1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14
15 #include <uapi/linux/hyperv.h>
16
17 #include <linux/mm.h>
18 #include <linux/types.h>
19 #include <linux/scatterlist.h>
20 #include <linux/list.h>
21 #include <linux/timer.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/interrupt.h>
26 #include <linux/reciprocal_div.h>
27 #include <asm/hyperv-tlfs.h>
28
29 #define MAX_PAGE_BUFFER_COUNT 32
30 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
31
32 #pragma pack(push, 1)
33
34 /*
35 * Types for GPADL, decides is how GPADL header is created.
36 *
37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38 * same as HV_HYP_PAGE_SIZE.
39 *
40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43 * HV_HYP_PAGE will be different between different types of GPADL, for example
44 * if PAGE_SIZE is 64K:
45 *
46 * BUFFER:
47 *
48 * gva: |-- 64k --|-- 64k --| ... |
49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50 * index: 0 1 2 15 16 17 18 .. 31 32 ...
51 * | | ... | | | ... | ...
52 * v V V V V V
53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ...
55 *
56 * RING:
57 *
58 * | header | data | header | data |
59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... |
60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n
62 * | / / / | / /
63 * | / / / | / /
64 * | / / ... / ... | / ... /
65 * | / / / | / /
66 * | / / / | / /
67 * V V V V V V v
68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... |
69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30
70 */
71 enum hv_gpadl_type {
72 HV_GPADL_BUFFER,
73 HV_GPADL_RING
74 };
75
76 /* Single-page buffer */
77 struct hv_page_buffer {
78 u32 len;
79 u32 offset;
80 u64 pfn;
81 };
82
83 /* Multiple-page buffer */
84 struct hv_multipage_buffer {
85 /* Length and Offset determines the # of pfns in the array */
86 u32 len;
87 u32 offset;
88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89 };
90
91 /*
92 * Multiple-page buffer array; the pfn array is variable size:
93 * The number of entries in the PFN array is determined by
94 * "len" and "offset".
95 */
96 struct hv_mpb_array {
97 /* Length and Offset determines the # of pfns in the array */
98 u32 len;
99 u32 offset;
100 u64 pfn_array[];
101 };
102
103 /* 0x18 includes the proprietary packet header */
104 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
105 (sizeof(struct hv_page_buffer) * \
106 MAX_PAGE_BUFFER_COUNT))
107 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
108 sizeof(struct hv_multipage_buffer))
109
110
111 #pragma pack(pop)
112
113 struct hv_ring_buffer {
114 /* Offset in bytes from the start of ring data below */
115 u32 write_index;
116
117 /* Offset in bytes from the start of ring data below */
118 u32 read_index;
119
120 u32 interrupt_mask;
121
122 /*
123 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 * driven flow management. The feature bit feat_pending_send_sz
125 * is set by the host on the host->guest ring buffer, and by the
126 * guest on the guest->host ring buffer.
127 *
128 * The meaning of the feature bit is a bit complex in that it has
129 * semantics that apply to both ring buffers. If the guest sets
130 * the feature bit in the guest->host ring buffer, the guest is
131 * telling the host that:
132 * 1) It will set the pending_send_sz field in the guest->host ring
133 * buffer when it is waiting for space to become available, and
134 * 2) It will read the pending_send_sz field in the host->guest
135 * ring buffer and interrupt the host when it frees enough space
136 *
137 * Similarly, if the host sets the feature bit in the host->guest
138 * ring buffer, the host is telling the guest that:
139 * 1) It will set the pending_send_sz field in the host->guest ring
140 * buffer when it is waiting for space to become available, and
141 * 2) It will read the pending_send_sz field in the guest->host
142 * ring buffer and interrupt the guest when it frees enough space
143 *
144 * If either the guest or host does not set the feature bit that it
145 * owns, that guest or host must do polling if it encounters a full
146 * ring buffer, and not signal the other end with an interrupt.
147 */
148 u32 pending_send_sz;
149 u32 reserved1[12];
150 union {
151 struct {
152 u32 feat_pending_send_sz:1;
153 };
154 u32 value;
155 } feature_bits;
156
157 /* Pad it to PAGE_SIZE so that data starts on page boundary */
158 u8 reserved2[PAGE_SIZE - 68];
159
160 /*
161 * Ring data starts here + RingDataStartOffset
162 * !!! DO NOT place any fields below this !!!
163 */
164 u8 buffer[];
165 } __packed;
166
167
168 /*
169 * If the requested ring buffer size is at least 8 times the size of the
170 * header, steal space from the ring buffer for the header. Otherwise, add
171 * space for the header so that is doesn't take too much of the ring buffer
172 * space.
173 *
174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a
175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring
176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as
177 * large allocation that will be almost half wasted. As a contrasting example,
178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the
179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring.
180 * In this latter case, we must add 64 Kbytes for the header and not worry
181 * about what's wasted.
182 */
183 #define VMBUS_HEADER_ADJ(payload_sz) \
184 ((payload_sz) >= 8 * sizeof(struct hv_ring_buffer) ? \
185 0 : sizeof(struct hv_ring_buffer))
186
187 /* Calculate the proper size of a ringbuffer, it must be page-aligned */
188 #define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \
189 (payload_sz))
190
191 struct hv_ring_buffer_info {
192 struct hv_ring_buffer *ring_buffer;
193 u32 ring_size; /* Include the shared header */
194 struct reciprocal_value ring_size_div10_reciprocal;
195 spinlock_t ring_lock;
196
197 u32 ring_datasize; /* < ring_size */
198 u32 priv_read_index;
199 /*
200 * The ring buffer mutex lock. This lock prevents the ring buffer from
201 * being freed while the ring buffer is being accessed.
202 */
203 struct mutex ring_buffer_mutex;
204
205 /* Buffer that holds a copy of an incoming host packet */
206 void *pkt_buffer;
207 u32 pkt_buffer_size;
208 };
209
210
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)211 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
212 {
213 u32 read_loc, write_loc, dsize, read;
214
215 dsize = rbi->ring_datasize;
216 read_loc = rbi->ring_buffer->read_index;
217 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
218
219 read = write_loc >= read_loc ? (write_loc - read_loc) :
220 (dsize - read_loc) + write_loc;
221
222 return read;
223 }
224
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)225 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
226 {
227 u32 read_loc, write_loc, dsize, write;
228
229 dsize = rbi->ring_datasize;
230 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
231 write_loc = rbi->ring_buffer->write_index;
232
233 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
234 read_loc - write_loc;
235 return write;
236 }
237
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)238 static inline u32 hv_get_avail_to_write_percent(
239 const struct hv_ring_buffer_info *rbi)
240 {
241 u32 avail_write = hv_get_bytes_to_write(rbi);
242
243 return reciprocal_divide(
244 (avail_write << 3) + (avail_write << 1),
245 rbi->ring_size_div10_reciprocal);
246 }
247
248 /*
249 * VMBUS version is 32 bit entity broken up into
250 * two 16 bit quantities: major_number. minor_number.
251 *
252 * 0 . 13 (Windows Server 2008)
253 * 1 . 1 (Windows 7, WS2008 R2)
254 * 2 . 4 (Windows 8, WS2012)
255 * 3 . 0 (Windows 8.1, WS2012 R2)
256 * 4 . 0 (Windows 10)
257 * 4 . 1 (Windows 10 RS3)
258 * 5 . 0 (Newer Windows 10)
259 * 5 . 1 (Windows 10 RS4)
260 * 5 . 2 (Windows Server 2019, RS5)
261 * 5 . 3 (Windows Server 2022)
262 *
263 * The WS2008 and WIN7 versions are listed here for
264 * completeness but are no longer supported in the
265 * Linux kernel.
266 */
267
268 #define VERSION_WS2008 ((0 << 16) | (13))
269 #define VERSION_WIN7 ((1 << 16) | (1))
270 #define VERSION_WIN8 ((2 << 16) | (4))
271 #define VERSION_WIN8_1 ((3 << 16) | (0))
272 #define VERSION_WIN10 ((4 << 16) | (0))
273 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
274 #define VERSION_WIN10_V5 ((5 << 16) | (0))
275 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
276 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
277 #define VERSION_WIN10_V5_3 ((5 << 16) | (3))
278
279 /* Make maximum size of pipe payload of 16K */
280 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
281
282 /* Define PipeMode values. */
283 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
284 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
285
286 /* The size of the user defined data buffer for non-pipe offers. */
287 #define MAX_USER_DEFINED_BYTES 120
288
289 /* The size of the user defined data buffer for pipe offers. */
290 #define MAX_PIPE_USER_DEFINED_BYTES 116
291
292 /*
293 * At the center of the Channel Management library is the Channel Offer. This
294 * struct contains the fundamental information about an offer.
295 */
296 struct vmbus_channel_offer {
297 guid_t if_type;
298 guid_t if_instance;
299
300 /*
301 * These two fields are not currently used.
302 */
303 u64 reserved1;
304 u64 reserved2;
305
306 u16 chn_flags;
307 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
308
309 union {
310 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
311 struct {
312 unsigned char user_def[MAX_USER_DEFINED_BYTES];
313 } std;
314
315 /*
316 * Pipes:
317 * The following structure is an integrated pipe protocol, which
318 * is implemented on top of standard user-defined data. Pipe
319 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
320 * use.
321 */
322 struct {
323 u32 pipe_mode;
324 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
325 } pipe;
326 } u;
327 /*
328 * The sub_channel_index is defined in Win8: a value of zero means a
329 * primary channel and a value of non-zero means a sub-channel.
330 *
331 * Before Win8, the field is reserved, meaning it's always zero.
332 */
333 u16 sub_channel_index;
334 u16 reserved3;
335 } __packed;
336
337 /* Server Flags */
338 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
339 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
340 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
341 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
342 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
343 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
344 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
345 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
346
347 struct vmpacket_descriptor {
348 u16 type;
349 u16 offset8;
350 u16 len8;
351 u16 flags;
352 u64 trans_id;
353 } __packed;
354
355 struct vmpacket_header {
356 u32 prev_pkt_start_offset;
357 struct vmpacket_descriptor descriptor;
358 } __packed;
359
360 struct vmtransfer_page_range {
361 u32 byte_count;
362 u32 byte_offset;
363 } __packed;
364
365 struct vmtransfer_page_packet_header {
366 struct vmpacket_descriptor d;
367 u16 xfer_pageset_id;
368 u8 sender_owns_set;
369 u8 reserved;
370 u32 range_cnt;
371 struct vmtransfer_page_range ranges[];
372 } __packed;
373
374 struct vmgpadl_packet_header {
375 struct vmpacket_descriptor d;
376 u32 gpadl;
377 u32 reserved;
378 } __packed;
379
380 struct vmadd_remove_transfer_page_set {
381 struct vmpacket_descriptor d;
382 u32 gpadl;
383 u16 xfer_pageset_id;
384 u16 reserved;
385 } __packed;
386
387 /*
388 * This structure defines a range in guest physical space that can be made to
389 * look virtually contiguous.
390 */
391 struct gpa_range {
392 u32 byte_count;
393 u32 byte_offset;
394 u64 pfn_array[];
395 };
396
397 /*
398 * This is the format for an Establish Gpadl packet, which contains a handle by
399 * which this GPADL will be known and a set of GPA ranges associated with it.
400 * This can be converted to a MDL by the guest OS. If there are multiple GPA
401 * ranges, then the resulting MDL will be "chained," representing multiple VA
402 * ranges.
403 */
404 struct vmestablish_gpadl {
405 struct vmpacket_descriptor d;
406 u32 gpadl;
407 u32 range_cnt;
408 struct gpa_range range[1];
409 } __packed;
410
411 /*
412 * This is the format for a Teardown Gpadl packet, which indicates that the
413 * GPADL handle in the Establish Gpadl packet will never be referenced again.
414 */
415 struct vmteardown_gpadl {
416 struct vmpacket_descriptor d;
417 u32 gpadl;
418 u32 reserved; /* for alignment to a 8-byte boundary */
419 } __packed;
420
421 /*
422 * This is the format for a GPA-Direct packet, which contains a set of GPA
423 * ranges, in addition to commands and/or data.
424 */
425 struct vmdata_gpa_direct {
426 struct vmpacket_descriptor d;
427 u32 reserved;
428 u32 range_cnt;
429 struct gpa_range range[1];
430 } __packed;
431
432 /* This is the format for a Additional Data Packet. */
433 struct vmadditional_data {
434 struct vmpacket_descriptor d;
435 u64 total_bytes;
436 u32 offset;
437 u32 byte_cnt;
438 unsigned char data[1];
439 } __packed;
440
441 union vmpacket_largest_possible_header {
442 struct vmpacket_descriptor simple_hdr;
443 struct vmtransfer_page_packet_header xfer_page_hdr;
444 struct vmgpadl_packet_header gpadl_hdr;
445 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
446 struct vmestablish_gpadl establish_gpadl_hdr;
447 struct vmteardown_gpadl teardown_gpadl_hdr;
448 struct vmdata_gpa_direct data_gpa_direct_hdr;
449 };
450
451 #define VMPACKET_DATA_START_ADDRESS(__packet) \
452 (void *)(((unsigned char *)__packet) + \
453 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
454
455 #define VMPACKET_DATA_LENGTH(__packet) \
456 ((((struct vmpacket_descriptor)__packet)->len8 - \
457 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
458
459 #define VMPACKET_TRANSFER_MODE(__packet) \
460 (((struct IMPACT)__packet)->type)
461
462 enum vmbus_packet_type {
463 VM_PKT_INVALID = 0x0,
464 VM_PKT_SYNCH = 0x1,
465 VM_PKT_ADD_XFER_PAGESET = 0x2,
466 VM_PKT_RM_XFER_PAGESET = 0x3,
467 VM_PKT_ESTABLISH_GPADL = 0x4,
468 VM_PKT_TEARDOWN_GPADL = 0x5,
469 VM_PKT_DATA_INBAND = 0x6,
470 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
471 VM_PKT_DATA_USING_GPADL = 0x8,
472 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
473 VM_PKT_CANCEL_REQUEST = 0xa,
474 VM_PKT_COMP = 0xb,
475 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
476 VM_PKT_ADDITIONAL_DATA = 0xd
477 };
478
479 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
480
481
482 /* Version 1 messages */
483 enum vmbus_channel_message_type {
484 CHANNELMSG_INVALID = 0,
485 CHANNELMSG_OFFERCHANNEL = 1,
486 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
487 CHANNELMSG_REQUESTOFFERS = 3,
488 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
489 CHANNELMSG_OPENCHANNEL = 5,
490 CHANNELMSG_OPENCHANNEL_RESULT = 6,
491 CHANNELMSG_CLOSECHANNEL = 7,
492 CHANNELMSG_GPADL_HEADER = 8,
493 CHANNELMSG_GPADL_BODY = 9,
494 CHANNELMSG_GPADL_CREATED = 10,
495 CHANNELMSG_GPADL_TEARDOWN = 11,
496 CHANNELMSG_GPADL_TORNDOWN = 12,
497 CHANNELMSG_RELID_RELEASED = 13,
498 CHANNELMSG_INITIATE_CONTACT = 14,
499 CHANNELMSG_VERSION_RESPONSE = 15,
500 CHANNELMSG_UNLOAD = 16,
501 CHANNELMSG_UNLOAD_RESPONSE = 17,
502 CHANNELMSG_18 = 18,
503 CHANNELMSG_19 = 19,
504 CHANNELMSG_20 = 20,
505 CHANNELMSG_TL_CONNECT_REQUEST = 21,
506 CHANNELMSG_MODIFYCHANNEL = 22,
507 CHANNELMSG_TL_CONNECT_RESULT = 23,
508 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24,
509 CHANNELMSG_COUNT
510 };
511
512 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
513 #define INVALID_RELID U32_MAX
514
515 struct vmbus_channel_message_header {
516 enum vmbus_channel_message_type msgtype;
517 u32 padding;
518 } __packed;
519
520 /* Query VMBus Version parameters */
521 struct vmbus_channel_query_vmbus_version {
522 struct vmbus_channel_message_header header;
523 u32 version;
524 } __packed;
525
526 /* VMBus Version Supported parameters */
527 struct vmbus_channel_version_supported {
528 struct vmbus_channel_message_header header;
529 u8 version_supported;
530 } __packed;
531
532 /* Offer Channel parameters */
533 struct vmbus_channel_offer_channel {
534 struct vmbus_channel_message_header header;
535 struct vmbus_channel_offer offer;
536 u32 child_relid;
537 u8 monitorid;
538 /*
539 * win7 and beyond splits this field into a bit field.
540 */
541 u8 monitor_allocated:1;
542 u8 reserved:7;
543 /*
544 * These are new fields added in win7 and later.
545 * Do not access these fields without checking the
546 * negotiated protocol.
547 *
548 * If "is_dedicated_interrupt" is set, we must not set the
549 * associated bit in the channel bitmap while sending the
550 * interrupt to the host.
551 *
552 * connection_id is to be used in signaling the host.
553 */
554 u16 is_dedicated_interrupt:1;
555 u16 reserved1:15;
556 u32 connection_id;
557 } __packed;
558
559 /* Rescind Offer parameters */
560 struct vmbus_channel_rescind_offer {
561 struct vmbus_channel_message_header header;
562 u32 child_relid;
563 } __packed;
564
565 /*
566 * Request Offer -- no parameters, SynIC message contains the partition ID
567 * Set Snoop -- no parameters, SynIC message contains the partition ID
568 * Clear Snoop -- no parameters, SynIC message contains the partition ID
569 * All Offers Delivered -- no parameters, SynIC message contains the partition
570 * ID
571 * Flush Client -- no parameters, SynIC message contains the partition ID
572 */
573
574 /* Open Channel parameters */
575 struct vmbus_channel_open_channel {
576 struct vmbus_channel_message_header header;
577
578 /* Identifies the specific VMBus channel that is being opened. */
579 u32 child_relid;
580
581 /* ID making a particular open request at a channel offer unique. */
582 u32 openid;
583
584 /* GPADL for the channel's ring buffer. */
585 u32 ringbuffer_gpadlhandle;
586
587 /*
588 * Starting with win8, this field will be used to specify
589 * the target virtual processor on which to deliver the interrupt for
590 * the host to guest communication.
591 * Prior to win8, incoming channel interrupts would only
592 * be delivered on cpu 0. Setting this value to 0 would
593 * preserve the earlier behavior.
594 */
595 u32 target_vp;
596
597 /*
598 * The upstream ring buffer begins at offset zero in the memory
599 * described by RingBufferGpadlHandle. The downstream ring buffer
600 * follows it at this offset (in pages).
601 */
602 u32 downstream_ringbuffer_pageoffset;
603
604 /* User-specific data to be passed along to the server endpoint. */
605 unsigned char userdata[MAX_USER_DEFINED_BYTES];
606 } __packed;
607
608 /* Open Channel Result parameters */
609 struct vmbus_channel_open_result {
610 struct vmbus_channel_message_header header;
611 u32 child_relid;
612 u32 openid;
613 u32 status;
614 } __packed;
615
616 /* Modify Channel Result parameters */
617 struct vmbus_channel_modifychannel_response {
618 struct vmbus_channel_message_header header;
619 u32 child_relid;
620 u32 status;
621 } __packed;
622
623 /* Close channel parameters; */
624 struct vmbus_channel_close_channel {
625 struct vmbus_channel_message_header header;
626 u32 child_relid;
627 } __packed;
628
629 /* Channel Message GPADL */
630 #define GPADL_TYPE_RING_BUFFER 1
631 #define GPADL_TYPE_SERVER_SAVE_AREA 2
632 #define GPADL_TYPE_TRANSACTION 8
633
634 /*
635 * The number of PFNs in a GPADL message is defined by the number of
636 * pages that would be spanned by ByteCount and ByteOffset. If the
637 * implied number of PFNs won't fit in this packet, there will be a
638 * follow-up packet that contains more.
639 */
640 struct vmbus_channel_gpadl_header {
641 struct vmbus_channel_message_header header;
642 u32 child_relid;
643 u32 gpadl;
644 u16 range_buflen;
645 u16 rangecount;
646 struct gpa_range range[];
647 } __packed;
648
649 /* This is the followup packet that contains more PFNs. */
650 struct vmbus_channel_gpadl_body {
651 struct vmbus_channel_message_header header;
652 u32 msgnumber;
653 u32 gpadl;
654 u64 pfn[];
655 } __packed;
656
657 struct vmbus_channel_gpadl_created {
658 struct vmbus_channel_message_header header;
659 u32 child_relid;
660 u32 gpadl;
661 u32 creation_status;
662 } __packed;
663
664 struct vmbus_channel_gpadl_teardown {
665 struct vmbus_channel_message_header header;
666 u32 child_relid;
667 u32 gpadl;
668 } __packed;
669
670 struct vmbus_channel_gpadl_torndown {
671 struct vmbus_channel_message_header header;
672 u32 gpadl;
673 } __packed;
674
675 struct vmbus_channel_relid_released {
676 struct vmbus_channel_message_header header;
677 u32 child_relid;
678 } __packed;
679
680 struct vmbus_channel_initiate_contact {
681 struct vmbus_channel_message_header header;
682 u32 vmbus_version_requested;
683 u32 target_vcpu; /* The VCPU the host should respond to */
684 union {
685 u64 interrupt_page;
686 struct {
687 u8 msg_sint;
688 u8 msg_vtl;
689 u8 reserved[6];
690 };
691 };
692 u64 monitor_page1;
693 u64 monitor_page2;
694 } __packed;
695
696 /* Hyper-V socket: guest's connect()-ing to host */
697 struct vmbus_channel_tl_connect_request {
698 struct vmbus_channel_message_header header;
699 guid_t guest_endpoint_id;
700 guid_t host_service_id;
701 } __packed;
702
703 /* Modify Channel parameters, cf. vmbus_send_modifychannel() */
704 struct vmbus_channel_modifychannel {
705 struct vmbus_channel_message_header header;
706 u32 child_relid;
707 u32 target_vp;
708 } __packed;
709
710 struct vmbus_channel_version_response {
711 struct vmbus_channel_message_header header;
712 u8 version_supported;
713
714 u8 connection_state;
715 u16 padding;
716
717 /*
718 * On new hosts that support VMBus protocol 5.0, we must use
719 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
720 * and for subsequent messages, we must use the Message Connection ID
721 * field in the host-returned Version Response Message.
722 *
723 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
724 */
725 u32 msg_conn_id;
726 } __packed;
727
728 enum vmbus_channel_state {
729 CHANNEL_OFFER_STATE,
730 CHANNEL_OPENING_STATE,
731 CHANNEL_OPEN_STATE,
732 CHANNEL_OPENED_STATE,
733 };
734
735 /*
736 * Represents each channel msg on the vmbus connection This is a
737 * variable-size data structure depending on the msg type itself
738 */
739 struct vmbus_channel_msginfo {
740 /* Bookkeeping stuff */
741 struct list_head msglistentry;
742
743 /* So far, this is only used to handle gpadl body message */
744 struct list_head submsglist;
745
746 /* Synchronize the request/response if needed */
747 struct completion waitevent;
748 struct vmbus_channel *waiting_channel;
749 union {
750 struct vmbus_channel_version_supported version_supported;
751 struct vmbus_channel_open_result open_result;
752 struct vmbus_channel_gpadl_torndown gpadl_torndown;
753 struct vmbus_channel_gpadl_created gpadl_created;
754 struct vmbus_channel_version_response version_response;
755 struct vmbus_channel_modifychannel_response modify_response;
756 } response;
757
758 u32 msgsize;
759 /*
760 * The channel message that goes out on the "wire".
761 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
762 */
763 unsigned char msg[];
764 };
765
766 struct vmbus_close_msg {
767 struct vmbus_channel_msginfo info;
768 struct vmbus_channel_close_channel msg;
769 };
770
771 /* Define connection identifier type. */
772 union hv_connection_id {
773 u32 asu32;
774 struct {
775 u32 id:24;
776 u32 reserved:8;
777 } u;
778 };
779
780 enum vmbus_device_type {
781 HV_IDE = 0,
782 HV_SCSI,
783 HV_FC,
784 HV_NIC,
785 HV_ND,
786 HV_PCIE,
787 HV_FB,
788 HV_KBD,
789 HV_MOUSE,
790 HV_KVP,
791 HV_TS,
792 HV_HB,
793 HV_SHUTDOWN,
794 HV_FCOPY,
795 HV_BACKUP,
796 HV_DM,
797 HV_UNKNOWN,
798 };
799
800 /*
801 * Provides request ids for VMBus. Encapsulates guest memory
802 * addresses and stores the next available slot in req_arr
803 * to generate new ids in constant time.
804 */
805 struct vmbus_requestor {
806 u64 *req_arr;
807 unsigned long *req_bitmap; /* is a given slot available? */
808 u32 size;
809 u64 next_request_id;
810 spinlock_t req_lock; /* provides atomicity */
811 };
812
813 #define VMBUS_NO_RQSTOR U64_MAX
814 #define VMBUS_RQST_ERROR (U64_MAX - 1)
815 #define VMBUS_RQST_ADDR_ANY U64_MAX
816 /* NetVSC-specific */
817 #define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
818 /* StorVSC-specific */
819 #define VMBUS_RQST_INIT (U64_MAX - 2)
820 #define VMBUS_RQST_RESET (U64_MAX - 3)
821
822 struct vmbus_device {
823 u16 dev_type;
824 guid_t guid;
825 bool perf_device;
826 bool allowed_in_isolated;
827 };
828
829 #define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
830
831 struct vmbus_gpadl {
832 u32 gpadl_handle;
833 u32 size;
834 void *buffer;
835 bool decrypted;
836 };
837
838 struct vmbus_channel {
839 struct list_head listentry;
840
841 struct hv_device *device_obj;
842
843 enum vmbus_channel_state state;
844
845 struct vmbus_channel_offer_channel offermsg;
846 /*
847 * These are based on the OfferMsg.MonitorId.
848 * Save it here for easy access.
849 */
850 u8 monitor_grp;
851 u8 monitor_bit;
852
853 bool rescind; /* got rescind msg */
854 bool rescind_ref; /* got rescind msg, got channel reference */
855 struct completion rescind_event;
856
857 struct vmbus_gpadl ringbuffer_gpadlhandle;
858
859 /* Allocated memory for ring buffer */
860 struct page *ringbuffer_page;
861 u32 ringbuffer_pagecount;
862 u32 ringbuffer_send_offset;
863 struct hv_ring_buffer_info outbound; /* send to parent */
864 struct hv_ring_buffer_info inbound; /* receive from parent */
865
866 struct vmbus_close_msg close_msg;
867
868 /* Statistics */
869 u64 interrupts; /* Host to Guest interrupts */
870 u64 sig_events; /* Guest to Host events */
871
872 /*
873 * Guest to host interrupts caused by the outbound ring buffer changing
874 * from empty to not empty.
875 */
876 u64 intr_out_empty;
877
878 /*
879 * Indicates that a full outbound ring buffer was encountered. The flag
880 * is set to true when a full outbound ring buffer is encountered and
881 * set to false when a write to the outbound ring buffer is completed.
882 */
883 bool out_full_flag;
884
885 /* Channel callback's invoked in softirq context */
886 struct tasklet_struct callback_event;
887 void (*onchannel_callback)(void *context);
888 void *channel_callback_context;
889
890 void (*change_target_cpu_callback)(struct vmbus_channel *channel,
891 u32 old, u32 new);
892
893 /*
894 * Synchronize channel scheduling and channel removal; see the inline
895 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
896 */
897 spinlock_t sched_lock;
898
899 /*
900 * A channel can be marked for one of three modes of reading:
901 * BATCHED - callback called from taslket and should read
902 * channel until empty. Interrupts from the host
903 * are masked while read is in process (default).
904 * DIRECT - callback called from tasklet (softirq).
905 * ISR - callback called in interrupt context and must
906 * invoke its own deferred processing.
907 * Host interrupts are disabled and must be re-enabled
908 * when ring is empty.
909 */
910 enum hv_callback_mode {
911 HV_CALL_BATCHED,
912 HV_CALL_DIRECT,
913 HV_CALL_ISR
914 } callback_mode;
915
916 bool is_dedicated_interrupt;
917 u64 sig_event;
918
919 /*
920 * Starting with win8, this field will be used to specify the
921 * target CPU on which to deliver the interrupt for the host
922 * to guest communication.
923 *
924 * Prior to win8, incoming channel interrupts would only be
925 * delivered on CPU 0. Setting this value to 0 would preserve
926 * the earlier behavior.
927 */
928 u32 target_cpu;
929 /*
930 * Support for sub-channels. For high performance devices,
931 * it will be useful to have multiple sub-channels to support
932 * a scalable communication infrastructure with the host.
933 * The support for sub-channels is implemented as an extension
934 * to the current infrastructure.
935 * The initial offer is considered the primary channel and this
936 * offer message will indicate if the host supports sub-channels.
937 * The guest is free to ask for sub-channels to be offered and can
938 * open these sub-channels as a normal "primary" channel. However,
939 * all sub-channels will have the same type and instance guids as the
940 * primary channel. Requests sent on a given channel will result in a
941 * response on the same channel.
942 */
943
944 /*
945 * Sub-channel creation callback. This callback will be called in
946 * process context when a sub-channel offer is received from the host.
947 * The guest can open the sub-channel in the context of this callback.
948 */
949 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
950
951 /*
952 * Channel rescind callback. Some channels (the hvsock ones), need to
953 * register a callback which is invoked in vmbus_onoffer_rescind().
954 */
955 void (*chn_rescind_callback)(struct vmbus_channel *channel);
956
957 /*
958 * All Sub-channels of a primary channel are linked here.
959 */
960 struct list_head sc_list;
961 /*
962 * The primary channel this sub-channel belongs to.
963 * This will be NULL for the primary channel.
964 */
965 struct vmbus_channel *primary_channel;
966 /*
967 * Support per-channel state for use by vmbus drivers.
968 */
969 void *per_channel_state;
970
971 /*
972 * Defer freeing channel until after all cpu's have
973 * gone through grace period.
974 */
975 struct rcu_head rcu;
976
977 /*
978 * For sysfs per-channel properties.
979 */
980 struct kobject kobj;
981
982 /*
983 * For performance critical channels (storage, networking
984 * etc,), Hyper-V has a mechanism to enhance the throughput
985 * at the expense of latency:
986 * When the host is to be signaled, we just set a bit in a shared page
987 * and this bit will be inspected by the hypervisor within a certain
988 * window and if the bit is set, the host will be signaled. The window
989 * of time is the monitor latency - currently around 100 usecs. This
990 * mechanism improves throughput by:
991 *
992 * A) Making the host more efficient - each time it wakes up,
993 * potentially it will process more number of packets. The
994 * monitor latency allows a batch to build up.
995 * B) By deferring the hypercall to signal, we will also minimize
996 * the interrupts.
997 *
998 * Clearly, these optimizations improve throughput at the expense of
999 * latency. Furthermore, since the channel is shared for both
1000 * control and data messages, control messages currently suffer
1001 * unnecessary latency adversely impacting performance and boot
1002 * time. To fix this issue, permit tagging the channel as being
1003 * in "low latency" mode. In this mode, we will bypass the monitor
1004 * mechanism.
1005 */
1006 bool low_latency;
1007
1008 bool probe_done;
1009
1010 /*
1011 * Cache the device ID here for easy access; this is useful, in
1012 * particular, in situations where the channel's device_obj has
1013 * not been allocated/initialized yet.
1014 */
1015 u16 device_id;
1016
1017 /*
1018 * We must offload the handling of the primary/sub channels
1019 * from the single-threaded vmbus_connection.work_queue to
1020 * two different workqueue, otherwise we can block
1021 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
1022 */
1023 struct work_struct add_channel_work;
1024
1025 /*
1026 * Guest to host interrupts caused by the inbound ring buffer changing
1027 * from full to not full while a packet is waiting.
1028 */
1029 u64 intr_in_full;
1030
1031 /*
1032 * The total number of write operations that encountered a full
1033 * outbound ring buffer.
1034 */
1035 u64 out_full_total;
1036
1037 /*
1038 * The number of write operations that were the first to encounter a
1039 * full outbound ring buffer.
1040 */
1041 u64 out_full_first;
1042
1043 /* enabling/disabling fuzz testing on the channel (default is false)*/
1044 bool fuzz_testing_state;
1045
1046 /*
1047 * Interrupt delay will delay the guest from emptying the ring buffer
1048 * for a specific amount of time. The delay is in microseconds and will
1049 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1050 * The Message delay will delay guest reading on a per message basis
1051 * in microseconds between 1 to 1000 with the default being 0
1052 * (no delay).
1053 */
1054 u32 fuzz_testing_interrupt_delay;
1055 u32 fuzz_testing_message_delay;
1056
1057 /* callback to generate a request ID from a request address */
1058 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1059 /* callback to retrieve a request address from a request ID */
1060 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1061
1062 /* request/transaction ids for VMBus */
1063 struct vmbus_requestor requestor;
1064 u32 rqstor_size;
1065
1066 /* The max size of a packet on this channel */
1067 u32 max_pkt_size;
1068 };
1069
1070 #define lock_requestor(channel, flags) \
1071 do { \
1072 struct vmbus_requestor *rqstor = &(channel)->requestor; \
1073 \
1074 spin_lock_irqsave(&rqstor->req_lock, flags); \
1075 } while (0)
1076
unlock_requestor(struct vmbus_channel * channel,unsigned long flags)1077 static __always_inline void unlock_requestor(struct vmbus_channel *channel,
1078 unsigned long flags)
1079 {
1080 struct vmbus_requestor *rqstor = &channel->requestor;
1081
1082 spin_unlock_irqrestore(&rqstor->req_lock, flags);
1083 }
1084
1085 u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1086 u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1087 u64 rqst_addr);
1088 u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1089 u64 rqst_addr);
1090 u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1091
is_hvsock_offer(const struct vmbus_channel_offer_channel * o)1092 static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o)
1093 {
1094 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1095 }
1096
is_hvsock_channel(const struct vmbus_channel * c)1097 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1098 {
1099 return is_hvsock_offer(&c->offermsg);
1100 }
1101
is_sub_channel(const struct vmbus_channel * c)1102 static inline bool is_sub_channel(const struct vmbus_channel *c)
1103 {
1104 return c->offermsg.offer.sub_channel_index != 0;
1105 }
1106
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)1107 static inline void set_channel_read_mode(struct vmbus_channel *c,
1108 enum hv_callback_mode mode)
1109 {
1110 c->callback_mode = mode;
1111 }
1112
set_per_channel_state(struct vmbus_channel * c,void * s)1113 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1114 {
1115 c->per_channel_state = s;
1116 }
1117
get_per_channel_state(struct vmbus_channel * c)1118 static inline void *get_per_channel_state(struct vmbus_channel *c)
1119 {
1120 return c->per_channel_state;
1121 }
1122
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)1123 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1124 u32 size)
1125 {
1126 unsigned long flags;
1127
1128 if (size) {
1129 spin_lock_irqsave(&c->outbound.ring_lock, flags);
1130 ++c->out_full_total;
1131
1132 if (!c->out_full_flag) {
1133 ++c->out_full_first;
1134 c->out_full_flag = true;
1135 }
1136 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1137 } else {
1138 c->out_full_flag = false;
1139 }
1140
1141 c->outbound.ring_buffer->pending_send_sz = size;
1142 }
1143
1144 void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1145
1146 int vmbus_request_offers(void);
1147
1148 /*
1149 * APIs for managing sub-channels.
1150 */
1151
1152 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1153 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1154
1155 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1156 void (*chn_rescind_cb)(struct vmbus_channel *));
1157
1158 /* The format must be the same as struct vmdata_gpa_direct */
1159 struct vmbus_channel_packet_page_buffer {
1160 u16 type;
1161 u16 dataoffset8;
1162 u16 length8;
1163 u16 flags;
1164 u64 transactionid;
1165 u32 reserved;
1166 u32 rangecount;
1167 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1168 } __packed;
1169
1170 /* The format must be the same as struct vmdata_gpa_direct */
1171 struct vmbus_channel_packet_multipage_buffer {
1172 u16 type;
1173 u16 dataoffset8;
1174 u16 length8;
1175 u16 flags;
1176 u64 transactionid;
1177 u32 reserved;
1178 u32 rangecount; /* Always 1 in this case */
1179 struct hv_multipage_buffer range;
1180 } __packed;
1181
1182 /* The format must be the same as struct vmdata_gpa_direct */
1183 struct vmbus_packet_mpb_array {
1184 u16 type;
1185 u16 dataoffset8;
1186 u16 length8;
1187 u16 flags;
1188 u64 transactionid;
1189 u32 reserved;
1190 u32 rangecount; /* Always 1 in this case */
1191 struct hv_mpb_array range;
1192 } __packed;
1193
1194 int vmbus_alloc_ring(struct vmbus_channel *channel,
1195 u32 send_size, u32 recv_size);
1196 void vmbus_free_ring(struct vmbus_channel *channel);
1197
1198 int vmbus_connect_ring(struct vmbus_channel *channel,
1199 void (*onchannel_callback)(void *context),
1200 void *context);
1201 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1202
1203 extern int vmbus_open(struct vmbus_channel *channel,
1204 u32 send_ringbuffersize,
1205 u32 recv_ringbuffersize,
1206 void *userdata,
1207 u32 userdatalen,
1208 void (*onchannel_callback)(void *context),
1209 void *context);
1210
1211 extern void vmbus_close(struct vmbus_channel *channel);
1212
1213 extern int vmbus_sendpacket_getid(struct vmbus_channel *channel,
1214 void *buffer,
1215 u32 bufferLen,
1216 u64 requestid,
1217 u64 *trans_id,
1218 enum vmbus_packet_type type,
1219 u32 flags);
1220 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1221 void *buffer,
1222 u32 bufferLen,
1223 u64 requestid,
1224 enum vmbus_packet_type type,
1225 u32 flags);
1226
1227 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1228 struct hv_page_buffer pagebuffers[],
1229 u32 pagecount,
1230 void *buffer,
1231 u32 bufferlen,
1232 u64 requestid);
1233
1234 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1235 struct vmbus_packet_mpb_array *mpb,
1236 u32 desc_size,
1237 void *buffer,
1238 u32 bufferlen,
1239 u64 requestid);
1240
1241 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1242 void *kbuffer,
1243 u32 size,
1244 struct vmbus_gpadl *gpadl);
1245
1246 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1247 struct vmbus_gpadl *gpadl);
1248
1249 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1250
1251 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1252 void *buffer,
1253 u32 bufferlen,
1254 u32 *buffer_actual_len,
1255 u64 *requestid);
1256
1257 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1258 void *buffer,
1259 u32 bufferlen,
1260 u32 *buffer_actual_len,
1261 u64 *requestid);
1262
1263 /* Base driver object */
1264 struct hv_driver {
1265 const char *name;
1266
1267 /*
1268 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1269 * channel flag, actually doesn't mean a synthetic device because the
1270 * offer's if_type/if_instance can change for every new hvsock
1271 * connection.
1272 *
1273 * However, to facilitate the notification of new-offer/rescind-offer
1274 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1275 * a special vmbus device, and hence we need the below flag to
1276 * indicate if the driver is the hvsock driver or not: we need to
1277 * specially treat the hvosck offer & driver in vmbus_match().
1278 */
1279 bool hvsock;
1280
1281 /* the device type supported by this driver */
1282 guid_t dev_type;
1283 const struct hv_vmbus_device_id *id_table;
1284
1285 struct device_driver driver;
1286
1287 /* dynamic device GUID's */
1288 struct {
1289 spinlock_t lock;
1290 struct list_head list;
1291 } dynids;
1292
1293 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1294 void (*remove)(struct hv_device *dev);
1295 void (*shutdown)(struct hv_device *);
1296
1297 int (*suspend)(struct hv_device *);
1298 int (*resume)(struct hv_device *);
1299
1300 };
1301
1302 /* Base device object */
1303 struct hv_device {
1304 /* the device type id of this device */
1305 guid_t dev_type;
1306
1307 /* the device instance id of this device */
1308 guid_t dev_instance;
1309 u16 vendor_id;
1310 u16 device_id;
1311
1312 struct device device;
1313 /*
1314 * Driver name to force a match. Do not set directly, because core
1315 * frees it. Use driver_set_override() to set or clear it.
1316 */
1317 const char *driver_override;
1318
1319 struct vmbus_channel *channel;
1320 struct kset *channels_kset;
1321 struct device_dma_parameters dma_parms;
1322 u64 dma_mask;
1323
1324 /* place holder to keep track of the dir for hv device in debugfs */
1325 struct dentry *debug_dir;
1326
1327 };
1328
1329
1330 #define device_to_hv_device(d) container_of_const(d, struct hv_device, device)
1331
drv_to_hv_drv(struct device_driver * d)1332 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1333 {
1334 return container_of(d, struct hv_driver, driver);
1335 }
1336
hv_set_drvdata(struct hv_device * dev,void * data)1337 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1338 {
1339 dev_set_drvdata(&dev->device, data);
1340 }
1341
hv_get_drvdata(struct hv_device * dev)1342 static inline void *hv_get_drvdata(struct hv_device *dev)
1343 {
1344 return dev_get_drvdata(&dev->device);
1345 }
1346
1347 struct hv_ring_buffer_debug_info {
1348 u32 current_interrupt_mask;
1349 u32 current_read_index;
1350 u32 current_write_index;
1351 u32 bytes_avail_toread;
1352 u32 bytes_avail_towrite;
1353 };
1354
1355
1356 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1357 struct hv_ring_buffer_debug_info *debug_info);
1358
1359 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel);
1360
1361 /* Vmbus interface */
1362 #define vmbus_driver_register(driver) \
1363 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1364 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1365 struct module *owner,
1366 const char *mod_name);
1367 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1368
1369 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1370
1371 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1372 resource_size_t min, resource_size_t max,
1373 resource_size_t size, resource_size_t align,
1374 bool fb_overlap_ok);
1375 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1376
1377 /*
1378 * GUID definitions of various offer types - services offered to the guest.
1379 */
1380
1381 /*
1382 * Network GUID
1383 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1384 */
1385 #define HV_NIC_GUID \
1386 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1387 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1388
1389 /*
1390 * IDE GUID
1391 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1392 */
1393 #define HV_IDE_GUID \
1394 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1395 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1396
1397 /*
1398 * SCSI GUID
1399 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1400 */
1401 #define HV_SCSI_GUID \
1402 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1403 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1404
1405 /*
1406 * Shutdown GUID
1407 * {0e0b6031-5213-4934-818b-38d90ced39db}
1408 */
1409 #define HV_SHUTDOWN_GUID \
1410 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1411 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1412
1413 /*
1414 * Time Synch GUID
1415 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1416 */
1417 #define HV_TS_GUID \
1418 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1419 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1420
1421 /*
1422 * Heartbeat GUID
1423 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1424 */
1425 #define HV_HEART_BEAT_GUID \
1426 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1427 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1428
1429 /*
1430 * KVP GUID
1431 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1432 */
1433 #define HV_KVP_GUID \
1434 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1435 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1436
1437 /*
1438 * Dynamic memory GUID
1439 * {525074dc-8985-46e2-8057-a307dc18a502}
1440 */
1441 #define HV_DM_GUID \
1442 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1443 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1444
1445 /*
1446 * Mouse GUID
1447 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1448 */
1449 #define HV_MOUSE_GUID \
1450 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1451 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1452
1453 /*
1454 * Keyboard GUID
1455 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1456 */
1457 #define HV_KBD_GUID \
1458 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1459 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1460
1461 /*
1462 * VSS (Backup/Restore) GUID
1463 */
1464 #define HV_VSS_GUID \
1465 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1466 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1467 /*
1468 * Synthetic Video GUID
1469 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1470 */
1471 #define HV_SYNTHVID_GUID \
1472 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1473 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1474
1475 /*
1476 * Synthetic FC GUID
1477 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1478 */
1479 #define HV_SYNTHFC_GUID \
1480 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1481 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1482
1483 /*
1484 * Guest File Copy Service
1485 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1486 */
1487
1488 #define HV_FCOPY_GUID \
1489 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1490 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1491
1492 /*
1493 * NetworkDirect. This is the guest RDMA service.
1494 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1495 */
1496 #define HV_ND_GUID \
1497 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1498 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1499
1500 /*
1501 * PCI Express Pass Through
1502 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1503 */
1504
1505 #define HV_PCIE_GUID \
1506 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1507 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1508
1509 /*
1510 * Linux doesn't support these 4 devices: the first two are for
1511 * Automatic Virtual Machine Activation, the third is for
1512 * Remote Desktop Virtualization, and the fourth is Initial
1513 * Machine Configuration (IMC) used only by Windows guests.
1514 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1515 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1516 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1517 * {c376c1c3-d276-48d2-90a9-c04748072c60}
1518 */
1519
1520 #define HV_AVMA1_GUID \
1521 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1522 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1523
1524 #define HV_AVMA2_GUID \
1525 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1526 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1527
1528 #define HV_RDV_GUID \
1529 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1530 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1531
1532 #define HV_IMC_GUID \
1533 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \
1534 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60)
1535
1536 /*
1537 * Common header for Hyper-V ICs
1538 */
1539
1540 #define ICMSGTYPE_NEGOTIATE 0
1541 #define ICMSGTYPE_HEARTBEAT 1
1542 #define ICMSGTYPE_KVPEXCHANGE 2
1543 #define ICMSGTYPE_SHUTDOWN 3
1544 #define ICMSGTYPE_TIMESYNC 4
1545 #define ICMSGTYPE_VSS 5
1546 #define ICMSGTYPE_FCOPY 7
1547
1548 #define ICMSGHDRFLAG_TRANSACTION 1
1549 #define ICMSGHDRFLAG_REQUEST 2
1550 #define ICMSGHDRFLAG_RESPONSE 4
1551
1552
1553 /*
1554 * While we want to handle util services as regular devices,
1555 * there is only one instance of each of these services; so
1556 * we statically allocate the service specific state.
1557 */
1558
1559 struct hv_util_service {
1560 u8 *recv_buffer;
1561 void *channel;
1562 void (*util_cb)(void *);
1563 int (*util_init)(struct hv_util_service *);
1564 int (*util_init_transport)(void);
1565 void (*util_deinit)(void);
1566 int (*util_pre_suspend)(void);
1567 int (*util_pre_resume)(void);
1568 };
1569
1570 struct vmbuspipe_hdr {
1571 u32 flags;
1572 u32 msgsize;
1573 } __packed;
1574
1575 struct ic_version {
1576 u16 major;
1577 u16 minor;
1578 } __packed;
1579
1580 struct icmsg_hdr {
1581 struct ic_version icverframe;
1582 u16 icmsgtype;
1583 struct ic_version icvermsg;
1584 u16 icmsgsize;
1585 u32 status;
1586 u8 ictransaction_id;
1587 u8 icflags;
1588 u8 reserved[2];
1589 } __packed;
1590
1591 #define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1592 #define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1593 #define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1594 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1595 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1596
1597 struct icmsg_negotiate {
1598 u16 icframe_vercnt;
1599 u16 icmsg_vercnt;
1600 u32 reserved;
1601 struct ic_version icversion_data[]; /* any size array */
1602 } __packed;
1603
1604 struct shutdown_msg_data {
1605 u32 reason_code;
1606 u32 timeout_seconds;
1607 u32 flags;
1608 u8 display_message[2048];
1609 } __packed;
1610
1611 struct heartbeat_msg_data {
1612 u64 seq_num;
1613 u32 reserved[8];
1614 } __packed;
1615
1616 /* Time Sync IC defs */
1617 #define ICTIMESYNCFLAG_PROBE 0
1618 #define ICTIMESYNCFLAG_SYNC 1
1619 #define ICTIMESYNCFLAG_SAMPLE 2
1620
1621 #ifdef __x86_64__
1622 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1623 #else
1624 #define WLTIMEDELTA 116444736000000000LL
1625 #endif
1626
1627 struct ictimesync_data {
1628 u64 parenttime;
1629 u64 childtime;
1630 u64 roundtriptime;
1631 u8 flags;
1632 } __packed;
1633
1634 struct ictimesync_ref_data {
1635 u64 parenttime;
1636 u64 vmreferencetime;
1637 u8 flags;
1638 char leapflags;
1639 char stratum;
1640 u8 reserved[3];
1641 } __packed;
1642
1643 struct hyperv_service_callback {
1644 u8 msg_type;
1645 char *log_msg;
1646 guid_t data;
1647 struct vmbus_channel *channel;
1648 void (*callback)(void *context);
1649 };
1650
1651 struct hv_dma_range {
1652 dma_addr_t dma;
1653 u32 mapping_size;
1654 };
1655
1656 #define MAX_SRV_VER 0x7ffffff
1657 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1658 const int *fw_version, int fw_vercnt,
1659 const int *srv_version, int srv_vercnt,
1660 int *nego_fw_version, int *nego_srv_version);
1661
1662 void hv_process_channel_removal(struct vmbus_channel *channel);
1663
1664 void vmbus_setevent(struct vmbus_channel *channel);
1665 /*
1666 * Negotiated version with the Host.
1667 */
1668
1669 extern __u32 vmbus_proto_version;
1670
1671 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1672 const guid_t *shv_host_servie_id);
1673 int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1674 void vmbus_set_event(struct vmbus_channel *channel);
1675
1676 /* Get the start of the ring buffer. */
1677 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1678 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1679 {
1680 return ring_info->ring_buffer->buffer;
1681 }
1682
1683 /*
1684 * Mask off host interrupt callback notifications
1685 */
hv_begin_read(struct hv_ring_buffer_info * rbi)1686 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1687 {
1688 rbi->ring_buffer->interrupt_mask = 1;
1689
1690 /* make sure mask update is not reordered */
1691 virt_mb();
1692 }
1693
1694 /*
1695 * Re-enable host callback and return number of outstanding bytes
1696 */
hv_end_read(struct hv_ring_buffer_info * rbi)1697 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1698 {
1699
1700 rbi->ring_buffer->interrupt_mask = 0;
1701
1702 /* make sure mask update is not reordered */
1703 virt_mb();
1704
1705 /*
1706 * Now check to see if the ring buffer is still empty.
1707 * If it is not, we raced and we need to process new
1708 * incoming messages.
1709 */
1710 return hv_get_bytes_to_read(rbi);
1711 }
1712
1713 /*
1714 * An API to support in-place processing of incoming VMBUS packets.
1715 */
1716
1717 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1718 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1719 {
1720 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1721 }
1722
1723 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1724 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1725 {
1726 return (desc->len8 << 3) - (desc->offset8 << 3);
1727 }
1728
1729 /* Get packet length associated with descriptor */
hv_pkt_len(const struct vmpacket_descriptor * desc)1730 static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc)
1731 {
1732 return desc->len8 << 3;
1733 }
1734
1735 struct vmpacket_descriptor *
1736 hv_pkt_iter_first(struct vmbus_channel *channel);
1737
1738 struct vmpacket_descriptor *
1739 __hv_pkt_iter_next(struct vmbus_channel *channel,
1740 const struct vmpacket_descriptor *pkt);
1741
1742 void hv_pkt_iter_close(struct vmbus_channel *channel);
1743
1744 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1745 hv_pkt_iter_next(struct vmbus_channel *channel,
1746 const struct vmpacket_descriptor *pkt)
1747 {
1748 struct vmpacket_descriptor *nxt;
1749
1750 nxt = __hv_pkt_iter_next(channel, pkt);
1751 if (!nxt)
1752 hv_pkt_iter_close(channel);
1753
1754 return nxt;
1755 }
1756
1757 #define foreach_vmbus_pkt(pkt, channel) \
1758 for (pkt = hv_pkt_iter_first(channel); pkt; \
1759 pkt = hv_pkt_iter_next(channel, pkt))
1760
1761 /*
1762 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1763 * sends requests to read and write blocks. Each block must be 128 bytes or
1764 * smaller. Optionally, the VF driver can register a callback function which
1765 * will be invoked when the host says that one or more of the first 64 block
1766 * IDs is "invalid" which means that the VF driver should reread them.
1767 */
1768 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1769
1770 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1771 unsigned int block_id, unsigned int *bytes_returned);
1772 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1773 unsigned int block_id);
1774 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1775 void (*block_invalidate)(void *context,
1776 u64 block_mask));
1777
1778 struct hyperv_pci_block_ops {
1779 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1780 unsigned int block_id, unsigned int *bytes_returned);
1781 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1782 unsigned int block_id);
1783 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1784 void (*block_invalidate)(void *context,
1785 u64 block_mask));
1786 };
1787
1788 extern struct hyperv_pci_block_ops hvpci_block_ops;
1789
virt_to_hvpfn(void * addr)1790 static inline unsigned long virt_to_hvpfn(void *addr)
1791 {
1792 phys_addr_t paddr;
1793
1794 if (is_vmalloc_addr(addr))
1795 paddr = page_to_phys(vmalloc_to_page(addr)) +
1796 offset_in_page(addr);
1797 else
1798 paddr = __pa(addr);
1799
1800 return paddr >> HV_HYP_PAGE_SHIFT;
1801 }
1802
1803 #define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE)
1804 #define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1805 #define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1806 #define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT)
1807 #define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1808
1809 #endif /* _HYPERV_H */
1810