xref: /openbmc/linux/arch/mips/kernel/smp-cps.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15 #include <linux/irq.h>
16 
17 #include <asm/bcache.h>
18 #include <asm/mips-cps.h>
19 #include <asm/mips_mt.h>
20 #include <asm/mipsregs.h>
21 #include <asm/pm-cps.h>
22 #include <asm/r4kcache.h>
23 #include <asm/smp.h>
24 #include <asm/smp-cps.h>
25 #include <asm/time.h>
26 #include <asm/uasm.h>
27 
28 static DECLARE_BITMAP(core_power, NR_CPUS);
29 
30 struct core_boot_config *mips_cps_core_bootcfg;
31 
core_vpe_count(unsigned int cluster,unsigned core)32 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
33 {
34 	return min(smp_max_threads, mips_cps_numvps(cluster, core));
35 }
36 
cps_smp_setup(void)37 static void __init cps_smp_setup(void)
38 {
39 	unsigned int nclusters, ncores, nvpes, core_vpes;
40 	unsigned long core_entry;
41 	int cl, c, v;
42 
43 	/* Detect & record VPE topology */
44 	nvpes = 0;
45 	nclusters = mips_cps_numclusters();
46 	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
47 	for (cl = 0; cl < nclusters; cl++) {
48 		if (cl > 0)
49 			pr_cont(",");
50 		pr_cont("{");
51 
52 		ncores = mips_cps_numcores(cl);
53 		for (c = 0; c < ncores; c++) {
54 			core_vpes = core_vpe_count(cl, c);
55 
56 			if (c > 0)
57 				pr_cont(",");
58 			pr_cont("%u", core_vpes);
59 
60 			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
61 			if (!cl && !c)
62 				smp_num_siblings = core_vpes;
63 
64 			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
65 				cpu_set_cluster(&cpu_data[nvpes + v], cl);
66 				cpu_set_core(&cpu_data[nvpes + v], c);
67 				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
68 			}
69 
70 			nvpes += core_vpes;
71 		}
72 
73 		pr_cont("}");
74 	}
75 	pr_cont(" total %u\n", nvpes);
76 
77 	/* Indicate present CPUs (CPU being synonymous with VPE) */
78 	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
79 		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
80 		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
81 		__cpu_number_map[v] = v;
82 		__cpu_logical_map[v] = v;
83 	}
84 
85 	/* Set a coherent default CCA (CWB) */
86 	change_c0_config(CONF_CM_CMASK, 0x5);
87 
88 	/* Core 0 is powered up (we're running on it) */
89 	bitmap_set(core_power, 0, 1);
90 
91 	/* Initialise core 0 */
92 	mips_cps_core_init();
93 
94 	/* Make core 0 coherent with everything */
95 	write_gcr_cl_coherence(0xff);
96 
97 	if (mips_cm_revision() >= CM_REV_CM3) {
98 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
99 		write_gcr_bev_base(core_entry);
100 	}
101 
102 #ifdef CONFIG_MIPS_MT_FPAFF
103 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
104 	if (cpu_has_fpu)
105 		cpumask_set_cpu(0, &mt_fpu_cpumask);
106 #endif /* CONFIG_MIPS_MT_FPAFF */
107 }
108 
cps_prepare_cpus(unsigned int max_cpus)109 static void __init cps_prepare_cpus(unsigned int max_cpus)
110 {
111 	unsigned ncores, core_vpes, c, cca;
112 	bool cca_unsuitable, cores_limited;
113 	u32 *entry_code;
114 
115 	mips_mt_set_cpuoptions();
116 
117 	/* Detect whether the CCA is unsuited to multi-core SMP */
118 	cca = read_c0_config() & CONF_CM_CMASK;
119 	switch (cca) {
120 	case 0x4: /* CWBE */
121 	case 0x5: /* CWB */
122 		/* The CCA is coherent, multi-core is fine */
123 		cca_unsuitable = false;
124 		break;
125 
126 	default:
127 		/* CCA is not coherent, multi-core is not usable */
128 		cca_unsuitable = true;
129 	}
130 
131 	/* Warn the user if the CCA prevents multi-core */
132 	cores_limited = false;
133 	if (cca_unsuitable || cpu_has_dc_aliases) {
134 		for_each_present_cpu(c) {
135 			if (cpus_are_siblings(smp_processor_id(), c))
136 				continue;
137 
138 			set_cpu_present(c, false);
139 			cores_limited = true;
140 		}
141 	}
142 	if (cores_limited)
143 		pr_warn("Using only one core due to %s%s%s\n",
144 			cca_unsuitable ? "unsuitable CCA" : "",
145 			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
146 			cpu_has_dc_aliases ? "dcache aliasing" : "");
147 
148 	/*
149 	 * Patch the start of mips_cps_core_entry to provide:
150 	 *
151 	 * s0 = kseg0 CCA
152 	 */
153 	entry_code = (u32 *)&mips_cps_core_entry;
154 	uasm_i_addiu(&entry_code, 16, 0, cca);
155 	UASM_i_LA(&entry_code, 17, (long)mips_gcr_base);
156 	BUG_ON((void *)entry_code > (void *)&mips_cps_core_entry_patch_end);
157 	blast_dcache_range((unsigned long)&mips_cps_core_entry,
158 			   (unsigned long)entry_code);
159 	bc_wback_inv((unsigned long)&mips_cps_core_entry,
160 		     (void *)entry_code - (void *)&mips_cps_core_entry);
161 	__sync();
162 
163 	/* Allocate core boot configuration structs */
164 	ncores = mips_cps_numcores(0);
165 	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
166 					GFP_KERNEL);
167 	if (!mips_cps_core_bootcfg) {
168 		pr_err("Failed to allocate boot config for %u cores\n", ncores);
169 		goto err_out;
170 	}
171 
172 	/* Allocate VPE boot configuration structs */
173 	for (c = 0; c < ncores; c++) {
174 		core_vpes = core_vpe_count(0, c);
175 		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
176 				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
177 				GFP_KERNEL);
178 		if (!mips_cps_core_bootcfg[c].vpe_config) {
179 			pr_err("Failed to allocate %u VPE boot configs\n",
180 			       core_vpes);
181 			goto err_out;
182 		}
183 	}
184 
185 	/* Mark this CPU as booted */
186 	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
187 		   1 << cpu_vpe_id(&current_cpu_data));
188 
189 	return;
190 err_out:
191 	/* Clean up allocations */
192 	if (mips_cps_core_bootcfg) {
193 		for (c = 0; c < ncores; c++)
194 			kfree(mips_cps_core_bootcfg[c].vpe_config);
195 		kfree(mips_cps_core_bootcfg);
196 		mips_cps_core_bootcfg = NULL;
197 	}
198 
199 	/* Effectively disable SMP by declaring CPUs not present */
200 	for_each_possible_cpu(c) {
201 		if (c == 0)
202 			continue;
203 		set_cpu_present(c, false);
204 	}
205 }
206 
boot_core(unsigned int core,unsigned int vpe_id)207 static void boot_core(unsigned int core, unsigned int vpe_id)
208 {
209 	u32 stat, seq_state;
210 	unsigned timeout;
211 
212 	/* Select the appropriate core */
213 	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
214 
215 	/* Set its reset vector */
216 	write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
217 
218 	/* Ensure its coherency is disabled */
219 	write_gcr_co_coherence(0);
220 
221 	/* Start it with the legacy memory map and exception base */
222 	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
223 
224 	/* Ensure the core can access the GCRs */
225 	if (mips_cm_revision() < CM_REV_CM3)
226 		set_gcr_access(1 << core);
227 	else
228 		set_gcr_access_cm3(1 << core);
229 
230 	if (mips_cpc_present()) {
231 		/* Reset the core */
232 		mips_cpc_lock_other(core);
233 
234 		if (mips_cm_revision() >= CM_REV_CM3) {
235 			/* Run only the requested VP following the reset */
236 			write_cpc_co_vp_stop(0xf);
237 			write_cpc_co_vp_run(1 << vpe_id);
238 
239 			/*
240 			 * Ensure that the VP_RUN register is written before the
241 			 * core leaves reset.
242 			 */
243 			wmb();
244 		}
245 
246 		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
247 
248 		timeout = 100;
249 		while (true) {
250 			stat = read_cpc_co_stat_conf();
251 			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
252 			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
253 
254 			/* U6 == coherent execution, ie. the core is up */
255 			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
256 				break;
257 
258 			/* Delay a little while before we start warning */
259 			if (timeout) {
260 				timeout--;
261 				mdelay(10);
262 				continue;
263 			}
264 
265 			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
266 				core, stat);
267 			mdelay(1000);
268 		}
269 
270 		mips_cpc_unlock_other();
271 	} else {
272 		/* Take the core out of reset */
273 		write_gcr_co_reset_release(0);
274 	}
275 
276 	mips_cm_unlock_other();
277 
278 	/* The core is now powered up */
279 	bitmap_set(core_power, core, 1);
280 }
281 
remote_vpe_boot(void * dummy)282 static void remote_vpe_boot(void *dummy)
283 {
284 	unsigned core = cpu_core(&current_cpu_data);
285 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
286 
287 	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
288 }
289 
cps_boot_secondary(int cpu,struct task_struct * idle)290 static int cps_boot_secondary(int cpu, struct task_struct *idle)
291 {
292 	unsigned core = cpu_core(&cpu_data[cpu]);
293 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
294 	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
295 	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
296 	unsigned long core_entry;
297 	unsigned int remote;
298 	int err;
299 
300 	/* We don't yet support booting CPUs in other clusters */
301 	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
302 		return -ENOSYS;
303 
304 	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
305 	vpe_cfg->sp = __KSTK_TOS(idle);
306 	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
307 
308 	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
309 
310 	preempt_disable();
311 
312 	if (!test_bit(core, core_power)) {
313 		/* Boot a VPE on a powered down core */
314 		boot_core(core, vpe_id);
315 		goto out;
316 	}
317 
318 	if (cpu_has_vp) {
319 		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
320 		core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
321 		write_gcr_co_reset_base(core_entry);
322 		mips_cm_unlock_other();
323 	}
324 
325 	if (!cpus_are_siblings(cpu, smp_processor_id())) {
326 		/* Boot a VPE on another powered up core */
327 		for (remote = 0; remote < NR_CPUS; remote++) {
328 			if (!cpus_are_siblings(cpu, remote))
329 				continue;
330 			if (cpu_online(remote))
331 				break;
332 		}
333 		if (remote >= NR_CPUS) {
334 			pr_crit("No online CPU in core %u to start CPU%d\n",
335 				core, cpu);
336 			goto out;
337 		}
338 
339 		err = smp_call_function_single(remote, remote_vpe_boot,
340 					       NULL, 1);
341 		if (err)
342 			panic("Failed to call remote CPU\n");
343 		goto out;
344 	}
345 
346 	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
347 
348 	/* Boot a VPE on this core */
349 	mips_cps_boot_vpes(core_cfg, vpe_id);
350 out:
351 	preempt_enable();
352 	return 0;
353 }
354 
cps_init_secondary(void)355 static void cps_init_secondary(void)
356 {
357 	int core = cpu_core(&current_cpu_data);
358 
359 	/* Disable MT - we only want to run 1 TC per VPE */
360 	if (cpu_has_mipsmt)
361 		dmt();
362 
363 	if (mips_cm_revision() >= CM_REV_CM3) {
364 		unsigned int ident = read_gic_vl_ident();
365 
366 		/*
367 		 * Ensure that our calculation of the VP ID matches up with
368 		 * what the GIC reports, otherwise we'll have configured
369 		 * interrupts incorrectly.
370 		 */
371 		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
372 	}
373 
374 	if (core > 0 && !read_gcr_cl_coherence())
375 		pr_warn("Core %u is not in coherent domain\n", core);
376 
377 	if (cpu_has_veic)
378 		clear_c0_status(ST0_IM);
379 	else
380 		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
381 					 STATUSF_IP4 | STATUSF_IP5 |
382 					 STATUSF_IP6 | STATUSF_IP7);
383 }
384 
cps_smp_finish(void)385 static void cps_smp_finish(void)
386 {
387 	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
388 
389 #ifdef CONFIG_MIPS_MT_FPAFF
390 	/* If we have an FPU, enroll ourselves in the FPU-full mask */
391 	if (cpu_has_fpu)
392 		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
393 #endif /* CONFIG_MIPS_MT_FPAFF */
394 
395 	local_irq_enable();
396 }
397 
398 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
399 
400 enum cpu_death {
401 	CPU_DEATH_HALT,
402 	CPU_DEATH_POWER,
403 };
404 
cps_shutdown_this_cpu(enum cpu_death death)405 static void cps_shutdown_this_cpu(enum cpu_death death)
406 {
407 	unsigned int cpu, core, vpe_id;
408 
409 	cpu = smp_processor_id();
410 	core = cpu_core(&cpu_data[cpu]);
411 
412 	if (death == CPU_DEATH_HALT) {
413 		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
414 
415 		pr_debug("Halting core %d VP%d\n", core, vpe_id);
416 		if (cpu_has_mipsmt) {
417 			/* Halt this TC */
418 			write_c0_tchalt(TCHALT_H);
419 			instruction_hazard();
420 		} else if (cpu_has_vp) {
421 			write_cpc_cl_vp_stop(1 << vpe_id);
422 
423 			/* Ensure that the VP_STOP register is written */
424 			wmb();
425 		}
426 	} else {
427 		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
428 			pr_debug("Gating power to core %d\n", core);
429 			/* Power down the core */
430 			cps_pm_enter_state(CPS_PM_POWER_GATED);
431 		}
432 	}
433 }
434 
435 #ifdef CONFIG_KEXEC
436 
cps_kexec_nonboot_cpu(void)437 static void cps_kexec_nonboot_cpu(void)
438 {
439 	if (cpu_has_mipsmt || cpu_has_vp)
440 		cps_shutdown_this_cpu(CPU_DEATH_HALT);
441 	else
442 		cps_shutdown_this_cpu(CPU_DEATH_POWER);
443 }
444 
445 #endif /* CONFIG_KEXEC */
446 
447 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
448 
449 #ifdef CONFIG_HOTPLUG_CPU
450 
cps_cpu_disable(void)451 static int cps_cpu_disable(void)
452 {
453 	unsigned cpu = smp_processor_id();
454 	struct core_boot_config *core_cfg;
455 
456 	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
457 		return -EINVAL;
458 
459 	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
460 	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
461 	smp_mb__after_atomic();
462 	set_cpu_online(cpu, false);
463 	calculate_cpu_foreign_map();
464 	irq_migrate_all_off_this_cpu();
465 
466 	return 0;
467 }
468 
469 static unsigned cpu_death_sibling;
470 static enum cpu_death cpu_death;
471 
play_dead(void)472 void play_dead(void)
473 {
474 	unsigned int cpu;
475 
476 	local_irq_disable();
477 	idle_task_exit();
478 	cpu = smp_processor_id();
479 	cpu_death = CPU_DEATH_POWER;
480 
481 	pr_debug("CPU%d going offline\n", cpu);
482 
483 	if (cpu_has_mipsmt || cpu_has_vp) {
484 		/* Look for another online VPE within the core */
485 		for_each_online_cpu(cpu_death_sibling) {
486 			if (!cpus_are_siblings(cpu, cpu_death_sibling))
487 				continue;
488 
489 			/*
490 			 * There is an online VPE within the core. Just halt
491 			 * this TC and leave the core alone.
492 			 */
493 			cpu_death = CPU_DEATH_HALT;
494 			break;
495 		}
496 	}
497 
498 	cpuhp_ap_report_dead();
499 
500 	cps_shutdown_this_cpu(cpu_death);
501 
502 	/* This should never be reached */
503 	panic("Failed to offline CPU %u", cpu);
504 }
505 
wait_for_sibling_halt(void * ptr_cpu)506 static void wait_for_sibling_halt(void *ptr_cpu)
507 {
508 	unsigned cpu = (unsigned long)ptr_cpu;
509 	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
510 	unsigned halted;
511 	unsigned long flags;
512 
513 	do {
514 		local_irq_save(flags);
515 		settc(vpe_id);
516 		halted = read_tc_c0_tchalt();
517 		local_irq_restore(flags);
518 	} while (!(halted & TCHALT_H));
519 }
520 
cps_cpu_die(unsigned int cpu)521 static void cps_cpu_die(unsigned int cpu) { }
522 
cps_cleanup_dead_cpu(unsigned cpu)523 static void cps_cleanup_dead_cpu(unsigned cpu)
524 {
525 	unsigned core = cpu_core(&cpu_data[cpu]);
526 	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
527 	ktime_t fail_time;
528 	unsigned stat;
529 	int err;
530 
531 	/*
532 	 * Now wait for the CPU to actually offline. Without doing this that
533 	 * offlining may race with one or more of:
534 	 *
535 	 *   - Onlining the CPU again.
536 	 *   - Powering down the core if another VPE within it is offlined.
537 	 *   - A sibling VPE entering a non-coherent state.
538 	 *
539 	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
540 	 * with which we could race, so do nothing.
541 	 */
542 	if (cpu_death == CPU_DEATH_POWER) {
543 		/*
544 		 * Wait for the core to enter a powered down or clock gated
545 		 * state, the latter happening when a JTAG probe is connected
546 		 * in which case the CPC will refuse to power down the core.
547 		 */
548 		fail_time = ktime_add_ms(ktime_get(), 2000);
549 		do {
550 			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
551 			mips_cpc_lock_other(core);
552 			stat = read_cpc_co_stat_conf();
553 			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
554 			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
555 			mips_cpc_unlock_other();
556 			mips_cm_unlock_other();
557 
558 			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
559 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
560 			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
561 				break;
562 
563 			/*
564 			 * The core ought to have powered down, but didn't &
565 			 * now we don't really know what state it's in. It's
566 			 * likely that its _pwr_up pin has been wired to logic
567 			 * 1 & it powered back up as soon as we powered it
568 			 * down...
569 			 *
570 			 * The best we can do is warn the user & continue in
571 			 * the hope that the core is doing nothing harmful &
572 			 * might behave properly if we online it later.
573 			 */
574 			if (WARN(ktime_after(ktime_get(), fail_time),
575 				 "CPU%u hasn't powered down, seq. state %u\n",
576 				 cpu, stat))
577 				break;
578 		} while (1);
579 
580 		/* Indicate the core is powered off */
581 		bitmap_clear(core_power, core, 1);
582 	} else if (cpu_has_mipsmt) {
583 		/*
584 		 * Have a CPU with access to the offlined CPUs registers wait
585 		 * for its TC to halt.
586 		 */
587 		err = smp_call_function_single(cpu_death_sibling,
588 					       wait_for_sibling_halt,
589 					       (void *)(unsigned long)cpu, 1);
590 		if (err)
591 			panic("Failed to call remote sibling CPU\n");
592 	} else if (cpu_has_vp) {
593 		do {
594 			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
595 			stat = read_cpc_co_vp_running();
596 			mips_cm_unlock_other();
597 		} while (stat & (1 << vpe_id));
598 	}
599 }
600 
601 #endif /* CONFIG_HOTPLUG_CPU */
602 
603 static const struct plat_smp_ops cps_smp_ops = {
604 	.smp_setup		= cps_smp_setup,
605 	.prepare_cpus		= cps_prepare_cpus,
606 	.boot_secondary		= cps_boot_secondary,
607 	.init_secondary		= cps_init_secondary,
608 	.smp_finish		= cps_smp_finish,
609 	.send_ipi_single	= mips_smp_send_ipi_single,
610 	.send_ipi_mask		= mips_smp_send_ipi_mask,
611 #ifdef CONFIG_HOTPLUG_CPU
612 	.cpu_disable		= cps_cpu_disable,
613 	.cpu_die		= cps_cpu_die,
614 	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
615 #endif
616 #ifdef CONFIG_KEXEC
617 	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
618 #endif
619 };
620 
mips_cps_smp_in_use(void)621 bool mips_cps_smp_in_use(void)
622 {
623 	extern const struct plat_smp_ops *mp_ops;
624 	return mp_ops == &cps_smp_ops;
625 }
626 
register_cps_smp_ops(void)627 int register_cps_smp_ops(void)
628 {
629 	if (!mips_cm_present()) {
630 		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
631 		return -ENODEV;
632 	}
633 
634 	/* check we have a GIC - we need one for IPIs */
635 	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
636 		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
637 		return -ENODEV;
638 	}
639 
640 	register_smp_ops(&cps_smp_ops);
641 	return 0;
642 }
643