1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/page_pool/helpers.h>
11 #include <net/tso.h>
12 #include <linux/bitfield.h>
13
14 #include "otx2_reg.h"
15 #include "otx2_common.h"
16 #include "otx2_struct.h"
17 #include "cn10k.h"
18
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 struct otx2_nic *pfvf, int qidx)
21 {
22 u64 incr = (u64)qidx << 32;
23 u64 *ptr;
24
25 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 stats->bytes = otx2_atomic64_add(incr, ptr);
27
28 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 struct otx2_nic *pfvf, int qidx)
34 {
35 u64 incr = (u64)qidx << 32;
36 u64 *ptr;
37
38 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 stats->bytes = otx2_atomic64_add(incr, ptr);
40
41 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44
otx2_update_lmac_stats(struct otx2_nic * pfvf)45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 struct msg_req *req;
48
49 if (!netif_running(pfvf->netdev))
50 return;
51
52 mutex_lock(&pfvf->mbox.lock);
53 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 if (!req) {
55 mutex_unlock(&pfvf->mbox.lock);
56 return;
57 }
58
59 otx2_sync_mbox_msg(&pfvf->mbox);
60 mutex_unlock(&pfvf->mbox.lock);
61 }
62
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)63 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
64 {
65 struct msg_req *req;
66
67 if (!netif_running(pfvf->netdev))
68 return;
69 mutex_lock(&pfvf->mbox.lock);
70 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
71 if (req)
72 otx2_sync_mbox_msg(&pfvf->mbox);
73 mutex_unlock(&pfvf->mbox.lock);
74 }
75
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)76 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
77 {
78 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
79
80 if (!pfvf->qset.rq)
81 return 0;
82
83 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
84 return 1;
85 }
86
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)87 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
88 {
89 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
90
91 if (!pfvf->qset.sq)
92 return 0;
93
94 if (qidx >= pfvf->hw.non_qos_queues) {
95 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap))
96 return 0;
97 }
98
99 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
100 return 1;
101 }
102
otx2_get_dev_stats(struct otx2_nic * pfvf)103 void otx2_get_dev_stats(struct otx2_nic *pfvf)
104 {
105 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
106
107 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
108 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
109 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
110 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
111 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
112 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
113 dev_stats->rx_mcast_frames +
114 dev_stats->rx_ucast_frames;
115
116 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
117 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
118 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
119 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
120 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
121 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
122 dev_stats->tx_mcast_frames +
123 dev_stats->tx_ucast_frames;
124 }
125
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)126 void otx2_get_stats64(struct net_device *netdev,
127 struct rtnl_link_stats64 *stats)
128 {
129 struct otx2_nic *pfvf = netdev_priv(netdev);
130 struct otx2_dev_stats *dev_stats;
131
132 otx2_get_dev_stats(pfvf);
133
134 dev_stats = &pfvf->hw.dev_stats;
135 stats->rx_bytes = dev_stats->rx_bytes;
136 stats->rx_packets = dev_stats->rx_frames;
137 stats->rx_dropped = dev_stats->rx_drops;
138 stats->multicast = dev_stats->rx_mcast_frames;
139
140 stats->tx_bytes = dev_stats->tx_bytes;
141 stats->tx_packets = dev_stats->tx_frames;
142 stats->tx_dropped = dev_stats->tx_drops;
143 }
144 EXPORT_SYMBOL(otx2_get_stats64);
145
146 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)147 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
148 {
149 struct nix_set_mac_addr *req;
150 int err;
151
152 mutex_lock(&pfvf->mbox.lock);
153 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
154 if (!req) {
155 mutex_unlock(&pfvf->mbox.lock);
156 return -ENOMEM;
157 }
158
159 ether_addr_copy(req->mac_addr, mac);
160
161 err = otx2_sync_mbox_msg(&pfvf->mbox);
162 mutex_unlock(&pfvf->mbox.lock);
163 return err;
164 }
165
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)166 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
167 struct net_device *netdev)
168 {
169 struct nix_get_mac_addr_rsp *rsp;
170 struct mbox_msghdr *msghdr;
171 struct msg_req *req;
172 int err;
173
174 mutex_lock(&pfvf->mbox.lock);
175 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
176 if (!req) {
177 mutex_unlock(&pfvf->mbox.lock);
178 return -ENOMEM;
179 }
180
181 err = otx2_sync_mbox_msg(&pfvf->mbox);
182 if (err) {
183 mutex_unlock(&pfvf->mbox.lock);
184 return err;
185 }
186
187 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
188 if (IS_ERR(msghdr)) {
189 mutex_unlock(&pfvf->mbox.lock);
190 return PTR_ERR(msghdr);
191 }
192 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
193 eth_hw_addr_set(netdev, rsp->mac_addr);
194 mutex_unlock(&pfvf->mbox.lock);
195
196 return 0;
197 }
198
otx2_set_mac_address(struct net_device * netdev,void * p)199 int otx2_set_mac_address(struct net_device *netdev, void *p)
200 {
201 struct otx2_nic *pfvf = netdev_priv(netdev);
202 struct sockaddr *addr = p;
203
204 if (!is_valid_ether_addr(addr->sa_data))
205 return -EADDRNOTAVAIL;
206
207 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
208 eth_hw_addr_set(netdev, addr->sa_data);
209 /* update dmac field in vlan offload rule */
210 if (netif_running(netdev) &&
211 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
212 otx2_install_rxvlan_offload_flow(pfvf);
213 /* update dmac address in ntuple and DMAC filter list */
214 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
215 otx2_dmacflt_update_pfmac_flow(pfvf);
216 } else {
217 return -EPERM;
218 }
219
220 return 0;
221 }
222 EXPORT_SYMBOL(otx2_set_mac_address);
223
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)224 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
225 {
226 struct nix_frs_cfg *req;
227 u16 maxlen;
228 int err;
229
230 maxlen = otx2_get_max_mtu(pfvf) + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
231
232 mutex_lock(&pfvf->mbox.lock);
233 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
234 if (!req) {
235 mutex_unlock(&pfvf->mbox.lock);
236 return -ENOMEM;
237 }
238
239 req->maxlen = pfvf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
240
241 /* Use max receive length supported by hardware for loopback devices */
242 if (is_otx2_lbkvf(pfvf->pdev))
243 req->maxlen = maxlen;
244
245 err = otx2_sync_mbox_msg(&pfvf->mbox);
246 mutex_unlock(&pfvf->mbox.lock);
247 return err;
248 }
249
otx2_config_pause_frm(struct otx2_nic * pfvf)250 int otx2_config_pause_frm(struct otx2_nic *pfvf)
251 {
252 struct cgx_pause_frm_cfg *req;
253 int err;
254
255 if (is_otx2_lbkvf(pfvf->pdev))
256 return 0;
257
258 mutex_lock(&pfvf->mbox.lock);
259 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
260 if (!req) {
261 err = -ENOMEM;
262 goto unlock;
263 }
264
265 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
266 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
267 req->set = 1;
268
269 err = otx2_sync_mbox_msg(&pfvf->mbox);
270 unlock:
271 mutex_unlock(&pfvf->mbox.lock);
272 return err;
273 }
274 EXPORT_SYMBOL(otx2_config_pause_frm);
275
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)276 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
277 {
278 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
279 struct nix_rss_flowkey_cfg_rsp *rsp;
280 struct nix_rss_flowkey_cfg *req;
281 int err;
282
283 mutex_lock(&pfvf->mbox.lock);
284 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
285 if (!req) {
286 mutex_unlock(&pfvf->mbox.lock);
287 return -ENOMEM;
288 }
289 req->mcam_index = -1; /* Default or reserved index */
290 req->flowkey_cfg = rss->flowkey_cfg;
291 req->group = DEFAULT_RSS_CONTEXT_GROUP;
292
293 err = otx2_sync_mbox_msg(&pfvf->mbox);
294 if (err)
295 goto fail;
296
297 rsp = (struct nix_rss_flowkey_cfg_rsp *)
298 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
299 if (IS_ERR(rsp)) {
300 err = PTR_ERR(rsp);
301 goto fail;
302 }
303
304 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
305 fail:
306 mutex_unlock(&pfvf->mbox.lock);
307 return err;
308 }
309
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id)310 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
311 {
312 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
313 const int index = rss->rss_size * ctx_id;
314 struct mbox *mbox = &pfvf->mbox;
315 struct otx2_rss_ctx *rss_ctx;
316 struct nix_aq_enq_req *aq;
317 int idx, err;
318
319 mutex_lock(&mbox->lock);
320 rss_ctx = rss->rss_ctx[ctx_id];
321 /* Get memory to put this msg */
322 for (idx = 0; idx < rss->rss_size; idx++) {
323 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
324 if (!aq) {
325 /* The shared memory buffer can be full.
326 * Flush it and retry
327 */
328 err = otx2_sync_mbox_msg(mbox);
329 if (err) {
330 mutex_unlock(&mbox->lock);
331 return err;
332 }
333 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
334 if (!aq) {
335 mutex_unlock(&mbox->lock);
336 return -ENOMEM;
337 }
338 }
339
340 aq->rss.rq = rss_ctx->ind_tbl[idx];
341
342 /* Fill AQ info */
343 aq->qidx = index + idx;
344 aq->ctype = NIX_AQ_CTYPE_RSS;
345 aq->op = NIX_AQ_INSTOP_INIT;
346 }
347 err = otx2_sync_mbox_msg(mbox);
348 mutex_unlock(&mbox->lock);
349 return err;
350 }
351
otx2_set_rss_key(struct otx2_nic * pfvf)352 void otx2_set_rss_key(struct otx2_nic *pfvf)
353 {
354 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
355 u64 *key = (u64 *)&rss->key[4];
356 int idx;
357
358 /* 352bit or 44byte key needs to be configured as below
359 * NIX_LF_RX_SECRETX0 = key<351:288>
360 * NIX_LF_RX_SECRETX1 = key<287:224>
361 * NIX_LF_RX_SECRETX2 = key<223:160>
362 * NIX_LF_RX_SECRETX3 = key<159:96>
363 * NIX_LF_RX_SECRETX4 = key<95:32>
364 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
365 */
366 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
367 (u64)(*((u32 *)&rss->key)) << 32);
368 idx = sizeof(rss->key) / sizeof(u64);
369 while (idx > 0) {
370 idx--;
371 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
372 }
373 }
374
otx2_rss_init(struct otx2_nic * pfvf)375 int otx2_rss_init(struct otx2_nic *pfvf)
376 {
377 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
378 struct otx2_rss_ctx *rss_ctx;
379 int idx, ret = 0;
380
381 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
382
383 /* Init RSS key if it is not setup already */
384 if (!rss->enable)
385 netdev_rss_key_fill(rss->key, sizeof(rss->key));
386 otx2_set_rss_key(pfvf);
387
388 if (!netif_is_rxfh_configured(pfvf->netdev)) {
389 /* Set RSS group 0 as default indirection table */
390 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
391 GFP_KERNEL);
392 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
393 return -ENOMEM;
394
395 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
396 for (idx = 0; idx < rss->rss_size; idx++)
397 rss_ctx->ind_tbl[idx] =
398 ethtool_rxfh_indir_default(idx,
399 pfvf->hw.rx_queues);
400 }
401 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
402 if (ret)
403 return ret;
404
405 /* Flowkey or hash config to be used for generating flow tag */
406 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
407 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
408 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
409 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
410 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
411
412 ret = otx2_set_flowkey_cfg(pfvf);
413 if (ret)
414 return ret;
415
416 rss->enable = true;
417 return 0;
418 }
419
420 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)421 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
422 {
423 struct nix_lso_format *field;
424
425 field = (struct nix_lso_format *)&lso->fields[0];
426 lso->field_mask = GENMASK(18, 0);
427
428 /* IP's Length field */
429 field->layer = NIX_TXLAYER_OL3;
430 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
431 field->offset = v4 ? 2 : 4;
432 field->sizem1 = 1; /* i.e 2 bytes */
433 field->alg = NIX_LSOALG_ADD_PAYLEN;
434 field++;
435
436 /* No ID field in IPv6 header */
437 if (v4) {
438 /* Increment IPID */
439 field->layer = NIX_TXLAYER_OL3;
440 field->offset = 4;
441 field->sizem1 = 1; /* i.e 2 bytes */
442 field->alg = NIX_LSOALG_ADD_SEGNUM;
443 field++;
444 }
445
446 /* Update length in UDP header */
447 field->layer = NIX_TXLAYER_OL4;
448 field->offset = 4;
449 field->sizem1 = 1;
450 field->alg = NIX_LSOALG_ADD_PAYLEN;
451 }
452
453 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)454 void otx2_setup_segmentation(struct otx2_nic *pfvf)
455 {
456 struct nix_lso_format_cfg_rsp *rsp;
457 struct nix_lso_format_cfg *lso;
458 struct otx2_hw *hw = &pfvf->hw;
459 int err;
460
461 mutex_lock(&pfvf->mbox.lock);
462
463 /* UDPv4 segmentation */
464 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
465 if (!lso)
466 goto fail;
467
468 /* Setup UDP/IP header fields that HW should update per segment */
469 otx2_setup_udp_segmentation(lso, true);
470
471 err = otx2_sync_mbox_msg(&pfvf->mbox);
472 if (err)
473 goto fail;
474
475 rsp = (struct nix_lso_format_cfg_rsp *)
476 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
477 if (IS_ERR(rsp))
478 goto fail;
479
480 hw->lso_udpv4_idx = rsp->lso_format_idx;
481
482 /* UDPv6 segmentation */
483 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
484 if (!lso)
485 goto fail;
486
487 /* Setup UDP/IP header fields that HW should update per segment */
488 otx2_setup_udp_segmentation(lso, false);
489
490 err = otx2_sync_mbox_msg(&pfvf->mbox);
491 if (err)
492 goto fail;
493
494 rsp = (struct nix_lso_format_cfg_rsp *)
495 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
496 if (IS_ERR(rsp))
497 goto fail;
498
499 hw->lso_udpv6_idx = rsp->lso_format_idx;
500 mutex_unlock(&pfvf->mbox.lock);
501 return;
502 fail:
503 mutex_unlock(&pfvf->mbox.lock);
504 netdev_info(pfvf->netdev,
505 "Failed to get LSO index for UDP GSO offload, disabling\n");
506 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
507 }
508
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)509 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
510 {
511 /* Configure CQE interrupt coalescing parameters
512 *
513 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
514 * set 1 less than cq_ecount_wait. And cq_time_wait is in
515 * usecs, convert that to 100ns count.
516 */
517 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
518 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
519 ((u64)pfvf->hw.cq_qcount_wait << 32) |
520 (pfvf->hw.cq_ecount_wait - 1));
521 }
522
otx2_alloc_pool_buf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)523 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool,
524 dma_addr_t *dma)
525 {
526 unsigned int offset = 0;
527 struct page *page;
528 size_t sz;
529
530 sz = SKB_DATA_ALIGN(pool->rbsize);
531 sz = ALIGN(sz, OTX2_ALIGN);
532
533 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC);
534 if (unlikely(!page))
535 return -ENOMEM;
536
537 *dma = page_pool_get_dma_addr(page) + offset;
538 return 0;
539 }
540
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)541 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
542 dma_addr_t *dma)
543 {
544 u8 *buf;
545
546 if (pool->page_pool)
547 return otx2_alloc_pool_buf(pfvf, pool, dma);
548
549 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
550 if (unlikely(!buf))
551 return -ENOMEM;
552
553 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
554 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
555 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
556 page_frag_free(buf);
557 return -ENOMEM;
558 }
559
560 return 0;
561 }
562
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)563 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
564 dma_addr_t *dma)
565 {
566 int ret;
567
568 local_bh_disable();
569 ret = __otx2_alloc_rbuf(pfvf, pool, dma);
570 local_bh_enable();
571 return ret;
572 }
573
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)574 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
575 dma_addr_t *dma)
576 {
577 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma)))
578 return -ENOMEM;
579 return 0;
580 }
581
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)582 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
583 {
584 struct otx2_nic *pfvf = netdev_priv(netdev);
585
586 schedule_work(&pfvf->reset_task);
587 }
588 EXPORT_SYMBOL(otx2_tx_timeout);
589
otx2_get_mac_from_af(struct net_device * netdev)590 void otx2_get_mac_from_af(struct net_device *netdev)
591 {
592 struct otx2_nic *pfvf = netdev_priv(netdev);
593 int err;
594
595 err = otx2_hw_get_mac_addr(pfvf, netdev);
596 if (err)
597 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
598
599 /* If AF doesn't provide a valid MAC, generate a random one */
600 if (!is_valid_ether_addr(netdev->dev_addr))
601 eth_hw_addr_random(netdev);
602 }
603 EXPORT_SYMBOL(otx2_get_mac_from_af);
604
otx2_txschq_config(struct otx2_nic * pfvf,int lvl,int prio,bool txschq_for_pfc)605 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc)
606 {
607 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC];
608 struct otx2_hw *hw = &pfvf->hw;
609 struct nix_txschq_config *req;
610 u64 schq, parent;
611 u64 dwrr_val;
612
613 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
614
615 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
616 if (!req)
617 return -ENOMEM;
618
619 req->lvl = lvl;
620 req->num_regs = 1;
621
622 schq_list = hw->txschq_list;
623 #ifdef CONFIG_DCB
624 if (txschq_for_pfc)
625 schq_list = pfvf->pfc_schq_list;
626 #endif
627
628 schq = schq_list[lvl][prio];
629 /* Set topology e.t.c configuration */
630 if (lvl == NIX_TXSCH_LVL_SMQ) {
631 req->reg[0] = NIX_AF_SMQX_CFG(schq);
632 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
633 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
634 (0x2ULL << 36);
635 /* Set link type for DWRR MTU selection on CN10K silicons */
636 if (!is_dev_otx2(pfvf->pdev))
637 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57),
638 (u64)hw->smq_link_type);
639 req->num_regs++;
640 /* MDQ config */
641 parent = schq_list[NIX_TXSCH_LVL_TL4][prio];
642 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
643 req->regval[1] = parent << 16;
644 req->num_regs++;
645 /* Set DWRR quantum */
646 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
647 req->regval[2] = dwrr_val;
648 } else if (lvl == NIX_TXSCH_LVL_TL4) {
649 parent = schq_list[NIX_TXSCH_LVL_TL3][prio];
650 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
651 req->regval[0] = (u64)parent << 16;
652 req->num_regs++;
653 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
654 req->regval[1] = dwrr_val;
655 } else if (lvl == NIX_TXSCH_LVL_TL3) {
656 parent = schq_list[NIX_TXSCH_LVL_TL2][prio];
657 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
658 req->regval[0] = (u64)parent << 16;
659 req->num_regs++;
660 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
661 req->regval[1] = dwrr_val;
662 if (lvl == hw->txschq_link_cfg_lvl) {
663 req->num_regs++;
664 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
665 /* Enable this queue and backpressure
666 * and set relative channel
667 */
668 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
669 }
670 } else if (lvl == NIX_TXSCH_LVL_TL2) {
671 parent = schq_list[NIX_TXSCH_LVL_TL1][prio];
672 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
673 req->regval[0] = (u64)parent << 16;
674
675 req->num_regs++;
676 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
677 req->regval[1] = (u64)hw->txschq_aggr_lvl_rr_prio << 24 | dwrr_val;
678
679 if (lvl == hw->txschq_link_cfg_lvl) {
680 req->num_regs++;
681 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
682 /* Enable this queue and backpressure
683 * and set relative channel
684 */
685 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio;
686 }
687 } else if (lvl == NIX_TXSCH_LVL_TL1) {
688 /* Default config for TL1.
689 * For VF this is always ignored.
690 */
691
692 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
693 * clip it to 16384, so configuring a 24bit max value
694 * will work on both OTx2 and CN10K.
695 */
696 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
697 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
698
699 req->num_regs++;
700 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
701 req->regval[1] = hw->txschq_aggr_lvl_rr_prio << 1;
702
703 req->num_regs++;
704 req->reg[2] = NIX_AF_TL1X_CIR(schq);
705 req->regval[2] = 0;
706 }
707
708 return otx2_sync_mbox_msg(&pfvf->mbox);
709 }
710 EXPORT_SYMBOL(otx2_txschq_config);
711
otx2_smq_flush(struct otx2_nic * pfvf,int smq)712 int otx2_smq_flush(struct otx2_nic *pfvf, int smq)
713 {
714 struct nix_txschq_config *req;
715 int rc;
716
717 mutex_lock(&pfvf->mbox.lock);
718
719 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
720 if (!req) {
721 mutex_unlock(&pfvf->mbox.lock);
722 return -ENOMEM;
723 }
724
725 req->lvl = NIX_TXSCH_LVL_SMQ;
726 req->reg[0] = NIX_AF_SMQX_CFG(smq);
727 req->regval[0] |= BIT_ULL(49);
728 req->num_regs++;
729
730 rc = otx2_sync_mbox_msg(&pfvf->mbox);
731 mutex_unlock(&pfvf->mbox.lock);
732 return rc;
733 }
734 EXPORT_SYMBOL(otx2_smq_flush);
735
otx2_txsch_alloc(struct otx2_nic * pfvf)736 int otx2_txsch_alloc(struct otx2_nic *pfvf)
737 {
738 struct nix_txsch_alloc_req *req;
739 struct nix_txsch_alloc_rsp *rsp;
740 int lvl, schq, rc;
741
742 /* Get memory to put this msg */
743 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
744 if (!req)
745 return -ENOMEM;
746
747 /* Request one schq per level */
748 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
749 req->schq[lvl] = 1;
750 rc = otx2_sync_mbox_msg(&pfvf->mbox);
751 if (rc)
752 return rc;
753
754 rsp = (struct nix_txsch_alloc_rsp *)
755 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
756 if (IS_ERR(rsp))
757 return PTR_ERR(rsp);
758
759 /* Setup transmit scheduler list */
760 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
761 for (schq = 0; schq < rsp->schq[lvl]; schq++)
762 pfvf->hw.txschq_list[lvl][schq] =
763 rsp->schq_list[lvl][schq];
764
765 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
766 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio;
767
768 return 0;
769 }
770
otx2_txschq_free_one(struct otx2_nic * pfvf,u16 lvl,u16 schq)771 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq)
772 {
773 struct nix_txsch_free_req *free_req;
774 int err;
775
776 mutex_lock(&pfvf->mbox.lock);
777
778 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
779 if (!free_req) {
780 mutex_unlock(&pfvf->mbox.lock);
781 netdev_err(pfvf->netdev,
782 "Failed alloc txschq free req\n");
783 return;
784 }
785
786 free_req->schq_lvl = lvl;
787 free_req->schq = schq;
788
789 err = otx2_sync_mbox_msg(&pfvf->mbox);
790 if (err) {
791 netdev_err(pfvf->netdev,
792 "Failed stop txschq %d at level %d\n", schq, lvl);
793 }
794
795 mutex_unlock(&pfvf->mbox.lock);
796 }
797 EXPORT_SYMBOL(otx2_txschq_free_one);
798
otx2_txschq_stop(struct otx2_nic * pfvf)799 void otx2_txschq_stop(struct otx2_nic *pfvf)
800 {
801 int lvl, schq;
802
803 /* free non QOS TLx nodes */
804 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
805 otx2_txschq_free_one(pfvf, lvl,
806 pfvf->hw.txschq_list[lvl][0]);
807
808 /* Clear the txschq list */
809 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
810 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
811 pfvf->hw.txschq_list[lvl][schq] = 0;
812 }
813
814 }
815
otx2_sqb_flush(struct otx2_nic * pfvf)816 void otx2_sqb_flush(struct otx2_nic *pfvf)
817 {
818 int qidx, sqe_tail, sqe_head;
819 struct otx2_snd_queue *sq;
820 u64 incr, *ptr, val;
821
822 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
823 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
824 sq = &pfvf->qset.sq[qidx];
825 if (!sq->sqb_ptrs)
826 continue;
827
828 incr = (u64)qidx << 32;
829 val = otx2_atomic64_add(incr, ptr);
830 sqe_head = (val >> 20) & 0x3F;
831 sqe_tail = (val >> 28) & 0x3F;
832 if (sqe_head != sqe_tail)
833 usleep_range(50, 60);
834 }
835 }
836
837 /* RED and drop levels of CQ on packet reception.
838 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
839 */
840 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
841 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
842
843 /* RED and drop levels of AURA for packet reception.
844 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
845 * Eg: For RQ length 1K, for pass/drop level 204/230.
846 * RED accepts pkts if free pointers > 102 & <= 205.
847 * Drops pkts if free pointers < 102.
848 */
849 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
850 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
851 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
852
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)853 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
854 {
855 struct otx2_qset *qset = &pfvf->qset;
856 struct nix_aq_enq_req *aq;
857
858 /* Get memory to put this msg */
859 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
860 if (!aq)
861 return -ENOMEM;
862
863 aq->rq.cq = qidx;
864 aq->rq.ena = 1;
865 aq->rq.pb_caching = 1;
866 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
867 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
868 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
869 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
870 aq->rq.qint_idx = 0;
871 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
872 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
873 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
874 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
875 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
876 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
877
878 /* Fill AQ info */
879 aq->qidx = qidx;
880 aq->ctype = NIX_AQ_CTYPE_RQ;
881 aq->op = NIX_AQ_INSTOP_INIT;
882
883 return otx2_sync_mbox_msg(&pfvf->mbox);
884 }
885
otx2_sq_aq_init(void * dev,u16 qidx,u16 sqb_aura)886 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
887 {
888 struct otx2_nic *pfvf = dev;
889 struct otx2_snd_queue *sq;
890 struct nix_aq_enq_req *aq;
891
892 sq = &pfvf->qset.sq[qidx];
893 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
894 /* Get memory to put this msg */
895 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
896 if (!aq)
897 return -ENOMEM;
898
899 aq->sq.cq = pfvf->hw.rx_queues + qidx;
900 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
901 aq->sq.cq_ena = 1;
902 aq->sq.ena = 1;
903 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
904 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
905 aq->sq.default_chan = pfvf->hw.tx_chan_base;
906 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
907 aq->sq.sqb_aura = sqb_aura;
908 aq->sq.sq_int_ena = NIX_SQINT_BITS;
909 aq->sq.qint_idx = 0;
910 /* Due pipelining impact minimum 2000 unused SQ CQE's
911 * need to maintain to avoid CQ overflow.
912 */
913 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
914
915 /* Fill AQ info */
916 aq->qidx = qidx;
917 aq->ctype = NIX_AQ_CTYPE_SQ;
918 aq->op = NIX_AQ_INSTOP_INIT;
919
920 return otx2_sync_mbox_msg(&pfvf->mbox);
921 }
922
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)923 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
924 {
925 struct otx2_qset *qset = &pfvf->qset;
926 struct otx2_snd_queue *sq;
927 struct otx2_pool *pool;
928 int err;
929
930 pool = &pfvf->qset.pool[sqb_aura];
931 sq = &qset->sq[qidx];
932 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
933 sq->sqe_cnt = qset->sqe_cnt;
934
935 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
936 if (err)
937 return err;
938
939 if (qidx < pfvf->hw.tx_queues) {
940 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
941 TSO_HEADER_SIZE);
942 if (err)
943 return err;
944 }
945
946 sq->sqe_base = sq->sqe->base;
947 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
948 if (!sq->sg)
949 return -ENOMEM;
950
951 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
952 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
953 sizeof(*sq->timestamps));
954 if (err) {
955 kfree(sq->sg);
956 sq->sg = NULL;
957 return err;
958 }
959 }
960
961 sq->head = 0;
962 sq->cons_head = 0;
963 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
964 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
965 /* Set SQE threshold to 10% of total SQEs */
966 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
967 sq->aura_id = sqb_aura;
968 sq->aura_fc_addr = pool->fc_addr->base;
969 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
970
971 sq->stats.bytes = 0;
972 sq->stats.pkts = 0;
973
974 err = pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
975 if (err) {
976 kfree(sq->sg);
977 sq->sg = NULL;
978 return err;
979 }
980
981 return 0;
982
983 }
984
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)985 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
986 {
987 struct otx2_qset *qset = &pfvf->qset;
988 int err, pool_id, non_xdp_queues;
989 struct nix_aq_enq_req *aq;
990 struct otx2_cq_queue *cq;
991 struct otx2_pool *pool;
992
993 cq = &qset->cq[qidx];
994 cq->cq_idx = qidx;
995 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
996 if (qidx < pfvf->hw.rx_queues) {
997 cq->cq_type = CQ_RX;
998 cq->cint_idx = qidx;
999 cq->cqe_cnt = qset->rqe_cnt;
1000 if (pfvf->xdp_prog) {
1001 pool = &qset->pool[qidx];
1002 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
1003 xdp_rxq_info_reg_mem_model(&cq->xdp_rxq,
1004 MEM_TYPE_PAGE_POOL,
1005 pool->page_pool);
1006 }
1007 } else if (qidx < non_xdp_queues) {
1008 cq->cq_type = CQ_TX;
1009 cq->cint_idx = qidx - pfvf->hw.rx_queues;
1010 cq->cqe_cnt = qset->sqe_cnt;
1011 } else {
1012 if (pfvf->hw.xdp_queues &&
1013 qidx < non_xdp_queues + pfvf->hw.xdp_queues) {
1014 cq->cq_type = CQ_XDP;
1015 cq->cint_idx = qidx - non_xdp_queues;
1016 cq->cqe_cnt = qset->sqe_cnt;
1017 } else {
1018 cq->cq_type = CQ_QOS;
1019 cq->cint_idx = qidx - non_xdp_queues -
1020 pfvf->hw.xdp_queues;
1021 cq->cqe_cnt = qset->sqe_cnt;
1022 }
1023 }
1024 cq->cqe_size = pfvf->qset.xqe_size;
1025
1026 /* Allocate memory for CQEs */
1027 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
1028 if (err)
1029 return err;
1030
1031 /* Save CQE CPU base for faster reference */
1032 cq->cqe_base = cq->cqe->base;
1033 /* In case where all RQs auras point to single pool,
1034 * all CQs receive buffer pool also point to same pool.
1035 */
1036 pool_id = ((cq->cq_type == CQ_RX) &&
1037 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
1038 cq->rbpool = &qset->pool[pool_id];
1039 cq->refill_task_sched = false;
1040
1041 /* Get memory to put this msg */
1042 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
1043 if (!aq)
1044 return -ENOMEM;
1045
1046 aq->cq.ena = 1;
1047 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
1048 aq->cq.caching = 1;
1049 aq->cq.base = cq->cqe->iova;
1050 aq->cq.cint_idx = cq->cint_idx;
1051 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
1052 aq->cq.qint_idx = 0;
1053 aq->cq.avg_level = 255;
1054
1055 if (qidx < pfvf->hw.rx_queues) {
1056 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
1057 aq->cq.drop_ena = 1;
1058
1059 if (!is_otx2_lbkvf(pfvf->pdev)) {
1060 /* Enable receive CQ backpressure */
1061 aq->cq.bp_ena = 1;
1062 #ifdef CONFIG_DCB
1063 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
1064 #else
1065 aq->cq.bpid = pfvf->bpid[0];
1066 #endif
1067
1068 /* Set backpressure level is same as cq pass level */
1069 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
1070 }
1071 }
1072
1073 /* Fill AQ info */
1074 aq->qidx = qidx;
1075 aq->ctype = NIX_AQ_CTYPE_CQ;
1076 aq->op = NIX_AQ_INSTOP_INIT;
1077
1078 return otx2_sync_mbox_msg(&pfvf->mbox);
1079 }
1080
otx2_pool_refill_task(struct work_struct * work)1081 static void otx2_pool_refill_task(struct work_struct *work)
1082 {
1083 struct otx2_cq_queue *cq;
1084 struct refill_work *wrk;
1085 struct otx2_nic *pfvf;
1086 int qidx;
1087
1088 wrk = container_of(work, struct refill_work, pool_refill_work.work);
1089 pfvf = wrk->pf;
1090 qidx = wrk - pfvf->refill_wrk;
1091 cq = &pfvf->qset.cq[qidx];
1092
1093 cq->refill_task_sched = false;
1094
1095 local_bh_disable();
1096 napi_schedule(wrk->napi);
1097 local_bh_enable();
1098 }
1099
otx2_config_nix_queues(struct otx2_nic * pfvf)1100 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1101 {
1102 int qidx, err;
1103
1104 /* Initialize RX queues */
1105 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1106 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1107
1108 err = otx2_rq_init(pfvf, qidx, lpb_aura);
1109 if (err)
1110 return err;
1111 }
1112
1113 /* Initialize TX queues */
1114 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) {
1115 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1116
1117 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1118 if (err)
1119 return err;
1120 }
1121
1122 /* Initialize completion queues */
1123 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1124 err = otx2_cq_init(pfvf, qidx);
1125 if (err)
1126 return err;
1127 }
1128
1129 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1130 NIX_LF_CQ_OP_STATUS);
1131
1132 /* Initialize work queue for receive buffer refill */
1133 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1134 sizeof(struct refill_work), GFP_KERNEL);
1135 if (!pfvf->refill_wrk)
1136 return -ENOMEM;
1137
1138 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1139 pfvf->refill_wrk[qidx].pf = pfvf;
1140 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1141 otx2_pool_refill_task);
1142 }
1143 return 0;
1144 }
1145
otx2_config_nix(struct otx2_nic * pfvf)1146 int otx2_config_nix(struct otx2_nic *pfvf)
1147 {
1148 struct nix_lf_alloc_req *nixlf;
1149 struct nix_lf_alloc_rsp *rsp;
1150 int err;
1151
1152 pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1153
1154 /* Get memory to put this msg */
1155 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1156 if (!nixlf)
1157 return -ENOMEM;
1158
1159 /* Set RQ/SQ/CQ counts */
1160 nixlf->rq_cnt = pfvf->hw.rx_queues;
1161 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf);
1162 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1163 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1164 nixlf->rss_grps = MAX_RSS_GROUPS;
1165 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1166 /* We don't know absolute NPA LF idx attached.
1167 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1168 * NPA LF attached to this RVU PF/VF.
1169 */
1170 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1171 /* Disable alignment pad, enable L2 length check,
1172 * enable L4 TCP/UDP checksum verification.
1173 */
1174 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1175
1176 err = otx2_sync_mbox_msg(&pfvf->mbox);
1177 if (err)
1178 return err;
1179
1180 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1181 &nixlf->hdr);
1182 if (IS_ERR(rsp))
1183 return PTR_ERR(rsp);
1184
1185 if (rsp->qints < 1)
1186 return -ENXIO;
1187
1188 return rsp->hdr.rc;
1189 }
1190
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1191 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1192 {
1193 struct otx2_qset *qset = &pfvf->qset;
1194 struct otx2_hw *hw = &pfvf->hw;
1195 struct otx2_snd_queue *sq;
1196 int sqb, qidx;
1197 u64 iova, pa;
1198
1199 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) {
1200 sq = &qset->sq[qidx];
1201 if (!sq->sqb_ptrs)
1202 continue;
1203 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1204 if (!sq->sqb_ptrs[sqb])
1205 continue;
1206 iova = sq->sqb_ptrs[sqb];
1207 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1208 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1209 DMA_FROM_DEVICE,
1210 DMA_ATTR_SKIP_CPU_SYNC);
1211 put_page(virt_to_page(phys_to_virt(pa)));
1212 }
1213 sq->sqb_count = 0;
1214 }
1215 }
1216
otx2_free_bufs(struct otx2_nic * pfvf,struct otx2_pool * pool,u64 iova,int size)1217 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool,
1218 u64 iova, int size)
1219 {
1220 struct page *page;
1221 u64 pa;
1222
1223 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1224 page = virt_to_head_page(phys_to_virt(pa));
1225
1226 if (pool->page_pool) {
1227 page_pool_put_full_page(pool->page_pool, page, true);
1228 } else {
1229 dma_unmap_page_attrs(pfvf->dev, iova, size,
1230 DMA_FROM_DEVICE,
1231 DMA_ATTR_SKIP_CPU_SYNC);
1232
1233 put_page(page);
1234 }
1235 }
1236
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1237 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1238 {
1239 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1240 struct otx2_pool *pool;
1241 u64 iova;
1242
1243 if (type == AURA_NIX_SQ) {
1244 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1245 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1246 size = pfvf->hw.sqb_size;
1247 }
1248 if (type == AURA_NIX_RQ) {
1249 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1250 pool_end = pfvf->hw.rqpool_cnt;
1251 size = pfvf->rbsize;
1252 }
1253
1254 /* Free SQB and RQB pointers from the aura pool */
1255 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1256 iova = otx2_aura_allocptr(pfvf, pool_id);
1257 pool = &pfvf->qset.pool[pool_id];
1258 while (iova) {
1259 if (type == AURA_NIX_RQ)
1260 iova -= OTX2_HEAD_ROOM;
1261
1262 otx2_free_bufs(pfvf, pool, iova, size);
1263
1264 iova = otx2_aura_allocptr(pfvf, pool_id);
1265 }
1266 }
1267 }
1268
otx2_aura_pool_free(struct otx2_nic * pfvf)1269 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1270 {
1271 struct otx2_pool *pool;
1272 int pool_id;
1273
1274 if (!pfvf->qset.pool)
1275 return;
1276
1277 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1278 pool = &pfvf->qset.pool[pool_id];
1279 qmem_free(pfvf->dev, pool->stack);
1280 qmem_free(pfvf->dev, pool->fc_addr);
1281 page_pool_destroy(pool->page_pool);
1282 pool->page_pool = NULL;
1283 }
1284 devm_kfree(pfvf->dev, pfvf->qset.pool);
1285 pfvf->qset.pool = NULL;
1286 }
1287
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1288 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1289 int pool_id, int numptrs)
1290 {
1291 struct npa_aq_enq_req *aq;
1292 struct otx2_pool *pool;
1293 int err;
1294
1295 pool = &pfvf->qset.pool[pool_id];
1296
1297 /* Allocate memory for HW to update Aura count.
1298 * Alloc one cache line, so that it fits all FC_STYPE modes.
1299 */
1300 if (!pool->fc_addr) {
1301 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1302 if (err)
1303 return err;
1304 }
1305
1306 /* Initialize this aura's context via AF */
1307 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1308 if (!aq) {
1309 /* Shared mbox memory buffer is full, flush it and retry */
1310 err = otx2_sync_mbox_msg(&pfvf->mbox);
1311 if (err)
1312 return err;
1313 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1314 if (!aq)
1315 return -ENOMEM;
1316 }
1317
1318 aq->aura_id = aura_id;
1319 /* Will be filled by AF with correct pool context address */
1320 aq->aura.pool_addr = pool_id;
1321 aq->aura.pool_caching = 1;
1322 aq->aura.shift = ilog2(numptrs) - 8;
1323 aq->aura.count = numptrs;
1324 aq->aura.limit = numptrs;
1325 aq->aura.avg_level = 255;
1326 aq->aura.ena = 1;
1327 aq->aura.fc_ena = 1;
1328 aq->aura.fc_addr = pool->fc_addr->iova;
1329 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1330
1331 /* Enable backpressure for RQ aura */
1332 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1333 aq->aura.bp_ena = 0;
1334 /* If NIX1 LF is attached then specify NIX1_RX.
1335 *
1336 * Below NPA_AURA_S[BP_ENA] is set according to the
1337 * NPA_BPINTF_E enumeration given as:
1338 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1339 * NIX0_RX is 0x0 + 0*0x1 = 0
1340 * NIX1_RX is 0x0 + 1*0x1 = 1
1341 * But in HRM it is given that
1342 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1343 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1344 * enumerated by NPA_BPINTF_E."
1345 */
1346 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1347 aq->aura.bp_ena = 1;
1348 #ifdef CONFIG_DCB
1349 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1350 #else
1351 aq->aura.nix0_bpid = pfvf->bpid[0];
1352 #endif
1353
1354 /* Set backpressure level for RQ's Aura */
1355 aq->aura.bp = RQ_BP_LVL_AURA;
1356 }
1357
1358 /* Fill AQ info */
1359 aq->ctype = NPA_AQ_CTYPE_AURA;
1360 aq->op = NPA_AQ_INSTOP_INIT;
1361
1362 return 0;
1363 }
1364
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size,int type)1365 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1366 int stack_pages, int numptrs, int buf_size, int type)
1367 {
1368 struct page_pool_params pp_params = { 0 };
1369 struct npa_aq_enq_req *aq;
1370 struct otx2_pool *pool;
1371 int err;
1372
1373 pool = &pfvf->qset.pool[pool_id];
1374 /* Alloc memory for stack which is used to store buffer pointers */
1375 err = qmem_alloc(pfvf->dev, &pool->stack,
1376 stack_pages, pfvf->hw.stack_pg_bytes);
1377 if (err)
1378 return err;
1379
1380 pool->rbsize = buf_size;
1381
1382 /* Initialize this pool's context via AF */
1383 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1384 if (!aq) {
1385 /* Shared mbox memory buffer is full, flush it and retry */
1386 err = otx2_sync_mbox_msg(&pfvf->mbox);
1387 if (err) {
1388 qmem_free(pfvf->dev, pool->stack);
1389 return err;
1390 }
1391 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1392 if (!aq) {
1393 qmem_free(pfvf->dev, pool->stack);
1394 return -ENOMEM;
1395 }
1396 }
1397
1398 aq->aura_id = pool_id;
1399 aq->pool.stack_base = pool->stack->iova;
1400 aq->pool.stack_caching = 1;
1401 aq->pool.ena = 1;
1402 aq->pool.buf_size = buf_size / 128;
1403 aq->pool.stack_max_pages = stack_pages;
1404 aq->pool.shift = ilog2(numptrs) - 8;
1405 aq->pool.ptr_start = 0;
1406 aq->pool.ptr_end = ~0ULL;
1407
1408 /* Fill AQ info */
1409 aq->ctype = NPA_AQ_CTYPE_POOL;
1410 aq->op = NPA_AQ_INSTOP_INIT;
1411
1412 if (type != AURA_NIX_RQ) {
1413 pool->page_pool = NULL;
1414 return 0;
1415 }
1416
1417 pp_params.order = get_order(buf_size);
1418 pp_params.flags = PP_FLAG_PAGE_FRAG | PP_FLAG_DMA_MAP;
1419 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs);
1420 pp_params.nid = NUMA_NO_NODE;
1421 pp_params.dev = pfvf->dev;
1422 pp_params.dma_dir = DMA_FROM_DEVICE;
1423 pool->page_pool = page_pool_create(&pp_params);
1424 if (IS_ERR(pool->page_pool)) {
1425 netdev_err(pfvf->netdev, "Creation of page pool failed\n");
1426 return PTR_ERR(pool->page_pool);
1427 }
1428
1429 return 0;
1430 }
1431
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1432 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1433 {
1434 int qidx, pool_id, stack_pages, num_sqbs;
1435 struct otx2_qset *qset = &pfvf->qset;
1436 struct otx2_hw *hw = &pfvf->hw;
1437 struct otx2_snd_queue *sq;
1438 struct otx2_pool *pool;
1439 dma_addr_t bufptr;
1440 int err, ptr;
1441
1442 /* Calculate number of SQBs needed.
1443 *
1444 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1445 * Last SQE is used for pointing to next SQB.
1446 */
1447 num_sqbs = (hw->sqb_size / 128) - 1;
1448 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1449
1450 /* Get no of stack pages needed */
1451 stack_pages =
1452 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1453
1454 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1455 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1456 /* Initialize aura context */
1457 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1458 if (err)
1459 goto fail;
1460
1461 /* Initialize pool context */
1462 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1463 num_sqbs, hw->sqb_size, AURA_NIX_SQ);
1464 if (err)
1465 goto fail;
1466 }
1467
1468 /* Flush accumulated messages */
1469 err = otx2_sync_mbox_msg(&pfvf->mbox);
1470 if (err)
1471 goto fail;
1472
1473 /* Allocate pointers and free them to aura/pool */
1474 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) {
1475 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1476 pool = &pfvf->qset.pool[pool_id];
1477
1478 sq = &qset->sq[qidx];
1479 sq->sqb_count = 0;
1480 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1481 if (!sq->sqb_ptrs) {
1482 err = -ENOMEM;
1483 goto err_mem;
1484 }
1485
1486 for (ptr = 0; ptr < num_sqbs; ptr++) {
1487 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1488 if (err)
1489 goto err_mem;
1490 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1491 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1492 }
1493 }
1494
1495 err_mem:
1496 return err ? -ENOMEM : 0;
1497
1498 fail:
1499 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1500 otx2_aura_pool_free(pfvf);
1501 return err;
1502 }
1503
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1504 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1505 {
1506 struct otx2_hw *hw = &pfvf->hw;
1507 int stack_pages, pool_id, rq;
1508 struct otx2_pool *pool;
1509 int err, ptr, num_ptrs;
1510 dma_addr_t bufptr;
1511
1512 num_ptrs = pfvf->qset.rqe_cnt;
1513
1514 stack_pages =
1515 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1516
1517 for (rq = 0; rq < hw->rx_queues; rq++) {
1518 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1519 /* Initialize aura context */
1520 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1521 if (err)
1522 goto fail;
1523 }
1524 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1525 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1526 num_ptrs, pfvf->rbsize, AURA_NIX_RQ);
1527 if (err)
1528 goto fail;
1529 }
1530
1531 /* Flush accumulated messages */
1532 err = otx2_sync_mbox_msg(&pfvf->mbox);
1533 if (err)
1534 goto fail;
1535
1536 /* Allocate pointers and free them to aura/pool */
1537 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1538 pool = &pfvf->qset.pool[pool_id];
1539 for (ptr = 0; ptr < num_ptrs; ptr++) {
1540 err = otx2_alloc_rbuf(pfvf, pool, &bufptr);
1541 if (err)
1542 return -ENOMEM;
1543 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1544 bufptr + OTX2_HEAD_ROOM);
1545 }
1546 }
1547 return 0;
1548 fail:
1549 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1550 otx2_aura_pool_free(pfvf);
1551 return err;
1552 }
1553
otx2_config_npa(struct otx2_nic * pfvf)1554 int otx2_config_npa(struct otx2_nic *pfvf)
1555 {
1556 struct otx2_qset *qset = &pfvf->qset;
1557 struct npa_lf_alloc_req *npalf;
1558 struct otx2_hw *hw = &pfvf->hw;
1559 int aura_cnt;
1560
1561 /* Pool - Stack of free buffer pointers
1562 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1563 */
1564
1565 if (!hw->pool_cnt)
1566 return -EINVAL;
1567
1568 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1569 sizeof(struct otx2_pool), GFP_KERNEL);
1570 if (!qset->pool)
1571 return -ENOMEM;
1572
1573 /* Get memory to put this msg */
1574 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1575 if (!npalf)
1576 return -ENOMEM;
1577
1578 /* Set aura and pool counts */
1579 npalf->nr_pools = hw->pool_cnt;
1580 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1581 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1582
1583 return otx2_sync_mbox_msg(&pfvf->mbox);
1584 }
1585
otx2_detach_resources(struct mbox * mbox)1586 int otx2_detach_resources(struct mbox *mbox)
1587 {
1588 struct rsrc_detach *detach;
1589
1590 mutex_lock(&mbox->lock);
1591 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1592 if (!detach) {
1593 mutex_unlock(&mbox->lock);
1594 return -ENOMEM;
1595 }
1596
1597 /* detach all */
1598 detach->partial = false;
1599
1600 /* Send detach request to AF */
1601 otx2_sync_mbox_msg(mbox);
1602 mutex_unlock(&mbox->lock);
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(otx2_detach_resources);
1606
otx2_attach_npa_nix(struct otx2_nic * pfvf)1607 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1608 {
1609 struct rsrc_attach *attach;
1610 struct msg_req *msix;
1611 int err;
1612
1613 mutex_lock(&pfvf->mbox.lock);
1614 /* Get memory to put this msg */
1615 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1616 if (!attach) {
1617 mutex_unlock(&pfvf->mbox.lock);
1618 return -ENOMEM;
1619 }
1620
1621 attach->npalf = true;
1622 attach->nixlf = true;
1623
1624 /* Send attach request to AF */
1625 err = otx2_sync_mbox_msg(&pfvf->mbox);
1626 if (err) {
1627 mutex_unlock(&pfvf->mbox.lock);
1628 return err;
1629 }
1630
1631 pfvf->nix_blkaddr = BLKADDR_NIX0;
1632
1633 /* If the platform has two NIX blocks then LF may be
1634 * allocated from NIX1.
1635 */
1636 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1637 pfvf->nix_blkaddr = BLKADDR_NIX1;
1638
1639 /* Get NPA and NIX MSIX vector offsets */
1640 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1641 if (!msix) {
1642 mutex_unlock(&pfvf->mbox.lock);
1643 return -ENOMEM;
1644 }
1645
1646 err = otx2_sync_mbox_msg(&pfvf->mbox);
1647 if (err) {
1648 mutex_unlock(&pfvf->mbox.lock);
1649 return err;
1650 }
1651 mutex_unlock(&pfvf->mbox.lock);
1652
1653 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1654 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1655 dev_err(pfvf->dev,
1656 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1657 return -EINVAL;
1658 }
1659
1660 return 0;
1661 }
1662 EXPORT_SYMBOL(otx2_attach_npa_nix);
1663
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1664 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1665 {
1666 struct hwctx_disable_req *req;
1667
1668 mutex_lock(&mbox->lock);
1669 /* Request AQ to disable this context */
1670 if (npa)
1671 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1672 else
1673 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1674
1675 if (!req) {
1676 mutex_unlock(&mbox->lock);
1677 return;
1678 }
1679
1680 req->ctype = type;
1681
1682 if (otx2_sync_mbox_msg(mbox))
1683 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1684 __func__);
1685
1686 mutex_unlock(&mbox->lock);
1687 }
1688
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1689 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1690 {
1691 struct nix_bp_cfg_req *req;
1692
1693 if (enable)
1694 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1695 else
1696 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1697
1698 if (!req)
1699 return -ENOMEM;
1700
1701 req->chan_base = 0;
1702 #ifdef CONFIG_DCB
1703 req->chan_cnt = pfvf->pfc_en ? IEEE_8021QAZ_MAX_TCS : 1;
1704 req->bpid_per_chan = pfvf->pfc_en ? 1 : 0;
1705 #else
1706 req->chan_cnt = 1;
1707 req->bpid_per_chan = 0;
1708 #endif
1709
1710 return otx2_sync_mbox_msg(&pfvf->mbox);
1711 }
1712 EXPORT_SYMBOL(otx2_nix_config_bp);
1713
1714 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1715 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1716 struct cgx_stats_rsp *rsp)
1717 {
1718 int id;
1719
1720 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1721 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1722 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1723 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1724 }
1725
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1726 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1727 struct cgx_fec_stats_rsp *rsp)
1728 {
1729 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1730 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1731 }
1732
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1733 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1734 struct npa_lf_alloc_rsp *rsp)
1735 {
1736 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1737 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1738 }
1739 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1740
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1741 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1742 struct nix_lf_alloc_rsp *rsp)
1743 {
1744 pfvf->hw.sqb_size = rsp->sqb_size;
1745 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1746 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1747 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1748 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1749 pfvf->hw.cgx_links = rsp->cgx_links;
1750 pfvf->hw.lbk_links = rsp->lbk_links;
1751 pfvf->hw.tx_link = rsp->tx_link;
1752 }
1753 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1754
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1755 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1756 struct msix_offset_rsp *rsp)
1757 {
1758 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1759 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1760 }
1761 EXPORT_SYMBOL(mbox_handler_msix_offset);
1762
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1763 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1764 struct nix_bp_cfg_rsp *rsp)
1765 {
1766 int chan, chan_id;
1767
1768 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1769 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1770 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1771 }
1772 }
1773 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1774
otx2_free_cints(struct otx2_nic * pfvf,int n)1775 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1776 {
1777 struct otx2_qset *qset = &pfvf->qset;
1778 struct otx2_hw *hw = &pfvf->hw;
1779 int irq, qidx;
1780
1781 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1782 qidx < n;
1783 qidx++, irq++) {
1784 int vector = pci_irq_vector(pfvf->pdev, irq);
1785
1786 irq_set_affinity_hint(vector, NULL);
1787 free_cpumask_var(hw->affinity_mask[irq]);
1788 free_irq(vector, &qset->napi[qidx]);
1789 }
1790 }
1791
otx2_set_cints_affinity(struct otx2_nic * pfvf)1792 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1793 {
1794 struct otx2_hw *hw = &pfvf->hw;
1795 int vec, cpu, irq, cint;
1796
1797 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1798 cpu = cpumask_first(cpu_online_mask);
1799
1800 /* CQ interrupts */
1801 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1802 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1803 return;
1804
1805 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1806
1807 irq = pci_irq_vector(pfvf->pdev, vec);
1808 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1809
1810 cpu = cpumask_next(cpu, cpu_online_mask);
1811 if (unlikely(cpu >= nr_cpu_ids))
1812 cpu = 0;
1813 }
1814 }
1815
get_dwrr_mtu(struct otx2_nic * pfvf,struct nix_hw_info * hw)1816 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw)
1817 {
1818 if (is_otx2_lbkvf(pfvf->pdev)) {
1819 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK;
1820 return hw->lbk_dwrr_mtu;
1821 }
1822
1823 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM;
1824 return hw->rpm_dwrr_mtu;
1825 }
1826
otx2_get_max_mtu(struct otx2_nic * pfvf)1827 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1828 {
1829 struct nix_hw_info *rsp;
1830 struct msg_req *req;
1831 u16 max_mtu;
1832 int rc;
1833
1834 mutex_lock(&pfvf->mbox.lock);
1835
1836 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1837 if (!req) {
1838 rc = -ENOMEM;
1839 goto out;
1840 }
1841
1842 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1843 if (!rc) {
1844 rsp = (struct nix_hw_info *)
1845 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1846 if (IS_ERR(rsp)) {
1847 rc = PTR_ERR(rsp);
1848 goto out;
1849 }
1850
1851 /* HW counts VLAN insertion bytes (8 for double tag)
1852 * irrespective of whether SQE is requesting to insert VLAN
1853 * in the packet or not. Hence these 8 bytes have to be
1854 * discounted from max packet size otherwise HW will throw
1855 * SMQ errors
1856 */
1857 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1858
1859 /* Also save DWRR MTU, needed for DWRR weight calculation */
1860 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp);
1861 if (!pfvf->hw.dwrr_mtu)
1862 pfvf->hw.dwrr_mtu = 1;
1863 }
1864
1865 out:
1866 mutex_unlock(&pfvf->mbox.lock);
1867 if (rc) {
1868 dev_warn(pfvf->dev,
1869 "Failed to get MTU from hardware setting default value(1500)\n");
1870 max_mtu = 1500;
1871 }
1872 return max_mtu;
1873 }
1874 EXPORT_SYMBOL(otx2_get_max_mtu);
1875
otx2_handle_ntuple_tc_features(struct net_device * netdev,netdev_features_t features)1876 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
1877 {
1878 netdev_features_t changed = features ^ netdev->features;
1879 struct otx2_nic *pfvf = netdev_priv(netdev);
1880 bool ntuple = !!(features & NETIF_F_NTUPLE);
1881 bool tc = !!(features & NETIF_F_HW_TC);
1882
1883 if ((changed & NETIF_F_NTUPLE) && !ntuple)
1884 otx2_destroy_ntuple_flows(pfvf);
1885
1886 if ((changed & NETIF_F_NTUPLE) && ntuple) {
1887 if (!pfvf->flow_cfg->max_flows) {
1888 netdev_err(netdev,
1889 "Can't enable NTUPLE, MCAM entries not allocated\n");
1890 return -EINVAL;
1891 }
1892 }
1893
1894 if ((changed & NETIF_F_HW_TC) && !tc &&
1895 otx2_tc_flower_rule_cnt(pfvf)) {
1896 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
1897 return -EBUSY;
1898 }
1899
1900 if ((changed & NETIF_F_NTUPLE) && ntuple &&
1901 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) {
1902 netdev_err(netdev,
1903 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n");
1904 return -EINVAL;
1905 }
1906
1907 return 0;
1908 }
1909 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
1910
1911 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1912 int __weak \
1913 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
1914 struct _req_type *req, \
1915 struct _rsp_type *rsp) \
1916 { \
1917 /* Nothing to do here */ \
1918 return 0; \
1919 } \
1920 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1921 MBOX_UP_CGX_MESSAGES
1922 MBOX_UP_MCS_MESSAGES
1923 #undef M
1924