1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "qemu/main-loop.h"
28 #include "exec/translate-all.h"
29 #include "exec/page-protection.h"
30 #include "exec/helper-proto.h"
31 #include "qemu/atomic128.h"
32 #include "trace.h"
33 #include "tcg/tcg-ldst.h"
34 #include "internal-common.h"
35 #include "internal-target.h"
36
37 __thread uintptr_t helper_retaddr;
38
39 //#define DEBUG_SIGNAL
40
cpu_interrupt(CPUState * cpu,int mask)41 void cpu_interrupt(CPUState *cpu, int mask)
42 {
43 g_assert(bql_locked());
44 cpu->interrupt_request |= mask;
45 qatomic_set(&cpu->neg.icount_decr.u16.high, -1);
46 }
47
48 /*
49 * Adjust the pc to pass to cpu_restore_state; return the memop type.
50 */
adjust_signal_pc(uintptr_t * pc,bool is_write)51 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
52 {
53 switch (helper_retaddr) {
54 default:
55 /*
56 * Fault during host memory operation within a helper function.
57 * The helper's host return address, saved here, gives us a
58 * pointer into the generated code that will unwind to the
59 * correct guest pc.
60 */
61 *pc = helper_retaddr;
62 break;
63
64 case 0:
65 /*
66 * Fault during host memory operation within generated code.
67 * (Or, a unrelated bug within qemu, but we can't tell from here).
68 *
69 * We take the host pc from the signal frame. However, we cannot
70 * use that value directly. Within cpu_restore_state_from_tb, we
71 * assume PC comes from GETPC(), as used by the helper functions,
72 * so we adjust the address by -GETPC_ADJ to form an address that
73 * is within the call insn, so that the address does not accidentally
74 * match the beginning of the next guest insn. However, when the
75 * pc comes from the signal frame it points to the actual faulting
76 * host memory insn and not the return from a call insn.
77 *
78 * Therefore, adjust to compensate for what will be done later
79 * by cpu_restore_state_from_tb.
80 */
81 *pc += GETPC_ADJ;
82 break;
83
84 case 1:
85 /*
86 * Fault during host read for translation, or loosely, "execution".
87 *
88 * The guest pc is already pointing to the start of the TB for which
89 * code is being generated. If the guest translator manages the
90 * page crossings correctly, this is exactly the correct address
91 * (and if the translator doesn't handle page boundaries correctly
92 * there's little we can do about that here). Therefore, do not
93 * trigger the unwinder.
94 */
95 *pc = 0;
96 return MMU_INST_FETCH;
97 }
98
99 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
100 }
101
102 /**
103 * handle_sigsegv_accerr_write:
104 * @cpu: the cpu context
105 * @old_set: the sigset_t from the signal ucontext_t
106 * @host_pc: the host pc, adjusted for the signal
107 * @guest_addr: the guest address of the fault
108 *
109 * Return true if the write fault has been handled, and should be re-tried.
110 *
111 * Note that it is important that we don't call page_unprotect() unless
112 * this is really a "write to nonwritable page" fault, because
113 * page_unprotect() assumes that if it is called for an access to
114 * a page that's writable this means we had two threads racing and
115 * another thread got there first and already made the page writable;
116 * so we will retry the access. If we were to call page_unprotect()
117 * for some other kind of fault that should really be passed to the
118 * guest, we'd end up in an infinite loop of retrying the faulting access.
119 */
handle_sigsegv_accerr_write(CPUState * cpu,sigset_t * old_set,uintptr_t host_pc,abi_ptr guest_addr)120 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
121 uintptr_t host_pc, abi_ptr guest_addr)
122 {
123 switch (page_unprotect(guest_addr, host_pc)) {
124 case 0:
125 /*
126 * Fault not caused by a page marked unwritable to protect
127 * cached translations, must be the guest binary's problem.
128 */
129 return false;
130 case 1:
131 /*
132 * Fault caused by protection of cached translation; TBs
133 * invalidated, so resume execution.
134 */
135 return true;
136 case 2:
137 /*
138 * Fault caused by protection of cached translation, and the
139 * currently executing TB was modified and must be exited immediately.
140 */
141 sigprocmask(SIG_SETMASK, old_set, NULL);
142 cpu_loop_exit_noexc(cpu);
143 /* NORETURN */
144 default:
145 g_assert_not_reached();
146 }
147 }
148
149 typedef struct PageFlagsNode {
150 struct rcu_head rcu;
151 IntervalTreeNode itree;
152 int flags;
153 } PageFlagsNode;
154
155 static IntervalTreeRoot pageflags_root;
156
pageflags_find(target_ulong start,target_ulong last)157 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
158 {
159 IntervalTreeNode *n;
160
161 n = interval_tree_iter_first(&pageflags_root, start, last);
162 return n ? container_of(n, PageFlagsNode, itree) : NULL;
163 }
164
pageflags_next(PageFlagsNode * p,target_ulong start,target_ulong last)165 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
166 target_ulong last)
167 {
168 IntervalTreeNode *n;
169
170 n = interval_tree_iter_next(&p->itree, start, last);
171 return n ? container_of(n, PageFlagsNode, itree) : NULL;
172 }
173
walk_memory_regions(void * priv,walk_memory_regions_fn fn)174 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
175 {
176 IntervalTreeNode *n;
177 int rc = 0;
178
179 mmap_lock();
180 for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
181 n != NULL;
182 n = interval_tree_iter_next(n, 0, -1)) {
183 PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
184
185 rc = fn(priv, n->start, n->last + 1, p->flags);
186 if (rc != 0) {
187 break;
188 }
189 }
190 mmap_unlock();
191
192 return rc;
193 }
194
dump_region(void * priv,target_ulong start,target_ulong end,unsigned long prot)195 static int dump_region(void *priv, target_ulong start,
196 target_ulong end, unsigned long prot)
197 {
198 FILE *f = (FILE *)priv;
199
200 fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
201 start, end, end - start,
202 ((prot & PAGE_READ) ? 'r' : '-'),
203 ((prot & PAGE_WRITE) ? 'w' : '-'),
204 ((prot & PAGE_EXEC) ? 'x' : '-'));
205 return 0;
206 }
207
208 /* dump memory mappings */
page_dump(FILE * f)209 void page_dump(FILE *f)
210 {
211 const int length = sizeof(target_ulong) * 2;
212
213 fprintf(f, "%-*s %-*s %-*s %s\n",
214 length, "start", length, "end", length, "size", "prot");
215 walk_memory_regions(f, dump_region);
216 }
217
page_get_flags(target_ulong address)218 int page_get_flags(target_ulong address)
219 {
220 PageFlagsNode *p = pageflags_find(address, address);
221
222 /*
223 * See util/interval-tree.c re lockless lookups: no false positives but
224 * there are false negatives. If we find nothing, retry with the mmap
225 * lock acquired.
226 */
227 if (p) {
228 return p->flags;
229 }
230 if (have_mmap_lock()) {
231 return 0;
232 }
233
234 mmap_lock();
235 p = pageflags_find(address, address);
236 mmap_unlock();
237 return p ? p->flags : 0;
238 }
239
240 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
pageflags_create(target_ulong start,target_ulong last,int flags)241 static void pageflags_create(target_ulong start, target_ulong last, int flags)
242 {
243 PageFlagsNode *p = g_new(PageFlagsNode, 1);
244
245 p->itree.start = start;
246 p->itree.last = last;
247 p->flags = flags;
248 interval_tree_insert(&p->itree, &pageflags_root);
249 }
250
251 /* A subroutine of page_set_flags: remove everything in [start,last]. */
pageflags_unset(target_ulong start,target_ulong last)252 static bool pageflags_unset(target_ulong start, target_ulong last)
253 {
254 bool inval_tb = false;
255
256 while (true) {
257 PageFlagsNode *p = pageflags_find(start, last);
258 target_ulong p_last;
259
260 if (!p) {
261 break;
262 }
263
264 if (p->flags & PAGE_EXEC) {
265 inval_tb = true;
266 }
267
268 interval_tree_remove(&p->itree, &pageflags_root);
269 p_last = p->itree.last;
270
271 if (p->itree.start < start) {
272 /* Truncate the node from the end, or split out the middle. */
273 p->itree.last = start - 1;
274 interval_tree_insert(&p->itree, &pageflags_root);
275 if (last < p_last) {
276 pageflags_create(last + 1, p_last, p->flags);
277 break;
278 }
279 } else if (p_last <= last) {
280 /* Range completely covers node -- remove it. */
281 g_free_rcu(p, rcu);
282 } else {
283 /* Truncate the node from the start. */
284 p->itree.start = last + 1;
285 interval_tree_insert(&p->itree, &pageflags_root);
286 break;
287 }
288 }
289
290 return inval_tb;
291 }
292
293 /*
294 * A subroutine of page_set_flags: nothing overlaps [start,last],
295 * but check adjacent mappings and maybe merge into a single range.
296 */
pageflags_create_merge(target_ulong start,target_ulong last,int flags)297 static void pageflags_create_merge(target_ulong start, target_ulong last,
298 int flags)
299 {
300 PageFlagsNode *next = NULL, *prev = NULL;
301
302 if (start > 0) {
303 prev = pageflags_find(start - 1, start - 1);
304 if (prev) {
305 if (prev->flags == flags) {
306 interval_tree_remove(&prev->itree, &pageflags_root);
307 } else {
308 prev = NULL;
309 }
310 }
311 }
312 if (last + 1 != 0) {
313 next = pageflags_find(last + 1, last + 1);
314 if (next) {
315 if (next->flags == flags) {
316 interval_tree_remove(&next->itree, &pageflags_root);
317 } else {
318 next = NULL;
319 }
320 }
321 }
322
323 if (prev) {
324 if (next) {
325 prev->itree.last = next->itree.last;
326 g_free_rcu(next, rcu);
327 } else {
328 prev->itree.last = last;
329 }
330 interval_tree_insert(&prev->itree, &pageflags_root);
331 } else if (next) {
332 next->itree.start = start;
333 interval_tree_insert(&next->itree, &pageflags_root);
334 } else {
335 pageflags_create(start, last, flags);
336 }
337 }
338
339 /*
340 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
341 * By default, they are not kept.
342 */
343 #ifndef PAGE_TARGET_STICKY
344 #define PAGE_TARGET_STICKY 0
345 #endif
346 #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
347
348 /* A subroutine of page_set_flags: add flags to [start,last]. */
pageflags_set_clear(target_ulong start,target_ulong last,int set_flags,int clear_flags)349 static bool pageflags_set_clear(target_ulong start, target_ulong last,
350 int set_flags, int clear_flags)
351 {
352 PageFlagsNode *p;
353 target_ulong p_start, p_last;
354 int p_flags, merge_flags;
355 bool inval_tb = false;
356
357 restart:
358 p = pageflags_find(start, last);
359 if (!p) {
360 if (set_flags) {
361 pageflags_create_merge(start, last, set_flags);
362 }
363 goto done;
364 }
365
366 p_start = p->itree.start;
367 p_last = p->itree.last;
368 p_flags = p->flags;
369 /* Using mprotect on a page does not change sticky bits. */
370 merge_flags = (p_flags & ~clear_flags) | set_flags;
371
372 /*
373 * Need to flush if an overlapping executable region
374 * removes exec, or adds write.
375 */
376 if ((p_flags & PAGE_EXEC)
377 && (!(merge_flags & PAGE_EXEC)
378 || (merge_flags & ~p_flags & PAGE_WRITE))) {
379 inval_tb = true;
380 }
381
382 /*
383 * If there is an exact range match, update and return without
384 * attempting to merge with adjacent regions.
385 */
386 if (start == p_start && last == p_last) {
387 if (merge_flags) {
388 p->flags = merge_flags;
389 } else {
390 interval_tree_remove(&p->itree, &pageflags_root);
391 g_free_rcu(p, rcu);
392 }
393 goto done;
394 }
395
396 /*
397 * If sticky bits affect the original mapping, then we must be more
398 * careful about the existing intervals and the separate flags.
399 */
400 if (set_flags != merge_flags) {
401 if (p_start < start) {
402 interval_tree_remove(&p->itree, &pageflags_root);
403 p->itree.last = start - 1;
404 interval_tree_insert(&p->itree, &pageflags_root);
405
406 if (last < p_last) {
407 if (merge_flags) {
408 pageflags_create(start, last, merge_flags);
409 }
410 pageflags_create(last + 1, p_last, p_flags);
411 } else {
412 if (merge_flags) {
413 pageflags_create(start, p_last, merge_flags);
414 }
415 if (p_last < last) {
416 start = p_last + 1;
417 goto restart;
418 }
419 }
420 } else {
421 if (start < p_start && set_flags) {
422 pageflags_create(start, p_start - 1, set_flags);
423 }
424 if (last < p_last) {
425 interval_tree_remove(&p->itree, &pageflags_root);
426 p->itree.start = last + 1;
427 interval_tree_insert(&p->itree, &pageflags_root);
428 if (merge_flags) {
429 pageflags_create(start, last, merge_flags);
430 }
431 } else {
432 if (merge_flags) {
433 p->flags = merge_flags;
434 } else {
435 interval_tree_remove(&p->itree, &pageflags_root);
436 g_free_rcu(p, rcu);
437 }
438 if (p_last < last) {
439 start = p_last + 1;
440 goto restart;
441 }
442 }
443 }
444 goto done;
445 }
446
447 /* If flags are not changing for this range, incorporate it. */
448 if (set_flags == p_flags) {
449 if (start < p_start) {
450 interval_tree_remove(&p->itree, &pageflags_root);
451 p->itree.start = start;
452 interval_tree_insert(&p->itree, &pageflags_root);
453 }
454 if (p_last < last) {
455 start = p_last + 1;
456 goto restart;
457 }
458 goto done;
459 }
460
461 /* Maybe split out head and/or tail ranges with the original flags. */
462 interval_tree_remove(&p->itree, &pageflags_root);
463 if (p_start < start) {
464 p->itree.last = start - 1;
465 interval_tree_insert(&p->itree, &pageflags_root);
466
467 if (p_last < last) {
468 goto restart;
469 }
470 if (last < p_last) {
471 pageflags_create(last + 1, p_last, p_flags);
472 }
473 } else if (last < p_last) {
474 p->itree.start = last + 1;
475 interval_tree_insert(&p->itree, &pageflags_root);
476 } else {
477 g_free_rcu(p, rcu);
478 goto restart;
479 }
480 if (set_flags) {
481 pageflags_create(start, last, set_flags);
482 }
483
484 done:
485 return inval_tb;
486 }
487
page_set_flags(target_ulong start,target_ulong last,int flags)488 void page_set_flags(target_ulong start, target_ulong last, int flags)
489 {
490 bool reset = false;
491 bool inval_tb = false;
492
493 /* This function should never be called with addresses outside the
494 guest address space. If this assert fires, it probably indicates
495 a missing call to h2g_valid. */
496 assert(start <= last);
497 assert(last <= GUEST_ADDR_MAX);
498 /* Only set PAGE_ANON with new mappings. */
499 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
500 assert_memory_lock();
501
502 start &= TARGET_PAGE_MASK;
503 last |= ~TARGET_PAGE_MASK;
504
505 if (!(flags & PAGE_VALID)) {
506 flags = 0;
507 } else {
508 reset = flags & PAGE_RESET;
509 flags &= ~PAGE_RESET;
510 if (flags & PAGE_WRITE) {
511 flags |= PAGE_WRITE_ORG;
512 }
513 }
514
515 if (!flags || reset) {
516 page_reset_target_data(start, last);
517 inval_tb |= pageflags_unset(start, last);
518 }
519 if (flags) {
520 inval_tb |= pageflags_set_clear(start, last, flags,
521 ~(reset ? 0 : PAGE_STICKY));
522 }
523 if (inval_tb) {
524 tb_invalidate_phys_range(start, last);
525 }
526 }
527
page_check_range(target_ulong start,target_ulong len,int flags)528 bool page_check_range(target_ulong start, target_ulong len, int flags)
529 {
530 target_ulong last;
531 int locked; /* tri-state: =0: unlocked, +1: global, -1: local */
532 bool ret;
533
534 if (len == 0) {
535 return true; /* trivial length */
536 }
537
538 last = start + len - 1;
539 if (last < start) {
540 return false; /* wrap around */
541 }
542
543 locked = have_mmap_lock();
544 while (true) {
545 PageFlagsNode *p = pageflags_find(start, last);
546 int missing;
547
548 if (!p) {
549 if (!locked) {
550 /*
551 * Lockless lookups have false negatives.
552 * Retry with the lock held.
553 */
554 mmap_lock();
555 locked = -1;
556 p = pageflags_find(start, last);
557 }
558 if (!p) {
559 ret = false; /* entire region invalid */
560 break;
561 }
562 }
563 if (start < p->itree.start) {
564 ret = false; /* initial bytes invalid */
565 break;
566 }
567
568 missing = flags & ~p->flags;
569 if (missing & ~PAGE_WRITE) {
570 ret = false; /* page doesn't match */
571 break;
572 }
573 if (missing & PAGE_WRITE) {
574 if (!(p->flags & PAGE_WRITE_ORG)) {
575 ret = false; /* page not writable */
576 break;
577 }
578 /* Asking about writable, but has been protected: undo. */
579 if (!page_unprotect(start, 0)) {
580 ret = false;
581 break;
582 }
583 /* TODO: page_unprotect should take a range, not a single page. */
584 if (last - start < TARGET_PAGE_SIZE) {
585 ret = true; /* ok */
586 break;
587 }
588 start += TARGET_PAGE_SIZE;
589 continue;
590 }
591
592 if (last <= p->itree.last) {
593 ret = true; /* ok */
594 break;
595 }
596 start = p->itree.last + 1;
597 }
598
599 /* Release the lock if acquired locally. */
600 if (locked < 0) {
601 mmap_unlock();
602 }
603 return ret;
604 }
605
page_check_range_empty(target_ulong start,target_ulong last)606 bool page_check_range_empty(target_ulong start, target_ulong last)
607 {
608 assert(last >= start);
609 assert_memory_lock();
610 return pageflags_find(start, last) == NULL;
611 }
612
page_find_range_empty(target_ulong min,target_ulong max,target_ulong len,target_ulong align)613 target_ulong page_find_range_empty(target_ulong min, target_ulong max,
614 target_ulong len, target_ulong align)
615 {
616 target_ulong len_m1, align_m1;
617
618 assert(min <= max);
619 assert(max <= GUEST_ADDR_MAX);
620 assert(len != 0);
621 assert(is_power_of_2(align));
622 assert_memory_lock();
623
624 len_m1 = len - 1;
625 align_m1 = align - 1;
626
627 /* Iteratively narrow the search region. */
628 while (1) {
629 PageFlagsNode *p;
630
631 /* Align min and double-check there's enough space remaining. */
632 min = (min + align_m1) & ~align_m1;
633 if (min > max) {
634 return -1;
635 }
636 if (len_m1 > max - min) {
637 return -1;
638 }
639
640 p = pageflags_find(min, min + len_m1);
641 if (p == NULL) {
642 /* Found! */
643 return min;
644 }
645 if (max <= p->itree.last) {
646 /* Existing allocation fills the remainder of the search region. */
647 return -1;
648 }
649 /* Skip across existing allocation. */
650 min = p->itree.last + 1;
651 }
652 }
653
page_protect(tb_page_addr_t address)654 void page_protect(tb_page_addr_t address)
655 {
656 PageFlagsNode *p;
657 target_ulong start, last;
658 int host_page_size = qemu_real_host_page_size();
659 int prot;
660
661 assert_memory_lock();
662
663 if (host_page_size <= TARGET_PAGE_SIZE) {
664 start = address & TARGET_PAGE_MASK;
665 last = start + TARGET_PAGE_SIZE - 1;
666 } else {
667 start = address & -host_page_size;
668 last = start + host_page_size - 1;
669 }
670
671 p = pageflags_find(start, last);
672 if (!p) {
673 return;
674 }
675 prot = p->flags;
676
677 if (unlikely(p->itree.last < last)) {
678 /* More than one protection region covers the one host page. */
679 assert(TARGET_PAGE_SIZE < host_page_size);
680 while ((p = pageflags_next(p, start, last)) != NULL) {
681 prot |= p->flags;
682 }
683 }
684
685 if (prot & PAGE_WRITE) {
686 pageflags_set_clear(start, last, 0, PAGE_WRITE);
687 mprotect(g2h_untagged(start), last - start + 1,
688 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
689 }
690 }
691
692 /*
693 * Called from signal handler: invalidate the code and unprotect the
694 * page. Return 0 if the fault was not handled, 1 if it was handled,
695 * and 2 if it was handled but the caller must cause the TB to be
696 * immediately exited. (We can only return 2 if the 'pc' argument is
697 * non-zero.)
698 */
page_unprotect(target_ulong address,uintptr_t pc)699 int page_unprotect(target_ulong address, uintptr_t pc)
700 {
701 PageFlagsNode *p;
702 bool current_tb_invalidated;
703
704 /*
705 * Technically this isn't safe inside a signal handler. However we
706 * know this only ever happens in a synchronous SEGV handler, so in
707 * practice it seems to be ok.
708 */
709 mmap_lock();
710
711 p = pageflags_find(address, address);
712
713 /* If this address was not really writable, nothing to do. */
714 if (!p || !(p->flags & PAGE_WRITE_ORG)) {
715 mmap_unlock();
716 return 0;
717 }
718
719 current_tb_invalidated = false;
720 if (p->flags & PAGE_WRITE) {
721 /*
722 * If the page is actually marked WRITE then assume this is because
723 * this thread raced with another one which got here first and
724 * set the page to PAGE_WRITE and did the TB invalidate for us.
725 */
726 #ifdef TARGET_HAS_PRECISE_SMC
727 TranslationBlock *current_tb = tcg_tb_lookup(pc);
728 if (current_tb) {
729 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
730 }
731 #endif
732 } else {
733 int host_page_size = qemu_real_host_page_size();
734 target_ulong start, len, i;
735 int prot;
736
737 if (host_page_size <= TARGET_PAGE_SIZE) {
738 start = address & TARGET_PAGE_MASK;
739 len = TARGET_PAGE_SIZE;
740 prot = p->flags | PAGE_WRITE;
741 pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
742 current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
743 } else {
744 start = address & -host_page_size;
745 len = host_page_size;
746 prot = 0;
747
748 for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
749 target_ulong addr = start + i;
750
751 p = pageflags_find(addr, addr);
752 if (p) {
753 prot |= p->flags;
754 if (p->flags & PAGE_WRITE_ORG) {
755 prot |= PAGE_WRITE;
756 pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
757 PAGE_WRITE, 0);
758 }
759 }
760 /*
761 * Since the content will be modified, we must invalidate
762 * the corresponding translated code.
763 */
764 current_tb_invalidated |=
765 tb_invalidate_phys_page_unwind(addr, pc);
766 }
767 }
768 if (prot & PAGE_EXEC) {
769 prot = (prot & ~PAGE_EXEC) | PAGE_READ;
770 }
771 mprotect((void *)g2h_untagged(start), len, prot & PAGE_RWX);
772 }
773 mmap_unlock();
774
775 /* If current TB was invalidated return to main loop */
776 return current_tb_invalidated ? 2 : 1;
777 }
778
probe_access_internal(CPUArchState * env,vaddr addr,int fault_size,MMUAccessType access_type,bool nonfault,uintptr_t ra)779 static int probe_access_internal(CPUArchState *env, vaddr addr,
780 int fault_size, MMUAccessType access_type,
781 bool nonfault, uintptr_t ra)
782 {
783 int acc_flag;
784 bool maperr;
785
786 switch (access_type) {
787 case MMU_DATA_STORE:
788 acc_flag = PAGE_WRITE_ORG;
789 break;
790 case MMU_DATA_LOAD:
791 acc_flag = PAGE_READ;
792 break;
793 case MMU_INST_FETCH:
794 acc_flag = PAGE_EXEC;
795 break;
796 default:
797 g_assert_not_reached();
798 }
799
800 if (guest_addr_valid_untagged(addr)) {
801 int page_flags = page_get_flags(addr);
802 if (page_flags & acc_flag) {
803 if (access_type != MMU_INST_FETCH
804 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
805 return TLB_MMIO;
806 }
807 return 0; /* success */
808 }
809 maperr = !(page_flags & PAGE_VALID);
810 } else {
811 maperr = true;
812 }
813
814 if (nonfault) {
815 return TLB_INVALID_MASK;
816 }
817
818 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
819 }
820
probe_access_flags(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,uintptr_t ra)821 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
822 MMUAccessType access_type, int mmu_idx,
823 bool nonfault, void **phost, uintptr_t ra)
824 {
825 int flags;
826
827 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
828 flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
829 *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
830 return flags;
831 }
832
probe_access(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,uintptr_t ra)833 void *probe_access(CPUArchState *env, vaddr addr, int size,
834 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
835 {
836 int flags;
837
838 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
839 flags = probe_access_internal(env, addr, size, access_type, false, ra);
840 g_assert((flags & ~TLB_MMIO) == 0);
841
842 return size ? g2h(env_cpu(env), addr) : NULL;
843 }
844
get_page_addr_code_hostp(CPUArchState * env,vaddr addr,void ** hostp)845 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
846 void **hostp)
847 {
848 int flags;
849
850 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
851 g_assert(flags == 0);
852
853 if (hostp) {
854 *hostp = g2h_untagged(addr);
855 }
856 return addr;
857 }
858
859 #ifdef TARGET_PAGE_DATA_SIZE
860 /*
861 * Allocate chunks of target data together. For the only current user,
862 * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
863 * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
864 */
865 #define TPD_PAGES 64
866 #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES)
867
868 typedef struct TargetPageDataNode {
869 struct rcu_head rcu;
870 IntervalTreeNode itree;
871 char data[] __attribute__((aligned));
872 } TargetPageDataNode;
873
874 static IntervalTreeRoot targetdata_root;
875
page_reset_target_data(target_ulong start,target_ulong last)876 void page_reset_target_data(target_ulong start, target_ulong last)
877 {
878 IntervalTreeNode *n, *next;
879
880 assert_memory_lock();
881
882 start &= TARGET_PAGE_MASK;
883 last |= ~TARGET_PAGE_MASK;
884
885 for (n = interval_tree_iter_first(&targetdata_root, start, last),
886 next = n ? interval_tree_iter_next(n, start, last) : NULL;
887 n != NULL;
888 n = next,
889 next = next ? interval_tree_iter_next(n, start, last) : NULL) {
890 target_ulong n_start, n_last, p_ofs, p_len;
891 TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
892
893 if (n->start >= start && n->last <= last) {
894 interval_tree_remove(n, &targetdata_root);
895 g_free_rcu(t, rcu);
896 continue;
897 }
898
899 if (n->start < start) {
900 n_start = start;
901 p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
902 } else {
903 n_start = n->start;
904 p_ofs = 0;
905 }
906 n_last = MIN(last, n->last);
907 p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
908
909 memset(t->data + p_ofs * TARGET_PAGE_DATA_SIZE, 0,
910 p_len * TARGET_PAGE_DATA_SIZE);
911 }
912 }
913
page_get_target_data(target_ulong address)914 void *page_get_target_data(target_ulong address)
915 {
916 IntervalTreeNode *n;
917 TargetPageDataNode *t;
918 target_ulong page, region, p_ofs;
919
920 page = address & TARGET_PAGE_MASK;
921 region = address & TBD_MASK;
922
923 n = interval_tree_iter_first(&targetdata_root, page, page);
924 if (!n) {
925 /*
926 * See util/interval-tree.c re lockless lookups: no false positives
927 * but there are false negatives. If we find nothing, retry with
928 * the mmap lock acquired. We also need the lock for the
929 * allocation + insert.
930 */
931 mmap_lock();
932 n = interval_tree_iter_first(&targetdata_root, page, page);
933 if (!n) {
934 t = g_malloc0(sizeof(TargetPageDataNode)
935 + TPD_PAGES * TARGET_PAGE_DATA_SIZE);
936 n = &t->itree;
937 n->start = region;
938 n->last = region | ~TBD_MASK;
939 interval_tree_insert(n, &targetdata_root);
940 }
941 mmap_unlock();
942 }
943
944 t = container_of(n, TargetPageDataNode, itree);
945 p_ofs = (page - region) >> TARGET_PAGE_BITS;
946 return t->data + p_ofs * TARGET_PAGE_DATA_SIZE;
947 }
948 #else
page_reset_target_data(target_ulong start,target_ulong last)949 void page_reset_target_data(target_ulong start, target_ulong last) { }
950 #endif /* TARGET_PAGE_DATA_SIZE */
951
952 /* The system-mode versions of these helpers are in cputlb.c. */
953
cpu_mmu_lookup(CPUState * cpu,vaddr addr,MemOp mop,uintptr_t ra,MMUAccessType type)954 static void *cpu_mmu_lookup(CPUState *cpu, vaddr addr,
955 MemOp mop, uintptr_t ra, MMUAccessType type)
956 {
957 int a_bits = memop_alignment_bits(mop);
958 void *ret;
959
960 /* Enforce guest required alignment. */
961 if (unlikely(addr & ((1 << a_bits) - 1))) {
962 cpu_loop_exit_sigbus(cpu, addr, type, ra);
963 }
964
965 ret = g2h(cpu, addr);
966 set_helper_retaddr(ra);
967 return ret;
968 }
969
970 #include "ldst_atomicity.c.inc"
971
do_ld1_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)972 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
973 uintptr_t ra, MMUAccessType access_type)
974 {
975 void *haddr;
976 uint8_t ret;
977
978 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
979 haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, access_type);
980 ret = ldub_p(haddr);
981 clear_helper_retaddr();
982 return ret;
983 }
984
do_ld2_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)985 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
986 uintptr_t ra, MMUAccessType access_type)
987 {
988 void *haddr;
989 uint16_t ret;
990 MemOp mop = get_memop(oi);
991
992 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
993 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
994 ret = load_atom_2(cpu, ra, haddr, mop);
995 clear_helper_retaddr();
996
997 if (mop & MO_BSWAP) {
998 ret = bswap16(ret);
999 }
1000 return ret;
1001 }
1002
do_ld4_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)1003 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1004 uintptr_t ra, MMUAccessType access_type)
1005 {
1006 void *haddr;
1007 uint32_t ret;
1008 MemOp mop = get_memop(oi);
1009
1010 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1011 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1012 ret = load_atom_4(cpu, ra, haddr, mop);
1013 clear_helper_retaddr();
1014
1015 if (mop & MO_BSWAP) {
1016 ret = bswap32(ret);
1017 }
1018 return ret;
1019 }
1020
do_ld8_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)1021 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
1022 uintptr_t ra, MMUAccessType access_type)
1023 {
1024 void *haddr;
1025 uint64_t ret;
1026 MemOp mop = get_memop(oi);
1027
1028 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1029 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type);
1030 ret = load_atom_8(cpu, ra, haddr, mop);
1031 clear_helper_retaddr();
1032
1033 if (mop & MO_BSWAP) {
1034 ret = bswap64(ret);
1035 }
1036 return ret;
1037 }
1038
do_ld16_mmu(CPUState * cpu,abi_ptr addr,MemOpIdx oi,uintptr_t ra)1039 static Int128 do_ld16_mmu(CPUState *cpu, abi_ptr addr,
1040 MemOpIdx oi, uintptr_t ra)
1041 {
1042 void *haddr;
1043 Int128 ret;
1044 MemOp mop = get_memop(oi);
1045
1046 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1047 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1048 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_LOAD);
1049 ret = load_atom_16(cpu, ra, haddr, mop);
1050 clear_helper_retaddr();
1051
1052 if (mop & MO_BSWAP) {
1053 ret = bswap128(ret);
1054 }
1055 return ret;
1056 }
1057
do_st1_mmu(CPUState * cpu,vaddr addr,uint8_t val,MemOpIdx oi,uintptr_t ra)1058 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
1059 MemOpIdx oi, uintptr_t ra)
1060 {
1061 void *haddr;
1062
1063 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1064 haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, MMU_DATA_STORE);
1065 stb_p(haddr, val);
1066 clear_helper_retaddr();
1067 }
1068
do_st2_mmu(CPUState * cpu,vaddr addr,uint16_t val,MemOpIdx oi,uintptr_t ra)1069 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
1070 MemOpIdx oi, uintptr_t ra)
1071 {
1072 void *haddr;
1073 MemOp mop = get_memop(oi);
1074
1075 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1076 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1077
1078 if (mop & MO_BSWAP) {
1079 val = bswap16(val);
1080 }
1081 store_atom_2(cpu, ra, haddr, mop, val);
1082 clear_helper_retaddr();
1083 }
1084
do_st4_mmu(CPUState * cpu,vaddr addr,uint32_t val,MemOpIdx oi,uintptr_t ra)1085 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
1086 MemOpIdx oi, uintptr_t ra)
1087 {
1088 void *haddr;
1089 MemOp mop = get_memop(oi);
1090
1091 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1092 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1093
1094 if (mop & MO_BSWAP) {
1095 val = bswap32(val);
1096 }
1097 store_atom_4(cpu, ra, haddr, mop, val);
1098 clear_helper_retaddr();
1099 }
1100
do_st8_mmu(CPUState * cpu,vaddr addr,uint64_t val,MemOpIdx oi,uintptr_t ra)1101 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
1102 MemOpIdx oi, uintptr_t ra)
1103 {
1104 void *haddr;
1105 MemOp mop = get_memop(oi);
1106
1107 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1108 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1109
1110 if (mop & MO_BSWAP) {
1111 val = bswap64(val);
1112 }
1113 store_atom_8(cpu, ra, haddr, mop, val);
1114 clear_helper_retaddr();
1115 }
1116
do_st16_mmu(CPUState * cpu,vaddr addr,Int128 val,MemOpIdx oi,uintptr_t ra)1117 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
1118 MemOpIdx oi, uintptr_t ra)
1119 {
1120 void *haddr;
1121 MemOpIdx mop = get_memop(oi);
1122
1123 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1124 haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE);
1125
1126 if (mop & MO_BSWAP) {
1127 val = bswap128(val);
1128 }
1129 store_atom_16(cpu, ra, haddr, mop, val);
1130 clear_helper_retaddr();
1131 }
1132
cpu_ldub_code(CPUArchState * env,abi_ptr ptr)1133 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1134 {
1135 uint32_t ret;
1136
1137 set_helper_retaddr(1);
1138 ret = ldub_p(g2h_untagged(ptr));
1139 clear_helper_retaddr();
1140 return ret;
1141 }
1142
cpu_lduw_code(CPUArchState * env,abi_ptr ptr)1143 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1144 {
1145 uint32_t ret;
1146
1147 set_helper_retaddr(1);
1148 ret = lduw_p(g2h_untagged(ptr));
1149 clear_helper_retaddr();
1150 return ret;
1151 }
1152
cpu_ldl_code(CPUArchState * env,abi_ptr ptr)1153 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1154 {
1155 uint32_t ret;
1156
1157 set_helper_retaddr(1);
1158 ret = ldl_p(g2h_untagged(ptr));
1159 clear_helper_retaddr();
1160 return ret;
1161 }
1162
cpu_ldq_code(CPUArchState * env,abi_ptr ptr)1163 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1164 {
1165 uint64_t ret;
1166
1167 set_helper_retaddr(1);
1168 ret = ldq_p(g2h_untagged(ptr));
1169 clear_helper_retaddr();
1170 return ret;
1171 }
1172
cpu_ldb_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t ra)1173 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1174 MemOpIdx oi, uintptr_t ra)
1175 {
1176 void *haddr;
1177 uint8_t ret;
1178
1179 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1180 ret = ldub_p(haddr);
1181 clear_helper_retaddr();
1182 return ret;
1183 }
1184
cpu_ldw_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t ra)1185 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1186 MemOpIdx oi, uintptr_t ra)
1187 {
1188 void *haddr;
1189 uint16_t ret;
1190
1191 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1192 ret = lduw_p(haddr);
1193 clear_helper_retaddr();
1194 if (get_memop(oi) & MO_BSWAP) {
1195 ret = bswap16(ret);
1196 }
1197 return ret;
1198 }
1199
cpu_ldl_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t ra)1200 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1201 MemOpIdx oi, uintptr_t ra)
1202 {
1203 void *haddr;
1204 uint32_t ret;
1205
1206 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH);
1207 ret = ldl_p(haddr);
1208 clear_helper_retaddr();
1209 if (get_memop(oi) & MO_BSWAP) {
1210 ret = bswap32(ret);
1211 }
1212 return ret;
1213 }
1214
cpu_ldq_code_mmu(CPUArchState * env,abi_ptr addr,MemOpIdx oi,uintptr_t ra)1215 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1216 MemOpIdx oi, uintptr_t ra)
1217 {
1218 void *haddr;
1219 uint64_t ret;
1220
1221 haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
1222 ret = ldq_p(haddr);
1223 clear_helper_retaddr();
1224 if (get_memop(oi) & MO_BSWAP) {
1225 ret = bswap64(ret);
1226 }
1227 return ret;
1228 }
1229
1230 #include "ldst_common.c.inc"
1231
1232 /*
1233 * Do not allow unaligned operations to proceed. Return the host address.
1234 */
atomic_mmu_lookup(CPUState * cpu,vaddr addr,MemOpIdx oi,int size,uintptr_t retaddr)1235 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1236 int size, uintptr_t retaddr)
1237 {
1238 MemOp mop = get_memop(oi);
1239 int a_bits = memop_alignment_bits(mop);
1240 void *ret;
1241
1242 /* Enforce guest required alignment. */
1243 if (unlikely(addr & ((1 << a_bits) - 1))) {
1244 cpu_loop_exit_sigbus(cpu, addr, MMU_DATA_STORE, retaddr);
1245 }
1246
1247 /* Enforce qemu required alignment. */
1248 if (unlikely(addr & (size - 1))) {
1249 cpu_loop_exit_atomic(cpu, retaddr);
1250 }
1251
1252 ret = g2h(cpu, addr);
1253 set_helper_retaddr(retaddr);
1254 return ret;
1255 }
1256
1257 #include "atomic_common.c.inc"
1258
1259 /*
1260 * First set of functions passes in OI and RETADDR.
1261 * This makes them callable from other helpers.
1262 */
1263
1264 #define ATOMIC_NAME(X) \
1265 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1266 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1267
1268 #define DATA_SIZE 1
1269 #include "atomic_template.h"
1270
1271 #define DATA_SIZE 2
1272 #include "atomic_template.h"
1273
1274 #define DATA_SIZE 4
1275 #include "atomic_template.h"
1276
1277 #ifdef CONFIG_ATOMIC64
1278 #define DATA_SIZE 8
1279 #include "atomic_template.h"
1280 #endif
1281
1282 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
1283 #define DATA_SIZE 16
1284 #include "atomic_template.h"
1285 #endif
1286