1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 local_lock_t lock;
53 struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 .lock = INIT_LOCAL_LOCK(lock),
57 };
58
59 /*
60 * The following folio batches are grouped together because they are protected
61 * by disabling preemption (and interrupts remain enabled).
62 */
63 struct cpu_fbatches {
64 local_lock_t lock;
65 struct folio_batch lru_add;
66 struct folio_batch lru_deactivate_file;
67 struct folio_batch lru_deactivate;
68 struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 .lock = INIT_LOCAL_LOCK(lock),
75 };
76
77 /*
78 * This path almost never happens for VM activity - pages are normally freed
79 * in batches. But it gets used by networking - and for compound pages.
80 */
__page_cache_release(struct folio * folio)81 static void __page_cache_release(struct folio *folio)
82 {
83 if (folio_test_lru(folio)) {
84 struct lruvec *lruvec;
85 unsigned long flags;
86
87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 lruvec_del_folio(lruvec, folio);
89 __folio_clear_lru_flags(folio);
90 unlock_page_lruvec_irqrestore(lruvec, flags);
91 }
92 }
93
__folio_put_small(struct folio * folio)94 static void __folio_put_small(struct folio *folio)
95 {
96 __page_cache_release(folio);
97 mem_cgroup_uncharge(folio);
98 free_unref_page(&folio->page, 0);
99 }
100
__folio_put_large(struct folio * folio)101 static void __folio_put_large(struct folio *folio)
102 {
103 /*
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 */
109 if (!folio_test_hugetlb(folio))
110 __page_cache_release(folio);
111 destroy_large_folio(folio);
112 }
113
__folio_put(struct folio * folio)114 void __folio_put(struct folio *folio)
115 {
116 if (unlikely(folio_is_zone_device(folio)))
117 free_zone_device_page(&folio->page);
118 else if (unlikely(folio_test_large(folio)))
119 __folio_put_large(folio);
120 else
121 __folio_put_small(folio);
122 }
123 EXPORT_SYMBOL(__folio_put);
124
125 /**
126 * put_pages_list() - release a list of pages
127 * @pages: list of pages threaded on page->lru
128 *
129 * Release a list of pages which are strung together on page.lru.
130 */
put_pages_list(struct list_head * pages)131 void put_pages_list(struct list_head *pages)
132 {
133 struct folio *folio, *next;
134
135 list_for_each_entry_safe(folio, next, pages, lru) {
136 if (!folio_put_testzero(folio)) {
137 list_del(&folio->lru);
138 continue;
139 }
140 if (folio_test_large(folio)) {
141 list_del(&folio->lru);
142 __folio_put_large(folio);
143 continue;
144 }
145 /* LRU flag must be clear because it's passed using the lru */
146 }
147
148 free_unref_page_list(pages);
149 INIT_LIST_HEAD(pages);
150 }
151 EXPORT_SYMBOL(put_pages_list);
152
153 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
154
lru_add_fn(struct lruvec * lruvec,struct folio * folio)155 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
156 {
157 int was_unevictable = folio_test_clear_unevictable(folio);
158 long nr_pages = folio_nr_pages(folio);
159
160 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
161
162 /*
163 * Is an smp_mb__after_atomic() still required here, before
164 * folio_evictable() tests the mlocked flag, to rule out the possibility
165 * of stranding an evictable folio on an unevictable LRU? I think
166 * not, because __munlock_folio() only clears the mlocked flag
167 * while the LRU lock is held.
168 *
169 * (That is not true of __page_cache_release(), and not necessarily
170 * true of release_pages(): but those only clear the mlocked flag after
171 * folio_put_testzero() has excluded any other users of the folio.)
172 */
173 if (folio_evictable(folio)) {
174 if (was_unevictable)
175 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
176 } else {
177 folio_clear_active(folio);
178 folio_set_unevictable(folio);
179 /*
180 * folio->mlock_count = !!folio_test_mlocked(folio)?
181 * But that leaves __mlock_folio() in doubt whether another
182 * actor has already counted the mlock or not. Err on the
183 * safe side, underestimate, let page reclaim fix it, rather
184 * than leaving a page on the unevictable LRU indefinitely.
185 */
186 folio->mlock_count = 0;
187 if (!was_unevictable)
188 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
189 }
190
191 lruvec_add_folio(lruvec, folio);
192 trace_mm_lru_insertion(folio);
193 }
194
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)195 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
196 {
197 int i;
198 struct lruvec *lruvec = NULL;
199 unsigned long flags = 0;
200
201 for (i = 0; i < folio_batch_count(fbatch); i++) {
202 struct folio *folio = fbatch->folios[i];
203
204 /* block memcg migration while the folio moves between lru */
205 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
206 continue;
207
208 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
209 move_fn(lruvec, folio);
210
211 folio_set_lru(folio);
212 }
213
214 if (lruvec)
215 unlock_page_lruvec_irqrestore(lruvec, flags);
216 folios_put(fbatch->folios, folio_batch_count(fbatch));
217 folio_batch_reinit(fbatch);
218 }
219
folio_batch_add_and_move(struct folio_batch * fbatch,struct folio * folio,move_fn_t move_fn)220 static void folio_batch_add_and_move(struct folio_batch *fbatch,
221 struct folio *folio, move_fn_t move_fn)
222 {
223 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
224 !lru_cache_disabled())
225 return;
226 folio_batch_move_lru(fbatch, move_fn);
227 }
228
lru_move_tail_fn(struct lruvec * lruvec,struct folio * folio)229 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
230 {
231 if (!folio_test_unevictable(folio)) {
232 lruvec_del_folio(lruvec, folio);
233 folio_clear_active(folio);
234 lruvec_add_folio_tail(lruvec, folio);
235 __count_vm_events(PGROTATED, folio_nr_pages(folio));
236 }
237 }
238
239 /*
240 * Writeback is about to end against a folio which has been marked for
241 * immediate reclaim. If it still appears to be reclaimable, move it
242 * to the tail of the inactive list.
243 *
244 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
245 */
folio_rotate_reclaimable(struct folio * folio)246 void folio_rotate_reclaimable(struct folio *folio)
247 {
248 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
249 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
250 struct folio_batch *fbatch;
251 unsigned long flags;
252
253 folio_get(folio);
254 local_lock_irqsave(&lru_rotate.lock, flags);
255 fbatch = this_cpu_ptr(&lru_rotate.fbatch);
256 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
257 local_unlock_irqrestore(&lru_rotate.lock, flags);
258 }
259 }
260
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)261 void lru_note_cost(struct lruvec *lruvec, bool file,
262 unsigned int nr_io, unsigned int nr_rotated)
263 {
264 unsigned long cost;
265
266 /*
267 * Reflect the relative cost of incurring IO and spending CPU
268 * time on rotations. This doesn't attempt to make a precise
269 * comparison, it just says: if reloads are about comparable
270 * between the LRU lists, or rotations are overwhelmingly
271 * different between them, adjust scan balance for CPU work.
272 */
273 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
274
275 do {
276 unsigned long lrusize;
277
278 /*
279 * Hold lruvec->lru_lock is safe here, since
280 * 1) The pinned lruvec in reclaim, or
281 * 2) From a pre-LRU page during refault (which also holds the
282 * rcu lock, so would be safe even if the page was on the LRU
283 * and could move simultaneously to a new lruvec).
284 */
285 spin_lock_irq(&lruvec->lru_lock);
286 /* Record cost event */
287 if (file)
288 lruvec->file_cost += cost;
289 else
290 lruvec->anon_cost += cost;
291
292 /*
293 * Decay previous events
294 *
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
299 */
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
308 }
309 spin_unlock_irq(&lruvec->lru_lock);
310 } while ((lruvec = parent_lruvec(lruvec)));
311 }
312
lru_note_cost_refault(struct folio * folio)313 void lru_note_cost_refault(struct folio *folio)
314 {
315 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
316 folio_nr_pages(folio), 0);
317 }
318
folio_activate_fn(struct lruvec * lruvec,struct folio * folio)319 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
320 {
321 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
322 long nr_pages = folio_nr_pages(folio);
323
324 lruvec_del_folio(lruvec, folio);
325 folio_set_active(folio);
326 lruvec_add_folio(lruvec, folio);
327 trace_mm_lru_activate(folio);
328
329 __count_vm_events(PGACTIVATE, nr_pages);
330 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
331 nr_pages);
332 }
333 }
334
335 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)336 static void folio_activate_drain(int cpu)
337 {
338 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
339
340 if (folio_batch_count(fbatch))
341 folio_batch_move_lru(fbatch, folio_activate_fn);
342 }
343
folio_activate(struct folio * folio)344 void folio_activate(struct folio *folio)
345 {
346 if (folio_test_lru(folio) && !folio_test_active(folio) &&
347 !folio_test_unevictable(folio)) {
348 struct folio_batch *fbatch;
349
350 folio_get(folio);
351 local_lock(&cpu_fbatches.lock);
352 fbatch = this_cpu_ptr(&cpu_fbatches.activate);
353 folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
354 local_unlock(&cpu_fbatches.lock);
355 }
356 }
357
358 #else
folio_activate_drain(int cpu)359 static inline void folio_activate_drain(int cpu)
360 {
361 }
362
folio_activate(struct folio * folio)363 void folio_activate(struct folio *folio)
364 {
365 struct lruvec *lruvec;
366
367 if (folio_test_clear_lru(folio)) {
368 lruvec = folio_lruvec_lock_irq(folio);
369 folio_activate_fn(lruvec, folio);
370 unlock_page_lruvec_irq(lruvec);
371 folio_set_lru(folio);
372 }
373 }
374 #endif
375
__lru_cache_activate_folio(struct folio * folio)376 static void __lru_cache_activate_folio(struct folio *folio)
377 {
378 struct folio_batch *fbatch;
379 int i;
380
381 local_lock(&cpu_fbatches.lock);
382 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
383
384 /*
385 * Search backwards on the optimistic assumption that the folio being
386 * activated has just been added to this batch. Note that only
387 * the local batch is examined as a !LRU folio could be in the
388 * process of being released, reclaimed, migrated or on a remote
389 * batch that is currently being drained. Furthermore, marking
390 * a remote batch's folio active potentially hits a race where
391 * a folio is marked active just after it is added to the inactive
392 * list causing accounting errors and BUG_ON checks to trigger.
393 */
394 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
395 struct folio *batch_folio = fbatch->folios[i];
396
397 if (batch_folio == folio) {
398 folio_set_active(folio);
399 break;
400 }
401 }
402
403 local_unlock(&cpu_fbatches.lock);
404 }
405
406 #ifdef CONFIG_LRU_GEN
folio_inc_refs(struct folio * folio)407 static void folio_inc_refs(struct folio *folio)
408 {
409 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
410
411 if (folio_test_unevictable(folio))
412 return;
413
414 if (!folio_test_referenced(folio)) {
415 folio_set_referenced(folio);
416 return;
417 }
418
419 if (!folio_test_workingset(folio)) {
420 folio_set_workingset(folio);
421 return;
422 }
423
424 /* see the comment on MAX_NR_TIERS */
425 do {
426 new_flags = old_flags & LRU_REFS_MASK;
427 if (new_flags == LRU_REFS_MASK)
428 break;
429
430 new_flags += BIT(LRU_REFS_PGOFF);
431 new_flags |= old_flags & ~LRU_REFS_MASK;
432 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
433 }
434 #else
folio_inc_refs(struct folio * folio)435 static void folio_inc_refs(struct folio *folio)
436 {
437 }
438 #endif /* CONFIG_LRU_GEN */
439
440 /*
441 * Mark a page as having seen activity.
442 *
443 * inactive,unreferenced -> inactive,referenced
444 * inactive,referenced -> active,unreferenced
445 * active,unreferenced -> active,referenced
446 *
447 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
448 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
449 */
folio_mark_accessed(struct folio * folio)450 void folio_mark_accessed(struct folio *folio)
451 {
452 if (lru_gen_enabled()) {
453 folio_inc_refs(folio);
454 return;
455 }
456
457 if (!folio_test_referenced(folio)) {
458 folio_set_referenced(folio);
459 } else if (folio_test_unevictable(folio)) {
460 /*
461 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
462 * this list is never rotated or maintained, so marking an
463 * unevictable page accessed has no effect.
464 */
465 } else if (!folio_test_active(folio)) {
466 /*
467 * If the folio is on the LRU, queue it for activation via
468 * cpu_fbatches.activate. Otherwise, assume the folio is in a
469 * folio_batch, mark it active and it'll be moved to the active
470 * LRU on the next drain.
471 */
472 if (folio_test_lru(folio))
473 folio_activate(folio);
474 else
475 __lru_cache_activate_folio(folio);
476 folio_clear_referenced(folio);
477 workingset_activation(folio);
478 }
479 if (folio_test_idle(folio))
480 folio_clear_idle(folio);
481 }
482 EXPORT_SYMBOL(folio_mark_accessed);
483
484 /**
485 * folio_add_lru - Add a folio to an LRU list.
486 * @folio: The folio to be added to the LRU.
487 *
488 * Queue the folio for addition to the LRU. The decision on whether
489 * to add the page to the [in]active [file|anon] list is deferred until the
490 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
491 * have the folio added to the active list using folio_mark_accessed().
492 */
folio_add_lru(struct folio * folio)493 void folio_add_lru(struct folio *folio)
494 {
495 struct folio_batch *fbatch;
496
497 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
498 folio_test_unevictable(folio), folio);
499 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
500
501 /* see the comment in lru_gen_add_folio() */
502 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
503 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
504 folio_set_active(folio);
505
506 folio_get(folio);
507 local_lock(&cpu_fbatches.lock);
508 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
509 folio_batch_add_and_move(fbatch, folio, lru_add_fn);
510 local_unlock(&cpu_fbatches.lock);
511 }
512 EXPORT_SYMBOL(folio_add_lru);
513
514 /**
515 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
516 * @folio: The folio to be added to the LRU.
517 * @vma: VMA in which the folio is mapped.
518 *
519 * If the VMA is mlocked, @folio is added to the unevictable list.
520 * Otherwise, it is treated the same way as folio_add_lru().
521 */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)522 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
523 {
524 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
525
526 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
527 mlock_new_folio(folio);
528 else
529 folio_add_lru(folio);
530 }
531
532 /*
533 * If the folio cannot be invalidated, it is moved to the
534 * inactive list to speed up its reclaim. It is moved to the
535 * head of the list, rather than the tail, to give the flusher
536 * threads some time to write it out, as this is much more
537 * effective than the single-page writeout from reclaim.
538 *
539 * If the folio isn't mapped and dirty/writeback, the folio
540 * could be reclaimed asap using the reclaim flag.
541 *
542 * 1. active, mapped folio -> none
543 * 2. active, dirty/writeback folio -> inactive, head, reclaim
544 * 3. inactive, mapped folio -> none
545 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
546 * 5. inactive, clean -> inactive, tail
547 * 6. Others -> none
548 *
549 * In 4, it moves to the head of the inactive list so the folio is
550 * written out by flusher threads as this is much more efficient
551 * than the single-page writeout from reclaim.
552 */
lru_deactivate_file_fn(struct lruvec * lruvec,struct folio * folio)553 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
554 {
555 bool active = folio_test_active(folio);
556 long nr_pages = folio_nr_pages(folio);
557
558 if (folio_test_unevictable(folio))
559 return;
560
561 /* Some processes are using the folio */
562 if (folio_mapped(folio))
563 return;
564
565 lruvec_del_folio(lruvec, folio);
566 folio_clear_active(folio);
567 folio_clear_referenced(folio);
568
569 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
570 /*
571 * Setting the reclaim flag could race with
572 * folio_end_writeback() and confuse readahead. But the
573 * race window is _really_ small and it's not a critical
574 * problem.
575 */
576 lruvec_add_folio(lruvec, folio);
577 folio_set_reclaim(folio);
578 } else {
579 /*
580 * The folio's writeback ended while it was in the batch.
581 * We move that folio to the tail of the inactive list.
582 */
583 lruvec_add_folio_tail(lruvec, folio);
584 __count_vm_events(PGROTATED, nr_pages);
585 }
586
587 if (active) {
588 __count_vm_events(PGDEACTIVATE, nr_pages);
589 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 nr_pages);
591 }
592 }
593
lru_deactivate_fn(struct lruvec * lruvec,struct folio * folio)594 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
595 {
596 if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
597 long nr_pages = folio_nr_pages(folio);
598
599 lruvec_del_folio(lruvec, folio);
600 folio_clear_active(folio);
601 folio_clear_referenced(folio);
602 lruvec_add_folio(lruvec, folio);
603
604 __count_vm_events(PGDEACTIVATE, nr_pages);
605 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
606 nr_pages);
607 }
608 }
609
lru_lazyfree_fn(struct lruvec * lruvec,struct folio * folio)610 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
611 {
612 if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
613 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
614 long nr_pages = folio_nr_pages(folio);
615
616 lruvec_del_folio(lruvec, folio);
617 folio_clear_active(folio);
618 folio_clear_referenced(folio);
619 /*
620 * Lazyfree folios are clean anonymous folios. They have
621 * the swapbacked flag cleared, to distinguish them from normal
622 * anonymous folios
623 */
624 folio_clear_swapbacked(folio);
625 lruvec_add_folio(lruvec, folio);
626
627 __count_vm_events(PGLAZYFREE, nr_pages);
628 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
629 nr_pages);
630 }
631 }
632
633 /*
634 * Drain pages out of the cpu's folio_batch.
635 * Either "cpu" is the current CPU, and preemption has already been
636 * disabled; or "cpu" is being hot-unplugged, and is already dead.
637 */
lru_add_drain_cpu(int cpu)638 void lru_add_drain_cpu(int cpu)
639 {
640 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
641 struct folio_batch *fbatch = &fbatches->lru_add;
642
643 if (folio_batch_count(fbatch))
644 folio_batch_move_lru(fbatch, lru_add_fn);
645
646 fbatch = &per_cpu(lru_rotate.fbatch, cpu);
647 /* Disabling interrupts below acts as a compiler barrier. */
648 if (data_race(folio_batch_count(fbatch))) {
649 unsigned long flags;
650
651 /* No harm done if a racing interrupt already did this */
652 local_lock_irqsave(&lru_rotate.lock, flags);
653 folio_batch_move_lru(fbatch, lru_move_tail_fn);
654 local_unlock_irqrestore(&lru_rotate.lock, flags);
655 }
656
657 fbatch = &fbatches->lru_deactivate_file;
658 if (folio_batch_count(fbatch))
659 folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
660
661 fbatch = &fbatches->lru_deactivate;
662 if (folio_batch_count(fbatch))
663 folio_batch_move_lru(fbatch, lru_deactivate_fn);
664
665 fbatch = &fbatches->lru_lazyfree;
666 if (folio_batch_count(fbatch))
667 folio_batch_move_lru(fbatch, lru_lazyfree_fn);
668
669 folio_activate_drain(cpu);
670 }
671
672 /**
673 * deactivate_file_folio() - Deactivate a file folio.
674 * @folio: Folio to deactivate.
675 *
676 * This function hints to the VM that @folio is a good reclaim candidate,
677 * for example if its invalidation fails due to the folio being dirty
678 * or under writeback.
679 *
680 * Context: Caller holds a reference on the folio.
681 */
deactivate_file_folio(struct folio * folio)682 void deactivate_file_folio(struct folio *folio)
683 {
684 struct folio_batch *fbatch;
685
686 /* Deactivating an unevictable folio will not accelerate reclaim */
687 if (folio_test_unevictable(folio))
688 return;
689
690 folio_get(folio);
691 local_lock(&cpu_fbatches.lock);
692 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
693 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
694 local_unlock(&cpu_fbatches.lock);
695 }
696
697 /*
698 * folio_deactivate - deactivate a folio
699 * @folio: folio to deactivate
700 *
701 * folio_deactivate() moves @folio to the inactive list if @folio was on the
702 * active list and was not unevictable. This is done to accelerate the
703 * reclaim of @folio.
704 */
folio_deactivate(struct folio * folio)705 void folio_deactivate(struct folio *folio)
706 {
707 if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
708 (folio_test_active(folio) || lru_gen_enabled())) {
709 struct folio_batch *fbatch;
710
711 folio_get(folio);
712 local_lock(&cpu_fbatches.lock);
713 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
714 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
715 local_unlock(&cpu_fbatches.lock);
716 }
717 }
718
719 /**
720 * folio_mark_lazyfree - make an anon folio lazyfree
721 * @folio: folio to deactivate
722 *
723 * folio_mark_lazyfree() moves @folio to the inactive file list.
724 * This is done to accelerate the reclaim of @folio.
725 */
folio_mark_lazyfree(struct folio * folio)726 void folio_mark_lazyfree(struct folio *folio)
727 {
728 if (folio_test_lru(folio) && folio_test_anon(folio) &&
729 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
730 !folio_test_unevictable(folio)) {
731 struct folio_batch *fbatch;
732
733 folio_get(folio);
734 local_lock(&cpu_fbatches.lock);
735 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
736 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
737 local_unlock(&cpu_fbatches.lock);
738 }
739 }
740
lru_add_drain(void)741 void lru_add_drain(void)
742 {
743 local_lock(&cpu_fbatches.lock);
744 lru_add_drain_cpu(smp_processor_id());
745 local_unlock(&cpu_fbatches.lock);
746 mlock_drain_local();
747 }
748
749 /*
750 * It's called from per-cpu workqueue context in SMP case so
751 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
752 * the same cpu. It shouldn't be a problem in !SMP case since
753 * the core is only one and the locks will disable preemption.
754 */
lru_add_and_bh_lrus_drain(void)755 static void lru_add_and_bh_lrus_drain(void)
756 {
757 local_lock(&cpu_fbatches.lock);
758 lru_add_drain_cpu(smp_processor_id());
759 local_unlock(&cpu_fbatches.lock);
760 invalidate_bh_lrus_cpu();
761 mlock_drain_local();
762 }
763
lru_add_drain_cpu_zone(struct zone * zone)764 void lru_add_drain_cpu_zone(struct zone *zone)
765 {
766 local_lock(&cpu_fbatches.lock);
767 lru_add_drain_cpu(smp_processor_id());
768 drain_local_pages(zone);
769 local_unlock(&cpu_fbatches.lock);
770 mlock_drain_local();
771 }
772
773 #ifdef CONFIG_SMP
774
775 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
776
lru_add_drain_per_cpu(struct work_struct * dummy)777 static void lru_add_drain_per_cpu(struct work_struct *dummy)
778 {
779 lru_add_and_bh_lrus_drain();
780 }
781
cpu_needs_drain(unsigned int cpu)782 static bool cpu_needs_drain(unsigned int cpu)
783 {
784 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
785
786 /* Check these in order of likelihood that they're not zero */
787 return folio_batch_count(&fbatches->lru_add) ||
788 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
789 folio_batch_count(&fbatches->lru_deactivate_file) ||
790 folio_batch_count(&fbatches->lru_deactivate) ||
791 folio_batch_count(&fbatches->lru_lazyfree) ||
792 folio_batch_count(&fbatches->activate) ||
793 need_mlock_drain(cpu) ||
794 has_bh_in_lru(cpu, NULL);
795 }
796
797 /*
798 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
799 * kworkers being shut down before our page_alloc_cpu_dead callback is
800 * executed on the offlined cpu.
801 * Calling this function with cpu hotplug locks held can actually lead
802 * to obscure indirect dependencies via WQ context.
803 */
__lru_add_drain_all(bool force_all_cpus)804 static inline void __lru_add_drain_all(bool force_all_cpus)
805 {
806 /*
807 * lru_drain_gen - Global pages generation number
808 *
809 * (A) Definition: global lru_drain_gen = x implies that all generations
810 * 0 < n <= x are already *scheduled* for draining.
811 *
812 * This is an optimization for the highly-contended use case where a
813 * user space workload keeps constantly generating a flow of pages for
814 * each CPU.
815 */
816 static unsigned int lru_drain_gen;
817 static struct cpumask has_work;
818 static DEFINE_MUTEX(lock);
819 unsigned cpu, this_gen;
820
821 /*
822 * Make sure nobody triggers this path before mm_percpu_wq is fully
823 * initialized.
824 */
825 if (WARN_ON(!mm_percpu_wq))
826 return;
827
828 /*
829 * Guarantee folio_batch counter stores visible by this CPU
830 * are visible to other CPUs before loading the current drain
831 * generation.
832 */
833 smp_mb();
834
835 /*
836 * (B) Locally cache global LRU draining generation number
837 *
838 * The read barrier ensures that the counter is loaded before the mutex
839 * is taken. It pairs with smp_mb() inside the mutex critical section
840 * at (D).
841 */
842 this_gen = smp_load_acquire(&lru_drain_gen);
843
844 mutex_lock(&lock);
845
846 /*
847 * (C) Exit the draining operation if a newer generation, from another
848 * lru_add_drain_all(), was already scheduled for draining. Check (A).
849 */
850 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
851 goto done;
852
853 /*
854 * (D) Increment global generation number
855 *
856 * Pairs with smp_load_acquire() at (B), outside of the critical
857 * section. Use a full memory barrier to guarantee that the
858 * new global drain generation number is stored before loading
859 * folio_batch counters.
860 *
861 * This pairing must be done here, before the for_each_online_cpu loop
862 * below which drains the page vectors.
863 *
864 * Let x, y, and z represent some system CPU numbers, where x < y < z.
865 * Assume CPU #z is in the middle of the for_each_online_cpu loop
866 * below and has already reached CPU #y's per-cpu data. CPU #x comes
867 * along, adds some pages to its per-cpu vectors, then calls
868 * lru_add_drain_all().
869 *
870 * If the paired barrier is done at any later step, e.g. after the
871 * loop, CPU #x will just exit at (C) and miss flushing out all of its
872 * added pages.
873 */
874 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
875 smp_mb();
876
877 cpumask_clear(&has_work);
878 for_each_online_cpu(cpu) {
879 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
880
881 if (cpu_needs_drain(cpu)) {
882 INIT_WORK(work, lru_add_drain_per_cpu);
883 queue_work_on(cpu, mm_percpu_wq, work);
884 __cpumask_set_cpu(cpu, &has_work);
885 }
886 }
887
888 for_each_cpu(cpu, &has_work)
889 flush_work(&per_cpu(lru_add_drain_work, cpu));
890
891 done:
892 mutex_unlock(&lock);
893 }
894
lru_add_drain_all(void)895 void lru_add_drain_all(void)
896 {
897 __lru_add_drain_all(false);
898 }
899 #else
lru_add_drain_all(void)900 void lru_add_drain_all(void)
901 {
902 lru_add_drain();
903 }
904 #endif /* CONFIG_SMP */
905
906 atomic_t lru_disable_count = ATOMIC_INIT(0);
907
908 /*
909 * lru_cache_disable() needs to be called before we start compiling
910 * a list of pages to be migrated using isolate_lru_page().
911 * It drains pages on LRU cache and then disable on all cpus until
912 * lru_cache_enable is called.
913 *
914 * Must be paired with a call to lru_cache_enable().
915 */
lru_cache_disable(void)916 void lru_cache_disable(void)
917 {
918 atomic_inc(&lru_disable_count);
919 /*
920 * Readers of lru_disable_count are protected by either disabling
921 * preemption or rcu_read_lock:
922 *
923 * preempt_disable, local_irq_disable [bh_lru_lock()]
924 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
925 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
926 *
927 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
928 * preempt_disable() regions of code. So any CPU which sees
929 * lru_disable_count = 0 will have exited the critical
930 * section when synchronize_rcu() returns.
931 */
932 synchronize_rcu_expedited();
933 #ifdef CONFIG_SMP
934 __lru_add_drain_all(true);
935 #else
936 lru_add_and_bh_lrus_drain();
937 #endif
938 }
939
940 /**
941 * release_pages - batched put_page()
942 * @arg: array of pages to release
943 * @nr: number of pages
944 *
945 * Decrement the reference count on all the pages in @arg. If it
946 * fell to zero, remove the page from the LRU and free it.
947 *
948 * Note that the argument can be an array of pages, encoded pages,
949 * or folio pointers. We ignore any encoded bits, and turn any of
950 * them into just a folio that gets free'd.
951 */
release_pages(release_pages_arg arg,int nr)952 void release_pages(release_pages_arg arg, int nr)
953 {
954 int i;
955 struct encoded_page **encoded = arg.encoded_pages;
956 LIST_HEAD(pages_to_free);
957 struct lruvec *lruvec = NULL;
958 unsigned long flags = 0;
959 unsigned int lock_batch;
960
961 for (i = 0; i < nr; i++) {
962 struct folio *folio;
963
964 /* Turn any of the argument types into a folio */
965 folio = page_folio(encoded_page_ptr(encoded[i]));
966
967 /*
968 * Make sure the IRQ-safe lock-holding time does not get
969 * excessive with a continuous string of pages from the
970 * same lruvec. The lock is held only if lruvec != NULL.
971 */
972 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
973 unlock_page_lruvec_irqrestore(lruvec, flags);
974 lruvec = NULL;
975 }
976
977 if (is_huge_zero_page(&folio->page))
978 continue;
979
980 if (folio_is_zone_device(folio)) {
981 if (lruvec) {
982 unlock_page_lruvec_irqrestore(lruvec, flags);
983 lruvec = NULL;
984 }
985 if (put_devmap_managed_page(&folio->page))
986 continue;
987 if (folio_put_testzero(folio))
988 free_zone_device_page(&folio->page);
989 continue;
990 }
991
992 if (!folio_put_testzero(folio))
993 continue;
994
995 if (folio_test_large(folio)) {
996 if (lruvec) {
997 unlock_page_lruvec_irqrestore(lruvec, flags);
998 lruvec = NULL;
999 }
1000 __folio_put_large(folio);
1001 continue;
1002 }
1003
1004 if (folio_test_lru(folio)) {
1005 struct lruvec *prev_lruvec = lruvec;
1006
1007 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1008 &flags);
1009 if (prev_lruvec != lruvec)
1010 lock_batch = 0;
1011
1012 lruvec_del_folio(lruvec, folio);
1013 __folio_clear_lru_flags(folio);
1014 }
1015
1016 list_add(&folio->lru, &pages_to_free);
1017 }
1018 if (lruvec)
1019 unlock_page_lruvec_irqrestore(lruvec, flags);
1020
1021 mem_cgroup_uncharge_list(&pages_to_free);
1022 free_unref_page_list(&pages_to_free);
1023 }
1024 EXPORT_SYMBOL(release_pages);
1025
1026 /*
1027 * The folios which we're about to release may be in the deferred lru-addition
1028 * queues. That would prevent them from really being freed right now. That's
1029 * OK from a correctness point of view but is inefficient - those folios may be
1030 * cache-warm and we want to give them back to the page allocator ASAP.
1031 *
1032 * So __folio_batch_release() will drain those queues here.
1033 * folio_batch_move_lru() calls folios_put() directly to avoid
1034 * mutual recursion.
1035 */
__folio_batch_release(struct folio_batch * fbatch)1036 void __folio_batch_release(struct folio_batch *fbatch)
1037 {
1038 if (!fbatch->percpu_pvec_drained) {
1039 lru_add_drain();
1040 fbatch->percpu_pvec_drained = true;
1041 }
1042 release_pages(fbatch->folios, folio_batch_count(fbatch));
1043 folio_batch_reinit(fbatch);
1044 }
1045 EXPORT_SYMBOL(__folio_batch_release);
1046
1047 /**
1048 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1049 * @fbatch: The batch to prune
1050 *
1051 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1052 * entries. This function prunes all the non-folio entries from @fbatch
1053 * without leaving holes, so that it can be passed on to folio-only batch
1054 * operations.
1055 */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1056 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1057 {
1058 unsigned int i, j;
1059
1060 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1061 struct folio *folio = fbatch->folios[i];
1062 if (!xa_is_value(folio))
1063 fbatch->folios[j++] = folio;
1064 }
1065 fbatch->nr = j;
1066 }
1067
1068 /*
1069 * Perform any setup for the swap system
1070 */
swap_setup(void)1071 void __init swap_setup(void)
1072 {
1073 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1074
1075 /* Use a smaller cluster for small-memory machines */
1076 if (megs < 16)
1077 page_cluster = 2;
1078 else
1079 page_cluster = 3;
1080 /*
1081 * Right now other parts of the system means that we
1082 * _really_ don't want to cluster much more
1083 */
1084 }
1085