xref: /openbmc/linux/mm/swap.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 /*
78  * This path almost never happens for VM activity - pages are normally freed
79  * in batches.  But it gets used by networking - and for compound pages.
80  */
__page_cache_release(struct folio * folio)81 static void __page_cache_release(struct folio *folio)
82 {
83 	if (folio_test_lru(folio)) {
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		lruvec_del_folio(lruvec, folio);
89 		__folio_clear_lru_flags(folio);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 }
93 
__folio_put_small(struct folio * folio)94 static void __folio_put_small(struct folio *folio)
95 {
96 	__page_cache_release(folio);
97 	mem_cgroup_uncharge(folio);
98 	free_unref_page(&folio->page, 0);
99 }
100 
__folio_put_large(struct folio * folio)101 static void __folio_put_large(struct folio *folio)
102 {
103 	/*
104 	 * __page_cache_release() is supposed to be called for thp, not for
105 	 * hugetlb. This is because hugetlb page does never have PageLRU set
106 	 * (it's never listed to any LRU lists) and no memcg routines should
107 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 	 */
109 	if (!folio_test_hugetlb(folio))
110 		__page_cache_release(folio);
111 	destroy_large_folio(folio);
112 }
113 
__folio_put(struct folio * folio)114 void __folio_put(struct folio *folio)
115 {
116 	if (unlikely(folio_is_zone_device(folio)))
117 		free_zone_device_page(&folio->page);
118 	else if (unlikely(folio_test_large(folio)))
119 		__folio_put_large(folio);
120 	else
121 		__folio_put_small(folio);
122 }
123 EXPORT_SYMBOL(__folio_put);
124 
125 /**
126  * put_pages_list() - release a list of pages
127  * @pages: list of pages threaded on page->lru
128  *
129  * Release a list of pages which are strung together on page.lru.
130  */
put_pages_list(struct list_head * pages)131 void put_pages_list(struct list_head *pages)
132 {
133 	struct folio *folio, *next;
134 
135 	list_for_each_entry_safe(folio, next, pages, lru) {
136 		if (!folio_put_testzero(folio)) {
137 			list_del(&folio->lru);
138 			continue;
139 		}
140 		if (folio_test_large(folio)) {
141 			list_del(&folio->lru);
142 			__folio_put_large(folio);
143 			continue;
144 		}
145 		/* LRU flag must be clear because it's passed using the lru */
146 	}
147 
148 	free_unref_page_list(pages);
149 	INIT_LIST_HEAD(pages);
150 }
151 EXPORT_SYMBOL(put_pages_list);
152 
153 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
154 
lru_add_fn(struct lruvec * lruvec,struct folio * folio)155 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
156 {
157 	int was_unevictable = folio_test_clear_unevictable(folio);
158 	long nr_pages = folio_nr_pages(folio);
159 
160 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
161 
162 	/*
163 	 * Is an smp_mb__after_atomic() still required here, before
164 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
165 	 * of stranding an evictable folio on an unevictable LRU?  I think
166 	 * not, because __munlock_folio() only clears the mlocked flag
167 	 * while the LRU lock is held.
168 	 *
169 	 * (That is not true of __page_cache_release(), and not necessarily
170 	 * true of release_pages(): but those only clear the mlocked flag after
171 	 * folio_put_testzero() has excluded any other users of the folio.)
172 	 */
173 	if (folio_evictable(folio)) {
174 		if (was_unevictable)
175 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
176 	} else {
177 		folio_clear_active(folio);
178 		folio_set_unevictable(folio);
179 		/*
180 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
181 		 * But that leaves __mlock_folio() in doubt whether another
182 		 * actor has already counted the mlock or not.  Err on the
183 		 * safe side, underestimate, let page reclaim fix it, rather
184 		 * than leaving a page on the unevictable LRU indefinitely.
185 		 */
186 		folio->mlock_count = 0;
187 		if (!was_unevictable)
188 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
189 	}
190 
191 	lruvec_add_folio(lruvec, folio);
192 	trace_mm_lru_insertion(folio);
193 }
194 
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)195 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
196 {
197 	int i;
198 	struct lruvec *lruvec = NULL;
199 	unsigned long flags = 0;
200 
201 	for (i = 0; i < folio_batch_count(fbatch); i++) {
202 		struct folio *folio = fbatch->folios[i];
203 
204 		/* block memcg migration while the folio moves between lru */
205 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
206 			continue;
207 
208 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
209 		move_fn(lruvec, folio);
210 
211 		folio_set_lru(folio);
212 	}
213 
214 	if (lruvec)
215 		unlock_page_lruvec_irqrestore(lruvec, flags);
216 	folios_put(fbatch->folios, folio_batch_count(fbatch));
217 	folio_batch_reinit(fbatch);
218 }
219 
folio_batch_add_and_move(struct folio_batch * fbatch,struct folio * folio,move_fn_t move_fn)220 static void folio_batch_add_and_move(struct folio_batch *fbatch,
221 		struct folio *folio, move_fn_t move_fn)
222 {
223 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
224 	    !lru_cache_disabled())
225 		return;
226 	folio_batch_move_lru(fbatch, move_fn);
227 }
228 
lru_move_tail_fn(struct lruvec * lruvec,struct folio * folio)229 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
230 {
231 	if (!folio_test_unevictable(folio)) {
232 		lruvec_del_folio(lruvec, folio);
233 		folio_clear_active(folio);
234 		lruvec_add_folio_tail(lruvec, folio);
235 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
236 	}
237 }
238 
239 /*
240  * Writeback is about to end against a folio which has been marked for
241  * immediate reclaim.  If it still appears to be reclaimable, move it
242  * to the tail of the inactive list.
243  *
244  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
245  */
folio_rotate_reclaimable(struct folio * folio)246 void folio_rotate_reclaimable(struct folio *folio)
247 {
248 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
249 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
250 		struct folio_batch *fbatch;
251 		unsigned long flags;
252 
253 		folio_get(folio);
254 		local_lock_irqsave(&lru_rotate.lock, flags);
255 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
256 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
257 		local_unlock_irqrestore(&lru_rotate.lock, flags);
258 	}
259 }
260 
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)261 void lru_note_cost(struct lruvec *lruvec, bool file,
262 		   unsigned int nr_io, unsigned int nr_rotated)
263 {
264 	unsigned long cost;
265 
266 	/*
267 	 * Reflect the relative cost of incurring IO and spending CPU
268 	 * time on rotations. This doesn't attempt to make a precise
269 	 * comparison, it just says: if reloads are about comparable
270 	 * between the LRU lists, or rotations are overwhelmingly
271 	 * different between them, adjust scan balance for CPU work.
272 	 */
273 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
274 
275 	do {
276 		unsigned long lrusize;
277 
278 		/*
279 		 * Hold lruvec->lru_lock is safe here, since
280 		 * 1) The pinned lruvec in reclaim, or
281 		 * 2) From a pre-LRU page during refault (which also holds the
282 		 *    rcu lock, so would be safe even if the page was on the LRU
283 		 *    and could move simultaneously to a new lruvec).
284 		 */
285 		spin_lock_irq(&lruvec->lru_lock);
286 		/* Record cost event */
287 		if (file)
288 			lruvec->file_cost += cost;
289 		else
290 			lruvec->anon_cost += cost;
291 
292 		/*
293 		 * Decay previous events
294 		 *
295 		 * Because workloads change over time (and to avoid
296 		 * overflow) we keep these statistics as a floating
297 		 * average, which ends up weighing recent refaults
298 		 * more than old ones.
299 		 */
300 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304 
305 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 			lruvec->file_cost /= 2;
307 			lruvec->anon_cost /= 2;
308 		}
309 		spin_unlock_irq(&lruvec->lru_lock);
310 	} while ((lruvec = parent_lruvec(lruvec)));
311 }
312 
lru_note_cost_refault(struct folio * folio)313 void lru_note_cost_refault(struct folio *folio)
314 {
315 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
316 		      folio_nr_pages(folio), 0);
317 }
318 
folio_activate_fn(struct lruvec * lruvec,struct folio * folio)319 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
320 {
321 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
322 		long nr_pages = folio_nr_pages(folio);
323 
324 		lruvec_del_folio(lruvec, folio);
325 		folio_set_active(folio);
326 		lruvec_add_folio(lruvec, folio);
327 		trace_mm_lru_activate(folio);
328 
329 		__count_vm_events(PGACTIVATE, nr_pages);
330 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
331 				     nr_pages);
332 	}
333 }
334 
335 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)336 static void folio_activate_drain(int cpu)
337 {
338 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
339 
340 	if (folio_batch_count(fbatch))
341 		folio_batch_move_lru(fbatch, folio_activate_fn);
342 }
343 
folio_activate(struct folio * folio)344 void folio_activate(struct folio *folio)
345 {
346 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
347 	    !folio_test_unevictable(folio)) {
348 		struct folio_batch *fbatch;
349 
350 		folio_get(folio);
351 		local_lock(&cpu_fbatches.lock);
352 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
353 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
354 		local_unlock(&cpu_fbatches.lock);
355 	}
356 }
357 
358 #else
folio_activate_drain(int cpu)359 static inline void folio_activate_drain(int cpu)
360 {
361 }
362 
folio_activate(struct folio * folio)363 void folio_activate(struct folio *folio)
364 {
365 	struct lruvec *lruvec;
366 
367 	if (folio_test_clear_lru(folio)) {
368 		lruvec = folio_lruvec_lock_irq(folio);
369 		folio_activate_fn(lruvec, folio);
370 		unlock_page_lruvec_irq(lruvec);
371 		folio_set_lru(folio);
372 	}
373 }
374 #endif
375 
__lru_cache_activate_folio(struct folio * folio)376 static void __lru_cache_activate_folio(struct folio *folio)
377 {
378 	struct folio_batch *fbatch;
379 	int i;
380 
381 	local_lock(&cpu_fbatches.lock);
382 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
383 
384 	/*
385 	 * Search backwards on the optimistic assumption that the folio being
386 	 * activated has just been added to this batch. Note that only
387 	 * the local batch is examined as a !LRU folio could be in the
388 	 * process of being released, reclaimed, migrated or on a remote
389 	 * batch that is currently being drained. Furthermore, marking
390 	 * a remote batch's folio active potentially hits a race where
391 	 * a folio is marked active just after it is added to the inactive
392 	 * list causing accounting errors and BUG_ON checks to trigger.
393 	 */
394 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
395 		struct folio *batch_folio = fbatch->folios[i];
396 
397 		if (batch_folio == folio) {
398 			folio_set_active(folio);
399 			break;
400 		}
401 	}
402 
403 	local_unlock(&cpu_fbatches.lock);
404 }
405 
406 #ifdef CONFIG_LRU_GEN
folio_inc_refs(struct folio * folio)407 static void folio_inc_refs(struct folio *folio)
408 {
409 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
410 
411 	if (folio_test_unevictable(folio))
412 		return;
413 
414 	if (!folio_test_referenced(folio)) {
415 		folio_set_referenced(folio);
416 		return;
417 	}
418 
419 	if (!folio_test_workingset(folio)) {
420 		folio_set_workingset(folio);
421 		return;
422 	}
423 
424 	/* see the comment on MAX_NR_TIERS */
425 	do {
426 		new_flags = old_flags & LRU_REFS_MASK;
427 		if (new_flags == LRU_REFS_MASK)
428 			break;
429 
430 		new_flags += BIT(LRU_REFS_PGOFF);
431 		new_flags |= old_flags & ~LRU_REFS_MASK;
432 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
433 }
434 #else
folio_inc_refs(struct folio * folio)435 static void folio_inc_refs(struct folio *folio)
436 {
437 }
438 #endif /* CONFIG_LRU_GEN */
439 
440 /*
441  * Mark a page as having seen activity.
442  *
443  * inactive,unreferenced	->	inactive,referenced
444  * inactive,referenced		->	active,unreferenced
445  * active,unreferenced		->	active,referenced
446  *
447  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
448  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
449  */
folio_mark_accessed(struct folio * folio)450 void folio_mark_accessed(struct folio *folio)
451 {
452 	if (lru_gen_enabled()) {
453 		folio_inc_refs(folio);
454 		return;
455 	}
456 
457 	if (!folio_test_referenced(folio)) {
458 		folio_set_referenced(folio);
459 	} else if (folio_test_unevictable(folio)) {
460 		/*
461 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
462 		 * this list is never rotated or maintained, so marking an
463 		 * unevictable page accessed has no effect.
464 		 */
465 	} else if (!folio_test_active(folio)) {
466 		/*
467 		 * If the folio is on the LRU, queue it for activation via
468 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
469 		 * folio_batch, mark it active and it'll be moved to the active
470 		 * LRU on the next drain.
471 		 */
472 		if (folio_test_lru(folio))
473 			folio_activate(folio);
474 		else
475 			__lru_cache_activate_folio(folio);
476 		folio_clear_referenced(folio);
477 		workingset_activation(folio);
478 	}
479 	if (folio_test_idle(folio))
480 		folio_clear_idle(folio);
481 }
482 EXPORT_SYMBOL(folio_mark_accessed);
483 
484 /**
485  * folio_add_lru - Add a folio to an LRU list.
486  * @folio: The folio to be added to the LRU.
487  *
488  * Queue the folio for addition to the LRU. The decision on whether
489  * to add the page to the [in]active [file|anon] list is deferred until the
490  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
491  * have the folio added to the active list using folio_mark_accessed().
492  */
folio_add_lru(struct folio * folio)493 void folio_add_lru(struct folio *folio)
494 {
495 	struct folio_batch *fbatch;
496 
497 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
498 			folio_test_unevictable(folio), folio);
499 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
500 
501 	/* see the comment in lru_gen_add_folio() */
502 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
503 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
504 		folio_set_active(folio);
505 
506 	folio_get(folio);
507 	local_lock(&cpu_fbatches.lock);
508 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
509 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
510 	local_unlock(&cpu_fbatches.lock);
511 }
512 EXPORT_SYMBOL(folio_add_lru);
513 
514 /**
515  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
516  * @folio: The folio to be added to the LRU.
517  * @vma: VMA in which the folio is mapped.
518  *
519  * If the VMA is mlocked, @folio is added to the unevictable list.
520  * Otherwise, it is treated the same way as folio_add_lru().
521  */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)522 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
523 {
524 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
525 
526 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
527 		mlock_new_folio(folio);
528 	else
529 		folio_add_lru(folio);
530 }
531 
532 /*
533  * If the folio cannot be invalidated, it is moved to the
534  * inactive list to speed up its reclaim.  It is moved to the
535  * head of the list, rather than the tail, to give the flusher
536  * threads some time to write it out, as this is much more
537  * effective than the single-page writeout from reclaim.
538  *
539  * If the folio isn't mapped and dirty/writeback, the folio
540  * could be reclaimed asap using the reclaim flag.
541  *
542  * 1. active, mapped folio -> none
543  * 2. active, dirty/writeback folio -> inactive, head, reclaim
544  * 3. inactive, mapped folio -> none
545  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
546  * 5. inactive, clean -> inactive, tail
547  * 6. Others -> none
548  *
549  * In 4, it moves to the head of the inactive list so the folio is
550  * written out by flusher threads as this is much more efficient
551  * than the single-page writeout from reclaim.
552  */
lru_deactivate_file_fn(struct lruvec * lruvec,struct folio * folio)553 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
554 {
555 	bool active = folio_test_active(folio);
556 	long nr_pages = folio_nr_pages(folio);
557 
558 	if (folio_test_unevictable(folio))
559 		return;
560 
561 	/* Some processes are using the folio */
562 	if (folio_mapped(folio))
563 		return;
564 
565 	lruvec_del_folio(lruvec, folio);
566 	folio_clear_active(folio);
567 	folio_clear_referenced(folio);
568 
569 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
570 		/*
571 		 * Setting the reclaim flag could race with
572 		 * folio_end_writeback() and confuse readahead.  But the
573 		 * race window is _really_ small and  it's not a critical
574 		 * problem.
575 		 */
576 		lruvec_add_folio(lruvec, folio);
577 		folio_set_reclaim(folio);
578 	} else {
579 		/*
580 		 * The folio's writeback ended while it was in the batch.
581 		 * We move that folio to the tail of the inactive list.
582 		 */
583 		lruvec_add_folio_tail(lruvec, folio);
584 		__count_vm_events(PGROTATED, nr_pages);
585 	}
586 
587 	if (active) {
588 		__count_vm_events(PGDEACTIVATE, nr_pages);
589 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 				     nr_pages);
591 	}
592 }
593 
lru_deactivate_fn(struct lruvec * lruvec,struct folio * folio)594 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
595 {
596 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
597 		long nr_pages = folio_nr_pages(folio);
598 
599 		lruvec_del_folio(lruvec, folio);
600 		folio_clear_active(folio);
601 		folio_clear_referenced(folio);
602 		lruvec_add_folio(lruvec, folio);
603 
604 		__count_vm_events(PGDEACTIVATE, nr_pages);
605 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
606 				     nr_pages);
607 	}
608 }
609 
lru_lazyfree_fn(struct lruvec * lruvec,struct folio * folio)610 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
611 {
612 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
613 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
614 		long nr_pages = folio_nr_pages(folio);
615 
616 		lruvec_del_folio(lruvec, folio);
617 		folio_clear_active(folio);
618 		folio_clear_referenced(folio);
619 		/*
620 		 * Lazyfree folios are clean anonymous folios.  They have
621 		 * the swapbacked flag cleared, to distinguish them from normal
622 		 * anonymous folios
623 		 */
624 		folio_clear_swapbacked(folio);
625 		lruvec_add_folio(lruvec, folio);
626 
627 		__count_vm_events(PGLAZYFREE, nr_pages);
628 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
629 				     nr_pages);
630 	}
631 }
632 
633 /*
634  * Drain pages out of the cpu's folio_batch.
635  * Either "cpu" is the current CPU, and preemption has already been
636  * disabled; or "cpu" is being hot-unplugged, and is already dead.
637  */
lru_add_drain_cpu(int cpu)638 void lru_add_drain_cpu(int cpu)
639 {
640 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
641 	struct folio_batch *fbatch = &fbatches->lru_add;
642 
643 	if (folio_batch_count(fbatch))
644 		folio_batch_move_lru(fbatch, lru_add_fn);
645 
646 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
647 	/* Disabling interrupts below acts as a compiler barrier. */
648 	if (data_race(folio_batch_count(fbatch))) {
649 		unsigned long flags;
650 
651 		/* No harm done if a racing interrupt already did this */
652 		local_lock_irqsave(&lru_rotate.lock, flags);
653 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
654 		local_unlock_irqrestore(&lru_rotate.lock, flags);
655 	}
656 
657 	fbatch = &fbatches->lru_deactivate_file;
658 	if (folio_batch_count(fbatch))
659 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
660 
661 	fbatch = &fbatches->lru_deactivate;
662 	if (folio_batch_count(fbatch))
663 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
664 
665 	fbatch = &fbatches->lru_lazyfree;
666 	if (folio_batch_count(fbatch))
667 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
668 
669 	folio_activate_drain(cpu);
670 }
671 
672 /**
673  * deactivate_file_folio() - Deactivate a file folio.
674  * @folio: Folio to deactivate.
675  *
676  * This function hints to the VM that @folio is a good reclaim candidate,
677  * for example if its invalidation fails due to the folio being dirty
678  * or under writeback.
679  *
680  * Context: Caller holds a reference on the folio.
681  */
deactivate_file_folio(struct folio * folio)682 void deactivate_file_folio(struct folio *folio)
683 {
684 	struct folio_batch *fbatch;
685 
686 	/* Deactivating an unevictable folio will not accelerate reclaim */
687 	if (folio_test_unevictable(folio))
688 		return;
689 
690 	folio_get(folio);
691 	local_lock(&cpu_fbatches.lock);
692 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
693 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
694 	local_unlock(&cpu_fbatches.lock);
695 }
696 
697 /*
698  * folio_deactivate - deactivate a folio
699  * @folio: folio to deactivate
700  *
701  * folio_deactivate() moves @folio to the inactive list if @folio was on the
702  * active list and was not unevictable. This is done to accelerate the
703  * reclaim of @folio.
704  */
folio_deactivate(struct folio * folio)705 void folio_deactivate(struct folio *folio)
706 {
707 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
708 	    (folio_test_active(folio) || lru_gen_enabled())) {
709 		struct folio_batch *fbatch;
710 
711 		folio_get(folio);
712 		local_lock(&cpu_fbatches.lock);
713 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
714 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
715 		local_unlock(&cpu_fbatches.lock);
716 	}
717 }
718 
719 /**
720  * folio_mark_lazyfree - make an anon folio lazyfree
721  * @folio: folio to deactivate
722  *
723  * folio_mark_lazyfree() moves @folio to the inactive file list.
724  * This is done to accelerate the reclaim of @folio.
725  */
folio_mark_lazyfree(struct folio * folio)726 void folio_mark_lazyfree(struct folio *folio)
727 {
728 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
729 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
730 	    !folio_test_unevictable(folio)) {
731 		struct folio_batch *fbatch;
732 
733 		folio_get(folio);
734 		local_lock(&cpu_fbatches.lock);
735 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
736 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
737 		local_unlock(&cpu_fbatches.lock);
738 	}
739 }
740 
lru_add_drain(void)741 void lru_add_drain(void)
742 {
743 	local_lock(&cpu_fbatches.lock);
744 	lru_add_drain_cpu(smp_processor_id());
745 	local_unlock(&cpu_fbatches.lock);
746 	mlock_drain_local();
747 }
748 
749 /*
750  * It's called from per-cpu workqueue context in SMP case so
751  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
752  * the same cpu. It shouldn't be a problem in !SMP case since
753  * the core is only one and the locks will disable preemption.
754  */
lru_add_and_bh_lrus_drain(void)755 static void lru_add_and_bh_lrus_drain(void)
756 {
757 	local_lock(&cpu_fbatches.lock);
758 	lru_add_drain_cpu(smp_processor_id());
759 	local_unlock(&cpu_fbatches.lock);
760 	invalidate_bh_lrus_cpu();
761 	mlock_drain_local();
762 }
763 
lru_add_drain_cpu_zone(struct zone * zone)764 void lru_add_drain_cpu_zone(struct zone *zone)
765 {
766 	local_lock(&cpu_fbatches.lock);
767 	lru_add_drain_cpu(smp_processor_id());
768 	drain_local_pages(zone);
769 	local_unlock(&cpu_fbatches.lock);
770 	mlock_drain_local();
771 }
772 
773 #ifdef CONFIG_SMP
774 
775 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
776 
lru_add_drain_per_cpu(struct work_struct * dummy)777 static void lru_add_drain_per_cpu(struct work_struct *dummy)
778 {
779 	lru_add_and_bh_lrus_drain();
780 }
781 
cpu_needs_drain(unsigned int cpu)782 static bool cpu_needs_drain(unsigned int cpu)
783 {
784 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
785 
786 	/* Check these in order of likelihood that they're not zero */
787 	return folio_batch_count(&fbatches->lru_add) ||
788 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
789 		folio_batch_count(&fbatches->lru_deactivate_file) ||
790 		folio_batch_count(&fbatches->lru_deactivate) ||
791 		folio_batch_count(&fbatches->lru_lazyfree) ||
792 		folio_batch_count(&fbatches->activate) ||
793 		need_mlock_drain(cpu) ||
794 		has_bh_in_lru(cpu, NULL);
795 }
796 
797 /*
798  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
799  * kworkers being shut down before our page_alloc_cpu_dead callback is
800  * executed on the offlined cpu.
801  * Calling this function with cpu hotplug locks held can actually lead
802  * to obscure indirect dependencies via WQ context.
803  */
__lru_add_drain_all(bool force_all_cpus)804 static inline void __lru_add_drain_all(bool force_all_cpus)
805 {
806 	/*
807 	 * lru_drain_gen - Global pages generation number
808 	 *
809 	 * (A) Definition: global lru_drain_gen = x implies that all generations
810 	 *     0 < n <= x are already *scheduled* for draining.
811 	 *
812 	 * This is an optimization for the highly-contended use case where a
813 	 * user space workload keeps constantly generating a flow of pages for
814 	 * each CPU.
815 	 */
816 	static unsigned int lru_drain_gen;
817 	static struct cpumask has_work;
818 	static DEFINE_MUTEX(lock);
819 	unsigned cpu, this_gen;
820 
821 	/*
822 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
823 	 * initialized.
824 	 */
825 	if (WARN_ON(!mm_percpu_wq))
826 		return;
827 
828 	/*
829 	 * Guarantee folio_batch counter stores visible by this CPU
830 	 * are visible to other CPUs before loading the current drain
831 	 * generation.
832 	 */
833 	smp_mb();
834 
835 	/*
836 	 * (B) Locally cache global LRU draining generation number
837 	 *
838 	 * The read barrier ensures that the counter is loaded before the mutex
839 	 * is taken. It pairs with smp_mb() inside the mutex critical section
840 	 * at (D).
841 	 */
842 	this_gen = smp_load_acquire(&lru_drain_gen);
843 
844 	mutex_lock(&lock);
845 
846 	/*
847 	 * (C) Exit the draining operation if a newer generation, from another
848 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
849 	 */
850 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
851 		goto done;
852 
853 	/*
854 	 * (D) Increment global generation number
855 	 *
856 	 * Pairs with smp_load_acquire() at (B), outside of the critical
857 	 * section. Use a full memory barrier to guarantee that the
858 	 * new global drain generation number is stored before loading
859 	 * folio_batch counters.
860 	 *
861 	 * This pairing must be done here, before the for_each_online_cpu loop
862 	 * below which drains the page vectors.
863 	 *
864 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
865 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
866 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
867 	 * along, adds some pages to its per-cpu vectors, then calls
868 	 * lru_add_drain_all().
869 	 *
870 	 * If the paired barrier is done at any later step, e.g. after the
871 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
872 	 * added pages.
873 	 */
874 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
875 	smp_mb();
876 
877 	cpumask_clear(&has_work);
878 	for_each_online_cpu(cpu) {
879 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
880 
881 		if (cpu_needs_drain(cpu)) {
882 			INIT_WORK(work, lru_add_drain_per_cpu);
883 			queue_work_on(cpu, mm_percpu_wq, work);
884 			__cpumask_set_cpu(cpu, &has_work);
885 		}
886 	}
887 
888 	for_each_cpu(cpu, &has_work)
889 		flush_work(&per_cpu(lru_add_drain_work, cpu));
890 
891 done:
892 	mutex_unlock(&lock);
893 }
894 
lru_add_drain_all(void)895 void lru_add_drain_all(void)
896 {
897 	__lru_add_drain_all(false);
898 }
899 #else
lru_add_drain_all(void)900 void lru_add_drain_all(void)
901 {
902 	lru_add_drain();
903 }
904 #endif /* CONFIG_SMP */
905 
906 atomic_t lru_disable_count = ATOMIC_INIT(0);
907 
908 /*
909  * lru_cache_disable() needs to be called before we start compiling
910  * a list of pages to be migrated using isolate_lru_page().
911  * It drains pages on LRU cache and then disable on all cpus until
912  * lru_cache_enable is called.
913  *
914  * Must be paired with a call to lru_cache_enable().
915  */
lru_cache_disable(void)916 void lru_cache_disable(void)
917 {
918 	atomic_inc(&lru_disable_count);
919 	/*
920 	 * Readers of lru_disable_count are protected by either disabling
921 	 * preemption or rcu_read_lock:
922 	 *
923 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
924 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
925 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
926 	 *
927 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
928 	 * preempt_disable() regions of code. So any CPU which sees
929 	 * lru_disable_count = 0 will have exited the critical
930 	 * section when synchronize_rcu() returns.
931 	 */
932 	synchronize_rcu_expedited();
933 #ifdef CONFIG_SMP
934 	__lru_add_drain_all(true);
935 #else
936 	lru_add_and_bh_lrus_drain();
937 #endif
938 }
939 
940 /**
941  * release_pages - batched put_page()
942  * @arg: array of pages to release
943  * @nr: number of pages
944  *
945  * Decrement the reference count on all the pages in @arg.  If it
946  * fell to zero, remove the page from the LRU and free it.
947  *
948  * Note that the argument can be an array of pages, encoded pages,
949  * or folio pointers. We ignore any encoded bits, and turn any of
950  * them into just a folio that gets free'd.
951  */
release_pages(release_pages_arg arg,int nr)952 void release_pages(release_pages_arg arg, int nr)
953 {
954 	int i;
955 	struct encoded_page **encoded = arg.encoded_pages;
956 	LIST_HEAD(pages_to_free);
957 	struct lruvec *lruvec = NULL;
958 	unsigned long flags = 0;
959 	unsigned int lock_batch;
960 
961 	for (i = 0; i < nr; i++) {
962 		struct folio *folio;
963 
964 		/* Turn any of the argument types into a folio */
965 		folio = page_folio(encoded_page_ptr(encoded[i]));
966 
967 		/*
968 		 * Make sure the IRQ-safe lock-holding time does not get
969 		 * excessive with a continuous string of pages from the
970 		 * same lruvec. The lock is held only if lruvec != NULL.
971 		 */
972 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
973 			unlock_page_lruvec_irqrestore(lruvec, flags);
974 			lruvec = NULL;
975 		}
976 
977 		if (is_huge_zero_page(&folio->page))
978 			continue;
979 
980 		if (folio_is_zone_device(folio)) {
981 			if (lruvec) {
982 				unlock_page_lruvec_irqrestore(lruvec, flags);
983 				lruvec = NULL;
984 			}
985 			if (put_devmap_managed_page(&folio->page))
986 				continue;
987 			if (folio_put_testzero(folio))
988 				free_zone_device_page(&folio->page);
989 			continue;
990 		}
991 
992 		if (!folio_put_testzero(folio))
993 			continue;
994 
995 		if (folio_test_large(folio)) {
996 			if (lruvec) {
997 				unlock_page_lruvec_irqrestore(lruvec, flags);
998 				lruvec = NULL;
999 			}
1000 			__folio_put_large(folio);
1001 			continue;
1002 		}
1003 
1004 		if (folio_test_lru(folio)) {
1005 			struct lruvec *prev_lruvec = lruvec;
1006 
1007 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1008 									&flags);
1009 			if (prev_lruvec != lruvec)
1010 				lock_batch = 0;
1011 
1012 			lruvec_del_folio(lruvec, folio);
1013 			__folio_clear_lru_flags(folio);
1014 		}
1015 
1016 		list_add(&folio->lru, &pages_to_free);
1017 	}
1018 	if (lruvec)
1019 		unlock_page_lruvec_irqrestore(lruvec, flags);
1020 
1021 	mem_cgroup_uncharge_list(&pages_to_free);
1022 	free_unref_page_list(&pages_to_free);
1023 }
1024 EXPORT_SYMBOL(release_pages);
1025 
1026 /*
1027  * The folios which we're about to release may be in the deferred lru-addition
1028  * queues.  That would prevent them from really being freed right now.  That's
1029  * OK from a correctness point of view but is inefficient - those folios may be
1030  * cache-warm and we want to give them back to the page allocator ASAP.
1031  *
1032  * So __folio_batch_release() will drain those queues here.
1033  * folio_batch_move_lru() calls folios_put() directly to avoid
1034  * mutual recursion.
1035  */
__folio_batch_release(struct folio_batch * fbatch)1036 void __folio_batch_release(struct folio_batch *fbatch)
1037 {
1038 	if (!fbatch->percpu_pvec_drained) {
1039 		lru_add_drain();
1040 		fbatch->percpu_pvec_drained = true;
1041 	}
1042 	release_pages(fbatch->folios, folio_batch_count(fbatch));
1043 	folio_batch_reinit(fbatch);
1044 }
1045 EXPORT_SYMBOL(__folio_batch_release);
1046 
1047 /**
1048  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1049  * @fbatch: The batch to prune
1050  *
1051  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1052  * entries.  This function prunes all the non-folio entries from @fbatch
1053  * without leaving holes, so that it can be passed on to folio-only batch
1054  * operations.
1055  */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1056 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1057 {
1058 	unsigned int i, j;
1059 
1060 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1061 		struct folio *folio = fbatch->folios[i];
1062 		if (!xa_is_value(folio))
1063 			fbatch->folios[j++] = folio;
1064 	}
1065 	fbatch->nr = j;
1066 }
1067 
1068 /*
1069  * Perform any setup for the swap system
1070  */
swap_setup(void)1071 void __init swap_setup(void)
1072 {
1073 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1074 
1075 	/* Use a smaller cluster for small-memory machines */
1076 	if (megs < 16)
1077 		page_cluster = 2;
1078 	else
1079 		page_cluster = 3;
1080 	/*
1081 	 * Right now other parts of the system means that we
1082 	 * _really_ don't want to cluster much more
1083 	 */
1084 }
1085