xref: /openbmc/linux/fs/ocfs2/journal.c (revision 098c0a373cdd51d3a735da7394acd6e57fae45a0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19 
20 #include <cluster/masklog.h>
21 
22 #include "ocfs2.h"
23 
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40 
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43 
44 DEFINE_SPINLOCK(trans_inc_lock);
45 
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47 
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 			      int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 				      int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 				 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 				 int slot,
60 				 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 					    int slot_num,
64 					    struct ocfs2_dinode *la_dinode,
65 					    struct ocfs2_dinode *tl_dinode,
66 					    struct ocfs2_quota_recovery *qrec,
67 					    enum ocfs2_orphan_reco_type orphan_reco_type);
68 
ocfs2_wait_on_mount(struct ocfs2_super * osb)69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83 
84 enum ocfs2_replay_state {
85 	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
86 	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
87 	REPLAY_DONE 		/* Replay was already queued */
88 };
89 
90 struct ocfs2_replay_map {
91 	unsigned int rm_slots;
92 	enum ocfs2_replay_state rm_state;
93 	unsigned char rm_replay_slots[];
94 };
95 
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 	if (!osb->replay_map)
99 		return;
100 
101 	/* If we've already queued the replay, we don't have any more to do */
102 	if (osb->replay_map->rm_state == REPLAY_DONE)
103 		return;
104 
105 	osb->replay_map->rm_state = state;
106 }
107 
ocfs2_compute_replay_slots(struct ocfs2_super * osb)108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 	struct ocfs2_replay_map *replay_map;
111 	int i, node_num;
112 
113 	/* If replay map is already set, we don't do it again */
114 	if (osb->replay_map)
115 		return 0;
116 
117 	replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 					 osb->max_slots),
119 			     GFP_KERNEL);
120 	if (!replay_map) {
121 		mlog_errno(-ENOMEM);
122 		return -ENOMEM;
123 	}
124 
125 	spin_lock(&osb->osb_lock);
126 
127 	replay_map->rm_slots = osb->max_slots;
128 	replay_map->rm_state = REPLAY_UNNEEDED;
129 
130 	/* set rm_replay_slots for offline slot(s) */
131 	for (i = 0; i < replay_map->rm_slots; i++) {
132 		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 			replay_map->rm_replay_slots[i] = 1;
134 	}
135 
136 	osb->replay_map = replay_map;
137 	spin_unlock(&osb->osb_lock);
138 	return 0;
139 }
140 
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 		enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 	struct ocfs2_replay_map *replay_map = osb->replay_map;
145 	int i;
146 
147 	if (!replay_map)
148 		return;
149 
150 	if (replay_map->rm_state != REPLAY_NEEDED)
151 		return;
152 
153 	for (i = 0; i < replay_map->rm_slots; i++)
154 		if (replay_map->rm_replay_slots[i])
155 			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 							NULL, NULL,
157 							orphan_reco_type);
158 	replay_map->rm_state = REPLAY_DONE;
159 }
160 
ocfs2_free_replay_slots(struct ocfs2_super * osb)161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 	struct ocfs2_replay_map *replay_map = osb->replay_map;
164 
165 	if (!osb->replay_map)
166 		return;
167 
168 	kfree(replay_map);
169 	osb->replay_map = NULL;
170 }
171 
ocfs2_recovery_init(struct ocfs2_super * osb)172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 	struct ocfs2_recovery_map *rm;
175 
176 	mutex_init(&osb->recovery_lock);
177 	osb->recovery_state = OCFS2_REC_ENABLED;
178 	osb->recovery_thread_task = NULL;
179 	init_waitqueue_head(&osb->recovery_event);
180 
181 	rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 		     GFP_KERNEL);
183 	if (!rm) {
184 		mlog_errno(-ENOMEM);
185 		return -ENOMEM;
186 	}
187 
188 	osb->recovery_map = rm;
189 
190 	return 0;
191 }
192 
ocfs2_recovery_thread_running(struct ocfs2_super * osb)193 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
194 {
195 	return osb->recovery_thread_task != NULL;
196 }
197 
ocfs2_recovery_disable(struct ocfs2_super * osb,enum ocfs2_recovery_state state)198 static void ocfs2_recovery_disable(struct ocfs2_super *osb,
199 				   enum ocfs2_recovery_state state)
200 {
201 	mutex_lock(&osb->recovery_lock);
202 	/*
203 	 * If recovery thread is not running, we can directly transition to
204 	 * final state.
205 	 */
206 	if (!ocfs2_recovery_thread_running(osb)) {
207 		osb->recovery_state = state + 1;
208 		goto out_lock;
209 	}
210 	osb->recovery_state = state;
211 	/* Wait for recovery thread to acknowledge state transition */
212 	wait_event_cmd(osb->recovery_event,
213 		       !ocfs2_recovery_thread_running(osb) ||
214 				osb->recovery_state >= state + 1,
215 		       mutex_unlock(&osb->recovery_lock),
216 		       mutex_lock(&osb->recovery_lock));
217 out_lock:
218 	mutex_unlock(&osb->recovery_lock);
219 
220 	/*
221 	 * At this point we know that no more recovery work can be queued so
222 	 * wait for any recovery completion work to complete.
223 	 */
224 	if (osb->ocfs2_wq)
225 		flush_workqueue(osb->ocfs2_wq);
226 }
227 
ocfs2_recovery_disable_quota(struct ocfs2_super * osb)228 void ocfs2_recovery_disable_quota(struct ocfs2_super *osb)
229 {
230 	ocfs2_recovery_disable(osb, OCFS2_REC_QUOTA_WANT_DISABLE);
231 }
232 
ocfs2_recovery_exit(struct ocfs2_super * osb)233 void ocfs2_recovery_exit(struct ocfs2_super *osb)
234 {
235 	struct ocfs2_recovery_map *rm;
236 
237 	/* disable any new recovery threads and wait for any currently
238 	 * running ones to exit. Do this before setting the vol_state. */
239 	ocfs2_recovery_disable(osb, OCFS2_REC_WANT_DISABLE);
240 
241 	/*
242 	 * Now that recovery is shut down, and the osb is about to be
243 	 * freed,  the osb_lock is not taken here.
244 	 */
245 	rm = osb->recovery_map;
246 	/* XXX: Should we bug if there are dirty entries? */
247 
248 	kfree(rm);
249 }
250 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)251 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
252 				     unsigned int node_num)
253 {
254 	int i;
255 	struct ocfs2_recovery_map *rm = osb->recovery_map;
256 
257 	assert_spin_locked(&osb->osb_lock);
258 
259 	for (i = 0; i < rm->rm_used; i++) {
260 		if (rm->rm_entries[i] == node_num)
261 			return 1;
262 	}
263 
264 	return 0;
265 }
266 
267 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)268 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
269 				  unsigned int node_num)
270 {
271 	struct ocfs2_recovery_map *rm = osb->recovery_map;
272 
273 	spin_lock(&osb->osb_lock);
274 	if (__ocfs2_recovery_map_test(osb, node_num)) {
275 		spin_unlock(&osb->osb_lock);
276 		return 1;
277 	}
278 
279 	/* XXX: Can this be exploited? Not from o2dlm... */
280 	BUG_ON(rm->rm_used >= osb->max_slots);
281 
282 	rm->rm_entries[rm->rm_used] = node_num;
283 	rm->rm_used++;
284 	spin_unlock(&osb->osb_lock);
285 
286 	return 0;
287 }
288 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)289 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
290 				     unsigned int node_num)
291 {
292 	int i;
293 	struct ocfs2_recovery_map *rm = osb->recovery_map;
294 
295 	spin_lock(&osb->osb_lock);
296 
297 	for (i = 0; i < rm->rm_used; i++) {
298 		if (rm->rm_entries[i] == node_num)
299 			break;
300 	}
301 
302 	if (i < rm->rm_used) {
303 		/* XXX: be careful with the pointer math */
304 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
305 			(rm->rm_used - i - 1) * sizeof(unsigned int));
306 		rm->rm_used--;
307 	}
308 
309 	spin_unlock(&osb->osb_lock);
310 }
311 
ocfs2_commit_cache(struct ocfs2_super * osb)312 static int ocfs2_commit_cache(struct ocfs2_super *osb)
313 {
314 	int status = 0;
315 	unsigned int flushed;
316 	struct ocfs2_journal *journal = NULL;
317 
318 	journal = osb->journal;
319 
320 	/* Flush all pending commits and checkpoint the journal. */
321 	down_write(&journal->j_trans_barrier);
322 
323 	flushed = atomic_read(&journal->j_num_trans);
324 	trace_ocfs2_commit_cache_begin(flushed);
325 	if (flushed == 0) {
326 		up_write(&journal->j_trans_barrier);
327 		goto finally;
328 	}
329 
330 	jbd2_journal_lock_updates(journal->j_journal);
331 	status = jbd2_journal_flush(journal->j_journal, 0);
332 	jbd2_journal_unlock_updates(journal->j_journal);
333 	if (status < 0) {
334 		up_write(&journal->j_trans_barrier);
335 		mlog_errno(status);
336 		goto finally;
337 	}
338 
339 	ocfs2_inc_trans_id(journal);
340 
341 	flushed = atomic_read(&journal->j_num_trans);
342 	atomic_set(&journal->j_num_trans, 0);
343 	up_write(&journal->j_trans_barrier);
344 
345 	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
346 
347 	ocfs2_wake_downconvert_thread(osb);
348 	wake_up(&journal->j_checkpointed);
349 finally:
350 	return status;
351 }
352 
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)353 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
354 {
355 	journal_t *journal = osb->journal->j_journal;
356 	handle_t *handle;
357 
358 	BUG_ON(!osb || !osb->journal->j_journal);
359 
360 	if (ocfs2_is_hard_readonly(osb))
361 		return ERR_PTR(-EROFS);
362 
363 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
364 	BUG_ON(max_buffs <= 0);
365 
366 	/* Nested transaction? Just return the handle... */
367 	if (journal_current_handle())
368 		return jbd2_journal_start(journal, max_buffs);
369 
370 	sb_start_intwrite(osb->sb);
371 
372 	down_read(&osb->journal->j_trans_barrier);
373 
374 	handle = jbd2_journal_start(journal, max_buffs);
375 	if (IS_ERR(handle)) {
376 		up_read(&osb->journal->j_trans_barrier);
377 		sb_end_intwrite(osb->sb);
378 
379 		mlog_errno(PTR_ERR(handle));
380 
381 		if (is_journal_aborted(journal)) {
382 			ocfs2_abort(osb->sb, "Detected aborted journal\n");
383 			handle = ERR_PTR(-EROFS);
384 		}
385 	} else {
386 		if (!ocfs2_mount_local(osb))
387 			atomic_inc(&(osb->journal->j_num_trans));
388 	}
389 
390 	return handle;
391 }
392 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)393 int ocfs2_commit_trans(struct ocfs2_super *osb,
394 		       handle_t *handle)
395 {
396 	int ret, nested;
397 	struct ocfs2_journal *journal = osb->journal;
398 
399 	BUG_ON(!handle);
400 
401 	nested = handle->h_ref > 1;
402 	ret = jbd2_journal_stop(handle);
403 	if (ret < 0)
404 		mlog_errno(ret);
405 
406 	if (!nested) {
407 		up_read(&journal->j_trans_barrier);
408 		sb_end_intwrite(osb->sb);
409 	}
410 
411 	return ret;
412 }
413 
414 /*
415  * 'nblocks' is what you want to add to the current transaction.
416  *
417  * This might call jbd2_journal_restart() which will commit dirty buffers
418  * and then restart the transaction. Before calling
419  * ocfs2_extend_trans(), any changed blocks should have been
420  * dirtied. After calling it, all blocks which need to be changed must
421  * go through another set of journal_access/journal_dirty calls.
422  *
423  * WARNING: This will not release any semaphores or disk locks taken
424  * during the transaction, so make sure they were taken *before*
425  * start_trans or we'll have ordering deadlocks.
426  *
427  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
428  * good because transaction ids haven't yet been recorded on the
429  * cluster locks associated with this handle.
430  */
ocfs2_extend_trans(handle_t * handle,int nblocks)431 int ocfs2_extend_trans(handle_t *handle, int nblocks)
432 {
433 	int status, old_nblocks;
434 
435 	BUG_ON(!handle);
436 	BUG_ON(nblocks < 0);
437 
438 	if (!nblocks)
439 		return 0;
440 
441 	old_nblocks = jbd2_handle_buffer_credits(handle);
442 
443 	trace_ocfs2_extend_trans(old_nblocks, nblocks);
444 
445 #ifdef CONFIG_OCFS2_DEBUG_FS
446 	status = 1;
447 #else
448 	status = jbd2_journal_extend(handle, nblocks, 0);
449 	if (status < 0) {
450 		mlog_errno(status);
451 		goto bail;
452 	}
453 #endif
454 
455 	if (status > 0) {
456 		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
457 		status = jbd2_journal_restart(handle,
458 					      old_nblocks + nblocks);
459 		if (status < 0) {
460 			mlog_errno(status);
461 			goto bail;
462 		}
463 	}
464 
465 	status = 0;
466 bail:
467 	return status;
468 }
469 
470 /*
471  * Make sure handle has at least 'nblocks' credits available. If it does not
472  * have that many credits available, we will try to extend the handle to have
473  * enough credits. If that fails, we will restart transaction to have enough
474  * credits. Similar notes regarding data consistency and locking implications
475  * as for ocfs2_extend_trans() apply here.
476  */
ocfs2_assure_trans_credits(handle_t * handle,int nblocks)477 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
478 {
479 	int old_nblks = jbd2_handle_buffer_credits(handle);
480 
481 	trace_ocfs2_assure_trans_credits(old_nblks);
482 	if (old_nblks >= nblocks)
483 		return 0;
484 	return ocfs2_extend_trans(handle, nblocks - old_nblks);
485 }
486 
487 /*
488  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
489  * If that fails, restart the transaction & regain write access for the
490  * buffer head which is used for metadata modifications.
491  * Taken from Ext4: extend_or_restart_transaction()
492  */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)493 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
494 {
495 	int status, old_nblks;
496 
497 	BUG_ON(!handle);
498 
499 	old_nblks = jbd2_handle_buffer_credits(handle);
500 	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
501 
502 	if (old_nblks < thresh)
503 		return 0;
504 
505 	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
506 	if (status < 0) {
507 		mlog_errno(status);
508 		goto bail;
509 	}
510 
511 	if (status > 0) {
512 		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
513 		if (status < 0)
514 			mlog_errno(status);
515 	}
516 
517 bail:
518 	return status;
519 }
520 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)521 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
522 {
523 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
524 }
525 
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)526 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
527 				 struct buffer_head *bh,
528 				 void *data, size_t size)
529 {
530 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
531 
532 	/*
533 	 * We aren't guaranteed to have the superblock here, so we
534 	 * must unconditionally compute the ecc data.
535 	 * __ocfs2_journal_access() will only set the triggers if
536 	 * metaecc is enabled.
537 	 */
538 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
539 }
540 
541 /*
542  * Quota blocks have their own trigger because the struct ocfs2_block_check
543  * offset depends on the blocksize.
544  */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)545 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
546 				 struct buffer_head *bh,
547 				 void *data, size_t size)
548 {
549 	struct ocfs2_disk_dqtrailer *dqt =
550 		ocfs2_block_dqtrailer(size, data);
551 
552 	/*
553 	 * We aren't guaranteed to have the superblock here, so we
554 	 * must unconditionally compute the ecc data.
555 	 * __ocfs2_journal_access() will only set the triggers if
556 	 * metaecc is enabled.
557 	 */
558 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
559 }
560 
561 /*
562  * Directory blocks also have their own trigger because the
563  * struct ocfs2_block_check offset depends on the blocksize.
564  */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)565 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
566 				 struct buffer_head *bh,
567 				 void *data, size_t size)
568 {
569 	struct ocfs2_dir_block_trailer *trailer =
570 		ocfs2_dir_trailer_from_size(size, data);
571 
572 	/*
573 	 * We aren't guaranteed to have the superblock here, so we
574 	 * must unconditionally compute the ecc data.
575 	 * __ocfs2_journal_access() will only set the triggers if
576 	 * metaecc is enabled.
577 	 */
578 	ocfs2_block_check_compute(data, size, &trailer->db_check);
579 }
580 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)581 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
582 				struct buffer_head *bh)
583 {
584 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
585 
586 	mlog(ML_ERROR,
587 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
588 	     "bh->b_blocknr = %llu\n",
589 	     (unsigned long)bh,
590 	     (unsigned long long)bh->b_blocknr);
591 
592 	ocfs2_error(ot->sb,
593 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
594 }
595 
ocfs2_setup_csum_triggers(struct super_block * sb,enum ocfs2_journal_trigger_type type,struct ocfs2_triggers * ot)596 static void ocfs2_setup_csum_triggers(struct super_block *sb,
597 				      enum ocfs2_journal_trigger_type type,
598 				      struct ocfs2_triggers *ot)
599 {
600 	BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
601 
602 	switch (type) {
603 	case OCFS2_JTR_DI:
604 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
605 		ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
606 		break;
607 	case OCFS2_JTR_EB:
608 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 		ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
610 		break;
611 	case OCFS2_JTR_RB:
612 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 		ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
614 		break;
615 	case OCFS2_JTR_GD:
616 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
617 		ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
618 		break;
619 	case OCFS2_JTR_DB:
620 		ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
621 		break;
622 	case OCFS2_JTR_XB:
623 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
624 		ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
625 		break;
626 	case OCFS2_JTR_DQ:
627 		ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
628 		break;
629 	case OCFS2_JTR_DR:
630 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
631 		ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
632 		break;
633 	case OCFS2_JTR_DL:
634 		ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
635 		ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
636 		break;
637 	case OCFS2_JTR_NONE:
638 		/* To make compiler happy... */
639 		return;
640 	}
641 
642 	ot->ot_triggers.t_abort = ocfs2_abort_trigger;
643 	ot->sb = sb;
644 }
645 
ocfs2_initialize_journal_triggers(struct super_block * sb,struct ocfs2_triggers triggers[])646 void ocfs2_initialize_journal_triggers(struct super_block *sb,
647 				       struct ocfs2_triggers triggers[])
648 {
649 	enum ocfs2_journal_trigger_type type;
650 
651 	for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
652 		ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
653 }
654 
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)655 static int __ocfs2_journal_access(handle_t *handle,
656 				  struct ocfs2_caching_info *ci,
657 				  struct buffer_head *bh,
658 				  struct ocfs2_triggers *triggers,
659 				  int type)
660 {
661 	int status;
662 	struct ocfs2_super *osb =
663 		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
664 
665 	BUG_ON(!ci || !ci->ci_ops);
666 	BUG_ON(!handle);
667 	BUG_ON(!bh);
668 
669 	trace_ocfs2_journal_access(
670 		(unsigned long long)ocfs2_metadata_cache_owner(ci),
671 		(unsigned long long)bh->b_blocknr, type, bh->b_size);
672 
673 	/* we can safely remove this assertion after testing. */
674 	if (!buffer_uptodate(bh)) {
675 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
676 		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
677 		     (unsigned long long)bh->b_blocknr, bh->b_state);
678 
679 		lock_buffer(bh);
680 		/*
681 		 * A previous transaction with a couple of buffer heads fail
682 		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
683 		 * For current transaction, the bh is just among those error
684 		 * bhs which previous transaction handle. We can't just clear
685 		 * its BH_Write_EIO and reuse directly, since other bhs are
686 		 * not written to disk yet and that will cause metadata
687 		 * inconsistency. So we should set fs read-only to avoid
688 		 * further damage.
689 		 */
690 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
691 			unlock_buffer(bh);
692 			return ocfs2_error(osb->sb, "A previous attempt to "
693 					"write this buffer head failed\n");
694 		}
695 		unlock_buffer(bh);
696 	}
697 
698 	/* Set the current transaction information on the ci so
699 	 * that the locking code knows whether it can drop it's locks
700 	 * on this ci or not. We're protected from the commit
701 	 * thread updating the current transaction id until
702 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
703 	 * j_trans_barrier for us. */
704 	ocfs2_set_ci_lock_trans(osb->journal, ci);
705 
706 	ocfs2_metadata_cache_io_lock(ci);
707 	switch (type) {
708 	case OCFS2_JOURNAL_ACCESS_CREATE:
709 	case OCFS2_JOURNAL_ACCESS_WRITE:
710 		status = jbd2_journal_get_write_access(handle, bh);
711 		break;
712 
713 	case OCFS2_JOURNAL_ACCESS_UNDO:
714 		status = jbd2_journal_get_undo_access(handle, bh);
715 		break;
716 
717 	default:
718 		status = -EINVAL;
719 		mlog(ML_ERROR, "Unknown access type!\n");
720 	}
721 	if (!status && ocfs2_meta_ecc(osb) && triggers)
722 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
723 	ocfs2_metadata_cache_io_unlock(ci);
724 
725 	if (status < 0)
726 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
727 		     status, type);
728 
729 	return status;
730 }
731 
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)732 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
733 			    struct buffer_head *bh, int type)
734 {
735 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
736 
737 	return __ocfs2_journal_access(handle, ci, bh,
738 				      &osb->s_journal_triggers[OCFS2_JTR_DI],
739 				      type);
740 }
741 
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)742 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
743 			    struct buffer_head *bh, int type)
744 {
745 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
746 
747 	return __ocfs2_journal_access(handle, ci, bh,
748 				      &osb->s_journal_triggers[OCFS2_JTR_EB],
749 				      type);
750 }
751 
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)752 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
753 			    struct buffer_head *bh, int type)
754 {
755 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
756 
757 	return __ocfs2_journal_access(handle, ci, bh,
758 				      &osb->s_journal_triggers[OCFS2_JTR_RB],
759 				      type);
760 }
761 
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)762 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
763 			    struct buffer_head *bh, int type)
764 {
765 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
766 
767 	return __ocfs2_journal_access(handle, ci, bh,
768 				     &osb->s_journal_triggers[OCFS2_JTR_GD],
769 				     type);
770 }
771 
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)772 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
773 			    struct buffer_head *bh, int type)
774 {
775 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
776 
777 	return __ocfs2_journal_access(handle, ci, bh,
778 				     &osb->s_journal_triggers[OCFS2_JTR_DB],
779 				     type);
780 }
781 
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)782 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
783 			    struct buffer_head *bh, int type)
784 {
785 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
786 
787 	return __ocfs2_journal_access(handle, ci, bh,
788 				     &osb->s_journal_triggers[OCFS2_JTR_XB],
789 				     type);
790 }
791 
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)792 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
793 			    struct buffer_head *bh, int type)
794 {
795 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
796 
797 	return __ocfs2_journal_access(handle, ci, bh,
798 				     &osb->s_journal_triggers[OCFS2_JTR_DQ],
799 				     type);
800 }
801 
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)802 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
803 			    struct buffer_head *bh, int type)
804 {
805 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
806 
807 	return __ocfs2_journal_access(handle, ci, bh,
808 				     &osb->s_journal_triggers[OCFS2_JTR_DR],
809 				     type);
810 }
811 
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)812 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
813 			    struct buffer_head *bh, int type)
814 {
815 	struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
816 
817 	return __ocfs2_journal_access(handle, ci, bh,
818 				     &osb->s_journal_triggers[OCFS2_JTR_DL],
819 				     type);
820 }
821 
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)822 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
823 			 struct buffer_head *bh, int type)
824 {
825 	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
826 }
827 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)828 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
829 {
830 	int status;
831 
832 	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
833 
834 	status = jbd2_journal_dirty_metadata(handle, bh);
835 	if (status) {
836 		mlog_errno(status);
837 		if (!is_handle_aborted(handle)) {
838 			journal_t *journal = handle->h_transaction->t_journal;
839 
840 			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
841 			     "handle type %u started at line %u, credits %u/%u "
842 			     "errcode %d. Aborting transaction and journal.\n",
843 			     handle->h_type, handle->h_line_no,
844 			     handle->h_requested_credits,
845 			     jbd2_handle_buffer_credits(handle), status);
846 			handle->h_err = status;
847 			jbd2_journal_abort_handle(handle);
848 			jbd2_journal_abort(journal, status);
849 		}
850 	}
851 }
852 
853 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
854 
ocfs2_set_journal_params(struct ocfs2_super * osb)855 void ocfs2_set_journal_params(struct ocfs2_super *osb)
856 {
857 	journal_t *journal = osb->journal->j_journal;
858 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
859 
860 	if (osb->osb_commit_interval)
861 		commit_interval = osb->osb_commit_interval;
862 
863 	write_lock(&journal->j_state_lock);
864 	journal->j_commit_interval = commit_interval;
865 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
866 		journal->j_flags |= JBD2_BARRIER;
867 	else
868 		journal->j_flags &= ~JBD2_BARRIER;
869 	write_unlock(&journal->j_state_lock);
870 }
871 
872 /*
873  * alloc & initialize skeleton for journal structure.
874  * ocfs2_journal_init() will make fs have journal ability.
875  */
ocfs2_journal_alloc(struct ocfs2_super * osb)876 int ocfs2_journal_alloc(struct ocfs2_super *osb)
877 {
878 	int status = 0;
879 	struct ocfs2_journal *journal;
880 
881 	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
882 	if (!journal) {
883 		mlog(ML_ERROR, "unable to alloc journal\n");
884 		status = -ENOMEM;
885 		goto bail;
886 	}
887 	osb->journal = journal;
888 	journal->j_osb = osb;
889 
890 	atomic_set(&journal->j_num_trans, 0);
891 	init_rwsem(&journal->j_trans_barrier);
892 	init_waitqueue_head(&journal->j_checkpointed);
893 	spin_lock_init(&journal->j_lock);
894 	journal->j_trans_id = 1UL;
895 	INIT_LIST_HEAD(&journal->j_la_cleanups);
896 	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
897 	journal->j_state = OCFS2_JOURNAL_FREE;
898 
899 bail:
900 	return status;
901 }
902 
ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)903 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
904 {
905 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
906 	struct writeback_control wbc = {
907 		.sync_mode =  WB_SYNC_ALL,
908 		.nr_to_write = mapping->nrpages * 2,
909 		.range_start = jinode->i_dirty_start,
910 		.range_end = jinode->i_dirty_end,
911 	};
912 
913 	return filemap_fdatawrite_wbc(mapping, &wbc);
914 }
915 
ocfs2_journal_init(struct ocfs2_super * osb,int * dirty)916 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
917 {
918 	int status = -1;
919 	struct inode *inode = NULL; /* the journal inode */
920 	journal_t *j_journal = NULL;
921 	struct ocfs2_journal *journal = osb->journal;
922 	struct ocfs2_dinode *di = NULL;
923 	struct buffer_head *bh = NULL;
924 	int inode_lock = 0;
925 
926 	BUG_ON(!journal);
927 	/* already have the inode for our journal */
928 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
929 					    osb->slot_num);
930 	if (inode == NULL) {
931 		status = -EACCES;
932 		mlog_errno(status);
933 		goto done;
934 	}
935 	if (is_bad_inode(inode)) {
936 		mlog(ML_ERROR, "access error (bad inode)\n");
937 		iput(inode);
938 		inode = NULL;
939 		status = -EACCES;
940 		goto done;
941 	}
942 
943 	SET_INODE_JOURNAL(inode);
944 	OCFS2_I(inode)->ip_open_count++;
945 
946 	/* Skip recovery waits here - journal inode metadata never
947 	 * changes in a live cluster so it can be considered an
948 	 * exception to the rule. */
949 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
950 	if (status < 0) {
951 		if (status != -ERESTARTSYS)
952 			mlog(ML_ERROR, "Could not get lock on journal!\n");
953 		goto done;
954 	}
955 
956 	inode_lock = 1;
957 	di = (struct ocfs2_dinode *)bh->b_data;
958 
959 	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
960 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
961 		     i_size_read(inode));
962 		status = -EINVAL;
963 		goto done;
964 	}
965 
966 	trace_ocfs2_journal_init(i_size_read(inode),
967 				 (unsigned long long)inode->i_blocks,
968 				 OCFS2_I(inode)->ip_clusters);
969 
970 	/* call the kernels journal init function now */
971 	j_journal = jbd2_journal_init_inode(inode);
972 	if (IS_ERR(j_journal)) {
973 		mlog(ML_ERROR, "Linux journal layer error\n");
974 		status = PTR_ERR(j_journal);
975 		goto done;
976 	}
977 
978 	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
979 
980 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
981 		  OCFS2_JOURNAL_DIRTY_FL);
982 
983 	journal->j_journal = j_journal;
984 	journal->j_journal->j_submit_inode_data_buffers =
985 		ocfs2_journal_submit_inode_data_buffers;
986 	journal->j_journal->j_finish_inode_data_buffers =
987 		jbd2_journal_finish_inode_data_buffers;
988 	journal->j_inode = inode;
989 	journal->j_bh = bh;
990 
991 	ocfs2_set_journal_params(osb);
992 
993 	journal->j_state = OCFS2_JOURNAL_LOADED;
994 
995 	status = 0;
996 done:
997 	if (status < 0) {
998 		if (inode_lock)
999 			ocfs2_inode_unlock(inode, 1);
1000 		brelse(bh);
1001 		if (inode) {
1002 			OCFS2_I(inode)->ip_open_count--;
1003 			iput(inode);
1004 		}
1005 	}
1006 
1007 	return status;
1008 }
1009 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)1010 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
1011 {
1012 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
1013 }
1014 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)1015 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
1016 {
1017 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
1018 }
1019 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)1020 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
1021 				      int dirty, int replayed)
1022 {
1023 	int status;
1024 	unsigned int flags;
1025 	struct ocfs2_journal *journal = osb->journal;
1026 	struct buffer_head *bh = journal->j_bh;
1027 	struct ocfs2_dinode *fe;
1028 
1029 	fe = (struct ocfs2_dinode *)bh->b_data;
1030 
1031 	/* The journal bh on the osb always comes from ocfs2_journal_init()
1032 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
1033 	 * code bug if we mess it up. */
1034 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1035 
1036 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1037 	if (dirty)
1038 		flags |= OCFS2_JOURNAL_DIRTY_FL;
1039 	else
1040 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1041 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1042 
1043 	if (replayed)
1044 		ocfs2_bump_recovery_generation(fe);
1045 
1046 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1047 	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1048 	if (status < 0)
1049 		mlog_errno(status);
1050 
1051 	return status;
1052 }
1053 
1054 /*
1055  * If the journal has been kmalloc'd it needs to be freed after this
1056  * call.
1057  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)1058 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1059 {
1060 	struct ocfs2_journal *journal = NULL;
1061 	int status = 0;
1062 	struct inode *inode = NULL;
1063 	int num_running_trans = 0;
1064 
1065 	BUG_ON(!osb);
1066 
1067 	journal = osb->journal;
1068 	if (!journal)
1069 		goto done;
1070 
1071 	inode = journal->j_inode;
1072 
1073 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
1074 		goto done;
1075 
1076 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
1077 	if (!igrab(inode))
1078 		BUG();
1079 
1080 	num_running_trans = atomic_read(&(journal->j_num_trans));
1081 	trace_ocfs2_journal_shutdown(num_running_trans);
1082 
1083 	/* Do a commit_cache here. It will flush our journal, *and*
1084 	 * release any locks that are still held.
1085 	 * set the SHUTDOWN flag and release the trans lock.
1086 	 * the commit thread will take the trans lock for us below. */
1087 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1088 
1089 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1090 	 * drop the trans_lock (which we want to hold until we
1091 	 * completely destroy the journal. */
1092 	if (osb->commit_task) {
1093 		/* Wait for the commit thread */
1094 		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1095 		kthread_stop(osb->commit_task);
1096 		osb->commit_task = NULL;
1097 	}
1098 
1099 	BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1100 
1101 	if (ocfs2_mount_local(osb) &&
1102 	    (journal->j_journal->j_flags & JBD2_LOADED)) {
1103 		jbd2_journal_lock_updates(journal->j_journal);
1104 		status = jbd2_journal_flush(journal->j_journal, 0);
1105 		jbd2_journal_unlock_updates(journal->j_journal);
1106 		if (status < 0)
1107 			mlog_errno(status);
1108 	}
1109 
1110 	/* Shutdown the kernel journal system */
1111 	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1112 		/*
1113 		 * Do not toggle if flush was unsuccessful otherwise
1114 		 * will leave dirty metadata in a "clean" journal
1115 		 */
1116 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1117 		if (status < 0)
1118 			mlog_errno(status);
1119 	}
1120 	journal->j_journal = NULL;
1121 
1122 	OCFS2_I(inode)->ip_open_count--;
1123 
1124 	/* unlock our journal */
1125 	ocfs2_inode_unlock(inode, 1);
1126 
1127 	brelse(journal->j_bh);
1128 	journal->j_bh = NULL;
1129 
1130 	journal->j_state = OCFS2_JOURNAL_FREE;
1131 
1132 done:
1133 	iput(inode);
1134 	kfree(journal);
1135 	osb->journal = NULL;
1136 }
1137 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1138 static void ocfs2_clear_journal_error(struct super_block *sb,
1139 				      journal_t *journal,
1140 				      int slot)
1141 {
1142 	int olderr;
1143 
1144 	olderr = jbd2_journal_errno(journal);
1145 	if (olderr) {
1146 		mlog(ML_ERROR, "File system error %d recorded in "
1147 		     "journal %u.\n", olderr, slot);
1148 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1149 		     sb->s_id);
1150 
1151 		jbd2_journal_ack_err(journal);
1152 		jbd2_journal_clear_err(journal);
1153 	}
1154 }
1155 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1156 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1157 {
1158 	int status = 0;
1159 	struct ocfs2_super *osb;
1160 
1161 	BUG_ON(!journal);
1162 
1163 	osb = journal->j_osb;
1164 
1165 	status = jbd2_journal_load(journal->j_journal);
1166 	if (status < 0) {
1167 		mlog(ML_ERROR, "Failed to load journal!\n");
1168 		goto done;
1169 	}
1170 
1171 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1172 
1173 	if (replayed) {
1174 		jbd2_journal_lock_updates(journal->j_journal);
1175 		status = jbd2_journal_flush(journal->j_journal, 0);
1176 		jbd2_journal_unlock_updates(journal->j_journal);
1177 		if (status < 0)
1178 			mlog_errno(status);
1179 	}
1180 
1181 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1182 	if (status < 0) {
1183 		mlog_errno(status);
1184 		goto done;
1185 	}
1186 
1187 	/* Launch the commit thread */
1188 	if (!local) {
1189 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1190 				"ocfs2cmt-%s", osb->uuid_str);
1191 		if (IS_ERR(osb->commit_task)) {
1192 			status = PTR_ERR(osb->commit_task);
1193 			osb->commit_task = NULL;
1194 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1195 			     "error=%d", status);
1196 			goto done;
1197 		}
1198 	} else
1199 		osb->commit_task = NULL;
1200 
1201 done:
1202 	return status;
1203 }
1204 
1205 
1206 /* 'full' flag tells us whether we clear out all blocks or if we just
1207  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1208 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1209 {
1210 	int status;
1211 
1212 	BUG_ON(!journal);
1213 
1214 	status = jbd2_journal_wipe(journal->j_journal, full);
1215 	if (status < 0) {
1216 		mlog_errno(status);
1217 		goto bail;
1218 	}
1219 
1220 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1221 	if (status < 0)
1222 		mlog_errno(status);
1223 
1224 bail:
1225 	return status;
1226 }
1227 
ocfs2_recovery_completed(struct ocfs2_super * osb)1228 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1229 {
1230 	int empty;
1231 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1232 
1233 	spin_lock(&osb->osb_lock);
1234 	empty = (rm->rm_used == 0);
1235 	spin_unlock(&osb->osb_lock);
1236 
1237 	return empty;
1238 }
1239 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1240 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1241 {
1242 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1243 }
1244 
1245 /*
1246  * JBD Might read a cached version of another nodes journal file. We
1247  * don't want this as this file changes often and we get no
1248  * notification on those changes. The only way to be sure that we've
1249  * got the most up to date version of those blocks then is to force
1250  * read them off disk. Just searching through the buffer cache won't
1251  * work as there may be pages backing this file which are still marked
1252  * up to date. We know things can't change on this file underneath us
1253  * as we have the lock by now :)
1254  */
ocfs2_force_read_journal(struct inode * inode)1255 static int ocfs2_force_read_journal(struct inode *inode)
1256 {
1257 	int status = 0;
1258 	int i;
1259 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1260 	struct buffer_head *bh = NULL;
1261 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1262 
1263 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1264 	v_blkno = 0;
1265 	while (v_blkno < num_blocks) {
1266 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1267 						     &p_blkno, &p_blocks, NULL);
1268 		if (status < 0) {
1269 			mlog_errno(status);
1270 			goto bail;
1271 		}
1272 
1273 		for (i = 0; i < p_blocks; i++, p_blkno++) {
1274 			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1275 					osb->sb->s_blocksize);
1276 			/* block not cached. */
1277 			if (!bh)
1278 				continue;
1279 
1280 			brelse(bh);
1281 			bh = NULL;
1282 			/* We are reading journal data which should not
1283 			 * be put in the uptodate cache.
1284 			 */
1285 			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1286 			if (status < 0) {
1287 				mlog_errno(status);
1288 				goto bail;
1289 			}
1290 
1291 			brelse(bh);
1292 			bh = NULL;
1293 		}
1294 
1295 		v_blkno += p_blocks;
1296 	}
1297 
1298 bail:
1299 	return status;
1300 }
1301 
1302 struct ocfs2_la_recovery_item {
1303 	struct list_head	lri_list;
1304 	int			lri_slot;
1305 	struct ocfs2_dinode	*lri_la_dinode;
1306 	struct ocfs2_dinode	*lri_tl_dinode;
1307 	struct ocfs2_quota_recovery *lri_qrec;
1308 	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1309 };
1310 
1311 /* Does the second half of the recovery process. By this point, the
1312  * node is marked clean and can actually be considered recovered,
1313  * hence it's no longer in the recovery map, but there's still some
1314  * cleanup we can do which shouldn't happen within the recovery thread
1315  * as locking in that context becomes very difficult if we are to take
1316  * recovering nodes into account.
1317  *
1318  * NOTE: This function can and will sleep on recovery of other nodes
1319  * during cluster locking, just like any other ocfs2 process.
1320  */
ocfs2_complete_recovery(struct work_struct * work)1321 void ocfs2_complete_recovery(struct work_struct *work)
1322 {
1323 	int ret = 0;
1324 	struct ocfs2_journal *journal =
1325 		container_of(work, struct ocfs2_journal, j_recovery_work);
1326 	struct ocfs2_super *osb = journal->j_osb;
1327 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1328 	struct ocfs2_la_recovery_item *item, *n;
1329 	struct ocfs2_quota_recovery *qrec;
1330 	enum ocfs2_orphan_reco_type orphan_reco_type;
1331 	LIST_HEAD(tmp_la_list);
1332 
1333 	trace_ocfs2_complete_recovery(
1334 		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1335 
1336 	spin_lock(&journal->j_lock);
1337 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1338 	spin_unlock(&journal->j_lock);
1339 
1340 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1341 		list_del_init(&item->lri_list);
1342 
1343 		ocfs2_wait_on_quotas(osb);
1344 
1345 		la_dinode = item->lri_la_dinode;
1346 		tl_dinode = item->lri_tl_dinode;
1347 		qrec = item->lri_qrec;
1348 		orphan_reco_type = item->lri_orphan_reco_type;
1349 
1350 		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1351 			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1352 			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1353 			qrec);
1354 
1355 		if (la_dinode) {
1356 			ret = ocfs2_complete_local_alloc_recovery(osb,
1357 								  la_dinode);
1358 			if (ret < 0)
1359 				mlog_errno(ret);
1360 
1361 			kfree(la_dinode);
1362 		}
1363 
1364 		if (tl_dinode) {
1365 			ret = ocfs2_complete_truncate_log_recovery(osb,
1366 								   tl_dinode);
1367 			if (ret < 0)
1368 				mlog_errno(ret);
1369 
1370 			kfree(tl_dinode);
1371 		}
1372 
1373 		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1374 				orphan_reco_type);
1375 		if (ret < 0)
1376 			mlog_errno(ret);
1377 
1378 		if (qrec) {
1379 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1380 							  item->lri_slot);
1381 			if (ret < 0)
1382 				mlog_errno(ret);
1383 			/* Recovery info is already freed now */
1384 		}
1385 
1386 		kfree(item);
1387 	}
1388 
1389 	trace_ocfs2_complete_recovery_end(ret);
1390 }
1391 
1392 /* NOTE: This function always eats your references to la_dinode and
1393  * tl_dinode, either manually on error, or by passing them to
1394  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1395 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1396 					    int slot_num,
1397 					    struct ocfs2_dinode *la_dinode,
1398 					    struct ocfs2_dinode *tl_dinode,
1399 					    struct ocfs2_quota_recovery *qrec,
1400 					    enum ocfs2_orphan_reco_type orphan_reco_type)
1401 {
1402 	struct ocfs2_la_recovery_item *item;
1403 
1404 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1405 	if (!item) {
1406 		/* Though we wish to avoid it, we are in fact safe in
1407 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1408 		 * than capable of reclaiming unused space. */
1409 		kfree(la_dinode);
1410 		kfree(tl_dinode);
1411 
1412 		if (qrec)
1413 			ocfs2_free_quota_recovery(qrec);
1414 
1415 		mlog_errno(-ENOMEM);
1416 		return;
1417 	}
1418 
1419 	INIT_LIST_HEAD(&item->lri_list);
1420 	item->lri_la_dinode = la_dinode;
1421 	item->lri_slot = slot_num;
1422 	item->lri_tl_dinode = tl_dinode;
1423 	item->lri_qrec = qrec;
1424 	item->lri_orphan_reco_type = orphan_reco_type;
1425 
1426 	spin_lock(&journal->j_lock);
1427 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1428 	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1429 	spin_unlock(&journal->j_lock);
1430 }
1431 
1432 /* Called by the mount code to queue recovery the last part of
1433  * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1434 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1435 {
1436 	struct ocfs2_journal *journal = osb->journal;
1437 
1438 	if (ocfs2_is_hard_readonly(osb))
1439 		return;
1440 
1441 	/* No need to queue up our truncate_log as regular cleanup will catch
1442 	 * that */
1443 	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1444 					osb->local_alloc_copy, NULL, NULL,
1445 					ORPHAN_NEED_TRUNCATE);
1446 	ocfs2_schedule_truncate_log_flush(osb, 0);
1447 
1448 	osb->local_alloc_copy = NULL;
1449 
1450 	/* queue to recover orphan slots for all offline slots */
1451 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1452 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1453 	ocfs2_free_replay_slots(osb);
1454 }
1455 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1456 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1457 {
1458 	if (osb->quota_rec) {
1459 		ocfs2_queue_recovery_completion(osb->journal,
1460 						osb->slot_num,
1461 						NULL,
1462 						NULL,
1463 						osb->quota_rec,
1464 						ORPHAN_NEED_TRUNCATE);
1465 		osb->quota_rec = NULL;
1466 	}
1467 }
1468 
__ocfs2_recovery_thread(void * arg)1469 static int __ocfs2_recovery_thread(void *arg)
1470 {
1471 	int status, node_num, slot_num;
1472 	struct ocfs2_super *osb = arg;
1473 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1474 	int *rm_quota = NULL;
1475 	int rm_quota_used = 0, i;
1476 	struct ocfs2_quota_recovery *qrec;
1477 
1478 	/* Whether the quota supported. */
1479 	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1480 			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1481 		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1482 			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1483 
1484 	status = ocfs2_wait_on_mount(osb);
1485 	if (status < 0) {
1486 		goto bail;
1487 	}
1488 
1489 	if (quota_enabled) {
1490 		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1491 		if (!rm_quota) {
1492 			status = -ENOMEM;
1493 			goto bail;
1494 		}
1495 	}
1496 restart:
1497 	if (quota_enabled) {
1498 		mutex_lock(&osb->recovery_lock);
1499 		/* Confirm that recovery thread will no longer recover quotas */
1500 		if (osb->recovery_state == OCFS2_REC_QUOTA_WANT_DISABLE) {
1501 			osb->recovery_state = OCFS2_REC_QUOTA_DISABLED;
1502 			wake_up(&osb->recovery_event);
1503 		}
1504 		if (osb->recovery_state >= OCFS2_REC_QUOTA_DISABLED)
1505 			quota_enabled = 0;
1506 		mutex_unlock(&osb->recovery_lock);
1507 	}
1508 
1509 	status = ocfs2_super_lock(osb, 1);
1510 	if (status < 0) {
1511 		mlog_errno(status);
1512 		goto bail;
1513 	}
1514 
1515 	status = ocfs2_compute_replay_slots(osb);
1516 	if (status < 0)
1517 		mlog_errno(status);
1518 
1519 	/* queue recovery for our own slot */
1520 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1521 					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1522 
1523 	spin_lock(&osb->osb_lock);
1524 	while (rm->rm_used) {
1525 		/* It's always safe to remove entry zero, as we won't
1526 		 * clear it until ocfs2_recover_node() has succeeded. */
1527 		node_num = rm->rm_entries[0];
1528 		spin_unlock(&osb->osb_lock);
1529 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1530 		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1531 		if (slot_num == -ENOENT) {
1532 			status = 0;
1533 			goto skip_recovery;
1534 		}
1535 
1536 		/* It is a bit subtle with quota recovery. We cannot do it
1537 		 * immediately because we have to obtain cluster locks from
1538 		 * quota files and we also don't want to just skip it because
1539 		 * then quota usage would be out of sync until some node takes
1540 		 * the slot. So we remember which nodes need quota recovery
1541 		 * and when everything else is done, we recover quotas. */
1542 		if (quota_enabled) {
1543 			for (i = 0; i < rm_quota_used
1544 					&& rm_quota[i] != slot_num; i++)
1545 				;
1546 
1547 			if (i == rm_quota_used)
1548 				rm_quota[rm_quota_used++] = slot_num;
1549 		}
1550 
1551 		status = ocfs2_recover_node(osb, node_num, slot_num);
1552 skip_recovery:
1553 		if (!status) {
1554 			ocfs2_recovery_map_clear(osb, node_num);
1555 		} else {
1556 			mlog(ML_ERROR,
1557 			     "Error %d recovering node %d on device (%u,%u)!\n",
1558 			     status, node_num,
1559 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1560 			mlog(ML_ERROR, "Volume requires unmount.\n");
1561 		}
1562 
1563 		spin_lock(&osb->osb_lock);
1564 	}
1565 	spin_unlock(&osb->osb_lock);
1566 	trace_ocfs2_recovery_thread_end(status);
1567 
1568 	/* Refresh all journal recovery generations from disk */
1569 	status = ocfs2_check_journals_nolocks(osb);
1570 	status = (status == -EROFS) ? 0 : status;
1571 	if (status < 0)
1572 		mlog_errno(status);
1573 
1574 	/* Now it is right time to recover quotas... We have to do this under
1575 	 * superblock lock so that no one can start using the slot (and crash)
1576 	 * before we recover it */
1577 	if (quota_enabled) {
1578 		for (i = 0; i < rm_quota_used; i++) {
1579 			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1580 			if (IS_ERR(qrec)) {
1581 				status = PTR_ERR(qrec);
1582 				mlog_errno(status);
1583 				continue;
1584 			}
1585 			ocfs2_queue_recovery_completion(osb->journal,
1586 					rm_quota[i],
1587 					NULL, NULL, qrec,
1588 					ORPHAN_NEED_TRUNCATE);
1589 		}
1590 	}
1591 
1592 	ocfs2_super_unlock(osb, 1);
1593 
1594 	/* queue recovery for offline slots */
1595 	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1596 
1597 bail:
1598 	mutex_lock(&osb->recovery_lock);
1599 	if (!status && !ocfs2_recovery_completed(osb)) {
1600 		mutex_unlock(&osb->recovery_lock);
1601 		goto restart;
1602 	}
1603 
1604 	ocfs2_free_replay_slots(osb);
1605 	osb->recovery_thread_task = NULL;
1606 	if (osb->recovery_state == OCFS2_REC_WANT_DISABLE)
1607 		osb->recovery_state = OCFS2_REC_DISABLED;
1608 	wake_up(&osb->recovery_event);
1609 
1610 	mutex_unlock(&osb->recovery_lock);
1611 
1612 	kfree(rm_quota);
1613 
1614 	return status;
1615 }
1616 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1617 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1618 {
1619 	int was_set = -1;
1620 
1621 	mutex_lock(&osb->recovery_lock);
1622 	if (osb->recovery_state < OCFS2_REC_WANT_DISABLE)
1623 		was_set = ocfs2_recovery_map_set(osb, node_num);
1624 
1625 	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1626 		osb->recovery_state, osb->recovery_thread_task, was_set);
1627 
1628 	if (osb->recovery_state >= OCFS2_REC_WANT_DISABLE)
1629 		goto out;
1630 
1631 	if (osb->recovery_thread_task)
1632 		goto out;
1633 
1634 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1635 			"ocfs2rec-%s", osb->uuid_str);
1636 	if (IS_ERR(osb->recovery_thread_task)) {
1637 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1638 		osb->recovery_thread_task = NULL;
1639 	}
1640 
1641 out:
1642 	mutex_unlock(&osb->recovery_lock);
1643 	wake_up(&osb->recovery_event);
1644 }
1645 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1646 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1647 				    int slot_num,
1648 				    struct buffer_head **bh,
1649 				    struct inode **ret_inode)
1650 {
1651 	int status = -EACCES;
1652 	struct inode *inode = NULL;
1653 
1654 	BUG_ON(slot_num >= osb->max_slots);
1655 
1656 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1657 					    slot_num);
1658 	if (!inode || is_bad_inode(inode)) {
1659 		mlog_errno(status);
1660 		goto bail;
1661 	}
1662 	SET_INODE_JOURNAL(inode);
1663 
1664 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1665 	if (status < 0) {
1666 		mlog_errno(status);
1667 		goto bail;
1668 	}
1669 
1670 	status = 0;
1671 
1672 bail:
1673 	if (inode) {
1674 		if (status || !ret_inode)
1675 			iput(inode);
1676 		else
1677 			*ret_inode = inode;
1678 	}
1679 	return status;
1680 }
1681 
1682 /* Does the actual journal replay and marks the journal inode as
1683  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1684 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1685 				int node_num,
1686 				int slot_num)
1687 {
1688 	int status;
1689 	int got_lock = 0;
1690 	unsigned int flags;
1691 	struct inode *inode = NULL;
1692 	struct ocfs2_dinode *fe;
1693 	journal_t *journal = NULL;
1694 	struct buffer_head *bh = NULL;
1695 	u32 slot_reco_gen;
1696 
1697 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1698 	if (status) {
1699 		mlog_errno(status);
1700 		goto done;
1701 	}
1702 
1703 	fe = (struct ocfs2_dinode *)bh->b_data;
1704 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1705 	brelse(bh);
1706 	bh = NULL;
1707 
1708 	/*
1709 	 * As the fs recovery is asynchronous, there is a small chance that
1710 	 * another node mounted (and recovered) the slot before the recovery
1711 	 * thread could get the lock. To handle that, we dirty read the journal
1712 	 * inode for that slot to get the recovery generation. If it is
1713 	 * different than what we expected, the slot has been recovered.
1714 	 * If not, it needs recovery.
1715 	 */
1716 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1717 		trace_ocfs2_replay_journal_recovered(slot_num,
1718 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1719 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1720 		status = -EBUSY;
1721 		goto done;
1722 	}
1723 
1724 	/* Continue with recovery as the journal has not yet been recovered */
1725 
1726 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1727 	if (status < 0) {
1728 		trace_ocfs2_replay_journal_lock_err(status);
1729 		if (status != -ERESTARTSYS)
1730 			mlog(ML_ERROR, "Could not lock journal!\n");
1731 		goto done;
1732 	}
1733 	got_lock = 1;
1734 
1735 	fe = (struct ocfs2_dinode *) bh->b_data;
1736 
1737 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1738 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1739 
1740 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1741 		trace_ocfs2_replay_journal_skip(node_num);
1742 		/* Refresh recovery generation for the slot */
1743 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1744 		goto done;
1745 	}
1746 
1747 	/* we need to run complete recovery for offline orphan slots */
1748 	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1749 
1750 	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1751 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1752 	       MINOR(osb->sb->s_dev));
1753 
1754 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1755 
1756 	status = ocfs2_force_read_journal(inode);
1757 	if (status < 0) {
1758 		mlog_errno(status);
1759 		goto done;
1760 	}
1761 
1762 	journal = jbd2_journal_init_inode(inode);
1763 	if (IS_ERR(journal)) {
1764 		mlog(ML_ERROR, "Linux journal layer error\n");
1765 		status = PTR_ERR(journal);
1766 		goto done;
1767 	}
1768 
1769 	status = jbd2_journal_load(journal);
1770 	if (status < 0) {
1771 		mlog_errno(status);
1772 		BUG_ON(!igrab(inode));
1773 		jbd2_journal_destroy(journal);
1774 		goto done;
1775 	}
1776 
1777 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1778 
1779 	/* wipe the journal */
1780 	jbd2_journal_lock_updates(journal);
1781 	status = jbd2_journal_flush(journal, 0);
1782 	jbd2_journal_unlock_updates(journal);
1783 	if (status < 0)
1784 		mlog_errno(status);
1785 
1786 	/* This will mark the node clean */
1787 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1788 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1789 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1790 
1791 	/* Increment recovery generation to indicate successful recovery */
1792 	ocfs2_bump_recovery_generation(fe);
1793 	osb->slot_recovery_generations[slot_num] =
1794 					ocfs2_get_recovery_generation(fe);
1795 
1796 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1797 	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1798 	if (status < 0)
1799 		mlog_errno(status);
1800 
1801 	BUG_ON(!igrab(inode));
1802 
1803 	jbd2_journal_destroy(journal);
1804 
1805 	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1806 	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1807 	       MINOR(osb->sb->s_dev));
1808 done:
1809 	/* drop the lock on this nodes journal */
1810 	if (got_lock)
1811 		ocfs2_inode_unlock(inode, 1);
1812 
1813 	iput(inode);
1814 	brelse(bh);
1815 
1816 	return status;
1817 }
1818 
1819 /*
1820  * Do the most important parts of node recovery:
1821  *  - Replay it's journal
1822  *  - Stamp a clean local allocator file
1823  *  - Stamp a clean truncate log
1824  *  - Mark the node clean
1825  *
1826  * If this function completes without error, a node in OCFS2 can be
1827  * said to have been safely recovered. As a result, failure during the
1828  * second part of a nodes recovery process (local alloc recovery) is
1829  * far less concerning.
1830  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1831 static int ocfs2_recover_node(struct ocfs2_super *osb,
1832 			      int node_num, int slot_num)
1833 {
1834 	int status = 0;
1835 	struct ocfs2_dinode *la_copy = NULL;
1836 	struct ocfs2_dinode *tl_copy = NULL;
1837 
1838 	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1839 
1840 	/* Should not ever be called to recover ourselves -- in that
1841 	 * case we should've called ocfs2_journal_load instead. */
1842 	BUG_ON(osb->node_num == node_num);
1843 
1844 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1845 	if (status < 0) {
1846 		if (status == -EBUSY) {
1847 			trace_ocfs2_recover_node_skip(slot_num, node_num);
1848 			status = 0;
1849 			goto done;
1850 		}
1851 		mlog_errno(status);
1852 		goto done;
1853 	}
1854 
1855 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1856 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1857 	if (status < 0) {
1858 		mlog_errno(status);
1859 		goto done;
1860 	}
1861 
1862 	/* An error from begin_truncate_log_recovery is not
1863 	 * serious enough to warrant halting the rest of
1864 	 * recovery. */
1865 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1866 	if (status < 0)
1867 		mlog_errno(status);
1868 
1869 	/* Likewise, this would be a strange but ultimately not so
1870 	 * harmful place to get an error... */
1871 	status = ocfs2_clear_slot(osb, slot_num);
1872 	if (status < 0)
1873 		mlog_errno(status);
1874 
1875 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1876 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1877 					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1878 
1879 	status = 0;
1880 done:
1881 
1882 	return status;
1883 }
1884 
1885 /* Test node liveness by trylocking his journal. If we get the lock,
1886  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1887  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1888 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1889 				 int slot_num)
1890 {
1891 	int status, flags;
1892 	struct inode *inode = NULL;
1893 
1894 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1895 					    slot_num);
1896 	if (inode == NULL) {
1897 		mlog(ML_ERROR, "access error\n");
1898 		status = -EACCES;
1899 		goto bail;
1900 	}
1901 	if (is_bad_inode(inode)) {
1902 		mlog(ML_ERROR, "access error (bad inode)\n");
1903 		iput(inode);
1904 		inode = NULL;
1905 		status = -EACCES;
1906 		goto bail;
1907 	}
1908 	SET_INODE_JOURNAL(inode);
1909 
1910 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1911 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1912 	if (status < 0) {
1913 		if (status != -EAGAIN)
1914 			mlog_errno(status);
1915 		goto bail;
1916 	}
1917 
1918 	ocfs2_inode_unlock(inode, 1);
1919 bail:
1920 	iput(inode);
1921 
1922 	return status;
1923 }
1924 
1925 /* Call this underneath ocfs2_super_lock. It also assumes that the
1926  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1927 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1928 {
1929 	unsigned int node_num;
1930 	int status, i;
1931 	u32 gen;
1932 	struct buffer_head *bh = NULL;
1933 	struct ocfs2_dinode *di;
1934 
1935 	/* This is called with the super block cluster lock, so we
1936 	 * know that the slot map can't change underneath us. */
1937 
1938 	for (i = 0; i < osb->max_slots; i++) {
1939 		/* Read journal inode to get the recovery generation */
1940 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1941 		if (status) {
1942 			mlog_errno(status);
1943 			goto bail;
1944 		}
1945 		di = (struct ocfs2_dinode *)bh->b_data;
1946 		gen = ocfs2_get_recovery_generation(di);
1947 		brelse(bh);
1948 		bh = NULL;
1949 
1950 		spin_lock(&osb->osb_lock);
1951 		osb->slot_recovery_generations[i] = gen;
1952 
1953 		trace_ocfs2_mark_dead_nodes(i,
1954 					    osb->slot_recovery_generations[i]);
1955 
1956 		if (i == osb->slot_num) {
1957 			spin_unlock(&osb->osb_lock);
1958 			continue;
1959 		}
1960 
1961 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1962 		if (status == -ENOENT) {
1963 			spin_unlock(&osb->osb_lock);
1964 			continue;
1965 		}
1966 
1967 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1968 			spin_unlock(&osb->osb_lock);
1969 			continue;
1970 		}
1971 		spin_unlock(&osb->osb_lock);
1972 
1973 		/* Ok, we have a slot occupied by another node which
1974 		 * is not in the recovery map. We trylock his journal
1975 		 * file here to test if he's alive. */
1976 		status = ocfs2_trylock_journal(osb, i);
1977 		if (!status) {
1978 			/* Since we're called from mount, we know that
1979 			 * the recovery thread can't race us on
1980 			 * setting / checking the recovery bits. */
1981 			ocfs2_recovery_thread(osb, node_num);
1982 		} else if ((status < 0) && (status != -EAGAIN)) {
1983 			mlog_errno(status);
1984 			goto bail;
1985 		}
1986 	}
1987 
1988 	status = 0;
1989 bail:
1990 	return status;
1991 }
1992 
1993 /*
1994  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1995  * randomness to the timeout to minimize multple nodes firing the timer at the
1996  * same time.
1997  */
ocfs2_orphan_scan_timeout(void)1998 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1999 {
2000 	unsigned long time;
2001 
2002 	get_random_bytes(&time, sizeof(time));
2003 	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
2004 	return msecs_to_jiffies(time);
2005 }
2006 
2007 /*
2008  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
2009  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
2010  * is done to catch any orphans that are left over in orphan directories.
2011  *
2012  * It scans all slots, even ones that are in use. It does so to handle the
2013  * case described below:
2014  *
2015  *   Node 1 has an inode it was using. The dentry went away due to memory
2016  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
2017  *   has the open lock.
2018  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
2019  *   but node 1 has no dentry and doesn't get the message. It trylocks the
2020  *   open lock, sees that another node has a PR, and does nothing.
2021  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
2022  *   open lock, sees the PR still, and does nothing.
2023  *   Basically, we have to trigger an orphan iput on node 1. The only way
2024  *   for this to happen is if node 1 runs node 2's orphan dir.
2025  *
2026  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
2027  * seconds.  It gets an EX lock on os_lockres and checks sequence number
2028  * stored in LVB. If the sequence number has changed, it means some other
2029  * node has done the scan.  This node skips the scan and tracks the
2030  * sequence number.  If the sequence number didn't change, it means a scan
2031  * hasn't happened.  The node queues a scan and increments the
2032  * sequence number in the LVB.
2033  */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)2034 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
2035 {
2036 	struct ocfs2_orphan_scan *os;
2037 	int status, i;
2038 	u32 seqno = 0;
2039 
2040 	os = &osb->osb_orphan_scan;
2041 
2042 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2043 		goto out;
2044 
2045 	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2046 					    atomic_read(&os->os_state));
2047 
2048 	status = ocfs2_orphan_scan_lock(osb, &seqno);
2049 	if (status < 0) {
2050 		if (status != -EAGAIN)
2051 			mlog_errno(status);
2052 		goto out;
2053 	}
2054 
2055 	/* Do no queue the tasks if the volume is being umounted */
2056 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2057 		goto unlock;
2058 
2059 	if (os->os_seqno != seqno) {
2060 		os->os_seqno = seqno;
2061 		goto unlock;
2062 	}
2063 
2064 	for (i = 0; i < osb->max_slots; i++)
2065 		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2066 						NULL, ORPHAN_NO_NEED_TRUNCATE);
2067 	/*
2068 	 * We queued a recovery on orphan slots, increment the sequence
2069 	 * number and update LVB so other node will skip the scan for a while
2070 	 */
2071 	seqno++;
2072 	os->os_count++;
2073 	os->os_scantime = ktime_get_seconds();
2074 unlock:
2075 	ocfs2_orphan_scan_unlock(osb, seqno);
2076 out:
2077 	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2078 					  atomic_read(&os->os_state));
2079 	return;
2080 }
2081 
2082 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)2083 static void ocfs2_orphan_scan_work(struct work_struct *work)
2084 {
2085 	struct ocfs2_orphan_scan *os;
2086 	struct ocfs2_super *osb;
2087 
2088 	os = container_of(work, struct ocfs2_orphan_scan,
2089 			  os_orphan_scan_work.work);
2090 	osb = os->os_osb;
2091 
2092 	mutex_lock(&os->os_lock);
2093 	ocfs2_queue_orphan_scan(osb);
2094 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2095 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2096 				      ocfs2_orphan_scan_timeout());
2097 	mutex_unlock(&os->os_lock);
2098 }
2099 
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2100 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2101 {
2102 	struct ocfs2_orphan_scan *os;
2103 
2104 	os = &osb->osb_orphan_scan;
2105 	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2106 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2107 		mutex_lock(&os->os_lock);
2108 		cancel_delayed_work(&os->os_orphan_scan_work);
2109 		mutex_unlock(&os->os_lock);
2110 	}
2111 }
2112 
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2113 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2114 {
2115 	struct ocfs2_orphan_scan *os;
2116 
2117 	os = &osb->osb_orphan_scan;
2118 	os->os_osb = osb;
2119 	os->os_count = 0;
2120 	os->os_seqno = 0;
2121 	mutex_init(&os->os_lock);
2122 	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2123 }
2124 
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2125 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2126 {
2127 	struct ocfs2_orphan_scan *os;
2128 
2129 	os = &osb->osb_orphan_scan;
2130 	os->os_scantime = ktime_get_seconds();
2131 	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2132 		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2133 	else {
2134 		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2135 		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2136 				   ocfs2_orphan_scan_timeout());
2137 	}
2138 }
2139 
2140 struct ocfs2_orphan_filldir_priv {
2141 	struct dir_context	ctx;
2142 	struct inode		*head;
2143 	struct ocfs2_super	*osb;
2144 	enum ocfs2_orphan_reco_type orphan_reco_type;
2145 };
2146 
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2147 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2148 				int name_len, loff_t pos, u64 ino,
2149 				unsigned type)
2150 {
2151 	struct ocfs2_orphan_filldir_priv *p =
2152 		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2153 	struct inode *iter;
2154 
2155 	if (name_len == 1 && !strncmp(".", name, 1))
2156 		return true;
2157 	if (name_len == 2 && !strncmp("..", name, 2))
2158 		return true;
2159 
2160 	/* do not include dio entry in case of orphan scan */
2161 	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2162 			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2163 			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2164 		return true;
2165 
2166 	/* Skip bad inodes so that recovery can continue */
2167 	iter = ocfs2_iget(p->osb, ino,
2168 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2169 	if (IS_ERR(iter))
2170 		return true;
2171 
2172 	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2173 			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2174 		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2175 
2176 	/* Skip inodes which are already added to recover list, since dio may
2177 	 * happen concurrently with unlink/rename */
2178 	if (OCFS2_I(iter)->ip_next_orphan) {
2179 		iput(iter);
2180 		return true;
2181 	}
2182 
2183 	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2184 	/* No locking is required for the next_orphan queue as there
2185 	 * is only ever a single process doing orphan recovery. */
2186 	OCFS2_I(iter)->ip_next_orphan = p->head;
2187 	p->head = iter;
2188 
2189 	return true;
2190 }
2191 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2192 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2193 			       int slot,
2194 			       struct inode **head,
2195 			       enum ocfs2_orphan_reco_type orphan_reco_type)
2196 {
2197 	int status;
2198 	struct inode *orphan_dir_inode = NULL;
2199 	struct ocfs2_orphan_filldir_priv priv = {
2200 		.ctx.actor = ocfs2_orphan_filldir,
2201 		.osb = osb,
2202 		.head = *head,
2203 		.orphan_reco_type = orphan_reco_type
2204 	};
2205 
2206 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2207 						       ORPHAN_DIR_SYSTEM_INODE,
2208 						       slot);
2209 	if  (!orphan_dir_inode) {
2210 		status = -ENOENT;
2211 		mlog_errno(status);
2212 		return status;
2213 	}
2214 
2215 	inode_lock(orphan_dir_inode);
2216 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2217 	if (status < 0) {
2218 		mlog_errno(status);
2219 		goto out;
2220 	}
2221 
2222 	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2223 	if (status) {
2224 		mlog_errno(status);
2225 		goto out_cluster;
2226 	}
2227 
2228 	*head = priv.head;
2229 
2230 out_cluster:
2231 	ocfs2_inode_unlock(orphan_dir_inode, 0);
2232 out:
2233 	inode_unlock(orphan_dir_inode);
2234 	iput(orphan_dir_inode);
2235 	return status;
2236 }
2237 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2238 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2239 					      int slot)
2240 {
2241 	int ret;
2242 
2243 	spin_lock(&osb->osb_lock);
2244 	ret = !osb->osb_orphan_wipes[slot];
2245 	spin_unlock(&osb->osb_lock);
2246 	return ret;
2247 }
2248 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2249 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2250 					     int slot)
2251 {
2252 	spin_lock(&osb->osb_lock);
2253 	/* Mark ourselves such that new processes in delete_inode()
2254 	 * know to quit early. */
2255 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2256 	while (osb->osb_orphan_wipes[slot]) {
2257 		/* If any processes are already in the middle of an
2258 		 * orphan wipe on this dir, then we need to wait for
2259 		 * them. */
2260 		spin_unlock(&osb->osb_lock);
2261 		wait_event_interruptible(osb->osb_wipe_event,
2262 					 ocfs2_orphan_recovery_can_continue(osb, slot));
2263 		spin_lock(&osb->osb_lock);
2264 	}
2265 	spin_unlock(&osb->osb_lock);
2266 }
2267 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2268 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2269 					      int slot)
2270 {
2271 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2272 }
2273 
2274 /*
2275  * Orphan recovery. Each mounted node has it's own orphan dir which we
2276  * must run during recovery. Our strategy here is to build a list of
2277  * the inodes in the orphan dir and iget/iput them. The VFS does
2278  * (most) of the rest of the work.
2279  *
2280  * Orphan recovery can happen at any time, not just mount so we have a
2281  * couple of extra considerations.
2282  *
2283  * - We grab as many inodes as we can under the orphan dir lock -
2284  *   doing iget() outside the orphan dir risks getting a reference on
2285  *   an invalid inode.
2286  * - We must be sure not to deadlock with other processes on the
2287  *   system wanting to run delete_inode(). This can happen when they go
2288  *   to lock the orphan dir and the orphan recovery process attempts to
2289  *   iget() inside the orphan dir lock. This can be avoided by
2290  *   advertising our state to ocfs2_delete_inode().
2291  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2292 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2293 				 int slot,
2294 				 enum ocfs2_orphan_reco_type orphan_reco_type)
2295 {
2296 	int ret = 0;
2297 	struct inode *inode = NULL;
2298 	struct inode *iter;
2299 	struct ocfs2_inode_info *oi;
2300 	struct buffer_head *di_bh = NULL;
2301 	struct ocfs2_dinode *di = NULL;
2302 
2303 	trace_ocfs2_recover_orphans(slot);
2304 
2305 	ocfs2_mark_recovering_orphan_dir(osb, slot);
2306 	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2307 	ocfs2_clear_recovering_orphan_dir(osb, slot);
2308 
2309 	/* Error here should be noted, but we want to continue with as
2310 	 * many queued inodes as we've got. */
2311 	if (ret)
2312 		mlog_errno(ret);
2313 
2314 	while (inode) {
2315 		oi = OCFS2_I(inode);
2316 		trace_ocfs2_recover_orphans_iput(
2317 					(unsigned long long)oi->ip_blkno);
2318 
2319 		iter = oi->ip_next_orphan;
2320 		oi->ip_next_orphan = NULL;
2321 
2322 		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2323 			inode_lock(inode);
2324 			ret = ocfs2_rw_lock(inode, 1);
2325 			if (ret < 0) {
2326 				mlog_errno(ret);
2327 				goto unlock_mutex;
2328 			}
2329 			/*
2330 			 * We need to take and drop the inode lock to
2331 			 * force read inode from disk.
2332 			 */
2333 			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2334 			if (ret) {
2335 				mlog_errno(ret);
2336 				goto unlock_rw;
2337 			}
2338 
2339 			di = (struct ocfs2_dinode *)di_bh->b_data;
2340 
2341 			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2342 				ret = ocfs2_truncate_file(inode, di_bh,
2343 						i_size_read(inode));
2344 				if (ret < 0) {
2345 					if (ret != -ENOSPC)
2346 						mlog_errno(ret);
2347 					goto unlock_inode;
2348 				}
2349 
2350 				ret = ocfs2_del_inode_from_orphan(osb, inode,
2351 						di_bh, 0, 0);
2352 				if (ret)
2353 					mlog_errno(ret);
2354 			}
2355 unlock_inode:
2356 			ocfs2_inode_unlock(inode, 1);
2357 			brelse(di_bh);
2358 			di_bh = NULL;
2359 unlock_rw:
2360 			ocfs2_rw_unlock(inode, 1);
2361 unlock_mutex:
2362 			inode_unlock(inode);
2363 
2364 			/* clear dio flag in ocfs2_inode_info */
2365 			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2366 		} else {
2367 			spin_lock(&oi->ip_lock);
2368 			/* Set the proper information to get us going into
2369 			 * ocfs2_delete_inode. */
2370 			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2371 			spin_unlock(&oi->ip_lock);
2372 		}
2373 
2374 		iput(inode);
2375 		inode = iter;
2376 	}
2377 
2378 	return ret;
2379 }
2380 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2381 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2382 {
2383 	/* This check is good because ocfs2 will wait on our recovery
2384 	 * thread before changing it to something other than MOUNTED
2385 	 * or DISABLED. */
2386 	wait_event(osb->osb_mount_event,
2387 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2388 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2389 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2390 
2391 	/* If there's an error on mount, then we may never get to the
2392 	 * MOUNTED flag, but this is set right before
2393 	 * dismount_volume() so we can trust it. */
2394 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2395 		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2396 		mlog(0, "mount error, exiting!\n");
2397 		return -EBUSY;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
ocfs2_commit_thread(void * arg)2403 static int ocfs2_commit_thread(void *arg)
2404 {
2405 	int status;
2406 	struct ocfs2_super *osb = arg;
2407 	struct ocfs2_journal *journal = osb->journal;
2408 
2409 	/* we can trust j_num_trans here because _should_stop() is only set in
2410 	 * shutdown and nobody other than ourselves should be able to start
2411 	 * transactions.  committing on shutdown might take a few iterations
2412 	 * as final transactions put deleted inodes on the list */
2413 	while (!(kthread_should_stop() &&
2414 		 atomic_read(&journal->j_num_trans) == 0)) {
2415 
2416 		wait_event_interruptible(osb->checkpoint_event,
2417 					 atomic_read(&journal->j_num_trans)
2418 					 || kthread_should_stop());
2419 
2420 		status = ocfs2_commit_cache(osb);
2421 		if (status < 0) {
2422 			static unsigned long abort_warn_time;
2423 
2424 			/* Warn about this once per minute */
2425 			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2426 				mlog(ML_ERROR, "status = %d, journal is "
2427 						"already aborted.\n", status);
2428 			/*
2429 			 * After ocfs2_commit_cache() fails, j_num_trans has a
2430 			 * non-zero value.  Sleep here to avoid a busy-wait
2431 			 * loop.
2432 			 */
2433 			msleep_interruptible(1000);
2434 		}
2435 
2436 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2437 			mlog(ML_KTHREAD,
2438 			     "commit_thread: %u transactions pending on "
2439 			     "shutdown\n",
2440 			     atomic_read(&journal->j_num_trans));
2441 		}
2442 	}
2443 
2444 	return 0;
2445 }
2446 
2447 /* Reads all the journal inodes without taking any cluster locks. Used
2448  * for hard readonly access to determine whether any journal requires
2449  * recovery. Also used to refresh the recovery generation numbers after
2450  * a journal has been recovered by another node.
2451  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2452 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2453 {
2454 	int ret = 0;
2455 	unsigned int slot;
2456 	struct buffer_head *di_bh = NULL;
2457 	struct ocfs2_dinode *di;
2458 	int journal_dirty = 0;
2459 
2460 	for(slot = 0; slot < osb->max_slots; slot++) {
2461 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2462 		if (ret) {
2463 			mlog_errno(ret);
2464 			goto out;
2465 		}
2466 
2467 		di = (struct ocfs2_dinode *) di_bh->b_data;
2468 
2469 		osb->slot_recovery_generations[slot] =
2470 					ocfs2_get_recovery_generation(di);
2471 
2472 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2473 		    OCFS2_JOURNAL_DIRTY_FL)
2474 			journal_dirty = 1;
2475 
2476 		brelse(di_bh);
2477 		di_bh = NULL;
2478 	}
2479 
2480 out:
2481 	if (journal_dirty)
2482 		ret = -EROFS;
2483 	return ret;
2484 }
2485