1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Endpoint *Controller* (EPC) library
4 *
5 * Copyright (C) 2017 Texas Instruments
6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12
13 #include <linux/pci-epc.h>
14 #include <linux/pci-epf.h>
15 #include <linux/pci-ep-cfs.h>
16
17 static struct class *pci_epc_class;
18
devm_pci_epc_release(struct device * dev,void * res)19 static void devm_pci_epc_release(struct device *dev, void *res)
20 {
21 struct pci_epc *epc = *(struct pci_epc **)res;
22
23 pci_epc_destroy(epc);
24 }
25
devm_pci_epc_match(struct device * dev,void * res,void * match_data)26 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
27 {
28 struct pci_epc **epc = res;
29
30 return *epc == match_data;
31 }
32
33 /**
34 * pci_epc_put() - release the PCI endpoint controller
35 * @epc: epc returned by pci_epc_get()
36 *
37 * release the refcount the caller obtained by invoking pci_epc_get()
38 */
pci_epc_put(struct pci_epc * epc)39 void pci_epc_put(struct pci_epc *epc)
40 {
41 if (!epc || IS_ERR(epc))
42 return;
43
44 module_put(epc->ops->owner);
45 put_device(&epc->dev);
46 }
47 EXPORT_SYMBOL_GPL(pci_epc_put);
48
49 /**
50 * pci_epc_get() - get the PCI endpoint controller
51 * @epc_name: device name of the endpoint controller
52 *
53 * Invoke to get struct pci_epc * corresponding to the device name of the
54 * endpoint controller
55 */
pci_epc_get(const char * epc_name)56 struct pci_epc *pci_epc_get(const char *epc_name)
57 {
58 int ret = -EINVAL;
59 struct pci_epc *epc;
60 struct device *dev;
61 struct class_dev_iter iter;
62
63 class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
64 while ((dev = class_dev_iter_next(&iter))) {
65 if (strcmp(epc_name, dev_name(dev)))
66 continue;
67
68 epc = to_pci_epc(dev);
69 if (!try_module_get(epc->ops->owner)) {
70 ret = -EINVAL;
71 goto err;
72 }
73
74 class_dev_iter_exit(&iter);
75 get_device(&epc->dev);
76 return epc;
77 }
78
79 err:
80 class_dev_iter_exit(&iter);
81 return ERR_PTR(ret);
82 }
83 EXPORT_SYMBOL_GPL(pci_epc_get);
84
85 /**
86 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
87 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
88 *
89 * Invoke to get the first unreserved BAR that can be used by the endpoint
90 * function. For any incorrect value in reserved_bar return '0'.
91 */
92 enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features * epc_features)93 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
94 {
95 return pci_epc_get_next_free_bar(epc_features, BAR_0);
96 }
97 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
98
99 /**
100 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
101 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
102 * @bar: the starting BAR number from where unreserved BAR should be searched
103 *
104 * Invoke to get the next unreserved BAR starting from @bar that can be used
105 * for endpoint function. For any incorrect value in reserved_bar return '0'.
106 */
pci_epc_get_next_free_bar(const struct pci_epc_features * epc_features,enum pci_barno bar)107 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
108 *epc_features, enum pci_barno bar)
109 {
110 unsigned long free_bar;
111
112 if (!epc_features)
113 return BAR_0;
114
115 /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
116 if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
117 bar++;
118
119 /* Find if the reserved BAR is also a 64-bit BAR */
120 free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
121
122 /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
123 free_bar <<= 1;
124 free_bar |= epc_features->reserved_bar;
125
126 free_bar = find_next_zero_bit(&free_bar, 6, bar);
127 if (free_bar > 5)
128 return NO_BAR;
129
130 return free_bar;
131 }
132 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
133
134 /**
135 * pci_epc_get_features() - get the features supported by EPC
136 * @epc: the features supported by *this* EPC device will be returned
137 * @func_no: the features supported by the EPC device specific to the
138 * endpoint function with func_no will be returned
139 * @vfunc_no: the features supported by the EPC device specific to the
140 * virtual endpoint function with vfunc_no will be returned
141 *
142 * Invoke to get the features provided by the EPC which may be
143 * specific to an endpoint function. Returns pci_epc_features on success
144 * and NULL for any failures.
145 */
pci_epc_get_features(struct pci_epc * epc,u8 func_no,u8 vfunc_no)146 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
147 u8 func_no, u8 vfunc_no)
148 {
149 const struct pci_epc_features *epc_features;
150
151 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
152 return NULL;
153
154 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
155 return NULL;
156
157 if (!epc->ops->get_features)
158 return NULL;
159
160 mutex_lock(&epc->lock);
161 epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
162 mutex_unlock(&epc->lock);
163
164 return epc_features;
165 }
166 EXPORT_SYMBOL_GPL(pci_epc_get_features);
167
168 /**
169 * pci_epc_stop() - stop the PCI link
170 * @epc: the link of the EPC device that has to be stopped
171 *
172 * Invoke to stop the PCI link
173 */
pci_epc_stop(struct pci_epc * epc)174 void pci_epc_stop(struct pci_epc *epc)
175 {
176 if (IS_ERR(epc) || !epc->ops->stop)
177 return;
178
179 mutex_lock(&epc->lock);
180 epc->ops->stop(epc);
181 mutex_unlock(&epc->lock);
182 }
183 EXPORT_SYMBOL_GPL(pci_epc_stop);
184
185 /**
186 * pci_epc_start() - start the PCI link
187 * @epc: the link of *this* EPC device has to be started
188 *
189 * Invoke to start the PCI link
190 */
pci_epc_start(struct pci_epc * epc)191 int pci_epc_start(struct pci_epc *epc)
192 {
193 int ret;
194
195 if (IS_ERR(epc))
196 return -EINVAL;
197
198 if (!epc->ops->start)
199 return 0;
200
201 mutex_lock(&epc->lock);
202 ret = epc->ops->start(epc);
203 mutex_unlock(&epc->lock);
204
205 return ret;
206 }
207 EXPORT_SYMBOL_GPL(pci_epc_start);
208
209 /**
210 * pci_epc_raise_irq() - interrupt the host system
211 * @epc: the EPC device which has to interrupt the host
212 * @func_no: the physical endpoint function number in the EPC device
213 * @vfunc_no: the virtual endpoint function number in the physical function
214 * @type: specify the type of interrupt; legacy, MSI or MSI-X
215 * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N)
216 *
217 * Invoke to raise an legacy, MSI or MSI-X interrupt
218 */
pci_epc_raise_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,enum pci_epc_irq_type type,u16 interrupt_num)219 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
220 enum pci_epc_irq_type type, u16 interrupt_num)
221 {
222 int ret;
223
224 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
225 return -EINVAL;
226
227 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
228 return -EINVAL;
229
230 if (!epc->ops->raise_irq)
231 return 0;
232
233 mutex_lock(&epc->lock);
234 ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
235 mutex_unlock(&epc->lock);
236
237 return ret;
238 }
239 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
240
241 /**
242 * pci_epc_map_msi_irq() - Map physical address to MSI address and return
243 * MSI data
244 * @epc: the EPC device which has the MSI capability
245 * @func_no: the physical endpoint function number in the EPC device
246 * @vfunc_no: the virtual endpoint function number in the physical function
247 * @phys_addr: the physical address of the outbound region
248 * @interrupt_num: the MSI interrupt number with range (1-N)
249 * @entry_size: Size of Outbound address region for each interrupt
250 * @msi_data: the data that should be written in order to raise MSI interrupt
251 * with interrupt number as 'interrupt num'
252 * @msi_addr_offset: Offset of MSI address from the aligned outbound address
253 * to which the MSI address is mapped
254 *
255 * Invoke to map physical address to MSI address and return MSI data. The
256 * physical address should be an address in the outbound region. This is
257 * required to implement doorbell functionality of NTB wherein EPC on either
258 * side of the interface (primary and secondary) can directly write to the
259 * physical address (in outbound region) of the other interface to ring
260 * doorbell.
261 */
pci_epc_map_msi_irq(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u8 interrupt_num,u32 entry_size,u32 * msi_data,u32 * msi_addr_offset)262 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
263 phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
264 u32 *msi_data, u32 *msi_addr_offset)
265 {
266 int ret;
267
268 if (IS_ERR_OR_NULL(epc))
269 return -EINVAL;
270
271 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
272 return -EINVAL;
273
274 if (!epc->ops->map_msi_irq)
275 return -EINVAL;
276
277 mutex_lock(&epc->lock);
278 ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
279 interrupt_num, entry_size, msi_data,
280 msi_addr_offset);
281 mutex_unlock(&epc->lock);
282
283 return ret;
284 }
285 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
286
287 /**
288 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
289 * @epc: the EPC device to which MSI interrupts was requested
290 * @func_no: the physical endpoint function number in the EPC device
291 * @vfunc_no: the virtual endpoint function number in the physical function
292 *
293 * Invoke to get the number of MSI interrupts allocated by the RC
294 */
pci_epc_get_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no)295 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
296 {
297 int interrupt;
298
299 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
300 return 0;
301
302 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
303 return 0;
304
305 if (!epc->ops->get_msi)
306 return 0;
307
308 mutex_lock(&epc->lock);
309 interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
310 mutex_unlock(&epc->lock);
311
312 if (interrupt < 0)
313 return 0;
314
315 interrupt = 1 << interrupt;
316
317 return interrupt;
318 }
319 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
320
321 /**
322 * pci_epc_set_msi() - set the number of MSI interrupt numbers required
323 * @epc: the EPC device on which MSI has to be configured
324 * @func_no: the physical endpoint function number in the EPC device
325 * @vfunc_no: the virtual endpoint function number in the physical function
326 * @interrupts: number of MSI interrupts required by the EPF
327 *
328 * Invoke to set the required number of MSI interrupts.
329 */
pci_epc_set_msi(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u8 interrupts)330 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
331 {
332 int ret;
333 u8 encode_int;
334
335 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
336 interrupts < 1 || interrupts > 32)
337 return -EINVAL;
338
339 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
340 return -EINVAL;
341
342 if (!epc->ops->set_msi)
343 return 0;
344
345 encode_int = order_base_2(interrupts);
346
347 mutex_lock(&epc->lock);
348 ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
349 mutex_unlock(&epc->lock);
350
351 return ret;
352 }
353 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
354
355 /**
356 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
357 * @epc: the EPC device to which MSI-X interrupts was requested
358 * @func_no: the physical endpoint function number in the EPC device
359 * @vfunc_no: the virtual endpoint function number in the physical function
360 *
361 * Invoke to get the number of MSI-X interrupts allocated by the RC
362 */
pci_epc_get_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no)363 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
364 {
365 int interrupt;
366
367 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
368 return 0;
369
370 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
371 return 0;
372
373 if (!epc->ops->get_msix)
374 return 0;
375
376 mutex_lock(&epc->lock);
377 interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
378 mutex_unlock(&epc->lock);
379
380 if (interrupt < 0)
381 return 0;
382
383 return interrupt + 1;
384 }
385 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
386
387 /**
388 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
389 * @epc: the EPC device on which MSI-X has to be configured
390 * @func_no: the physical endpoint function number in the EPC device
391 * @vfunc_no: the virtual endpoint function number in the physical function
392 * @interrupts: number of MSI-X interrupts required by the EPF
393 * @bir: BAR where the MSI-X table resides
394 * @offset: Offset pointing to the start of MSI-X table
395 *
396 * Invoke to set the required number of MSI-X interrupts.
397 */
pci_epc_set_msix(struct pci_epc * epc,u8 func_no,u8 vfunc_no,u16 interrupts,enum pci_barno bir,u32 offset)398 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
399 u16 interrupts, enum pci_barno bir, u32 offset)
400 {
401 int ret;
402
403 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
404 interrupts < 1 || interrupts > 2048)
405 return -EINVAL;
406
407 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
408 return -EINVAL;
409
410 if (!epc->ops->set_msix)
411 return 0;
412
413 mutex_lock(&epc->lock);
414 ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
415 offset);
416 mutex_unlock(&epc->lock);
417
418 return ret;
419 }
420 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
421
422 /**
423 * pci_epc_unmap_addr() - unmap CPU address from PCI address
424 * @epc: the EPC device on which address is allocated
425 * @func_no: the physical endpoint function number in the EPC device
426 * @vfunc_no: the virtual endpoint function number in the physical function
427 * @phys_addr: physical address of the local system
428 *
429 * Invoke to unmap the CPU address from PCI address.
430 */
pci_epc_unmap_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr)431 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
432 phys_addr_t phys_addr)
433 {
434 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
435 return;
436
437 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
438 return;
439
440 if (!epc->ops->unmap_addr)
441 return;
442
443 mutex_lock(&epc->lock);
444 epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
445 mutex_unlock(&epc->lock);
446 }
447 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
448
449 /**
450 * pci_epc_map_addr() - map CPU address to PCI address
451 * @epc: the EPC device on which address is allocated
452 * @func_no: the physical endpoint function number in the EPC device
453 * @vfunc_no: the virtual endpoint function number in the physical function
454 * @phys_addr: physical address of the local system
455 * @pci_addr: PCI address to which the physical address should be mapped
456 * @size: the size of the allocation
457 *
458 * Invoke to map CPU address with PCI address.
459 */
pci_epc_map_addr(struct pci_epc * epc,u8 func_no,u8 vfunc_no,phys_addr_t phys_addr,u64 pci_addr,size_t size)460 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
461 phys_addr_t phys_addr, u64 pci_addr, size_t size)
462 {
463 int ret;
464
465 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
466 return -EINVAL;
467
468 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
469 return -EINVAL;
470
471 if (!epc->ops->map_addr)
472 return 0;
473
474 mutex_lock(&epc->lock);
475 ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
476 size);
477 mutex_unlock(&epc->lock);
478
479 return ret;
480 }
481 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
482
483 /**
484 * pci_epc_clear_bar() - reset the BAR
485 * @epc: the EPC device for which the BAR has to be cleared
486 * @func_no: the physical endpoint function number in the EPC device
487 * @vfunc_no: the virtual endpoint function number in the physical function
488 * @epf_bar: the struct epf_bar that contains the BAR information
489 *
490 * Invoke to reset the BAR of the endpoint device.
491 */
pci_epc_clear_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)492 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
493 struct pci_epf_bar *epf_bar)
494 {
495 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
496 (epf_bar->barno == BAR_5 &&
497 epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
498 return;
499
500 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
501 return;
502
503 if (!epc->ops->clear_bar)
504 return;
505
506 mutex_lock(&epc->lock);
507 epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
508 mutex_unlock(&epc->lock);
509 }
510 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
511
512 /**
513 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
514 * @epc: the EPC device on which BAR has to be configured
515 * @func_no: the physical endpoint function number in the EPC device
516 * @vfunc_no: the virtual endpoint function number in the physical function
517 * @epf_bar: the struct epf_bar that contains the BAR information
518 *
519 * Invoke to configure the BAR of the endpoint device.
520 */
pci_epc_set_bar(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_bar * epf_bar)521 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
522 struct pci_epf_bar *epf_bar)
523 {
524 int ret;
525 int flags = epf_bar->flags;
526
527 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
528 (epf_bar->barno == BAR_5 &&
529 flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
530 (flags & PCI_BASE_ADDRESS_SPACE_IO &&
531 flags & PCI_BASE_ADDRESS_IO_MASK) ||
532 (upper_32_bits(epf_bar->size) &&
533 !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
534 return -EINVAL;
535
536 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
537 return -EINVAL;
538
539 if (!epc->ops->set_bar)
540 return 0;
541
542 mutex_lock(&epc->lock);
543 ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
544 mutex_unlock(&epc->lock);
545
546 return ret;
547 }
548 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
549
550 /**
551 * pci_epc_write_header() - write standard configuration header
552 * @epc: the EPC device to which the configuration header should be written
553 * @func_no: the physical endpoint function number in the EPC device
554 * @vfunc_no: the virtual endpoint function number in the physical function
555 * @header: standard configuration header fields
556 *
557 * Invoke to write the configuration header to the endpoint controller. Every
558 * endpoint controller will have a dedicated location to which the standard
559 * configuration header would be written. The callback function should write
560 * the header fields to this dedicated location.
561 */
pci_epc_write_header(struct pci_epc * epc,u8 func_no,u8 vfunc_no,struct pci_epf_header * header)562 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
563 struct pci_epf_header *header)
564 {
565 int ret;
566
567 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
568 return -EINVAL;
569
570 if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
571 return -EINVAL;
572
573 /* Only Virtual Function #1 has deviceID */
574 if (vfunc_no > 1)
575 return -EINVAL;
576
577 if (!epc->ops->write_header)
578 return 0;
579
580 mutex_lock(&epc->lock);
581 ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
582 mutex_unlock(&epc->lock);
583
584 return ret;
585 }
586 EXPORT_SYMBOL_GPL(pci_epc_write_header);
587
588 /**
589 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
590 * @epc: the EPC device to which the endpoint function should be added
591 * @epf: the endpoint function to be added
592 * @type: Identifies if the EPC is connected to the primary or secondary
593 * interface of EPF
594 *
595 * A PCI endpoint device can have one or more functions. In the case of PCIe,
596 * the specification allows up to 8 PCIe endpoint functions. Invoke
597 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
598 */
pci_epc_add_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)599 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
600 enum pci_epc_interface_type type)
601 {
602 struct list_head *list;
603 u32 func_no;
604 int ret = 0;
605
606 if (IS_ERR_OR_NULL(epc) || epf->is_vf)
607 return -EINVAL;
608
609 if (type == PRIMARY_INTERFACE && epf->epc)
610 return -EBUSY;
611
612 if (type == SECONDARY_INTERFACE && epf->sec_epc)
613 return -EBUSY;
614
615 mutex_lock(&epc->list_lock);
616 func_no = find_first_zero_bit(&epc->function_num_map,
617 BITS_PER_LONG);
618 if (func_no >= BITS_PER_LONG) {
619 ret = -EINVAL;
620 goto ret;
621 }
622
623 if (func_no > epc->max_functions - 1) {
624 dev_err(&epc->dev, "Exceeding max supported Function Number\n");
625 ret = -EINVAL;
626 goto ret;
627 }
628
629 set_bit(func_no, &epc->function_num_map);
630 if (type == PRIMARY_INTERFACE) {
631 epf->func_no = func_no;
632 epf->epc = epc;
633 list = &epf->list;
634 } else {
635 epf->sec_epc_func_no = func_no;
636 epf->sec_epc = epc;
637 list = &epf->sec_epc_list;
638 }
639
640 list_add_tail(list, &epc->pci_epf);
641 ret:
642 mutex_unlock(&epc->list_lock);
643
644 return ret;
645 }
646 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
647
648 /**
649 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
650 * @epc: the EPC device from which the endpoint function should be removed
651 * @epf: the endpoint function to be removed
652 * @type: identifies if the EPC is connected to the primary or secondary
653 * interface of EPF
654 *
655 * Invoke to remove PCI endpoint function from the endpoint controller.
656 */
pci_epc_remove_epf(struct pci_epc * epc,struct pci_epf * epf,enum pci_epc_interface_type type)657 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
658 enum pci_epc_interface_type type)
659 {
660 struct list_head *list;
661 u32 func_no = 0;
662
663 if (!epc || IS_ERR(epc) || !epf)
664 return;
665
666 mutex_lock(&epc->list_lock);
667 if (type == PRIMARY_INTERFACE) {
668 func_no = epf->func_no;
669 list = &epf->list;
670 epf->epc = NULL;
671 } else {
672 func_no = epf->sec_epc_func_no;
673 list = &epf->sec_epc_list;
674 epf->sec_epc = NULL;
675 }
676 clear_bit(func_no, &epc->function_num_map);
677 list_del(list);
678 mutex_unlock(&epc->list_lock);
679 }
680 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
681
682 /**
683 * pci_epc_linkup() - Notify the EPF device that EPC device has established a
684 * connection with the Root Complex.
685 * @epc: the EPC device which has established link with the host
686 *
687 * Invoke to Notify the EPF device that the EPC device has established a
688 * connection with the Root Complex.
689 */
pci_epc_linkup(struct pci_epc * epc)690 void pci_epc_linkup(struct pci_epc *epc)
691 {
692 struct pci_epf *epf;
693
694 if (!epc || IS_ERR(epc))
695 return;
696
697 mutex_lock(&epc->list_lock);
698 list_for_each_entry(epf, &epc->pci_epf, list) {
699 mutex_lock(&epf->lock);
700 if (epf->event_ops && epf->event_ops->link_up)
701 epf->event_ops->link_up(epf);
702 mutex_unlock(&epf->lock);
703 }
704 mutex_unlock(&epc->list_lock);
705 }
706 EXPORT_SYMBOL_GPL(pci_epc_linkup);
707
708 /**
709 * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the
710 * connection with the Root Complex.
711 * @epc: the EPC device which has dropped the link with the host
712 *
713 * Invoke to Notify the EPF device that the EPC device has dropped the
714 * connection with the Root Complex.
715 */
pci_epc_linkdown(struct pci_epc * epc)716 void pci_epc_linkdown(struct pci_epc *epc)
717 {
718 struct pci_epf *epf;
719
720 if (!epc || IS_ERR(epc))
721 return;
722
723 mutex_lock(&epc->list_lock);
724 list_for_each_entry(epf, &epc->pci_epf, list) {
725 mutex_lock(&epf->lock);
726 if (epf->event_ops && epf->event_ops->link_down)
727 epf->event_ops->link_down(epf);
728 mutex_unlock(&epf->lock);
729 }
730 mutex_unlock(&epc->list_lock);
731 }
732 EXPORT_SYMBOL_GPL(pci_epc_linkdown);
733
734 /**
735 * pci_epc_init_notify() - Notify the EPF device that EPC device's core
736 * initialization is completed.
737 * @epc: the EPC device whose core initialization is completed
738 *
739 * Invoke to Notify the EPF device that the EPC device's initialization
740 * is completed.
741 */
pci_epc_init_notify(struct pci_epc * epc)742 void pci_epc_init_notify(struct pci_epc *epc)
743 {
744 struct pci_epf *epf;
745
746 if (!epc || IS_ERR(epc))
747 return;
748
749 mutex_lock(&epc->list_lock);
750 list_for_each_entry(epf, &epc->pci_epf, list) {
751 mutex_lock(&epf->lock);
752 if (epf->event_ops && epf->event_ops->core_init)
753 epf->event_ops->core_init(epf);
754 mutex_unlock(&epf->lock);
755 }
756 mutex_unlock(&epc->list_lock);
757 }
758 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
759
760 /**
761 * pci_epc_bme_notify() - Notify the EPF device that the EPC device has received
762 * the BME event from the Root complex
763 * @epc: the EPC device that received the BME event
764 *
765 * Invoke to Notify the EPF device that the EPC device has received the Bus
766 * Master Enable (BME) event from the Root complex
767 */
pci_epc_bme_notify(struct pci_epc * epc)768 void pci_epc_bme_notify(struct pci_epc *epc)
769 {
770 struct pci_epf *epf;
771
772 if (!epc || IS_ERR(epc))
773 return;
774
775 mutex_lock(&epc->list_lock);
776 list_for_each_entry(epf, &epc->pci_epf, list) {
777 mutex_lock(&epf->lock);
778 if (epf->event_ops && epf->event_ops->bme)
779 epf->event_ops->bme(epf);
780 mutex_unlock(&epf->lock);
781 }
782 mutex_unlock(&epc->list_lock);
783 }
784 EXPORT_SYMBOL_GPL(pci_epc_bme_notify);
785
786 /**
787 * pci_epc_destroy() - destroy the EPC device
788 * @epc: the EPC device that has to be destroyed
789 *
790 * Invoke to destroy the PCI EPC device
791 */
pci_epc_destroy(struct pci_epc * epc)792 void pci_epc_destroy(struct pci_epc *epc)
793 {
794 pci_ep_cfs_remove_epc_group(epc->group);
795 device_unregister(&epc->dev);
796 }
797 EXPORT_SYMBOL_GPL(pci_epc_destroy);
798
799 /**
800 * devm_pci_epc_destroy() - destroy the EPC device
801 * @dev: device that wants to destroy the EPC
802 * @epc: the EPC device that has to be destroyed
803 *
804 * Invoke to destroy the devres associated with this
805 * pci_epc and destroy the EPC device.
806 */
devm_pci_epc_destroy(struct device * dev,struct pci_epc * epc)807 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
808 {
809 int r;
810
811 r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
812 epc);
813 dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
814 }
815 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
816
pci_epc_release(struct device * dev)817 static void pci_epc_release(struct device *dev)
818 {
819 kfree(to_pci_epc(dev));
820 }
821
822 /**
823 * __pci_epc_create() - create a new endpoint controller (EPC) device
824 * @dev: device that is creating the new EPC
825 * @ops: function pointers for performing EPC operations
826 * @owner: the owner of the module that creates the EPC device
827 *
828 * Invoke to create a new EPC device and add it to pci_epc class.
829 */
830 struct pci_epc *
__pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)831 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
832 struct module *owner)
833 {
834 int ret;
835 struct pci_epc *epc;
836
837 if (WARN_ON(!dev)) {
838 ret = -EINVAL;
839 goto err_ret;
840 }
841
842 epc = kzalloc(sizeof(*epc), GFP_KERNEL);
843 if (!epc) {
844 ret = -ENOMEM;
845 goto err_ret;
846 }
847
848 mutex_init(&epc->lock);
849 mutex_init(&epc->list_lock);
850 INIT_LIST_HEAD(&epc->pci_epf);
851
852 device_initialize(&epc->dev);
853 epc->dev.class = pci_epc_class;
854 epc->dev.parent = dev;
855 epc->dev.release = pci_epc_release;
856 epc->ops = ops;
857
858 ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
859 if (ret)
860 goto put_dev;
861
862 ret = device_add(&epc->dev);
863 if (ret)
864 goto put_dev;
865
866 epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
867
868 return epc;
869
870 put_dev:
871 put_device(&epc->dev);
872
873 err_ret:
874 return ERR_PTR(ret);
875 }
876 EXPORT_SYMBOL_GPL(__pci_epc_create);
877
878 /**
879 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
880 * @dev: device that is creating the new EPC
881 * @ops: function pointers for performing EPC operations
882 * @owner: the owner of the module that creates the EPC device
883 *
884 * Invoke to create a new EPC device and add it to pci_epc class.
885 * While at that, it also associates the device with the pci_epc using devres.
886 * On driver detach, release function is invoked on the devres data,
887 * then, devres data is freed.
888 */
889 struct pci_epc *
__devm_pci_epc_create(struct device * dev,const struct pci_epc_ops * ops,struct module * owner)890 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
891 struct module *owner)
892 {
893 struct pci_epc **ptr, *epc;
894
895 ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
896 if (!ptr)
897 return ERR_PTR(-ENOMEM);
898
899 epc = __pci_epc_create(dev, ops, owner);
900 if (!IS_ERR(epc)) {
901 *ptr = epc;
902 devres_add(dev, ptr);
903 } else {
904 devres_free(ptr);
905 }
906
907 return epc;
908 }
909 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
910
pci_epc_init(void)911 static int __init pci_epc_init(void)
912 {
913 pci_epc_class = class_create("pci_epc");
914 if (IS_ERR(pci_epc_class)) {
915 pr_err("failed to create pci epc class --> %ld\n",
916 PTR_ERR(pci_epc_class));
917 return PTR_ERR(pci_epc_class);
918 }
919
920 return 0;
921 }
922 module_init(pci_epc_init);
923
pci_epc_exit(void)924 static void __exit pci_epc_exit(void)
925 {
926 class_destroy(pci_epc_class);
927 }
928 module_exit(pci_epc_exit);
929
930 MODULE_DESCRIPTION("PCI EPC Library");
931 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
932