabled)
3194 _perf_event_enable(bp);
3195
3196 return err;
3197 }
3198
3199 /*
3200 * Copy event-type-independent attributes that may be modified.
3201 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3202 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3203 const struct perf_event_attr *from)
3204 {
3205 to->sig_data = from->sig_data;
3206 }
3207
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3208 static int perf_event_modify_attr(struct perf_event *event,
3209 struct perf_event_attr *attr)
3210 {
3211 int (*func)(struct perf_event *, struct perf_event_attr *);
3212 struct perf_event *child;
3213 int err;
3214
3215 if (event->attr.type != attr->type)
3216 return -EINVAL;
3217
3218 switch (event->attr.type) {
3219 case PERF_TYPE_BREAKPOINT:
3220 func = perf_event_modify_breakpoint;
3221 break;
3222 default:
3223 /* Place holder for future additions. */
3224 return -EOPNOTSUPP;
3225 }
3226
3227 WARN_ON_ONCE(event->ctx->parent_ctx);
3228
3229 mutex_lock(&event->child_mutex);
3230 /*
3231 * Event-type-independent attributes must be copied before event-type
3232 * modification, which will validate that final attributes match the
3233 * source attributes after all relevant attributes have been copied.
3234 */
3235 perf_event_modify_copy_attr(&event->attr, attr);
3236 err = func(event, attr);
3237 if (err)
3238 goto out;
3239 list_for_each_entry(child, &event->child_list, child_list) {
3240 perf_event_modify_copy_attr(&child->attr, attr);
3241 err = func(child, attr);
3242 if (err)
3243 goto out;
3244 }
3245 out:
3246 mutex_unlock(&event->child_mutex);
3247 return err;
3248 }
3249
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3250 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3251 enum event_type_t event_type)
3252 {
3253 struct perf_event_context *ctx = pmu_ctx->ctx;
3254 struct perf_event *event, *tmp;
3255 struct pmu *pmu = pmu_ctx->pmu;
3256
3257 if (ctx->task && !ctx->is_active) {
3258 struct perf_cpu_pmu_context *cpc;
3259
3260 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3261 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3262 cpc->task_epc = NULL;
3263 }
3264
3265 if (!event_type)
3266 return;
3267
3268 perf_pmu_disable(pmu);
3269 if (event_type & EVENT_PINNED) {
3270 list_for_each_entry_safe(event, tmp,
3271 &pmu_ctx->pinned_active,
3272 active_list)
3273 group_sched_out(event, ctx);
3274 }
3275
3276 if (event_type & EVENT_FLEXIBLE) {
3277 list_for_each_entry_safe(event, tmp,
3278 &pmu_ctx->flexible_active,
3279 active_list)
3280 group_sched_out(event, ctx);
3281 /*
3282 * Since we cleared EVENT_FLEXIBLE, also clear
3283 * rotate_necessary, is will be reset by
3284 * ctx_flexible_sched_in() when needed.
3285 */
3286 pmu_ctx->rotate_necessary = 0;
3287 }
3288 perf_pmu_enable(pmu);
3289 }
3290
3291 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3292 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3293 {
3294 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3295 struct perf_event_pmu_context *pmu_ctx;
3296 int is_active = ctx->is_active;
3297 bool cgroup = event_type & EVENT_CGROUP;
3298
3299 event_type &= ~EVENT_CGROUP;
3300
3301 lockdep_assert_held(&ctx->lock);
3302
3303 if (likely(!ctx->nr_events)) {
3304 /*
3305 * See __perf_remove_from_context().
3306 */
3307 WARN_ON_ONCE(ctx->is_active);
3308 if (ctx->task)
3309 WARN_ON_ONCE(cpuctx->task_ctx);
3310 return;
3311 }
3312
3313 /*
3314 * Always update time if it was set; not only when it changes.
3315 * Otherwise we can 'forget' to update time for any but the last
3316 * context we sched out. For example:
3317 *
3318 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3319 * ctx_sched_out(.event_type = EVENT_PINNED)
3320 *
3321 * would only update time for the pinned events.
3322 */
3323 if (is_active & EVENT_TIME) {
3324 /* update (and stop) ctx time */
3325 update_context_time(ctx);
3326 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3327 /*
3328 * CPU-release for the below ->is_active store,
3329 * see __load_acquire() in perf_event_time_now()
3330 */
3331 barrier();
3332 }
3333
3334 ctx->is_active &= ~event_type;
3335 if (!(ctx->is_active & EVENT_ALL))
3336 ctx->is_active = 0;
3337
3338 if (ctx->task) {
3339 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3340 if (!ctx->is_active)
3341 cpuctx->task_ctx = NULL;
3342 }
3343
3344 is_active ^= ctx->is_active; /* changed bits */
3345
3346 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3347 if (cgroup && !pmu_ctx->nr_cgroups)
3348 continue;
3349 __pmu_ctx_sched_out(pmu_ctx, is_active);
3350 }
3351 }
3352
3353 /*
3354 * Test whether two contexts are equivalent, i.e. whether they have both been
3355 * cloned from the same version of the same context.
3356 *
3357 * Equivalence is measured using a generation number in the context that is
3358 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3359 * and list_del_event().
3360 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3361 static int context_equiv(struct perf_event_context *ctx1,
3362 struct perf_event_context *ctx2)
3363 {
3364 lockdep_assert_held(&ctx1->lock);
3365 lockdep_assert_held(&ctx2->lock);
3366
3367 /* Pinning disables the swap optimization */
3368 if (ctx1->pin_count || ctx2->pin_count)
3369 return 0;
3370
3371 /* If ctx1 is the parent of ctx2 */
3372 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3373 return 1;
3374
3375 /* If ctx2 is the parent of ctx1 */
3376 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3377 return 1;
3378
3379 /*
3380 * If ctx1 and ctx2 have the same parent; we flatten the parent
3381 * hierarchy, see perf_event_init_context().
3382 */
3383 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3384 ctx1->parent_gen == ctx2->parent_gen)
3385 return 1;
3386
3387 /* Unmatched */
3388 return 0;
3389 }
3390
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3391 static void __perf_event_sync_stat(struct perf_event *event,
3392 struct perf_event *next_event)
3393 {
3394 u64 value;
3395
3396 if (!event->attr.inherit_stat)
3397 return;
3398
3399 /*
3400 * Update the event value, we cannot use perf_event_read()
3401 * because we're in the middle of a context switch and have IRQs
3402 * disabled, which upsets smp_call_function_single(), however
3403 * we know the event must be on the current CPU, therefore we
3404 * don't need to use it.
3405 */
3406 perf_pmu_read(event);
3407
3408 perf_event_update_time(event);
3409
3410 /*
3411 * In order to keep per-task stats reliable we need to flip the event
3412 * values when we flip the contexts.
3413 */
3414 value = local64_read(&next_event->count);
3415 value = local64_xchg(&event->count, value);
3416 local64_set(&next_event->count, value);
3417
3418 swap(event->total_time_enabled, next_event->total_time_enabled);
3419 swap(event->total_time_running, next_event->total_time_running);
3420
3421 /*
3422 * Since we swizzled the values, update the user visible data too.
3423 */
3424 perf_event_update_userpage(event);
3425 perf_event_update_userpage(next_event);
3426 }
3427
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3428 static void perf_event_sync_stat(struct perf_event_context *ctx,
3429 struct perf_event_context *next_ctx)
3430 {
3431 struct perf_event *event, *next_event;
3432
3433 if (!ctx->nr_stat)
3434 return;
3435
3436 update_context_time(ctx);
3437
3438 event = list_first_entry(&ctx->event_list,
3439 struct perf_event, event_entry);
3440
3441 next_event = list_first_entry(&next_ctx->event_list,
3442 struct perf_event, event_entry);
3443
3444 while (&event->event_entry != &ctx->event_list &&
3445 &next_event->event_entry != &next_ctx->event_list) {
3446
3447 __perf_event_sync_stat(event, next_event);
3448
3449 event = list_next_entry(event, event_entry);
3450 next_event = list_next_entry(next_event, event_entry);
3451 }
3452 }
3453
3454 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3455 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3456 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3457 !list_entry_is_head(pos1, head1, member) && \
3458 !list_entry_is_head(pos2, head2, member); \
3459 pos1 = list_next_entry(pos1, member), \
3460 pos2 = list_next_entry(pos2, member))
3461
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3462 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3463 struct perf_event_context *next_ctx)
3464 {
3465 struct perf_event_pmu_context *prev_epc, *next_epc;
3466
3467 if (!prev_ctx->nr_task_data)
3468 return;
3469
3470 double_list_for_each_entry(prev_epc, next_epc,
3471 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3472 pmu_ctx_entry) {
3473
3474 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3475 continue;
3476
3477 /*
3478 * PMU specific parts of task perf context can require
3479 * additional synchronization. As an example of such
3480 * synchronization see implementation details of Intel
3481 * LBR call stack data profiling;
3482 */
3483 if (prev_epc->pmu->swap_task_ctx)
3484 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3485 else
3486 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3487 }
3488 }
3489
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3490 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3491 {
3492 struct perf_event_pmu_context *pmu_ctx;
3493 struct perf_cpu_pmu_context *cpc;
3494
3495 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3496 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3497
3498 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3499 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3500 }
3501 }
3502
3503 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3504 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3505 {
3506 struct perf_event_context *ctx = task->perf_event_ctxp;
3507 struct perf_event_context *next_ctx;
3508 struct perf_event_context *parent, *next_parent;
3509 int do_switch = 1;
3510
3511 if (likely(!ctx))
3512 return;
3513
3514 rcu_read_lock();
3515 next_ctx = rcu_dereference(next->perf_event_ctxp);
3516 if (!next_ctx)
3517 goto unlock;
3518
3519 parent = rcu_dereference(ctx->parent_ctx);
3520 next_parent = rcu_dereference(next_ctx->parent_ctx);
3521
3522 /* If neither context have a parent context; they cannot be clones. */
3523 if (!parent && !next_parent)
3524 goto unlock;
3525
3526 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3527 /*
3528 * Looks like the two contexts are clones, so we might be
3529 * able to optimize the context switch. We lock both
3530 * contexts and check that they are clones under the
3531 * lock (including re-checking that neither has been
3532 * uncloned in the meantime). It doesn't matter which
3533 * order we take the locks because no other cpu could
3534 * be trying to lock both of these tasks.
3535 */
3536 raw_spin_lock(&ctx->lock);
3537 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3538 if (context_equiv(ctx, next_ctx)) {
3539
3540 perf_ctx_disable(ctx, false);
3541
3542 /* PMIs are disabled; ctx->nr_pending is stable. */
3543 if (local_read(&ctx->nr_pending) ||
3544 local_read(&next_ctx->nr_pending)) {
3545 /*
3546 * Must not swap out ctx when there's pending
3547 * events that rely on the ctx->task relation.
3548 */
3549 raw_spin_unlock(&next_ctx->lock);
3550 rcu_read_unlock();
3551 goto inside_switch;
3552 }
3553
3554 WRITE_ONCE(ctx->task, next);
3555 WRITE_ONCE(next_ctx->task, task);
3556
3557 perf_ctx_sched_task_cb(ctx, false);
3558 perf_event_swap_task_ctx_data(ctx, next_ctx);
3559
3560 perf_ctx_enable(ctx, false);
3561
3562 /*
3563 * RCU_INIT_POINTER here is safe because we've not
3564 * modified the ctx and the above modification of
3565 * ctx->task and ctx->task_ctx_data are immaterial
3566 * since those values are always verified under
3567 * ctx->lock which we're now holding.
3568 */
3569 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3570 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3571
3572 do_switch = 0;
3573
3574 perf_event_sync_stat(ctx, next_ctx);
3575 }
3576 raw_spin_unlock(&next_ctx->lock);
3577 raw_spin_unlock(&ctx->lock);
3578 }
3579 unlock:
3580 rcu_read_unlock();
3581
3582 if (do_switch) {
3583 raw_spin_lock(&ctx->lock);
3584 perf_ctx_disable(ctx, false);
3585
3586 inside_switch:
3587 perf_ctx_sched_task_cb(ctx, false);
3588 task_ctx_sched_out(ctx, EVENT_ALL);
3589
3590 perf_ctx_enable(ctx, false);
3591 raw_spin_unlock(&ctx->lock);
3592 }
3593 }
3594
3595 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3596 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3597
perf_sched_cb_dec(struct pmu * pmu)3598 void perf_sched_cb_dec(struct pmu *pmu)
3599 {
3600 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3601
3602 this_cpu_dec(perf_sched_cb_usages);
3603 barrier();
3604
3605 if (!--cpc->sched_cb_usage)
3606 list_del(&cpc->sched_cb_entry);
3607 }
3608
3609
perf_sched_cb_inc(struct pmu * pmu)3610 void perf_sched_cb_inc(struct pmu *pmu)
3611 {
3612 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3613
3614 if (!cpc->sched_cb_usage++)
3615 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3616
3617 barrier();
3618 this_cpu_inc(perf_sched_cb_usages);
3619 }
3620
3621 /*
3622 * This function provides the context switch callback to the lower code
3623 * layer. It is invoked ONLY when the context switch callback is enabled.
3624 *
3625 * This callback is relevant even to per-cpu events; for example multi event
3626 * PEBS requires this to provide PID/TID information. This requires we flush
3627 * all queued PEBS records before we context switch to a new task.
3628 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3629 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3630 {
3631 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3632 struct pmu *pmu;
3633
3634 pmu = cpc->epc.pmu;
3635
3636 /* software PMUs will not have sched_task */
3637 if (WARN_ON_ONCE(!pmu->sched_task))
3638 return;
3639
3640 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3641 perf_pmu_disable(pmu);
3642
3643 pmu->sched_task(cpc->task_epc, sched_in);
3644
3645 perf_pmu_enable(pmu);
3646 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3647 }
3648
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3649 static void perf_pmu_sched_task(struct task_struct *prev,
3650 struct task_struct *next,
3651 bool sched_in)
3652 {
3653 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3654 struct perf_cpu_pmu_context *cpc;
3655
3656 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3657 if (prev == next || cpuctx->task_ctx)
3658 return;
3659
3660 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3661 __perf_pmu_sched_task(cpc, sched_in);
3662 }
3663
3664 static void perf_event_switch(struct task_struct *task,
3665 struct task_struct *next_prev, bool sched_in);
3666
3667 /*
3668 * Called from scheduler to remove the events of the current task,
3669 * with interrupts disabled.
3670 *
3671 * We stop each event and update the event value in event->count.
3672 *
3673 * This does not protect us against NMI, but disable()
3674 * sets the disabled bit in the control field of event _before_
3675 * accessing the event control register. If a NMI hits, then it will
3676 * not restart the event.
3677 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3678 void __perf_event_task_sched_out(struct task_struct *task,
3679 struct task_struct *next)
3680 {
3681 if (__this_cpu_read(perf_sched_cb_usages))
3682 perf_pmu_sched_task(task, next, false);
3683
3684 if (atomic_read(&nr_switch_events))
3685 perf_event_switch(task, next, false);
3686
3687 perf_event_context_sched_out(task, next);
3688
3689 /*
3690 * if cgroup events exist on this CPU, then we need
3691 * to check if we have to switch out PMU state.
3692 * cgroup event are system-wide mode only
3693 */
3694 perf_cgroup_switch(next);
3695 }
3696
perf_less_group_idx(const void * l,const void * r)3697 static bool perf_less_group_idx(const void *l, const void *r)
3698 {
3699 const struct perf_event *le = *(const struct perf_event **)l;
3700 const struct perf_event *re = *(const struct perf_event **)r;
3701
3702 return le->group_index < re->group_index;
3703 }
3704
swap_ptr(void * l,void * r)3705 static void swap_ptr(void *l, void *r)
3706 {
3707 void **lp = l, **rp = r;
3708
3709 swap(*lp, *rp);
3710 }
3711
3712 static const struct min_heap_callbacks perf_min_heap = {
3713 .elem_size = sizeof(struct perf_event *),
3714 .less = perf_less_group_idx,
3715 .swp = swap_ptr,
3716 };
3717
__heap_add(struct min_heap * heap,struct perf_event * event)3718 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3719 {
3720 struct perf_event **itrs = heap->data;
3721
3722 if (event) {
3723 itrs[heap->nr] = event;
3724 heap->nr++;
3725 }
3726 }
3727
__link_epc(struct perf_event_pmu_context * pmu_ctx)3728 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3729 {
3730 struct perf_cpu_pmu_context *cpc;
3731
3732 if (!pmu_ctx->ctx->task)
3733 return;
3734
3735 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3736 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3737 cpc->task_epc = pmu_ctx;
3738 }
3739
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3740 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3741 struct perf_event_groups *groups, int cpu,
3742 struct pmu *pmu,
3743 int (*func)(struct perf_event *, void *),
3744 void *data)
3745 {
3746 #ifdef CONFIG_CGROUP_PERF
3747 struct cgroup_subsys_state *css = NULL;
3748 #endif
3749 struct perf_cpu_context *cpuctx = NULL;
3750 /* Space for per CPU and/or any CPU event iterators. */
3751 struct perf_event *itrs[2];
3752 struct min_heap event_heap;
3753 struct perf_event **evt;
3754 int ret;
3755
3756 if (pmu->filter && pmu->filter(pmu, cpu))
3757 return 0;
3758
3759 if (!ctx->task) {
3760 cpuctx = this_cpu_ptr(&perf_cpu_context);
3761 event_heap = (struct min_heap){
3762 .data = cpuctx->heap,
3763 .nr = 0,
3764 .size = cpuctx->heap_size,
3765 };
3766
3767 lockdep_assert_held(&cpuctx->ctx.lock);
3768
3769 #ifdef CONFIG_CGROUP_PERF
3770 if (cpuctx->cgrp)
3771 css = &cpuctx->cgrp->css;
3772 #endif
3773 } else {
3774 event_heap = (struct min_heap){
3775 .data = itrs,
3776 .nr = 0,
3777 .size = ARRAY_SIZE(itrs),
3778 };
3779 /* Events not within a CPU context may be on any CPU. */
3780 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3781 }
3782 evt = event_heap.data;
3783
3784 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3785
3786 #ifdef CONFIG_CGROUP_PERF
3787 for (; css; css = css->parent)
3788 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3789 #endif
3790
3791 if (event_heap.nr) {
3792 __link_epc((*evt)->pmu_ctx);
3793 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3794 }
3795
3796 min_heapify_all(&event_heap, &perf_min_heap);
3797
3798 while (event_heap.nr) {
3799 ret = func(*evt, data);
3800 if (ret)
3801 return ret;
3802
3803 *evt = perf_event_groups_next(*evt, pmu);
3804 if (*evt)
3805 min_heapify(&event_heap, 0, &perf_min_heap);
3806 else
3807 min_heap_pop(&event_heap, &perf_min_heap);
3808 }
3809
3810 return 0;
3811 }
3812
3813 /*
3814 * Because the userpage is strictly per-event (there is no concept of context,
3815 * so there cannot be a context indirection), every userpage must be updated
3816 * when context time starts :-(
3817 *
3818 * IOW, we must not miss EVENT_TIME edges.
3819 */
event_update_userpage(struct perf_event * event)3820 static inline bool event_update_userpage(struct perf_event *event)
3821 {
3822 if (likely(!atomic_read(&event->mmap_count)))
3823 return false;
3824
3825 perf_event_update_time(event);
3826 perf_event_update_userpage(event);
3827
3828 return true;
3829 }
3830
group_update_userpage(struct perf_event * group_event)3831 static inline void group_update_userpage(struct perf_event *group_event)
3832 {
3833 struct perf_event *event;
3834
3835 if (!event_update_userpage(group_event))
3836 return;
3837
3838 for_each_sibling_event(event, group_event)
3839 event_update_userpage(event);
3840 }
3841
merge_sched_in(struct perf_event * event,void * data)3842 static int merge_sched_in(struct perf_event *event, void *data)
3843 {
3844 struct perf_event_context *ctx = event->ctx;
3845 int *can_add_hw = data;
3846
3847 if (event->state <= PERF_EVENT_STATE_OFF)
3848 return 0;
3849
3850 if (!event_filter_match(event))
3851 return 0;
3852
3853 if (group_can_go_on(event, *can_add_hw)) {
3854 if (!group_sched_in(event, ctx))
3855 list_add_tail(&event->active_list, get_event_list(event));
3856 }
3857
3858 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3859 *can_add_hw = 0;
3860 if (event->attr.pinned) {
3861 perf_cgroup_event_disable(event, ctx);
3862 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3863 } else {
3864 struct perf_cpu_pmu_context *cpc;
3865
3866 event->pmu_ctx->rotate_necessary = 1;
3867 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3868 perf_mux_hrtimer_restart(cpc);
3869 group_update_userpage(event);
3870 }
3871 }
3872
3873 return 0;
3874 }
3875
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3876 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3877 struct perf_event_groups *groups,
3878 struct pmu *pmu)
3879 {
3880 int can_add_hw = 1;
3881 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3882 merge_sched_in, &can_add_hw);
3883 }
3884
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3885 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3886 struct perf_event_groups *groups,
3887 bool cgroup)
3888 {
3889 struct perf_event_pmu_context *pmu_ctx;
3890
3891 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3892 if (cgroup && !pmu_ctx->nr_cgroups)
3893 continue;
3894 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3895 }
3896 }
3897
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3898 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3899 struct pmu *pmu)
3900 {
3901 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3902 }
3903
3904 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3905 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3906 {
3907 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3908 int is_active = ctx->is_active;
3909 bool cgroup = event_type & EVENT_CGROUP;
3910
3911 event_type &= ~EVENT_CGROUP;
3912
3913 lockdep_assert_held(&ctx->lock);
3914
3915 if (likely(!ctx->nr_events))
3916 return;
3917
3918 if (!(is_active & EVENT_TIME)) {
3919 /* start ctx time */
3920 __update_context_time(ctx, false);
3921 perf_cgroup_set_timestamp(cpuctx);
3922 /*
3923 * CPU-release for the below ->is_active store,
3924 * see __load_acquire() in perf_event_time_now()
3925 */
3926 barrier();
3927 }
3928
3929 ctx->is_active |= (event_type | EVENT_TIME);
3930 if (ctx->task) {
3931 if (!is_active)
3932 cpuctx->task_ctx = ctx;
3933 else
3934 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3935 }
3936
3937 is_active ^= ctx->is_active; /* changed bits */
3938
3939 /*
3940 * First go through the list and put on any pinned groups
3941 * in order to give them the best chance of going on.
3942 */
3943 if (is_active & EVENT_PINNED)
3944 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3945
3946 /* Then walk through the lower prio flexible groups */
3947 if (is_active & EVENT_FLEXIBLE)
3948 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3949 }
3950
perf_event_context_sched_in(struct task_struct * task)3951 static void perf_event_context_sched_in(struct task_struct *task)
3952 {
3953 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3954 struct perf_event_context *ctx;
3955
3956 rcu_read_lock();
3957 ctx = rcu_dereference(task->perf_event_ctxp);
3958 if (!ctx)
3959 goto rcu_unlock;
3960
3961 if (cpuctx->task_ctx == ctx) {
3962 perf_ctx_lock(cpuctx, ctx);
3963 perf_ctx_disable(ctx, false);
3964
3965 perf_ctx_sched_task_cb(ctx, true);
3966
3967 perf_ctx_enable(ctx, false);
3968 perf_ctx_unlock(cpuctx, ctx);
3969 goto rcu_unlock;
3970 }
3971
3972 perf_ctx_lock(cpuctx, ctx);
3973 /*
3974 * We must check ctx->nr_events while holding ctx->lock, such
3975 * that we serialize against perf_install_in_context().
3976 */
3977 if (!ctx->nr_events)
3978 goto unlock;
3979
3980 perf_ctx_disable(ctx, false);
3981 /*
3982 * We want to keep the following priority order:
3983 * cpu pinned (that don't need to move), task pinned,
3984 * cpu flexible, task flexible.
3985 *
3986 * However, if task's ctx is not carrying any pinned
3987 * events, no need to flip the cpuctx's events around.
3988 */
3989 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3990 perf_ctx_disable(&cpuctx->ctx, false);
3991 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3992 }
3993
3994 perf_event_sched_in(cpuctx, ctx);
3995
3996 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3997
3998 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3999 perf_ctx_enable(&cpuctx->ctx, false);
4000
4001 perf_ctx_enable(ctx, false);
4002
4003 unlock:
4004 perf_ctx_unlock(cpuctx, ctx);
4005 rcu_unlock:
4006 rcu_read_unlock();
4007 }
4008
4009 /*
4010 * Called from scheduler to add the events of the current task
4011 * with interrupts disabled.
4012 *
4013 * We restore the event value and then enable it.
4014 *
4015 * This does not protect us against NMI, but enable()
4016 * sets the enabled bit in the control field of event _before_
4017 * accessing the event control register. If a NMI hits, then it will
4018 * keep the event running.
4019 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4020 void __perf_event_task_sched_in(struct task_struct *prev,
4021 struct task_struct *task)
4022 {
4023 perf_event_context_sched_in(task);
4024
4025 if (atomic_read(&nr_switch_events))
4026 perf_event_switch(task, prev, true);
4027
4028 if (__this_cpu_read(perf_sched_cb_usages))
4029 perf_pmu_sched_task(prev, task, true);
4030 }
4031
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4032 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4033 {
4034 u64 frequency = event->attr.sample_freq;
4035 u64 sec = NSEC_PER_SEC;
4036 u64 divisor, dividend;
4037
4038 int count_fls, nsec_fls, frequency_fls, sec_fls;
4039
4040 count_fls = fls64(count);
4041 nsec_fls = fls64(nsec);
4042 frequency_fls = fls64(frequency);
4043 sec_fls = 30;
4044
4045 /*
4046 * We got @count in @nsec, with a target of sample_freq HZ
4047 * the target period becomes:
4048 *
4049 * @count * 10^9
4050 * period = -------------------
4051 * @nsec * sample_freq
4052 *
4053 */
4054
4055 /*
4056 * Reduce accuracy by one bit such that @a and @b converge
4057 * to a similar magnitude.
4058 */
4059 #define REDUCE_FLS(a, b) \
4060 do { \
4061 if (a##_fls > b##_fls) { \
4062 a >>= 1; \
4063 a##_fls--; \
4064 } else { \
4065 b >>= 1; \
4066 b##_fls--; \
4067 } \
4068 } while (0)
4069
4070 /*
4071 * Reduce accuracy until either term fits in a u64, then proceed with
4072 * the other, so that finally we can do a u64/u64 division.
4073 */
4074 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4075 REDUCE_FLS(nsec, frequency);
4076 REDUCE_FLS(sec, count);
4077 }
4078
4079 if (count_fls + sec_fls > 64) {
4080 divisor = nsec * frequency;
4081
4082 while (count_fls + sec_fls > 64) {
4083 REDUCE_FLS(count, sec);
4084 divisor >>= 1;
4085 }
4086
4087 dividend = count * sec;
4088 } else {
4089 dividend = count * sec;
4090
4091 while (nsec_fls + frequency_fls > 64) {
4092 REDUCE_FLS(nsec, frequency);
4093 dividend >>= 1;
4094 }
4095
4096 divisor = nsec * frequency;
4097 }
4098
4099 if (!divisor)
4100 return dividend;
4101
4102 return div64_u64(dividend, divisor);
4103 }
4104
4105 static DEFINE_PER_CPU(int, perf_throttled_count);
4106 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4107
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4108 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4109 {
4110 struct hw_perf_event *hwc = &event->hw;
4111 s64 period, sample_period;
4112 s64 delta;
4113
4114 period = perf_calculate_period(event, nsec, count);
4115
4116 delta = (s64)(period - hwc->sample_period);
4117 if (delta >= 0)
4118 delta += 7;
4119 else
4120 delta -= 7;
4121 delta /= 8; /* low pass filter */
4122
4123 sample_period = hwc->sample_period + delta;
4124
4125 if (!sample_period)
4126 sample_period = 1;
4127
4128 hwc->sample_period = sample_period;
4129
4130 if (local64_read(&hwc->period_left) > 8*sample_period) {
4131 if (disable)
4132 event->pmu->stop(event, PERF_EF_UPDATE);
4133
4134 local64_set(&hwc->period_left, 0);
4135
4136 if (disable)
4137 event->pmu->start(event, PERF_EF_RELOAD);
4138 }
4139 }
4140
4141 /*
4142 * combine freq adjustment with unthrottling to avoid two passes over the
4143 * events. At the same time, make sure, having freq events does not change
4144 * the rate of unthrottling as that would introduce bias.
4145 */
4146 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4147 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4148 {
4149 struct perf_event *event;
4150 struct hw_perf_event *hwc;
4151 u64 now, period = TICK_NSEC;
4152 s64 delta;
4153
4154 /*
4155 * only need to iterate over all events iff:
4156 * - context have events in frequency mode (needs freq adjust)
4157 * - there are events to unthrottle on this cpu
4158 */
4159 if (!(ctx->nr_freq || unthrottle))
4160 return;
4161
4162 raw_spin_lock(&ctx->lock);
4163
4164 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4165 if (event->state != PERF_EVENT_STATE_ACTIVE)
4166 continue;
4167
4168 // XXX use visit thingy to avoid the -1,cpu match
4169 if (!event_filter_match(event))
4170 continue;
4171
4172 perf_pmu_disable(event->pmu);
4173
4174 hwc = &event->hw;
4175
4176 if (hwc->interrupts == MAX_INTERRUPTS) {
4177 hwc->interrupts = 0;
4178 perf_log_throttle(event, 1);
4179 event->pmu->start(event, 0);
4180 }
4181
4182 if (!event->attr.freq || !event->attr.sample_freq)
4183 goto next;
4184
4185 /*
4186 * stop the event and update event->count
4187 */
4188 event->pmu->stop(event, PERF_EF_UPDATE);
4189
4190 now = local64_read(&event->count);
4191 delta = now - hwc->freq_count_stamp;
4192 hwc->freq_count_stamp = now;
4193
4194 /*
4195 * restart the event
4196 * reload only if value has changed
4197 * we have stopped the event so tell that
4198 * to perf_adjust_period() to avoid stopping it
4199 * twice.
4200 */
4201 if (delta > 0)
4202 perf_adjust_period(event, period, delta, false);
4203
4204 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4205 next:
4206 perf_pmu_enable(event->pmu);
4207 }
4208
4209 raw_spin_unlock(&ctx->lock);
4210 }
4211
4212 /*
4213 * Move @event to the tail of the @ctx's elegible events.
4214 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4215 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4216 {
4217 /*
4218 * Rotate the first entry last of non-pinned groups. Rotation might be
4219 * disabled by the inheritance code.
4220 */
4221 if (ctx->rotate_disable)
4222 return;
4223
4224 perf_event_groups_delete(&ctx->flexible_groups, event);
4225 perf_event_groups_insert(&ctx->flexible_groups, event);
4226 }
4227
4228 /* pick an event from the flexible_groups to rotate */
4229 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4230 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4231 {
4232 struct perf_event *event;
4233 struct rb_node *node;
4234 struct rb_root *tree;
4235 struct __group_key key = {
4236 .pmu = pmu_ctx->pmu,
4237 };
4238
4239 /* pick the first active flexible event */
4240 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4241 struct perf_event, active_list);
4242 if (event)
4243 goto out;
4244
4245 /* if no active flexible event, pick the first event */
4246 tree = &pmu_ctx->ctx->flexible_groups.tree;
4247
4248 if (!pmu_ctx->ctx->task) {
4249 key.cpu = smp_processor_id();
4250
4251 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4252 if (node)
4253 event = __node_2_pe(node);
4254 goto out;
4255 }
4256
4257 key.cpu = -1;
4258 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4259 if (node) {
4260 event = __node_2_pe(node);
4261 goto out;
4262 }
4263
4264 key.cpu = smp_processor_id();
4265 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4266 if (node)
4267 event = __node_2_pe(node);
4268
4269 out:
4270 /*
4271 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4272 * finds there are unschedulable events, it will set it again.
4273 */
4274 pmu_ctx->rotate_necessary = 0;
4275
4276 return event;
4277 }
4278
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4279 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4280 {
4281 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4282 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4283 struct perf_event *cpu_event = NULL, *task_event = NULL;
4284 int cpu_rotate, task_rotate;
4285 struct pmu *pmu;
4286
4287 /*
4288 * Since we run this from IRQ context, nobody can install new
4289 * events, thus the event count values are stable.
4290 */
4291
4292 cpu_epc = &cpc->epc;
4293 pmu = cpu_epc->pmu;
4294 task_epc = cpc->task_epc;
4295
4296 cpu_rotate = cpu_epc->rotate_necessary;
4297 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4298
4299 if (!(cpu_rotate || task_rotate))
4300 return false;
4301
4302 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4303 perf_pmu_disable(pmu);
4304
4305 if (task_rotate)
4306 task_event = ctx_event_to_rotate(task_epc);
4307 if (cpu_rotate)
4308 cpu_event = ctx_event_to_rotate(cpu_epc);
4309
4310 /*
4311 * As per the order given at ctx_resched() first 'pop' task flexible
4312 * and then, if needed CPU flexible.
4313 */
4314 if (task_event || (task_epc && cpu_event)) {
4315 update_context_time(task_epc->ctx);
4316 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4317 }
4318
4319 if (cpu_event) {
4320 update_context_time(&cpuctx->ctx);
4321 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4322 rotate_ctx(&cpuctx->ctx, cpu_event);
4323 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4324 }
4325
4326 if (task_event)
4327 rotate_ctx(task_epc->ctx, task_event);
4328
4329 if (task_event || (task_epc && cpu_event))
4330 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4331
4332 perf_pmu_enable(pmu);
4333 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4334
4335 return true;
4336 }
4337
perf_event_task_tick(void)4338 void perf_event_task_tick(void)
4339 {
4340 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4341 struct perf_event_context *ctx;
4342 int throttled;
4343
4344 lockdep_assert_irqs_disabled();
4345
4346 __this_cpu_inc(perf_throttled_seq);
4347 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4348 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4349
4350 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4351
4352 rcu_read_lock();
4353 ctx = rcu_dereference(current->perf_event_ctxp);
4354 if (ctx)
4355 perf_adjust_freq_unthr_context(ctx, !!throttled);
4356 rcu_read_unlock();
4357 }
4358
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4359 static int event_enable_on_exec(struct perf_event *event,
4360 struct perf_event_context *ctx)
4361 {
4362 if (!event->attr.enable_on_exec)
4363 return 0;
4364
4365 event->attr.enable_on_exec = 0;
4366 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4367 return 0;
4368
4369 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4370
4371 return 1;
4372 }
4373
4374 /*
4375 * Enable all of a task's events that have been marked enable-on-exec.
4376 * This expects task == current.
4377 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4378 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4379 {
4380 struct perf_event_context *clone_ctx = NULL;
4381 enum event_type_t event_type = 0;
4382 struct perf_cpu_context *cpuctx;
4383 struct perf_event *event;
4384 unsigned long flags;
4385 int enabled = 0;
4386
4387 local_irq_save(flags);
4388 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4389 goto out;
4390
4391 if (!ctx->nr_events)
4392 goto out;
4393
4394 cpuctx = this_cpu_ptr(&perf_cpu_context);
4395 perf_ctx_lock(cpuctx, ctx);
4396 ctx_sched_out(ctx, EVENT_TIME);
4397
4398 list_for_each_entry(event, &ctx->event_list, event_entry) {
4399 enabled |= event_enable_on_exec(event, ctx);
4400 event_type |= get_event_type(event);
4401 }
4402
4403 /*
4404 * Unclone and reschedule this context if we enabled any event.
4405 */
4406 if (enabled) {
4407 clone_ctx = unclone_ctx(ctx);
4408 ctx_resched(cpuctx, ctx, event_type);
4409 } else {
4410 ctx_sched_in(ctx, EVENT_TIME);
4411 }
4412 perf_ctx_unlock(cpuctx, ctx);
4413
4414 out:
4415 local_irq_restore(flags);
4416
4417 if (clone_ctx)
4418 put_ctx(clone_ctx);
4419 }
4420
4421 static void perf_remove_from_owner(struct perf_event *event);
4422 static void perf_event_exit_event(struct perf_event *event,
4423 struct perf_event_context *ctx);
4424
4425 /*
4426 * Removes all events from the current task that have been marked
4427 * remove-on-exec, and feeds their values back to parent events.
4428 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4429 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4430 {
4431 struct perf_event_context *clone_ctx = NULL;
4432 struct perf_event *event, *next;
4433 unsigned long flags;
4434 bool modified = false;
4435
4436 mutex_lock(&ctx->mutex);
4437
4438 if (WARN_ON_ONCE(ctx->task != current))
4439 goto unlock;
4440
4441 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4442 if (!event->attr.remove_on_exec)
4443 continue;
4444
4445 if (!is_kernel_event(event))
4446 perf_remove_from_owner(event);
4447
4448 modified = true;
4449
4450 perf_event_exit_event(event, ctx);
4451 }
4452
4453 raw_spin_lock_irqsave(&ctx->lock, flags);
4454 if (modified)
4455 clone_ctx = unclone_ctx(ctx);
4456 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4457
4458 unlock:
4459 mutex_unlock(&ctx->mutex);
4460
4461 if (clone_ctx)
4462 put_ctx(clone_ctx);
4463 }
4464
4465 struct perf_read_data {
4466 struct perf_event *event;
4467 bool group;
4468 int ret;
4469 };
4470
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4471 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4472 {
4473 u16 local_pkg, event_pkg;
4474
4475 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4476 int local_cpu = smp_processor_id();
4477
4478 event_pkg = topology_physical_package_id(event_cpu);
4479 local_pkg = topology_physical_package_id(local_cpu);
4480
4481 if (event_pkg == local_pkg)
4482 return local_cpu;
4483 }
4484
4485 return event_cpu;
4486 }
4487
4488 /*
4489 * Cross CPU call to read the hardware event
4490 */
__perf_event_read(void * info)4491 static void __perf_event_read(void *info)
4492 {
4493 struct perf_read_data *data = info;
4494 struct perf_event *sub, *event = data->event;
4495 struct perf_event_context *ctx = event->ctx;
4496 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4497 struct pmu *pmu = event->pmu;
4498
4499 /*
4500 * If this is a task context, we need to check whether it is
4501 * the current task context of this cpu. If not it has been
4502 * scheduled out before the smp call arrived. In that case
4503 * event->count would have been updated to a recent sample
4504 * when the event was scheduled out.
4505 */
4506 if (ctx->task && cpuctx->task_ctx != ctx)
4507 return;
4508
4509 raw_spin_lock(&ctx->lock);
4510 if (ctx->is_active & EVENT_TIME) {
4511 update_context_time(ctx);
4512 update_cgrp_time_from_event(event);
4513 }
4514
4515 perf_event_update_time(event);
4516 if (data->group)
4517 perf_event_update_sibling_time(event);
4518
4519 if (event->state != PERF_EVENT_STATE_ACTIVE)
4520 goto unlock;
4521
4522 if (!data->group) {
4523 pmu->read(event);
4524 data->ret = 0;
4525 goto unlock;
4526 }
4527
4528 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4529
4530 pmu->read(event);
4531
4532 for_each_sibling_event(sub, event)
4533 perf_pmu_read(sub);
4534
4535 data->ret = pmu->commit_txn(pmu);
4536
4537 unlock:
4538 raw_spin_unlock(&ctx->lock);
4539 }
4540
perf_event_count(struct perf_event * event)4541 static inline u64 perf_event_count(struct perf_event *event)
4542 {
4543 return local64_read(&event->count) + atomic64_read(&event->child_count);
4544 }
4545
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4546 static void calc_timer_values(struct perf_event *event,
4547 u64 *now,
4548 u64 *enabled,
4549 u64 *running)
4550 {
4551 u64 ctx_time;
4552
4553 *now = perf_clock();
4554 ctx_time = perf_event_time_now(event, *now);
4555 __perf_update_times(event, ctx_time, enabled, running);
4556 }
4557
4558 /*
4559 * NMI-safe method to read a local event, that is an event that
4560 * is:
4561 * - either for the current task, or for this CPU
4562 * - does not have inherit set, for inherited task events
4563 * will not be local and we cannot read them atomically
4564 * - must not have a pmu::count method
4565 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4566 int perf_event_read_local(struct perf_event *event, u64 *value,
4567 u64 *enabled, u64 *running)
4568 {
4569 unsigned long flags;
4570 int ret = 0;
4571
4572 /*
4573 * Disabling interrupts avoids all counter scheduling (context
4574 * switches, timer based rotation and IPIs).
4575 */
4576 local_irq_save(flags);
4577
4578 /*
4579 * It must not be an event with inherit set, we cannot read
4580 * all child counters from atomic context.
4581 */
4582 if (event->attr.inherit) {
4583 ret = -EOPNOTSUPP;
4584 goto out;
4585 }
4586
4587 /* If this is a per-task event, it must be for current */
4588 if ((event->attach_state & PERF_ATTACH_TASK) &&
4589 event->hw.target != current) {
4590 ret = -EINVAL;
4591 goto out;
4592 }
4593
4594 /* If this is a per-CPU event, it must be for this CPU */
4595 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4596 event->cpu != smp_processor_id()) {
4597 ret = -EINVAL;
4598 goto out;
4599 }
4600
4601 /* If this is a pinned event it must be running on this CPU */
4602 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4603 ret = -EBUSY;
4604 goto out;
4605 }
4606
4607 /*
4608 * If the event is currently on this CPU, its either a per-task event,
4609 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4610 * oncpu == -1).
4611 */
4612 if (event->oncpu == smp_processor_id())
4613 event->pmu->read(event);
4614
4615 *value = local64_read(&event->count);
4616 if (enabled || running) {
4617 u64 __enabled, __running, __now;
4618
4619 calc_timer_values(event, &__now, &__enabled, &__running);
4620 if (enabled)
4621 *enabled = __enabled;
4622 if (running)
4623 *running = __running;
4624 }
4625 out:
4626 local_irq_restore(flags);
4627
4628 return ret;
4629 }
4630
perf_event_read(struct perf_event * event,bool group)4631 static int perf_event_read(struct perf_event *event, bool group)
4632 {
4633 enum perf_event_state state = READ_ONCE(event->state);
4634 int event_cpu, ret = 0;
4635
4636 /*
4637 * If event is enabled and currently active on a CPU, update the
4638 * value in the event structure:
4639 */
4640 again:
4641 if (state == PERF_EVENT_STATE_ACTIVE) {
4642 struct perf_read_data data;
4643
4644 /*
4645 * Orders the ->state and ->oncpu loads such that if we see
4646 * ACTIVE we must also see the right ->oncpu.
4647 *
4648 * Matches the smp_wmb() from event_sched_in().
4649 */
4650 smp_rmb();
4651
4652 event_cpu = READ_ONCE(event->oncpu);
4653 if ((unsigned)event_cpu >= nr_cpu_ids)
4654 return 0;
4655
4656 data = (struct perf_read_data){
4657 .event = event,
4658 .group = group,
4659 .ret = 0,
4660 };
4661
4662 preempt_disable();
4663 event_cpu = __perf_event_read_cpu(event, event_cpu);
4664
4665 /*
4666 * Purposely ignore the smp_call_function_single() return
4667 * value.
4668 *
4669 * If event_cpu isn't a valid CPU it means the event got
4670 * scheduled out and that will have updated the event count.
4671 *
4672 * Therefore, either way, we'll have an up-to-date event count
4673 * after this.
4674 */
4675 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4676 preempt_enable();
4677 ret = data.ret;
4678
4679 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4680 struct perf_event_context *ctx = event->ctx;
4681 unsigned long flags;
4682
4683 raw_spin_lock_irqsave(&ctx->lock, flags);
4684 state = event->state;
4685 if (state != PERF_EVENT_STATE_INACTIVE) {
4686 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4687 goto again;
4688 }
4689
4690 /*
4691 * May read while context is not active (e.g., thread is
4692 * blocked), in that case we cannot update context time
4693 */
4694 if (ctx->is_active & EVENT_TIME) {
4695 update_context_time(ctx);
4696 update_cgrp_time_from_event(event);
4697 }
4698
4699 perf_event_update_time(event);
4700 if (group)
4701 perf_event_update_sibling_time(event);
4702 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4703 }
4704
4705 return ret;
4706 }
4707
4708 /*
4709 * Initialize the perf_event context in a task_struct:
4710 */
__perf_event_init_context(struct perf_event_context * ctx)4711 static void __perf_event_init_context(struct perf_event_context *ctx)
4712 {
4713 raw_spin_lock_init(&ctx->lock);
4714 mutex_init(&ctx->mutex);
4715 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4716 perf_event_groups_init(&ctx->pinned_groups);
4717 perf_event_groups_init(&ctx->flexible_groups);
4718 INIT_LIST_HEAD(&ctx->event_list);
4719 refcount_set(&ctx->refcount, 1);
4720 }
4721
4722 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4723 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4724 {
4725 epc->pmu = pmu;
4726 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4727 INIT_LIST_HEAD(&epc->pinned_active);
4728 INIT_LIST_HEAD(&epc->flexible_active);
4729 atomic_set(&epc->refcount, 1);
4730 }
4731
4732 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4733 alloc_perf_context(struct task_struct *task)
4734 {
4735 struct perf_event_context *ctx;
4736
4737 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4738 if (!ctx)
4739 return NULL;
4740
4741 __perf_event_init_context(ctx);
4742 if (task)
4743 ctx->task = get_task_struct(task);
4744
4745 return ctx;
4746 }
4747
4748 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4749 find_lively_task_by_vpid(pid_t vpid)
4750 {
4751 struct task_struct *task;
4752
4753 rcu_read_lock();
4754 if (!vpid)
4755 task = current;
4756 else
4757 task = find_task_by_vpid(vpid);
4758 if (task)
4759 get_task_struct(task);
4760 rcu_read_unlock();
4761
4762 if (!task)
4763 return ERR_PTR(-ESRCH);
4764
4765 return task;
4766 }
4767
4768 /*
4769 * Returns a matching context with refcount and pincount.
4770 */
4771 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4772 find_get_context(struct task_struct *task, struct perf_event *event)
4773 {
4774 struct perf_event_context *ctx, *clone_ctx = NULL;
4775 struct perf_cpu_context *cpuctx;
4776 unsigned long flags;
4777 int err;
4778
4779 if (!task) {
4780 /* Must be root to operate on a CPU event: */
4781 err = perf_allow_cpu(&event->attr);
4782 if (err)
4783 return ERR_PTR(err);
4784
4785 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4786 ctx = &cpuctx->ctx;
4787 get_ctx(ctx);
4788 raw_spin_lock_irqsave(&ctx->lock, flags);
4789 ++ctx->pin_count;
4790 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4791
4792 return ctx;
4793 }
4794
4795 err = -EINVAL;
4796 retry:
4797 ctx = perf_lock_task_context(task, &flags);
4798 if (ctx) {
4799 clone_ctx = unclone_ctx(ctx);
4800 ++ctx->pin_count;
4801
4802 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4803
4804 if (clone_ctx)
4805 put_ctx(clone_ctx);
4806 } else {
4807 ctx = alloc_perf_context(task);
4808 err = -ENOMEM;
4809 if (!ctx)
4810 goto errout;
4811
4812 err = 0;
4813 mutex_lock(&task->perf_event_mutex);
4814 /*
4815 * If it has already passed perf_event_exit_task().
4816 * we must see PF_EXITING, it takes this mutex too.
4817 */
4818 if (task->flags & PF_EXITING)
4819 err = -ESRCH;
4820 else if (task->perf_event_ctxp)
4821 err = -EAGAIN;
4822 else {
4823 get_ctx(ctx);
4824 ++ctx->pin_count;
4825 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4826 }
4827 mutex_unlock(&task->perf_event_mutex);
4828
4829 if (unlikely(err)) {
4830 put_ctx(ctx);
4831
4832 if (err == -EAGAIN)
4833 goto retry;
4834 goto errout;
4835 }
4836 }
4837
4838 return ctx;
4839
4840 errout:
4841 return ERR_PTR(err);
4842 }
4843
4844 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4845 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4846 struct perf_event *event)
4847 {
4848 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4849 void *task_ctx_data = NULL;
4850
4851 if (!ctx->task) {
4852 /*
4853 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4854 * relies on the fact that find_get_pmu_context() cannot fail
4855 * for CPU contexts.
4856 */
4857 struct perf_cpu_pmu_context *cpc;
4858
4859 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4860 epc = &cpc->epc;
4861 raw_spin_lock_irq(&ctx->lock);
4862 if (!epc->ctx) {
4863 atomic_set(&epc->refcount, 1);
4864 epc->embedded = 1;
4865 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4866 epc->ctx = ctx;
4867 } else {
4868 WARN_ON_ONCE(epc->ctx != ctx);
4869 atomic_inc(&epc->refcount);
4870 }
4871 raw_spin_unlock_irq(&ctx->lock);
4872 return epc;
4873 }
4874
4875 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4876 if (!new)
4877 return ERR_PTR(-ENOMEM);
4878
4879 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4880 task_ctx_data = alloc_task_ctx_data(pmu);
4881 if (!task_ctx_data) {
4882 kfree(new);
4883 return ERR_PTR(-ENOMEM);
4884 }
4885 }
4886
4887 __perf_init_event_pmu_context(new, pmu);
4888
4889 /*
4890 * XXX
4891 *
4892 * lockdep_assert_held(&ctx->mutex);
4893 *
4894 * can't because perf_event_init_task() doesn't actually hold the
4895 * child_ctx->mutex.
4896 */
4897
4898 raw_spin_lock_irq(&ctx->lock);
4899 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4900 if (epc->pmu == pmu) {
4901 WARN_ON_ONCE(epc->ctx != ctx);
4902 atomic_inc(&epc->refcount);
4903 goto found_epc;
4904 }
4905 /* Make sure the pmu_ctx_list is sorted by PMU type: */
4906 if (!pos && epc->pmu->type > pmu->type)
4907 pos = epc;
4908 }
4909
4910 epc = new;
4911 new = NULL;
4912
4913 if (!pos)
4914 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4915 else
4916 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
4917
4918 epc->ctx = ctx;
4919
4920 found_epc:
4921 if (task_ctx_data && !epc->task_ctx_data) {
4922 epc->task_ctx_data = task_ctx_data;
4923 task_ctx_data = NULL;
4924 ctx->nr_task_data++;
4925 }
4926 raw_spin_unlock_irq(&ctx->lock);
4927
4928 free_task_ctx_data(pmu, task_ctx_data);
4929 kfree(new);
4930
4931 return epc;
4932 }
4933
get_pmu_ctx(struct perf_event_pmu_context * epc)4934 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4935 {
4936 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4937 }
4938
free_epc_rcu(struct rcu_head * head)4939 static void free_epc_rcu(struct rcu_head *head)
4940 {
4941 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4942
4943 kfree(epc->task_ctx_data);
4944 kfree(epc);
4945 }
4946
put_pmu_ctx(struct perf_event_pmu_context * epc)4947 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4948 {
4949 struct perf_event_context *ctx = epc->ctx;
4950 unsigned long flags;
4951
4952 /*
4953 * XXX
4954 *
4955 * lockdep_assert_held(&ctx->mutex);
4956 *
4957 * can't because of the call-site in _free_event()/put_event()
4958 * which isn't always called under ctx->mutex.
4959 */
4960 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4961 return;
4962
4963 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4964
4965 list_del_init(&epc->pmu_ctx_entry);
4966 epc->ctx = NULL;
4967
4968 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4969 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4970
4971 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4972
4973 if (epc->embedded)
4974 return;
4975
4976 call_rcu(&epc->rcu_head, free_epc_rcu);
4977 }
4978
4979 static void perf_event_free_filter(struct perf_event *event);
4980
free_event_rcu(struct rcu_head * head)4981 static void free_event_rcu(struct rcu_head *head)
4982 {
4983 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4984
4985 if (event->ns)
4986 put_pid_ns(event->ns);
4987 perf_event_free_filter(event);
4988 kmem_cache_free(perf_event_cache, event);
4989 }
4990
4991 static void ring_buffer_attach(struct perf_event *event,
4992 struct perf_buffer *rb);
4993
detach_sb_event(struct perf_event * event)4994 static void detach_sb_event(struct perf_event *event)
4995 {
4996 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4997
4998 raw_spin_lock(&pel->lock);
4999 list_del_rcu(&event->sb_list);
5000 raw_spin_unlock(&pel->lock);
5001 }
5002
is_sb_event(struct perf_event * event)5003 static bool is_sb_event(struct perf_event *event)
5004 {
5005 struct perf_event_attr *attr = &event->attr;
5006
5007 if (event->parent)
5008 return false;
5009
5010 if (event->attach_state & PERF_ATTACH_TASK)
5011 return false;
5012
5013 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5014 attr->comm || attr->comm_exec ||
5015 attr->task || attr->ksymbol ||
5016 attr->context_switch || attr->text_poke ||
5017 attr->bpf_event)
5018 return true;
5019 return false;
5020 }
5021
unaccount_pmu_sb_event(struct perf_event * event)5022 static void unaccount_pmu_sb_event(struct perf_event *event)
5023 {
5024 if (is_sb_event(event))
5025 detach_sb_event(event);
5026 }
5027
5028 #ifdef CONFIG_NO_HZ_FULL
5029 static DEFINE_SPINLOCK(nr_freq_lock);
5030 #endif
5031
unaccount_freq_event_nohz(void)5032 static void unaccount_freq_event_nohz(void)
5033 {
5034 #ifdef CONFIG_NO_HZ_FULL
5035 spin_lock(&nr_freq_lock);
5036 if (atomic_dec_and_test(&nr_freq_events))
5037 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5038 spin_unlock(&nr_freq_lock);
5039 #endif
5040 }
5041
unaccount_freq_event(void)5042 static void unaccount_freq_event(void)
5043 {
5044 if (tick_nohz_full_enabled())
5045 unaccount_freq_event_nohz();
5046 else
5047 atomic_dec(&nr_freq_events);
5048 }
5049
unaccount_event(struct perf_event * event)5050 static void unaccount_event(struct perf_event *event)
5051 {
5052 bool dec = false;
5053
5054 if (event->parent)
5055 return;
5056
5057 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5058 dec = true;
5059 if (event->attr.mmap || event->attr.mmap_data)
5060 atomic_dec(&nr_mmap_events);
5061 if (event->attr.build_id)
5062 atomic_dec(&nr_build_id_events);
5063 if (event->attr.comm)
5064 atomic_dec(&nr_comm_events);
5065 if (event->attr.namespaces)
5066 atomic_dec(&nr_namespaces_events);
5067 if (event->attr.cgroup)
5068 atomic_dec(&nr_cgroup_events);
5069 if (event->attr.task)
5070 atomic_dec(&nr_task_events);
5071 if (event->attr.freq)
5072 unaccount_freq_event();
5073 if (event->attr.context_switch) {
5074 dec = true;
5075 atomic_dec(&nr_switch_events);
5076 }
5077 if (is_cgroup_event(event))
5078 dec = true;
5079 if (has_branch_stack(event))
5080 dec = true;
5081 if (event->attr.ksymbol)
5082 atomic_dec(&nr_ksymbol_events);
5083 if (event->attr.bpf_event)
5084 atomic_dec(&nr_bpf_events);
5085 if (event->attr.text_poke)
5086 atomic_dec(&nr_text_poke_events);
5087
5088 if (dec) {
5089 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5090 schedule_delayed_work(&perf_sched_work, HZ);
5091 }
5092
5093 unaccount_pmu_sb_event(event);
5094 }
5095
perf_sched_delayed(struct work_struct * work)5096 static void perf_sched_delayed(struct work_struct *work)
5097 {
5098 mutex_lock(&perf_sched_mutex);
5099 if (atomic_dec_and_test(&perf_sched_count))
5100 static_branch_disable(&perf_sched_events);
5101 mutex_unlock(&perf_sched_mutex);
5102 }
5103
5104 /*
5105 * The following implement mutual exclusion of events on "exclusive" pmus
5106 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5107 * at a time, so we disallow creating events that might conflict, namely:
5108 *
5109 * 1) cpu-wide events in the presence of per-task events,
5110 * 2) per-task events in the presence of cpu-wide events,
5111 * 3) two matching events on the same perf_event_context.
5112 *
5113 * The former two cases are handled in the allocation path (perf_event_alloc(),
5114 * _free_event()), the latter -- before the first perf_install_in_context().
5115 */
exclusive_event_init(struct perf_event * event)5116 static int exclusive_event_init(struct perf_event *event)
5117 {
5118 struct pmu *pmu = event->pmu;
5119
5120 if (!is_exclusive_pmu(pmu))
5121 return 0;
5122
5123 /*
5124 * Prevent co-existence of per-task and cpu-wide events on the
5125 * same exclusive pmu.
5126 *
5127 * Negative pmu::exclusive_cnt means there are cpu-wide
5128 * events on this "exclusive" pmu, positive means there are
5129 * per-task events.
5130 *
5131 * Since this is called in perf_event_alloc() path, event::ctx
5132 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5133 * to mean "per-task event", because unlike other attach states it
5134 * never gets cleared.
5135 */
5136 if (event->attach_state & PERF_ATTACH_TASK) {
5137 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5138 return -EBUSY;
5139 } else {
5140 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5141 return -EBUSY;
5142 }
5143
5144 return 0;
5145 }
5146
exclusive_event_destroy(struct perf_event * event)5147 static void exclusive_event_destroy(struct perf_event *event)
5148 {
5149 struct pmu *pmu = event->pmu;
5150
5151 if (!is_exclusive_pmu(pmu))
5152 return;
5153
5154 /* see comment in exclusive_event_init() */
5155 if (event->attach_state & PERF_ATTACH_TASK)
5156 atomic_dec(&pmu->exclusive_cnt);
5157 else
5158 atomic_inc(&pmu->exclusive_cnt);
5159 }
5160
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5161 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5162 {
5163 if ((e1->pmu == e2->pmu) &&
5164 (e1->cpu == e2->cpu ||
5165 e1->cpu == -1 ||
5166 e2->cpu == -1))
5167 return true;
5168 return false;
5169 }
5170
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5171 static bool exclusive_event_installable(struct perf_event *event,
5172 struct perf_event_context *ctx)
5173 {
5174 struct perf_event *iter_event;
5175 struct pmu *pmu = event->pmu;
5176
5177 lockdep_assert_held(&ctx->mutex);
5178
5179 if (!is_exclusive_pmu(pmu))
5180 return true;
5181
5182 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5183 if (exclusive_event_match(iter_event, event))
5184 return false;
5185 }
5186
5187 return true;
5188 }
5189
5190 static void perf_addr_filters_splice(struct perf_event *event,
5191 struct list_head *head);
5192
perf_pending_task_sync(struct perf_event * event)5193 static void perf_pending_task_sync(struct perf_event *event)
5194 {
5195 struct callback_head *head = &event->pending_task;
5196
5197 if (!event->pending_work)
5198 return;
5199 /*
5200 * If the task is queued to the current task's queue, we
5201 * obviously can't wait for it to complete. Simply cancel it.
5202 */
5203 if (task_work_cancel(current, head)) {
5204 event->pending_work = 0;
5205 local_dec(&event->ctx->nr_pending);
5206 return;
5207 }
5208
5209 /*
5210 * All accesses related to the event are within the same
5211 * non-preemptible section in perf_pending_task(). The RCU
5212 * grace period before the event is freed will make sure all
5213 * those accesses are complete by then.
5214 */
5215 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5216 }
5217
_free_event(struct perf_event * event)5218 static void _free_event(struct perf_event *event)
5219 {
5220 irq_work_sync(&event->pending_irq);
5221 perf_pending_task_sync(event);
5222
5223 unaccount_event(event);
5224
5225 security_perf_event_free(event);
5226
5227 if (event->rb) {
5228 /*
5229 * Can happen when we close an event with re-directed output.
5230 *
5231 * Since we have a 0 refcount, perf_mmap_close() will skip
5232 * over us; possibly making our ring_buffer_put() the last.
5233 */
5234 mutex_lock(&event->mmap_mutex);
5235 ring_buffer_attach(event, NULL);
5236 mutex_unlock(&event->mmap_mutex);
5237 }
5238
5239 if (is_cgroup_event(event))
5240 perf_detach_cgroup(event);
5241
5242 if (!event->parent) {
5243 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5244 put_callchain_buffers();
5245 }
5246
5247 perf_event_free_bpf_prog(event);
5248 perf_addr_filters_splice(event, NULL);
5249 kfree(event->addr_filter_ranges);
5250
5251 if (event->destroy)
5252 event->destroy(event);
5253
5254 /*
5255 * Must be after ->destroy(), due to uprobe_perf_close() using
5256 * hw.target.
5257 */
5258 if (event->hw.target)
5259 put_task_struct(event->hw.target);
5260
5261 if (event->pmu_ctx)
5262 put_pmu_ctx(event->pmu_ctx);
5263
5264 /*
5265 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5266 * all task references must be cleaned up.
5267 */
5268 if (event->ctx)
5269 put_ctx(event->ctx);
5270
5271 exclusive_event_destroy(event);
5272 module_put(event->pmu->module);
5273
5274 call_rcu(&event->rcu_head, free_event_rcu);
5275 }
5276
5277 /*
5278 * Used to free events which have a known refcount of 1, such as in error paths
5279 * where the event isn't exposed yet and inherited events.
5280 */
free_event(struct perf_event * event)5281 static void free_event(struct perf_event *event)
5282 {
5283 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5284 "unexpected event refcount: %ld; ptr=%p\n",
5285 atomic_long_read(&event->refcount), event)) {
5286 /* leak to avoid use-after-free */
5287 return;
5288 }
5289
5290 _free_event(event);
5291 }
5292
5293 /*
5294 * Remove user event from the owner task.
5295 */
perf_remove_from_owner(struct perf_event * event)5296 static void perf_remove_from_owner(struct perf_event *event)
5297 {
5298 struct task_struct *owner;
5299
5300 rcu_read_lock();
5301 /*
5302 * Matches the smp_store_release() in perf_event_exit_task(). If we
5303 * observe !owner it means the list deletion is complete and we can
5304 * indeed free this event, otherwise we need to serialize on
5305 * owner->perf_event_mutex.
5306 */
5307 owner = READ_ONCE(event->owner);
5308 if (owner) {
5309 /*
5310 * Since delayed_put_task_struct() also drops the last
5311 * task reference we can safely take a new reference
5312 * while holding the rcu_read_lock().
5313 */
5314 get_task_struct(owner);
5315 }
5316 rcu_read_unlock();
5317
5318 if (owner) {
5319 /*
5320 * If we're here through perf_event_exit_task() we're already
5321 * holding ctx->mutex which would be an inversion wrt. the
5322 * normal lock order.
5323 *
5324 * However we can safely take this lock because its the child
5325 * ctx->mutex.
5326 */
5327 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5328
5329 /*
5330 * We have to re-check the event->owner field, if it is cleared
5331 * we raced with perf_event_exit_task(), acquiring the mutex
5332 * ensured they're done, and we can proceed with freeing the
5333 * event.
5334 */
5335 if (event->owner) {
5336 list_del_init(&event->owner_entry);
5337 smp_store_release(&event->owner, NULL);
5338 }
5339 mutex_unlock(&owner->perf_event_mutex);
5340 put_task_struct(owner);
5341 }
5342 }
5343
put_event(struct perf_event * event)5344 static void put_event(struct perf_event *event)
5345 {
5346 if (!atomic_long_dec_and_test(&event->refcount))
5347 return;
5348
5349 _free_event(event);
5350 }
5351
5352 /*
5353 * Kill an event dead; while event:refcount will preserve the event
5354 * object, it will not preserve its functionality. Once the last 'user'
5355 * gives up the object, we'll destroy the thing.
5356 */
perf_event_release_kernel(struct perf_event * event)5357 int perf_event_release_kernel(struct perf_event *event)
5358 {
5359 struct perf_event_context *ctx = event->ctx;
5360 struct perf_event *child, *tmp;
5361 LIST_HEAD(free_list);
5362
5363 /*
5364 * If we got here through err_alloc: free_event(event); we will not
5365 * have attached to a context yet.
5366 */
5367 if (!ctx) {
5368 WARN_ON_ONCE(event->attach_state &
5369 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5370 goto no_ctx;
5371 }
5372
5373 if (!is_kernel_event(event))
5374 perf_remove_from_owner(event);
5375
5376 ctx = perf_event_ctx_lock(event);
5377 WARN_ON_ONCE(ctx->parent_ctx);
5378
5379 /*
5380 * Mark this event as STATE_DEAD, there is no external reference to it
5381 * anymore.
5382 *
5383 * Anybody acquiring event->child_mutex after the below loop _must_
5384 * also see this, most importantly inherit_event() which will avoid
5385 * placing more children on the list.
5386 *
5387 * Thus this guarantees that we will in fact observe and kill _ALL_
5388 * child events.
5389 */
5390 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5391
5392 perf_event_ctx_unlock(event, ctx);
5393
5394 again:
5395 mutex_lock(&event->child_mutex);
5396 list_for_each_entry(child, &event->child_list, child_list) {
5397 void *var = NULL;
5398
5399 /*
5400 * Cannot change, child events are not migrated, see the
5401 * comment with perf_event_ctx_lock_nested().
5402 */
5403 ctx = READ_ONCE(child->ctx);
5404 /*
5405 * Since child_mutex nests inside ctx::mutex, we must jump
5406 * through hoops. We start by grabbing a reference on the ctx.
5407 *
5408 * Since the event cannot get freed while we hold the
5409 * child_mutex, the context must also exist and have a !0
5410 * reference count.
5411 */
5412 get_ctx(ctx);
5413
5414 /*
5415 * Now that we have a ctx ref, we can drop child_mutex, and
5416 * acquire ctx::mutex without fear of it going away. Then we
5417 * can re-acquire child_mutex.
5418 */
5419 mutex_unlock(&event->child_mutex);
5420 mutex_lock(&ctx->mutex);
5421 mutex_lock(&event->child_mutex);
5422
5423 /*
5424 * Now that we hold ctx::mutex and child_mutex, revalidate our
5425 * state, if child is still the first entry, it didn't get freed
5426 * and we can continue doing so.
5427 */
5428 tmp = list_first_entry_or_null(&event->child_list,
5429 struct perf_event, child_list);
5430 if (tmp == child) {
5431 perf_remove_from_context(child, DETACH_GROUP);
5432 list_move(&child->child_list, &free_list);
5433 /*
5434 * This matches the refcount bump in inherit_event();
5435 * this can't be the last reference.
5436 */
5437 put_event(event);
5438 } else {
5439 var = &ctx->refcount;
5440 }
5441
5442 mutex_unlock(&event->child_mutex);
5443 mutex_unlock(&ctx->mutex);
5444 put_ctx(ctx);
5445
5446 if (var) {
5447 /*
5448 * If perf_event_free_task() has deleted all events from the
5449 * ctx while the child_mutex got released above, make sure to
5450 * notify about the preceding put_ctx().
5451 */
5452 smp_mb(); /* pairs with wait_var_event() */
5453 wake_up_var(var);
5454 }
5455 goto again;
5456 }
5457 mutex_unlock(&event->child_mutex);
5458
5459 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5460 void *var = &child->ctx->refcount;
5461
5462 list_del(&child->child_list);
5463 free_event(child);
5464
5465 /*
5466 * Wake any perf_event_free_task() waiting for this event to be
5467 * freed.
5468 */
5469 smp_mb(); /* pairs with wait_var_event() */
5470 wake_up_var(var);
5471 }
5472
5473 no_ctx:
5474 put_event(event); /* Must be the 'last' reference */
5475 return 0;
5476 }
5477 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5478
5479 /*
5480 * Called when the last reference to the file is gone.
5481 */
perf_release(struct inode * inode,struct file * file)5482 static int perf_release(struct inode *inode, struct file *file)
5483 {
5484 perf_event_release_kernel(file->private_data);
5485 return 0;
5486 }
5487
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5488 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5489 {
5490 struct perf_event *child;
5491 u64 total = 0;
5492
5493 *enabled = 0;
5494 *running = 0;
5495
5496 mutex_lock(&event->child_mutex);
5497
5498 (void)perf_event_read(event, false);
5499 total += perf_event_count(event);
5500
5501 *enabled += event->total_time_enabled +
5502 atomic64_read(&event->child_total_time_enabled);
5503 *running += event->total_time_running +
5504 atomic64_read(&event->child_total_time_running);
5505
5506 list_for_each_entry(child, &event->child_list, child_list) {
5507 (void)perf_event_read(child, false);
5508 total += perf_event_count(child);
5509 *enabled += child->total_time_enabled;
5510 *running += child->total_time_running;
5511 }
5512 mutex_unlock(&event->child_mutex);
5513
5514 return total;
5515 }
5516
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5517 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5518 {
5519 struct perf_event_context *ctx;
5520 u64 count;
5521
5522 ctx = perf_event_ctx_lock(event);
5523 count = __perf_event_read_value(event, enabled, running);
5524 perf_event_ctx_unlock(event, ctx);
5525
5526 return count;
5527 }
5528 EXPORT_SYMBOL_GPL(perf_event_read_value);
5529
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5530 static int __perf_read_group_add(struct perf_event *leader,
5531 u64 read_format, u64 *values)
5532 {
5533 struct perf_event_context *ctx = leader->ctx;
5534 struct perf_event *sub, *parent;
5535 unsigned long flags;
5536 int n = 1; /* skip @nr */
5537 int ret;
5538
5539 ret = perf_event_read(leader, true);
5540 if (ret)
5541 return ret;
5542
5543 raw_spin_lock_irqsave(&ctx->lock, flags);
5544 /*
5545 * Verify the grouping between the parent and child (inherited)
5546 * events is still in tact.
5547 *
5548 * Specifically:
5549 * - leader->ctx->lock pins leader->sibling_list
5550 * - parent->child_mutex pins parent->child_list
5551 * - parent->ctx->mutex pins parent->sibling_list
5552 *
5553 * Because parent->ctx != leader->ctx (and child_list nests inside
5554 * ctx->mutex), group destruction is not atomic between children, also
5555 * see perf_event_release_kernel(). Additionally, parent can grow the
5556 * group.
5557 *
5558 * Therefore it is possible to have parent and child groups in a
5559 * different configuration and summing over such a beast makes no sense
5560 * what so ever.
5561 *
5562 * Reject this.
5563 */
5564 parent = leader->parent;
5565 if (parent &&
5566 (parent->group_generation != leader->group_generation ||
5567 parent->nr_siblings != leader->nr_siblings)) {
5568 ret = -ECHILD;
5569 goto unlock;
5570 }
5571
5572 /*
5573 * Since we co-schedule groups, {enabled,running} times of siblings
5574 * will be identical to those of the leader, so we only publish one
5575 * set.
5576 */
5577 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5578 values[n++] += leader->total_time_enabled +
5579 atomic64_read(&leader->child_total_time_enabled);
5580 }
5581
5582 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5583 values[n++] += leader->total_time_running +
5584 atomic64_read(&leader->child_total_time_running);
5585 }
5586
5587 /*
5588 * Write {count,id} tuples for every sibling.
5589 */
5590 values[n++] += perf_event_count(leader);
5591 if (read_format & PERF_FORMAT_ID)
5592 values[n++] = primary_event_id(leader);
5593 if (read_format & PERF_FORMAT_LOST)
5594 values[n++] = atomic64_read(&leader->lost_samples);
5595
5596 for_each_sibling_event(sub, leader) {
5597 values[n++] += perf_event_count(sub);
5598 if (read_format & PERF_FORMAT_ID)
5599 values[n++] = primary_event_id(sub);
5600 if (read_format & PERF_FORMAT_LOST)
5601 values[n++] = atomic64_read(&sub->lost_samples);
5602 }
5603
5604 unlock:
5605 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5606 return ret;
5607 }
5608
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5609 static int perf_read_group(struct perf_event *event,
5610 u64 read_format, char __user *buf)
5611 {
5612 struct perf_event *leader = event->group_leader, *child;
5613 struct perf_event_context *ctx = leader->ctx;
5614 int ret;
5615 u64 *values;
5616
5617 lockdep_assert_held(&ctx->mutex);
5618
5619 values = kzalloc(event->read_size, GFP_KERNEL);
5620 if (!values)
5621 return -ENOMEM;
5622
5623 values[0] = 1 + leader->nr_siblings;
5624
5625 mutex_lock(&leader->child_mutex);
5626
5627 ret = __perf_read_group_add(leader, read_format, values);
5628 if (ret)
5629 goto unlock;
5630
5631 list_for_each_entry(child, &leader->child_list, child_list) {
5632 ret = __perf_read_group_add(child, read_format, values);
5633 if (ret)
5634 goto unlock;
5635 }
5636
5637 mutex_unlock(&leader->child_mutex);
5638
5639 ret = event->read_size;
5640 if (copy_to_user(buf, values, event->read_size))
5641 ret = -EFAULT;
5642 goto out;
5643
5644 unlock:
5645 mutex_unlock(&leader->child_mutex);
5646 out:
5647 kfree(values);
5648 return ret;
5649 }
5650
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5651 static int perf_read_one(struct perf_event *event,
5652 u64 read_format, char __user *buf)
5653 {
5654 u64 enabled, running;
5655 u64 values[5];
5656 int n = 0;
5657
5658 values[n++] = __perf_event_read_value(event, &enabled, &running);
5659 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5660 values[n++] = enabled;
5661 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5662 values[n++] = running;
5663 if (read_format & PERF_FORMAT_ID)
5664 values[n++] = primary_event_id(event);
5665 if (read_format & PERF_FORMAT_LOST)
5666 values[n++] = atomic64_read(&event->lost_samples);
5667
5668 if (copy_to_user(buf, values, n * sizeof(u64)))
5669 return -EFAULT;
5670
5671 return n * sizeof(u64);
5672 }
5673
is_event_hup(struct perf_event * event)5674 static bool is_event_hup(struct perf_event *event)
5675 {
5676 bool no_children;
5677
5678 if (event->state > PERF_EVENT_STATE_EXIT)
5679 return false;
5680
5681 mutex_lock(&event->child_mutex);
5682 no_children = list_empty(&event->child_list);
5683 mutex_unlock(&event->child_mutex);
5684 return no_children;
5685 }
5686
5687 /*
5688 * Read the performance event - simple non blocking version for now
5689 */
5690 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5691 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5692 {
5693 u64 read_format = event->attr.read_format;
5694 int ret;
5695
5696 /*
5697 * Return end-of-file for a read on an event that is in
5698 * error state (i.e. because it was pinned but it couldn't be
5699 * scheduled on to the CPU at some point).
5700 */
5701 if (event->state == PERF_EVENT_STATE_ERROR)
5702 return 0;
5703
5704 if (count < event->read_size)
5705 return -ENOSPC;
5706
5707 WARN_ON_ONCE(event->ctx->parent_ctx);
5708 if (read_format & PERF_FORMAT_GROUP)
5709 ret = perf_read_group(event, read_format, buf);
5710 else
5711 ret = perf_read_one(event, read_format, buf);
5712
5713 return ret;
5714 }
5715
5716 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5717 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5718 {
5719 struct perf_event *event = file->private_data;
5720 struct perf_event_context *ctx;
5721 int ret;
5722
5723 ret = security_perf_event_read(event);
5724 if (ret)
5725 return ret;
5726
5727 ctx = perf_event_ctx_lock(event);
5728 ret = __perf_read(event, buf, count);
5729 perf_event_ctx_unlock(event, ctx);
5730
5731 return ret;
5732 }
5733
perf_poll(struct file * file,poll_table * wait)5734 static __poll_t perf_poll(struct file *file, poll_table *wait)
5735 {
5736 struct perf_event *event = file->private_data;
5737 struct perf_buffer *rb;
5738 __poll_t events = EPOLLHUP;
5739
5740 poll_wait(file, &event->waitq, wait);
5741
5742 if (is_event_hup(event))
5743 return events;
5744
5745 /*
5746 * Pin the event->rb by taking event->mmap_mutex; otherwise
5747 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5748 */
5749 mutex_lock(&event->mmap_mutex);
5750 rb = event->rb;
5751 if (rb)
5752 events = atomic_xchg(&rb->poll, 0);
5753 mutex_unlock(&event->mmap_mutex);
5754 return events;
5755 }
5756
_perf_event_reset(struct perf_event * event)5757 static void _perf_event_reset(struct perf_event *event)
5758 {
5759 (void)perf_event_read(event, false);
5760 local64_set(&event->count, 0);
5761 perf_event_update_userpage(event);
5762 }
5763
5764 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5765 u64 perf_event_pause(struct perf_event *event, bool reset)
5766 {
5767 struct perf_event_context *ctx;
5768 u64 count;
5769
5770 ctx = perf_event_ctx_lock(event);
5771 WARN_ON_ONCE(event->attr.inherit);
5772 _perf_event_disable(event);
5773 count = local64_read(&event->count);
5774 if (reset)
5775 local64_set(&event->count, 0);
5776 perf_event_ctx_unlock(event, ctx);
5777
5778 return count;
5779 }
5780 EXPORT_SYMBOL_GPL(perf_event_pause);
5781
5782 /*
5783 * Holding the top-level event's child_mutex means that any
5784 * descendant process that has inherited this event will block
5785 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5786 * task existence requirements of perf_event_enable/disable.
5787 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5788 static void perf_event_for_each_child(struct perf_event *event,
5789 void (*func)(struct perf_event *))
5790 {
5791 struct perf_event *child;
5792
5793 WARN_ON_ONCE(event->ctx->parent_ctx);
5794
5795 mutex_lock(&event->child_mutex);
5796 func(event);
5797 list_for_each_entry(child, &event->child_list, child_list)
5798 func(child);
5799 mutex_unlock(&event->child_mutex);
5800 }
5801
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5802 static void perf_event_for_each(struct perf_event *event,
5803 void (*func)(struct perf_event *))
5804 {
5805 struct perf_event_context *ctx = event->ctx;
5806 struct perf_event *sibling;
5807
5808 lockdep_assert_held(&ctx->mutex);
5809
5810 event = event->group_leader;
5811
5812 perf_event_for_each_child(event, func);
5813 for_each_sibling_event(sibling, event)
5814 perf_event_for_each_child(sibling, func);
5815 }
5816
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5817 static void __perf_event_period(struct perf_event *event,
5818 struct perf_cpu_context *cpuctx,
5819 struct perf_event_context *ctx,
5820 void *info)
5821 {
5822 u64 value = *((u64 *)info);
5823 bool active;
5824
5825 if (event->attr.freq) {
5826 event->attr.sample_freq = value;
5827 } else {
5828 event->attr.sample_period = value;
5829 event->hw.sample_period = value;
5830 }
5831
5832 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5833 if (active) {
5834 perf_pmu_disable(event->pmu);
5835 /*
5836 * We could be throttled; unthrottle now to avoid the tick
5837 * trying to unthrottle while we already re-started the event.
5838 */
5839 if (event->hw.interrupts == MAX_INTERRUPTS) {
5840 event->hw.interrupts = 0;
5841 perf_log_throttle(event, 1);
5842 }
5843 event->pmu->stop(event, PERF_EF_UPDATE);
5844 }
5845
5846 local64_set(&event->hw.period_left, 0);
5847
5848 if (active) {
5849 event->pmu->start(event, PERF_EF_RELOAD);
5850 perf_pmu_enable(event->pmu);
5851 }
5852 }
5853
perf_event_check_period(struct perf_event * event,u64 value)5854 static int perf_event_check_period(struct perf_event *event, u64 value)
5855 {
5856 return event->pmu->check_period(event, value);
5857 }
5858
_perf_event_period(struct perf_event * event,u64 value)5859 static int _perf_event_period(struct perf_event *event, u64 value)
5860 {
5861 if (!is_sampling_event(event))
5862 return -EINVAL;
5863
5864 if (!value)
5865 return -EINVAL;
5866
5867 if (event->attr.freq) {
5868 if (value > sysctl_perf_event_sample_rate)
5869 return -EINVAL;
5870 } else {
5871 if (perf_event_check_period(event, value))
5872 return -EINVAL;
5873 if (value & (1ULL << 63))
5874 return -EINVAL;
5875 }
5876
5877 event_function_call(event, __perf_event_period, &value);
5878
5879 return 0;
5880 }
5881
perf_event_period(struct perf_event * event,u64 value)5882 int perf_event_period(struct perf_event *event, u64 value)
5883 {
5884 struct perf_event_context *ctx;
5885 int ret;
5886
5887 ctx = perf_event_ctx_lock(event);
5888 ret = _perf_event_period(event, value);
5889 perf_event_ctx_unlock(event, ctx);
5890
5891 return ret;
5892 }
5893 EXPORT_SYMBOL_GPL(perf_event_period);
5894
5895 static const struct file_operations perf_fops;
5896
perf_fget_light(int fd,struct fd * p)5897 static inline int perf_fget_light(int fd, struct fd *p)
5898 {
5899 struct fd f = fdget(fd);
5900 if (!f.file)
5901 return -EBADF;
5902
5903 if (f.file->f_op != &perf_fops) {
5904 fdput(f);
5905 return -EBADF;
5906 }
5907 *p = f;
5908 return 0;
5909 }
5910
5911 static int perf_event_set_output(struct perf_event *event,
5912 struct perf_event *output_event);
5913 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5914 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5915 struct perf_event_attr *attr);
5916 static int __perf_event_set_bpf_prog(struct perf_event *event,
5917 struct bpf_prog *prog,
5918 u64 bpf_cookie);
5919
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5920 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5921 {
5922 void (*func)(struct perf_event *);
5923 u32 flags = arg;
5924
5925 switch (cmd) {
5926 case PERF_EVENT_IOC_ENABLE:
5927 func = _perf_event_enable;
5928 break;
5929 case PERF_EVENT_IOC_DISABLE:
5930 func = _perf_event_disable;
5931 break;
5932 case PERF_EVENT_IOC_RESET:
5933 func = _perf_event_reset;
5934 break;
5935
5936 case PERF_EVENT_IOC_REFRESH:
5937 return _perf_event_refresh(event, arg);
5938
5939 case PERF_EVENT_IOC_PERIOD:
5940 {
5941 u64 value;
5942
5943 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5944 return -EFAULT;
5945
5946 return _perf_event_period(event, value);
5947 }
5948 case PERF_EVENT_IOC_ID:
5949 {
5950 u64 id = primary_event_id(event);
5951
5952 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5953 return -EFAULT;
5954 return 0;
5955 }
5956
5957 case PERF_EVENT_IOC_SET_OUTPUT:
5958 {
5959 int ret;
5960 if (arg != -1) {
5961 struct perf_event *output_event;
5962 struct fd output;
5963 ret = perf_fget_light(arg, &output);
5964 if (ret)
5965 return ret;
5966 output_event = output.file->private_data;
5967 ret = perf_event_set_output(event, output_event);
5968 fdput(output);
5969 } else {
5970 ret = perf_event_set_output(event, NULL);
5971 }
5972 return ret;
5973 }
5974
5975 case PERF_EVENT_IOC_SET_FILTER:
5976 return perf_event_set_filter(event, (void __user *)arg);
5977
5978 case PERF_EVENT_IOC_SET_BPF:
5979 {
5980 struct bpf_prog *prog;
5981 int err;
5982
5983 prog = bpf_prog_get(arg);
5984 if (IS_ERR(prog))
5985 return PTR_ERR(prog);
5986
5987 err = __perf_event_set_bpf_prog(event, prog, 0);
5988 if (err) {
5989 bpf_prog_put(prog);
5990 return err;
5991 }
5992
5993 return 0;
5994 }
5995
5996 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5997 struct perf_buffer *rb;
5998
5999 rcu_read_lock();
6000 rb = rcu_dereference(event->rb);
6001 if (!rb || !rb->nr_pages) {
6002 rcu_read_unlock();
6003 return -EINVAL;
6004 }
6005 rb_toggle_paused(rb, !!arg);
6006 rcu_read_unlock();
6007 return 0;
6008 }
6009
6010 case PERF_EVENT_IOC_QUERY_BPF:
6011 return perf_event_query_prog_array(event, (void __user *)arg);
6012
6013 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6014 struct perf_event_attr new_attr;
6015 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6016 &new_attr);
6017
6018 if (err)
6019 return err;
6020
6021 return perf_event_modify_attr(event, &new_attr);
6022 }
6023 default:
6024 return -ENOTTY;
6025 }
6026
6027 if (flags & PERF_IOC_FLAG_GROUP)
6028 perf_event_for_each(event, func);
6029 else
6030 perf_event_for_each_child(event, func);
6031
6032 return 0;
6033 }
6034
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6035 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6036 {
6037 struct perf_event *event = file->private_data;
6038 struct perf_event_context *ctx;
6039 long ret;
6040
6041 /* Treat ioctl like writes as it is likely a mutating operation. */
6042 ret = security_perf_event_write(event);
6043 if (ret)
6044 return ret;
6045
6046 ctx = perf_event_ctx_lock(event);
6047 ret = _perf_ioctl(event, cmd, arg);
6048 perf_event_ctx_unlock(event, ctx);
6049
6050 return ret;
6051 }
6052
6053 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6054 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6055 unsigned long arg)
6056 {
6057 switch (_IOC_NR(cmd)) {
6058 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6059 case _IOC_NR(PERF_EVENT_IOC_ID):
6060 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6061 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6062 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6063 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6064 cmd &= ~IOCSIZE_MASK;
6065 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6066 }
6067 break;
6068 }
6069 return perf_ioctl(file, cmd, arg);
6070 }
6071 #else
6072 # define perf_compat_ioctl NULL
6073 #endif
6074
perf_event_task_enable(void)6075 int perf_event_task_enable(void)
6076 {
6077 struct perf_event_context *ctx;
6078 struct perf_event *event;
6079
6080 mutex_lock(¤t->perf_event_mutex);
6081 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6082 ctx = perf_event_ctx_lock(event);
6083 perf_event_for_each_child(event, _perf_event_enable);
6084 perf_event_ctx_unlock(event, ctx);
6085 }
6086 mutex_unlock(¤t->perf_event_mutex);
6087
6088 return 0;
6089 }
6090
perf_event_task_disable(void)6091 int perf_event_task_disable(void)
6092 {
6093 struct perf_event_context *ctx;
6094 struct perf_event *event;
6095
6096 mutex_lock(¤t->perf_event_mutex);
6097 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6098 ctx = perf_event_ctx_lock(event);
6099 perf_event_for_each_child(event, _perf_event_disable);
6100 perf_event_ctx_unlock(event, ctx);
6101 }
6102 mutex_unlock(¤t->perf_event_mutex);
6103
6104 return 0;
6105 }
6106
perf_event_index(struct perf_event * event)6107 static int perf_event_index(struct perf_event *event)
6108 {
6109 if (event->hw.state & PERF_HES_STOPPED)
6110 return 0;
6111
6112 if (event->state != PERF_EVENT_STATE_ACTIVE)
6113 return 0;
6114
6115 return event->pmu->event_idx(event);
6116 }
6117
perf_event_init_userpage(struct perf_event * event)6118 static void perf_event_init_userpage(struct perf_event *event)
6119 {
6120 struct perf_event_mmap_page *userpg;
6121 struct perf_buffer *rb;
6122
6123 rcu_read_lock();
6124 rb = rcu_dereference(event->rb);
6125 if (!rb)
6126 goto unlock;
6127
6128 userpg = rb->user_page;
6129
6130 /* Allow new userspace to detect that bit 0 is deprecated */
6131 userpg->cap_bit0_is_deprecated = 1;
6132 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6133 userpg->data_offset = PAGE_SIZE;
6134 userpg->data_size = perf_data_size(rb);
6135
6136 unlock:
6137 rcu_read_unlock();
6138 }
6139
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6140 void __weak arch_perf_update_userpage(
6141 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6142 {
6143 }
6144
6145 /*
6146 * Callers need to ensure there can be no nesting of this function, otherwise
6147 * the seqlock logic goes bad. We can not serialize this because the arch
6148 * code calls this from NMI context.
6149 */
perf_event_update_userpage(struct perf_event * event)6150 void perf_event_update_userpage(struct perf_event *event)
6151 {
6152 struct perf_event_mmap_page *userpg;
6153 struct perf_buffer *rb;
6154 u64 enabled, running, now;
6155
6156 rcu_read_lock();
6157 rb = rcu_dereference(event->rb);
6158 if (!rb)
6159 goto unlock;
6160
6161 /*
6162 * compute total_time_enabled, total_time_running
6163 * based on snapshot values taken when the event
6164 * was last scheduled in.
6165 *
6166 * we cannot simply called update_context_time()
6167 * because of locking issue as we can be called in
6168 * NMI context
6169 */
6170 calc_timer_values(event, &now, &enabled, &running);
6171
6172 userpg = rb->user_page;
6173 /*
6174 * Disable preemption to guarantee consistent time stamps are stored to
6175 * the user page.
6176 */
6177 preempt_disable();
6178 ++userpg->lock;
6179 barrier();
6180 userpg->index = perf_event_index(event);
6181 userpg->offset = perf_event_count(event);
6182 if (userpg->index)
6183 userpg->offset -= local64_read(&event->hw.prev_count);
6184
6185 userpg->time_enabled = enabled +
6186 atomic64_read(&event->child_total_time_enabled);
6187
6188 userpg->time_running = running +
6189 atomic64_read(&event->child_total_time_running);
6190
6191 arch_perf_update_userpage(event, userpg, now);
6192
6193 barrier();
6194 ++userpg->lock;
6195 preempt_enable();
6196 unlock:
6197 rcu_read_unlock();
6198 }
6199 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6200
perf_mmap_fault(struct vm_fault * vmf)6201 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6202 {
6203 struct perf_event *event = vmf->vma->vm_file->private_data;
6204 struct perf_buffer *rb;
6205 vm_fault_t ret = VM_FAULT_SIGBUS;
6206
6207 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6208 if (vmf->pgoff == 0)
6209 ret = 0;
6210 return ret;
6211 }
6212
6213 rcu_read_lock();
6214 rb = rcu_dereference(event->rb);
6215 if (!rb)
6216 goto unlock;
6217
6218 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6219 goto unlock;
6220
6221 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6222 if (!vmf->page)
6223 goto unlock;
6224
6225 get_page(vmf->page);
6226 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6227 vmf->page->index = vmf->pgoff;
6228
6229 ret = 0;
6230 unlock:
6231 rcu_read_unlock();
6232
6233 return ret;
6234 }
6235
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6236 static void ring_buffer_attach(struct perf_event *event,
6237 struct perf_buffer *rb)
6238 {
6239 struct perf_buffer *old_rb = NULL;
6240 unsigned long flags;
6241
6242 WARN_ON_ONCE(event->parent);
6243
6244 if (event->rb) {
6245 /*
6246 * Should be impossible, we set this when removing
6247 * event->rb_entry and wait/clear when adding event->rb_entry.
6248 */
6249 WARN_ON_ONCE(event->rcu_pending);
6250
6251 old_rb = event->rb;
6252 spin_lock_irqsave(&old_rb->event_lock, flags);
6253 list_del_rcu(&event->rb_entry);
6254 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6255
6256 event->rcu_batches = get_state_synchronize_rcu();
6257 event->rcu_pending = 1;
6258 }
6259
6260 if (rb) {
6261 if (event->rcu_pending) {
6262 cond_synchronize_rcu(event->rcu_batches);
6263 event->rcu_pending = 0;
6264 }
6265
6266 spin_lock_irqsave(&rb->event_lock, flags);
6267 list_add_rcu(&event->rb_entry, &rb->event_list);
6268 spin_unlock_irqrestore(&rb->event_lock, flags);
6269 }
6270
6271 /*
6272 * Avoid racing with perf_mmap_close(AUX): stop the event
6273 * before swizzling the event::rb pointer; if it's getting
6274 * unmapped, its aux_mmap_count will be 0 and it won't
6275 * restart. See the comment in __perf_pmu_output_stop().
6276 *
6277 * Data will inevitably be lost when set_output is done in
6278 * mid-air, but then again, whoever does it like this is
6279 * not in for the data anyway.
6280 */
6281 if (has_aux(event))
6282 perf_event_stop(event, 0);
6283
6284 rcu_assign_pointer(event->rb, rb);
6285
6286 if (old_rb) {
6287 ring_buffer_put(old_rb);
6288 /*
6289 * Since we detached before setting the new rb, so that we
6290 * could attach the new rb, we could have missed a wakeup.
6291 * Provide it now.
6292 */
6293 wake_up_all(&event->waitq);
6294 }
6295 }
6296
ring_buffer_wakeup(struct perf_event * event)6297 static void ring_buffer_wakeup(struct perf_event *event)
6298 {
6299 struct perf_buffer *rb;
6300
6301 if (event->parent)
6302 event = event->parent;
6303
6304 rcu_read_lock();
6305 rb = rcu_dereference(event->rb);
6306 if (rb) {
6307 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6308 wake_up_all(&event->waitq);
6309 }
6310 rcu_read_unlock();
6311 }
6312
ring_buffer_get(struct perf_event * event)6313 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6314 {
6315 struct perf_buffer *rb;
6316
6317 if (event->parent)
6318 event = event->parent;
6319
6320 rcu_read_lock();
6321 rb = rcu_dereference(event->rb);
6322 if (rb) {
6323 if (!refcount_inc_not_zero(&rb->refcount))
6324 rb = NULL;
6325 }
6326 rcu_read_unlock();
6327
6328 return rb;
6329 }
6330
ring_buffer_put(struct perf_buffer * rb)6331 void ring_buffer_put(struct perf_buffer *rb)
6332 {
6333 if (!refcount_dec_and_test(&rb->refcount))
6334 return;
6335
6336 WARN_ON_ONCE(!list_empty(&rb->event_list));
6337
6338 call_rcu(&rb->rcu_head, rb_free_rcu);
6339 }
6340
perf_mmap_open(struct vm_area_struct * vma)6341 static void perf_mmap_open(struct vm_area_struct *vma)
6342 {
6343 struct perf_event *event = vma->vm_file->private_data;
6344
6345 atomic_inc(&event->mmap_count);
6346 atomic_inc(&event->rb->mmap_count);
6347
6348 if (vma->vm_pgoff)
6349 atomic_inc(&event->rb->aux_mmap_count);
6350
6351 if (event->pmu->event_mapped)
6352 event->pmu->event_mapped(event, vma->vm_mm);
6353 }
6354
6355 static void perf_pmu_output_stop(struct perf_event *event);
6356
6357 /*
6358 * A buffer can be mmap()ed multiple times; either directly through the same
6359 * event, or through other events by use of perf_event_set_output().
6360 *
6361 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6362 * the buffer here, where we still have a VM context. This means we need
6363 * to detach all events redirecting to us.
6364 */
perf_mmap_close(struct vm_area_struct * vma)6365 static void perf_mmap_close(struct vm_area_struct *vma)
6366 {
6367 struct perf_event *event = vma->vm_file->private_data;
6368 struct perf_buffer *rb = ring_buffer_get(event);
6369 struct user_struct *mmap_user = rb->mmap_user;
6370 int mmap_locked = rb->mmap_locked;
6371 unsigned long size = perf_data_size(rb);
6372 bool detach_rest = false;
6373
6374 if (event->pmu->event_unmapped)
6375 event->pmu->event_unmapped(event, vma->vm_mm);
6376
6377 /*
6378 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6379 * to avoid complications.
6380 */
6381 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6382 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6383 /*
6384 * Stop all AUX events that are writing to this buffer,
6385 * so that we can free its AUX pages and corresponding PMU
6386 * data. Note that after rb::aux_mmap_count dropped to zero,
6387 * they won't start any more (see perf_aux_output_begin()).
6388 */
6389 perf_pmu_output_stop(event);
6390
6391 /* now it's safe to free the pages */
6392 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6393 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6394
6395 /* this has to be the last one */
6396 rb_free_aux(rb);
6397 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6398
6399 mutex_unlock(&rb->aux_mutex);
6400 }
6401
6402 if (atomic_dec_and_test(&rb->mmap_count))
6403 detach_rest = true;
6404
6405 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6406 goto out_put;
6407
6408 ring_buffer_attach(event, NULL);
6409 mutex_unlock(&event->mmap_mutex);
6410
6411 /* If there's still other mmap()s of this buffer, we're done. */
6412 if (!detach_rest)
6413 goto out_put;
6414
6415 /*
6416 * No other mmap()s, detach from all other events that might redirect
6417 * into the now unreachable buffer. Somewhat complicated by the
6418 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6419 */
6420 again:
6421 rcu_read_lock();
6422 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6423 if (!atomic_long_inc_not_zero(&event->refcount)) {
6424 /*
6425 * This event is en-route to free_event() which will
6426 * detach it and remove it from the list.
6427 */
6428 continue;
6429 }
6430 rcu_read_unlock();
6431
6432 mutex_lock(&event->mmap_mutex);
6433 /*
6434 * Check we didn't race with perf_event_set_output() which can
6435 * swizzle the rb from under us while we were waiting to
6436 * acquire mmap_mutex.
6437 *
6438 * If we find a different rb; ignore this event, a next
6439 * iteration will no longer find it on the list. We have to
6440 * still restart the iteration to make sure we're not now
6441 * iterating the wrong list.
6442 */
6443 if (event->rb == rb)
6444 ring_buffer_attach(event, NULL);
6445
6446 mutex_unlock(&event->mmap_mutex);
6447 put_event(event);
6448
6449 /*
6450 * Restart the iteration; either we're on the wrong list or
6451 * destroyed its integrity by doing a deletion.
6452 */
6453 goto again;
6454 }
6455 rcu_read_unlock();
6456
6457 /*
6458 * It could be there's still a few 0-ref events on the list; they'll
6459 * get cleaned up by free_event() -- they'll also still have their
6460 * ref on the rb and will free it whenever they are done with it.
6461 *
6462 * Aside from that, this buffer is 'fully' detached and unmapped,
6463 * undo the VM accounting.
6464 */
6465
6466 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6467 &mmap_user->locked_vm);
6468 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6469 free_uid(mmap_user);
6470
6471 out_put:
6472 ring_buffer_put(rb); /* could be last */
6473 }
6474
6475 static const struct vm_operations_struct perf_mmap_vmops = {
6476 .open = perf_mmap_open,
6477 .close = perf_mmap_close, /* non mergeable */
6478 .fault = perf_mmap_fault,
6479 .page_mkwrite = perf_mmap_fault,
6480 };
6481
perf_mmap(struct file * file,struct vm_area_struct * vma)6482 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6483 {
6484 struct perf_event *event = file->private_data;
6485 unsigned long user_locked, user_lock_limit;
6486 struct user_struct *user = current_user();
6487 struct mutex *aux_mutex = NULL;
6488 struct perf_buffer *rb = NULL;
6489 unsigned long locked, lock_limit;
6490 unsigned long vma_size;
6491 unsigned long nr_pages;
6492 long user_extra = 0, extra = 0;
6493 int ret = 0, flags = 0;
6494
6495 /*
6496 * Don't allow mmap() of inherited per-task counters. This would
6497 * create a performance issue due to all children writing to the
6498 * same rb.
6499 */
6500 if (event->cpu == -1 && event->attr.inherit)
6501 return -EINVAL;
6502
6503 if (!(vma->vm_flags & VM_SHARED))
6504 return -EINVAL;
6505
6506 ret = security_perf_event_read(event);
6507 if (ret)
6508 return ret;
6509
6510 vma_size = vma->vm_end - vma->vm_start;
6511
6512 if (vma->vm_pgoff == 0) {
6513 nr_pages = (vma_size / PAGE_SIZE) - 1;
6514 } else {
6515 /*
6516 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6517 * mapped, all subsequent mappings should have the same size
6518 * and offset. Must be above the normal perf buffer.
6519 */
6520 u64 aux_offset, aux_size;
6521
6522 if (!event->rb)
6523 return -EINVAL;
6524
6525 nr_pages = vma_size / PAGE_SIZE;
6526 if (nr_pages > INT_MAX)
6527 return -ENOMEM;
6528
6529 mutex_lock(&event->mmap_mutex);
6530 ret = -EINVAL;
6531
6532 rb = event->rb;
6533 if (!rb)
6534 goto aux_unlock;
6535
6536 aux_mutex = &rb->aux_mutex;
6537 mutex_lock(aux_mutex);
6538
6539 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6540 aux_size = READ_ONCE(rb->user_page->aux_size);
6541
6542 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6543 goto aux_unlock;
6544
6545 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6546 goto aux_unlock;
6547
6548 /* already mapped with a different offset */
6549 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6550 goto aux_unlock;
6551
6552 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6553 goto aux_unlock;
6554
6555 /* already mapped with a different size */
6556 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6557 goto aux_unlock;
6558
6559 if (!is_power_of_2(nr_pages))
6560 goto aux_unlock;
6561
6562 if (!atomic_inc_not_zero(&rb->mmap_count))
6563 goto aux_unlock;
6564
6565 if (rb_has_aux(rb)) {
6566 atomic_inc(&rb->aux_mmap_count);
6567 ret = 0;
6568 goto unlock;
6569 }
6570
6571 atomic_set(&rb->aux_mmap_count, 1);
6572 user_extra = nr_pages;
6573
6574 goto accounting;
6575 }
6576
6577 /*
6578 * If we have rb pages ensure they're a power-of-two number, so we
6579 * can do bitmasks instead of modulo.
6580 */
6581 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6582 return -EINVAL;
6583
6584 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6585 return -EINVAL;
6586
6587 WARN_ON_ONCE(event->ctx->parent_ctx);
6588 again:
6589 mutex_lock(&event->mmap_mutex);
6590 if (event->rb) {
6591 if (data_page_nr(event->rb) != nr_pages) {
6592 ret = -EINVAL;
6593 goto unlock;
6594 }
6595
6596 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6597 /*
6598 * Raced against perf_mmap_close(); remove the
6599 * event and try again.
6600 */
6601 ring_buffer_attach(event, NULL);
6602 mutex_unlock(&event->mmap_mutex);
6603 goto again;
6604 }
6605
6606 goto unlock;
6607 }
6608
6609 user_extra = nr_pages + 1;
6610
6611 accounting:
6612 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6613
6614 /*
6615 * Increase the limit linearly with more CPUs:
6616 */
6617 user_lock_limit *= num_online_cpus();
6618
6619 user_locked = atomic_long_read(&user->locked_vm);
6620
6621 /*
6622 * sysctl_perf_event_mlock may have changed, so that
6623 * user->locked_vm > user_lock_limit
6624 */
6625 if (user_locked > user_lock_limit)
6626 user_locked = user_lock_limit;
6627 user_locked += user_extra;
6628
6629 if (user_locked > user_lock_limit) {
6630 /*
6631 * charge locked_vm until it hits user_lock_limit;
6632 * charge the rest from pinned_vm
6633 */
6634 extra = user_locked - user_lock_limit;
6635 user_extra -= extra;
6636 }
6637
6638 lock_limit = rlimit(RLIMIT_MEMLOCK);
6639 lock_limit >>= PAGE_SHIFT;
6640 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6641
6642 if ((locked > lock_limit) && perf_is_paranoid() &&
6643 !capable(CAP_IPC_LOCK)) {
6644 ret = -EPERM;
6645 goto unlock;
6646 }
6647
6648 WARN_ON(!rb && event->rb);
6649
6650 if (vma->vm_flags & VM_WRITE)
6651 flags |= RING_BUFFER_WRITABLE;
6652
6653 if (!rb) {
6654 rb = rb_alloc(nr_pages,
6655 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6656 event->cpu, flags);
6657
6658 if (!rb) {
6659 ret = -ENOMEM;
6660 goto unlock;
6661 }
6662
6663 atomic_set(&rb->mmap_count, 1);
6664 rb->mmap_user = get_current_user();
6665 rb->mmap_locked = extra;
6666
6667 ring_buffer_attach(event, rb);
6668
6669 perf_event_update_time(event);
6670 perf_event_init_userpage(event);
6671 perf_event_update_userpage(event);
6672 } else {
6673 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6674 event->attr.aux_watermark, flags);
6675 if (!ret)
6676 rb->aux_mmap_locked = extra;
6677 }
6678
6679 unlock:
6680 if (!ret) {
6681 atomic_long_add(user_extra, &user->locked_vm);
6682 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6683
6684 atomic_inc(&event->mmap_count);
6685 } else if (rb) {
6686 atomic_dec(&rb->mmap_count);
6687 }
6688 aux_unlock:
6689 if (aux_mutex)
6690 mutex_unlock(aux_mutex);
6691 mutex_unlock(&event->mmap_mutex);
6692
6693 /*
6694 * Since pinned accounting is per vm we cannot allow fork() to copy our
6695 * vma.
6696 */
6697 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6698 vma->vm_ops = &perf_mmap_vmops;
6699
6700 if (event->pmu->event_mapped)
6701 event->pmu->event_mapped(event, vma->vm_mm);
6702
6703 return ret;
6704 }
6705
perf_fasync(int fd,struct file * filp,int on)6706 static int perf_fasync(int fd, struct file *filp, int on)
6707 {
6708 struct inode *inode = file_inode(filp);
6709 struct perf_event *event = filp->private_data;
6710 int retval;
6711
6712 inode_lock(inode);
6713 retval = fasync_helper(fd, filp, on, &event->fasync);
6714 inode_unlock(inode);
6715
6716 if (retval < 0)
6717 return retval;
6718
6719 return 0;
6720 }
6721
6722 static const struct file_operations perf_fops = {
6723 .llseek = no_llseek,
6724 .release = perf_release,
6725 .read = perf_read,
6726 .poll = perf_poll,
6727 .unlocked_ioctl = perf_ioctl,
6728 .compat_ioctl = perf_compat_ioctl,
6729 .mmap = perf_mmap,
6730 .fasync = perf_fasync,
6731 };
6732
6733 /*
6734 * Perf event wakeup
6735 *
6736 * If there's data, ensure we set the poll() state and publish everything
6737 * to user-space before waking everybody up.
6738 */
6739
perf_event_fasync(struct perf_event * event)6740 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6741 {
6742 /* only the parent has fasync state */
6743 if (event->parent)
6744 event = event->parent;
6745 return &event->fasync;
6746 }
6747
perf_event_wakeup(struct perf_event * event)6748 void perf_event_wakeup(struct perf_event *event)
6749 {
6750 ring_buffer_wakeup(event);
6751
6752 if (event->pending_kill) {
6753 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6754 event->pending_kill = 0;
6755 }
6756 }
6757
perf_sigtrap(struct perf_event * event)6758 static void perf_sigtrap(struct perf_event *event)
6759 {
6760 /*
6761 * We'd expect this to only occur if the irq_work is delayed and either
6762 * ctx->task or current has changed in the meantime. This can be the
6763 * case on architectures that do not implement arch_irq_work_raise().
6764 */
6765 if (WARN_ON_ONCE(event->ctx->task != current))
6766 return;
6767
6768 /*
6769 * Both perf_pending_task() and perf_pending_irq() can race with the
6770 * task exiting.
6771 */
6772 if (current->flags & PF_EXITING)
6773 return;
6774
6775 send_sig_perf((void __user *)event->pending_addr,
6776 event->orig_type, event->attr.sig_data);
6777 }
6778
6779 /*
6780 * Deliver the pending work in-event-context or follow the context.
6781 */
__perf_pending_irq(struct perf_event * event)6782 static void __perf_pending_irq(struct perf_event *event)
6783 {
6784 int cpu = READ_ONCE(event->oncpu);
6785
6786 /*
6787 * If the event isn't running; we done. event_sched_out() will have
6788 * taken care of things.
6789 */
6790 if (cpu < 0)
6791 return;
6792
6793 /*
6794 * Yay, we hit home and are in the context of the event.
6795 */
6796 if (cpu == smp_processor_id()) {
6797 if (event->pending_sigtrap) {
6798 event->pending_sigtrap = 0;
6799 perf_sigtrap(event);
6800 local_dec(&event->ctx->nr_pending);
6801 }
6802 if (event->pending_disable) {
6803 event->pending_disable = 0;
6804 perf_event_disable_local(event);
6805 }
6806 return;
6807 }
6808
6809 /*
6810 * CPU-A CPU-B
6811 *
6812 * perf_event_disable_inatomic()
6813 * @pending_disable = CPU-A;
6814 * irq_work_queue();
6815 *
6816 * sched-out
6817 * @pending_disable = -1;
6818 *
6819 * sched-in
6820 * perf_event_disable_inatomic()
6821 * @pending_disable = CPU-B;
6822 * irq_work_queue(); // FAILS
6823 *
6824 * irq_work_run()
6825 * perf_pending_irq()
6826 *
6827 * But the event runs on CPU-B and wants disabling there.
6828 */
6829 irq_work_queue_on(&event->pending_irq, cpu);
6830 }
6831
perf_pending_irq(struct irq_work * entry)6832 static void perf_pending_irq(struct irq_work *entry)
6833 {
6834 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6835 int rctx;
6836
6837 /*
6838 * If we 'fail' here, that's OK, it means recursion is already disabled
6839 * and we won't recurse 'further'.
6840 */
6841 rctx = perf_swevent_get_recursion_context();
6842
6843 /*
6844 * The wakeup isn't bound to the context of the event -- it can happen
6845 * irrespective of where the event is.
6846 */
6847 if (event->pending_wakeup) {
6848 event->pending_wakeup = 0;
6849 perf_event_wakeup(event);
6850 }
6851
6852 __perf_pending_irq(event);
6853
6854 if (rctx >= 0)
6855 perf_swevent_put_recursion_context(rctx);
6856 }
6857
perf_pending_task(struct callback_head * head)6858 static void perf_pending_task(struct callback_head *head)
6859 {
6860 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6861 int rctx;
6862
6863 /*
6864 * All accesses to the event must belong to the same implicit RCU read-side
6865 * critical section as the ->pending_work reset. See comment in
6866 * perf_pending_task_sync().
6867 */
6868 preempt_disable_notrace();
6869 /*
6870 * If we 'fail' here, that's OK, it means recursion is already disabled
6871 * and we won't recurse 'further'.
6872 */
6873 rctx = perf_swevent_get_recursion_context();
6874
6875 if (event->pending_work) {
6876 event->pending_work = 0;
6877 perf_sigtrap(event);
6878 local_dec(&event->ctx->nr_pending);
6879 rcuwait_wake_up(&event->pending_work_wait);
6880 }
6881
6882 if (rctx >= 0)
6883 perf_swevent_put_recursion_context(rctx);
6884 preempt_enable_notrace();
6885 }
6886
6887 #ifdef CONFIG_GUEST_PERF_EVENTS
6888 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6889
6890 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6891 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6892 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6893
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6894 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6895 {
6896 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6897 return;
6898
6899 rcu_assign_pointer(perf_guest_cbs, cbs);
6900 static_call_update(__perf_guest_state, cbs->state);
6901 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6902
6903 /* Implementing ->handle_intel_pt_intr is optional. */
6904 if (cbs->handle_intel_pt_intr)
6905 static_call_update(__perf_guest_handle_intel_pt_intr,
6906 cbs->handle_intel_pt_intr);
6907 }
6908 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6909
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6910 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6911 {
6912 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6913 return;
6914
6915 rcu_assign_pointer(perf_guest_cbs, NULL);
6916 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6917 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6918 static_call_update(__perf_guest_handle_intel_pt_intr,
6919 (void *)&__static_call_return0);
6920 synchronize_rcu();
6921 }
6922 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6923 #endif
6924
6925 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6926 perf_output_sample_regs(struct perf_output_handle *handle,
6927 struct pt_regs *regs, u64 mask)
6928 {
6929 int bit;
6930 DECLARE_BITMAP(_mask, 64);
6931
6932 bitmap_from_u64(_mask, mask);
6933 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6934 u64 val;
6935
6936 val = perf_reg_value(regs, bit);
6937 perf_output_put(handle, val);
6938 }
6939 }
6940
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6941 static void perf_sample_regs_user(struct perf_regs *regs_user,
6942 struct pt_regs *regs)
6943 {
6944 if (user_mode(regs)) {
6945 regs_user->abi = perf_reg_abi(current);
6946 regs_user->regs = regs;
6947 } else if (!(current->flags & PF_KTHREAD)) {
6948 perf_get_regs_user(regs_user, regs);
6949 } else {
6950 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6951 regs_user->regs = NULL;
6952 }
6953 }
6954
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6955 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6956 struct pt_regs *regs)
6957 {
6958 regs_intr->regs = regs;
6959 regs_intr->abi = perf_reg_abi(current);
6960 }
6961
6962
6963 /*
6964 * Get remaining task size from user stack pointer.
6965 *
6966 * It'd be better to take stack vma map and limit this more
6967 * precisely, but there's no way to get it safely under interrupt,
6968 * so using TASK_SIZE as limit.
6969 */
perf_ustack_task_size(struct pt_regs * regs)6970 static u64 perf_ustack_task_size(struct pt_regs *regs)
6971 {
6972 unsigned long addr = perf_user_stack_pointer(regs);
6973
6974 if (!addr || addr >= TASK_SIZE)
6975 return 0;
6976
6977 return TASK_SIZE - addr;
6978 }
6979
6980 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6981 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6982 struct pt_regs *regs)
6983 {
6984 u64 task_size;
6985
6986 /* No regs, no stack pointer, no dump. */
6987 if (!regs)
6988 return 0;
6989
6990 /*
6991 * Check if we fit in with the requested stack size into the:
6992 * - TASK_SIZE
6993 * If we don't, we limit the size to the TASK_SIZE.
6994 *
6995 * - remaining sample size
6996 * If we don't, we customize the stack size to
6997 * fit in to the remaining sample size.
6998 */
6999
7000 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7001 stack_size = min(stack_size, (u16) task_size);
7002
7003 /* Current header size plus static size and dynamic size. */
7004 header_size += 2 * sizeof(u64);
7005
7006 /* Do we fit in with the current stack dump size? */
7007 if ((u16) (header_size + stack_size) < header_size) {
7008 /*
7009 * If we overflow the maximum size for the sample,
7010 * we customize the stack dump size to fit in.
7011 */
7012 stack_size = USHRT_MAX - header_size - sizeof(u64);
7013 stack_size = round_up(stack_size, sizeof(u64));
7014 }
7015
7016 return stack_size;
7017 }
7018
7019 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7020 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7021 struct pt_regs *regs)
7022 {
7023 /* Case of a kernel thread, nothing to dump */
7024 if (!regs) {
7025 u64 size = 0;
7026 perf_output_put(handle, size);
7027 } else {
7028 unsigned long sp;
7029 unsigned int rem;
7030 u64 dyn_size;
7031
7032 /*
7033 * We dump:
7034 * static size
7035 * - the size requested by user or the best one we can fit
7036 * in to the sample max size
7037 * data
7038 * - user stack dump data
7039 * dynamic size
7040 * - the actual dumped size
7041 */
7042
7043 /* Static size. */
7044 perf_output_put(handle, dump_size);
7045
7046 /* Data. */
7047 sp = perf_user_stack_pointer(regs);
7048 rem = __output_copy_user(handle, (void *) sp, dump_size);
7049 dyn_size = dump_size - rem;
7050
7051 perf_output_skip(handle, rem);
7052
7053 /* Dynamic size. */
7054 perf_output_put(handle, dyn_size);
7055 }
7056 }
7057
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7058 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7059 struct perf_sample_data *data,
7060 size_t size)
7061 {
7062 struct perf_event *sampler = event->aux_event;
7063 struct perf_buffer *rb;
7064
7065 data->aux_size = 0;
7066
7067 if (!sampler)
7068 goto out;
7069
7070 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7071 goto out;
7072
7073 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7074 goto out;
7075
7076 rb = ring_buffer_get(sampler);
7077 if (!rb)
7078 goto out;
7079
7080 /*
7081 * If this is an NMI hit inside sampling code, don't take
7082 * the sample. See also perf_aux_sample_output().
7083 */
7084 if (READ_ONCE(rb->aux_in_sampling)) {
7085 data->aux_size = 0;
7086 } else {
7087 size = min_t(size_t, size, perf_aux_size(rb));
7088 data->aux_size = ALIGN(size, sizeof(u64));
7089 }
7090 ring_buffer_put(rb);
7091
7092 out:
7093 return data->aux_size;
7094 }
7095
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7096 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7097 struct perf_event *event,
7098 struct perf_output_handle *handle,
7099 unsigned long size)
7100 {
7101 unsigned long flags;
7102 long ret;
7103
7104 /*
7105 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7106 * paths. If we start calling them in NMI context, they may race with
7107 * the IRQ ones, that is, for example, re-starting an event that's just
7108 * been stopped, which is why we're using a separate callback that
7109 * doesn't change the event state.
7110 *
7111 * IRQs need to be disabled to prevent IPIs from racing with us.
7112 */
7113 local_irq_save(flags);
7114 /*
7115 * Guard against NMI hits inside the critical section;
7116 * see also perf_prepare_sample_aux().
7117 */
7118 WRITE_ONCE(rb->aux_in_sampling, 1);
7119 barrier();
7120
7121 ret = event->pmu->snapshot_aux(event, handle, size);
7122
7123 barrier();
7124 WRITE_ONCE(rb->aux_in_sampling, 0);
7125 local_irq_restore(flags);
7126
7127 return ret;
7128 }
7129
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7130 static void perf_aux_sample_output(struct perf_event *event,
7131 struct perf_output_handle *handle,
7132 struct perf_sample_data *data)
7133 {
7134 struct perf_event *sampler = event->aux_event;
7135 struct perf_buffer *rb;
7136 unsigned long pad;
7137 long size;
7138
7139 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7140 return;
7141
7142 rb = ring_buffer_get(sampler);
7143 if (!rb)
7144 return;
7145
7146 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7147
7148 /*
7149 * An error here means that perf_output_copy() failed (returned a
7150 * non-zero surplus that it didn't copy), which in its current
7151 * enlightened implementation is not possible. If that changes, we'd
7152 * like to know.
7153 */
7154 if (WARN_ON_ONCE(size < 0))
7155 goto out_put;
7156
7157 /*
7158 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7159 * perf_prepare_sample_aux(), so should not be more than that.
7160 */
7161 pad = data->aux_size - size;
7162 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7163 pad = 8;
7164
7165 if (pad) {
7166 u64 zero = 0;
7167 perf_output_copy(handle, &zero, pad);
7168 }
7169
7170 out_put:
7171 ring_buffer_put(rb);
7172 }
7173
7174 /*
7175 * A set of common sample data types saved even for non-sample records
7176 * when event->attr.sample_id_all is set.
7177 */
7178 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7179 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7180 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7181
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7182 static void __perf_event_header__init_id(struct perf_sample_data *data,
7183 struct perf_event *event,
7184 u64 sample_type)
7185 {
7186 data->type = event->attr.sample_type;
7187 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7188
7189 if (sample_type & PERF_SAMPLE_TID) {
7190 /* namespace issues */
7191 data->tid_entry.pid = perf_event_pid(event, current);
7192 data->tid_entry.tid = perf_event_tid(event, current);
7193 }
7194
7195 if (sample_type & PERF_SAMPLE_TIME)
7196 data->time = perf_event_clock(event);
7197
7198 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7199 data->id = primary_event_id(event);
7200
7201 if (sample_type & PERF_SAMPLE_STREAM_ID)
7202 data->stream_id = event->id;
7203
7204 if (sample_type & PERF_SAMPLE_CPU) {
7205 data->cpu_entry.cpu = raw_smp_processor_id();
7206 data->cpu_entry.reserved = 0;
7207 }
7208 }
7209
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7210 void perf_event_header__init_id(struct perf_event_header *header,
7211 struct perf_sample_data *data,
7212 struct perf_event *event)
7213 {
7214 if (event->attr.sample_id_all) {
7215 header->size += event->id_header_size;
7216 __perf_event_header__init_id(data, event, event->attr.sample_type);
7217 }
7218 }
7219
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7220 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7221 struct perf_sample_data *data)
7222 {
7223 u64 sample_type = data->type;
7224
7225 if (sample_type & PERF_SAMPLE_TID)
7226 perf_output_put(handle, data->tid_entry);
7227
7228 if (sample_type & PERF_SAMPLE_TIME)
7229 perf_output_put(handle, data->time);
7230
7231 if (sample_type & PERF_SAMPLE_ID)
7232 perf_output_put(handle, data->id);
7233
7234 if (sample_type & PERF_SAMPLE_STREAM_ID)
7235 perf_output_put(handle, data->stream_id);
7236
7237 if (sample_type & PERF_SAMPLE_CPU)
7238 perf_output_put(handle, data->cpu_entry);
7239
7240 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7241 perf_output_put(handle, data->id);
7242 }
7243
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7244 void perf_event__output_id_sample(struct perf_event *event,
7245 struct perf_output_handle *handle,
7246 struct perf_sample_data *sample)
7247 {
7248 if (event->attr.sample_id_all)
7249 __perf_event__output_id_sample(handle, sample);
7250 }
7251
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7252 static void perf_output_read_one(struct perf_output_handle *handle,
7253 struct perf_event *event,
7254 u64 enabled, u64 running)
7255 {
7256 u64 read_format = event->attr.read_format;
7257 u64 values[5];
7258 int n = 0;
7259
7260 values[n++] = perf_event_count(event);
7261 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7262 values[n++] = enabled +
7263 atomic64_read(&event->child_total_time_enabled);
7264 }
7265 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7266 values[n++] = running +
7267 atomic64_read(&event->child_total_time_running);
7268 }
7269 if (read_format & PERF_FORMAT_ID)
7270 values[n++] = primary_event_id(event);
7271 if (read_format & PERF_FORMAT_LOST)
7272 values[n++] = atomic64_read(&event->lost_samples);
7273
7274 __output_copy(handle, values, n * sizeof(u64));
7275 }
7276
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7277 static void perf_output_read_group(struct perf_output_handle *handle,
7278 struct perf_event *event,
7279 u64 enabled, u64 running)
7280 {
7281 struct perf_event *leader = event->group_leader, *sub;
7282 u64 read_format = event->attr.read_format;
7283 unsigned long flags;
7284 u64 values[6];
7285 int n = 0;
7286
7287 /*
7288 * Disabling interrupts avoids all counter scheduling
7289 * (context switches, timer based rotation and IPIs).
7290 */
7291 local_irq_save(flags);
7292
7293 values[n++] = 1 + leader->nr_siblings;
7294
7295 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7296 values[n++] = enabled;
7297
7298 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7299 values[n++] = running;
7300
7301 if ((leader != event) && !handle->skip_read)
7302 perf_pmu_read(leader);
7303
7304 values[n++] = perf_event_count(leader);
7305 if (read_format & PERF_FORMAT_ID)
7306 values[n++] = primary_event_id(leader);
7307 if (read_format & PERF_FORMAT_LOST)
7308 values[n++] = atomic64_read(&leader->lost_samples);
7309
7310 __output_copy(handle, values, n * sizeof(u64));
7311
7312 for_each_sibling_event(sub, leader) {
7313 n = 0;
7314
7315 if ((sub != event) && !handle->skip_read)
7316 perf_pmu_read(sub);
7317
7318 values[n++] = perf_event_count(sub);
7319 if (read_format & PERF_FORMAT_ID)
7320 values[n++] = primary_event_id(sub);
7321 if (read_format & PERF_FORMAT_LOST)
7322 values[n++] = atomic64_read(&sub->lost_samples);
7323
7324 __output_copy(handle, values, n * sizeof(u64));
7325 }
7326
7327 local_irq_restore(flags);
7328 }
7329
7330 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7331 PERF_FORMAT_TOTAL_TIME_RUNNING)
7332
7333 /*
7334 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7335 *
7336 * The problem is that its both hard and excessively expensive to iterate the
7337 * child list, not to mention that its impossible to IPI the children running
7338 * on another CPU, from interrupt/NMI context.
7339 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7340 static void perf_output_read(struct perf_output_handle *handle,
7341 struct perf_event *event)
7342 {
7343 u64 enabled = 0, running = 0, now;
7344 u64 read_format = event->attr.read_format;
7345
7346 /*
7347 * compute total_time_enabled, total_time_running
7348 * based on snapshot values taken when the event
7349 * was last scheduled in.
7350 *
7351 * we cannot simply called update_context_time()
7352 * because of locking issue as we are called in
7353 * NMI context
7354 */
7355 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7356 calc_timer_values(event, &now, &enabled, &running);
7357
7358 if (event->attr.read_format & PERF_FORMAT_GROUP)
7359 perf_output_read_group(handle, event, enabled, running);
7360 else
7361 perf_output_read_one(handle, event, enabled, running);
7362 }
7363
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7364 void perf_output_sample(struct perf_output_handle *handle,
7365 struct perf_event_header *header,
7366 struct perf_sample_data *data,
7367 struct perf_event *event)
7368 {
7369 u64 sample_type = data->type;
7370
7371 if (data->sample_flags & PERF_SAMPLE_READ)
7372 handle->skip_read = 1;
7373
7374 perf_output_put(handle, *header);
7375
7376 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7377 perf_output_put(handle, data->id);
7378
7379 if (sample_type & PERF_SAMPLE_IP)
7380 perf_output_put(handle, data->ip);
7381
7382 if (sample_type & PERF_SAMPLE_TID)
7383 perf_output_put(handle, data->tid_entry);
7384
7385 if (sample_type & PERF_SAMPLE_TIME)
7386 perf_output_put(handle, data->time);
7387
7388 if (sample_type & PERF_SAMPLE_ADDR)
7389 perf_output_put(handle, data->addr);
7390
7391 if (sample_type & PERF_SAMPLE_ID)
7392 perf_output_put(handle, data->id);
7393
7394 if (sample_type & PERF_SAMPLE_STREAM_ID)
7395 perf_output_put(handle, data->stream_id);
7396
7397 if (sample_type & PERF_SAMPLE_CPU)
7398 perf_output_put(handle, data->cpu_entry);
7399
7400 if (sample_type & PERF_SAMPLE_PERIOD)
7401 perf_output_put(handle, data->period);
7402
7403 if (sample_type & PERF_SAMPLE_READ)
7404 perf_output_read(handle, event);
7405
7406 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7407 int size = 1;
7408
7409 size += data->callchain->nr;
7410 size *= sizeof(u64);
7411 __output_copy(handle, data->callchain, size);
7412 }
7413
7414 if (sample_type & PERF_SAMPLE_RAW) {
7415 struct perf_raw_record *raw = data->raw;
7416
7417 if (raw) {
7418 struct perf_raw_frag *frag = &raw->frag;
7419
7420 perf_output_put(handle, raw->size);
7421 do {
7422 if (frag->copy) {
7423 __output_custom(handle, frag->copy,
7424 frag->data, frag->size);
7425 } else {
7426 __output_copy(handle, frag->data,
7427 frag->size);
7428 }
7429 if (perf_raw_frag_last(frag))
7430 break;
7431 frag = frag->next;
7432 } while (1);
7433 if (frag->pad)
7434 __output_skip(handle, NULL, frag->pad);
7435 } else {
7436 struct {
7437 u32 size;
7438 u32 data;
7439 } raw = {
7440 .size = sizeof(u32),
7441 .data = 0,
7442 };
7443 perf_output_put(handle, raw);
7444 }
7445 }
7446
7447 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7448 if (data->br_stack) {
7449 size_t size;
7450
7451 size = data->br_stack->nr
7452 * sizeof(struct perf_branch_entry);
7453
7454 perf_output_put(handle, data->br_stack->nr);
7455 if (branch_sample_hw_index(event))
7456 perf_output_put(handle, data->br_stack->hw_idx);
7457 perf_output_copy(handle, data->br_stack->entries, size);
7458 } else {
7459 /*
7460 * we always store at least the value of nr
7461 */
7462 u64 nr = 0;
7463 perf_output_put(handle, nr);
7464 }
7465 }
7466
7467 if (sample_type & PERF_SAMPLE_REGS_USER) {
7468 u64 abi = data->regs_user.abi;
7469
7470 /*
7471 * If there are no regs to dump, notice it through
7472 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7473 */
7474 perf_output_put(handle, abi);
7475
7476 if (abi) {
7477 u64 mask = event->attr.sample_regs_user;
7478 perf_output_sample_regs(handle,
7479 data->regs_user.regs,
7480 mask);
7481 }
7482 }
7483
7484 if (sample_type & PERF_SAMPLE_STACK_USER) {
7485 perf_output_sample_ustack(handle,
7486 data->stack_user_size,
7487 data->regs_user.regs);
7488 }
7489
7490 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7491 perf_output_put(handle, data->weight.full);
7492
7493 if (sample_type & PERF_SAMPLE_DATA_SRC)
7494 perf_output_put(handle, data->data_src.val);
7495
7496 if (sample_type & PERF_SAMPLE_TRANSACTION)
7497 perf_output_put(handle, data->txn);
7498
7499 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7500 u64 abi = data->regs_intr.abi;
7501 /*
7502 * If there are no regs to dump, notice it through
7503 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7504 */
7505 perf_output_put(handle, abi);
7506
7507 if (abi) {
7508 u64 mask = event->attr.sample_regs_intr;
7509
7510 perf_output_sample_regs(handle,
7511 data->regs_intr.regs,
7512 mask);
7513 }
7514 }
7515
7516 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7517 perf_output_put(handle, data->phys_addr);
7518
7519 if (sample_type & PERF_SAMPLE_CGROUP)
7520 perf_output_put(handle, data->cgroup);
7521
7522 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7523 perf_output_put(handle, data->data_page_size);
7524
7525 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7526 perf_output_put(handle, data->code_page_size);
7527
7528 if (sample_type & PERF_SAMPLE_AUX) {
7529 perf_output_put(handle, data->aux_size);
7530
7531 if (data->aux_size)
7532 perf_aux_sample_output(event, handle, data);
7533 }
7534
7535 if (!event->attr.watermark) {
7536 int wakeup_events = event->attr.wakeup_events;
7537
7538 if (wakeup_events) {
7539 struct perf_buffer *rb = handle->rb;
7540 int events = local_inc_return(&rb->events);
7541
7542 if (events >= wakeup_events) {
7543 local_sub(wakeup_events, &rb->events);
7544 local_inc(&rb->wakeup);
7545 }
7546 }
7547 }
7548 }
7549
perf_virt_to_phys(u64 virt)7550 static u64 perf_virt_to_phys(u64 virt)
7551 {
7552 u64 phys_addr = 0;
7553
7554 if (!virt)
7555 return 0;
7556
7557 if (virt >= TASK_SIZE) {
7558 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7559 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7560 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7561 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7562 } else {
7563 /*
7564 * Walking the pages tables for user address.
7565 * Interrupts are disabled, so it prevents any tear down
7566 * of the page tables.
7567 * Try IRQ-safe get_user_page_fast_only first.
7568 * If failed, leave phys_addr as 0.
7569 */
7570 if (current->mm != NULL) {
7571 struct page *p;
7572
7573 pagefault_disable();
7574 if (get_user_page_fast_only(virt, 0, &p)) {
7575 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7576 put_page(p);
7577 }
7578 pagefault_enable();
7579 }
7580 }
7581
7582 return phys_addr;
7583 }
7584
7585 /*
7586 * Return the pagetable size of a given virtual address.
7587 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7588 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7589 {
7590 u64 size = 0;
7591
7592 #ifdef CONFIG_HAVE_FAST_GUP
7593 pgd_t *pgdp, pgd;
7594 p4d_t *p4dp, p4d;
7595 pud_t *pudp, pud;
7596 pmd_t *pmdp, pmd;
7597 pte_t *ptep, pte;
7598
7599 pgdp = pgd_offset(mm, addr);
7600 pgd = READ_ONCE(*pgdp);
7601 if (pgd_none(pgd))
7602 return 0;
7603
7604 if (pgd_leaf(pgd))
7605 return pgd_leaf_size(pgd);
7606
7607 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7608 p4d = READ_ONCE(*p4dp);
7609 if (!p4d_present(p4d))
7610 return 0;
7611
7612 if (p4d_leaf(p4d))
7613 return p4d_leaf_size(p4d);
7614
7615 pudp = pud_offset_lockless(p4dp, p4d, addr);
7616 pud = READ_ONCE(*pudp);
7617 if (!pud_present(pud))
7618 return 0;
7619
7620 if (pud_leaf(pud))
7621 return pud_leaf_size(pud);
7622
7623 pmdp = pmd_offset_lockless(pudp, pud, addr);
7624 again:
7625 pmd = pmdp_get_lockless(pmdp);
7626 if (!pmd_present(pmd))
7627 return 0;
7628
7629 if (pmd_leaf(pmd))
7630 return pmd_leaf_size(pmd);
7631
7632 ptep = pte_offset_map(&pmd, addr);
7633 if (!ptep)
7634 goto again;
7635
7636 pte = ptep_get_lockless(ptep);
7637 if (pte_present(pte))
7638 size = pte_leaf_size(pte);
7639 pte_unmap(ptep);
7640 #endif /* CONFIG_HAVE_FAST_GUP */
7641
7642 return size;
7643 }
7644
perf_get_page_size(unsigned long addr)7645 static u64 perf_get_page_size(unsigned long addr)
7646 {
7647 struct mm_struct *mm;
7648 unsigned long flags;
7649 u64 size;
7650
7651 if (!addr)
7652 return 0;
7653
7654 /*
7655 * Software page-table walkers must disable IRQs,
7656 * which prevents any tear down of the page tables.
7657 */
7658 local_irq_save(flags);
7659
7660 mm = current->mm;
7661 if (!mm) {
7662 /*
7663 * For kernel threads and the like, use init_mm so that
7664 * we can find kernel memory.
7665 */
7666 mm = &init_mm;
7667 }
7668
7669 size = perf_get_pgtable_size(mm, addr);
7670
7671 local_irq_restore(flags);
7672
7673 return size;
7674 }
7675
7676 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7677
7678 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7679 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7680 {
7681 bool kernel = !event->attr.exclude_callchain_kernel;
7682 bool user = !event->attr.exclude_callchain_user;
7683 /* Disallow cross-task user callchains. */
7684 bool crosstask = event->ctx->task && event->ctx->task != current;
7685 const u32 max_stack = event->attr.sample_max_stack;
7686 struct perf_callchain_entry *callchain;
7687
7688 if (!kernel && !user)
7689 return &__empty_callchain;
7690
7691 callchain = get_perf_callchain(regs, 0, kernel, user,
7692 max_stack, crosstask, true);
7693 return callchain ?: &__empty_callchain;
7694 }
7695
__cond_set(u64 flags,u64 s,u64 d)7696 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7697 {
7698 return d * !!(flags & s);
7699 }
7700
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7701 void perf_prepare_sample(struct perf_sample_data *data,
7702 struct perf_event *event,
7703 struct pt_regs *regs)
7704 {
7705 u64 sample_type = event->attr.sample_type;
7706 u64 filtered_sample_type;
7707
7708 /*
7709 * Add the sample flags that are dependent to others. And clear the
7710 * sample flags that have already been done by the PMU driver.
7711 */
7712 filtered_sample_type = sample_type;
7713 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7714 PERF_SAMPLE_IP);
7715 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7716 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7717 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7718 PERF_SAMPLE_REGS_USER);
7719 filtered_sample_type &= ~data->sample_flags;
7720
7721 if (filtered_sample_type == 0) {
7722 /* Make sure it has the correct data->type for output */
7723 data->type = event->attr.sample_type;
7724 return;
7725 }
7726
7727 __perf_event_header__init_id(data, event, filtered_sample_type);
7728
7729 if (filtered_sample_type & PERF_SAMPLE_IP) {
7730 data->ip = perf_instruction_pointer(regs);
7731 data->sample_flags |= PERF_SAMPLE_IP;
7732 }
7733
7734 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7735 perf_sample_save_callchain(data, event, regs);
7736
7737 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7738 data->raw = NULL;
7739 data->dyn_size += sizeof(u64);
7740 data->sample_flags |= PERF_SAMPLE_RAW;
7741 }
7742
7743 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7744 data->br_stack = NULL;
7745 data->dyn_size += sizeof(u64);
7746 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7747 }
7748
7749 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7750 perf_sample_regs_user(&data->regs_user, regs);
7751
7752 /*
7753 * It cannot use the filtered_sample_type here as REGS_USER can be set
7754 * by STACK_USER (using __cond_set() above) and we don't want to update
7755 * the dyn_size if it's not requested by users.
7756 */
7757 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7758 /* regs dump ABI info */
7759 int size = sizeof(u64);
7760
7761 if (data->regs_user.regs) {
7762 u64 mask = event->attr.sample_regs_user;
7763 size += hweight64(mask) * sizeof(u64);
7764 }
7765
7766 data->dyn_size += size;
7767 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7768 }
7769
7770 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7771 /*
7772 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7773 * processed as the last one or have additional check added
7774 * in case new sample type is added, because we could eat
7775 * up the rest of the sample size.
7776 */
7777 u16 stack_size = event->attr.sample_stack_user;
7778 u16 header_size = perf_sample_data_size(data, event);
7779 u16 size = sizeof(u64);
7780
7781 stack_size = perf_sample_ustack_size(stack_size, header_size,
7782 data->regs_user.regs);
7783
7784 /*
7785 * If there is something to dump, add space for the dump
7786 * itself and for the field that tells the dynamic size,
7787 * which is how many have been actually dumped.
7788 */
7789 if (stack_size)
7790 size += sizeof(u64) + stack_size;
7791
7792 data->stack_user_size = stack_size;
7793 data->dyn_size += size;
7794 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7795 }
7796
7797 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7798 data->weight.full = 0;
7799 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7800 }
7801
7802 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7803 data->data_src.val = PERF_MEM_NA;
7804 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7805 }
7806
7807 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7808 data->txn = 0;
7809 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7810 }
7811
7812 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7813 data->addr = 0;
7814 data->sample_flags |= PERF_SAMPLE_ADDR;
7815 }
7816
7817 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7818 /* regs dump ABI info */
7819 int size = sizeof(u64);
7820
7821 perf_sample_regs_intr(&data->regs_intr, regs);
7822
7823 if (data->regs_intr.regs) {
7824 u64 mask = event->attr.sample_regs_intr;
7825
7826 size += hweight64(mask) * sizeof(u64);
7827 }
7828
7829 data->dyn_size += size;
7830 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7831 }
7832
7833 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7834 data->phys_addr = perf_virt_to_phys(data->addr);
7835 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7836 }
7837
7838 #ifdef CONFIG_CGROUP_PERF
7839 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7840 struct cgroup *cgrp;
7841
7842 /* protected by RCU */
7843 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7844 data->cgroup = cgroup_id(cgrp);
7845 data->sample_flags |= PERF_SAMPLE_CGROUP;
7846 }
7847 #endif
7848
7849 /*
7850 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7851 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7852 * but the value will not dump to the userspace.
7853 */
7854 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7855 data->data_page_size = perf_get_page_size(data->addr);
7856 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7857 }
7858
7859 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7860 data->code_page_size = perf_get_page_size(data->ip);
7861 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7862 }
7863
7864 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7865 u64 size;
7866 u16 header_size = perf_sample_data_size(data, event);
7867
7868 header_size += sizeof(u64); /* size */
7869
7870 /*
7871 * Given the 16bit nature of header::size, an AUX sample can
7872 * easily overflow it, what with all the preceding sample bits.
7873 * Make sure this doesn't happen by using up to U16_MAX bytes
7874 * per sample in total (rounded down to 8 byte boundary).
7875 */
7876 size = min_t(size_t, U16_MAX - header_size,
7877 event->attr.aux_sample_size);
7878 size = rounddown(size, 8);
7879 size = perf_prepare_sample_aux(event, data, size);
7880
7881 WARN_ON_ONCE(size + header_size > U16_MAX);
7882 data->dyn_size += size + sizeof(u64); /* size above */
7883 data->sample_flags |= PERF_SAMPLE_AUX;
7884 }
7885 }
7886
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7887 void perf_prepare_header(struct perf_event_header *header,
7888 struct perf_sample_data *data,
7889 struct perf_event *event,
7890 struct pt_regs *regs)
7891 {
7892 header->type = PERF_RECORD_SAMPLE;
7893 header->size = perf_sample_data_size(data, event);
7894 header->misc = perf_misc_flags(regs);
7895
7896 /*
7897 * If you're adding more sample types here, you likely need to do
7898 * something about the overflowing header::size, like repurpose the
7899 * lowest 3 bits of size, which should be always zero at the moment.
7900 * This raises a more important question, do we really need 512k sized
7901 * samples and why, so good argumentation is in order for whatever you
7902 * do here next.
7903 */
7904 WARN_ON_ONCE(header->size & 7);
7905 }
7906
7907 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7908 __perf_event_output(struct perf_event *event,
7909 struct perf_sample_data *data,
7910 struct pt_regs *regs,
7911 int (*output_begin)(struct perf_output_handle *,
7912 struct perf_sample_data *,
7913 struct perf_event *,
7914 unsigned int))
7915 {
7916 struct perf_output_handle handle;
7917 struct perf_event_header header;
7918 int err;
7919
7920 /* protect the callchain buffers */
7921 rcu_read_lock();
7922
7923 perf_prepare_sample(data, event, regs);
7924 perf_prepare_header(&header, data, event, regs);
7925
7926 err = output_begin(&handle, data, event, header.size);
7927 if (err)
7928 goto exit;
7929
7930 perf_output_sample(&handle, &header, data, event);
7931
7932 perf_output_end(&handle);
7933
7934 exit:
7935 rcu_read_unlock();
7936 return err;
7937 }
7938
7939 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7940 perf_event_output_forward(struct perf_event *event,
7941 struct perf_sample_data *data,
7942 struct pt_regs *regs)
7943 {
7944 __perf_event_output(event, data, regs, perf_output_begin_forward);
7945 }
7946
7947 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7948 perf_event_output_backward(struct perf_event *event,
7949 struct perf_sample_data *data,
7950 struct pt_regs *regs)
7951 {
7952 __perf_event_output(event, data, regs, perf_output_begin_backward);
7953 }
7954
7955 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7956 perf_event_output(struct perf_event *event,
7957 struct perf_sample_data *data,
7958 struct pt_regs *regs)
7959 {
7960 return __perf_event_output(event, data, regs, perf_output_begin);
7961 }
7962
7963 /*
7964 * read event_id
7965 */
7966
7967 struct perf_read_event {
7968 struct perf_event_header header;
7969
7970 u32 pid;
7971 u32 tid;
7972 };
7973
7974 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7975 perf_event_read_event(struct perf_event *event,
7976 struct task_struct *task)
7977 {
7978 struct perf_output_handle handle;
7979 struct perf_sample_data sample;
7980 struct perf_read_event read_event = {
7981 .header = {
7982 .type = PERF_RECORD_READ,
7983 .misc = 0,
7984 .size = sizeof(read_event) + event->read_size,
7985 },
7986 .pid = perf_event_pid(event, task),
7987 .tid = perf_event_tid(event, task),
7988 };
7989 int ret;
7990
7991 perf_event_header__init_id(&read_event.header, &sample, event);
7992 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7993 if (ret)
7994 return;
7995
7996 perf_output_put(&handle, read_event);
7997 perf_output_read(&handle, event);
7998 perf_event__output_id_sample(event, &handle, &sample);
7999
8000 perf_output_end(&handle);
8001 }
8002
8003 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8004
8005 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8006 perf_iterate_ctx(struct perf_event_context *ctx,
8007 perf_iterate_f output,
8008 void *data, bool all)
8009 {
8010 struct perf_event *event;
8011
8012 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8013 if (!all) {
8014 if (event->state < PERF_EVENT_STATE_INACTIVE)
8015 continue;
8016 if (!event_filter_match(event))
8017 continue;
8018 }
8019
8020 output(event, data);
8021 }
8022 }
8023
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8024 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8025 {
8026 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8027 struct perf_event *event;
8028
8029 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8030 /*
8031 * Skip events that are not fully formed yet; ensure that
8032 * if we observe event->ctx, both event and ctx will be
8033 * complete enough. See perf_install_in_context().
8034 */
8035 if (!smp_load_acquire(&event->ctx))
8036 continue;
8037
8038 if (event->state < PERF_EVENT_STATE_INACTIVE)
8039 continue;
8040 if (!event_filter_match(event))
8041 continue;
8042 output(event, data);
8043 }
8044 }
8045
8046 /*
8047 * Iterate all events that need to receive side-band events.
8048 *
8049 * For new callers; ensure that account_pmu_sb_event() includes
8050 * your event, otherwise it might not get delivered.
8051 */
8052 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8053 perf_iterate_sb(perf_iterate_f output, void *data,
8054 struct perf_event_context *task_ctx)
8055 {
8056 struct perf_event_context *ctx;
8057
8058 rcu_read_lock();
8059 preempt_disable();
8060
8061 /*
8062 * If we have task_ctx != NULL we only notify the task context itself.
8063 * The task_ctx is set only for EXIT events before releasing task
8064 * context.
8065 */
8066 if (task_ctx) {
8067 perf_iterate_ctx(task_ctx, output, data, false);
8068 goto done;
8069 }
8070
8071 perf_iterate_sb_cpu(output, data);
8072
8073 ctx = rcu_dereference(current->perf_event_ctxp);
8074 if (ctx)
8075 perf_iterate_ctx(ctx, output, data, false);
8076 done:
8077 preempt_enable();
8078 rcu_read_unlock();
8079 }
8080
8081 /*
8082 * Clear all file-based filters at exec, they'll have to be
8083 * re-instated when/if these objects are mmapped again.
8084 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8085 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8086 {
8087 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8088 struct perf_addr_filter *filter;
8089 unsigned int restart = 0, count = 0;
8090 unsigned long flags;
8091
8092 if (!has_addr_filter(event))
8093 return;
8094
8095 raw_spin_lock_irqsave(&ifh->lock, flags);
8096 list_for_each_entry(filter, &ifh->list, entry) {
8097 if (filter->path.dentry) {
8098 event->addr_filter_ranges[count].start = 0;
8099 event->addr_filter_ranges[count].size = 0;
8100 restart++;
8101 }
8102
8103 count++;
8104 }
8105
8106 if (restart)
8107 event->addr_filters_gen++;
8108 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8109
8110 if (restart)
8111 perf_event_stop(event, 1);
8112 }
8113
perf_event_exec(void)8114 void perf_event_exec(void)
8115 {
8116 struct perf_event_context *ctx;
8117
8118 ctx = perf_pin_task_context(current);
8119 if (!ctx)
8120 return;
8121
8122 perf_event_enable_on_exec(ctx);
8123 perf_event_remove_on_exec(ctx);
8124 scoped_guard(rcu)
8125 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8126
8127 perf_unpin_context(ctx);
8128 put_ctx(ctx);
8129 }
8130
8131 struct remote_output {
8132 struct perf_buffer *rb;
8133 int err;
8134 };
8135
__perf_event_output_stop(struct perf_event * event,void * data)8136 static void __perf_event_output_stop(struct perf_event *event, void *data)
8137 {
8138 struct perf_event *parent = event->parent;
8139 struct remote_output *ro = data;
8140 struct perf_buffer *rb = ro->rb;
8141 struct stop_event_data sd = {
8142 .event = event,
8143 };
8144
8145 if (!has_aux(event))
8146 return;
8147
8148 if (!parent)
8149 parent = event;
8150
8151 /*
8152 * In case of inheritance, it will be the parent that links to the
8153 * ring-buffer, but it will be the child that's actually using it.
8154 *
8155 * We are using event::rb to determine if the event should be stopped,
8156 * however this may race with ring_buffer_attach() (through set_output),
8157 * which will make us skip the event that actually needs to be stopped.
8158 * So ring_buffer_attach() has to stop an aux event before re-assigning
8159 * its rb pointer.
8160 */
8161 if (rcu_dereference(parent->rb) == rb)
8162 ro->err = __perf_event_stop(&sd);
8163 }
8164
__perf_pmu_output_stop(void * info)8165 static int __perf_pmu_output_stop(void *info)
8166 {
8167 struct perf_event *event = info;
8168 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8169 struct remote_output ro = {
8170 .rb = event->rb,
8171 };
8172
8173 rcu_read_lock();
8174 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8175 if (cpuctx->task_ctx)
8176 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8177 &ro, false);
8178 rcu_read_unlock();
8179
8180 return ro.err;
8181 }
8182
perf_pmu_output_stop(struct perf_event * event)8183 static void perf_pmu_output_stop(struct perf_event *event)
8184 {
8185 struct perf_event *iter;
8186 int err, cpu;
8187
8188 restart:
8189 rcu_read_lock();
8190 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8191 /*
8192 * For per-CPU events, we need to make sure that neither they
8193 * nor their children are running; for cpu==-1 events it's
8194 * sufficient to stop the event itself if it's active, since
8195 * it can't have children.
8196 */
8197 cpu = iter->cpu;
8198 if (cpu == -1)
8199 cpu = READ_ONCE(iter->oncpu);
8200
8201 if (cpu == -1)
8202 continue;
8203
8204 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8205 if (err == -EAGAIN) {
8206 rcu_read_unlock();
8207 goto restart;
8208 }
8209 }
8210 rcu_read_unlock();
8211 }
8212
8213 /*
8214 * task tracking -- fork/exit
8215 *
8216 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8217 */
8218
8219 struct perf_task_event {
8220 struct task_struct *task;
8221 struct perf_event_context *task_ctx;
8222
8223 struct {
8224 struct perf_event_header header;
8225
8226 u32 pid;
8227 u32 ppid;
8228 u32 tid;
8229 u32 ptid;
8230 u64 time;
8231 } event_id;
8232 };
8233
perf_event_task_match(struct perf_event * event)8234 static int perf_event_task_match(struct perf_event *event)
8235 {
8236 return event->attr.comm || event->attr.mmap ||
8237 event->attr.mmap2 || event->attr.mmap_data ||
8238 event->attr.task;
8239 }
8240
perf_event_task_output(struct perf_event * event,void * data)8241 static void perf_event_task_output(struct perf_event *event,
8242 void *data)
8243 {
8244 struct perf_task_event *task_event = data;
8245 struct perf_output_handle handle;
8246 struct perf_sample_data sample;
8247 struct task_struct *task = task_event->task;
8248 int ret, size = task_event->event_id.header.size;
8249
8250 if (!perf_event_task_match(event))
8251 return;
8252
8253 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8254
8255 ret = perf_output_begin(&handle, &sample, event,
8256 task_event->event_id.header.size);
8257 if (ret)
8258 goto out;
8259
8260 task_event->event_id.pid = perf_event_pid(event, task);
8261 task_event->event_id.tid = perf_event_tid(event, task);
8262
8263 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8264 task_event->event_id.ppid = perf_event_pid(event,
8265 task->real_parent);
8266 task_event->event_id.ptid = perf_event_pid(event,
8267 task->real_parent);
8268 } else { /* PERF_RECORD_FORK */
8269 task_event->event_id.ppid = perf_event_pid(event, current);
8270 task_event->event_id.ptid = perf_event_tid(event, current);
8271 }
8272
8273 task_event->event_id.time = perf_event_clock(event);
8274
8275 perf_output_put(&handle, task_event->event_id);
8276
8277 perf_event__output_id_sample(event, &handle, &sample);
8278
8279 perf_output_end(&handle);
8280 out:
8281 task_event->event_id.header.size = size;
8282 }
8283
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8284 static void perf_event_task(struct task_struct *task,
8285 struct perf_event_context *task_ctx,
8286 int new)
8287 {
8288 struct perf_task_event task_event;
8289
8290 if (!atomic_read(&nr_comm_events) &&
8291 !atomic_read(&nr_mmap_events) &&
8292 !atomic_read(&nr_task_events))
8293 return;
8294
8295 task_event = (struct perf_task_event){
8296 .task = task,
8297 .task_ctx = task_ctx,
8298 .event_id = {
8299 .header = {
8300 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8301 .misc = 0,
8302 .size = sizeof(task_event.event_id),
8303 },
8304 /* .pid */
8305 /* .ppid */
8306 /* .tid */
8307 /* .ptid */
8308 /* .time */
8309 },
8310 };
8311
8312 perf_iterate_sb(perf_event_task_output,
8313 &task_event,
8314 task_ctx);
8315 }
8316
perf_event_fork(struct task_struct * task)8317 void perf_event_fork(struct task_struct *task)
8318 {
8319 perf_event_task(task, NULL, 1);
8320 perf_event_namespaces(task);
8321 }
8322
8323 /*
8324 * comm tracking
8325 */
8326
8327 struct perf_comm_event {
8328 struct task_struct *task;
8329 char *comm;
8330 int comm_size;
8331
8332 struct {
8333 struct perf_event_header header;
8334
8335 u32 pid;
8336 u32 tid;
8337 } event_id;
8338 };
8339
perf_event_comm_match(struct perf_event * event)8340 static int perf_event_comm_match(struct perf_event *event)
8341 {
8342 return event->attr.comm;
8343 }
8344
perf_event_comm_output(struct perf_event * event,void * data)8345 static void perf_event_comm_output(struct perf_event *event,
8346 void *data)
8347 {
8348 struct perf_comm_event *comm_event = data;
8349 struct perf_output_handle handle;
8350 struct perf_sample_data sample;
8351 int size = comm_event->event_id.header.size;
8352 int ret;
8353
8354 if (!perf_event_comm_match(event))
8355 return;
8356
8357 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8358 ret = perf_output_begin(&handle, &sample, event,
8359 comm_event->event_id.header.size);
8360
8361 if (ret)
8362 goto out;
8363
8364 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8365 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8366
8367 perf_output_put(&handle, comm_event->event_id);
8368 __output_copy(&handle, comm_event->comm,
8369 comm_event->comm_size);
8370
8371 perf_event__output_id_sample(event, &handle, &sample);
8372
8373 perf_output_end(&handle);
8374 out:
8375 comm_event->event_id.header.size = size;
8376 }
8377
perf_event_comm_event(struct perf_comm_event * comm_event)8378 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8379 {
8380 char comm[TASK_COMM_LEN];
8381 unsigned int size;
8382
8383 memset(comm, 0, sizeof(comm));
8384 strscpy(comm, comm_event->task->comm, sizeof(comm));
8385 size = ALIGN(strlen(comm)+1, sizeof(u64));
8386
8387 comm_event->comm = comm;
8388 comm_event->comm_size = size;
8389
8390 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8391
8392 perf_iterate_sb(perf_event_comm_output,
8393 comm_event,
8394 NULL);
8395 }
8396
perf_event_comm(struct task_struct * task,bool exec)8397 void perf_event_comm(struct task_struct *task, bool exec)
8398 {
8399 struct perf_comm_event comm_event;
8400
8401 if (!atomic_read(&nr_comm_events))
8402 return;
8403
8404 comm_event = (struct perf_comm_event){
8405 .task = task,
8406 /* .comm */
8407 /* .comm_size */
8408 .event_id = {
8409 .header = {
8410 .type = PERF_RECORD_COMM,
8411 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8412 /* .size */
8413 },
8414 /* .pid */
8415 /* .tid */
8416 },
8417 };
8418
8419 perf_event_comm_event(&comm_event);
8420 }
8421
8422 /*
8423 * namespaces tracking
8424 */
8425
8426 struct perf_namespaces_event {
8427 struct task_struct *task;
8428
8429 struct {
8430 struct perf_event_header header;
8431
8432 u32 pid;
8433 u32 tid;
8434 u64 nr_namespaces;
8435 struct perf_ns_link_info link_info[NR_NAMESPACES];
8436 } event_id;
8437 };
8438
perf_event_namespaces_match(struct perf_event * event)8439 static int perf_event_namespaces_match(struct perf_event *event)
8440 {
8441 return event->attr.namespaces;
8442 }
8443
perf_event_namespaces_output(struct perf_event * event,void * data)8444 static void perf_event_namespaces_output(struct perf_event *event,
8445 void *data)
8446 {
8447 struct perf_namespaces_event *namespaces_event = data;
8448 struct perf_output_handle handle;
8449 struct perf_sample_data sample;
8450 u16 header_size = namespaces_event->event_id.header.size;
8451 int ret;
8452
8453 if (!perf_event_namespaces_match(event))
8454 return;
8455
8456 perf_event_header__init_id(&namespaces_event->event_id.header,
8457 &sample, event);
8458 ret = perf_output_begin(&handle, &sample, event,
8459 namespaces_event->event_id.header.size);
8460 if (ret)
8461 goto out;
8462
8463 namespaces_event->event_id.pid = perf_event_pid(event,
8464 namespaces_event->task);
8465 namespaces_event->event_id.tid = perf_event_tid(event,
8466 namespaces_event->task);
8467
8468 perf_output_put(&handle, namespaces_event->event_id);
8469
8470 perf_event__output_id_sample(event, &handle, &sample);
8471
8472 perf_output_end(&handle);
8473 out:
8474 namespaces_event->event_id.header.size = header_size;
8475 }
8476
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8477 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8478 struct task_struct *task,
8479 const struct proc_ns_operations *ns_ops)
8480 {
8481 struct path ns_path;
8482 struct inode *ns_inode;
8483 int error;
8484
8485 error = ns_get_path(&ns_path, task, ns_ops);
8486 if (!error) {
8487 ns_inode = ns_path.dentry->d_inode;
8488 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8489 ns_link_info->ino = ns_inode->i_ino;
8490 path_put(&ns_path);
8491 }
8492 }
8493
perf_event_namespaces(struct task_struct * task)8494 void perf_event_namespaces(struct task_struct *task)
8495 {
8496 struct perf_namespaces_event namespaces_event;
8497 struct perf_ns_link_info *ns_link_info;
8498
8499 if (!atomic_read(&nr_namespaces_events))
8500 return;
8501
8502 namespaces_event = (struct perf_namespaces_event){
8503 .task = task,
8504 .event_id = {
8505 .header = {
8506 .type = PERF_RECORD_NAMESPACES,
8507 .misc = 0,
8508 .size = sizeof(namespaces_event.event_id),
8509 },
8510 /* .pid */
8511 /* .tid */
8512 .nr_namespaces = NR_NAMESPACES,
8513 /* .link_info[NR_NAMESPACES] */
8514 },
8515 };
8516
8517 ns_link_info = namespaces_event.event_id.link_info;
8518
8519 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8520 task, &mntns_operations);
8521
8522 #ifdef CONFIG_USER_NS
8523 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8524 task, &userns_operations);
8525 #endif
8526 #ifdef CONFIG_NET_NS
8527 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8528 task, &netns_operations);
8529 #endif
8530 #ifdef CONFIG_UTS_NS
8531 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8532 task, &utsns_operations);
8533 #endif
8534 #ifdef CONFIG_IPC_NS
8535 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8536 task, &ipcns_operations);
8537 #endif
8538 #ifdef CONFIG_PID_NS
8539 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8540 task, &pidns_operations);
8541 #endif
8542 #ifdef CONFIG_CGROUPS
8543 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8544 task, &cgroupns_operations);
8545 #endif
8546
8547 perf_iterate_sb(perf_event_namespaces_output,
8548 &namespaces_event,
8549 NULL);
8550 }
8551
8552 /*
8553 * cgroup tracking
8554 */
8555 #ifdef CONFIG_CGROUP_PERF
8556
8557 struct perf_cgroup_event {
8558 char *path;
8559 int path_size;
8560 struct {
8561 struct perf_event_header header;
8562 u64 id;
8563 char path[];
8564 } event_id;
8565 };
8566
perf_event_cgroup_match(struct perf_event * event)8567 static int perf_event_cgroup_match(struct perf_event *event)
8568 {
8569 return event->attr.cgroup;
8570 }
8571
perf_event_cgroup_output(struct perf_event * event,void * data)8572 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8573 {
8574 struct perf_cgroup_event *cgroup_event = data;
8575 struct perf_output_handle handle;
8576 struct perf_sample_data sample;
8577 u16 header_size = cgroup_event->event_id.header.size;
8578 int ret;
8579
8580 if (!perf_event_cgroup_match(event))
8581 return;
8582
8583 perf_event_header__init_id(&cgroup_event->event_id.header,
8584 &sample, event);
8585 ret = perf_output_begin(&handle, &sample, event,
8586 cgroup_event->event_id.header.size);
8587 if (ret)
8588 goto out;
8589
8590 perf_output_put(&handle, cgroup_event->event_id);
8591 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8592
8593 perf_event__output_id_sample(event, &handle, &sample);
8594
8595 perf_output_end(&handle);
8596 out:
8597 cgroup_event->event_id.header.size = header_size;
8598 }
8599
perf_event_cgroup(struct cgroup * cgrp)8600 static void perf_event_cgroup(struct cgroup *cgrp)
8601 {
8602 struct perf_cgroup_event cgroup_event;
8603 char path_enomem[16] = "//enomem";
8604 char *pathname;
8605 size_t size;
8606
8607 if (!atomic_read(&nr_cgroup_events))
8608 return;
8609
8610 cgroup_event = (struct perf_cgroup_event){
8611 .event_id = {
8612 .header = {
8613 .type = PERF_RECORD_CGROUP,
8614 .misc = 0,
8615 .size = sizeof(cgroup_event.event_id),
8616 },
8617 .id = cgroup_id(cgrp),
8618 },
8619 };
8620
8621 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8622 if (pathname == NULL) {
8623 cgroup_event.path = path_enomem;
8624 } else {
8625 /* just to be sure to have enough space for alignment */
8626 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8627 cgroup_event.path = pathname;
8628 }
8629
8630 /*
8631 * Since our buffer works in 8 byte units we need to align our string
8632 * size to a multiple of 8. However, we must guarantee the tail end is
8633 * zero'd out to avoid leaking random bits to userspace.
8634 */
8635 size = strlen(cgroup_event.path) + 1;
8636 while (!IS_ALIGNED(size, sizeof(u64)))
8637 cgroup_event.path[size++] = '\0';
8638
8639 cgroup_event.event_id.header.size += size;
8640 cgroup_event.path_size = size;
8641
8642 perf_iterate_sb(perf_event_cgroup_output,
8643 &cgroup_event,
8644 NULL);
8645
8646 kfree(pathname);
8647 }
8648
8649 #endif
8650
8651 /*
8652 * mmap tracking
8653 */
8654
8655 struct perf_mmap_event {
8656 struct vm_area_struct *vma;
8657
8658 const char *file_name;
8659 int file_size;
8660 int maj, min;
8661 u64 ino;
8662 u64 ino_generation;
8663 u32 prot, flags;
8664 u8 build_id[BUILD_ID_SIZE_MAX];
8665 u32 build_id_size;
8666
8667 struct {
8668 struct perf_event_header header;
8669
8670 u32 pid;
8671 u32 tid;
8672 u64 start;
8673 u64 len;
8674 u64 pgoff;
8675 } event_id;
8676 };
8677
perf_event_mmap_match(struct perf_event * event,void * data)8678 static int perf_event_mmap_match(struct perf_event *event,
8679 void *data)
8680 {
8681 struct perf_mmap_event *mmap_event = data;
8682 struct vm_area_struct *vma = mmap_event->vma;
8683 int executable = vma->vm_flags & VM_EXEC;
8684
8685 return (!executable && event->attr.mmap_data) ||
8686 (executable && (event->attr.mmap || event->attr.mmap2));
8687 }
8688
perf_event_mmap_output(struct perf_event * event,void * data)8689 static void perf_event_mmap_output(struct perf_event *event,
8690 void *data)
8691 {
8692 struct perf_mmap_event *mmap_event = data;
8693 struct perf_output_handle handle;
8694 struct perf_sample_data sample;
8695 int size = mmap_event->event_id.header.size;
8696 u32 type = mmap_event->event_id.header.type;
8697 bool use_build_id;
8698 int ret;
8699
8700 if (!perf_event_mmap_match(event, data))
8701 return;
8702
8703 if (event->attr.mmap2) {
8704 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8705 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8706 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8707 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8708 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8709 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8710 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8711 }
8712
8713 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8714 ret = perf_output_begin(&handle, &sample, event,
8715 mmap_event->event_id.header.size);
8716 if (ret)
8717 goto out;
8718
8719 mmap_event->event_id.pid = perf_event_pid(event, current);
8720 mmap_event->event_id.tid = perf_event_tid(event, current);
8721
8722 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8723
8724 if (event->attr.mmap2 && use_build_id)
8725 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8726
8727 perf_output_put(&handle, mmap_event->event_id);
8728
8729 if (event->attr.mmap2) {
8730 if (use_build_id) {
8731 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8732
8733 __output_copy(&handle, size, 4);
8734 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8735 } else {
8736 perf_output_put(&handle, mmap_event->maj);
8737 perf_output_put(&handle, mmap_event->min);
8738 perf_output_put(&handle, mmap_event->ino);
8739 perf_output_put(&handle, mmap_event->ino_generation);
8740 }
8741 perf_output_put(&handle, mmap_event->prot);
8742 perf_output_put(&handle, mmap_event->flags);
8743 }
8744
8745 __output_copy(&handle, mmap_event->file_name,
8746 mmap_event->file_size);
8747
8748 perf_event__output_id_sample(event, &handle, &sample);
8749
8750 perf_output_end(&handle);
8751 out:
8752 mmap_event->event_id.header.size = size;
8753 mmap_event->event_id.header.type = type;
8754 }
8755
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8756 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8757 {
8758 struct vm_area_struct *vma = mmap_event->vma;
8759 struct file *file = vma->vm_file;
8760 int maj = 0, min = 0;
8761 u64 ino = 0, gen = 0;
8762 u32 prot = 0, flags = 0;
8763 unsigned int size;
8764 char tmp[16];
8765 char *buf = NULL;
8766 char *name = NULL;
8767
8768 if (vma->vm_flags & VM_READ)
8769 prot |= PROT_READ;
8770 if (vma->vm_flags & VM_WRITE)
8771 prot |= PROT_WRITE;
8772 if (vma->vm_flags & VM_EXEC)
8773 prot |= PROT_EXEC;
8774
8775 if (vma->vm_flags & VM_MAYSHARE)
8776 flags = MAP_SHARED;
8777 else
8778 flags = MAP_PRIVATE;
8779
8780 if (vma->vm_flags & VM_LOCKED)
8781 flags |= MAP_LOCKED;
8782 if (is_vm_hugetlb_page(vma))
8783 flags |= MAP_HUGETLB;
8784
8785 if (file) {
8786 struct inode *inode;
8787 dev_t dev;
8788
8789 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8790 if (!buf) {
8791 name = "//enomem";
8792 goto cpy_name;
8793 }
8794 /*
8795 * d_path() works from the end of the rb backwards, so we
8796 * need to add enough zero bytes after the string to handle
8797 * the 64bit alignment we do later.
8798 */
8799 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8800 if (IS_ERR(name)) {
8801 name = "//toolong";
8802 goto cpy_name;
8803 }
8804 inode = file_inode(vma->vm_file);
8805 dev = inode->i_sb->s_dev;
8806 ino = inode->i_ino;
8807 gen = inode->i_generation;
8808 maj = MAJOR(dev);
8809 min = MINOR(dev);
8810
8811 goto got_name;
8812 } else {
8813 if (vma->vm_ops && vma->vm_ops->name)
8814 name = (char *) vma->vm_ops->name(vma);
8815 if (!name)
8816 name = (char *)arch_vma_name(vma);
8817 if (!name) {
8818 if (vma_is_initial_heap(vma))
8819 name = "[heap]";
8820 else if (vma_is_initial_stack(vma))
8821 name = "[stack]";
8822 else
8823 name = "//anon";
8824 }
8825 }
8826
8827 cpy_name:
8828 strscpy(tmp, name, sizeof(tmp));
8829 name = tmp;
8830 got_name:
8831 /*
8832 * Since our buffer works in 8 byte units we need to align our string
8833 * size to a multiple of 8. However, we must guarantee the tail end is
8834 * zero'd out to avoid leaking random bits to userspace.
8835 */
8836 size = strlen(name)+1;
8837 while (!IS_ALIGNED(size, sizeof(u64)))
8838 name[size++] = '\0';
8839
8840 mmap_event->file_name = name;
8841 mmap_event->file_size = size;
8842 mmap_event->maj = maj;
8843 mmap_event->min = min;
8844 mmap_event->ino = ino;
8845 mmap_event->ino_generation = gen;
8846 mmap_event->prot = prot;
8847 mmap_event->flags = flags;
8848
8849 if (!(vma->vm_flags & VM_EXEC))
8850 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8851
8852 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8853
8854 if (atomic_read(&nr_build_id_events))
8855 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8856
8857 perf_iterate_sb(perf_event_mmap_output,
8858 mmap_event,
8859 NULL);
8860
8861 kfree(buf);
8862 }
8863
8864 /*
8865 * Check whether inode and address range match filter criteria.
8866 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8867 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8868 struct file *file, unsigned long offset,
8869 unsigned long size)
8870 {
8871 /* d_inode(NULL) won't be equal to any mapped user-space file */
8872 if (!filter->path.dentry)
8873 return false;
8874
8875 if (d_inode(filter->path.dentry) != file_inode(file))
8876 return false;
8877
8878 if (filter->offset > offset + size)
8879 return false;
8880
8881 if (filter->offset + filter->size < offset)
8882 return false;
8883
8884 return true;
8885 }
8886
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8887 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8888 struct vm_area_struct *vma,
8889 struct perf_addr_filter_range *fr)
8890 {
8891 unsigned long vma_size = vma->vm_end - vma->vm_start;
8892 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8893 struct file *file = vma->vm_file;
8894
8895 if (!perf_addr_filter_match(filter, file, off, vma_size))
8896 return false;
8897
8898 if (filter->offset < off) {
8899 fr->start = vma->vm_start;
8900 fr->size = min(vma_size, filter->size - (off - filter->offset));
8901 } else {
8902 fr->start = vma->vm_start + filter->offset - off;
8903 fr->size = min(vma->vm_end - fr->start, filter->size);
8904 }
8905
8906 return true;
8907 }
8908
__perf_addr_filters_adjust(struct perf_event * event,void * data)8909 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8910 {
8911 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8912 struct vm_area_struct *vma = data;
8913 struct perf_addr_filter *filter;
8914 unsigned int restart = 0, count = 0;
8915 unsigned long flags;
8916
8917 if (!has_addr_filter(event))
8918 return;
8919
8920 if (!vma->vm_file)
8921 return;
8922
8923 raw_spin_lock_irqsave(&ifh->lock, flags);
8924 list_for_each_entry(filter, &ifh->list, entry) {
8925 if (perf_addr_filter_vma_adjust(filter, vma,
8926 &event->addr_filter_ranges[count]))
8927 restart++;
8928
8929 count++;
8930 }
8931
8932 if (restart)
8933 event->addr_filters_gen++;
8934 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8935
8936 if (restart)
8937 perf_event_stop(event, 1);
8938 }
8939
8940 /*
8941 * Adjust all task's events' filters to the new vma
8942 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8943 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8944 {
8945 struct perf_event_context *ctx;
8946
8947 /*
8948 * Data tracing isn't supported yet and as such there is no need
8949 * to keep track of anything that isn't related to executable code:
8950 */
8951 if (!(vma->vm_flags & VM_EXEC))
8952 return;
8953
8954 rcu_read_lock();
8955 ctx = rcu_dereference(current->perf_event_ctxp);
8956 if (ctx)
8957 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8958 rcu_read_unlock();
8959 }
8960
perf_event_mmap(struct vm_area_struct * vma)8961 void perf_event_mmap(struct vm_area_struct *vma)
8962 {
8963 struct perf_mmap_event mmap_event;
8964
8965 if (!atomic_read(&nr_mmap_events))
8966 return;
8967
8968 mmap_event = (struct perf_mmap_event){
8969 .vma = vma,
8970 /* .file_name */
8971 /* .file_size */
8972 .event_id = {
8973 .header = {
8974 .type = PERF_RECORD_MMAP,
8975 .misc = PERF_RECORD_MISC_USER,
8976 /* .size */
8977 },
8978 /* .pid */
8979 /* .tid */
8980 .start = vma->vm_start,
8981 .len = vma->vm_end - vma->vm_start,
8982 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8983 },
8984 /* .maj (attr_mmap2 only) */
8985 /* .min (attr_mmap2 only) */
8986 /* .ino (attr_mmap2 only) */
8987 /* .ino_generation (attr_mmap2 only) */
8988 /* .prot (attr_mmap2 only) */
8989 /* .flags (attr_mmap2 only) */
8990 };
8991
8992 perf_addr_filters_adjust(vma);
8993 perf_event_mmap_event(&mmap_event);
8994 }
8995
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8996 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8997 unsigned long size, u64 flags)
8998 {
8999 struct perf_output_handle handle;
9000 struct perf_sample_data sample;
9001 struct perf_aux_event {
9002 struct perf_event_header header;
9003 u64 offset;
9004 u64 size;
9005 u64 flags;
9006 } rec = {
9007 .header = {
9008 .type = PERF_RECORD_AUX,
9009 .misc = 0,
9010 .size = sizeof(rec),
9011 },
9012 .offset = head,
9013 .size = size,
9014 .flags = flags,
9015 };
9016 int ret;
9017
9018 perf_event_header__init_id(&rec.header, &sample, event);
9019 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9020
9021 if (ret)
9022 return;
9023
9024 perf_output_put(&handle, rec);
9025 perf_event__output_id_sample(event, &handle, &sample);
9026
9027 perf_output_end(&handle);
9028 }
9029
9030 /*
9031 * Lost/dropped samples logging
9032 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9033 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9034 {
9035 struct perf_output_handle handle;
9036 struct perf_sample_data sample;
9037 int ret;
9038
9039 struct {
9040 struct perf_event_header header;
9041 u64 lost;
9042 } lost_samples_event = {
9043 .header = {
9044 .type = PERF_RECORD_LOST_SAMPLES,
9045 .misc = 0,
9046 .size = sizeof(lost_samples_event),
9047 },
9048 .lost = lost,
9049 };
9050
9051 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9052
9053 ret = perf_output_begin(&handle, &sample, event,
9054 lost_samples_event.header.size);
9055 if (ret)
9056 return;
9057
9058 perf_output_put(&handle, lost_samples_event);
9059 perf_event__output_id_sample(event, &handle, &sample);
9060 perf_output_end(&handle);
9061 }
9062
9063 /*
9064 * context_switch tracking
9065 */
9066
9067 struct perf_switch_event {
9068 struct task_struct *task;
9069 struct task_struct *next_prev;
9070
9071 struct {
9072 struct perf_event_header header;
9073 u32 next_prev_pid;
9074 u32 next_prev_tid;
9075 } event_id;
9076 };
9077
perf_event_switch_match(struct perf_event * event)9078 static int perf_event_switch_match(struct perf_event *event)
9079 {
9080 return event->attr.context_switch;
9081 }
9082
perf_event_switch_output(struct perf_event * event,void * data)9083 static void perf_event_switch_output(struct perf_event *event, void *data)
9084 {
9085 struct perf_switch_event *se = data;
9086 struct perf_output_handle handle;
9087 struct perf_sample_data sample;
9088 int ret;
9089
9090 if (!perf_event_switch_match(event))
9091 return;
9092
9093 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9094 if (event->ctx->task) {
9095 se->event_id.header.type = PERF_RECORD_SWITCH;
9096 se->event_id.header.size = sizeof(se->event_id.header);
9097 } else {
9098 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9099 se->event_id.header.size = sizeof(se->event_id);
9100 se->event_id.next_prev_pid =
9101 perf_event_pid(event, se->next_prev);
9102 se->event_id.next_prev_tid =
9103 perf_event_tid(event, se->next_prev);
9104 }
9105
9106 perf_event_header__init_id(&se->event_id.header, &sample, event);
9107
9108 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9109 if (ret)
9110 return;
9111
9112 if (event->ctx->task)
9113 perf_output_put(&handle, se->event_id.header);
9114 else
9115 perf_output_put(&handle, se->event_id);
9116
9117 perf_event__output_id_sample(event, &handle, &sample);
9118
9119 perf_output_end(&handle);
9120 }
9121
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9122 static void perf_event_switch(struct task_struct *task,
9123 struct task_struct *next_prev, bool sched_in)
9124 {
9125 struct perf_switch_event switch_event;
9126
9127 /* N.B. caller checks nr_switch_events != 0 */
9128
9129 switch_event = (struct perf_switch_event){
9130 .task = task,
9131 .next_prev = next_prev,
9132 .event_id = {
9133 .header = {
9134 /* .type */
9135 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9136 /* .size */
9137 },
9138 /* .next_prev_pid */
9139 /* .next_prev_tid */
9140 },
9141 };
9142
9143 if (!sched_in && task->on_rq) {
9144 switch_event.event_id.header.misc |=
9145 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9146 }
9147
9148 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9149 }
9150
9151 /*
9152 * IRQ throttle logging
9153 */
9154
perf_log_throttle(struct perf_event * event,int enable)9155 static void perf_log_throttle(struct perf_event *event, int enable)
9156 {
9157 struct perf_output_handle handle;
9158 struct perf_sample_data sample;
9159 int ret;
9160
9161 struct {
9162 struct perf_event_header header;
9163 u64 time;
9164 u64 id;
9165 u64 stream_id;
9166 } throttle_event = {
9167 .header = {
9168 .type = PERF_RECORD_THROTTLE,
9169 .misc = 0,
9170 .size = sizeof(throttle_event),
9171 },
9172 .time = perf_event_clock(event),
9173 .id = primary_event_id(event),
9174 .stream_id = event->id,
9175 };
9176
9177 if (enable)
9178 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9179
9180 perf_event_header__init_id(&throttle_event.header, &sample, event);
9181
9182 ret = perf_output_begin(&handle, &sample, event,
9183 throttle_event.header.size);
9184 if (ret)
9185 return;
9186
9187 perf_output_put(&handle, throttle_event);
9188 perf_event__output_id_sample(event, &handle, &sample);
9189 perf_output_end(&handle);
9190 }
9191
9192 /*
9193 * ksymbol register/unregister tracking
9194 */
9195
9196 struct perf_ksymbol_event {
9197 const char *name;
9198 int name_len;
9199 struct {
9200 struct perf_event_header header;
9201 u64 addr;
9202 u32 len;
9203 u16 ksym_type;
9204 u16 flags;
9205 } event_id;
9206 };
9207
perf_event_ksymbol_match(struct perf_event * event)9208 static int perf_event_ksymbol_match(struct perf_event *event)
9209 {
9210 return event->attr.ksymbol;
9211 }
9212
perf_event_ksymbol_output(struct perf_event * event,void * data)9213 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9214 {
9215 struct perf_ksymbol_event *ksymbol_event = data;
9216 struct perf_output_handle handle;
9217 struct perf_sample_data sample;
9218 int ret;
9219
9220 if (!perf_event_ksymbol_match(event))
9221 return;
9222
9223 perf_event_header__init_id(&ksymbol_event->event_id.header,
9224 &sample, event);
9225 ret = perf_output_begin(&handle, &sample, event,
9226 ksymbol_event->event_id.header.size);
9227 if (ret)
9228 return;
9229
9230 perf_output_put(&handle, ksymbol_event->event_id);
9231 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9232 perf_event__output_id_sample(event, &handle, &sample);
9233
9234 perf_output_end(&handle);
9235 }
9236
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9237 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9238 const char *sym)
9239 {
9240 struct perf_ksymbol_event ksymbol_event;
9241 char name[KSYM_NAME_LEN];
9242 u16 flags = 0;
9243 int name_len;
9244
9245 if (!atomic_read(&nr_ksymbol_events))
9246 return;
9247
9248 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9249 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9250 goto err;
9251
9252 strscpy(name, sym, KSYM_NAME_LEN);
9253 name_len = strlen(name) + 1;
9254 while (!IS_ALIGNED(name_len, sizeof(u64)))
9255 name[name_len++] = '\0';
9256 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9257
9258 if (unregister)
9259 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9260
9261 ksymbol_event = (struct perf_ksymbol_event){
9262 .name = name,
9263 .name_len = name_len,
9264 .event_id = {
9265 .header = {
9266 .type = PERF_RECORD_KSYMBOL,
9267 .size = sizeof(ksymbol_event.event_id) +
9268 name_len,
9269 },
9270 .addr = addr,
9271 .len = len,
9272 .ksym_type = ksym_type,
9273 .flags = flags,
9274 },
9275 };
9276
9277 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9278 return;
9279 err:
9280 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9281 }
9282
9283 /*
9284 * bpf program load/unload tracking
9285 */
9286
9287 struct perf_bpf_event {
9288 struct bpf_prog *prog;
9289 struct {
9290 struct perf_event_header header;
9291 u16 type;
9292 u16 flags;
9293 u32 id;
9294 u8 tag[BPF_TAG_SIZE];
9295 } event_id;
9296 };
9297
perf_event_bpf_match(struct perf_event * event)9298 static int perf_event_bpf_match(struct perf_event *event)
9299 {
9300 return event->attr.bpf_event;
9301 }
9302
perf_event_bpf_output(struct perf_event * event,void * data)9303 static void perf_event_bpf_output(struct perf_event *event, void *data)
9304 {
9305 struct perf_bpf_event *bpf_event = data;
9306 struct perf_output_handle handle;
9307 struct perf_sample_data sample;
9308 int ret;
9309
9310 if (!perf_event_bpf_match(event))
9311 return;
9312
9313 perf_event_header__init_id(&bpf_event->event_id.header,
9314 &sample, event);
9315 ret = perf_output_begin(&handle, &sample, event,
9316 bpf_event->event_id.header.size);
9317 if (ret)
9318 return;
9319
9320 perf_output_put(&handle, bpf_event->event_id);
9321 perf_event__output_id_sample(event, &handle, &sample);
9322
9323 perf_output_end(&handle);
9324 }
9325
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9326 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9327 enum perf_bpf_event_type type)
9328 {
9329 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9330 int i;
9331
9332 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9333 (u64)(unsigned long)prog->bpf_func,
9334 prog->jited_len, unregister,
9335 prog->aux->ksym.name);
9336
9337 for (i = 1; i < prog->aux->func_cnt; i++) {
9338 struct bpf_prog *subprog = prog->aux->func[i];
9339
9340 perf_event_ksymbol(
9341 PERF_RECORD_KSYMBOL_TYPE_BPF,
9342 (u64)(unsigned long)subprog->bpf_func,
9343 subprog->jited_len, unregister,
9344 subprog->aux->ksym.name);
9345 }
9346 }
9347
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9348 void perf_event_bpf_event(struct bpf_prog *prog,
9349 enum perf_bpf_event_type type,
9350 u16 flags)
9351 {
9352 struct perf_bpf_event bpf_event;
9353
9354 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9355 type >= PERF_BPF_EVENT_MAX)
9356 return;
9357
9358 switch (type) {
9359 case PERF_BPF_EVENT_PROG_LOAD:
9360 case PERF_BPF_EVENT_PROG_UNLOAD:
9361 if (atomic_read(&nr_ksymbol_events))
9362 perf_event_bpf_emit_ksymbols(prog, type);
9363 break;
9364 default:
9365 break;
9366 }
9367
9368 if (!atomic_read(&nr_bpf_events))
9369 return;
9370
9371 bpf_event = (struct perf_bpf_event){
9372 .prog = prog,
9373 .event_id = {
9374 .header = {
9375 .type = PERF_RECORD_BPF_EVENT,
9376 .size = sizeof(bpf_event.event_id),
9377 },
9378 .type = type,
9379 .flags = flags,
9380 .id = prog->aux->id,
9381 },
9382 };
9383
9384 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9385
9386 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9387 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9388 }
9389
9390 struct perf_text_poke_event {
9391 const void *old_bytes;
9392 const void *new_bytes;
9393 size_t pad;
9394 u16 old_len;
9395 u16 new_len;
9396
9397 struct {
9398 struct perf_event_header header;
9399
9400 u64 addr;
9401 } event_id;
9402 };
9403
perf_event_text_poke_match(struct perf_event * event)9404 static int perf_event_text_poke_match(struct perf_event *event)
9405 {
9406 return event->attr.text_poke;
9407 }
9408
perf_event_text_poke_output(struct perf_event * event,void * data)9409 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9410 {
9411 struct perf_text_poke_event *text_poke_event = data;
9412 struct perf_output_handle handle;
9413 struct perf_sample_data sample;
9414 u64 padding = 0;
9415 int ret;
9416
9417 if (!perf_event_text_poke_match(event))
9418 return;
9419
9420 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9421
9422 ret = perf_output_begin(&handle, &sample, event,
9423 text_poke_event->event_id.header.size);
9424 if (ret)
9425 return;
9426
9427 perf_output_put(&handle, text_poke_event->event_id);
9428 perf_output_put(&handle, text_poke_event->old_len);
9429 perf_output_put(&handle, text_poke_event->new_len);
9430
9431 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9432 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9433
9434 if (text_poke_event->pad)
9435 __output_copy(&handle, &padding, text_poke_event->pad);
9436
9437 perf_event__output_id_sample(event, &handle, &sample);
9438
9439 perf_output_end(&handle);
9440 }
9441
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9442 void perf_event_text_poke(const void *addr, const void *old_bytes,
9443 size_t old_len, const void *new_bytes, size_t new_len)
9444 {
9445 struct perf_text_poke_event text_poke_event;
9446 size_t tot, pad;
9447
9448 if (!atomic_read(&nr_text_poke_events))
9449 return;
9450
9451 tot = sizeof(text_poke_event.old_len) + old_len;
9452 tot += sizeof(text_poke_event.new_len) + new_len;
9453 pad = ALIGN(tot, sizeof(u64)) - tot;
9454
9455 text_poke_event = (struct perf_text_poke_event){
9456 .old_bytes = old_bytes,
9457 .new_bytes = new_bytes,
9458 .pad = pad,
9459 .old_len = old_len,
9460 .new_len = new_len,
9461 .event_id = {
9462 .header = {
9463 .type = PERF_RECORD_TEXT_POKE,
9464 .misc = PERF_RECORD_MISC_KERNEL,
9465 .size = sizeof(text_poke_event.event_id) + tot + pad,
9466 },
9467 .addr = (unsigned long)addr,
9468 },
9469 };
9470
9471 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9472 }
9473
perf_event_itrace_started(struct perf_event * event)9474 void perf_event_itrace_started(struct perf_event *event)
9475 {
9476 event->attach_state |= PERF_ATTACH_ITRACE;
9477 }
9478
perf_log_itrace_start(struct perf_event * event)9479 static void perf_log_itrace_start(struct perf_event *event)
9480 {
9481 struct perf_output_handle handle;
9482 struct perf_sample_data sample;
9483 struct perf_aux_event {
9484 struct perf_event_header header;
9485 u32 pid;
9486 u32 tid;
9487 } rec;
9488 int ret;
9489
9490 if (event->parent)
9491 event = event->parent;
9492
9493 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9494 event->attach_state & PERF_ATTACH_ITRACE)
9495 return;
9496
9497 rec.header.type = PERF_RECORD_ITRACE_START;
9498 rec.header.misc = 0;
9499 rec.header.size = sizeof(rec);
9500 rec.pid = perf_event_pid(event, current);
9501 rec.tid = perf_event_tid(event, current);
9502
9503 perf_event_header__init_id(&rec.header, &sample, event);
9504 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9505
9506 if (ret)
9507 return;
9508
9509 perf_output_put(&handle, rec);
9510 perf_event__output_id_sample(event, &handle, &sample);
9511
9512 perf_output_end(&handle);
9513 }
9514
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9515 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9516 {
9517 struct perf_output_handle handle;
9518 struct perf_sample_data sample;
9519 struct perf_aux_event {
9520 struct perf_event_header header;
9521 u64 hw_id;
9522 } rec;
9523 int ret;
9524
9525 if (event->parent)
9526 event = event->parent;
9527
9528 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9529 rec.header.misc = 0;
9530 rec.header.size = sizeof(rec);
9531 rec.hw_id = hw_id;
9532
9533 perf_event_header__init_id(&rec.header, &sample, event);
9534 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9535
9536 if (ret)
9537 return;
9538
9539 perf_output_put(&handle, rec);
9540 perf_event__output_id_sample(event, &handle, &sample);
9541
9542 perf_output_end(&handle);
9543 }
9544 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9545
9546 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9547 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9548 {
9549 struct hw_perf_event *hwc = &event->hw;
9550 int ret = 0;
9551 u64 seq;
9552
9553 seq = __this_cpu_read(perf_throttled_seq);
9554 if (seq != hwc->interrupts_seq) {
9555 hwc->interrupts_seq = seq;
9556 hwc->interrupts = 1;
9557 } else {
9558 hwc->interrupts++;
9559 }
9560
9561 if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
9562 __this_cpu_inc(perf_throttled_count);
9563 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9564 hwc->interrupts = MAX_INTERRUPTS;
9565 perf_log_throttle(event, 0);
9566 ret = 1;
9567 }
9568
9569 if (event->attr.freq) {
9570 u64 now = perf_clock();
9571 s64 delta = now - hwc->freq_time_stamp;
9572
9573 hwc->freq_time_stamp = now;
9574
9575 if (delta > 0 && delta < 2*TICK_NSEC)
9576 perf_adjust_period(event, delta, hwc->last_period, true);
9577 }
9578
9579 return ret;
9580 }
9581
perf_event_account_interrupt(struct perf_event * event)9582 int perf_event_account_interrupt(struct perf_event *event)
9583 {
9584 return __perf_event_account_interrupt(event, 1);
9585 }
9586
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9587 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9588 {
9589 /*
9590 * Due to interrupt latency (AKA "skid"), we may enter the
9591 * kernel before taking an overflow, even if the PMU is only
9592 * counting user events.
9593 */
9594 if (event->attr.exclude_kernel && !user_mode(regs))
9595 return false;
9596
9597 return true;
9598 }
9599
9600 /*
9601 * Generic event overflow handling, sampling.
9602 */
9603
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9604 static int __perf_event_overflow(struct perf_event *event,
9605 int throttle, struct perf_sample_data *data,
9606 struct pt_regs *regs)
9607 {
9608 int events = atomic_read(&event->event_limit);
9609 int ret = 0;
9610
9611 /*
9612 * Non-sampling counters might still use the PMI to fold short
9613 * hardware counters, ignore those.
9614 */
9615 if (unlikely(!is_sampling_event(event)))
9616 return 0;
9617
9618 ret = __perf_event_account_interrupt(event, throttle);
9619
9620 /*
9621 * XXX event_limit might not quite work as expected on inherited
9622 * events
9623 */
9624
9625 event->pending_kill = POLL_IN;
9626 if (events && atomic_dec_and_test(&event->event_limit)) {
9627 ret = 1;
9628 event->pending_kill = POLL_HUP;
9629 perf_event_disable_inatomic(event);
9630 }
9631
9632 if (event->attr.sigtrap) {
9633 /*
9634 * The desired behaviour of sigtrap vs invalid samples is a bit
9635 * tricky; on the one hand, one should not loose the SIGTRAP if
9636 * it is the first event, on the other hand, we should also not
9637 * trigger the WARN or override the data address.
9638 */
9639 bool valid_sample = sample_is_allowed(event, regs);
9640 unsigned int pending_id = 1;
9641
9642 if (regs)
9643 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9644 if (!event->pending_sigtrap) {
9645 event->pending_sigtrap = pending_id;
9646 local_inc(&event->ctx->nr_pending);
9647 } else if (event->attr.exclude_kernel && valid_sample) {
9648 /*
9649 * Should not be able to return to user space without
9650 * consuming pending_sigtrap; with exceptions:
9651 *
9652 * 1. Where !exclude_kernel, events can overflow again
9653 * in the kernel without returning to user space.
9654 *
9655 * 2. Events that can overflow again before the IRQ-
9656 * work without user space progress (e.g. hrtimer).
9657 * To approximate progress (with false negatives),
9658 * check 32-bit hash of the current IP.
9659 */
9660 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9661 }
9662
9663 event->pending_addr = 0;
9664 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9665 event->pending_addr = data->addr;
9666 irq_work_queue(&event->pending_irq);
9667 }
9668
9669 READ_ONCE(event->overflow_handler)(event, data, regs);
9670
9671 if (*perf_event_fasync(event) && event->pending_kill) {
9672 event->pending_wakeup = 1;
9673 irq_work_queue(&event->pending_irq);
9674 }
9675
9676 return ret;
9677 }
9678
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9679 int perf_event_overflow(struct perf_event *event,
9680 struct perf_sample_data *data,
9681 struct pt_regs *regs)
9682 {
9683 return __perf_event_overflow(event, 1, data, regs);
9684 }
9685
9686 /*
9687 * Generic software event infrastructure
9688 */
9689
9690 struct swevent_htable {
9691 struct swevent_hlist *swevent_hlist;
9692 struct mutex hlist_mutex;
9693 int hlist_refcount;
9694
9695 /* Recursion avoidance in each contexts */
9696 int recursion[PERF_NR_CONTEXTS];
9697 };
9698
9699 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9700
9701 /*
9702 * We directly increment event->count and keep a second value in
9703 * event->hw.period_left to count intervals. This period event
9704 * is kept in the range [-sample_period, 0] so that we can use the
9705 * sign as trigger.
9706 */
9707
perf_swevent_set_period(struct perf_event * event)9708 u64 perf_swevent_set_period(struct perf_event *event)
9709 {
9710 struct hw_perf_event *hwc = &event->hw;
9711 u64 period = hwc->last_period;
9712 u64 nr, offset;
9713 s64 old, val;
9714
9715 hwc->last_period = hwc->sample_period;
9716
9717 old = local64_read(&hwc->period_left);
9718 do {
9719 val = old;
9720 if (val < 0)
9721 return 0;
9722
9723 nr = div64_u64(period + val, period);
9724 offset = nr * period;
9725 val -= offset;
9726 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9727
9728 return nr;
9729 }
9730
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9731 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9732 struct perf_sample_data *data,
9733 struct pt_regs *regs)
9734 {
9735 struct hw_perf_event *hwc = &event->hw;
9736 int throttle = 0;
9737
9738 if (!overflow)
9739 overflow = perf_swevent_set_period(event);
9740
9741 if (hwc->interrupts == MAX_INTERRUPTS)
9742 return;
9743
9744 for (; overflow; overflow--) {
9745 if (__perf_event_overflow(event, throttle,
9746 data, regs)) {
9747 /*
9748 * We inhibit the overflow from happening when
9749 * hwc->interrupts == MAX_INTERRUPTS.
9750 */
9751 break;
9752 }
9753 throttle = 1;
9754 }
9755 }
9756
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9757 static void perf_swevent_event(struct perf_event *event, u64 nr,
9758 struct perf_sample_data *data,
9759 struct pt_regs *regs)
9760 {
9761 struct hw_perf_event *hwc = &event->hw;
9762
9763 local64_add(nr, &event->count);
9764
9765 if (!regs)
9766 return;
9767
9768 if (!is_sampling_event(event))
9769 return;
9770
9771 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9772 data->period = nr;
9773 return perf_swevent_overflow(event, 1, data, regs);
9774 } else
9775 data->period = event->hw.last_period;
9776
9777 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9778 return perf_swevent_overflow(event, 1, data, regs);
9779
9780 if (local64_add_negative(nr, &hwc->period_left))
9781 return;
9782
9783 perf_swevent_overflow(event, 0, data, regs);
9784 }
9785
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9786 static int perf_exclude_event(struct perf_event *event,
9787 struct pt_regs *regs)
9788 {
9789 if (event->hw.state & PERF_HES_STOPPED)
9790 return 1;
9791
9792 if (regs) {
9793 if (event->attr.exclude_user && user_mode(regs))
9794 return 1;
9795
9796 if (event->attr.exclude_kernel && !user_mode(regs))
9797 return 1;
9798 }
9799
9800 return 0;
9801 }
9802
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9803 static int perf_swevent_match(struct perf_event *event,
9804 enum perf_type_id type,
9805 u32 event_id,
9806 struct perf_sample_data *data,
9807 struct pt_regs *regs)
9808 {
9809 if (event->attr.type != type)
9810 return 0;
9811
9812 if (event->attr.config != event_id)
9813 return 0;
9814
9815 if (perf_exclude_event(event, regs))
9816 return 0;
9817
9818 return 1;
9819 }
9820
swevent_hash(u64 type,u32 event_id)9821 static inline u64 swevent_hash(u64 type, u32 event_id)
9822 {
9823 u64 val = event_id | (type << 32);
9824
9825 return hash_64(val, SWEVENT_HLIST_BITS);
9826 }
9827
9828 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9829 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9830 {
9831 u64 hash = swevent_hash(type, event_id);
9832
9833 return &hlist->heads[hash];
9834 }
9835
9836 /* For the read side: events when they trigger */
9837 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9838 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9839 {
9840 struct swevent_hlist *hlist;
9841
9842 hlist = rcu_dereference(swhash->swevent_hlist);
9843 if (!hlist)
9844 return NULL;
9845
9846 return __find_swevent_head(hlist, type, event_id);
9847 }
9848
9849 /* For the event head insertion and removal in the hlist */
9850 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9851 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9852 {
9853 struct swevent_hlist *hlist;
9854 u32 event_id = event->attr.config;
9855 u64 type = event->attr.type;
9856
9857 /*
9858 * Event scheduling is always serialized against hlist allocation
9859 * and release. Which makes the protected version suitable here.
9860 * The context lock guarantees that.
9861 */
9862 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9863 lockdep_is_held(&event->ctx->lock));
9864 if (!hlist)
9865 return NULL;
9866
9867 return __find_swevent_head(hlist, type, event_id);
9868 }
9869
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9870 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9871 u64 nr,
9872 struct perf_sample_data *data,
9873 struct pt_regs *regs)
9874 {
9875 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9876 struct perf_event *event;
9877 struct hlist_head *head;
9878
9879 rcu_read_lock();
9880 head = find_swevent_head_rcu(swhash, type, event_id);
9881 if (!head)
9882 goto end;
9883
9884 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9885 if (perf_swevent_match(event, type, event_id, data, regs))
9886 perf_swevent_event(event, nr, data, regs);
9887 }
9888 end:
9889 rcu_read_unlock();
9890 }
9891
9892 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9893
perf_swevent_get_recursion_context(void)9894 int perf_swevent_get_recursion_context(void)
9895 {
9896 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9897
9898 return get_recursion_context(swhash->recursion);
9899 }
9900 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9901
perf_swevent_put_recursion_context(int rctx)9902 void perf_swevent_put_recursion_context(int rctx)
9903 {
9904 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9905
9906 put_recursion_context(swhash->recursion, rctx);
9907 }
9908
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9909 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9910 {
9911 struct perf_sample_data data;
9912
9913 if (WARN_ON_ONCE(!regs))
9914 return;
9915
9916 perf_sample_data_init(&data, addr, 0);
9917 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9918 }
9919
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9920 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9921 {
9922 int rctx;
9923
9924 preempt_disable_notrace();
9925 rctx = perf_swevent_get_recursion_context();
9926 if (unlikely(rctx < 0))
9927 goto fail;
9928
9929 ___perf_sw_event(event_id, nr, regs, addr);
9930
9931 perf_swevent_put_recursion_context(rctx);
9932 fail:
9933 preempt_enable_notrace();
9934 }
9935
perf_swevent_read(struct perf_event * event)9936 static void perf_swevent_read(struct perf_event *event)
9937 {
9938 }
9939
perf_swevent_add(struct perf_event * event,int flags)9940 static int perf_swevent_add(struct perf_event *event, int flags)
9941 {
9942 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9943 struct hw_perf_event *hwc = &event->hw;
9944 struct hlist_head *head;
9945
9946 if (is_sampling_event(event)) {
9947 hwc->last_period = hwc->sample_period;
9948 perf_swevent_set_period(event);
9949 }
9950
9951 hwc->state = !(flags & PERF_EF_START);
9952
9953 head = find_swevent_head(swhash, event);
9954 if (WARN_ON_ONCE(!head))
9955 return -EINVAL;
9956
9957 hlist_add_head_rcu(&event->hlist_entry, head);
9958 perf_event_update_userpage(event);
9959
9960 return 0;
9961 }
9962
perf_swevent_del(struct perf_event * event,int flags)9963 static void perf_swevent_del(struct perf_event *event, int flags)
9964 {
9965 hlist_del_rcu(&event->hlist_entry);
9966 }
9967
perf_swevent_start(struct perf_event * event,int flags)9968 static void perf_swevent_start(struct perf_event *event, int flags)
9969 {
9970 event->hw.state = 0;
9971 }
9972
perf_swevent_stop(struct perf_event * event,int flags)9973 static void perf_swevent_stop(struct perf_event *event, int flags)
9974 {
9975 event->hw.state = PERF_HES_STOPPED;
9976 }
9977
9978 /* Deref the hlist from the update side */
9979 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9980 swevent_hlist_deref(struct swevent_htable *swhash)
9981 {
9982 return rcu_dereference_protected(swhash->swevent_hlist,
9983 lockdep_is_held(&swhash->hlist_mutex));
9984 }
9985
swevent_hlist_release(struct swevent_htable * swhash)9986 static void swevent_hlist_release(struct swevent_htable *swhash)
9987 {
9988 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9989
9990 if (!hlist)
9991 return;
9992
9993 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9994 kfree_rcu(hlist, rcu_head);
9995 }
9996
swevent_hlist_put_cpu(int cpu)9997 static void swevent_hlist_put_cpu(int cpu)
9998 {
9999 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10000
10001 mutex_lock(&swhash->hlist_mutex);
10002
10003 if (!--swhash->hlist_refcount)
10004 swevent_hlist_release(swhash);
10005
10006 mutex_unlock(&swhash->hlist_mutex);
10007 }
10008
swevent_hlist_put(void)10009 static void swevent_hlist_put(void)
10010 {
10011 int cpu;
10012
10013 for_each_possible_cpu(cpu)
10014 swevent_hlist_put_cpu(cpu);
10015 }
10016
swevent_hlist_get_cpu(int cpu)10017 static int swevent_hlist_get_cpu(int cpu)
10018 {
10019 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10020 int err = 0;
10021
10022 mutex_lock(&swhash->hlist_mutex);
10023 if (!swevent_hlist_deref(swhash) &&
10024 cpumask_test_cpu(cpu, perf_online_mask)) {
10025 struct swevent_hlist *hlist;
10026
10027 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10028 if (!hlist) {
10029 err = -ENOMEM;
10030 goto exit;
10031 }
10032 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10033 }
10034 swhash->hlist_refcount++;
10035 exit:
10036 mutex_unlock(&swhash->hlist_mutex);
10037
10038 return err;
10039 }
10040
swevent_hlist_get(void)10041 static int swevent_hlist_get(void)
10042 {
10043 int err, cpu, failed_cpu;
10044
10045 mutex_lock(&pmus_lock);
10046 for_each_possible_cpu(cpu) {
10047 err = swevent_hlist_get_cpu(cpu);
10048 if (err) {
10049 failed_cpu = cpu;
10050 goto fail;
10051 }
10052 }
10053 mutex_unlock(&pmus_lock);
10054 return 0;
10055 fail:
10056 for_each_possible_cpu(cpu) {
10057 if (cpu == failed_cpu)
10058 break;
10059 swevent_hlist_put_cpu(cpu);
10060 }
10061 mutex_unlock(&pmus_lock);
10062 return err;
10063 }
10064
10065 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10066
sw_perf_event_destroy(struct perf_event * event)10067 static void sw_perf_event_destroy(struct perf_event *event)
10068 {
10069 u64 event_id = event->attr.config;
10070
10071 WARN_ON(event->parent);
10072
10073 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10074 swevent_hlist_put();
10075 }
10076
10077 static struct pmu perf_cpu_clock; /* fwd declaration */
10078 static struct pmu perf_task_clock;
10079
perf_swevent_init(struct perf_event * event)10080 static int perf_swevent_init(struct perf_event *event)
10081 {
10082 u64 event_id = event->attr.config;
10083
10084 if (event->attr.type != PERF_TYPE_SOFTWARE)
10085 return -ENOENT;
10086
10087 /*
10088 * no branch sampling for software events
10089 */
10090 if (has_branch_stack(event))
10091 return -EOPNOTSUPP;
10092
10093 switch (event_id) {
10094 case PERF_COUNT_SW_CPU_CLOCK:
10095 event->attr.type = perf_cpu_clock.type;
10096 return -ENOENT;
10097 case PERF_COUNT_SW_TASK_CLOCK:
10098 event->attr.type = perf_task_clock.type;
10099 return -ENOENT;
10100
10101 default:
10102 break;
10103 }
10104
10105 if (event_id >= PERF_COUNT_SW_MAX)
10106 return -ENOENT;
10107
10108 if (!event->parent) {
10109 int err;
10110
10111 err = swevent_hlist_get();
10112 if (err)
10113 return err;
10114
10115 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10116 event->destroy = sw_perf_event_destroy;
10117 }
10118
10119 return 0;
10120 }
10121
10122 static struct pmu perf_swevent = {
10123 .task_ctx_nr = perf_sw_context,
10124
10125 .capabilities = PERF_PMU_CAP_NO_NMI,
10126
10127 .event_init = perf_swevent_init,
10128 .add = perf_swevent_add,
10129 .del = perf_swevent_del,
10130 .start = perf_swevent_start,
10131 .stop = perf_swevent_stop,
10132 .read = perf_swevent_read,
10133 };
10134
10135 #ifdef CONFIG_EVENT_TRACING
10136
tp_perf_event_destroy(struct perf_event * event)10137 static void tp_perf_event_destroy(struct perf_event *event)
10138 {
10139 perf_trace_destroy(event);
10140 }
10141
perf_tp_event_init(struct perf_event * event)10142 static int perf_tp_event_init(struct perf_event *event)
10143 {
10144 int err;
10145
10146 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10147 return -ENOENT;
10148
10149 /*
10150 * no branch sampling for tracepoint events
10151 */
10152 if (has_branch_stack(event))
10153 return -EOPNOTSUPP;
10154
10155 err = perf_trace_init(event);
10156 if (err)
10157 return err;
10158
10159 event->destroy = tp_perf_event_destroy;
10160
10161 return 0;
10162 }
10163
10164 static struct pmu perf_tracepoint = {
10165 .task_ctx_nr = perf_sw_context,
10166
10167 .event_init = perf_tp_event_init,
10168 .add = perf_trace_add,
10169 .del = perf_trace_del,
10170 .start = perf_swevent_start,
10171 .stop = perf_swevent_stop,
10172 .read = perf_swevent_read,
10173 };
10174
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10175 static int perf_tp_filter_match(struct perf_event *event,
10176 struct perf_raw_record *raw)
10177 {
10178 void *record = raw->frag.data;
10179
10180 /* only top level events have filters set */
10181 if (event->parent)
10182 event = event->parent;
10183
10184 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10185 return 1;
10186 return 0;
10187 }
10188
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10189 static int perf_tp_event_match(struct perf_event *event,
10190 struct perf_raw_record *raw,
10191 struct pt_regs *regs)
10192 {
10193 if (event->hw.state & PERF_HES_STOPPED)
10194 return 0;
10195 /*
10196 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10197 */
10198 if (event->attr.exclude_kernel && !user_mode(regs))
10199 return 0;
10200
10201 if (!perf_tp_filter_match(event, raw))
10202 return 0;
10203
10204 return 1;
10205 }
10206
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10207 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10208 struct trace_event_call *call, u64 count,
10209 struct pt_regs *regs, struct hlist_head *head,
10210 struct task_struct *task)
10211 {
10212 if (bpf_prog_array_valid(call)) {
10213 *(struct pt_regs **)raw_data = regs;
10214 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10215 perf_swevent_put_recursion_context(rctx);
10216 return;
10217 }
10218 }
10219 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10220 rctx, task);
10221 }
10222 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10223
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10224 static void __perf_tp_event_target_task(u64 count, void *record,
10225 struct pt_regs *regs,
10226 struct perf_sample_data *data,
10227 struct perf_raw_record *raw,
10228 struct perf_event *event)
10229 {
10230 struct trace_entry *entry = record;
10231
10232 if (event->attr.config != entry->type)
10233 return;
10234 /* Cannot deliver synchronous signal to other task. */
10235 if (event->attr.sigtrap)
10236 return;
10237 if (perf_tp_event_match(event, raw, regs)) {
10238 perf_sample_data_init(data, 0, 0);
10239 perf_sample_save_raw_data(data, event, raw);
10240 perf_swevent_event(event, count, data, regs);
10241 }
10242 }
10243
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10244 static void perf_tp_event_target_task(u64 count, void *record,
10245 struct pt_regs *regs,
10246 struct perf_sample_data *data,
10247 struct perf_raw_record *raw,
10248 struct perf_event_context *ctx)
10249 {
10250 unsigned int cpu = smp_processor_id();
10251 struct pmu *pmu = &perf_tracepoint;
10252 struct perf_event *event, *sibling;
10253
10254 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10255 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10256 for_each_sibling_event(sibling, event)
10257 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10258 }
10259
10260 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10261 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10262 for_each_sibling_event(sibling, event)
10263 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10264 }
10265 }
10266
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10267 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10268 struct pt_regs *regs, struct hlist_head *head, int rctx,
10269 struct task_struct *task)
10270 {
10271 struct perf_sample_data data;
10272 struct perf_event *event;
10273
10274 struct perf_raw_record raw = {
10275 .frag = {
10276 .size = entry_size,
10277 .data = record,
10278 },
10279 };
10280
10281 perf_trace_buf_update(record, event_type);
10282
10283 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10284 if (perf_tp_event_match(event, &raw, regs)) {
10285 /*
10286 * Here use the same on-stack perf_sample_data,
10287 * some members in data are event-specific and
10288 * need to be re-computed for different sweveents.
10289 * Re-initialize data->sample_flags safely to avoid
10290 * the problem that next event skips preparing data
10291 * because data->sample_flags is set.
10292 */
10293 perf_sample_data_init(&data, 0, 0);
10294 perf_sample_save_raw_data(&data, event, &raw);
10295 perf_swevent_event(event, count, &data, regs);
10296 }
10297 }
10298
10299 /*
10300 * If we got specified a target task, also iterate its context and
10301 * deliver this event there too.
10302 */
10303 if (task && task != current) {
10304 struct perf_event_context *ctx;
10305
10306 rcu_read_lock();
10307 ctx = rcu_dereference(task->perf_event_ctxp);
10308 if (!ctx)
10309 goto unlock;
10310
10311 raw_spin_lock(&ctx->lock);
10312 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10313 raw_spin_unlock(&ctx->lock);
10314 unlock:
10315 rcu_read_unlock();
10316 }
10317
10318 perf_swevent_put_recursion_context(rctx);
10319 }
10320 EXPORT_SYMBOL_GPL(perf_tp_event);
10321
10322 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10323 /*
10324 * Flags in config, used by dynamic PMU kprobe and uprobe
10325 * The flags should match following PMU_FORMAT_ATTR().
10326 *
10327 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10328 * if not set, create kprobe/uprobe
10329 *
10330 * The following values specify a reference counter (or semaphore in the
10331 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10332 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10333 *
10334 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10335 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10336 */
10337 enum perf_probe_config {
10338 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10339 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10340 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10341 };
10342
10343 PMU_FORMAT_ATTR(retprobe, "config:0");
10344 #endif
10345
10346 #ifdef CONFIG_KPROBE_EVENTS
10347 static struct attribute *kprobe_attrs[] = {
10348 &format_attr_retprobe.attr,
10349 NULL,
10350 };
10351
10352 static struct attribute_group kprobe_format_group = {
10353 .name = "format",
10354 .attrs = kprobe_attrs,
10355 };
10356
10357 static const struct attribute_group *kprobe_attr_groups[] = {
10358 &kprobe_format_group,
10359 NULL,
10360 };
10361
10362 static int perf_kprobe_event_init(struct perf_event *event);
10363 static struct pmu perf_kprobe = {
10364 .task_ctx_nr = perf_sw_context,
10365 .event_init = perf_kprobe_event_init,
10366 .add = perf_trace_add,
10367 .del = perf_trace_del,
10368 .start = perf_swevent_start,
10369 .stop = perf_swevent_stop,
10370 .read = perf_swevent_read,
10371 .attr_groups = kprobe_attr_groups,
10372 };
10373
perf_kprobe_event_init(struct perf_event * event)10374 static int perf_kprobe_event_init(struct perf_event *event)
10375 {
10376 int err;
10377 bool is_retprobe;
10378
10379 if (event->attr.type != perf_kprobe.type)
10380 return -ENOENT;
10381
10382 if (!perfmon_capable())
10383 return -EACCES;
10384
10385 /*
10386 * no branch sampling for probe events
10387 */
10388 if (has_branch_stack(event))
10389 return -EOPNOTSUPP;
10390
10391 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10392 err = perf_kprobe_init(event, is_retprobe);
10393 if (err)
10394 return err;
10395
10396 event->destroy = perf_kprobe_destroy;
10397
10398 return 0;
10399 }
10400 #endif /* CONFIG_KPROBE_EVENTS */
10401
10402 #ifdef CONFIG_UPROBE_EVENTS
10403 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10404
10405 static struct attribute *uprobe_attrs[] = {
10406 &format_attr_retprobe.attr,
10407 &format_attr_ref_ctr_offset.attr,
10408 NULL,
10409 };
10410
10411 static struct attribute_group uprobe_format_group = {
10412 .name = "format",
10413 .attrs = uprobe_attrs,
10414 };
10415
10416 static const struct attribute_group *uprobe_attr_groups[] = {
10417 &uprobe_format_group,
10418 NULL,
10419 };
10420
10421 static int perf_uprobe_event_init(struct perf_event *event);
10422 static struct pmu perf_uprobe = {
10423 .task_ctx_nr = perf_sw_context,
10424 .event_init = perf_uprobe_event_init,
10425 .add = perf_trace_add,
10426 .del = perf_trace_del,
10427 .start = perf_swevent_start,
10428 .stop = perf_swevent_stop,
10429 .read = perf_swevent_read,
10430 .attr_groups = uprobe_attr_groups,
10431 };
10432
perf_uprobe_event_init(struct perf_event * event)10433 static int perf_uprobe_event_init(struct perf_event *event)
10434 {
10435 int err;
10436 unsigned long ref_ctr_offset;
10437 bool is_retprobe;
10438
10439 if (event->attr.type != perf_uprobe.type)
10440 return -ENOENT;
10441
10442 if (!perfmon_capable())
10443 return -EACCES;
10444
10445 /*
10446 * no branch sampling for probe events
10447 */
10448 if (has_branch_stack(event))
10449 return -EOPNOTSUPP;
10450
10451 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10452 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10453 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10454 if (err)
10455 return err;
10456
10457 event->destroy = perf_uprobe_destroy;
10458
10459 return 0;
10460 }
10461 #endif /* CONFIG_UPROBE_EVENTS */
10462
perf_tp_register(void)10463 static inline void perf_tp_register(void)
10464 {
10465 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10466 #ifdef CONFIG_KPROBE_EVENTS
10467 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10468 #endif
10469 #ifdef CONFIG_UPROBE_EVENTS
10470 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10471 #endif
10472 }
10473
perf_event_free_filter(struct perf_event * event)10474 static void perf_event_free_filter(struct perf_event *event)
10475 {
10476 ftrace_profile_free_filter(event);
10477 }
10478
10479 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10480 static void bpf_overflow_handler(struct perf_event *event,
10481 struct perf_sample_data *data,
10482 struct pt_regs *regs)
10483 {
10484 struct bpf_perf_event_data_kern ctx = {
10485 .data = data,
10486 .event = event,
10487 };
10488 struct bpf_prog *prog;
10489 int ret = 0;
10490
10491 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10492 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10493 goto out;
10494 rcu_read_lock();
10495 prog = READ_ONCE(event->prog);
10496 if (prog) {
10497 perf_prepare_sample(data, event, regs);
10498 ret = bpf_prog_run(prog, &ctx);
10499 }
10500 rcu_read_unlock();
10501 out:
10502 __this_cpu_dec(bpf_prog_active);
10503 if (!ret)
10504 return;
10505
10506 event->orig_overflow_handler(event, data, regs);
10507 }
10508
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10509 static int perf_event_set_bpf_handler(struct perf_event *event,
10510 struct bpf_prog *prog,
10511 u64 bpf_cookie)
10512 {
10513 if (event->overflow_handler_context)
10514 /* hw breakpoint or kernel counter */
10515 return -EINVAL;
10516
10517 if (event->prog)
10518 return -EEXIST;
10519
10520 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10521 return -EINVAL;
10522
10523 if (event->attr.precise_ip &&
10524 prog->call_get_stack &&
10525 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10526 event->attr.exclude_callchain_kernel ||
10527 event->attr.exclude_callchain_user)) {
10528 /*
10529 * On perf_event with precise_ip, calling bpf_get_stack()
10530 * may trigger unwinder warnings and occasional crashes.
10531 * bpf_get_[stack|stackid] works around this issue by using
10532 * callchain attached to perf_sample_data. If the
10533 * perf_event does not full (kernel and user) callchain
10534 * attached to perf_sample_data, do not allow attaching BPF
10535 * program that calls bpf_get_[stack|stackid].
10536 */
10537 return -EPROTO;
10538 }
10539
10540 event->prog = prog;
10541 event->bpf_cookie = bpf_cookie;
10542 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10543 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10544 return 0;
10545 }
10546
perf_event_free_bpf_handler(struct perf_event * event)10547 static void perf_event_free_bpf_handler(struct perf_event *event)
10548 {
10549 struct bpf_prog *prog = event->prog;
10550
10551 if (!prog)
10552 return;
10553
10554 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10555 event->prog = NULL;
10556 bpf_prog_put(prog);
10557 }
10558 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10559 static int perf_event_set_bpf_handler(struct perf_event *event,
10560 struct bpf_prog *prog,
10561 u64 bpf_cookie)
10562 {
10563 return -EOPNOTSUPP;
10564 }
perf_event_free_bpf_handler(struct perf_event * event)10565 static void perf_event_free_bpf_handler(struct perf_event *event)
10566 {
10567 }
10568 #endif
10569
10570 /*
10571 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10572 * with perf_event_open()
10573 */
perf_event_is_tracing(struct perf_event * event)10574 static inline bool perf_event_is_tracing(struct perf_event *event)
10575 {
10576 if (event->pmu == &perf_tracepoint)
10577 return true;
10578 #ifdef CONFIG_KPROBE_EVENTS
10579 if (event->pmu == &perf_kprobe)
10580 return true;
10581 #endif
10582 #ifdef CONFIG_UPROBE_EVENTS
10583 if (event->pmu == &perf_uprobe)
10584 return true;
10585 #endif
10586 return false;
10587 }
10588
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10589 static int __perf_event_set_bpf_prog(struct perf_event *event,
10590 struct bpf_prog *prog,
10591 u64 bpf_cookie)
10592 {
10593 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10594
10595 if (!perf_event_is_tracing(event))
10596 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10597
10598 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10599 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10600 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10601 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10602 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10603 /* bpf programs can only be attached to u/kprobe or tracepoint */
10604 return -EINVAL;
10605
10606 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10607 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10608 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10609 return -EINVAL;
10610
10611 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10612 /* only uprobe programs are allowed to be sleepable */
10613 return -EINVAL;
10614
10615 /* Kprobe override only works for kprobes, not uprobes. */
10616 if (prog->kprobe_override && !is_kprobe)
10617 return -EINVAL;
10618
10619 if (is_tracepoint || is_syscall_tp) {
10620 int off = trace_event_get_offsets(event->tp_event);
10621
10622 if (prog->aux->max_ctx_offset > off)
10623 return -EACCES;
10624 }
10625
10626 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10627 }
10628
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10629 int perf_event_set_bpf_prog(struct perf_event *event,
10630 struct bpf_prog *prog,
10631 u64 bpf_cookie)
10632 {
10633 struct perf_event_context *ctx;
10634 int ret;
10635
10636 ctx = perf_event_ctx_lock(event);
10637 ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
10638 perf_event_ctx_unlock(event, ctx);
10639
10640 return ret;
10641 }
10642
perf_event_free_bpf_prog(struct perf_event * event)10643 void perf_event_free_bpf_prog(struct perf_event *event)
10644 {
10645 if (!perf_event_is_tracing(event)) {
10646 perf_event_free_bpf_handler(event);
10647 return;
10648 }
10649 perf_event_detach_bpf_prog(event);
10650 }
10651
10652 #else
10653
perf_tp_register(void)10654 static inline void perf_tp_register(void)
10655 {
10656 }
10657
perf_event_free_filter(struct perf_event * event)10658 static void perf_event_free_filter(struct perf_event *event)
10659 {
10660 }
10661
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10662 static int __perf_event_set_bpf_prog(struct perf_event *event,
10663 struct bpf_prog *prog,
10664 u64 bpf_cookie)
10665 {
10666 return -ENOENT;
10667 }
10668
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10669 int perf_event_set_bpf_prog(struct perf_event *event,
10670 struct bpf_prog *prog,
10671 u64 bpf_cookie)
10672 {
10673 return -ENOENT;
10674 }
10675
perf_event_free_bpf_prog(struct perf_event * event)10676 void perf_event_free_bpf_prog(struct perf_event *event)
10677 {
10678 }
10679 #endif /* CONFIG_EVENT_TRACING */
10680
10681 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10682 void perf_bp_event(struct perf_event *bp, void *data)
10683 {
10684 struct perf_sample_data sample;
10685 struct pt_regs *regs = data;
10686
10687 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10688
10689 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10690 perf_swevent_event(bp, 1, &sample, regs);
10691 }
10692 #endif
10693
10694 /*
10695 * Allocate a new address filter
10696 */
10697 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10698 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10699 {
10700 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10701 struct perf_addr_filter *filter;
10702
10703 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10704 if (!filter)
10705 return NULL;
10706
10707 INIT_LIST_HEAD(&filter->entry);
10708 list_add_tail(&filter->entry, filters);
10709
10710 return filter;
10711 }
10712
free_filters_list(struct list_head * filters)10713 static void free_filters_list(struct list_head *filters)
10714 {
10715 struct perf_addr_filter *filter, *iter;
10716
10717 list_for_each_entry_safe(filter, iter, filters, entry) {
10718 path_put(&filter->path);
10719 list_del(&filter->entry);
10720 kfree(filter);
10721 }
10722 }
10723
10724 /*
10725 * Free existing address filters and optionally install new ones
10726 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10727 static void perf_addr_filters_splice(struct perf_event *event,
10728 struct list_head *head)
10729 {
10730 unsigned long flags;
10731 LIST_HEAD(list);
10732
10733 if (!has_addr_filter(event))
10734 return;
10735
10736 /* don't bother with children, they don't have their own filters */
10737 if (event->parent)
10738 return;
10739
10740 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10741
10742 list_splice_init(&event->addr_filters.list, &list);
10743 if (head)
10744 list_splice(head, &event->addr_filters.list);
10745
10746 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10747
10748 free_filters_list(&list);
10749 }
10750
10751 /*
10752 * Scan through mm's vmas and see if one of them matches the
10753 * @filter; if so, adjust filter's address range.
10754 * Called with mm::mmap_lock down for reading.
10755 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10756 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10757 struct mm_struct *mm,
10758 struct perf_addr_filter_range *fr)
10759 {
10760 struct vm_area_struct *vma;
10761 VMA_ITERATOR(vmi, mm, 0);
10762
10763 for_each_vma(vmi, vma) {
10764 if (!vma->vm_file)
10765 continue;
10766
10767 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10768 return;
10769 }
10770 }
10771
10772 /*
10773 * Update event's address range filters based on the
10774 * task's existing mappings, if any.
10775 */
perf_event_addr_filters_apply(struct perf_event * event)10776 static void perf_event_addr_filters_apply(struct perf_event *event)
10777 {
10778 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10779 struct task_struct *task = READ_ONCE(event->ctx->task);
10780 struct perf_addr_filter *filter;
10781 struct mm_struct *mm = NULL;
10782 unsigned int count = 0;
10783 unsigned long flags;
10784
10785 /*
10786 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10787 * will stop on the parent's child_mutex that our caller is also holding
10788 */
10789 if (task == TASK_TOMBSTONE)
10790 return;
10791
10792 if (ifh->nr_file_filters) {
10793 mm = get_task_mm(task);
10794 if (!mm)
10795 goto restart;
10796
10797 mmap_read_lock(mm);
10798 }
10799
10800 raw_spin_lock_irqsave(&ifh->lock, flags);
10801 list_for_each_entry(filter, &ifh->list, entry) {
10802 if (filter->path.dentry) {
10803 /*
10804 * Adjust base offset if the filter is associated to a
10805 * binary that needs to be mapped:
10806 */
10807 event->addr_filter_ranges[count].start = 0;
10808 event->addr_filter_ranges[count].size = 0;
10809
10810 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10811 } else {
10812 event->addr_filter_ranges[count].start = filter->offset;
10813 event->addr_filter_ranges[count].size = filter->size;
10814 }
10815
10816 count++;
10817 }
10818
10819 event->addr_filters_gen++;
10820 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10821
10822 if (ifh->nr_file_filters) {
10823 mmap_read_unlock(mm);
10824
10825 mmput(mm);
10826 }
10827
10828 restart:
10829 perf_event_stop(event, 1);
10830 }
10831
10832 /*
10833 * Address range filtering: limiting the data to certain
10834 * instruction address ranges. Filters are ioctl()ed to us from
10835 * userspace as ascii strings.
10836 *
10837 * Filter string format:
10838 *
10839 * ACTION RANGE_SPEC
10840 * where ACTION is one of the
10841 * * "filter": limit the trace to this region
10842 * * "start": start tracing from this address
10843 * * "stop": stop tracing at this address/region;
10844 * RANGE_SPEC is
10845 * * for kernel addresses: <start address>[/<size>]
10846 * * for object files: <start address>[/<size>]@</path/to/object/file>
10847 *
10848 * if <size> is not specified or is zero, the range is treated as a single
10849 * address; not valid for ACTION=="filter".
10850 */
10851 enum {
10852 IF_ACT_NONE = -1,
10853 IF_ACT_FILTER,
10854 IF_ACT_START,
10855 IF_ACT_STOP,
10856 IF_SRC_FILE,
10857 IF_SRC_KERNEL,
10858 IF_SRC_FILEADDR,
10859 IF_SRC_KERNELADDR,
10860 };
10861
10862 enum {
10863 IF_STATE_ACTION = 0,
10864 IF_STATE_SOURCE,
10865 IF_STATE_END,
10866 };
10867
10868 static const match_table_t if_tokens = {
10869 { IF_ACT_FILTER, "filter" },
10870 { IF_ACT_START, "start" },
10871 { IF_ACT_STOP, "stop" },
10872 { IF_SRC_FILE, "%u/%u@%s" },
10873 { IF_SRC_KERNEL, "%u/%u" },
10874 { IF_SRC_FILEADDR, "%u@%s" },
10875 { IF_SRC_KERNELADDR, "%u" },
10876 { IF_ACT_NONE, NULL },
10877 };
10878
10879 /*
10880 * Address filter string parser
10881 */
10882 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10883 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10884 struct list_head *filters)
10885 {
10886 struct perf_addr_filter *filter = NULL;
10887 char *start, *orig, *filename = NULL;
10888 substring_t args[MAX_OPT_ARGS];
10889 int state = IF_STATE_ACTION, token;
10890 unsigned int kernel = 0;
10891 int ret = -EINVAL;
10892
10893 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10894 if (!fstr)
10895 return -ENOMEM;
10896
10897 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10898 static const enum perf_addr_filter_action_t actions[] = {
10899 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10900 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10901 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10902 };
10903 ret = -EINVAL;
10904
10905 if (!*start)
10906 continue;
10907
10908 /* filter definition begins */
10909 if (state == IF_STATE_ACTION) {
10910 filter = perf_addr_filter_new(event, filters);
10911 if (!filter)
10912 goto fail;
10913 }
10914
10915 token = match_token(start, if_tokens, args);
10916 switch (token) {
10917 case IF_ACT_FILTER:
10918 case IF_ACT_START:
10919 case IF_ACT_STOP:
10920 if (state != IF_STATE_ACTION)
10921 goto fail;
10922
10923 filter->action = actions[token];
10924 state = IF_STATE_SOURCE;
10925 break;
10926
10927 case IF_SRC_KERNELADDR:
10928 case IF_SRC_KERNEL:
10929 kernel = 1;
10930 fallthrough;
10931
10932 case IF_SRC_FILEADDR:
10933 case IF_SRC_FILE:
10934 if (state != IF_STATE_SOURCE)
10935 goto fail;
10936
10937 *args[0].to = 0;
10938 ret = kstrtoul(args[0].from, 0, &filter->offset);
10939 if (ret)
10940 goto fail;
10941
10942 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10943 *args[1].to = 0;
10944 ret = kstrtoul(args[1].from, 0, &filter->size);
10945 if (ret)
10946 goto fail;
10947 }
10948
10949 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10950 int fpos = token == IF_SRC_FILE ? 2 : 1;
10951
10952 kfree(filename);
10953 filename = match_strdup(&args[fpos]);
10954 if (!filename) {
10955 ret = -ENOMEM;
10956 goto fail;
10957 }
10958 }
10959
10960 state = IF_STATE_END;
10961 break;
10962
10963 default:
10964 goto fail;
10965 }
10966
10967 /*
10968 * Filter definition is fully parsed, validate and install it.
10969 * Make sure that it doesn't contradict itself or the event's
10970 * attribute.
10971 */
10972 if (state == IF_STATE_END) {
10973 ret = -EINVAL;
10974
10975 /*
10976 * ACTION "filter" must have a non-zero length region
10977 * specified.
10978 */
10979 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10980 !filter->size)
10981 goto fail;
10982
10983 if (!kernel) {
10984 if (!filename)
10985 goto fail;
10986
10987 /*
10988 * For now, we only support file-based filters
10989 * in per-task events; doing so for CPU-wide
10990 * events requires additional context switching
10991 * trickery, since same object code will be
10992 * mapped at different virtual addresses in
10993 * different processes.
10994 */
10995 ret = -EOPNOTSUPP;
10996 if (!event->ctx->task)
10997 goto fail;
10998
10999 /* look up the path and grab its inode */
11000 ret = kern_path(filename, LOOKUP_FOLLOW,
11001 &filter->path);
11002 if (ret)
11003 goto fail;
11004
11005 ret = -EINVAL;
11006 if (!filter->path.dentry ||
11007 !S_ISREG(d_inode(filter->path.dentry)
11008 ->i_mode))
11009 goto fail;
11010
11011 event->addr_filters.nr_file_filters++;
11012 }
11013
11014 /* ready to consume more filters */
11015 kfree(filename);
11016 filename = NULL;
11017 state = IF_STATE_ACTION;
11018 filter = NULL;
11019 kernel = 0;
11020 }
11021 }
11022
11023 if (state != IF_STATE_ACTION)
11024 goto fail;
11025
11026 kfree(filename);
11027 kfree(orig);
11028
11029 return 0;
11030
11031 fail:
11032 kfree(filename);
11033 free_filters_list(filters);
11034 kfree(orig);
11035
11036 return ret;
11037 }
11038
11039 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11040 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11041 {
11042 LIST_HEAD(filters);
11043 int ret;
11044
11045 /*
11046 * Since this is called in perf_ioctl() path, we're already holding
11047 * ctx::mutex.
11048 */
11049 lockdep_assert_held(&event->ctx->mutex);
11050
11051 if (WARN_ON_ONCE(event->parent))
11052 return -EINVAL;
11053
11054 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11055 if (ret)
11056 goto fail_clear_files;
11057
11058 ret = event->pmu->addr_filters_validate(&filters);
11059 if (ret)
11060 goto fail_free_filters;
11061
11062 /* remove existing filters, if any */
11063 perf_addr_filters_splice(event, &filters);
11064
11065 /* install new filters */
11066 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11067
11068 return ret;
11069
11070 fail_free_filters:
11071 free_filters_list(&filters);
11072
11073 fail_clear_files:
11074 event->addr_filters.nr_file_filters = 0;
11075
11076 return ret;
11077 }
11078
perf_event_set_filter(struct perf_event * event,void __user * arg)11079 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11080 {
11081 int ret = -EINVAL;
11082 char *filter_str;
11083
11084 filter_str = strndup_user(arg, PAGE_SIZE);
11085 if (IS_ERR(filter_str))
11086 return PTR_ERR(filter_str);
11087
11088 #ifdef CONFIG_EVENT_TRACING
11089 if (perf_event_is_tracing(event)) {
11090 struct perf_event_context *ctx = event->ctx;
11091
11092 /*
11093 * Beware, here be dragons!!
11094 *
11095 * the tracepoint muck will deadlock against ctx->mutex, but
11096 * the tracepoint stuff does not actually need it. So
11097 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11098 * already have a reference on ctx.
11099 *
11100 * This can result in event getting moved to a different ctx,
11101 * but that does not affect the tracepoint state.
11102 */
11103 mutex_unlock(&ctx->mutex);
11104 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11105 mutex_lock(&ctx->mutex);
11106 } else
11107 #endif
11108 if (has_addr_filter(event))
11109 ret = perf_event_set_addr_filter(event, filter_str);
11110
11111 kfree(filter_str);
11112 return ret;
11113 }
11114
11115 /*
11116 * hrtimer based swevent callback
11117 */
11118
perf_swevent_hrtimer(struct hrtimer * hrtimer)11119 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11120 {
11121 enum hrtimer_restart ret = HRTIMER_RESTART;
11122 struct perf_sample_data data;
11123 struct pt_regs *regs;
11124 struct perf_event *event;
11125 u64 period;
11126
11127 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11128
11129 if (event->state != PERF_EVENT_STATE_ACTIVE)
11130 return HRTIMER_NORESTART;
11131
11132 event->pmu->read(event);
11133
11134 perf_sample_data_init(&data, 0, event->hw.last_period);
11135 regs = get_irq_regs();
11136
11137 if (regs && !perf_exclude_event(event, regs)) {
11138 if (!(event->attr.exclude_idle && is_idle_task(current)))
11139 if (__perf_event_overflow(event, 1, &data, regs))
11140 ret = HRTIMER_NORESTART;
11141 }
11142
11143 period = max_t(u64, 10000, event->hw.sample_period);
11144 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11145
11146 return ret;
11147 }
11148
perf_swevent_start_hrtimer(struct perf_event * event)11149 static void perf_swevent_start_hrtimer(struct perf_event *event)
11150 {
11151 struct hw_perf_event *hwc = &event->hw;
11152 s64 period;
11153
11154 if (!is_sampling_event(event))
11155 return;
11156
11157 period = local64_read(&hwc->period_left);
11158 if (period) {
11159 if (period < 0)
11160 period = 10000;
11161
11162 local64_set(&hwc->period_left, 0);
11163 } else {
11164 period = max_t(u64, 10000, hwc->sample_period);
11165 }
11166 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11167 HRTIMER_MODE_REL_PINNED_HARD);
11168 }
11169
perf_swevent_cancel_hrtimer(struct perf_event * event)11170 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11171 {
11172 struct hw_perf_event *hwc = &event->hw;
11173
11174 if (is_sampling_event(event)) {
11175 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11176 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11177
11178 hrtimer_cancel(&hwc->hrtimer);
11179 }
11180 }
11181
perf_swevent_init_hrtimer(struct perf_event * event)11182 static void perf_swevent_init_hrtimer(struct perf_event *event)
11183 {
11184 struct hw_perf_event *hwc = &event->hw;
11185
11186 if (!is_sampling_event(event))
11187 return;
11188
11189 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11190 hwc->hrtimer.function = perf_swevent_hrtimer;
11191
11192 /*
11193 * Since hrtimers have a fixed rate, we can do a static freq->period
11194 * mapping and avoid the whole period adjust feedback stuff.
11195 */
11196 if (event->attr.freq) {
11197 long freq = event->attr.sample_freq;
11198
11199 event->attr.sample_period = NSEC_PER_SEC / freq;
11200 hwc->sample_period = event->attr.sample_period;
11201 local64_set(&hwc->period_left, hwc->sample_period);
11202 hwc->last_period = hwc->sample_period;
11203 event->attr.freq = 0;
11204 }
11205 }
11206
11207 /*
11208 * Software event: cpu wall time clock
11209 */
11210
cpu_clock_event_update(struct perf_event * event)11211 static void cpu_clock_event_update(struct perf_event *event)
11212 {
11213 s64 prev;
11214 u64 now;
11215
11216 now = local_clock();
11217 prev = local64_xchg(&event->hw.prev_count, now);
11218 local64_add(now - prev, &event->count);
11219 }
11220
cpu_clock_event_start(struct perf_event * event,int flags)11221 static void cpu_clock_event_start(struct perf_event *event, int flags)
11222 {
11223 local64_set(&event->hw.prev_count, local_clock());
11224 perf_swevent_start_hrtimer(event);
11225 }
11226
cpu_clock_event_stop(struct perf_event * event,int flags)11227 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11228 {
11229 perf_swevent_cancel_hrtimer(event);
11230 cpu_clock_event_update(event);
11231 }
11232
cpu_clock_event_add(struct perf_event * event,int flags)11233 static int cpu_clock_event_add(struct perf_event *event, int flags)
11234 {
11235 if (flags & PERF_EF_START)
11236 cpu_clock_event_start(event, flags);
11237 perf_event_update_userpage(event);
11238
11239 return 0;
11240 }
11241
cpu_clock_event_del(struct perf_event * event,int flags)11242 static void cpu_clock_event_del(struct perf_event *event, int flags)
11243 {
11244 cpu_clock_event_stop(event, flags);
11245 }
11246
cpu_clock_event_read(struct perf_event * event)11247 static void cpu_clock_event_read(struct perf_event *event)
11248 {
11249 cpu_clock_event_update(event);
11250 }
11251
cpu_clock_event_init(struct perf_event * event)11252 static int cpu_clock_event_init(struct perf_event *event)
11253 {
11254 if (event->attr.type != perf_cpu_clock.type)
11255 return -ENOENT;
11256
11257 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11258 return -ENOENT;
11259
11260 /*
11261 * no branch sampling for software events
11262 */
11263 if (has_branch_stack(event))
11264 return -EOPNOTSUPP;
11265
11266 perf_swevent_init_hrtimer(event);
11267
11268 return 0;
11269 }
11270
11271 static struct pmu perf_cpu_clock = {
11272 .task_ctx_nr = perf_sw_context,
11273
11274 .capabilities = PERF_PMU_CAP_NO_NMI,
11275 .dev = PMU_NULL_DEV,
11276
11277 .event_init = cpu_clock_event_init,
11278 .add = cpu_clock_event_add,
11279 .del = cpu_clock_event_del,
11280 .start = cpu_clock_event_start,
11281 .stop = cpu_clock_event_stop,
11282 .read = cpu_clock_event_read,
11283 };
11284
11285 /*
11286 * Software event: task time clock
11287 */
11288
task_clock_event_update(struct perf_event * event,u64 now)11289 static void task_clock_event_update(struct perf_event *event, u64 now)
11290 {
11291 u64 prev;
11292 s64 delta;
11293
11294 prev = local64_xchg(&event->hw.prev_count, now);
11295 delta = now - prev;
11296 local64_add(delta, &event->count);
11297 }
11298
task_clock_event_start(struct perf_event * event,int flags)11299 static void task_clock_event_start(struct perf_event *event, int flags)
11300 {
11301 local64_set(&event->hw.prev_count, event->ctx->time);
11302 perf_swevent_start_hrtimer(event);
11303 }
11304
task_clock_event_stop(struct perf_event * event,int flags)11305 static void task_clock_event_stop(struct perf_event *event, int flags)
11306 {
11307 perf_swevent_cancel_hrtimer(event);
11308 task_clock_event_update(event, event->ctx->time);
11309 }
11310
task_clock_event_add(struct perf_event * event,int flags)11311 static int task_clock_event_add(struct perf_event *event, int flags)
11312 {
11313 if (flags & PERF_EF_START)
11314 task_clock_event_start(event, flags);
11315 perf_event_update_userpage(event);
11316
11317 return 0;
11318 }
11319
task_clock_event_del(struct perf_event * event,int flags)11320 static void task_clock_event_del(struct perf_event *event, int flags)
11321 {
11322 task_clock_event_stop(event, PERF_EF_UPDATE);
11323 }
11324
task_clock_event_read(struct perf_event * event)11325 static void task_clock_event_read(struct perf_event *event)
11326 {
11327 u64 now = perf_clock();
11328 u64 delta = now - event->ctx->timestamp;
11329 u64 time = event->ctx->time + delta;
11330
11331 task_clock_event_update(event, time);
11332 }
11333
task_clock_event_init(struct perf_event * event)11334 static int task_clock_event_init(struct perf_event *event)
11335 {
11336 if (event->attr.type != perf_task_clock.type)
11337 return -ENOENT;
11338
11339 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11340 return -ENOENT;
11341
11342 /*
11343 * no branch sampling for software events
11344 */
11345 if (has_branch_stack(event))
11346 return -EOPNOTSUPP;
11347
11348 perf_swevent_init_hrtimer(event);
11349
11350 return 0;
11351 }
11352
11353 static struct pmu perf_task_clock = {
11354 .task_ctx_nr = perf_sw_context,
11355
11356 .capabilities = PERF_PMU_CAP_NO_NMI,
11357 .dev = PMU_NULL_DEV,
11358
11359 .event_init = task_clock_event_init,
11360 .add = task_clock_event_add,
11361 .del = task_clock_event_del,
11362 .start = task_clock_event_start,
11363 .stop = task_clock_event_stop,
11364 .read = task_clock_event_read,
11365 };
11366
perf_pmu_nop_void(struct pmu * pmu)11367 static void perf_pmu_nop_void(struct pmu *pmu)
11368 {
11369 }
11370
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11371 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11372 {
11373 }
11374
perf_pmu_nop_int(struct pmu * pmu)11375 static int perf_pmu_nop_int(struct pmu *pmu)
11376 {
11377 return 0;
11378 }
11379
perf_event_nop_int(struct perf_event * event,u64 value)11380 static int perf_event_nop_int(struct perf_event *event, u64 value)
11381 {
11382 return 0;
11383 }
11384
11385 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11386
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11387 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11388 {
11389 __this_cpu_write(nop_txn_flags, flags);
11390
11391 if (flags & ~PERF_PMU_TXN_ADD)
11392 return;
11393
11394 perf_pmu_disable(pmu);
11395 }
11396
perf_pmu_commit_txn(struct pmu * pmu)11397 static int perf_pmu_commit_txn(struct pmu *pmu)
11398 {
11399 unsigned int flags = __this_cpu_read(nop_txn_flags);
11400
11401 __this_cpu_write(nop_txn_flags, 0);
11402
11403 if (flags & ~PERF_PMU_TXN_ADD)
11404 return 0;
11405
11406 perf_pmu_enable(pmu);
11407 return 0;
11408 }
11409
perf_pmu_cancel_txn(struct pmu * pmu)11410 static void perf_pmu_cancel_txn(struct pmu *pmu)
11411 {
11412 unsigned int flags = __this_cpu_read(nop_txn_flags);
11413
11414 __this_cpu_write(nop_txn_flags, 0);
11415
11416 if (flags & ~PERF_PMU_TXN_ADD)
11417 return;
11418
11419 perf_pmu_enable(pmu);
11420 }
11421
perf_event_idx_default(struct perf_event * event)11422 static int perf_event_idx_default(struct perf_event *event)
11423 {
11424 return 0;
11425 }
11426
free_pmu_context(struct pmu * pmu)11427 static void free_pmu_context(struct pmu *pmu)
11428 {
11429 free_percpu(pmu->cpu_pmu_context);
11430 }
11431
11432 /*
11433 * Let userspace know that this PMU supports address range filtering:
11434 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11435 static ssize_t nr_addr_filters_show(struct device *dev,
11436 struct device_attribute *attr,
11437 char *page)
11438 {
11439 struct pmu *pmu = dev_get_drvdata(dev);
11440
11441 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11442 }
11443 DEVICE_ATTR_RO(nr_addr_filters);
11444
11445 static struct idr pmu_idr;
11446
11447 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11448 type_show(struct device *dev, struct device_attribute *attr, char *page)
11449 {
11450 struct pmu *pmu = dev_get_drvdata(dev);
11451
11452 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11453 }
11454 static DEVICE_ATTR_RO(type);
11455
11456 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11457 perf_event_mux_interval_ms_show(struct device *dev,
11458 struct device_attribute *attr,
11459 char *page)
11460 {
11461 struct pmu *pmu = dev_get_drvdata(dev);
11462
11463 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11464 }
11465
11466 static DEFINE_MUTEX(mux_interval_mutex);
11467
11468 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11469 perf_event_mux_interval_ms_store(struct device *dev,
11470 struct device_attribute *attr,
11471 const char *buf, size_t count)
11472 {
11473 struct pmu *pmu = dev_get_drvdata(dev);
11474 int timer, cpu, ret;
11475
11476 ret = kstrtoint(buf, 0, &timer);
11477 if (ret)
11478 return ret;
11479
11480 if (timer < 1)
11481 return -EINVAL;
11482
11483 /* same value, noting to do */
11484 if (timer == pmu->hrtimer_interval_ms)
11485 return count;
11486
11487 mutex_lock(&mux_interval_mutex);
11488 pmu->hrtimer_interval_ms = timer;
11489
11490 /* update all cpuctx for this PMU */
11491 cpus_read_lock();
11492 for_each_online_cpu(cpu) {
11493 struct perf_cpu_pmu_context *cpc;
11494 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11495 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11496
11497 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11498 }
11499 cpus_read_unlock();
11500 mutex_unlock(&mux_interval_mutex);
11501
11502 return count;
11503 }
11504 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11505
11506 static struct attribute *pmu_dev_attrs[] = {
11507 &dev_attr_type.attr,
11508 &dev_attr_perf_event_mux_interval_ms.attr,
11509 &dev_attr_nr_addr_filters.attr,
11510 NULL,
11511 };
11512
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11513 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11514 {
11515 struct device *dev = kobj_to_dev(kobj);
11516 struct pmu *pmu = dev_get_drvdata(dev);
11517
11518 if (n == 2 && !pmu->nr_addr_filters)
11519 return 0;
11520
11521 return a->mode;
11522 }
11523
11524 static struct attribute_group pmu_dev_attr_group = {
11525 .is_visible = pmu_dev_is_visible,
11526 .attrs = pmu_dev_attrs,
11527 };
11528
11529 static const struct attribute_group *pmu_dev_groups[] = {
11530 &pmu_dev_attr_group,
11531 NULL,
11532 };
11533
11534 static int pmu_bus_running;
11535 static struct bus_type pmu_bus = {
11536 .name = "event_source",
11537 .dev_groups = pmu_dev_groups,
11538 };
11539
pmu_dev_release(struct device * dev)11540 static void pmu_dev_release(struct device *dev)
11541 {
11542 kfree(dev);
11543 }
11544
pmu_dev_alloc(struct pmu * pmu)11545 static int pmu_dev_alloc(struct pmu *pmu)
11546 {
11547 int ret = -ENOMEM;
11548
11549 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11550 if (!pmu->dev)
11551 goto out;
11552
11553 pmu->dev->groups = pmu->attr_groups;
11554 device_initialize(pmu->dev);
11555
11556 dev_set_drvdata(pmu->dev, pmu);
11557 pmu->dev->bus = &pmu_bus;
11558 pmu->dev->parent = pmu->parent;
11559 pmu->dev->release = pmu_dev_release;
11560
11561 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11562 if (ret)
11563 goto free_dev;
11564
11565 ret = device_add(pmu->dev);
11566 if (ret)
11567 goto free_dev;
11568
11569 if (pmu->attr_update) {
11570 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11571 if (ret)
11572 goto del_dev;
11573 }
11574
11575 out:
11576 return ret;
11577
11578 del_dev:
11579 device_del(pmu->dev);
11580
11581 free_dev:
11582 put_device(pmu->dev);
11583 goto out;
11584 }
11585
11586 static struct lock_class_key cpuctx_mutex;
11587 static struct lock_class_key cpuctx_lock;
11588
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11589 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11590 {
11591 void *tmp, *val = idr_find(idr, id);
11592
11593 if (val != old)
11594 return false;
11595
11596 tmp = idr_replace(idr, new, id);
11597 if (IS_ERR(tmp))
11598 return false;
11599
11600 WARN_ON_ONCE(tmp != val);
11601 return true;
11602 }
11603
perf_pmu_register(struct pmu * pmu,const char * name,int type)11604 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11605 {
11606 int cpu, ret, max = PERF_TYPE_MAX;
11607
11608 mutex_lock(&pmus_lock);
11609 ret = -ENOMEM;
11610 pmu->pmu_disable_count = alloc_percpu(int);
11611 if (!pmu->pmu_disable_count)
11612 goto unlock;
11613
11614 pmu->type = -1;
11615 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11616 ret = -EINVAL;
11617 goto free_pdc;
11618 }
11619
11620 pmu->name = name;
11621
11622 if (type >= 0)
11623 max = type;
11624
11625 ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11626 if (ret < 0)
11627 goto free_pdc;
11628
11629 WARN_ON(type >= 0 && ret != type);
11630
11631 type = ret;
11632 pmu->type = type;
11633 atomic_set(&pmu->exclusive_cnt, 0);
11634
11635 if (pmu_bus_running && !pmu->dev) {
11636 ret = pmu_dev_alloc(pmu);
11637 if (ret)
11638 goto free_idr;
11639 }
11640
11641 ret = -ENOMEM;
11642 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11643 if (!pmu->cpu_pmu_context)
11644 goto free_dev;
11645
11646 for_each_possible_cpu(cpu) {
11647 struct perf_cpu_pmu_context *cpc;
11648
11649 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11650 __perf_init_event_pmu_context(&cpc->epc, pmu);
11651 __perf_mux_hrtimer_init(cpc, cpu);
11652 }
11653
11654 if (!pmu->start_txn) {
11655 if (pmu->pmu_enable) {
11656 /*
11657 * If we have pmu_enable/pmu_disable calls, install
11658 * transaction stubs that use that to try and batch
11659 * hardware accesses.
11660 */
11661 pmu->start_txn = perf_pmu_start_txn;
11662 pmu->commit_txn = perf_pmu_commit_txn;
11663 pmu->cancel_txn = perf_pmu_cancel_txn;
11664 } else {
11665 pmu->start_txn = perf_pmu_nop_txn;
11666 pmu->commit_txn = perf_pmu_nop_int;
11667 pmu->cancel_txn = perf_pmu_nop_void;
11668 }
11669 }
11670
11671 if (!pmu->pmu_enable) {
11672 pmu->pmu_enable = perf_pmu_nop_void;
11673 pmu->pmu_disable = perf_pmu_nop_void;
11674 }
11675
11676 if (!pmu->check_period)
11677 pmu->check_period = perf_event_nop_int;
11678
11679 if (!pmu->event_idx)
11680 pmu->event_idx = perf_event_idx_default;
11681
11682 /*
11683 * Now that the PMU is complete, make it visible to perf_try_init_event().
11684 */
11685 if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11686 goto free_context;
11687 list_add_rcu(&pmu->entry, &pmus);
11688
11689 ret = 0;
11690 unlock:
11691 mutex_unlock(&pmus_lock);
11692
11693 return ret;
11694
11695 free_context:
11696 free_percpu(pmu->cpu_pmu_context);
11697
11698 free_dev:
11699 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11700 device_del(pmu->dev);
11701 put_device(pmu->dev);
11702 }
11703
11704 free_idr:
11705 idr_remove(&pmu_idr, pmu->type);
11706
11707 free_pdc:
11708 free_percpu(pmu->pmu_disable_count);
11709 goto unlock;
11710 }
11711 EXPORT_SYMBOL_GPL(perf_pmu_register);
11712
perf_pmu_unregister(struct pmu * pmu)11713 void perf_pmu_unregister(struct pmu *pmu)
11714 {
11715 mutex_lock(&pmus_lock);
11716 list_del_rcu(&pmu->entry);
11717 idr_remove(&pmu_idr, pmu->type);
11718 mutex_unlock(&pmus_lock);
11719
11720 /*
11721 * We dereference the pmu list under both SRCU and regular RCU, so
11722 * synchronize against both of those.
11723 */
11724 synchronize_srcu(&pmus_srcu);
11725 synchronize_rcu();
11726
11727 free_percpu(pmu->pmu_disable_count);
11728 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11729 if (pmu->nr_addr_filters)
11730 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11731 device_del(pmu->dev);
11732 put_device(pmu->dev);
11733 }
11734 free_pmu_context(pmu);
11735 }
11736 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11737
has_extended_regs(struct perf_event * event)11738 static inline bool has_extended_regs(struct perf_event *event)
11739 {
11740 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11741 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11742 }
11743
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11744 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11745 {
11746 struct perf_event_context *ctx = NULL;
11747 int ret;
11748
11749 if (!try_module_get(pmu->module))
11750 return -ENODEV;
11751
11752 /*
11753 * A number of pmu->event_init() methods iterate the sibling_list to,
11754 * for example, validate if the group fits on the PMU. Therefore,
11755 * if this is a sibling event, acquire the ctx->mutex to protect
11756 * the sibling_list.
11757 */
11758 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11759 /*
11760 * This ctx->mutex can nest when we're called through
11761 * inheritance. See the perf_event_ctx_lock_nested() comment.
11762 */
11763 ctx = perf_event_ctx_lock_nested(event->group_leader,
11764 SINGLE_DEPTH_NESTING);
11765 BUG_ON(!ctx);
11766 }
11767
11768 event->pmu = pmu;
11769 ret = pmu->event_init(event);
11770
11771 if (ctx)
11772 perf_event_ctx_unlock(event->group_leader, ctx);
11773
11774 if (!ret) {
11775 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11776 has_extended_regs(event))
11777 ret = -EOPNOTSUPP;
11778
11779 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11780 event_has_any_exclude_flag(event))
11781 ret = -EINVAL;
11782
11783 if (ret && event->destroy)
11784 event->destroy(event);
11785 }
11786
11787 if (ret)
11788 module_put(pmu->module);
11789
11790 return ret;
11791 }
11792
perf_init_event(struct perf_event * event)11793 static struct pmu *perf_init_event(struct perf_event *event)
11794 {
11795 bool extended_type = false;
11796 int idx, type, ret;
11797 struct pmu *pmu;
11798
11799 idx = srcu_read_lock(&pmus_srcu);
11800
11801 /*
11802 * Save original type before calling pmu->event_init() since certain
11803 * pmus overwrites event->attr.type to forward event to another pmu.
11804 */
11805 event->orig_type = event->attr.type;
11806
11807 /* Try parent's PMU first: */
11808 if (event->parent && event->parent->pmu) {
11809 pmu = event->parent->pmu;
11810 ret = perf_try_init_event(pmu, event);
11811 if (!ret)
11812 goto unlock;
11813 }
11814
11815 /*
11816 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11817 * are often aliases for PERF_TYPE_RAW.
11818 */
11819 type = event->attr.type;
11820 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11821 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11822 if (!type) {
11823 type = PERF_TYPE_RAW;
11824 } else {
11825 extended_type = true;
11826 event->attr.config &= PERF_HW_EVENT_MASK;
11827 }
11828 }
11829
11830 again:
11831 rcu_read_lock();
11832 pmu = idr_find(&pmu_idr, type);
11833 rcu_read_unlock();
11834 if (pmu) {
11835 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11836 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11837 goto fail;
11838
11839 ret = perf_try_init_event(pmu, event);
11840 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11841 type = event->attr.type;
11842 goto again;
11843 }
11844
11845 if (ret)
11846 pmu = ERR_PTR(ret);
11847
11848 goto unlock;
11849 }
11850
11851 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11852 ret = perf_try_init_event(pmu, event);
11853 if (!ret)
11854 goto unlock;
11855
11856 if (ret != -ENOENT) {
11857 pmu = ERR_PTR(ret);
11858 goto unlock;
11859 }
11860 }
11861 fail:
11862 pmu = ERR_PTR(-ENOENT);
11863 unlock:
11864 srcu_read_unlock(&pmus_srcu, idx);
11865
11866 return pmu;
11867 }
11868
attach_sb_event(struct perf_event * event)11869 static void attach_sb_event(struct perf_event *event)
11870 {
11871 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11872
11873 raw_spin_lock(&pel->lock);
11874 list_add_rcu(&event->sb_list, &pel->list);
11875 raw_spin_unlock(&pel->lock);
11876 }
11877
11878 /*
11879 * We keep a list of all !task (and therefore per-cpu) events
11880 * that need to receive side-band records.
11881 *
11882 * This avoids having to scan all the various PMU per-cpu contexts
11883 * looking for them.
11884 */
account_pmu_sb_event(struct perf_event * event)11885 static void account_pmu_sb_event(struct perf_event *event)
11886 {
11887 if (is_sb_event(event))
11888 attach_sb_event(event);
11889 }
11890
11891 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11892 static void account_freq_event_nohz(void)
11893 {
11894 #ifdef CONFIG_NO_HZ_FULL
11895 /* Lock so we don't race with concurrent unaccount */
11896 spin_lock(&nr_freq_lock);
11897 if (atomic_inc_return(&nr_freq_events) == 1)
11898 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11899 spin_unlock(&nr_freq_lock);
11900 #endif
11901 }
11902
account_freq_event(void)11903 static void account_freq_event(void)
11904 {
11905 if (tick_nohz_full_enabled())
11906 account_freq_event_nohz();
11907 else
11908 atomic_inc(&nr_freq_events);
11909 }
11910
11911
account_event(struct perf_event * event)11912 static void account_event(struct perf_event *event)
11913 {
11914 bool inc = false;
11915
11916 if (event->parent)
11917 return;
11918
11919 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11920 inc = true;
11921 if (event->attr.mmap || event->attr.mmap_data)
11922 atomic_inc(&nr_mmap_events);
11923 if (event->attr.build_id)
11924 atomic_inc(&nr_build_id_events);
11925 if (event->attr.comm)
11926 atomic_inc(&nr_comm_events);
11927 if (event->attr.namespaces)
11928 atomic_inc(&nr_namespaces_events);
11929 if (event->attr.cgroup)
11930 atomic_inc(&nr_cgroup_events);
11931 if (event->attr.task)
11932 atomic_inc(&nr_task_events);
11933 if (event->attr.freq)
11934 account_freq_event();
11935 if (event->attr.context_switch) {
11936 atomic_inc(&nr_switch_events);
11937 inc = true;
11938 }
11939 if (has_branch_stack(event))
11940 inc = true;
11941 if (is_cgroup_event(event))
11942 inc = true;
11943 if (event->attr.ksymbol)
11944 atomic_inc(&nr_ksymbol_events);
11945 if (event->attr.bpf_event)
11946 atomic_inc(&nr_bpf_events);
11947 if (event->attr.text_poke)
11948 atomic_inc(&nr_text_poke_events);
11949
11950 if (inc) {
11951 /*
11952 * We need the mutex here because static_branch_enable()
11953 * must complete *before* the perf_sched_count increment
11954 * becomes visible.
11955 */
11956 if (atomic_inc_not_zero(&perf_sched_count))
11957 goto enabled;
11958
11959 mutex_lock(&perf_sched_mutex);
11960 if (!atomic_read(&perf_sched_count)) {
11961 static_branch_enable(&perf_sched_events);
11962 /*
11963 * Guarantee that all CPUs observe they key change and
11964 * call the perf scheduling hooks before proceeding to
11965 * install events that need them.
11966 */
11967 synchronize_rcu();
11968 }
11969 /*
11970 * Now that we have waited for the sync_sched(), allow further
11971 * increments to by-pass the mutex.
11972 */
11973 atomic_inc(&perf_sched_count);
11974 mutex_unlock(&perf_sched_mutex);
11975 }
11976 enabled:
11977
11978 account_pmu_sb_event(event);
11979 }
11980
11981 /*
11982 * Allocate and initialize an event structure
11983 */
11984 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11985 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11986 struct task_struct *task,
11987 struct perf_event *group_leader,
11988 struct perf_event *parent_event,
11989 perf_overflow_handler_t overflow_handler,
11990 void *context, int cgroup_fd)
11991 {
11992 struct pmu *pmu;
11993 struct perf_event *event;
11994 struct hw_perf_event *hwc;
11995 long err = -EINVAL;
11996 int node;
11997
11998 if ((unsigned)cpu >= nr_cpu_ids) {
11999 if (!task || cpu != -1)
12000 return ERR_PTR(-EINVAL);
12001 }
12002 if (attr->sigtrap && !task) {
12003 /* Requires a task: avoid signalling random tasks. */
12004 return ERR_PTR(-EINVAL);
12005 }
12006
12007 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12008 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12009 node);
12010 if (!event)
12011 return ERR_PTR(-ENOMEM);
12012
12013 /*
12014 * Single events are their own group leaders, with an
12015 * empty sibling list:
12016 */
12017 if (!group_leader)
12018 group_leader = event;
12019
12020 mutex_init(&event->child_mutex);
12021 INIT_LIST_HEAD(&event->child_list);
12022
12023 INIT_LIST_HEAD(&event->event_entry);
12024 INIT_LIST_HEAD(&event->sibling_list);
12025 INIT_LIST_HEAD(&event->active_list);
12026 init_event_group(event);
12027 INIT_LIST_HEAD(&event->rb_entry);
12028 INIT_LIST_HEAD(&event->active_entry);
12029 INIT_LIST_HEAD(&event->addr_filters.list);
12030 INIT_HLIST_NODE(&event->hlist_entry);
12031
12032
12033 init_waitqueue_head(&event->waitq);
12034 init_irq_work(&event->pending_irq, perf_pending_irq);
12035 init_task_work(&event->pending_task, perf_pending_task);
12036 rcuwait_init(&event->pending_work_wait);
12037
12038 mutex_init(&event->mmap_mutex);
12039 raw_spin_lock_init(&event->addr_filters.lock);
12040
12041 atomic_long_set(&event->refcount, 1);
12042 event->cpu = cpu;
12043 event->attr = *attr;
12044 event->group_leader = group_leader;
12045 event->pmu = NULL;
12046 event->oncpu = -1;
12047
12048 event->parent = parent_event;
12049
12050 event->ns = get_pid_ns(task_active_pid_ns(current));
12051 event->id = atomic64_inc_return(&perf_event_id);
12052
12053 event->state = PERF_EVENT_STATE_INACTIVE;
12054
12055 if (parent_event)
12056 event->event_caps = parent_event->event_caps;
12057
12058 if (task) {
12059 event->attach_state = PERF_ATTACH_TASK;
12060 /*
12061 * XXX pmu::event_init needs to know what task to account to
12062 * and we cannot use the ctx information because we need the
12063 * pmu before we get a ctx.
12064 */
12065 event->hw.target = get_task_struct(task);
12066 }
12067
12068 event->clock = &local_clock;
12069 if (parent_event)
12070 event->clock = parent_event->clock;
12071
12072 if (!overflow_handler && parent_event) {
12073 overflow_handler = parent_event->overflow_handler;
12074 context = parent_event->overflow_handler_context;
12075 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12076 if (overflow_handler == bpf_overflow_handler) {
12077 struct bpf_prog *prog = parent_event->prog;
12078
12079 bpf_prog_inc(prog);
12080 event->prog = prog;
12081 event->orig_overflow_handler =
12082 parent_event->orig_overflow_handler;
12083 }
12084 #endif
12085 }
12086
12087 if (overflow_handler) {
12088 event->overflow_handler = overflow_handler;
12089 event->overflow_handler_context = context;
12090 } else if (is_write_backward(event)){
12091 event->overflow_handler = perf_event_output_backward;
12092 event->overflow_handler_context = NULL;
12093 } else {
12094 event->overflow_handler = perf_event_output_forward;
12095 event->overflow_handler_context = NULL;
12096 }
12097
12098 perf_event__state_init(event);
12099
12100 pmu = NULL;
12101
12102 hwc = &event->hw;
12103 hwc->sample_period = attr->sample_period;
12104 if (attr->freq && attr->sample_freq)
12105 hwc->sample_period = 1;
12106 hwc->last_period = hwc->sample_period;
12107
12108 local64_set(&hwc->period_left, hwc->sample_period);
12109
12110 /*
12111 * We currently do not support PERF_SAMPLE_READ on inherited events.
12112 * See perf_output_read().
12113 */
12114 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12115 goto err_ns;
12116
12117 if (!has_branch_stack(event))
12118 event->attr.branch_sample_type = 0;
12119
12120 pmu = perf_init_event(event);
12121 if (IS_ERR(pmu)) {
12122 err = PTR_ERR(pmu);
12123 goto err_ns;
12124 }
12125
12126 /*
12127 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12128 * events (they don't make sense as the cgroup will be different
12129 * on other CPUs in the uncore mask).
12130 */
12131 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12132 err = -EINVAL;
12133 goto err_pmu;
12134 }
12135
12136 if (event->attr.aux_output &&
12137 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12138 err = -EOPNOTSUPP;
12139 goto err_pmu;
12140 }
12141
12142 if (cgroup_fd != -1) {
12143 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12144 if (err)
12145 goto err_pmu;
12146 }
12147
12148 err = exclusive_event_init(event);
12149 if (err)
12150 goto err_pmu;
12151
12152 if (has_addr_filter(event)) {
12153 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12154 sizeof(struct perf_addr_filter_range),
12155 GFP_KERNEL);
12156 if (!event->addr_filter_ranges) {
12157 err = -ENOMEM;
12158 goto err_per_task;
12159 }
12160
12161 /*
12162 * Clone the parent's vma offsets: they are valid until exec()
12163 * even if the mm is not shared with the parent.
12164 */
12165 if (event->parent) {
12166 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12167
12168 raw_spin_lock_irq(&ifh->lock);
12169 memcpy(event->addr_filter_ranges,
12170 event->parent->addr_filter_ranges,
12171 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12172 raw_spin_unlock_irq(&ifh->lock);
12173 }
12174
12175 /* force hw sync on the address filters */
12176 event->addr_filters_gen = 1;
12177 }
12178
12179 if (!event->parent) {
12180 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12181 err = get_callchain_buffers(attr->sample_max_stack);
12182 if (err)
12183 goto err_addr_filters;
12184 }
12185 }
12186
12187 err = security_perf_event_alloc(event);
12188 if (err)
12189 goto err_callchain_buffer;
12190
12191 /* symmetric to unaccount_event() in _free_event() */
12192 account_event(event);
12193
12194 return event;
12195
12196 err_callchain_buffer:
12197 if (!event->parent) {
12198 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12199 put_callchain_buffers();
12200 }
12201 err_addr_filters:
12202 kfree(event->addr_filter_ranges);
12203
12204 err_per_task:
12205 exclusive_event_destroy(event);
12206
12207 err_pmu:
12208 if (is_cgroup_event(event))
12209 perf_detach_cgroup(event);
12210 if (event->destroy)
12211 event->destroy(event);
12212 module_put(pmu->module);
12213 err_ns:
12214 if (event->hw.target)
12215 put_task_struct(event->hw.target);
12216 call_rcu(&event->rcu_head, free_event_rcu);
12217
12218 return ERR_PTR(err);
12219 }
12220
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12221 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12222 struct perf_event_attr *attr)
12223 {
12224 u32 size;
12225 int ret;
12226
12227 /* Zero the full structure, so that a short copy will be nice. */
12228 memset(attr, 0, sizeof(*attr));
12229
12230 ret = get_user(size, &uattr->size);
12231 if (ret)
12232 return ret;
12233
12234 /* ABI compatibility quirk: */
12235 if (!size)
12236 size = PERF_ATTR_SIZE_VER0;
12237 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12238 goto err_size;
12239
12240 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12241 if (ret) {
12242 if (ret == -E2BIG)
12243 goto err_size;
12244 return ret;
12245 }
12246
12247 attr->size = size;
12248
12249 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12250 return -EINVAL;
12251
12252 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12253 return -EINVAL;
12254
12255 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12256 return -EINVAL;
12257
12258 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12259 u64 mask = attr->branch_sample_type;
12260
12261 /* only using defined bits */
12262 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12263 return -EINVAL;
12264
12265 /* at least one branch bit must be set */
12266 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12267 return -EINVAL;
12268
12269 /* propagate priv level, when not set for branch */
12270 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12271
12272 /* exclude_kernel checked on syscall entry */
12273 if (!attr->exclude_kernel)
12274 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12275
12276 if (!attr->exclude_user)
12277 mask |= PERF_SAMPLE_BRANCH_USER;
12278
12279 if (!attr->exclude_hv)
12280 mask |= PERF_SAMPLE_BRANCH_HV;
12281 /*
12282 * adjust user setting (for HW filter setup)
12283 */
12284 attr->branch_sample_type = mask;
12285 }
12286 /* privileged levels capture (kernel, hv): check permissions */
12287 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12288 ret = perf_allow_kernel(attr);
12289 if (ret)
12290 return ret;
12291 }
12292 }
12293
12294 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12295 ret = perf_reg_validate(attr->sample_regs_user);
12296 if (ret)
12297 return ret;
12298 }
12299
12300 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12301 if (!arch_perf_have_user_stack_dump())
12302 return -ENOSYS;
12303
12304 /*
12305 * We have __u32 type for the size, but so far
12306 * we can only use __u16 as maximum due to the
12307 * __u16 sample size limit.
12308 */
12309 if (attr->sample_stack_user >= USHRT_MAX)
12310 return -EINVAL;
12311 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12312 return -EINVAL;
12313 }
12314
12315 if (!attr->sample_max_stack)
12316 attr->sample_max_stack = sysctl_perf_event_max_stack;
12317
12318 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12319 ret = perf_reg_validate(attr->sample_regs_intr);
12320
12321 #ifndef CONFIG_CGROUP_PERF
12322 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12323 return -EINVAL;
12324 #endif
12325 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12326 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12327 return -EINVAL;
12328
12329 if (!attr->inherit && attr->inherit_thread)
12330 return -EINVAL;
12331
12332 if (attr->remove_on_exec && attr->enable_on_exec)
12333 return -EINVAL;
12334
12335 if (attr->sigtrap && !attr->remove_on_exec)
12336 return -EINVAL;
12337
12338 out:
12339 return ret;
12340
12341 err_size:
12342 put_user(sizeof(*attr), &uattr->size);
12343 ret = -E2BIG;
12344 goto out;
12345 }
12346
mutex_lock_double(struct mutex * a,struct mutex * b)12347 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12348 {
12349 if (b < a)
12350 swap(a, b);
12351
12352 mutex_lock(a);
12353 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12354 }
12355
12356 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12357 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12358 {
12359 struct perf_buffer *rb = NULL;
12360 int ret = -EINVAL;
12361
12362 if (!output_event) {
12363 mutex_lock(&event->mmap_mutex);
12364 goto set;
12365 }
12366
12367 /* don't allow circular references */
12368 if (event == output_event)
12369 goto out;
12370
12371 /*
12372 * Don't allow cross-cpu buffers
12373 */
12374 if (output_event->cpu != event->cpu)
12375 goto out;
12376
12377 /*
12378 * If its not a per-cpu rb, it must be the same task.
12379 */
12380 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12381 goto out;
12382
12383 /*
12384 * Mixing clocks in the same buffer is trouble you don't need.
12385 */
12386 if (output_event->clock != event->clock)
12387 goto out;
12388
12389 /*
12390 * Either writing ring buffer from beginning or from end.
12391 * Mixing is not allowed.
12392 */
12393 if (is_write_backward(output_event) != is_write_backward(event))
12394 goto out;
12395
12396 /*
12397 * If both events generate aux data, they must be on the same PMU
12398 */
12399 if (has_aux(event) && has_aux(output_event) &&
12400 event->pmu != output_event->pmu)
12401 goto out;
12402
12403 /*
12404 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12405 * output_event is already on rb->event_list, and the list iteration
12406 * restarts after every removal, it is guaranteed this new event is
12407 * observed *OR* if output_event is already removed, it's guaranteed we
12408 * observe !rb->mmap_count.
12409 */
12410 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12411 set:
12412 /* Can't redirect output if we've got an active mmap() */
12413 if (atomic_read(&event->mmap_count))
12414 goto unlock;
12415
12416 if (output_event) {
12417 /* get the rb we want to redirect to */
12418 rb = ring_buffer_get(output_event);
12419 if (!rb)
12420 goto unlock;
12421
12422 /* did we race against perf_mmap_close() */
12423 if (!atomic_read(&rb->mmap_count)) {
12424 ring_buffer_put(rb);
12425 goto unlock;
12426 }
12427 }
12428
12429 ring_buffer_attach(event, rb);
12430
12431 ret = 0;
12432 unlock:
12433 mutex_unlock(&event->mmap_mutex);
12434 if (output_event)
12435 mutex_unlock(&output_event->mmap_mutex);
12436
12437 out:
12438 return ret;
12439 }
12440
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12441 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12442 {
12443 bool nmi_safe = false;
12444
12445 switch (clk_id) {
12446 case CLOCK_MONOTONIC:
12447 event->clock = &ktime_get_mono_fast_ns;
12448 nmi_safe = true;
12449 break;
12450
12451 case CLOCK_MONOTONIC_RAW:
12452 event->clock = &ktime_get_raw_fast_ns;
12453 nmi_safe = true;
12454 break;
12455
12456 case CLOCK_REALTIME:
12457 event->clock = &ktime_get_real_ns;
12458 break;
12459
12460 case CLOCK_BOOTTIME:
12461 event->clock = &ktime_get_boottime_ns;
12462 break;
12463
12464 case CLOCK_TAI:
12465 event->clock = &ktime_get_clocktai_ns;
12466 break;
12467
12468 default:
12469 return -EINVAL;
12470 }
12471
12472 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12473 return -EINVAL;
12474
12475 return 0;
12476 }
12477
12478 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12479 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12480 {
12481 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12482 bool is_capable = perfmon_capable();
12483
12484 if (attr->sigtrap) {
12485 /*
12486 * perf_event_attr::sigtrap sends signals to the other task.
12487 * Require the current task to also have CAP_KILL.
12488 */
12489 rcu_read_lock();
12490 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12491 rcu_read_unlock();
12492
12493 /*
12494 * If the required capabilities aren't available, checks for
12495 * ptrace permissions: upgrade to ATTACH, since sending signals
12496 * can effectively change the target task.
12497 */
12498 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12499 }
12500
12501 /*
12502 * Preserve ptrace permission check for backwards compatibility. The
12503 * ptrace check also includes checks that the current task and other
12504 * task have matching uids, and is therefore not done here explicitly.
12505 */
12506 return is_capable || ptrace_may_access(task, ptrace_mode);
12507 }
12508
12509 /**
12510 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12511 *
12512 * @attr_uptr: event_id type attributes for monitoring/sampling
12513 * @pid: target pid
12514 * @cpu: target cpu
12515 * @group_fd: group leader event fd
12516 * @flags: perf event open flags
12517 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12518 SYSCALL_DEFINE5(perf_event_open,
12519 struct perf_event_attr __user *, attr_uptr,
12520 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12521 {
12522 struct perf_event *group_leader = NULL, *output_event = NULL;
12523 struct perf_event_pmu_context *pmu_ctx;
12524 struct perf_event *event, *sibling;
12525 struct perf_event_attr attr;
12526 struct perf_event_context *ctx;
12527 struct file *event_file = NULL;
12528 struct fd group = {NULL, 0};
12529 struct task_struct *task = NULL;
12530 struct pmu *pmu;
12531 int event_fd;
12532 int move_group = 0;
12533 int err;
12534 int f_flags = O_RDWR;
12535 int cgroup_fd = -1;
12536
12537 /* for future expandability... */
12538 if (flags & ~PERF_FLAG_ALL)
12539 return -EINVAL;
12540
12541 err = perf_copy_attr(attr_uptr, &attr);
12542 if (err)
12543 return err;
12544
12545 /* Do we allow access to perf_event_open(2) ? */
12546 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12547 if (err)
12548 return err;
12549
12550 if (!attr.exclude_kernel) {
12551 err = perf_allow_kernel(&attr);
12552 if (err)
12553 return err;
12554 }
12555
12556 if (attr.namespaces) {
12557 if (!perfmon_capable())
12558 return -EACCES;
12559 }
12560
12561 if (attr.freq) {
12562 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12563 return -EINVAL;
12564 } else {
12565 if (attr.sample_period & (1ULL << 63))
12566 return -EINVAL;
12567 }
12568
12569 /* Only privileged users can get physical addresses */
12570 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12571 err = perf_allow_kernel(&attr);
12572 if (err)
12573 return err;
12574 }
12575
12576 /* REGS_INTR can leak data, lockdown must prevent this */
12577 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12578 err = security_locked_down(LOCKDOWN_PERF);
12579 if (err)
12580 return err;
12581 }
12582
12583 /*
12584 * In cgroup mode, the pid argument is used to pass the fd
12585 * opened to the cgroup directory in cgroupfs. The cpu argument
12586 * designates the cpu on which to monitor threads from that
12587 * cgroup.
12588 */
12589 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12590 return -EINVAL;
12591
12592 if (flags & PERF_FLAG_FD_CLOEXEC)
12593 f_flags |= O_CLOEXEC;
12594
12595 event_fd = get_unused_fd_flags(f_flags);
12596 if (event_fd < 0)
12597 return event_fd;
12598
12599 if (group_fd != -1) {
12600 err = perf_fget_light(group_fd, &group);
12601 if (err)
12602 goto err_fd;
12603 group_leader = group.file->private_data;
12604 if (flags & PERF_FLAG_FD_OUTPUT)
12605 output_event = group_leader;
12606 if (flags & PERF_FLAG_FD_NO_GROUP)
12607 group_leader = NULL;
12608 }
12609
12610 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12611 task = find_lively_task_by_vpid(pid);
12612 if (IS_ERR(task)) {
12613 err = PTR_ERR(task);
12614 goto err_group_fd;
12615 }
12616 }
12617
12618 if (task && group_leader &&
12619 group_leader->attr.inherit != attr.inherit) {
12620 err = -EINVAL;
12621 goto err_task;
12622 }
12623
12624 if (flags & PERF_FLAG_PID_CGROUP)
12625 cgroup_fd = pid;
12626
12627 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12628 NULL, NULL, cgroup_fd);
12629 if (IS_ERR(event)) {
12630 err = PTR_ERR(event);
12631 goto err_task;
12632 }
12633
12634 if (is_sampling_event(event)) {
12635 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12636 err = -EOPNOTSUPP;
12637 goto err_alloc;
12638 }
12639 }
12640
12641 /*
12642 * Special case software events and allow them to be part of
12643 * any hardware group.
12644 */
12645 pmu = event->pmu;
12646
12647 if (attr.use_clockid) {
12648 err = perf_event_set_clock(event, attr.clockid);
12649 if (err)
12650 goto err_alloc;
12651 }
12652
12653 if (pmu->task_ctx_nr == perf_sw_context)
12654 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12655
12656 if (task) {
12657 err = down_read_interruptible(&task->signal->exec_update_lock);
12658 if (err)
12659 goto err_alloc;
12660
12661 /*
12662 * We must hold exec_update_lock across this and any potential
12663 * perf_install_in_context() call for this new event to
12664 * serialize against exec() altering our credentials (and the
12665 * perf_event_exit_task() that could imply).
12666 */
12667 err = -EACCES;
12668 if (!perf_check_permission(&attr, task))
12669 goto err_cred;
12670 }
12671
12672 /*
12673 * Get the target context (task or percpu):
12674 */
12675 ctx = find_get_context(task, event);
12676 if (IS_ERR(ctx)) {
12677 err = PTR_ERR(ctx);
12678 goto err_cred;
12679 }
12680
12681 mutex_lock(&ctx->mutex);
12682
12683 if (ctx->task == TASK_TOMBSTONE) {
12684 err = -ESRCH;
12685 goto err_locked;
12686 }
12687
12688 if (!task) {
12689 /*
12690 * Check if the @cpu we're creating an event for is online.
12691 *
12692 * We use the perf_cpu_context::ctx::mutex to serialize against
12693 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12694 */
12695 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12696
12697 if (!cpuctx->online) {
12698 err = -ENODEV;
12699 goto err_locked;
12700 }
12701 }
12702
12703 if (group_leader) {
12704 err = -EINVAL;
12705
12706 /*
12707 * Do not allow a recursive hierarchy (this new sibling
12708 * becoming part of another group-sibling):
12709 */
12710 if (group_leader->group_leader != group_leader)
12711 goto err_locked;
12712
12713 /* All events in a group should have the same clock */
12714 if (group_leader->clock != event->clock)
12715 goto err_locked;
12716
12717 /*
12718 * Make sure we're both events for the same CPU;
12719 * grouping events for different CPUs is broken; since
12720 * you can never concurrently schedule them anyhow.
12721 */
12722 if (group_leader->cpu != event->cpu)
12723 goto err_locked;
12724
12725 /*
12726 * Make sure we're both on the same context; either task or cpu.
12727 */
12728 if (group_leader->ctx != ctx)
12729 goto err_locked;
12730
12731 /*
12732 * Only a group leader can be exclusive or pinned
12733 */
12734 if (attr.exclusive || attr.pinned)
12735 goto err_locked;
12736
12737 if (is_software_event(event) &&
12738 !in_software_context(group_leader)) {
12739 /*
12740 * If the event is a sw event, but the group_leader
12741 * is on hw context.
12742 *
12743 * Allow the addition of software events to hw
12744 * groups, this is safe because software events
12745 * never fail to schedule.
12746 *
12747 * Note the comment that goes with struct
12748 * perf_event_pmu_context.
12749 */
12750 pmu = group_leader->pmu_ctx->pmu;
12751 } else if (!is_software_event(event)) {
12752 if (is_software_event(group_leader) &&
12753 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12754 /*
12755 * In case the group is a pure software group, and we
12756 * try to add a hardware event, move the whole group to
12757 * the hardware context.
12758 */
12759 move_group = 1;
12760 }
12761
12762 /* Don't allow group of multiple hw events from different pmus */
12763 if (!in_software_context(group_leader) &&
12764 group_leader->pmu_ctx->pmu != pmu)
12765 goto err_locked;
12766 }
12767 }
12768
12769 /*
12770 * Now that we're certain of the pmu; find the pmu_ctx.
12771 */
12772 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12773 if (IS_ERR(pmu_ctx)) {
12774 err = PTR_ERR(pmu_ctx);
12775 goto err_locked;
12776 }
12777 event->pmu_ctx = pmu_ctx;
12778
12779 if (output_event) {
12780 err = perf_event_set_output(event, output_event);
12781 if (err)
12782 goto err_context;
12783 }
12784
12785 if (!perf_event_validate_size(event)) {
12786 err = -E2BIG;
12787 goto err_context;
12788 }
12789
12790 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12791 err = -EINVAL;
12792 goto err_context;
12793 }
12794
12795 /*
12796 * Must be under the same ctx::mutex as perf_install_in_context(),
12797 * because we need to serialize with concurrent event creation.
12798 */
12799 if (!exclusive_event_installable(event, ctx)) {
12800 err = -EBUSY;
12801 goto err_context;
12802 }
12803
12804 WARN_ON_ONCE(ctx->parent_ctx);
12805
12806 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12807 if (IS_ERR(event_file)) {
12808 err = PTR_ERR(event_file);
12809 event_file = NULL;
12810 goto err_context;
12811 }
12812
12813 /*
12814 * This is the point on no return; we cannot fail hereafter. This is
12815 * where we start modifying current state.
12816 */
12817
12818 if (move_group) {
12819 perf_remove_from_context(group_leader, 0);
12820 put_pmu_ctx(group_leader->pmu_ctx);
12821
12822 for_each_sibling_event(sibling, group_leader) {
12823 perf_remove_from_context(sibling, 0);
12824 put_pmu_ctx(sibling->pmu_ctx);
12825 }
12826
12827 /*
12828 * Install the group siblings before the group leader.
12829 *
12830 * Because a group leader will try and install the entire group
12831 * (through the sibling list, which is still in-tact), we can
12832 * end up with siblings installed in the wrong context.
12833 *
12834 * By installing siblings first we NO-OP because they're not
12835 * reachable through the group lists.
12836 */
12837 for_each_sibling_event(sibling, group_leader) {
12838 sibling->pmu_ctx = pmu_ctx;
12839 get_pmu_ctx(pmu_ctx);
12840 perf_event__state_init(sibling);
12841 perf_install_in_context(ctx, sibling, sibling->cpu);
12842 }
12843
12844 /*
12845 * Removing from the context ends up with disabled
12846 * event. What we want here is event in the initial
12847 * startup state, ready to be add into new context.
12848 */
12849 group_leader->pmu_ctx = pmu_ctx;
12850 get_pmu_ctx(pmu_ctx);
12851 perf_event__state_init(group_leader);
12852 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12853 }
12854
12855 /*
12856 * Precalculate sample_data sizes; do while holding ctx::mutex such
12857 * that we're serialized against further additions and before
12858 * perf_install_in_context() which is the point the event is active and
12859 * can use these values.
12860 */
12861 perf_event__header_size(event);
12862 perf_event__id_header_size(event);
12863
12864 event->owner = current;
12865
12866 perf_install_in_context(ctx, event, event->cpu);
12867 perf_unpin_context(ctx);
12868
12869 mutex_unlock(&ctx->mutex);
12870
12871 if (task) {
12872 up_read(&task->signal->exec_update_lock);
12873 put_task_struct(task);
12874 }
12875
12876 mutex_lock(¤t->perf_event_mutex);
12877 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12878 mutex_unlock(¤t->perf_event_mutex);
12879
12880 /*
12881 * Drop the reference on the group_event after placing the
12882 * new event on the sibling_list. This ensures destruction
12883 * of the group leader will find the pointer to itself in
12884 * perf_group_detach().
12885 */
12886 fdput(group);
12887 fd_install(event_fd, event_file);
12888 return event_fd;
12889
12890 err_context:
12891 put_pmu_ctx(event->pmu_ctx);
12892 event->pmu_ctx = NULL; /* _free_event() */
12893 err_locked:
12894 mutex_unlock(&ctx->mutex);
12895 perf_unpin_context(ctx);
12896 put_ctx(ctx);
12897 err_cred:
12898 if (task)
12899 up_read(&task->signal->exec_update_lock);
12900 err_alloc:
12901 free_event(event);
12902 err_task:
12903 if (task)
12904 put_task_struct(task);
12905 err_group_fd:
12906 fdput(group);
12907 err_fd:
12908 put_unused_fd(event_fd);
12909 return err;
12910 }
12911
12912 /**
12913 * perf_event_create_kernel_counter
12914 *
12915 * @attr: attributes of the counter to create
12916 * @cpu: cpu in which the counter is bound
12917 * @task: task to profile (NULL for percpu)
12918 * @overflow_handler: callback to trigger when we hit the event
12919 * @context: context data could be used in overflow_handler callback
12920 */
12921 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12922 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12923 struct task_struct *task,
12924 perf_overflow_handler_t overflow_handler,
12925 void *context)
12926 {
12927 struct perf_event_pmu_context *pmu_ctx;
12928 struct perf_event_context *ctx;
12929 struct perf_event *event;
12930 struct pmu *pmu;
12931 int err;
12932
12933 /*
12934 * Grouping is not supported for kernel events, neither is 'AUX',
12935 * make sure the caller's intentions are adjusted.
12936 */
12937 if (attr->aux_output)
12938 return ERR_PTR(-EINVAL);
12939
12940 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12941 overflow_handler, context, -1);
12942 if (IS_ERR(event)) {
12943 err = PTR_ERR(event);
12944 goto err;
12945 }
12946
12947 /* Mark owner so we could distinguish it from user events. */
12948 event->owner = TASK_TOMBSTONE;
12949 pmu = event->pmu;
12950
12951 if (pmu->task_ctx_nr == perf_sw_context)
12952 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12953
12954 /*
12955 * Get the target context (task or percpu):
12956 */
12957 ctx = find_get_context(task, event);
12958 if (IS_ERR(ctx)) {
12959 err = PTR_ERR(ctx);
12960 goto err_alloc;
12961 }
12962
12963 WARN_ON_ONCE(ctx->parent_ctx);
12964 mutex_lock(&ctx->mutex);
12965 if (ctx->task == TASK_TOMBSTONE) {
12966 err = -ESRCH;
12967 goto err_unlock;
12968 }
12969
12970 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12971 if (IS_ERR(pmu_ctx)) {
12972 err = PTR_ERR(pmu_ctx);
12973 goto err_unlock;
12974 }
12975 event->pmu_ctx = pmu_ctx;
12976
12977 if (!task) {
12978 /*
12979 * Check if the @cpu we're creating an event for is online.
12980 *
12981 * We use the perf_cpu_context::ctx::mutex to serialize against
12982 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12983 */
12984 struct perf_cpu_context *cpuctx =
12985 container_of(ctx, struct perf_cpu_context, ctx);
12986 if (!cpuctx->online) {
12987 err = -ENODEV;
12988 goto err_pmu_ctx;
12989 }
12990 }
12991
12992 if (!exclusive_event_installable(event, ctx)) {
12993 err = -EBUSY;
12994 goto err_pmu_ctx;
12995 }
12996
12997 perf_install_in_context(ctx, event, event->cpu);
12998 perf_unpin_context(ctx);
12999 mutex_unlock(&ctx->mutex);
13000
13001 return event;
13002
13003 err_pmu_ctx:
13004 put_pmu_ctx(pmu_ctx);
13005 event->pmu_ctx = NULL; /* _free_event() */
13006 err_unlock:
13007 mutex_unlock(&ctx->mutex);
13008 perf_unpin_context(ctx);
13009 put_ctx(ctx);
13010 err_alloc:
13011 free_event(event);
13012 err:
13013 return ERR_PTR(err);
13014 }
13015 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13016
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13017 static void __perf_pmu_remove(struct perf_event_context *ctx,
13018 int cpu, struct pmu *pmu,
13019 struct perf_event_groups *groups,
13020 struct list_head *events)
13021 {
13022 struct perf_event *event, *sibling;
13023
13024 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13025 perf_remove_from_context(event, 0);
13026 put_pmu_ctx(event->pmu_ctx);
13027 list_add(&event->migrate_entry, events);
13028
13029 for_each_sibling_event(sibling, event) {
13030 perf_remove_from_context(sibling, 0);
13031 put_pmu_ctx(sibling->pmu_ctx);
13032 list_add(&sibling->migrate_entry, events);
13033 }
13034 }
13035 }
13036
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13037 static void __perf_pmu_install_event(struct pmu *pmu,
13038 struct perf_event_context *ctx,
13039 int cpu, struct perf_event *event)
13040 {
13041 struct perf_event_pmu_context *epc;
13042 struct perf_event_context *old_ctx = event->ctx;
13043
13044 get_ctx(ctx); /* normally find_get_context() */
13045
13046 event->cpu = cpu;
13047 epc = find_get_pmu_context(pmu, ctx, event);
13048 event->pmu_ctx = epc;
13049
13050 if (event->state >= PERF_EVENT_STATE_OFF)
13051 event->state = PERF_EVENT_STATE_INACTIVE;
13052 perf_install_in_context(ctx, event, cpu);
13053
13054 /*
13055 * Now that event->ctx is updated and visible, put the old ctx.
13056 */
13057 put_ctx(old_ctx);
13058 }
13059
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13060 static void __perf_pmu_install(struct perf_event_context *ctx,
13061 int cpu, struct pmu *pmu, struct list_head *events)
13062 {
13063 struct perf_event *event, *tmp;
13064
13065 /*
13066 * Re-instate events in 2 passes.
13067 *
13068 * Skip over group leaders and only install siblings on this first
13069 * pass, siblings will not get enabled without a leader, however a
13070 * leader will enable its siblings, even if those are still on the old
13071 * context.
13072 */
13073 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13074 if (event->group_leader == event)
13075 continue;
13076
13077 list_del(&event->migrate_entry);
13078 __perf_pmu_install_event(pmu, ctx, cpu, event);
13079 }
13080
13081 /*
13082 * Once all the siblings are setup properly, install the group leaders
13083 * to make it go.
13084 */
13085 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13086 list_del(&event->migrate_entry);
13087 __perf_pmu_install_event(pmu, ctx, cpu, event);
13088 }
13089 }
13090
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13091 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13092 {
13093 struct perf_event_context *src_ctx, *dst_ctx;
13094 LIST_HEAD(events);
13095
13096 /*
13097 * Since per-cpu context is persistent, no need to grab an extra
13098 * reference.
13099 */
13100 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13101 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13102
13103 /*
13104 * See perf_event_ctx_lock() for comments on the details
13105 * of swizzling perf_event::ctx.
13106 */
13107 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13108
13109 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13110 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13111
13112 if (!list_empty(&events)) {
13113 /*
13114 * Wait for the events to quiesce before re-instating them.
13115 */
13116 synchronize_rcu();
13117
13118 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13119 }
13120
13121 mutex_unlock(&dst_ctx->mutex);
13122 mutex_unlock(&src_ctx->mutex);
13123 }
13124 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13125
sync_child_event(struct perf_event * child_event)13126 static void sync_child_event(struct perf_event *child_event)
13127 {
13128 struct perf_event *parent_event = child_event->parent;
13129 u64 child_val;
13130
13131 if (child_event->attr.inherit_stat) {
13132 struct task_struct *task = child_event->ctx->task;
13133
13134 if (task && task != TASK_TOMBSTONE)
13135 perf_event_read_event(child_event, task);
13136 }
13137
13138 child_val = perf_event_count(child_event);
13139
13140 /*
13141 * Add back the child's count to the parent's count:
13142 */
13143 atomic64_add(child_val, &parent_event->child_count);
13144 atomic64_add(child_event->total_time_enabled,
13145 &parent_event->child_total_time_enabled);
13146 atomic64_add(child_event->total_time_running,
13147 &parent_event->child_total_time_running);
13148 }
13149
13150 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13151 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13152 {
13153 struct perf_event *parent_event = event->parent;
13154 unsigned long detach_flags = 0;
13155
13156 if (parent_event) {
13157 /*
13158 * Do not destroy the 'original' grouping; because of the
13159 * context switch optimization the original events could've
13160 * ended up in a random child task.
13161 *
13162 * If we were to destroy the original group, all group related
13163 * operations would cease to function properly after this
13164 * random child dies.
13165 *
13166 * Do destroy all inherited groups, we don't care about those
13167 * and being thorough is better.
13168 */
13169 detach_flags = DETACH_GROUP | DETACH_CHILD;
13170 mutex_lock(&parent_event->child_mutex);
13171 }
13172
13173 perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13174
13175 /*
13176 * Child events can be freed.
13177 */
13178 if (parent_event) {
13179 mutex_unlock(&parent_event->child_mutex);
13180 /*
13181 * Kick perf_poll() for is_event_hup();
13182 */
13183 perf_event_wakeup(parent_event);
13184 free_event(event);
13185 put_event(parent_event);
13186 return;
13187 }
13188
13189 /*
13190 * Parent events are governed by their filedesc, retain them.
13191 */
13192 perf_event_wakeup(event);
13193 }
13194
perf_event_exit_task_context(struct task_struct * child)13195 static void perf_event_exit_task_context(struct task_struct *child)
13196 {
13197 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13198 struct perf_event *child_event, *next;
13199
13200 WARN_ON_ONCE(child != current);
13201
13202 child_ctx = perf_pin_task_context(child);
13203 if (!child_ctx)
13204 return;
13205
13206 /*
13207 * In order to reduce the amount of tricky in ctx tear-down, we hold
13208 * ctx::mutex over the entire thing. This serializes against almost
13209 * everything that wants to access the ctx.
13210 *
13211 * The exception is sys_perf_event_open() /
13212 * perf_event_create_kernel_count() which does find_get_context()
13213 * without ctx::mutex (it cannot because of the move_group double mutex
13214 * lock thing). See the comments in perf_install_in_context().
13215 */
13216 mutex_lock(&child_ctx->mutex);
13217
13218 /*
13219 * In a single ctx::lock section, de-schedule the events and detach the
13220 * context from the task such that we cannot ever get it scheduled back
13221 * in.
13222 */
13223 raw_spin_lock_irq(&child_ctx->lock);
13224 task_ctx_sched_out(child_ctx, EVENT_ALL);
13225
13226 /*
13227 * Now that the context is inactive, destroy the task <-> ctx relation
13228 * and mark the context dead.
13229 */
13230 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13231 put_ctx(child_ctx); /* cannot be last */
13232 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13233 put_task_struct(current); /* cannot be last */
13234
13235 clone_ctx = unclone_ctx(child_ctx);
13236 raw_spin_unlock_irq(&child_ctx->lock);
13237
13238 if (clone_ctx)
13239 put_ctx(clone_ctx);
13240
13241 /*
13242 * Report the task dead after unscheduling the events so that we
13243 * won't get any samples after PERF_RECORD_EXIT. We can however still
13244 * get a few PERF_RECORD_READ events.
13245 */
13246 perf_event_task(child, child_ctx, 0);
13247
13248 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13249 perf_event_exit_event(child_event, child_ctx);
13250
13251 mutex_unlock(&child_ctx->mutex);
13252
13253 put_ctx(child_ctx);
13254 }
13255
13256 /*
13257 * When a child task exits, feed back event values to parent events.
13258 *
13259 * Can be called with exec_update_lock held when called from
13260 * setup_new_exec().
13261 */
perf_event_exit_task(struct task_struct * child)13262 void perf_event_exit_task(struct task_struct *child)
13263 {
13264 struct perf_event *event, *tmp;
13265
13266 mutex_lock(&child->perf_event_mutex);
13267 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13268 owner_entry) {
13269 list_del_init(&event->owner_entry);
13270
13271 /*
13272 * Ensure the list deletion is visible before we clear
13273 * the owner, closes a race against perf_release() where
13274 * we need to serialize on the owner->perf_event_mutex.
13275 */
13276 smp_store_release(&event->owner, NULL);
13277 }
13278 mutex_unlock(&child->perf_event_mutex);
13279
13280 perf_event_exit_task_context(child);
13281
13282 /*
13283 * The perf_event_exit_task_context calls perf_event_task
13284 * with child's task_ctx, which generates EXIT events for
13285 * child contexts and sets child->perf_event_ctxp[] to NULL.
13286 * At this point we need to send EXIT events to cpu contexts.
13287 */
13288 perf_event_task(child, NULL, 0);
13289 }
13290
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13291 static void perf_free_event(struct perf_event *event,
13292 struct perf_event_context *ctx)
13293 {
13294 struct perf_event *parent = event->parent;
13295
13296 if (WARN_ON_ONCE(!parent))
13297 return;
13298
13299 mutex_lock(&parent->child_mutex);
13300 list_del_init(&event->child_list);
13301 mutex_unlock(&parent->child_mutex);
13302
13303 put_event(parent);
13304
13305 raw_spin_lock_irq(&ctx->lock);
13306 perf_group_detach(event);
13307 list_del_event(event, ctx);
13308 raw_spin_unlock_irq(&ctx->lock);
13309 free_event(event);
13310 }
13311
13312 /*
13313 * Free a context as created by inheritance by perf_event_init_task() below,
13314 * used by fork() in case of fail.
13315 *
13316 * Even though the task has never lived, the context and events have been
13317 * exposed through the child_list, so we must take care tearing it all down.
13318 */
perf_event_free_task(struct task_struct * task)13319 void perf_event_free_task(struct task_struct *task)
13320 {
13321 struct perf_event_context *ctx;
13322 struct perf_event *event, *tmp;
13323
13324 ctx = rcu_access_pointer(task->perf_event_ctxp);
13325 if (!ctx)
13326 return;
13327
13328 mutex_lock(&ctx->mutex);
13329 raw_spin_lock_irq(&ctx->lock);
13330 /*
13331 * Destroy the task <-> ctx relation and mark the context dead.
13332 *
13333 * This is important because even though the task hasn't been
13334 * exposed yet the context has been (through child_list).
13335 */
13336 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13337 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13338 put_task_struct(task); /* cannot be last */
13339 raw_spin_unlock_irq(&ctx->lock);
13340
13341
13342 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13343 perf_free_event(event, ctx);
13344
13345 mutex_unlock(&ctx->mutex);
13346
13347 /*
13348 * perf_event_release_kernel() could've stolen some of our
13349 * child events and still have them on its free_list. In that
13350 * case we must wait for these events to have been freed (in
13351 * particular all their references to this task must've been
13352 * dropped).
13353 *
13354 * Without this copy_process() will unconditionally free this
13355 * task (irrespective of its reference count) and
13356 * _free_event()'s put_task_struct(event->hw.target) will be a
13357 * use-after-free.
13358 *
13359 * Wait for all events to drop their context reference.
13360 */
13361 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13362 put_ctx(ctx); /* must be last */
13363 }
13364
perf_event_delayed_put(struct task_struct * task)13365 void perf_event_delayed_put(struct task_struct *task)
13366 {
13367 WARN_ON_ONCE(task->perf_event_ctxp);
13368 }
13369
perf_event_get(unsigned int fd)13370 struct file *perf_event_get(unsigned int fd)
13371 {
13372 struct file *file = fget(fd);
13373 if (!file)
13374 return ERR_PTR(-EBADF);
13375
13376 if (file->f_op != &perf_fops) {
13377 fput(file);
13378 return ERR_PTR(-EBADF);
13379 }
13380
13381 return file;
13382 }
13383
perf_get_event(struct file * file)13384 const struct perf_event *perf_get_event(struct file *file)
13385 {
13386 if (file->f_op != &perf_fops)
13387 return ERR_PTR(-EINVAL);
13388
13389 return file->private_data;
13390 }
13391
perf_event_attrs(struct perf_event * event)13392 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13393 {
13394 if (!event)
13395 return ERR_PTR(-EINVAL);
13396
13397 return &event->attr;
13398 }
13399
perf_allow_kernel(struct perf_event_attr * attr)13400 int perf_allow_kernel(struct perf_event_attr *attr)
13401 {
13402 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13403 return -EACCES;
13404
13405 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13406 }
13407 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13408
13409 /*
13410 * Inherit an event from parent task to child task.
13411 *
13412 * Returns:
13413 * - valid pointer on success
13414 * - NULL for orphaned events
13415 * - IS_ERR() on error
13416 */
13417 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13418 inherit_event(struct perf_event *parent_event,
13419 struct task_struct *parent,
13420 struct perf_event_context *parent_ctx,
13421 struct task_struct *child,
13422 struct perf_event *group_leader,
13423 struct perf_event_context *child_ctx)
13424 {
13425 enum perf_event_state parent_state = parent_event->state;
13426 struct perf_event_pmu_context *pmu_ctx;
13427 struct perf_event *child_event;
13428 unsigned long flags;
13429
13430 /*
13431 * Instead of creating recursive hierarchies of events,
13432 * we link inherited events back to the original parent,
13433 * which has a filp for sure, which we use as the reference
13434 * count:
13435 */
13436 if (parent_event->parent)
13437 parent_event = parent_event->parent;
13438
13439 child_event = perf_event_alloc(&parent_event->attr,
13440 parent_event->cpu,
13441 child,
13442 group_leader, parent_event,
13443 NULL, NULL, -1);
13444 if (IS_ERR(child_event))
13445 return child_event;
13446
13447 get_ctx(child_ctx);
13448 child_event->ctx = child_ctx;
13449
13450 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13451 if (IS_ERR(pmu_ctx)) {
13452 free_event(child_event);
13453 return ERR_CAST(pmu_ctx);
13454 }
13455 child_event->pmu_ctx = pmu_ctx;
13456
13457 /*
13458 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13459 * must be under the same lock in order to serialize against
13460 * perf_event_release_kernel(), such that either we must observe
13461 * is_orphaned_event() or they will observe us on the child_list.
13462 */
13463 mutex_lock(&parent_event->child_mutex);
13464 if (is_orphaned_event(parent_event) ||
13465 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13466 mutex_unlock(&parent_event->child_mutex);
13467 /* task_ctx_data is freed with child_ctx */
13468 free_event(child_event);
13469 return NULL;
13470 }
13471
13472 /*
13473 * Make the child state follow the state of the parent event,
13474 * not its attr.disabled bit. We hold the parent's mutex,
13475 * so we won't race with perf_event_{en, dis}able_family.
13476 */
13477 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13478 child_event->state = PERF_EVENT_STATE_INACTIVE;
13479 else
13480 child_event->state = PERF_EVENT_STATE_OFF;
13481
13482 if (parent_event->attr.freq) {
13483 u64 sample_period = parent_event->hw.sample_period;
13484 struct hw_perf_event *hwc = &child_event->hw;
13485
13486 hwc->sample_period = sample_period;
13487 hwc->last_period = sample_period;
13488
13489 local64_set(&hwc->period_left, sample_period);
13490 }
13491
13492 child_event->overflow_handler = parent_event->overflow_handler;
13493 child_event->overflow_handler_context
13494 = parent_event->overflow_handler_context;
13495
13496 /*
13497 * Precalculate sample_data sizes
13498 */
13499 perf_event__header_size(child_event);
13500 perf_event__id_header_size(child_event);
13501
13502 /*
13503 * Link it up in the child's context:
13504 */
13505 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13506 add_event_to_ctx(child_event, child_ctx);
13507 child_event->attach_state |= PERF_ATTACH_CHILD;
13508 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13509
13510 /*
13511 * Link this into the parent event's child list
13512 */
13513 list_add_tail(&child_event->child_list, &parent_event->child_list);
13514 mutex_unlock(&parent_event->child_mutex);
13515
13516 return child_event;
13517 }
13518
13519 /*
13520 * Inherits an event group.
13521 *
13522 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13523 * This matches with perf_event_release_kernel() removing all child events.
13524 *
13525 * Returns:
13526 * - 0 on success
13527 * - <0 on error
13528 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13529 static int inherit_group(struct perf_event *parent_event,
13530 struct task_struct *parent,
13531 struct perf_event_context *parent_ctx,
13532 struct task_struct *child,
13533 struct perf_event_context *child_ctx)
13534 {
13535 struct perf_event *leader;
13536 struct perf_event *sub;
13537 struct perf_event *child_ctr;
13538
13539 leader = inherit_event(parent_event, parent, parent_ctx,
13540 child, NULL, child_ctx);
13541 if (IS_ERR(leader))
13542 return PTR_ERR(leader);
13543 /*
13544 * @leader can be NULL here because of is_orphaned_event(). In this
13545 * case inherit_event() will create individual events, similar to what
13546 * perf_group_detach() would do anyway.
13547 */
13548 for_each_sibling_event(sub, parent_event) {
13549 child_ctr = inherit_event(sub, parent, parent_ctx,
13550 child, leader, child_ctx);
13551 if (IS_ERR(child_ctr))
13552 return PTR_ERR(child_ctr);
13553
13554 if (sub->aux_event == parent_event && child_ctr &&
13555 !perf_get_aux_event(child_ctr, leader))
13556 return -EINVAL;
13557 }
13558 if (leader)
13559 leader->group_generation = parent_event->group_generation;
13560 return 0;
13561 }
13562
13563 /*
13564 * Creates the child task context and tries to inherit the event-group.
13565 *
13566 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13567 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13568 * consistent with perf_event_release_kernel() removing all child events.
13569 *
13570 * Returns:
13571 * - 0 on success
13572 * - <0 on error
13573 */
13574 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13575 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13576 struct perf_event_context *parent_ctx,
13577 struct task_struct *child,
13578 u64 clone_flags, int *inherited_all)
13579 {
13580 struct perf_event_context *child_ctx;
13581 int ret;
13582
13583 if (!event->attr.inherit ||
13584 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13585 /* Do not inherit if sigtrap and signal handlers were cleared. */
13586 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13587 *inherited_all = 0;
13588 return 0;
13589 }
13590
13591 child_ctx = child->perf_event_ctxp;
13592 if (!child_ctx) {
13593 /*
13594 * This is executed from the parent task context, so
13595 * inherit events that have been marked for cloning.
13596 * First allocate and initialize a context for the
13597 * child.
13598 */
13599 child_ctx = alloc_perf_context(child);
13600 if (!child_ctx)
13601 return -ENOMEM;
13602
13603 child->perf_event_ctxp = child_ctx;
13604 }
13605
13606 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13607 if (ret)
13608 *inherited_all = 0;
13609
13610 return ret;
13611 }
13612
13613 /*
13614 * Initialize the perf_event context in task_struct
13615 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13616 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13617 {
13618 struct perf_event_context *child_ctx, *parent_ctx;
13619 struct perf_event_context *cloned_ctx;
13620 struct perf_event *event;
13621 struct task_struct *parent = current;
13622 int inherited_all = 1;
13623 unsigned long flags;
13624 int ret = 0;
13625
13626 if (likely(!parent->perf_event_ctxp))
13627 return 0;
13628
13629 /*
13630 * If the parent's context is a clone, pin it so it won't get
13631 * swapped under us.
13632 */
13633 parent_ctx = perf_pin_task_context(parent);
13634 if (!parent_ctx)
13635 return 0;
13636
13637 /*
13638 * No need to check if parent_ctx != NULL here; since we saw
13639 * it non-NULL earlier, the only reason for it to become NULL
13640 * is if we exit, and since we're currently in the middle of
13641 * a fork we can't be exiting at the same time.
13642 */
13643
13644 /*
13645 * Lock the parent list. No need to lock the child - not PID
13646 * hashed yet and not running, so nobody can access it.
13647 */
13648 mutex_lock(&parent_ctx->mutex);
13649
13650 /*
13651 * We dont have to disable NMIs - we are only looking at
13652 * the list, not manipulating it:
13653 */
13654 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13655 ret = inherit_task_group(event, parent, parent_ctx,
13656 child, clone_flags, &inherited_all);
13657 if (ret)
13658 goto out_unlock;
13659 }
13660
13661 /*
13662 * We can't hold ctx->lock when iterating the ->flexible_group list due
13663 * to allocations, but we need to prevent rotation because
13664 * rotate_ctx() will change the list from interrupt context.
13665 */
13666 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13667 parent_ctx->rotate_disable = 1;
13668 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13669
13670 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13671 ret = inherit_task_group(event, parent, parent_ctx,
13672 child, clone_flags, &inherited_all);
13673 if (ret)
13674 goto out_unlock;
13675 }
13676
13677 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13678 parent_ctx->rotate_disable = 0;
13679
13680 child_ctx = child->perf_event_ctxp;
13681
13682 if (child_ctx && inherited_all) {
13683 /*
13684 * Mark the child context as a clone of the parent
13685 * context, or of whatever the parent is a clone of.
13686 *
13687 * Note that if the parent is a clone, the holding of
13688 * parent_ctx->lock avoids it from being uncloned.
13689 */
13690 cloned_ctx = parent_ctx->parent_ctx;
13691 if (cloned_ctx) {
13692 child_ctx->parent_ctx = cloned_ctx;
13693 child_ctx->parent_gen = parent_ctx->parent_gen;
13694 } else {
13695 child_ctx->parent_ctx = parent_ctx;
13696 child_ctx->parent_gen = parent_ctx->generation;
13697 }
13698 get_ctx(child_ctx->parent_ctx);
13699 }
13700
13701 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13702 out_unlock:
13703 mutex_unlock(&parent_ctx->mutex);
13704
13705 perf_unpin_context(parent_ctx);
13706 put_ctx(parent_ctx);
13707
13708 return ret;
13709 }
13710
13711 /*
13712 * Initialize the perf_event context in task_struct
13713 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13714 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13715 {
13716 int ret;
13717
13718 child->perf_event_ctxp = NULL;
13719 mutex_init(&child->perf_event_mutex);
13720 INIT_LIST_HEAD(&child->perf_event_list);
13721
13722 ret = perf_event_init_context(child, clone_flags);
13723 if (ret) {
13724 perf_event_free_task(child);
13725 return ret;
13726 }
13727
13728 return 0;
13729 }
13730
perf_event_init_all_cpus(void)13731 static void __init perf_event_init_all_cpus(void)
13732 {
13733 struct swevent_htable *swhash;
13734 struct perf_cpu_context *cpuctx;
13735 int cpu;
13736
13737 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13738
13739 for_each_possible_cpu(cpu) {
13740 swhash = &per_cpu(swevent_htable, cpu);
13741 mutex_init(&swhash->hlist_mutex);
13742
13743 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13744 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13745
13746 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13747
13748 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13749 __perf_event_init_context(&cpuctx->ctx);
13750 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13751 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13752 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13753 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13754 cpuctx->heap = cpuctx->heap_default;
13755 }
13756 }
13757
perf_swevent_init_cpu(unsigned int cpu)13758 static void perf_swevent_init_cpu(unsigned int cpu)
13759 {
13760 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13761
13762 mutex_lock(&swhash->hlist_mutex);
13763 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13764 struct swevent_hlist *hlist;
13765
13766 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13767 WARN_ON(!hlist);
13768 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13769 }
13770 mutex_unlock(&swhash->hlist_mutex);
13771 }
13772
13773 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13774 static void __perf_event_exit_context(void *__info)
13775 {
13776 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13777 struct perf_event_context *ctx = __info;
13778 struct perf_event *event;
13779
13780 raw_spin_lock(&ctx->lock);
13781 ctx_sched_out(ctx, EVENT_TIME);
13782 list_for_each_entry(event, &ctx->event_list, event_entry)
13783 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13784 raw_spin_unlock(&ctx->lock);
13785 }
13786
perf_event_exit_cpu_context(int cpu)13787 static void perf_event_exit_cpu_context(int cpu)
13788 {
13789 struct perf_cpu_context *cpuctx;
13790 struct perf_event_context *ctx;
13791
13792 // XXX simplify cpuctx->online
13793 mutex_lock(&pmus_lock);
13794 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13795 ctx = &cpuctx->ctx;
13796
13797 mutex_lock(&ctx->mutex);
13798 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13799 cpuctx->online = 0;
13800 mutex_unlock(&ctx->mutex);
13801 cpumask_clear_cpu(cpu, perf_online_mask);
13802 mutex_unlock(&pmus_lock);
13803 }
13804 #else
13805
perf_event_exit_cpu_context(int cpu)13806 static void perf_event_exit_cpu_context(int cpu) { }
13807
13808 #endif
13809
perf_event_init_cpu(unsigned int cpu)13810 int perf_event_init_cpu(unsigned int cpu)
13811 {
13812 struct perf_cpu_context *cpuctx;
13813 struct perf_event_context *ctx;
13814
13815 perf_swevent_init_cpu(cpu);
13816
13817 mutex_lock(&pmus_lock);
13818 cpumask_set_cpu(cpu, perf_online_mask);
13819 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13820 ctx = &cpuctx->ctx;
13821
13822 mutex_lock(&ctx->mutex);
13823 cpuctx->online = 1;
13824 mutex_unlock(&ctx->mutex);
13825 mutex_unlock(&pmus_lock);
13826
13827 return 0;
13828 }
13829
perf_event_exit_cpu(unsigned int cpu)13830 int perf_event_exit_cpu(unsigned int cpu)
13831 {
13832 perf_event_exit_cpu_context(cpu);
13833 return 0;
13834 }
13835
13836 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13837 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13838 {
13839 int cpu;
13840
13841 for_each_online_cpu(cpu)
13842 perf_event_exit_cpu(cpu);
13843
13844 return NOTIFY_OK;
13845 }
13846
13847 /*
13848 * Run the perf reboot notifier at the very last possible moment so that
13849 * the generic watchdog code runs as long as possible.
13850 */
13851 static struct notifier_block perf_reboot_notifier = {
13852 .notifier_call = perf_reboot,
13853 .priority = INT_MIN,
13854 };
13855
perf_event_init(void)13856 void __init perf_event_init(void)
13857 {
13858 int ret;
13859
13860 idr_init(&pmu_idr);
13861
13862 perf_event_init_all_cpus();
13863 init_srcu_struct(&pmus_srcu);
13864 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13865 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13866 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13867 perf_tp_register();
13868 perf_event_init_cpu(smp_processor_id());
13869 register_reboot_notifier(&perf_reboot_notifier);
13870
13871 ret = init_hw_breakpoint();
13872 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13873
13874 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13875
13876 /*
13877 * Build time assertion that we keep the data_head at the intended
13878 * location. IOW, validation we got the __reserved[] size right.
13879 */
13880 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13881 != 1024);
13882 }
13883
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13884 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13885 char *page)
13886 {
13887 struct perf_pmu_events_attr *pmu_attr =
13888 container_of(attr, struct perf_pmu_events_attr, attr);
13889
13890 if (pmu_attr->event_str)
13891 return sprintf(page, "%s\n", pmu_attr->event_str);
13892
13893 return 0;
13894 }
13895 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13896
perf_event_sysfs_init(void)13897 static int __init perf_event_sysfs_init(void)
13898 {
13899 struct pmu *pmu;
13900 int ret;
13901
13902 mutex_lock(&pmus_lock);
13903
13904 ret = bus_register(&pmu_bus);
13905 if (ret)
13906 goto unlock;
13907
13908 list_for_each_entry(pmu, &pmus, entry) {
13909 if (pmu->dev)
13910 continue;
13911
13912 ret = pmu_dev_alloc(pmu);
13913 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13914 }
13915 pmu_bus_running = 1;
13916 ret = 0;
13917
13918 unlock:
13919 mutex_unlock(&pmus_lock);
13920
13921 return ret;
13922 }
13923 device_initcall(perf_event_sysfs_init);
13924
13925 #ifdef CONFIG_CGROUP_PERF
13926 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13927 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13928 {
13929 struct perf_cgroup *jc;
13930
13931 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13932 if (!jc)
13933 return ERR_PTR(-ENOMEM);
13934
13935 jc->info = alloc_percpu(struct perf_cgroup_info);
13936 if (!jc->info) {
13937 kfree(jc);
13938 return ERR_PTR(-ENOMEM);
13939 }
13940
13941 return &jc->css;
13942 }
13943
perf_cgroup_css_free(struct cgroup_subsys_state * css)13944 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13945 {
13946 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13947
13948 free_percpu(jc->info);
13949 kfree(jc);
13950 }
13951
perf_cgroup_css_online(struct cgroup_subsys_state * css)13952 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13953 {
13954 perf_event_cgroup(css->cgroup);
13955 return 0;
13956 }
13957
__perf_cgroup_move(void * info)13958 static int __perf_cgroup_move(void *info)
13959 {
13960 struct task_struct *task = info;
13961
13962 preempt_disable();
13963 perf_cgroup_switch(task);
13964 preempt_enable();
13965
13966 return 0;
13967 }
13968
perf_cgroup_attach(struct cgroup_taskset * tset)13969 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13970 {
13971 struct task_struct *task;
13972 struct cgroup_subsys_state *css;
13973
13974 cgroup_taskset_for_each(task, css, tset)
13975 task_function_call(task, __perf_cgroup_move, task);
13976 }
13977
13978 struct cgroup_subsys perf_event_cgrp_subsys = {
13979 .css_alloc = perf_cgroup_css_alloc,
13980 .css_free = perf_cgroup_css_free,
13981 .css_online = perf_cgroup_css_online,
13982 .attach = perf_cgroup_attach,
13983 /*
13984 * Implicitly enable on dfl hierarchy so that perf events can
13985 * always be filtered by cgroup2 path as long as perf_event
13986 * controller is not mounted on a legacy hierarchy.
13987 */
13988 .implicit_on_dfl = true,
13989 .threaded = true,
13990 };
13991 #endif /* CONFIG_CGROUP_PERF */
13992
13993 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13994