xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4     Copyright (c) 2001, 2002 by D-Link Corporation
5     Written by Edward Peng.<edward_peng@dlink.com.tw>
6     Created 03-May-2001, base on Linux' sundance.c.
7 
8 */
9 
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12 
13 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16 #define dr32(reg)	ioread32(ioaddr + (reg))
17 #define dr16(reg)	ioread16(ioaddr + (reg))
18 #define dr8(reg)	ioread8(ioaddr + (reg))
19 
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10;	/* Rx frame count each interrupt */
29 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31 
32 
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46 
47 
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50        UpdateStats | LinkEvent)
51 
dl2k_enable_int(struct netdev_private * np)52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 	void __iomem *ioaddr = np->ioaddr;
55 
56 	dw16(IntEnable, DEFAULT_INTR);
57 }
58 
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61 
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 		      u16 data);
87 
88 static const struct ethtool_ops ethtool_ops;
89 
90 static const struct net_device_ops netdev_ops = {
91 	.ndo_open		= rio_open,
92 	.ndo_start_xmit	= start_xmit,
93 	.ndo_stop		= rio_close,
94 	.ndo_get_stats		= get_stats,
95 	.ndo_validate_addr	= eth_validate_addr,
96 	.ndo_set_mac_address 	= eth_mac_addr,
97 	.ndo_set_rx_mode	= set_multicast,
98 	.ndo_eth_ioctl		= rio_ioctl,
99 	.ndo_tx_timeout		= rio_tx_timeout,
100 };
101 
102 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 	struct net_device *dev;
106 	struct netdev_private *np;
107 	static int card_idx;
108 	int chip_idx = ent->driver_data;
109 	int err, irq;
110 	void __iomem *ioaddr;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	err = pci_enable_device (pdev);
115 	if (err)
116 		return err;
117 
118 	irq = pdev->irq;
119 	err = pci_request_regions (pdev, "dl2k");
120 	if (err)
121 		goto err_out_disable;
122 
123 	pci_set_master (pdev);
124 
125 	err = -ENOMEM;
126 
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev)
129 		goto err_out_res;
130 	SET_NETDEV_DEV(dev, &pdev->dev);
131 
132 	np = netdev_priv(dev);
133 
134 	/* IO registers range. */
135 	ioaddr = pci_iomap(pdev, 0, 0);
136 	if (!ioaddr)
137 		goto err_out_dev;
138 	np->eeprom_addr = ioaddr;
139 
140 #ifdef MEM_MAPPING
141 	/* MM registers range. */
142 	ioaddr = pci_iomap(pdev, 1, 0);
143 	if (!ioaddr)
144 		goto err_out_iounmap;
145 #endif
146 	np->ioaddr = ioaddr;
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 
150 	spin_lock_init(&np->stats_lock);
151 	spin_lock_init (&np->tx_lock);
152 	spin_lock_init (&np->rx_lock);
153 
154 	/* Parse manual configuration */
155 	np->an_enable = 1;
156 	np->tx_coalesce = 1;
157 	if (card_idx < MAX_UNITS) {
158 		if (media[card_idx] != NULL) {
159 			np->an_enable = 0;
160 			if (strcmp (media[card_idx], "auto") == 0 ||
161 			    strcmp (media[card_idx], "autosense") == 0 ||
162 			    strcmp (media[card_idx], "0") == 0 ) {
163 				np->an_enable = 2;
164 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
165 			    strcmp (media[card_idx], "4") == 0) {
166 				np->speed = 100;
167 				np->full_duplex = 1;
168 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
169 				   strcmp (media[card_idx], "3") == 0) {
170 				np->speed = 100;
171 				np->full_duplex = 0;
172 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
173 				   strcmp (media[card_idx], "2") == 0) {
174 				np->speed = 10;
175 				np->full_duplex = 1;
176 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
177 				   strcmp (media[card_idx], "1") == 0) {
178 				np->speed = 10;
179 				np->full_duplex = 0;
180 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
181 				 strcmp (media[card_idx], "6") == 0) {
182 				np->speed=1000;
183 				np->full_duplex=1;
184 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
185 				 strcmp (media[card_idx], "5") == 0) {
186 				np->speed = 1000;
187 				np->full_duplex = 0;
188 			} else {
189 				np->an_enable = 1;
190 			}
191 		}
192 		if (jumbo[card_idx] != 0) {
193 			np->jumbo = 1;
194 			dev->mtu = MAX_JUMBO;
195 		} else {
196 			np->jumbo = 0;
197 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
198 				dev->mtu = mtu[card_idx];
199 		}
200 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
201 		    vlan[card_idx] : 0;
202 		if (rx_coalesce > 0 && rx_timeout > 0) {
203 			np->rx_coalesce = rx_coalesce;
204 			np->rx_timeout = rx_timeout;
205 			np->coalesce = 1;
206 		}
207 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
208 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
209 
210 		if (tx_coalesce < 1)
211 			tx_coalesce = 1;
212 		else if (tx_coalesce > TX_RING_SIZE-1)
213 			tx_coalesce = TX_RING_SIZE - 1;
214 	}
215 	dev->netdev_ops = &netdev_ops;
216 	dev->watchdog_timeo = TX_TIMEOUT;
217 	dev->ethtool_ops = &ethtool_ops;
218 #if 0
219 	dev->features = NETIF_F_IP_CSUM;
220 #endif
221 	/* MTU range: 68 - 1536 or 8000 */
222 	dev->min_mtu = ETH_MIN_MTU;
223 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
224 
225 	pci_set_drvdata (pdev, dev);
226 
227 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
228 					GFP_KERNEL);
229 	if (!ring_space)
230 		goto err_out_iounmap;
231 	np->tx_ring = ring_space;
232 	np->tx_ring_dma = ring_dma;
233 
234 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
235 					GFP_KERNEL);
236 	if (!ring_space)
237 		goto err_out_unmap_tx;
238 	np->rx_ring = ring_space;
239 	np->rx_ring_dma = ring_dma;
240 
241 	/* Parse eeprom data */
242 	parse_eeprom (dev);
243 
244 	/* Find PHY address */
245 	err = find_miiphy (dev);
246 	if (err)
247 		goto err_out_unmap_rx;
248 
249 	/* Fiber device? */
250 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
251 	np->link_status = 0;
252 	/* Set media and reset PHY */
253 	if (np->phy_media) {
254 		/* default Auto-Negotiation for fiber deivices */
255 	 	if (np->an_enable == 2) {
256 			np->an_enable = 1;
257 		}
258 	} else {
259 		/* Auto-Negotiation is mandatory for 1000BASE-T,
260 		   IEEE 802.3ab Annex 28D page 14 */
261 		if (np->speed == 1000)
262 			np->an_enable = 1;
263 	}
264 
265 	err = register_netdev (dev);
266 	if (err)
267 		goto err_out_unmap_rx;
268 
269 	card_idx++;
270 
271 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
272 		dev->name, np->name, dev->dev_addr, irq);
273 	if (tx_coalesce > 1)
274 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
275 				tx_coalesce);
276 	if (np->coalesce)
277 		printk(KERN_INFO
278 		       "rx_coalesce:\t%d packets\n"
279 		       "rx_timeout: \t%d ns\n",
280 				np->rx_coalesce, np->rx_timeout*640);
281 	if (np->vlan)
282 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
283 	return 0;
284 
285 err_out_unmap_rx:
286 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
287 			  np->rx_ring_dma);
288 err_out_unmap_tx:
289 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
290 			  np->tx_ring_dma);
291 err_out_iounmap:
292 #ifdef MEM_MAPPING
293 	pci_iounmap(pdev, np->ioaddr);
294 #endif
295 	pci_iounmap(pdev, np->eeprom_addr);
296 err_out_dev:
297 	free_netdev (dev);
298 err_out_res:
299 	pci_release_regions (pdev);
300 err_out_disable:
301 	pci_disable_device (pdev);
302 	return err;
303 }
304 
305 static int
find_miiphy(struct net_device * dev)306 find_miiphy (struct net_device *dev)
307 {
308 	struct netdev_private *np = netdev_priv(dev);
309 	int i, phy_found = 0;
310 
311 	np->phy_addr = 1;
312 
313 	for (i = 31; i >= 0; i--) {
314 		int mii_status = mii_read (dev, i, 1);
315 		if (mii_status != 0xffff && mii_status != 0x0000) {
316 			np->phy_addr = i;
317 			phy_found++;
318 		}
319 	}
320 	if (!phy_found) {
321 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
322 		return -ENODEV;
323 	}
324 	return 0;
325 }
326 
327 static int
parse_eeprom(struct net_device * dev)328 parse_eeprom (struct net_device *dev)
329 {
330 	struct netdev_private *np = netdev_priv(dev);
331 	void __iomem *ioaddr = np->ioaddr;
332 	int i, j;
333 	u8 sromdata[256];
334 	u8 *psib;
335 	u32 crc;
336 	PSROM_t psrom = (PSROM_t) sromdata;
337 
338 	int cid, next;
339 
340 	for (i = 0; i < 128; i++)
341 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
342 
343 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
344 		/* Check CRC */
345 		crc = ~ether_crc_le (256 - 4, sromdata);
346 		if (psrom->crc != cpu_to_le32(crc)) {
347 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
348 					dev->name);
349 			return -1;
350 		}
351 	}
352 
353 	/* Set MAC address */
354 	eth_hw_addr_set(dev, psrom->mac_addr);
355 
356 	if (np->chip_id == CHIP_IP1000A) {
357 		np->led_mode = le16_to_cpu(psrom->led_mode);
358 		return 0;
359 	}
360 
361 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
362 		return 0;
363 	}
364 
365 	/* Parse Software Information Block */
366 	i = 0x30;
367 	psib = (u8 *) sromdata;
368 	do {
369 		cid = psib[i++];
370 		next = psib[i++];
371 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
372 			printk (KERN_ERR "Cell data error\n");
373 			return -1;
374 		}
375 		switch (cid) {
376 		case 0:	/* Format version */
377 			break;
378 		case 1:	/* End of cell */
379 			return 0;
380 		case 2:	/* Duplex Polarity */
381 			np->duplex_polarity = psib[i];
382 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
383 			break;
384 		case 3:	/* Wake Polarity */
385 			np->wake_polarity = psib[i];
386 			break;
387 		case 9:	/* Adapter description */
388 			j = (next - i > 255) ? 255 : next - i;
389 			memcpy (np->name, &(psib[i]), j);
390 			break;
391 		case 4:
392 		case 5:
393 		case 6:
394 		case 7:
395 		case 8:	/* Reversed */
396 			break;
397 		default:	/* Unknown cell */
398 			return -1;
399 		}
400 		i = next;
401 	} while (1);
402 
403 	return 0;
404 }
405 
rio_set_led_mode(struct net_device * dev)406 static void rio_set_led_mode(struct net_device *dev)
407 {
408 	struct netdev_private *np = netdev_priv(dev);
409 	void __iomem *ioaddr = np->ioaddr;
410 	u32 mode;
411 
412 	if (np->chip_id != CHIP_IP1000A)
413 		return;
414 
415 	mode = dr32(ASICCtrl);
416 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
417 
418 	if (np->led_mode & 0x01)
419 		mode |= IPG_AC_LED_MODE;
420 	if (np->led_mode & 0x02)
421 		mode |= IPG_AC_LED_MODE_BIT_1;
422 	if (np->led_mode & 0x08)
423 		mode |= IPG_AC_LED_SPEED;
424 
425 	dw32(ASICCtrl, mode);
426 }
427 
desc_to_dma(struct netdev_desc * desc)428 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
429 {
430 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
431 }
432 
free_list(struct net_device * dev)433 static void free_list(struct net_device *dev)
434 {
435 	struct netdev_private *np = netdev_priv(dev);
436 	struct sk_buff *skb;
437 	int i;
438 
439 	/* Free all the skbuffs in the queue. */
440 	for (i = 0; i < RX_RING_SIZE; i++) {
441 		skb = np->rx_skbuff[i];
442 		if (skb) {
443 			dma_unmap_single(&np->pdev->dev,
444 					 desc_to_dma(&np->rx_ring[i]),
445 					 skb->len, DMA_FROM_DEVICE);
446 			dev_kfree_skb(skb);
447 			np->rx_skbuff[i] = NULL;
448 		}
449 		np->rx_ring[i].status = 0;
450 		np->rx_ring[i].fraginfo = 0;
451 	}
452 	for (i = 0; i < TX_RING_SIZE; i++) {
453 		skb = np->tx_skbuff[i];
454 		if (skb) {
455 			dma_unmap_single(&np->pdev->dev,
456 					 desc_to_dma(&np->tx_ring[i]),
457 					 skb->len, DMA_TO_DEVICE);
458 			dev_kfree_skb(skb);
459 			np->tx_skbuff[i] = NULL;
460 		}
461 	}
462 }
463 
rio_reset_ring(struct netdev_private * np)464 static void rio_reset_ring(struct netdev_private *np)
465 {
466 	int i;
467 
468 	np->cur_rx = 0;
469 	np->cur_tx = 0;
470 	np->old_rx = 0;
471 	np->old_tx = 0;
472 
473 	for (i = 0; i < TX_RING_SIZE; i++)
474 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
475 
476 	for (i = 0; i < RX_RING_SIZE; i++)
477 		np->rx_ring[i].status = 0;
478 }
479 
480  /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)481 static int alloc_list(struct net_device *dev)
482 {
483 	struct netdev_private *np = netdev_priv(dev);
484 	int i;
485 
486 	rio_reset_ring(np);
487 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
488 
489 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
490 	for (i = 0; i < TX_RING_SIZE; i++) {
491 		np->tx_skbuff[i] = NULL;
492 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
493 					      ((i + 1) % TX_RING_SIZE) *
494 					      sizeof(struct netdev_desc));
495 	}
496 
497 	/* Initialize Rx descriptors & allocate buffers */
498 	for (i = 0; i < RX_RING_SIZE; i++) {
499 		/* Allocated fixed size of skbuff */
500 		struct sk_buff *skb;
501 
502 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
503 		np->rx_skbuff[i] = skb;
504 		if (!skb) {
505 			free_list(dev);
506 			return -ENOMEM;
507 		}
508 
509 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
510 						((i + 1) % RX_RING_SIZE) *
511 						sizeof(struct netdev_desc));
512 		/* Rubicon now supports 40 bits of addressing space. */
513 		np->rx_ring[i].fraginfo =
514 		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
515 					       np->rx_buf_sz, DMA_FROM_DEVICE));
516 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
517 	}
518 
519 	return 0;
520 }
521 
rio_hw_init(struct net_device * dev)522 static void rio_hw_init(struct net_device *dev)
523 {
524 	struct netdev_private *np = netdev_priv(dev);
525 	void __iomem *ioaddr = np->ioaddr;
526 	int i;
527 	u16 macctrl;
528 
529 	/* Reset all logic functions */
530 	dw16(ASICCtrl + 2,
531 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
532 	mdelay(10);
533 
534 	rio_set_led_mode(dev);
535 
536 	/* DebugCtrl bit 4, 5, 9 must set */
537 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
538 
539 	if (np->chip_id == CHIP_IP1000A &&
540 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
541 		/* PHY magic taken from ipg driver, undocumented registers */
542 		mii_write(dev, np->phy_addr, 31, 0x0001);
543 		mii_write(dev, np->phy_addr, 27, 0x01e0);
544 		mii_write(dev, np->phy_addr, 31, 0x0002);
545 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
546 		mii_write(dev, np->phy_addr, 31, 0x0000);
547 		mii_write(dev, np->phy_addr, 30, 0x005e);
548 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
549 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
550 	}
551 
552 	if (np->phy_media)
553 		mii_set_media_pcs(dev);
554 	else
555 		mii_set_media(dev);
556 
557 	/* Jumbo frame */
558 	if (np->jumbo != 0)
559 		dw16(MaxFrameSize, MAX_JUMBO+14);
560 
561 	/* Set RFDListPtr */
562 	dw32(RFDListPtr0, np->rx_ring_dma);
563 	dw32(RFDListPtr1, 0);
564 
565 	/* Set station address */
566 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
567 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
568 	 */
569 	for (i = 0; i < 3; i++)
570 		dw16(StationAddr0 + 2 * i,
571 		     cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
572 
573 	set_multicast (dev);
574 	if (np->coalesce) {
575 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
576 	}
577 	/* Set RIO to poll every N*320nsec. */
578 	dw8(RxDMAPollPeriod, 0x20);
579 	dw8(TxDMAPollPeriod, 0xff);
580 	dw8(RxDMABurstThresh, 0x30);
581 	dw8(RxDMAUrgentThresh, 0x30);
582 	dw32(RmonStatMask, 0x0007ffff);
583 	/* clear statistics */
584 	clear_stats (dev);
585 
586 	/* VLAN supported */
587 	if (np->vlan) {
588 		/* priority field in RxDMAIntCtrl  */
589 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
590 		/* VLANId */
591 		dw16(VLANId, np->vlan);
592 		/* Length/Type should be 0x8100 */
593 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
594 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
595 		   VLAN information tagged by TFC' VID, CFI fields. */
596 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
597 	}
598 
599 	/* Start Tx/Rx */
600 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
601 
602 	macctrl = 0;
603 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
604 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
605 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
606 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
607 	dw16(MACCtrl, macctrl);
608 }
609 
rio_hw_stop(struct net_device * dev)610 static void rio_hw_stop(struct net_device *dev)
611 {
612 	struct netdev_private *np = netdev_priv(dev);
613 	void __iomem *ioaddr = np->ioaddr;
614 
615 	/* Disable interrupts */
616 	dw16(IntEnable, 0);
617 
618 	/* Stop Tx and Rx logics */
619 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
620 }
621 
rio_open(struct net_device * dev)622 static int rio_open(struct net_device *dev)
623 {
624 	struct netdev_private *np = netdev_priv(dev);
625 	const int irq = np->pdev->irq;
626 	int i;
627 
628 	i = alloc_list(dev);
629 	if (i)
630 		return i;
631 
632 	rio_hw_init(dev);
633 
634 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
635 	if (i) {
636 		rio_hw_stop(dev);
637 		free_list(dev);
638 		return i;
639 	}
640 
641 	timer_setup(&np->timer, rio_timer, 0);
642 	np->timer.expires = jiffies + 1 * HZ;
643 	add_timer(&np->timer);
644 
645 	netif_start_queue (dev);
646 
647 	dl2k_enable_int(np);
648 	return 0;
649 }
650 
651 static void
rio_timer(struct timer_list * t)652 rio_timer (struct timer_list *t)
653 {
654 	struct netdev_private *np = from_timer(np, t, timer);
655 	struct net_device *dev = pci_get_drvdata(np->pdev);
656 	unsigned int entry;
657 	int next_tick = 1*HZ;
658 	unsigned long flags;
659 
660 	spin_lock_irqsave(&np->rx_lock, flags);
661 	/* Recover rx ring exhausted error */
662 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
663 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
664 		/* Re-allocate skbuffs to fill the descriptor ring */
665 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
666 			struct sk_buff *skb;
667 			entry = np->old_rx % RX_RING_SIZE;
668 			/* Dropped packets don't need to re-allocate */
669 			if (np->rx_skbuff[entry] == NULL) {
670 				skb = netdev_alloc_skb_ip_align(dev,
671 								np->rx_buf_sz);
672 				if (skb == NULL) {
673 					np->rx_ring[entry].fraginfo = 0;
674 					printk (KERN_INFO
675 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
676 						dev->name, entry);
677 					break;
678 				}
679 				np->rx_skbuff[entry] = skb;
680 				np->rx_ring[entry].fraginfo =
681 				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
682 								np->rx_buf_sz, DMA_FROM_DEVICE));
683 			}
684 			np->rx_ring[entry].fraginfo |=
685 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
686 			np->rx_ring[entry].status = 0;
687 		} /* end for */
688 	} /* end if */
689 	spin_unlock_irqrestore (&np->rx_lock, flags);
690 	np->timer.expires = jiffies + next_tick;
691 	add_timer(&np->timer);
692 }
693 
694 static void
rio_tx_timeout(struct net_device * dev,unsigned int txqueue)695 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
696 {
697 	struct netdev_private *np = netdev_priv(dev);
698 	void __iomem *ioaddr = np->ioaddr;
699 
700 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
701 		dev->name, dr32(TxStatus));
702 	rio_free_tx(dev, 0);
703 	dev->if_port = 0;
704 	netif_trans_update(dev); /* prevent tx timeout */
705 }
706 
707 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)708 start_xmit (struct sk_buff *skb, struct net_device *dev)
709 {
710 	struct netdev_private *np = netdev_priv(dev);
711 	void __iomem *ioaddr = np->ioaddr;
712 	struct netdev_desc *txdesc;
713 	unsigned entry;
714 	u64 tfc_vlan_tag = 0;
715 
716 	if (np->link_status == 0) {	/* Link Down */
717 		dev_kfree_skb(skb);
718 		return NETDEV_TX_OK;
719 	}
720 	entry = np->cur_tx % TX_RING_SIZE;
721 	np->tx_skbuff[entry] = skb;
722 	txdesc = &np->tx_ring[entry];
723 
724 #if 0
725 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
726 		txdesc->status |=
727 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
728 				 IPChecksumEnable);
729 	}
730 #endif
731 	if (np->vlan) {
732 		tfc_vlan_tag = VLANTagInsert |
733 		    ((u64)np->vlan << 32) |
734 		    ((u64)skb->priority << 45);
735 	}
736 	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
737 						       skb->len, DMA_TO_DEVICE));
738 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
739 
740 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
741 	 * Work around: Always use 1 descriptor in 10Mbps mode */
742 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
743 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
744 					      WordAlignDisable |
745 					      TxDMAIndicate |
746 					      (1 << FragCountShift));
747 	else
748 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
749 					      WordAlignDisable |
750 					      (1 << FragCountShift));
751 
752 	/* TxDMAPollNow */
753 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
754 	/* Schedule ISR */
755 	dw32(CountDown, 10000);
756 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
757 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
758 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
759 		/* do nothing */
760 	} else if (!netif_queue_stopped(dev)) {
761 		netif_stop_queue (dev);
762 	}
763 
764 	/* The first TFDListPtr */
765 	if (!dr32(TFDListPtr0)) {
766 		dw32(TFDListPtr0, np->tx_ring_dma +
767 		     entry * sizeof (struct netdev_desc));
768 		dw32(TFDListPtr1, 0);
769 	}
770 
771 	return NETDEV_TX_OK;
772 }
773 
774 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)775 rio_interrupt (int irq, void *dev_instance)
776 {
777 	struct net_device *dev = dev_instance;
778 	struct netdev_private *np = netdev_priv(dev);
779 	void __iomem *ioaddr = np->ioaddr;
780 	unsigned int_status;
781 	int cnt = max_intrloop;
782 	int handled = 0;
783 
784 	while (1) {
785 		int_status = dr16(IntStatus);
786 		dw16(IntStatus, int_status);
787 		int_status &= DEFAULT_INTR;
788 		if (int_status == 0 || --cnt < 0)
789 			break;
790 		handled = 1;
791 		/* Processing received packets */
792 		if (int_status & RxDMAComplete)
793 			receive_packet (dev);
794 		/* TxDMAComplete interrupt */
795 		if ((int_status & (TxDMAComplete|IntRequested))) {
796 			int tx_status;
797 			tx_status = dr32(TxStatus);
798 			if (tx_status & 0x01)
799 				tx_error (dev, tx_status);
800 			/* Free used tx skbuffs */
801 			rio_free_tx (dev, 1);
802 		}
803 
804 		/* Handle uncommon events */
805 		if (int_status &
806 		    (HostError | LinkEvent | UpdateStats))
807 			rio_error (dev, int_status);
808 	}
809 	if (np->cur_tx != np->old_tx)
810 		dw32(CountDown, 100);
811 	return IRQ_RETVAL(handled);
812 }
813 
814 static void
rio_free_tx(struct net_device * dev,int irq)815 rio_free_tx (struct net_device *dev, int irq)
816 {
817 	struct netdev_private *np = netdev_priv(dev);
818 	int entry = np->old_tx % TX_RING_SIZE;
819 	unsigned long flag = 0;
820 
821 	if (irq)
822 		spin_lock(&np->tx_lock);
823 	else
824 		spin_lock_irqsave(&np->tx_lock, flag);
825 
826 	/* Free used tx skbuffs */
827 	while (entry != np->cur_tx) {
828 		struct sk_buff *skb;
829 
830 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
831 			break;
832 		skb = np->tx_skbuff[entry];
833 		dma_unmap_single(&np->pdev->dev,
834 				 desc_to_dma(&np->tx_ring[entry]), skb->len,
835 				 DMA_TO_DEVICE);
836 		if (irq)
837 			dev_consume_skb_irq(skb);
838 		else
839 			dev_kfree_skb(skb);
840 
841 		np->tx_skbuff[entry] = NULL;
842 		entry = (entry + 1) % TX_RING_SIZE;
843 	}
844 	if (irq)
845 		spin_unlock(&np->tx_lock);
846 	else
847 		spin_unlock_irqrestore(&np->tx_lock, flag);
848 	np->old_tx = entry;
849 
850 	/* If the ring is no longer full, clear tx_full and
851 	   call netif_wake_queue() */
852 
853 	if (netif_queue_stopped(dev) &&
854 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
855 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
856 		netif_wake_queue (dev);
857 	}
858 }
859 
860 static void
tx_error(struct net_device * dev,int tx_status)861 tx_error (struct net_device *dev, int tx_status)
862 {
863 	struct netdev_private *np = netdev_priv(dev);
864 	void __iomem *ioaddr = np->ioaddr;
865 	int frame_id;
866 	int i;
867 
868 	frame_id = (tx_status & 0xffff0000);
869 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
870 		dev->name, tx_status, frame_id);
871 	/* Ttransmit Underrun */
872 	if (tx_status & 0x10) {
873 		dev->stats.tx_fifo_errors++;
874 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
875 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
876 		dw16(ASICCtrl + 2,
877 		     TxReset | DMAReset | FIFOReset | NetworkReset);
878 		/* Wait for ResetBusy bit clear */
879 		for (i = 50; i > 0; i--) {
880 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
881 				break;
882 			mdelay (1);
883 		}
884 		rio_set_led_mode(dev);
885 		rio_free_tx (dev, 1);
886 		/* Reset TFDListPtr */
887 		dw32(TFDListPtr0, np->tx_ring_dma +
888 		     np->old_tx * sizeof (struct netdev_desc));
889 		dw32(TFDListPtr1, 0);
890 
891 		/* Let TxStartThresh stay default value */
892 	}
893 	/* Late Collision */
894 	if (tx_status & 0x04) {
895 		dev->stats.tx_fifo_errors++;
896 		/* TxReset and clear FIFO */
897 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
898 		/* Wait reset done */
899 		for (i = 50; i > 0; i--) {
900 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
901 				break;
902 			mdelay (1);
903 		}
904 		rio_set_led_mode(dev);
905 		/* Let TxStartThresh stay default value */
906 	}
907 
908 	spin_lock(&np->stats_lock);
909 	/* Maximum Collisions */
910 	if (tx_status & 0x08)
911 		dev->stats.collisions++;
912 
913 	dev->stats.tx_errors++;
914 	spin_unlock(&np->stats_lock);
915 
916 	/* Restart the Tx */
917 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
918 }
919 
920 static int
receive_packet(struct net_device * dev)921 receive_packet (struct net_device *dev)
922 {
923 	struct netdev_private *np = netdev_priv(dev);
924 	int entry = np->cur_rx % RX_RING_SIZE;
925 	int cnt = 30;
926 
927 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
928 	while (1) {
929 		struct netdev_desc *desc = &np->rx_ring[entry];
930 		int pkt_len;
931 		u64 frame_status;
932 
933 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
934 		    !(desc->status & cpu_to_le64(FrameStart)) ||
935 		    !(desc->status & cpu_to_le64(FrameEnd)))
936 			break;
937 
938 		/* Chip omits the CRC. */
939 		frame_status = le64_to_cpu(desc->status);
940 		pkt_len = frame_status & 0xffff;
941 		if (--cnt < 0)
942 			break;
943 		/* Update rx error statistics, drop packet. */
944 		if (frame_status & RFS_Errors) {
945 			dev->stats.rx_errors++;
946 			if (frame_status & (RxRuntFrame | RxLengthError))
947 				dev->stats.rx_length_errors++;
948 			if (frame_status & RxFCSError)
949 				dev->stats.rx_crc_errors++;
950 			if (frame_status & RxAlignmentError && np->speed != 1000)
951 				dev->stats.rx_frame_errors++;
952 			if (frame_status & RxFIFOOverrun)
953 				dev->stats.rx_fifo_errors++;
954 		} else {
955 			struct sk_buff *skb;
956 
957 			/* Small skbuffs for short packets */
958 			if (pkt_len > copy_thresh) {
959 				dma_unmap_single(&np->pdev->dev,
960 						 desc_to_dma(desc),
961 						 np->rx_buf_sz,
962 						 DMA_FROM_DEVICE);
963 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
964 				np->rx_skbuff[entry] = NULL;
965 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
966 				dma_sync_single_for_cpu(&np->pdev->dev,
967 							desc_to_dma(desc),
968 							np->rx_buf_sz,
969 							DMA_FROM_DEVICE);
970 				skb_copy_to_linear_data (skb,
971 						  np->rx_skbuff[entry]->data,
972 						  pkt_len);
973 				skb_put (skb, pkt_len);
974 				dma_sync_single_for_device(&np->pdev->dev,
975 							   desc_to_dma(desc),
976 							   np->rx_buf_sz,
977 							   DMA_FROM_DEVICE);
978 			}
979 			skb->protocol = eth_type_trans (skb, dev);
980 #if 0
981 			/* Checksum done by hw, but csum value unavailable. */
982 			if (np->pdev->pci_rev_id >= 0x0c &&
983 				!(frame_status & (TCPError | UDPError | IPError))) {
984 				skb->ip_summed = CHECKSUM_UNNECESSARY;
985 			}
986 #endif
987 			netif_rx (skb);
988 		}
989 		entry = (entry + 1) % RX_RING_SIZE;
990 	}
991 	spin_lock(&np->rx_lock);
992 	np->cur_rx = entry;
993 	/* Re-allocate skbuffs to fill the descriptor ring */
994 	entry = np->old_rx;
995 	while (entry != np->cur_rx) {
996 		struct sk_buff *skb;
997 		/* Dropped packets don't need to re-allocate */
998 		if (np->rx_skbuff[entry] == NULL) {
999 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1000 			if (skb == NULL) {
1001 				np->rx_ring[entry].fraginfo = 0;
1002 				printk (KERN_INFO
1003 					"%s: receive_packet: "
1004 					"Unable to re-allocate Rx skbuff.#%d\n",
1005 					dev->name, entry);
1006 				break;
1007 			}
1008 			np->rx_skbuff[entry] = skb;
1009 			np->rx_ring[entry].fraginfo =
1010 			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1011 						       np->rx_buf_sz, DMA_FROM_DEVICE));
1012 		}
1013 		np->rx_ring[entry].fraginfo |=
1014 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1015 		np->rx_ring[entry].status = 0;
1016 		entry = (entry + 1) % RX_RING_SIZE;
1017 	}
1018 	np->old_rx = entry;
1019 	spin_unlock(&np->rx_lock);
1020 	return 0;
1021 }
1022 
1023 static void
rio_error(struct net_device * dev,int int_status)1024 rio_error (struct net_device *dev, int int_status)
1025 {
1026 	struct netdev_private *np = netdev_priv(dev);
1027 	void __iomem *ioaddr = np->ioaddr;
1028 	u16 macctrl;
1029 
1030 	/* Link change event */
1031 	if (int_status & LinkEvent) {
1032 		if (mii_wait_link (dev, 10) == 0) {
1033 			printk (KERN_INFO "%s: Link up\n", dev->name);
1034 			if (np->phy_media)
1035 				mii_get_media_pcs (dev);
1036 			else
1037 				mii_get_media (dev);
1038 			if (np->speed == 1000)
1039 				np->tx_coalesce = tx_coalesce;
1040 			else
1041 				np->tx_coalesce = 1;
1042 			macctrl = 0;
1043 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1044 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1045 			macctrl |= (np->tx_flow) ?
1046 				TxFlowControlEnable : 0;
1047 			macctrl |= (np->rx_flow) ?
1048 				RxFlowControlEnable : 0;
1049 			dw16(MACCtrl, macctrl);
1050 			np->link_status = 1;
1051 			netif_carrier_on(dev);
1052 		} else {
1053 			printk (KERN_INFO "%s: Link off\n", dev->name);
1054 			np->link_status = 0;
1055 			netif_carrier_off(dev);
1056 		}
1057 	}
1058 
1059 	/* UpdateStats statistics registers */
1060 	if (int_status & UpdateStats) {
1061 		get_stats (dev);
1062 	}
1063 
1064 	/* PCI Error, a catastronphic error related to the bus interface
1065 	   occurs, set GlobalReset and HostReset to reset. */
1066 	if (int_status & HostError) {
1067 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1068 			dev->name, int_status);
1069 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1070 		mdelay (500);
1071 		rio_set_led_mode(dev);
1072 	}
1073 }
1074 
1075 static struct net_device_stats *
get_stats(struct net_device * dev)1076 get_stats (struct net_device *dev)
1077 {
1078 	struct netdev_private *np = netdev_priv(dev);
1079 	void __iomem *ioaddr = np->ioaddr;
1080 #ifdef MEM_MAPPING
1081 	int i;
1082 #endif
1083 	unsigned int stat_reg;
1084 	unsigned long flags;
1085 
1086 	spin_lock_irqsave(&np->stats_lock, flags);
1087 	/* All statistics registers need to be acknowledged,
1088 	   else statistic overflow could cause problems */
1089 
1090 	dev->stats.rx_packets += dr32(FramesRcvOk);
1091 	dev->stats.tx_packets += dr32(FramesXmtOk);
1092 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1093 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1094 
1095 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1096 	dev->stats.collisions += dr32(SingleColFrames)
1097 			     +  dr32(MultiColFrames);
1098 
1099 	/* detailed tx errors */
1100 	stat_reg = dr16(FramesAbortXSColls);
1101 	dev->stats.tx_aborted_errors += stat_reg;
1102 	dev->stats.tx_errors += stat_reg;
1103 
1104 	stat_reg = dr16(CarrierSenseErrors);
1105 	dev->stats.tx_carrier_errors += stat_reg;
1106 	dev->stats.tx_errors += stat_reg;
1107 
1108 	/* Clear all other statistic register. */
1109 	dr32(McstOctetXmtOk);
1110 	dr16(BcstFramesXmtdOk);
1111 	dr32(McstFramesXmtdOk);
1112 	dr16(BcstFramesRcvdOk);
1113 	dr16(MacControlFramesRcvd);
1114 	dr16(FrameTooLongErrors);
1115 	dr16(InRangeLengthErrors);
1116 	dr16(FramesCheckSeqErrors);
1117 	dr16(FramesLostRxErrors);
1118 	dr32(McstOctetXmtOk);
1119 	dr32(BcstOctetXmtOk);
1120 	dr32(McstFramesXmtdOk);
1121 	dr32(FramesWDeferredXmt);
1122 	dr32(LateCollisions);
1123 	dr16(BcstFramesXmtdOk);
1124 	dr16(MacControlFramesXmtd);
1125 	dr16(FramesWEXDeferal);
1126 
1127 #ifdef MEM_MAPPING
1128 	for (i = 0x100; i <= 0x150; i += 4)
1129 		dr32(i);
1130 #endif
1131 	dr16(TxJumboFrames);
1132 	dr16(RxJumboFrames);
1133 	dr16(TCPCheckSumErrors);
1134 	dr16(UDPCheckSumErrors);
1135 	dr16(IPCheckSumErrors);
1136 
1137 	spin_unlock_irqrestore(&np->stats_lock, flags);
1138 
1139 	return &dev->stats;
1140 }
1141 
1142 static int
clear_stats(struct net_device * dev)1143 clear_stats (struct net_device *dev)
1144 {
1145 	struct netdev_private *np = netdev_priv(dev);
1146 	void __iomem *ioaddr = np->ioaddr;
1147 #ifdef MEM_MAPPING
1148 	int i;
1149 #endif
1150 
1151 	/* All statistics registers need to be acknowledged,
1152 	   else statistic overflow could cause problems */
1153 	dr32(FramesRcvOk);
1154 	dr32(FramesXmtOk);
1155 	dr32(OctetRcvOk);
1156 	dr32(OctetXmtOk);
1157 
1158 	dr32(McstFramesRcvdOk);
1159 	dr32(SingleColFrames);
1160 	dr32(MultiColFrames);
1161 	dr32(LateCollisions);
1162 	/* detailed rx errors */
1163 	dr16(FrameTooLongErrors);
1164 	dr16(InRangeLengthErrors);
1165 	dr16(FramesCheckSeqErrors);
1166 	dr16(FramesLostRxErrors);
1167 
1168 	/* detailed tx errors */
1169 	dr16(FramesAbortXSColls);
1170 	dr16(CarrierSenseErrors);
1171 
1172 	/* Clear all other statistic register. */
1173 	dr32(McstOctetXmtOk);
1174 	dr16(BcstFramesXmtdOk);
1175 	dr32(McstFramesXmtdOk);
1176 	dr16(BcstFramesRcvdOk);
1177 	dr16(MacControlFramesRcvd);
1178 	dr32(McstOctetXmtOk);
1179 	dr32(BcstOctetXmtOk);
1180 	dr32(McstFramesXmtdOk);
1181 	dr32(FramesWDeferredXmt);
1182 	dr16(BcstFramesXmtdOk);
1183 	dr16(MacControlFramesXmtd);
1184 	dr16(FramesWEXDeferal);
1185 #ifdef MEM_MAPPING
1186 	for (i = 0x100; i <= 0x150; i += 4)
1187 		dr32(i);
1188 #endif
1189 	dr16(TxJumboFrames);
1190 	dr16(RxJumboFrames);
1191 	dr16(TCPCheckSumErrors);
1192 	dr16(UDPCheckSumErrors);
1193 	dr16(IPCheckSumErrors);
1194 	return 0;
1195 }
1196 
1197 static void
set_multicast(struct net_device * dev)1198 set_multicast (struct net_device *dev)
1199 {
1200 	struct netdev_private *np = netdev_priv(dev);
1201 	void __iomem *ioaddr = np->ioaddr;
1202 	u32 hash_table[2];
1203 	u16 rx_mode = 0;
1204 
1205 	hash_table[0] = hash_table[1] = 0;
1206 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1207 	hash_table[1] |= 0x02000000;
1208 	if (dev->flags & IFF_PROMISC) {
1209 		/* Receive all frames promiscuously. */
1210 		rx_mode = ReceiveAllFrames;
1211 	} else if ((dev->flags & IFF_ALLMULTI) ||
1212 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1213 		/* Receive broadcast and multicast frames */
1214 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1215 	} else if (!netdev_mc_empty(dev)) {
1216 		struct netdev_hw_addr *ha;
1217 		/* Receive broadcast frames and multicast frames filtering
1218 		   by Hashtable */
1219 		rx_mode =
1220 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1221 		netdev_for_each_mc_addr(ha, dev) {
1222 			int bit, index = 0;
1223 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1224 			/* The inverted high significant 6 bits of CRC are
1225 			   used as an index to hashtable */
1226 			for (bit = 0; bit < 6; bit++)
1227 				if (crc & (1 << (31 - bit)))
1228 					index |= (1 << bit);
1229 			hash_table[index / 32] |= (1 << (index % 32));
1230 		}
1231 	} else {
1232 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1233 	}
1234 	if (np->vlan) {
1235 		/* ReceiveVLANMatch field in ReceiveMode */
1236 		rx_mode |= ReceiveVLANMatch;
1237 	}
1238 
1239 	dw32(HashTable0, hash_table[0]);
1240 	dw32(HashTable1, hash_table[1]);
1241 	dw16(ReceiveMode, rx_mode);
1242 }
1243 
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1244 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1245 {
1246 	struct netdev_private *np = netdev_priv(dev);
1247 
1248 	strscpy(info->driver, "dl2k", sizeof(info->driver));
1249 	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1250 }
1251 
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1252 static int rio_get_link_ksettings(struct net_device *dev,
1253 				  struct ethtool_link_ksettings *cmd)
1254 {
1255 	struct netdev_private *np = netdev_priv(dev);
1256 	u32 supported, advertising;
1257 
1258 	if (np->phy_media) {
1259 		/* fiber device */
1260 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1261 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1262 		cmd->base.port = PORT_FIBRE;
1263 	} else {
1264 		/* copper device */
1265 		supported = SUPPORTED_10baseT_Half |
1266 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1267 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1268 			SUPPORTED_Autoneg | SUPPORTED_MII;
1269 		advertising = ADVERTISED_10baseT_Half |
1270 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1271 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1272 			ADVERTISED_Autoneg | ADVERTISED_MII;
1273 		cmd->base.port = PORT_MII;
1274 	}
1275 	if (np->link_status) {
1276 		cmd->base.speed = np->speed;
1277 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1278 	} else {
1279 		cmd->base.speed = SPEED_UNKNOWN;
1280 		cmd->base.duplex = DUPLEX_UNKNOWN;
1281 	}
1282 	if (np->an_enable)
1283 		cmd->base.autoneg = AUTONEG_ENABLE;
1284 	else
1285 		cmd->base.autoneg = AUTONEG_DISABLE;
1286 
1287 	cmd->base.phy_address = np->phy_addr;
1288 
1289 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1290 						supported);
1291 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1292 						advertising);
1293 
1294 	return 0;
1295 }
1296 
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1297 static int rio_set_link_ksettings(struct net_device *dev,
1298 				  const struct ethtool_link_ksettings *cmd)
1299 {
1300 	struct netdev_private *np = netdev_priv(dev);
1301 	u32 speed = cmd->base.speed;
1302 	u8 duplex = cmd->base.duplex;
1303 
1304 	netif_carrier_off(dev);
1305 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1306 		if (np->an_enable) {
1307 			return 0;
1308 		} else {
1309 			np->an_enable = 1;
1310 			mii_set_media(dev);
1311 			return 0;
1312 		}
1313 	} else {
1314 		np->an_enable = 0;
1315 		if (np->speed == 1000) {
1316 			speed = SPEED_100;
1317 			duplex = DUPLEX_FULL;
1318 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1319 		}
1320 		switch (speed) {
1321 		case SPEED_10:
1322 			np->speed = 10;
1323 			np->full_duplex = (duplex == DUPLEX_FULL);
1324 			break;
1325 		case SPEED_100:
1326 			np->speed = 100;
1327 			np->full_duplex = (duplex == DUPLEX_FULL);
1328 			break;
1329 		case SPEED_1000: /* not supported */
1330 		default:
1331 			return -EINVAL;
1332 		}
1333 		mii_set_media(dev);
1334 	}
1335 	return 0;
1336 }
1337 
rio_get_link(struct net_device * dev)1338 static u32 rio_get_link(struct net_device *dev)
1339 {
1340 	struct netdev_private *np = netdev_priv(dev);
1341 	return np->link_status;
1342 }
1343 
1344 static const struct ethtool_ops ethtool_ops = {
1345 	.get_drvinfo = rio_get_drvinfo,
1346 	.get_link = rio_get_link,
1347 	.get_link_ksettings = rio_get_link_ksettings,
1348 	.set_link_ksettings = rio_set_link_ksettings,
1349 };
1350 
1351 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1352 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1353 {
1354 	int phy_addr;
1355 	struct netdev_private *np = netdev_priv(dev);
1356 	struct mii_ioctl_data *miidata = if_mii(rq);
1357 
1358 	phy_addr = np->phy_addr;
1359 	switch (cmd) {
1360 	case SIOCGMIIPHY:
1361 		miidata->phy_id = phy_addr;
1362 		break;
1363 	case SIOCGMIIREG:
1364 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1365 		break;
1366 	case SIOCSMIIREG:
1367 		if (!capable(CAP_NET_ADMIN))
1368 			return -EPERM;
1369 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1370 		break;
1371 	default:
1372 		return -EOPNOTSUPP;
1373 	}
1374 	return 0;
1375 }
1376 
1377 #define EEP_READ 0x0200
1378 #define EEP_BUSY 0x8000
1379 /* Read the EEPROM word */
1380 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1381 static int read_eeprom(struct netdev_private *np, int eep_addr)
1382 {
1383 	void __iomem *ioaddr = np->eeprom_addr;
1384 	int i = 1000;
1385 
1386 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1387 	while (i-- > 0) {
1388 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1389 			return dr16(EepromData);
1390 	}
1391 	return 0;
1392 }
1393 
1394 enum phy_ctrl_bits {
1395 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1396 	MII_DUPLEX = 0x08,
1397 };
1398 
1399 #define mii_delay() dr8(PhyCtrl)
1400 static void
mii_sendbit(struct net_device * dev,u32 data)1401 mii_sendbit (struct net_device *dev, u32 data)
1402 {
1403 	struct netdev_private *np = netdev_priv(dev);
1404 	void __iomem *ioaddr = np->ioaddr;
1405 
1406 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1407 	dw8(PhyCtrl, data);
1408 	mii_delay ();
1409 	dw8(PhyCtrl, data | MII_CLK);
1410 	mii_delay ();
1411 }
1412 
1413 static int
mii_getbit(struct net_device * dev)1414 mii_getbit (struct net_device *dev)
1415 {
1416 	struct netdev_private *np = netdev_priv(dev);
1417 	void __iomem *ioaddr = np->ioaddr;
1418 	u8 data;
1419 
1420 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1421 	dw8(PhyCtrl, data);
1422 	mii_delay ();
1423 	dw8(PhyCtrl, data | MII_CLK);
1424 	mii_delay ();
1425 	return (dr8(PhyCtrl) >> 1) & 1;
1426 }
1427 
1428 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1429 mii_send_bits (struct net_device *dev, u32 data, int len)
1430 {
1431 	int i;
1432 
1433 	for (i = len - 1; i >= 0; i--) {
1434 		mii_sendbit (dev, data & (1 << i));
1435 	}
1436 }
1437 
1438 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1439 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1440 {
1441 	u32 cmd;
1442 	int i;
1443 	u32 retval = 0;
1444 
1445 	/* Preamble */
1446 	mii_send_bits (dev, 0xffffffff, 32);
1447 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1448 	/* ST,OP = 0110'b for read operation */
1449 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1450 	mii_send_bits (dev, cmd, 14);
1451 	/* Turnaround */
1452 	if (mii_getbit (dev))
1453 		goto err_out;
1454 	/* Read data */
1455 	for (i = 0; i < 16; i++) {
1456 		retval |= mii_getbit (dev);
1457 		retval <<= 1;
1458 	}
1459 	/* End cycle */
1460 	mii_getbit (dev);
1461 	return (retval >> 1) & 0xffff;
1462 
1463       err_out:
1464 	return 0;
1465 }
1466 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1467 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1468 {
1469 	u32 cmd;
1470 
1471 	/* Preamble */
1472 	mii_send_bits (dev, 0xffffffff, 32);
1473 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1474 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1475 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1476 	mii_send_bits (dev, cmd, 32);
1477 	/* End cycle */
1478 	mii_getbit (dev);
1479 	return 0;
1480 }
1481 static int
mii_wait_link(struct net_device * dev,int wait)1482 mii_wait_link (struct net_device *dev, int wait)
1483 {
1484 	__u16 bmsr;
1485 	int phy_addr;
1486 	struct netdev_private *np;
1487 
1488 	np = netdev_priv(dev);
1489 	phy_addr = np->phy_addr;
1490 
1491 	do {
1492 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1493 		if (bmsr & BMSR_LSTATUS)
1494 			return 0;
1495 		mdelay (1);
1496 	} while (--wait > 0);
1497 	return -1;
1498 }
1499 static int
mii_get_media(struct net_device * dev)1500 mii_get_media (struct net_device *dev)
1501 {
1502 	__u16 negotiate;
1503 	__u16 bmsr;
1504 	__u16 mscr;
1505 	__u16 mssr;
1506 	int phy_addr;
1507 	struct netdev_private *np;
1508 
1509 	np = netdev_priv(dev);
1510 	phy_addr = np->phy_addr;
1511 
1512 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1513 	if (np->an_enable) {
1514 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1515 			/* Auto-Negotiation not completed */
1516 			return -1;
1517 		}
1518 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1519 			mii_read (dev, phy_addr, MII_LPA);
1520 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1521 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1522 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1523 			np->speed = 1000;
1524 			np->full_duplex = 1;
1525 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1526 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1527 			np->speed = 1000;
1528 			np->full_duplex = 0;
1529 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1530 		} else if (negotiate & ADVERTISE_100FULL) {
1531 			np->speed = 100;
1532 			np->full_duplex = 1;
1533 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1534 		} else if (negotiate & ADVERTISE_100HALF) {
1535 			np->speed = 100;
1536 			np->full_duplex = 0;
1537 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1538 		} else if (negotiate & ADVERTISE_10FULL) {
1539 			np->speed = 10;
1540 			np->full_duplex = 1;
1541 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1542 		} else if (negotiate & ADVERTISE_10HALF) {
1543 			np->speed = 10;
1544 			np->full_duplex = 0;
1545 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1546 		}
1547 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1548 			np->tx_flow &= 1;
1549 			np->rx_flow &= 1;
1550 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1551 			np->tx_flow = 0;
1552 			np->rx_flow &= 1;
1553 		}
1554 		/* else tx_flow, rx_flow = user select  */
1555 	} else {
1556 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1557 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1558 		case BMCR_SPEED1000:
1559 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1560 			break;
1561 		case BMCR_SPEED100:
1562 			printk (KERN_INFO "Operating at 100 Mbps, ");
1563 			break;
1564 		case 0:
1565 			printk (KERN_INFO "Operating at 10 Mbps, ");
1566 		}
1567 		if (bmcr & BMCR_FULLDPLX) {
1568 			printk (KERN_CONT "Full duplex\n");
1569 		} else {
1570 			printk (KERN_CONT "Half duplex\n");
1571 		}
1572 	}
1573 	if (np->tx_flow)
1574 		printk(KERN_INFO "Enable Tx Flow Control\n");
1575 	else
1576 		printk(KERN_INFO "Disable Tx Flow Control\n");
1577 	if (np->rx_flow)
1578 		printk(KERN_INFO "Enable Rx Flow Control\n");
1579 	else
1580 		printk(KERN_INFO "Disable Rx Flow Control\n");
1581 
1582 	return 0;
1583 }
1584 
1585 static int
mii_set_media(struct net_device * dev)1586 mii_set_media (struct net_device *dev)
1587 {
1588 	__u16 pscr;
1589 	__u16 bmcr;
1590 	__u16 bmsr;
1591 	__u16 anar;
1592 	int phy_addr;
1593 	struct netdev_private *np;
1594 	np = netdev_priv(dev);
1595 	phy_addr = np->phy_addr;
1596 
1597 	/* Does user set speed? */
1598 	if (np->an_enable) {
1599 		/* Advertise capabilities */
1600 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1601 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1602 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1603 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1604 			  ADVERTISE_100BASE4);
1605 		if (bmsr & BMSR_100FULL)
1606 			anar |= ADVERTISE_100FULL;
1607 		if (bmsr & BMSR_100HALF)
1608 			anar |= ADVERTISE_100HALF;
1609 		if (bmsr & BMSR_100BASE4)
1610 			anar |= ADVERTISE_100BASE4;
1611 		if (bmsr & BMSR_10FULL)
1612 			anar |= ADVERTISE_10FULL;
1613 		if (bmsr & BMSR_10HALF)
1614 			anar |= ADVERTISE_10HALF;
1615 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1616 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1617 
1618 		/* Enable Auto crossover */
1619 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1620 		pscr |= 3 << 5;	/* 11'b */
1621 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1622 
1623 		/* Soft reset PHY */
1624 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1625 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1626 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1627 		mdelay(1);
1628 	} else {
1629 		/* Force speed setting */
1630 		/* 1) Disable Auto crossover */
1631 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1632 		pscr &= ~(3 << 5);
1633 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1634 
1635 		/* 2) PHY Reset */
1636 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1637 		bmcr |= BMCR_RESET;
1638 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1639 
1640 		/* 3) Power Down */
1641 		bmcr = 0x1940;	/* must be 0x1940 */
1642 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1643 		mdelay (100);	/* wait a certain time */
1644 
1645 		/* 4) Advertise nothing */
1646 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1647 
1648 		/* 5) Set media and Power Up */
1649 		bmcr = BMCR_PDOWN;
1650 		if (np->speed == 100) {
1651 			bmcr |= BMCR_SPEED100;
1652 			printk (KERN_INFO "Manual 100 Mbps, ");
1653 		} else if (np->speed == 10) {
1654 			printk (KERN_INFO "Manual 10 Mbps, ");
1655 		}
1656 		if (np->full_duplex) {
1657 			bmcr |= BMCR_FULLDPLX;
1658 			printk (KERN_CONT "Full duplex\n");
1659 		} else {
1660 			printk (KERN_CONT "Half duplex\n");
1661 		}
1662 #if 0
1663 		/* Set 1000BaseT Master/Slave setting */
1664 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1665 		mscr |= MII_MSCR_CFG_ENABLE;
1666 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1667 #endif
1668 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1669 		mdelay(10);
1670 	}
1671 	return 0;
1672 }
1673 
1674 static int
mii_get_media_pcs(struct net_device * dev)1675 mii_get_media_pcs (struct net_device *dev)
1676 {
1677 	__u16 negotiate;
1678 	__u16 bmsr;
1679 	int phy_addr;
1680 	struct netdev_private *np;
1681 
1682 	np = netdev_priv(dev);
1683 	phy_addr = np->phy_addr;
1684 
1685 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1686 	if (np->an_enable) {
1687 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1688 			/* Auto-Negotiation not completed */
1689 			return -1;
1690 		}
1691 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1692 			mii_read (dev, phy_addr, PCS_ANLPAR);
1693 		np->speed = 1000;
1694 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1695 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1696 			np->full_duplex = 1;
1697 		} else {
1698 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1699 			np->full_duplex = 0;
1700 		}
1701 		if (negotiate & PCS_ANAR_PAUSE) {
1702 			np->tx_flow &= 1;
1703 			np->rx_flow &= 1;
1704 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1705 			np->tx_flow = 0;
1706 			np->rx_flow &= 1;
1707 		}
1708 		/* else tx_flow, rx_flow = user select  */
1709 	} else {
1710 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1711 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1712 		if (bmcr & BMCR_FULLDPLX) {
1713 			printk (KERN_CONT "Full duplex\n");
1714 		} else {
1715 			printk (KERN_CONT "Half duplex\n");
1716 		}
1717 	}
1718 	if (np->tx_flow)
1719 		printk(KERN_INFO "Enable Tx Flow Control\n");
1720 	else
1721 		printk(KERN_INFO "Disable Tx Flow Control\n");
1722 	if (np->rx_flow)
1723 		printk(KERN_INFO "Enable Rx Flow Control\n");
1724 	else
1725 		printk(KERN_INFO "Disable Rx Flow Control\n");
1726 
1727 	return 0;
1728 }
1729 
1730 static int
mii_set_media_pcs(struct net_device * dev)1731 mii_set_media_pcs (struct net_device *dev)
1732 {
1733 	__u16 bmcr;
1734 	__u16 esr;
1735 	__u16 anar;
1736 	int phy_addr;
1737 	struct netdev_private *np;
1738 	np = netdev_priv(dev);
1739 	phy_addr = np->phy_addr;
1740 
1741 	/* Auto-Negotiation? */
1742 	if (np->an_enable) {
1743 		/* Advertise capabilities */
1744 		esr = mii_read (dev, phy_addr, PCS_ESR);
1745 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1746 			~PCS_ANAR_HALF_DUPLEX &
1747 			~PCS_ANAR_FULL_DUPLEX;
1748 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1749 			anar |= PCS_ANAR_HALF_DUPLEX;
1750 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1751 			anar |= PCS_ANAR_FULL_DUPLEX;
1752 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1753 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1754 
1755 		/* Soft reset PHY */
1756 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1757 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1758 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1759 		mdelay(1);
1760 	} else {
1761 		/* Force speed setting */
1762 		/* PHY Reset */
1763 		bmcr = BMCR_RESET;
1764 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1765 		mdelay(10);
1766 		if (np->full_duplex) {
1767 			bmcr = BMCR_FULLDPLX;
1768 			printk (KERN_INFO "Manual full duplex\n");
1769 		} else {
1770 			bmcr = 0;
1771 			printk (KERN_INFO "Manual half duplex\n");
1772 		}
1773 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1774 		mdelay(10);
1775 
1776 		/*  Advertise nothing */
1777 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1778 	}
1779 	return 0;
1780 }
1781 
1782 
1783 static int
rio_close(struct net_device * dev)1784 rio_close (struct net_device *dev)
1785 {
1786 	struct netdev_private *np = netdev_priv(dev);
1787 	struct pci_dev *pdev = np->pdev;
1788 
1789 	netif_stop_queue (dev);
1790 
1791 	rio_hw_stop(dev);
1792 
1793 	free_irq(pdev->irq, dev);
1794 	del_timer_sync (&np->timer);
1795 
1796 	free_list(dev);
1797 
1798 	return 0;
1799 }
1800 
1801 static void
rio_remove1(struct pci_dev * pdev)1802 rio_remove1 (struct pci_dev *pdev)
1803 {
1804 	struct net_device *dev = pci_get_drvdata (pdev);
1805 
1806 	if (dev) {
1807 		struct netdev_private *np = netdev_priv(dev);
1808 
1809 		unregister_netdev (dev);
1810 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1811 				  np->rx_ring_dma);
1812 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1813 				  np->tx_ring_dma);
1814 #ifdef MEM_MAPPING
1815 		pci_iounmap(pdev, np->ioaddr);
1816 #endif
1817 		pci_iounmap(pdev, np->eeprom_addr);
1818 		free_netdev (dev);
1819 		pci_release_regions (pdev);
1820 		pci_disable_device (pdev);
1821 	}
1822 }
1823 
1824 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1825 static int rio_suspend(struct device *device)
1826 {
1827 	struct net_device *dev = dev_get_drvdata(device);
1828 	struct netdev_private *np = netdev_priv(dev);
1829 
1830 	if (!netif_running(dev))
1831 		return 0;
1832 
1833 	netif_device_detach(dev);
1834 	del_timer_sync(&np->timer);
1835 	rio_hw_stop(dev);
1836 
1837 	return 0;
1838 }
1839 
rio_resume(struct device * device)1840 static int rio_resume(struct device *device)
1841 {
1842 	struct net_device *dev = dev_get_drvdata(device);
1843 	struct netdev_private *np = netdev_priv(dev);
1844 
1845 	if (!netif_running(dev))
1846 		return 0;
1847 
1848 	rio_reset_ring(np);
1849 	rio_hw_init(dev);
1850 	np->timer.expires = jiffies + 1 * HZ;
1851 	add_timer(&np->timer);
1852 	netif_device_attach(dev);
1853 	dl2k_enable_int(np);
1854 
1855 	return 0;
1856 }
1857 
1858 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1859 #define RIO_PM_OPS    (&rio_pm_ops)
1860 
1861 #else
1862 
1863 #define RIO_PM_OPS	NULL
1864 
1865 #endif /* CONFIG_PM_SLEEP */
1866 
1867 static struct pci_driver rio_driver = {
1868 	.name		= "dl2k",
1869 	.id_table	= rio_pci_tbl,
1870 	.probe		= rio_probe1,
1871 	.remove		= rio_remove1,
1872 	.driver.pm	= RIO_PM_OPS,
1873 };
1874 
1875 module_pci_driver(rio_driver);
1876 
1877 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1878