xref: /openbmc/linux/drivers/nvme/host/multipath.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 	[NVME_IOPOLICY_QD]      = "queue-depth",
21 };
22 
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24 
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 	if (!val)
28 		return -EINVAL;
29 	if (!strncmp(val, "numa", 4))
30 		iopolicy = NVME_IOPOLICY_NUMA;
31 	else if (!strncmp(val, "round-robin", 11))
32 		iopolicy = NVME_IOPOLICY_RR;
33 	else if (!strncmp(val, "queue-depth", 11))
34 		iopolicy = NVME_IOPOLICY_QD;
35 	else
36 		return -EINVAL;
37 
38 	return 0;
39 }
40 
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45 
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 	&iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 	"Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50 
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 	subsys->iopolicy = iopolicy;
54 }
55 
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 	struct nvme_ns_head *h;
59 
60 	lockdep_assert_held(&subsys->lock);
61 	list_for_each_entry(h, &subsys->nsheads, entry)
62 		if (h->disk)
63 			blk_mq_unfreeze_queue(h->disk->queue);
64 }
65 
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 	struct nvme_ns_head *h;
69 
70 	lockdep_assert_held(&subsys->lock);
71 	list_for_each_entry(h, &subsys->nsheads, entry)
72 		if (h->disk)
73 			blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75 
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 	struct nvme_ns_head *h;
79 
80 	lockdep_assert_held(&subsys->lock);
81 	list_for_each_entry(h, &subsys->nsheads, entry)
82 		if (h->disk)
83 			blk_freeze_queue_start(h->disk->queue);
84 }
85 
nvme_failover_req(struct request * req)86 void nvme_failover_req(struct request *req)
87 {
88 	struct nvme_ns *ns = req->q->queuedata;
89 	u16 status = nvme_req(req)->status & 0x7ff;
90 	unsigned long flags;
91 	struct bio *bio;
92 
93 	nvme_mpath_clear_current_path(ns);
94 
95 	/*
96 	 * If we got back an ANA error, we know the controller is alive but not
97 	 * ready to serve this namespace.  Kick of a re-read of the ANA
98 	 * information page, and just try any other available path for now.
99 	 */
100 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 		queue_work(nvme_wq, &ns->ctrl->ana_work);
103 	}
104 
105 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 	for (bio = req->bio; bio; bio = bio->bi_next) {
107 		bio_set_dev(bio, ns->head->disk->part0);
108 		if (bio->bi_opf & REQ_POLLED) {
109 			bio->bi_opf &= ~REQ_POLLED;
110 			bio->bi_cookie = BLK_QC_T_NONE;
111 		}
112 		/*
113 		 * The alternate request queue that we may end up submitting
114 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 		 * will fail the I/O immediately with EAGAIN to the issuer.
116 		 * We are not in the issuer context which cannot block. Clear
117 		 * the flag to avoid spurious EAGAIN I/O failures.
118 		 */
119 		bio->bi_opf &= ~REQ_NOWAIT;
120 	}
121 	blk_steal_bios(&ns->head->requeue_list, req);
122 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123 
124 	nvme_req(req)->status = 0;
125 	nvme_end_req(req);
126 	kblockd_schedule_work(&ns->head->requeue_work);
127 }
128 
nvme_mpath_start_request(struct request * rq)129 void nvme_mpath_start_request(struct request *rq)
130 {
131 	struct nvme_ns *ns = rq->q->queuedata;
132 	struct gendisk *disk = ns->head->disk;
133 
134 	if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 		atomic_inc(&ns->ctrl->nr_active);
136 		nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 	}
138 
139 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 		return;
141 
142 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 						      jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147 
nvme_mpath_end_request(struct request * rq)148 void nvme_mpath_end_request(struct request *rq)
149 {
150 	struct nvme_ns *ns = rq->q->queuedata;
151 
152 	if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 		atomic_dec_if_positive(&ns->ctrl->nr_active);
154 
155 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 		return;
157 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 			 nvme_req(rq)->start_time);
160 }
161 
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 	struct nvme_ns *ns;
165 	int srcu_idx;
166 
167 	srcu_idx = srcu_read_lock(&ctrl->srcu);
168 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
169 				 srcu_read_lock_held(&ctrl->srcu)) {
170 		if (!ns->head->disk)
171 			continue;
172 		kblockd_schedule_work(&ns->head->requeue_work);
173 		if (ctrl->state == NVME_CTRL_LIVE)
174 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
175 	}
176 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
177 }
178 
179 static const char *nvme_ana_state_names[] = {
180 	[0]				= "invalid state",
181 	[NVME_ANA_OPTIMIZED]		= "optimized",
182 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
183 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
184 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
185 	[NVME_ANA_CHANGE]		= "change",
186 };
187 
nvme_mpath_clear_current_path(struct nvme_ns * ns)188 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
189 {
190 	struct nvme_ns_head *head = ns->head;
191 	bool changed = false;
192 	int node;
193 
194 	if (!head)
195 		goto out;
196 
197 	for_each_node(node) {
198 		if (ns == rcu_access_pointer(head->current_path[node])) {
199 			rcu_assign_pointer(head->current_path[node], NULL);
200 			changed = true;
201 		}
202 	}
203 out:
204 	return changed;
205 }
206 
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)207 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
208 {
209 	struct nvme_ns *ns;
210 	int srcu_idx;
211 
212 	srcu_idx = srcu_read_lock(&ctrl->srcu);
213 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
214 				 srcu_read_lock_held(&ctrl->srcu)) {
215 		nvme_mpath_clear_current_path(ns);
216 		kblockd_schedule_work(&ns->head->requeue_work);
217 	}
218 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
219 }
220 
nvme_mpath_revalidate_paths(struct nvme_ns * ns)221 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
222 {
223 	struct nvme_ns_head *head = ns->head;
224 	sector_t capacity = get_capacity(head->disk);
225 	int node;
226 	int srcu_idx;
227 
228 	srcu_idx = srcu_read_lock(&head->srcu);
229 	list_for_each_entry_srcu(ns, &head->list, siblings,
230 				 srcu_read_lock_held(&head->srcu)) {
231 		if (capacity != get_capacity(ns->disk))
232 			clear_bit(NVME_NS_READY, &ns->flags);
233 	}
234 	srcu_read_unlock(&head->srcu, srcu_idx);
235 
236 	for_each_node(node)
237 		rcu_assign_pointer(head->current_path[node], NULL);
238 	kblockd_schedule_work(&head->requeue_work);
239 }
240 
nvme_path_is_disabled(struct nvme_ns * ns)241 static bool nvme_path_is_disabled(struct nvme_ns *ns)
242 {
243 	/*
244 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
245 	 * still be able to complete assuming that the controller is connected.
246 	 * Otherwise it will fail immediately and return to the requeue list.
247 	 */
248 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
249 	    ns->ctrl->state != NVME_CTRL_DELETING)
250 		return true;
251 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
252 	    !test_bit(NVME_NS_READY, &ns->flags))
253 		return true;
254 	return false;
255 }
256 
__nvme_find_path(struct nvme_ns_head * head,int node)257 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
258 {
259 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
260 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
261 
262 	list_for_each_entry_srcu(ns, &head->list, siblings,
263 				 srcu_read_lock_held(&head->srcu)) {
264 		if (nvme_path_is_disabled(ns))
265 			continue;
266 
267 		if (ns->ctrl->numa_node != NUMA_NO_NODE &&
268 		    READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
269 			distance = node_distance(node, ns->ctrl->numa_node);
270 		else
271 			distance = LOCAL_DISTANCE;
272 
273 		switch (ns->ana_state) {
274 		case NVME_ANA_OPTIMIZED:
275 			if (distance < found_distance) {
276 				found_distance = distance;
277 				found = ns;
278 			}
279 			break;
280 		case NVME_ANA_NONOPTIMIZED:
281 			if (distance < fallback_distance) {
282 				fallback_distance = distance;
283 				fallback = ns;
284 			}
285 			break;
286 		default:
287 			break;
288 		}
289 	}
290 
291 	if (!found)
292 		found = fallback;
293 	if (found)
294 		rcu_assign_pointer(head->current_path[node], found);
295 	return found;
296 }
297 
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)298 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
299 		struct nvme_ns *ns)
300 {
301 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
302 			siblings);
303 	if (ns)
304 		return ns;
305 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
306 }
307 
nvme_round_robin_path(struct nvme_ns_head * head)308 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
309 {
310 	struct nvme_ns *ns, *found = NULL;
311 	int node = numa_node_id();
312 	struct nvme_ns *old = srcu_dereference(head->current_path[node],
313 					       &head->srcu);
314 
315 	if (unlikely(!old))
316 		return __nvme_find_path(head, node);
317 
318 	if (list_is_singular(&head->list)) {
319 		if (nvme_path_is_disabled(old))
320 			return NULL;
321 		return old;
322 	}
323 
324 	for (ns = nvme_next_ns(head, old);
325 	     ns && ns != old;
326 	     ns = nvme_next_ns(head, ns)) {
327 		if (nvme_path_is_disabled(ns))
328 			continue;
329 
330 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
331 			found = ns;
332 			goto out;
333 		}
334 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
335 			found = ns;
336 	}
337 
338 	/*
339 	 * The loop above skips the current path for round-robin semantics.
340 	 * Fall back to the current path if either:
341 	 *  - no other optimized path found and current is optimized,
342 	 *  - no other usable path found and current is usable.
343 	 */
344 	if (!nvme_path_is_disabled(old) &&
345 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
346 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
347 		return old;
348 
349 	if (!found)
350 		return NULL;
351 out:
352 	rcu_assign_pointer(head->current_path[node], found);
353 	return found;
354 }
355 
nvme_queue_depth_path(struct nvme_ns_head * head)356 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
357 {
358 	struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
359 	unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
360 	unsigned int depth;
361 
362 	list_for_each_entry_srcu(ns, &head->list, siblings,
363 				 srcu_read_lock_held(&head->srcu)) {
364 		if (nvme_path_is_disabled(ns))
365 			continue;
366 
367 		depth = atomic_read(&ns->ctrl->nr_active);
368 
369 		switch (ns->ana_state) {
370 		case NVME_ANA_OPTIMIZED:
371 			if (depth < min_depth_opt) {
372 				min_depth_opt = depth;
373 				best_opt = ns;
374 			}
375 			break;
376 		case NVME_ANA_NONOPTIMIZED:
377 			if (depth < min_depth_nonopt) {
378 				min_depth_nonopt = depth;
379 				best_nonopt = ns;
380 			}
381 			break;
382 		default:
383 			break;
384 		}
385 
386 		if (min_depth_opt == 0)
387 			return best_opt;
388 	}
389 
390 	return best_opt ? best_opt : best_nonopt;
391 }
392 
nvme_path_is_optimized(struct nvme_ns * ns)393 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
394 {
395 	return ns->ctrl->state == NVME_CTRL_LIVE &&
396 		ns->ana_state == NVME_ANA_OPTIMIZED;
397 }
398 
nvme_numa_path(struct nvme_ns_head * head)399 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
400 {
401 	int node = numa_node_id();
402 	struct nvme_ns *ns;
403 
404 	ns = srcu_dereference(head->current_path[node], &head->srcu);
405 	if (unlikely(!ns))
406 		return __nvme_find_path(head, node);
407 	if (unlikely(!nvme_path_is_optimized(ns)))
408 		return __nvme_find_path(head, node);
409 	return ns;
410 }
411 
nvme_find_path(struct nvme_ns_head * head)412 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
413 {
414 	switch (READ_ONCE(head->subsys->iopolicy)) {
415 	case NVME_IOPOLICY_QD:
416 		return nvme_queue_depth_path(head);
417 	case NVME_IOPOLICY_RR:
418 		return nvme_round_robin_path(head);
419 	default:
420 		return nvme_numa_path(head);
421 	}
422 }
423 
nvme_available_path(struct nvme_ns_head * head)424 static bool nvme_available_path(struct nvme_ns_head *head)
425 {
426 	struct nvme_ns *ns;
427 
428 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
429 		return NULL;
430 
431 	list_for_each_entry_srcu(ns, &head->list, siblings,
432 				 srcu_read_lock_held(&head->srcu)) {
433 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
434 			continue;
435 		switch (ns->ctrl->state) {
436 		case NVME_CTRL_LIVE:
437 		case NVME_CTRL_RESETTING:
438 		case NVME_CTRL_CONNECTING:
439 			/* fallthru */
440 			return true;
441 		default:
442 			break;
443 		}
444 	}
445 	return false;
446 }
447 
nvme_ns_head_submit_bio(struct bio * bio)448 static void nvme_ns_head_submit_bio(struct bio *bio)
449 {
450 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
451 	struct device *dev = disk_to_dev(head->disk);
452 	struct nvme_ns *ns;
453 	int srcu_idx;
454 
455 	/*
456 	 * The namespace might be going away and the bio might be moved to a
457 	 * different queue via blk_steal_bios(), so we need to use the bio_split
458 	 * pool from the original queue to allocate the bvecs from.
459 	 */
460 	bio = bio_split_to_limits(bio);
461 	if (!bio)
462 		return;
463 
464 	srcu_idx = srcu_read_lock(&head->srcu);
465 	ns = nvme_find_path(head);
466 	if (likely(ns)) {
467 		bio_set_dev(bio, ns->disk->part0);
468 		bio->bi_opf |= REQ_NVME_MPATH;
469 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
470 				      bio->bi_iter.bi_sector);
471 		submit_bio_noacct(bio);
472 	} else if (nvme_available_path(head)) {
473 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
474 
475 		spin_lock_irq(&head->requeue_lock);
476 		bio_list_add(&head->requeue_list, bio);
477 		spin_unlock_irq(&head->requeue_lock);
478 	} else {
479 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
480 
481 		bio_io_error(bio);
482 	}
483 
484 	srcu_read_unlock(&head->srcu, srcu_idx);
485 }
486 
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)487 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
488 {
489 	if (!nvme_tryget_ns_head(disk->private_data))
490 		return -ENXIO;
491 	return 0;
492 }
493 
nvme_ns_head_release(struct gendisk * disk)494 static void nvme_ns_head_release(struct gendisk *disk)
495 {
496 	nvme_put_ns_head(disk->private_data);
497 }
498 
499 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)500 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
501 		unsigned int nr_zones, report_zones_cb cb, void *data)
502 {
503 	struct nvme_ns_head *head = disk->private_data;
504 	struct nvme_ns *ns;
505 	int srcu_idx, ret = -EWOULDBLOCK;
506 
507 	srcu_idx = srcu_read_lock(&head->srcu);
508 	ns = nvme_find_path(head);
509 	if (ns)
510 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
511 	srcu_read_unlock(&head->srcu, srcu_idx);
512 	return ret;
513 }
514 #else
515 #define nvme_ns_head_report_zones	NULL
516 #endif /* CONFIG_BLK_DEV_ZONED */
517 
518 const struct block_device_operations nvme_ns_head_ops = {
519 	.owner		= THIS_MODULE,
520 	.submit_bio	= nvme_ns_head_submit_bio,
521 	.open		= nvme_ns_head_open,
522 	.release	= nvme_ns_head_release,
523 	.ioctl		= nvme_ns_head_ioctl,
524 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
525 	.getgeo		= nvme_getgeo,
526 	.report_zones	= nvme_ns_head_report_zones,
527 	.pr_ops		= &nvme_pr_ops,
528 };
529 
cdev_to_ns_head(struct cdev * cdev)530 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
531 {
532 	return container_of(cdev, struct nvme_ns_head, cdev);
533 }
534 
nvme_ns_head_chr_open(struct inode * inode,struct file * file)535 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
536 {
537 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
538 		return -ENXIO;
539 	return 0;
540 }
541 
nvme_ns_head_chr_release(struct inode * inode,struct file * file)542 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
543 {
544 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
545 	return 0;
546 }
547 
548 static const struct file_operations nvme_ns_head_chr_fops = {
549 	.owner		= THIS_MODULE,
550 	.open		= nvme_ns_head_chr_open,
551 	.release	= nvme_ns_head_chr_release,
552 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
553 	.compat_ioctl	= compat_ptr_ioctl,
554 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
555 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
556 };
557 
nvme_add_ns_head_cdev(struct nvme_ns_head * head)558 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
559 {
560 	int ret;
561 
562 	head->cdev_device.parent = &head->subsys->dev;
563 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
564 			   head->subsys->instance, head->instance);
565 	if (ret)
566 		return ret;
567 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
568 			    &nvme_ns_head_chr_fops, THIS_MODULE);
569 	return ret;
570 }
571 
nvme_partition_scan_work(struct work_struct * work)572 static void nvme_partition_scan_work(struct work_struct *work)
573 {
574 	struct nvme_ns_head *head =
575 		container_of(work, struct nvme_ns_head, partition_scan_work);
576 
577 	if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
578 					     &head->disk->state)))
579 		return;
580 
581 	mutex_lock(&head->disk->open_mutex);
582 	bdev_disk_changed(head->disk, false);
583 	mutex_unlock(&head->disk->open_mutex);
584 }
585 
nvme_requeue_work(struct work_struct * work)586 static void nvme_requeue_work(struct work_struct *work)
587 {
588 	struct nvme_ns_head *head =
589 		container_of(work, struct nvme_ns_head, requeue_work);
590 	struct bio *bio, *next;
591 
592 	spin_lock_irq(&head->requeue_lock);
593 	next = bio_list_get(&head->requeue_list);
594 	spin_unlock_irq(&head->requeue_lock);
595 
596 	while ((bio = next) != NULL) {
597 		next = bio->bi_next;
598 		bio->bi_next = NULL;
599 
600 		submit_bio_noacct(bio);
601 	}
602 }
603 
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)604 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
605 {
606 	bool vwc = false;
607 
608 	mutex_init(&head->lock);
609 	bio_list_init(&head->requeue_list);
610 	spin_lock_init(&head->requeue_lock);
611 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
612 	INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
613 
614 	/*
615 	 * Add a multipath node if the subsystems supports multiple controllers.
616 	 * We also do this for private namespaces as the namespace sharing flag
617 	 * could change after a rescan.
618 	 */
619 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
620 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
621 		return 0;
622 
623 	head->disk = blk_alloc_disk(ctrl->numa_node);
624 	if (!head->disk)
625 		return -ENOMEM;
626 	head->disk->fops = &nvme_ns_head_ops;
627 	head->disk->private_data = head;
628 
629 	/*
630 	 * We need to suppress the partition scan from occuring within the
631 	 * controller's scan_work context. If a path error occurs here, the IO
632 	 * will wait until a path becomes available or all paths are torn down,
633 	 * but that action also occurs within scan_work, so it would deadlock.
634 	 * Defer the partion scan to a different context that does not block
635 	 * scan_work.
636 	 */
637 	set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
638 	sprintf(head->disk->disk_name, "nvme%dn%d",
639 			ctrl->subsys->instance, head->instance);
640 
641 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
642 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
643 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
644 	/*
645 	 * This assumes all controllers that refer to a namespace either
646 	 * support poll queues or not.  That is not a strict guarantee,
647 	 * but if the assumption is wrong the effect is only suboptimal
648 	 * performance but not correctness problem.
649 	 */
650 	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
651 	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
652 		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
653 
654 	/* set to a default value of 512 until the disk is validated */
655 	blk_queue_logical_block_size(head->disk->queue, 512);
656 	blk_set_stacking_limits(&head->disk->queue->limits);
657 	blk_queue_dma_alignment(head->disk->queue, 3);
658 
659 	/* we need to propagate up the VMC settings */
660 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
661 		vwc = true;
662 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
663 	return 0;
664 }
665 
nvme_mpath_set_live(struct nvme_ns * ns)666 static void nvme_mpath_set_live(struct nvme_ns *ns)
667 {
668 	struct nvme_ns_head *head = ns->head;
669 	int rc;
670 
671 	if (!head->disk)
672 		return;
673 
674 	/*
675 	 * test_and_set_bit() is used because it is protecting against two nvme
676 	 * paths simultaneously calling device_add_disk() on the same namespace
677 	 * head.
678 	 */
679 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
680 		rc = device_add_disk(&head->subsys->dev, head->disk,
681 				     nvme_ns_id_attr_groups);
682 		if (rc) {
683 			clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
684 			return;
685 		}
686 		nvme_add_ns_head_cdev(head);
687 		kblockd_schedule_work(&head->partition_scan_work);
688 	}
689 
690 	mutex_lock(&head->lock);
691 	if (nvme_path_is_optimized(ns)) {
692 		int node, srcu_idx;
693 
694 		srcu_idx = srcu_read_lock(&head->srcu);
695 		for_each_online_node(node)
696 			__nvme_find_path(head, node);
697 		srcu_read_unlock(&head->srcu, srcu_idx);
698 	}
699 	mutex_unlock(&head->lock);
700 
701 	synchronize_srcu(&head->srcu);
702 	kblockd_schedule_work(&head->requeue_work);
703 }
704 
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))705 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
706 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
707 			void *))
708 {
709 	void *base = ctrl->ana_log_buf;
710 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
711 	int error, i;
712 
713 	lockdep_assert_held(&ctrl->ana_lock);
714 
715 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
716 		struct nvme_ana_group_desc *desc = base + offset;
717 		u32 nr_nsids;
718 		size_t nsid_buf_size;
719 
720 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
721 			return -EINVAL;
722 
723 		nr_nsids = le32_to_cpu(desc->nnsids);
724 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
725 
726 		if (WARN_ON_ONCE(desc->grpid == 0))
727 			return -EINVAL;
728 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
729 			return -EINVAL;
730 		if (WARN_ON_ONCE(desc->state == 0))
731 			return -EINVAL;
732 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
733 			return -EINVAL;
734 
735 		offset += sizeof(*desc);
736 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
737 			return -EINVAL;
738 
739 		error = cb(ctrl, desc, data);
740 		if (error)
741 			return error;
742 
743 		offset += nsid_buf_size;
744 	}
745 
746 	return 0;
747 }
748 
nvme_state_is_live(enum nvme_ana_state state)749 static inline bool nvme_state_is_live(enum nvme_ana_state state)
750 {
751 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
752 }
753 
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)754 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
755 		struct nvme_ns *ns)
756 {
757 	ns->ana_grpid = le32_to_cpu(desc->grpid);
758 	ns->ana_state = desc->state;
759 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
760 	/*
761 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
762 	 * and in turn to this path device.  However we cannot accept this I/O
763 	 * if the controller is not live.  This may deadlock if called from
764 	 * nvme_mpath_init_identify() and the ctrl will never complete
765 	 * initialization, preventing I/O from completing.  For this case we
766 	 * will reprocess the ANA log page in nvme_mpath_update() once the
767 	 * controller is ready.
768 	 */
769 	if (nvme_state_is_live(ns->ana_state) &&
770 	    ns->ctrl->state == NVME_CTRL_LIVE)
771 		nvme_mpath_set_live(ns);
772 }
773 
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)774 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
775 		struct nvme_ana_group_desc *desc, void *data)
776 {
777 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
778 	unsigned *nr_change_groups = data;
779 	struct nvme_ns *ns;
780 	int srcu_idx;
781 
782 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
783 			le32_to_cpu(desc->grpid),
784 			nvme_ana_state_names[desc->state]);
785 
786 	if (desc->state == NVME_ANA_CHANGE)
787 		(*nr_change_groups)++;
788 
789 	if (!nr_nsids)
790 		return 0;
791 
792 	srcu_idx = srcu_read_lock(&ctrl->srcu);
793 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
794 				 srcu_read_lock_held(&ctrl->srcu)) {
795 		unsigned nsid;
796 again:
797 		nsid = le32_to_cpu(desc->nsids[n]);
798 		if (ns->head->ns_id < nsid)
799 			continue;
800 		if (ns->head->ns_id == nsid)
801 			nvme_update_ns_ana_state(desc, ns);
802 		if (++n == nr_nsids)
803 			break;
804 		if (ns->head->ns_id > nsid)
805 			goto again;
806 	}
807 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
808 	return 0;
809 }
810 
nvme_read_ana_log(struct nvme_ctrl * ctrl)811 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
812 {
813 	u32 nr_change_groups = 0;
814 	int error;
815 
816 	mutex_lock(&ctrl->ana_lock);
817 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
818 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
819 	if (error) {
820 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
821 		goto out_unlock;
822 	}
823 
824 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
825 			nvme_update_ana_state);
826 	if (error)
827 		goto out_unlock;
828 
829 	/*
830 	 * In theory we should have an ANATT timer per group as they might enter
831 	 * the change state at different times.  But that is a lot of overhead
832 	 * just to protect against a target that keeps entering new changes
833 	 * states while never finishing previous ones.  But we'll still
834 	 * eventually time out once all groups are in change state, so this
835 	 * isn't a big deal.
836 	 *
837 	 * We also double the ANATT value to provide some slack for transports
838 	 * or AEN processing overhead.
839 	 */
840 	if (nr_change_groups)
841 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
842 	else
843 		del_timer_sync(&ctrl->anatt_timer);
844 out_unlock:
845 	mutex_unlock(&ctrl->ana_lock);
846 	return error;
847 }
848 
nvme_ana_work(struct work_struct * work)849 static void nvme_ana_work(struct work_struct *work)
850 {
851 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
852 
853 	if (ctrl->state != NVME_CTRL_LIVE)
854 		return;
855 
856 	nvme_read_ana_log(ctrl);
857 }
858 
nvme_mpath_update(struct nvme_ctrl * ctrl)859 void nvme_mpath_update(struct nvme_ctrl *ctrl)
860 {
861 	u32 nr_change_groups = 0;
862 
863 	if (!ctrl->ana_log_buf)
864 		return;
865 
866 	mutex_lock(&ctrl->ana_lock);
867 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
868 	mutex_unlock(&ctrl->ana_lock);
869 }
870 
nvme_anatt_timeout(struct timer_list * t)871 static void nvme_anatt_timeout(struct timer_list *t)
872 {
873 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
874 
875 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
876 	nvme_reset_ctrl(ctrl);
877 }
878 
nvme_mpath_stop(struct nvme_ctrl * ctrl)879 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
880 {
881 	if (!nvme_ctrl_use_ana(ctrl))
882 		return;
883 	del_timer_sync(&ctrl->anatt_timer);
884 	cancel_work_sync(&ctrl->ana_work);
885 }
886 
887 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
888 	struct device_attribute subsys_attr_##_name =	\
889 		__ATTR(_name, _mode, _show, _store)
890 
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)891 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
892 		struct device_attribute *attr, char *buf)
893 {
894 	struct nvme_subsystem *subsys =
895 		container_of(dev, struct nvme_subsystem, dev);
896 
897 	return sysfs_emit(buf, "%s\n",
898 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
899 }
900 
nvme_subsys_iopolicy_update(struct nvme_subsystem * subsys,int iopolicy)901 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
902 		int iopolicy)
903 {
904 	struct nvme_ctrl *ctrl;
905 	int old_iopolicy = READ_ONCE(subsys->iopolicy);
906 
907 	if (old_iopolicy == iopolicy)
908 		return;
909 
910 	WRITE_ONCE(subsys->iopolicy, iopolicy);
911 
912 	/* iopolicy changes clear the mpath by design */
913 	mutex_lock(&nvme_subsystems_lock);
914 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
915 		nvme_mpath_clear_ctrl_paths(ctrl);
916 	mutex_unlock(&nvme_subsystems_lock);
917 
918 	pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
919 			subsys->subnqn,
920 			nvme_iopolicy_names[old_iopolicy],
921 			nvme_iopolicy_names[iopolicy]);
922 }
923 
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)924 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
925 		struct device_attribute *attr, const char *buf, size_t count)
926 {
927 	struct nvme_subsystem *subsys =
928 		container_of(dev, struct nvme_subsystem, dev);
929 	int i;
930 
931 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
932 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
933 			nvme_subsys_iopolicy_update(subsys, i);
934 			return count;
935 		}
936 	}
937 
938 	return -EINVAL;
939 }
940 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
941 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
942 
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)943 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
944 		char *buf)
945 {
946 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
947 }
948 DEVICE_ATTR_RO(ana_grpid);
949 
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)950 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
951 		char *buf)
952 {
953 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
954 
955 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
956 }
957 DEVICE_ATTR_RO(ana_state);
958 
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)959 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
960 		struct nvme_ana_group_desc *desc, void *data)
961 {
962 	struct nvme_ana_group_desc *dst = data;
963 
964 	if (desc->grpid != dst->grpid)
965 		return 0;
966 
967 	*dst = *desc;
968 	return -ENXIO; /* just break out of the loop */
969 }
970 
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)971 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
972 {
973 	if (nvme_ctrl_use_ana(ns->ctrl)) {
974 		struct nvme_ana_group_desc desc = {
975 			.grpid = anagrpid,
976 			.state = 0,
977 		};
978 
979 		mutex_lock(&ns->ctrl->ana_lock);
980 		ns->ana_grpid = le32_to_cpu(anagrpid);
981 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
982 		mutex_unlock(&ns->ctrl->ana_lock);
983 		if (desc.state) {
984 			/* found the group desc: update */
985 			nvme_update_ns_ana_state(&desc, ns);
986 		} else {
987 			/* group desc not found: trigger a re-read */
988 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
989 			queue_work(nvme_wq, &ns->ctrl->ana_work);
990 		}
991 	} else {
992 		ns->ana_state = NVME_ANA_OPTIMIZED;
993 		nvme_mpath_set_live(ns);
994 	}
995 
996 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
997 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
998 				   ns->head->disk->queue);
999 #ifdef CONFIG_BLK_DEV_ZONED
1000 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
1001 		ns->head->disk->nr_zones = ns->disk->nr_zones;
1002 #endif
1003 }
1004 
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)1005 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
1006 {
1007 	if (!head->disk)
1008 		return;
1009 	if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
1010 		nvme_cdev_del(&head->cdev, &head->cdev_device);
1011 		/*
1012 		 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1013 		 * to allow multipath to fail all I/O.
1014 		 */
1015 		synchronize_srcu(&head->srcu);
1016 		kblockd_schedule_work(&head->requeue_work);
1017 		del_gendisk(head->disk);
1018 	}
1019 	/*
1020 	 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1021 	 * to allow multipath to fail all I/O.
1022 	 */
1023 	synchronize_srcu(&head->srcu);
1024 	kblockd_schedule_work(&head->requeue_work);
1025 }
1026 
nvme_mpath_remove_disk(struct nvme_ns_head * head)1027 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1028 {
1029 	if (!head->disk)
1030 		return;
1031 	/* make sure all pending bios are cleaned up */
1032 	kblockd_schedule_work(&head->requeue_work);
1033 	flush_work(&head->requeue_work);
1034 	flush_work(&head->partition_scan_work);
1035 	put_disk(head->disk);
1036 }
1037 
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)1038 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1039 {
1040 	mutex_init(&ctrl->ana_lock);
1041 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1042 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1043 }
1044 
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1045 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1046 {
1047 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1048 	size_t ana_log_size;
1049 	int error = 0;
1050 
1051 	/* check if multipath is enabled and we have the capability */
1052 	if (!multipath || !ctrl->subsys ||
1053 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1054 		return 0;
1055 
1056 	/* initialize this in the identify path to cover controller resets */
1057 	atomic_set(&ctrl->nr_active, 0);
1058 
1059 	if (!ctrl->max_namespaces ||
1060 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1061 		dev_err(ctrl->device,
1062 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
1063 		return -EINVAL;
1064 	}
1065 
1066 	ctrl->anacap = id->anacap;
1067 	ctrl->anatt = id->anatt;
1068 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1069 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1070 
1071 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1072 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1073 		ctrl->max_namespaces * sizeof(__le32);
1074 	if (ana_log_size > max_transfer_size) {
1075 		dev_err(ctrl->device,
1076 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
1077 			ana_log_size, max_transfer_size);
1078 		dev_err(ctrl->device, "disabling ANA support.\n");
1079 		goto out_uninit;
1080 	}
1081 	if (ana_log_size > ctrl->ana_log_size) {
1082 		nvme_mpath_stop(ctrl);
1083 		nvme_mpath_uninit(ctrl);
1084 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1085 		if (!ctrl->ana_log_buf)
1086 			return -ENOMEM;
1087 	}
1088 	ctrl->ana_log_size = ana_log_size;
1089 	error = nvme_read_ana_log(ctrl);
1090 	if (error)
1091 		goto out_uninit;
1092 	return 0;
1093 
1094 out_uninit:
1095 	nvme_mpath_uninit(ctrl);
1096 	return error;
1097 }
1098 
nvme_mpath_uninit(struct nvme_ctrl * ctrl)1099 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1100 {
1101 	kvfree(ctrl->ana_log_buf);
1102 	ctrl->ana_log_buf = NULL;
1103 	ctrl->ana_log_size = 0;
1104 }
1105