1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/overflow.h>
12 #include <linux/pci.h>
13 #include <linux/pci_regs.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/dma-direct.h> /* for bus_dma_region */
18
19 #include "of_private.h"
20
21 /* Max address size we deal with */
22 #define OF_MAX_ADDR_CELLS 4
23 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25
26 /* Debug utility */
27 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)28 static void of_dump_addr(const char *s, const __be32 *addr, int na)
29 {
30 pr_debug("%s", s);
31 while (na--)
32 pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 pr_cont("\n");
34 }
35 #else
of_dump_addr(const char * s,const __be32 * addr,int na)36 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37 #endif
38
39 /* Callbacks for bus specific translators */
40 struct of_bus {
41 const char *name;
42 const char *addresses;
43 int (*match)(struct device_node *parent);
44 void (*count_cells)(struct device_node *child,
45 int *addrc, int *sizec);
46 u64 (*map)(__be32 *addr, const __be32 *range,
47 int na, int ns, int pna);
48 int (*translate)(__be32 *addr, u64 offset, int na);
49 int flag_cells;
50 unsigned int (*get_flags)(const __be32 *addr);
51 };
52
53 /*
54 * Default translator (generic bus)
55 */
56
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)57 static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
59 {
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
64 }
65
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna)
68 {
69 u64 cp, s, da;
70
71 cp = of_read_number(range, na);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr, na);
74
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
80 }
81
of_bus_default_translate(__be32 * addr,u64 offset,int na)82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90
91 return 0;
92 }
93
of_bus_default_flags_get_flags(const __be32 * addr)94 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95 {
96 return of_read_number(addr, 1);
97 }
98
of_bus_default_get_flags(const __be32 * addr)99 static unsigned int of_bus_default_get_flags(const __be32 *addr)
100 {
101 return IORESOURCE_MEM;
102 }
103
of_bus_default_flags_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)104 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 int ns, int pna)
106 {
107 u64 cp, s, da;
108
109 /* Check that flags match */
110 if (*addr != *range)
111 return OF_BAD_ADDR;
112
113 /* Read address values, skipping high cell */
114 cp = of_read_number(range + 1, na - 1);
115 s = of_read_number(range + na + pna, ns);
116 da = of_read_number(addr + 1, na - 1);
117
118 pr_debug("default flags map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
119
120 if (da < cp || da >= (cp + s))
121 return OF_BAD_ADDR;
122 return da - cp;
123 }
124
of_bus_default_flags_translate(__be32 * addr,u64 offset,int na)125 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
126 {
127 /* Keep "flags" part (high cell) in translated address */
128 return of_bus_default_translate(addr + 1, offset, na - 1);
129 }
130
131 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)132 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
133 {
134 unsigned int flags = 0;
135 u32 w = be32_to_cpup(addr);
136
137 if (!IS_ENABLED(CONFIG_PCI))
138 return 0;
139
140 switch((w >> 24) & 0x03) {
141 case 0x01:
142 flags |= IORESOURCE_IO;
143 break;
144 case 0x02: /* 32 bits */
145 flags |= IORESOURCE_MEM;
146 break;
147
148 case 0x03: /* 64 bits */
149 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
150 break;
151 }
152 if (w & 0x40000000)
153 flags |= IORESOURCE_PREFETCH;
154 return flags;
155 }
156
157 /*
158 * PCI bus specific translator
159 */
160
of_node_is_pcie(struct device_node * np)161 static bool of_node_is_pcie(struct device_node *np)
162 {
163 bool is_pcie = of_node_name_eq(np, "pcie");
164
165 if (is_pcie)
166 pr_warn_once("%pOF: Missing device_type\n", np);
167
168 return is_pcie;
169 }
170
of_bus_pci_match(struct device_node * np)171 static int of_bus_pci_match(struct device_node *np)
172 {
173 /*
174 * "pciex" is PCI Express
175 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
176 * "ht" is hypertransport
177 *
178 * If none of the device_type match, and that the node name is
179 * "pcie", accept the device as PCI (with a warning).
180 */
181 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
182 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
183 of_node_is_pcie(np);
184 }
185
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)186 static void of_bus_pci_count_cells(struct device_node *np,
187 int *addrc, int *sizec)
188 {
189 if (addrc)
190 *addrc = 3;
191 if (sizec)
192 *sizec = 2;
193 }
194
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)195 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
196 int pna)
197 {
198 u64 cp, s, da;
199 unsigned int af, rf;
200
201 af = of_bus_pci_get_flags(addr);
202 rf = of_bus_pci_get_flags(range);
203
204 /* Check address type match */
205 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
206 return OF_BAD_ADDR;
207
208 /* Read address values, skipping high cell */
209 cp = of_read_number(range + 1, na - 1);
210 s = of_read_number(range + na + pna, ns);
211 da = of_read_number(addr + 1, na - 1);
212
213 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
214
215 if (da < cp || da >= (cp + s))
216 return OF_BAD_ADDR;
217 return da - cp;
218 }
219
220 #endif /* CONFIG_PCI */
221
222 /*
223 * of_pci_range_to_resource - Create a resource from an of_pci_range
224 * @range: the PCI range that describes the resource
225 * @np: device node where the range belongs to
226 * @res: pointer to a valid resource that will be updated to
227 * reflect the values contained in the range.
228 *
229 * Returns -EINVAL if the range cannot be converted to resource.
230 *
231 * Note that if the range is an IO range, the resource will be converted
232 * using pci_address_to_pio() which can fail if it is called too early or
233 * if the range cannot be matched to any host bridge IO space (our case here).
234 * To guard against that we try to register the IO range first.
235 * If that fails we know that pci_address_to_pio() will do too.
236 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)237 int of_pci_range_to_resource(struct of_pci_range *range,
238 struct device_node *np, struct resource *res)
239 {
240 int err;
241 res->flags = range->flags;
242 res->parent = res->child = res->sibling = NULL;
243 res->name = np->full_name;
244
245 if (res->flags & IORESOURCE_IO) {
246 unsigned long port;
247 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
248 range->size);
249 if (err)
250 goto invalid_range;
251 port = pci_address_to_pio(range->cpu_addr);
252 if (port == (unsigned long)-1) {
253 err = -EINVAL;
254 goto invalid_range;
255 }
256 res->start = port;
257 } else {
258 if ((sizeof(resource_size_t) < 8) &&
259 upper_32_bits(range->cpu_addr)) {
260 err = -EINVAL;
261 goto invalid_range;
262 }
263
264 res->start = range->cpu_addr;
265 }
266 res->end = res->start + range->size - 1;
267 return 0;
268
269 invalid_range:
270 res->start = (resource_size_t)OF_BAD_ADDR;
271 res->end = (resource_size_t)OF_BAD_ADDR;
272 return err;
273 }
274 EXPORT_SYMBOL(of_pci_range_to_resource);
275
276 /*
277 * of_range_to_resource - Create a resource from a ranges entry
278 * @np: device node where the range belongs to
279 * @index: the 'ranges' index to convert to a resource
280 * @res: pointer to a valid resource that will be updated to
281 * reflect the values contained in the range.
282 *
283 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
284 * converted to resource.
285 */
of_range_to_resource(struct device_node * np,int index,struct resource * res)286 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
287 {
288 int ret, i = 0;
289 struct of_range_parser parser;
290 struct of_range range;
291
292 ret = of_range_parser_init(&parser, np);
293 if (ret)
294 return ret;
295
296 for_each_of_range(&parser, &range)
297 if (i++ == index)
298 return of_pci_range_to_resource(&range, np, res);
299
300 return -ENOENT;
301 }
302 EXPORT_SYMBOL(of_range_to_resource);
303
304 /*
305 * ISA bus specific translator
306 */
307
of_bus_isa_match(struct device_node * np)308 static int of_bus_isa_match(struct device_node *np)
309 {
310 return of_node_name_eq(np, "isa");
311 }
312
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)313 static void of_bus_isa_count_cells(struct device_node *child,
314 int *addrc, int *sizec)
315 {
316 if (addrc)
317 *addrc = 2;
318 if (sizec)
319 *sizec = 1;
320 }
321
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)322 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
323 int pna)
324 {
325 u64 cp, s, da;
326
327 /* Check address type match */
328 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
329 return OF_BAD_ADDR;
330
331 /* Read address values, skipping high cell */
332 cp = of_read_number(range + 1, na - 1);
333 s = of_read_number(range + na + pna, ns);
334 da = of_read_number(addr + 1, na - 1);
335
336 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
337
338 if (da < cp || da >= (cp + s))
339 return OF_BAD_ADDR;
340 return da - cp;
341 }
342
of_bus_isa_get_flags(const __be32 * addr)343 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
344 {
345 unsigned int flags = 0;
346 u32 w = be32_to_cpup(addr);
347
348 if (w & 1)
349 flags |= IORESOURCE_IO;
350 else
351 flags |= IORESOURCE_MEM;
352 return flags;
353 }
354
of_bus_default_flags_match(struct device_node * np)355 static int of_bus_default_flags_match(struct device_node *np)
356 {
357 return of_bus_n_addr_cells(np) == 3;
358 }
359
360 /*
361 * Array of bus specific translators
362 */
363
364 static struct of_bus of_busses[] = {
365 #ifdef CONFIG_PCI
366 /* PCI */
367 {
368 .name = "pci",
369 .addresses = "assigned-addresses",
370 .match = of_bus_pci_match,
371 .count_cells = of_bus_pci_count_cells,
372 .map = of_bus_pci_map,
373 .translate = of_bus_default_flags_translate,
374 .flag_cells = 1,
375 .get_flags = of_bus_pci_get_flags,
376 },
377 #endif /* CONFIG_PCI */
378 /* ISA */
379 {
380 .name = "isa",
381 .addresses = "reg",
382 .match = of_bus_isa_match,
383 .count_cells = of_bus_isa_count_cells,
384 .map = of_bus_isa_map,
385 .translate = of_bus_default_flags_translate,
386 .flag_cells = 1,
387 .get_flags = of_bus_isa_get_flags,
388 },
389 /* Default with flags cell */
390 {
391 .name = "default-flags",
392 .addresses = "reg",
393 .match = of_bus_default_flags_match,
394 .count_cells = of_bus_default_count_cells,
395 .map = of_bus_default_flags_map,
396 .translate = of_bus_default_flags_translate,
397 .flag_cells = 1,
398 .get_flags = of_bus_default_flags_get_flags,
399 },
400 /* Default */
401 {
402 .name = "default",
403 .addresses = "reg",
404 .match = NULL,
405 .count_cells = of_bus_default_count_cells,
406 .map = of_bus_default_map,
407 .translate = of_bus_default_translate,
408 .get_flags = of_bus_default_get_flags,
409 },
410 };
411
of_match_bus(struct device_node * np)412 static struct of_bus *of_match_bus(struct device_node *np)
413 {
414 int i;
415
416 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
417 if (!of_busses[i].match || of_busses[i].match(np))
418 return &of_busses[i];
419 BUG();
420 return NULL;
421 }
422
of_empty_ranges_quirk(struct device_node * np)423 static int of_empty_ranges_quirk(struct device_node *np)
424 {
425 if (IS_ENABLED(CONFIG_PPC)) {
426 /* To save cycles, we cache the result for global "Mac" setting */
427 static int quirk_state = -1;
428
429 /* PA-SEMI sdc DT bug */
430 if (of_device_is_compatible(np, "1682m-sdc"))
431 return true;
432
433 /* Make quirk cached */
434 if (quirk_state < 0)
435 quirk_state =
436 of_machine_is_compatible("Power Macintosh") ||
437 of_machine_is_compatible("MacRISC");
438 return quirk_state;
439 }
440 return false;
441 }
442
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)443 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
444 struct of_bus *pbus, __be32 *addr,
445 int na, int ns, int pna, const char *rprop)
446 {
447 const __be32 *ranges;
448 unsigned int rlen;
449 int rone;
450 u64 offset = OF_BAD_ADDR;
451
452 /*
453 * Normally, an absence of a "ranges" property means we are
454 * crossing a non-translatable boundary, and thus the addresses
455 * below the current cannot be converted to CPU physical ones.
456 * Unfortunately, while this is very clear in the spec, it's not
457 * what Apple understood, and they do have things like /uni-n or
458 * /ht nodes with no "ranges" property and a lot of perfectly
459 * useable mapped devices below them. Thus we treat the absence of
460 * "ranges" as equivalent to an empty "ranges" property which means
461 * a 1:1 translation at that level. It's up to the caller not to try
462 * to translate addresses that aren't supposed to be translated in
463 * the first place. --BenH.
464 *
465 * As far as we know, this damage only exists on Apple machines, so
466 * This code is only enabled on powerpc. --gcl
467 *
468 * This quirk also applies for 'dma-ranges' which frequently exist in
469 * child nodes without 'dma-ranges' in the parent nodes. --RobH
470 */
471 ranges = of_get_property(parent, rprop, &rlen);
472 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
473 strcmp(rprop, "dma-ranges")) {
474 pr_debug("no ranges; cannot translate\n");
475 return 1;
476 }
477 if (ranges == NULL || rlen == 0) {
478 offset = of_read_number(addr, na);
479 /* set address to zero, pass flags through */
480 memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
481 pr_debug("empty ranges; 1:1 translation\n");
482 goto finish;
483 }
484
485 pr_debug("walking ranges...\n");
486
487 /* Now walk through the ranges */
488 rlen /= 4;
489 rone = na + pna + ns;
490 for (; rlen >= rone; rlen -= rone, ranges += rone) {
491 offset = bus->map(addr, ranges, na, ns, pna);
492 if (offset != OF_BAD_ADDR)
493 break;
494 }
495 if (offset == OF_BAD_ADDR) {
496 pr_debug("not found !\n");
497 return 1;
498 }
499 memcpy(addr, ranges + na, 4 * pna);
500
501 finish:
502 of_dump_addr("parent translation for:", addr, pna);
503 pr_debug("with offset: %llx\n", offset);
504
505 /* Translate it into parent bus space */
506 return pbus->translate(addr, offset, pna);
507 }
508
509 /*
510 * Translate an address from the device-tree into a CPU physical address,
511 * this walks up the tree and applies the various bus mappings on the
512 * way.
513 *
514 * Note: We consider that crossing any level with #size-cells == 0 to mean
515 * that translation is impossible (that is we are not dealing with a value
516 * that can be mapped to a cpu physical address). This is not really specified
517 * that way, but this is traditionally the way IBM at least do things
518 *
519 * Whenever the translation fails, the *host pointer will be set to the
520 * device that had registered logical PIO mapping, and the return code is
521 * relative to that node.
522 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)523 static u64 __of_translate_address(struct device_node *dev,
524 struct device_node *(*get_parent)(const struct device_node *),
525 const __be32 *in_addr, const char *rprop,
526 struct device_node **host)
527 {
528 struct device_node *parent = NULL;
529 struct of_bus *bus, *pbus;
530 __be32 addr[OF_MAX_ADDR_CELLS];
531 int na, ns, pna, pns;
532 u64 result = OF_BAD_ADDR;
533
534 pr_debug("** translation for device %pOF **\n", dev);
535
536 /* Increase refcount at current level */
537 of_node_get(dev);
538
539 *host = NULL;
540 /* Get parent & match bus type */
541 parent = get_parent(dev);
542 if (parent == NULL)
543 goto bail;
544 bus = of_match_bus(parent);
545
546 /* Count address cells & copy address locally */
547 bus->count_cells(dev, &na, &ns);
548 if (!OF_CHECK_COUNTS(na, ns)) {
549 pr_debug("Bad cell count for %pOF\n", dev);
550 goto bail;
551 }
552 memcpy(addr, in_addr, na * 4);
553
554 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
555 bus->name, na, ns, parent);
556 of_dump_addr("translating address:", addr, na);
557
558 /* Translate */
559 for (;;) {
560 struct logic_pio_hwaddr *iorange;
561
562 /* Switch to parent bus */
563 of_node_put(dev);
564 dev = parent;
565 parent = get_parent(dev);
566
567 /* If root, we have finished */
568 if (parent == NULL) {
569 pr_debug("reached root node\n");
570 result = of_read_number(addr, na);
571 break;
572 }
573
574 /*
575 * For indirectIO device which has no ranges property, get
576 * the address from reg directly.
577 */
578 iorange = find_io_range_by_fwnode(&dev->fwnode);
579 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
580 result = of_read_number(addr + 1, na - 1);
581 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
582 dev, result);
583 *host = of_node_get(dev);
584 break;
585 }
586
587 /* Get new parent bus and counts */
588 pbus = of_match_bus(parent);
589 pbus->count_cells(dev, &pna, &pns);
590 if (!OF_CHECK_COUNTS(pna, pns)) {
591 pr_err("Bad cell count for %pOF\n", dev);
592 break;
593 }
594
595 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
596 pbus->name, pna, pns, parent);
597
598 /* Apply bus translation */
599 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
600 break;
601
602 /* Complete the move up one level */
603 na = pna;
604 ns = pns;
605 bus = pbus;
606
607 of_dump_addr("one level translation:", addr, na);
608 }
609 bail:
610 of_node_put(parent);
611 of_node_put(dev);
612
613 return result;
614 }
615
of_translate_address(struct device_node * dev,const __be32 * in_addr)616 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
617 {
618 struct device_node *host;
619 u64 ret;
620
621 ret = __of_translate_address(dev, of_get_parent,
622 in_addr, "ranges", &host);
623 if (host) {
624 of_node_put(host);
625 return OF_BAD_ADDR;
626 }
627
628 return ret;
629 }
630 EXPORT_SYMBOL(of_translate_address);
631
632 #ifdef CONFIG_HAS_DMA
__of_get_dma_parent(const struct device_node * np)633 struct device_node *__of_get_dma_parent(const struct device_node *np)
634 {
635 struct of_phandle_args args;
636 int ret, index;
637
638 index = of_property_match_string(np, "interconnect-names", "dma-mem");
639 if (index < 0)
640 return of_get_parent(np);
641
642 ret = of_parse_phandle_with_args(np, "interconnects",
643 "#interconnect-cells",
644 index, &args);
645 if (ret < 0)
646 return of_get_parent(np);
647
648 return args.np;
649 }
650 #endif
651
of_get_next_dma_parent(struct device_node * np)652 static struct device_node *of_get_next_dma_parent(struct device_node *np)
653 {
654 struct device_node *parent;
655
656 parent = __of_get_dma_parent(np);
657 of_node_put(np);
658
659 return parent;
660 }
661
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)662 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
663 {
664 struct device_node *host;
665 u64 ret;
666
667 ret = __of_translate_address(dev, __of_get_dma_parent,
668 in_addr, "dma-ranges", &host);
669
670 if (host) {
671 of_node_put(host);
672 return OF_BAD_ADDR;
673 }
674
675 return ret;
676 }
677 EXPORT_SYMBOL(of_translate_dma_address);
678
679 /**
680 * of_translate_dma_region - Translate device tree address and size tuple
681 * @dev: device tree node for which to translate
682 * @prop: pointer into array of cells
683 * @start: return value for the start of the DMA range
684 * @length: return value for the length of the DMA range
685 *
686 * Returns a pointer to the cell immediately following the translated DMA region.
687 */
of_translate_dma_region(struct device_node * dev,const __be32 * prop,phys_addr_t * start,size_t * length)688 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
689 phys_addr_t *start, size_t *length)
690 {
691 struct device_node *parent;
692 u64 address, size;
693 int na, ns;
694
695 parent = __of_get_dma_parent(dev);
696 if (!parent)
697 return NULL;
698
699 na = of_bus_n_addr_cells(parent);
700 ns = of_bus_n_size_cells(parent);
701
702 of_node_put(parent);
703
704 address = of_translate_dma_address(dev, prop);
705 if (address == OF_BAD_ADDR)
706 return NULL;
707
708 size = of_read_number(prop + na, ns);
709
710 if (start)
711 *start = address;
712
713 if (length)
714 *length = size;
715
716 return prop + na + ns;
717 }
718 EXPORT_SYMBOL(of_translate_dma_region);
719
__of_get_address(struct device_node * dev,int index,int bar_no,u64 * size,unsigned int * flags)720 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
721 u64 *size, unsigned int *flags)
722 {
723 const __be32 *prop;
724 unsigned int psize;
725 struct device_node *parent;
726 struct of_bus *bus;
727 int onesize, i, na, ns;
728
729 /* Get parent & match bus type */
730 parent = of_get_parent(dev);
731 if (parent == NULL)
732 return NULL;
733 bus = of_match_bus(parent);
734 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
735 of_node_put(parent);
736 return NULL;
737 }
738 bus->count_cells(dev, &na, &ns);
739 of_node_put(parent);
740 if (!OF_CHECK_ADDR_COUNT(na))
741 return NULL;
742
743 /* Get "reg" or "assigned-addresses" property */
744 prop = of_get_property(dev, bus->addresses, &psize);
745 if (prop == NULL)
746 return NULL;
747 psize /= 4;
748
749 onesize = na + ns;
750 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
751 u32 val = be32_to_cpu(prop[0]);
752 /* PCI bus matches on BAR number instead of index */
753 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
754 ((index >= 0) && (i == index))) {
755 if (size)
756 *size = of_read_number(prop + na, ns);
757 if (flags)
758 *flags = bus->get_flags(prop);
759 return prop;
760 }
761 }
762 return NULL;
763 }
764 EXPORT_SYMBOL(__of_get_address);
765
766 /**
767 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
768 * @np: device tree node for which to retrieve "reg" from
769 * @idx: "reg" entry index to read
770 * @addr: return value for the untranslated address
771 * @size: return value for the entry size
772 *
773 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
774 * size values filled in.
775 */
of_property_read_reg(struct device_node * np,int idx,u64 * addr,u64 * size)776 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
777 {
778 const __be32 *prop = of_get_address(np, idx, size, NULL);
779
780 if (!prop)
781 return -EINVAL;
782
783 *addr = of_read_number(prop, of_n_addr_cells(np));
784
785 return 0;
786 }
787 EXPORT_SYMBOL(of_property_read_reg);
788
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)789 static int parser_init(struct of_pci_range_parser *parser,
790 struct device_node *node, const char *name)
791 {
792 int rlen;
793
794 parser->node = node;
795 parser->pna = of_n_addr_cells(node);
796 parser->na = of_bus_n_addr_cells(node);
797 parser->ns = of_bus_n_size_cells(node);
798 parser->dma = !strcmp(name, "dma-ranges");
799 parser->bus = of_match_bus(node);
800
801 parser->range = of_get_property(node, name, &rlen);
802 if (parser->range == NULL)
803 return -ENOENT;
804
805 parser->end = parser->range + rlen / sizeof(__be32);
806
807 return 0;
808 }
809
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)810 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
811 struct device_node *node)
812 {
813 return parser_init(parser, node, "ranges");
814 }
815 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
816
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)817 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
818 struct device_node *node)
819 {
820 return parser_init(parser, node, "dma-ranges");
821 }
822 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
823 #define of_dma_range_parser_init of_pci_dma_range_parser_init
824
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)825 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
826 struct of_pci_range *range)
827 {
828 int na = parser->na;
829 int ns = parser->ns;
830 int np = parser->pna + na + ns;
831 int busflag_na = parser->bus->flag_cells;
832
833 if (!range)
834 return NULL;
835
836 if (!parser->range || parser->range + np > parser->end)
837 return NULL;
838
839 range->flags = parser->bus->get_flags(parser->range);
840
841 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
842
843 if (parser->dma)
844 range->cpu_addr = of_translate_dma_address(parser->node,
845 parser->range + na);
846 else
847 range->cpu_addr = of_translate_address(parser->node,
848 parser->range + na);
849 range->size = of_read_number(parser->range + parser->pna + na, ns);
850
851 parser->range += np;
852
853 /* Now consume following elements while they are contiguous */
854 while (parser->range + np <= parser->end) {
855 u32 flags = 0;
856 u64 bus_addr, cpu_addr, size;
857
858 flags = parser->bus->get_flags(parser->range);
859 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
860 if (parser->dma)
861 cpu_addr = of_translate_dma_address(parser->node,
862 parser->range + na);
863 else
864 cpu_addr = of_translate_address(parser->node,
865 parser->range + na);
866 size = of_read_number(parser->range + parser->pna + na, ns);
867
868 if (flags != range->flags)
869 break;
870 if (bus_addr != range->bus_addr + range->size ||
871 cpu_addr != range->cpu_addr + range->size)
872 break;
873
874 range->size += size;
875 parser->range += np;
876 }
877
878 return range;
879 }
880 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
881
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)882 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
883 u64 size)
884 {
885 u64 taddr;
886 unsigned long port;
887 struct device_node *host;
888
889 taddr = __of_translate_address(dev, of_get_parent,
890 in_addr, "ranges", &host);
891 if (host) {
892 /* host-specific port access */
893 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
894 of_node_put(host);
895 } else {
896 /* memory-mapped I/O range */
897 port = pci_address_to_pio(taddr);
898 }
899
900 if (port == (unsigned long)-1)
901 return OF_BAD_ADDR;
902
903 return port;
904 }
905
906 #ifdef CONFIG_HAS_DMA
907 /**
908 * of_dma_get_range - Get DMA range info and put it into a map array
909 * @np: device node to get DMA range info
910 * @map: dma range structure to return
911 *
912 * Look in bottom up direction for the first "dma-ranges" property
913 * and parse it. Put the information into a DMA offset map array.
914 *
915 * dma-ranges format:
916 * DMA addr (dma_addr) : naddr cells
917 * CPU addr (phys_addr_t) : pna cells
918 * size : nsize cells
919 *
920 * It returns -ENODEV if "dma-ranges" property was not found for this
921 * device in the DT.
922 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)923 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
924 {
925 struct device_node *node = of_node_get(np);
926 const __be32 *ranges = NULL;
927 bool found_dma_ranges = false;
928 struct of_range_parser parser;
929 struct of_range range;
930 struct bus_dma_region *r;
931 int len, num_ranges = 0;
932 int ret = 0;
933
934 while (node) {
935 ranges = of_get_property(node, "dma-ranges", &len);
936
937 /* Ignore empty ranges, they imply no translation required */
938 if (ranges && len > 0)
939 break;
940
941 /* Once we find 'dma-ranges', then a missing one is an error */
942 if (found_dma_ranges && !ranges) {
943 ret = -ENODEV;
944 goto out;
945 }
946 found_dma_ranges = true;
947
948 node = of_get_next_dma_parent(node);
949 }
950
951 if (!node || !ranges) {
952 pr_debug("no dma-ranges found for node(%pOF)\n", np);
953 ret = -ENODEV;
954 goto out;
955 }
956
957 of_dma_range_parser_init(&parser, node);
958 for_each_of_range(&parser, &range) {
959 if (range.cpu_addr == OF_BAD_ADDR) {
960 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
961 range.bus_addr, node);
962 continue;
963 }
964 num_ranges++;
965 }
966
967 if (!num_ranges) {
968 ret = -EINVAL;
969 goto out;
970 }
971
972 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
973 if (!r) {
974 ret = -ENOMEM;
975 goto out;
976 }
977
978 /*
979 * Record all info in the generic DMA ranges array for struct device,
980 * returning an error if we don't find any parsable ranges.
981 */
982 *map = r;
983 of_dma_range_parser_init(&parser, node);
984 for_each_of_range(&parser, &range) {
985 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
986 range.bus_addr, range.cpu_addr, range.size);
987 if (range.cpu_addr == OF_BAD_ADDR)
988 continue;
989 r->cpu_start = range.cpu_addr;
990 r->dma_start = range.bus_addr;
991 r->size = range.size;
992 r->offset = range.cpu_addr - range.bus_addr;
993 r++;
994 }
995 out:
996 of_node_put(node);
997 return ret;
998 }
999 #endif /* CONFIG_HAS_DMA */
1000
1001 /**
1002 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1003 * @np: The node to start searching from or NULL to start from the root
1004 *
1005 * Gets the highest CPU physical address that is addressable by all DMA masters
1006 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1007 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1008 */
of_dma_get_max_cpu_address(struct device_node * np)1009 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1010 {
1011 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1012 struct of_range_parser parser;
1013 phys_addr_t subtree_max_addr;
1014 struct device_node *child;
1015 struct of_range range;
1016 const __be32 *ranges;
1017 u64 cpu_end = 0;
1018 int len;
1019
1020 if (!np)
1021 np = of_root;
1022
1023 ranges = of_get_property(np, "dma-ranges", &len);
1024 if (ranges && len) {
1025 of_dma_range_parser_init(&parser, np);
1026 for_each_of_range(&parser, &range)
1027 if (range.cpu_addr + range.size > cpu_end)
1028 cpu_end = range.cpu_addr + range.size - 1;
1029
1030 if (max_cpu_addr > cpu_end)
1031 max_cpu_addr = cpu_end;
1032 }
1033
1034 for_each_available_child_of_node(np, child) {
1035 subtree_max_addr = of_dma_get_max_cpu_address(child);
1036 if (max_cpu_addr > subtree_max_addr)
1037 max_cpu_addr = subtree_max_addr;
1038 }
1039
1040 return max_cpu_addr;
1041 }
1042
1043 /**
1044 * of_dma_is_coherent - Check if device is coherent
1045 * @np: device node
1046 *
1047 * It returns true if "dma-coherent" property was found
1048 * for this device in the DT, or if DMA is coherent by
1049 * default for OF devices on the current platform and no
1050 * "dma-noncoherent" property was found for this device.
1051 */
of_dma_is_coherent(struct device_node * np)1052 bool of_dma_is_coherent(struct device_node *np)
1053 {
1054 struct device_node *node;
1055 bool is_coherent = dma_default_coherent;
1056
1057 node = of_node_get(np);
1058
1059 while (node) {
1060 if (of_property_read_bool(node, "dma-coherent")) {
1061 is_coherent = true;
1062 break;
1063 }
1064 if (of_property_read_bool(node, "dma-noncoherent")) {
1065 is_coherent = false;
1066 break;
1067 }
1068 node = of_get_next_dma_parent(node);
1069 }
1070 of_node_put(node);
1071 return is_coherent;
1072 }
1073 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1074
1075 /**
1076 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1077 * @np: device node
1078 *
1079 * Returns true if the "nonposted-mmio" property was found for
1080 * the device's bus.
1081 *
1082 * This is currently only enabled on builds that support Apple ARM devices, as
1083 * an optimization.
1084 */
of_mmio_is_nonposted(struct device_node * np)1085 static bool of_mmio_is_nonposted(struct device_node *np)
1086 {
1087 struct device_node *parent;
1088 bool nonposted;
1089
1090 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1091 return false;
1092
1093 parent = of_get_parent(np);
1094 if (!parent)
1095 return false;
1096
1097 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1098
1099 of_node_put(parent);
1100 return nonposted;
1101 }
1102
__of_address_to_resource(struct device_node * dev,int index,int bar_no,struct resource * r)1103 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1104 struct resource *r)
1105 {
1106 u64 taddr;
1107 const __be32 *addrp;
1108 u64 size;
1109 unsigned int flags;
1110 const char *name = NULL;
1111
1112 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1113 if (addrp == NULL)
1114 return -EINVAL;
1115
1116 /* Get optional "reg-names" property to add a name to a resource */
1117 if (index >= 0)
1118 of_property_read_string_index(dev, "reg-names", index, &name);
1119
1120 if (flags & IORESOURCE_MEM)
1121 taddr = of_translate_address(dev, addrp);
1122 else if (flags & IORESOURCE_IO)
1123 taddr = of_translate_ioport(dev, addrp, size);
1124 else
1125 return -EINVAL;
1126
1127 if (taddr == OF_BAD_ADDR)
1128 return -EINVAL;
1129 memset(r, 0, sizeof(struct resource));
1130
1131 if (of_mmio_is_nonposted(dev))
1132 flags |= IORESOURCE_MEM_NONPOSTED;
1133
1134 if (overflows_type(taddr, r->start))
1135 return -EOVERFLOW;
1136 r->start = taddr;
1137 if (overflows_type(taddr + size - 1, r->end))
1138 return -EOVERFLOW;
1139 r->end = taddr + size - 1;
1140 r->flags = flags;
1141 r->name = name ? name : dev->full_name;
1142
1143 return 0;
1144 }
1145
1146 /**
1147 * of_address_to_resource - Translate device tree address and return as resource
1148 * @dev: Caller's Device Node
1149 * @index: Index into the array
1150 * @r: Pointer to resource array
1151 *
1152 * Returns -EINVAL if the range cannot be converted to resource.
1153 *
1154 * Note that if your address is a PIO address, the conversion will fail if
1155 * the physical address can't be internally converted to an IO token with
1156 * pci_address_to_pio(), that is because it's either called too early or it
1157 * can't be matched to any host bridge IO space
1158 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)1159 int of_address_to_resource(struct device_node *dev, int index,
1160 struct resource *r)
1161 {
1162 return __of_address_to_resource(dev, index, -1, r);
1163 }
1164 EXPORT_SYMBOL_GPL(of_address_to_resource);
1165
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)1166 int of_pci_address_to_resource(struct device_node *dev, int bar,
1167 struct resource *r)
1168 {
1169
1170 if (!IS_ENABLED(CONFIG_PCI))
1171 return -ENOSYS;
1172
1173 return __of_address_to_resource(dev, -1, bar, r);
1174 }
1175 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1176
1177 /**
1178 * of_iomap - Maps the memory mapped IO for a given device_node
1179 * @np: the device whose io range will be mapped
1180 * @index: index of the io range
1181 *
1182 * Returns a pointer to the mapped memory
1183 */
of_iomap(struct device_node * np,int index)1184 void __iomem *of_iomap(struct device_node *np, int index)
1185 {
1186 struct resource res;
1187
1188 if (of_address_to_resource(np, index, &res))
1189 return NULL;
1190
1191 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1192 return ioremap_np(res.start, resource_size(&res));
1193 else
1194 return ioremap(res.start, resource_size(&res));
1195 }
1196 EXPORT_SYMBOL(of_iomap);
1197
1198 /*
1199 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1200 * for a given device_node
1201 * @device: the device whose io range will be mapped
1202 * @index: index of the io range
1203 * @name: name "override" for the memory region request or NULL
1204 *
1205 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1206 * error code on failure. Usage example:
1207 *
1208 * base = of_io_request_and_map(node, 0, "foo");
1209 * if (IS_ERR(base))
1210 * return PTR_ERR(base);
1211 */
of_io_request_and_map(struct device_node * np,int index,const char * name)1212 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1213 const char *name)
1214 {
1215 struct resource res;
1216 void __iomem *mem;
1217
1218 if (of_address_to_resource(np, index, &res))
1219 return IOMEM_ERR_PTR(-EINVAL);
1220
1221 if (!name)
1222 name = res.name;
1223 if (!request_mem_region(res.start, resource_size(&res), name))
1224 return IOMEM_ERR_PTR(-EBUSY);
1225
1226 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1227 mem = ioremap_np(res.start, resource_size(&res));
1228 else
1229 mem = ioremap(res.start, resource_size(&res));
1230
1231 if (!mem) {
1232 release_mem_region(res.start, resource_size(&res));
1233 return IOMEM_ERR_PTR(-ENOMEM);
1234 }
1235
1236 return mem;
1237 }
1238 EXPORT_SYMBOL(of_io_request_and_map);
1239