1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 #include <linux/blk-cgroup.h>
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 #include <linux/blk-mq-pci.h>
20
21 /* *************************** Data Structures/Defines ****************** */
22
23
24 enum nvme_fc_queue_flags {
25 NVME_FC_Q_CONNECTED = 0,
26 NVME_FC_Q_LIVE,
27 };
28
29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */
30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects
31 * when connected and a
32 * connection failure.
33 */
34
35 struct nvme_fc_queue {
36 struct nvme_fc_ctrl *ctrl;
37 struct device *dev;
38 struct blk_mq_hw_ctx *hctx;
39 void *lldd_handle;
40 size_t cmnd_capsule_len;
41 u32 qnum;
42 u32 rqcnt;
43 u32 seqno;
44
45 u64 connection_id;
46 atomic_t csn;
47
48 unsigned long flags;
49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
50
51 enum nvme_fcop_flags {
52 FCOP_FLAGS_TERMIO = (1 << 0),
53 FCOP_FLAGS_AEN = (1 << 1),
54 };
55
56 struct nvmefc_ls_req_op {
57 struct nvmefc_ls_req ls_req;
58
59 struct nvme_fc_rport *rport;
60 struct nvme_fc_queue *queue;
61 struct request *rq;
62 u32 flags;
63
64 int ls_error;
65 struct completion ls_done;
66 struct list_head lsreq_list; /* rport->ls_req_list */
67 bool req_queued;
68 };
69
70 struct nvmefc_ls_rcv_op {
71 struct nvme_fc_rport *rport;
72 struct nvmefc_ls_rsp *lsrsp;
73 union nvmefc_ls_requests *rqstbuf;
74 union nvmefc_ls_responses *rspbuf;
75 u16 rqstdatalen;
76 bool handled;
77 dma_addr_t rspdma;
78 struct list_head lsrcv_list; /* rport->ls_rcv_list */
79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
80
81 enum nvme_fcpop_state {
82 FCPOP_STATE_UNINIT = 0,
83 FCPOP_STATE_IDLE = 1,
84 FCPOP_STATE_ACTIVE = 2,
85 FCPOP_STATE_ABORTED = 3,
86 FCPOP_STATE_COMPLETE = 4,
87 };
88
89 struct nvme_fc_fcp_op {
90 struct nvme_request nreq; /*
91 * nvme/host/core.c
92 * requires this to be
93 * the 1st element in the
94 * private structure
95 * associated with the
96 * request.
97 */
98 struct nvmefc_fcp_req fcp_req;
99
100 struct nvme_fc_ctrl *ctrl;
101 struct nvme_fc_queue *queue;
102 struct request *rq;
103
104 atomic_t state;
105 u32 flags;
106 u32 rqno;
107 u32 nents;
108
109 struct nvme_fc_cmd_iu cmd_iu;
110 struct nvme_fc_ersp_iu rsp_iu;
111 };
112
113 struct nvme_fcp_op_w_sgl {
114 struct nvme_fc_fcp_op op;
115 struct scatterlist sgl[NVME_INLINE_SG_CNT];
116 uint8_t priv[];
117 };
118
119 struct nvme_fc_lport {
120 struct nvme_fc_local_port localport;
121
122 struct ida endp_cnt;
123 struct list_head port_list; /* nvme_fc_port_list */
124 struct list_head endp_list;
125 struct device *dev; /* physical device for dma */
126 struct nvme_fc_port_template *ops;
127 struct kref ref;
128 atomic_t act_rport_cnt;
129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132 struct nvme_fc_remote_port remoteport;
133
134 struct list_head endp_list; /* for lport->endp_list */
135 struct list_head ctrl_list;
136 struct list_head ls_req_list;
137 struct list_head ls_rcv_list;
138 struct list_head disc_list;
139 struct device *dev; /* physical device for dma */
140 struct nvme_fc_lport *lport;
141 spinlock_t lock;
142 struct kref ref;
143 atomic_t act_ctrl_cnt;
144 unsigned long dev_loss_end;
145 struct work_struct lsrcv_work;
146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */
147
148 /* fc_ctrl flags values - specified as bit positions */
149 #define ASSOC_ACTIVE 0
150 #define ASSOC_FAILED 1
151 #define FCCTRL_TERMIO 2
152
153 struct nvme_fc_ctrl {
154 spinlock_t lock;
155 struct nvme_fc_queue *queues;
156 struct device *dev;
157 struct nvme_fc_lport *lport;
158 struct nvme_fc_rport *rport;
159 u32 cnum;
160
161 bool ioq_live;
162 u64 association_id;
163 struct nvmefc_ls_rcv_op *rcv_disconn;
164
165 struct list_head ctrl_list; /* rport->ctrl_list */
166
167 struct blk_mq_tag_set admin_tag_set;
168 struct blk_mq_tag_set tag_set;
169
170 struct work_struct ioerr_work;
171 struct delayed_work connect_work;
172
173 struct kref ref;
174 unsigned long flags;
175 u32 iocnt;
176 wait_queue_head_t ioabort_wait;
177
178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS];
179
180 struct nvme_ctrl ctrl;
181 };
182
183 static inline struct nvme_fc_ctrl *
to_fc_ctrl(struct nvme_ctrl * ctrl)184 to_fc_ctrl(struct nvme_ctrl *ctrl)
185 {
186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
187 }
188
189 static inline struct nvme_fc_lport *
localport_to_lport(struct nvme_fc_local_port * portptr)190 localport_to_lport(struct nvme_fc_local_port *portptr)
191 {
192 return container_of(portptr, struct nvme_fc_lport, localport);
193 }
194
195 static inline struct nvme_fc_rport *
remoteport_to_rport(struct nvme_fc_remote_port * portptr)196 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
197 {
198 return container_of(portptr, struct nvme_fc_rport, remoteport);
199 }
200
201 static inline struct nvmefc_ls_req_op *
ls_req_to_lsop(struct nvmefc_ls_req * lsreq)202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
203 {
204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
205 }
206
207 static inline struct nvme_fc_fcp_op *
fcp_req_to_fcp_op(struct nvmefc_fcp_req * fcpreq)208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
209 {
210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
211 }
212
213
214
215 /* *************************** Globals **************************** */
216
217
218 static DEFINE_SPINLOCK(nvme_fc_lock);
219
220 static LIST_HEAD(nvme_fc_lport_list);
221 static DEFINE_IDA(nvme_fc_local_port_cnt);
222 static DEFINE_IDA(nvme_fc_ctrl_cnt);
223
224 /*
225 * These items are short-term. They will eventually be moved into
226 * a generic FC class. See comments in module init.
227 */
228 static struct device *fc_udev_device;
229
230 static void nvme_fc_complete_rq(struct request *rq);
231
232 /* *********************** FC-NVME Port Management ************************ */
233
234 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
235 struct nvme_fc_queue *, unsigned int);
236
237 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
238
239
240 static void
nvme_fc_free_lport(struct kref * ref)241 nvme_fc_free_lport(struct kref *ref)
242 {
243 struct nvme_fc_lport *lport =
244 container_of(ref, struct nvme_fc_lport, ref);
245 unsigned long flags;
246
247 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
248 WARN_ON(!list_empty(&lport->endp_list));
249
250 /* remove from transport list */
251 spin_lock_irqsave(&nvme_fc_lock, flags);
252 list_del(&lport->port_list);
253 spin_unlock_irqrestore(&nvme_fc_lock, flags);
254
255 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num);
256 ida_destroy(&lport->endp_cnt);
257
258 put_device(lport->dev);
259
260 kfree(lport);
261 }
262
263 static void
nvme_fc_lport_put(struct nvme_fc_lport * lport)264 nvme_fc_lport_put(struct nvme_fc_lport *lport)
265 {
266 kref_put(&lport->ref, nvme_fc_free_lport);
267 }
268
269 static int
nvme_fc_lport_get(struct nvme_fc_lport * lport)270 nvme_fc_lport_get(struct nvme_fc_lport *lport)
271 {
272 return kref_get_unless_zero(&lport->ref);
273 }
274
275
276 static struct nvme_fc_lport *
nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * ops,struct device * dev)277 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
278 struct nvme_fc_port_template *ops,
279 struct device *dev)
280 {
281 struct nvme_fc_lport *lport;
282 unsigned long flags;
283
284 spin_lock_irqsave(&nvme_fc_lock, flags);
285
286 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
287 if (lport->localport.node_name != pinfo->node_name ||
288 lport->localport.port_name != pinfo->port_name)
289 continue;
290
291 if (lport->dev != dev) {
292 lport = ERR_PTR(-EXDEV);
293 goto out_done;
294 }
295
296 if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
297 lport = ERR_PTR(-EEXIST);
298 goto out_done;
299 }
300
301 if (!nvme_fc_lport_get(lport)) {
302 /*
303 * fails if ref cnt already 0. If so,
304 * act as if lport already deleted
305 */
306 lport = NULL;
307 goto out_done;
308 }
309
310 /* resume the lport */
311
312 lport->ops = ops;
313 lport->localport.port_role = pinfo->port_role;
314 lport->localport.port_id = pinfo->port_id;
315 lport->localport.port_state = FC_OBJSTATE_ONLINE;
316
317 spin_unlock_irqrestore(&nvme_fc_lock, flags);
318
319 return lport;
320 }
321
322 lport = NULL;
323
324 out_done:
325 spin_unlock_irqrestore(&nvme_fc_lock, flags);
326
327 return lport;
328 }
329
330 /**
331 * nvme_fc_register_localport - transport entry point called by an
332 * LLDD to register the existence of a NVME
333 * host FC port.
334 * @pinfo: pointer to information about the port to be registered
335 * @template: LLDD entrypoints and operational parameters for the port
336 * @dev: physical hardware device node port corresponds to. Will be
337 * used for DMA mappings
338 * @portptr: pointer to a local port pointer. Upon success, the routine
339 * will allocate a nvme_fc_local_port structure and place its
340 * address in the local port pointer. Upon failure, local port
341 * pointer will be set to 0.
342 *
343 * Returns:
344 * a completion status. Must be 0 upon success; a negative errno
345 * (ex: -ENXIO) upon failure.
346 */
347 int
nvme_fc_register_localport(struct nvme_fc_port_info * pinfo,struct nvme_fc_port_template * template,struct device * dev,struct nvme_fc_local_port ** portptr)348 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
349 struct nvme_fc_port_template *template,
350 struct device *dev,
351 struct nvme_fc_local_port **portptr)
352 {
353 struct nvme_fc_lport *newrec;
354 unsigned long flags;
355 int ret, idx;
356
357 if (!template->localport_delete || !template->remoteport_delete ||
358 !template->ls_req || !template->fcp_io ||
359 !template->ls_abort || !template->fcp_abort ||
360 !template->max_hw_queues || !template->max_sgl_segments ||
361 !template->max_dif_sgl_segments || !template->dma_boundary) {
362 ret = -EINVAL;
363 goto out_reghost_failed;
364 }
365
366 /*
367 * look to see if there is already a localport that had been
368 * deregistered and in the process of waiting for all the
369 * references to fully be removed. If the references haven't
370 * expired, we can simply re-enable the localport. Remoteports
371 * and controller reconnections should resume naturally.
372 */
373 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
374
375 /* found an lport, but something about its state is bad */
376 if (IS_ERR(newrec)) {
377 ret = PTR_ERR(newrec);
378 goto out_reghost_failed;
379
380 /* found existing lport, which was resumed */
381 } else if (newrec) {
382 *portptr = &newrec->localport;
383 return 0;
384 }
385
386 /* nothing found - allocate a new localport struct */
387
388 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
389 GFP_KERNEL);
390 if (!newrec) {
391 ret = -ENOMEM;
392 goto out_reghost_failed;
393 }
394
395 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL);
396 if (idx < 0) {
397 ret = -ENOSPC;
398 goto out_fail_kfree;
399 }
400
401 if (!get_device(dev) && dev) {
402 ret = -ENODEV;
403 goto out_ida_put;
404 }
405
406 INIT_LIST_HEAD(&newrec->port_list);
407 INIT_LIST_HEAD(&newrec->endp_list);
408 kref_init(&newrec->ref);
409 atomic_set(&newrec->act_rport_cnt, 0);
410 newrec->ops = template;
411 newrec->dev = dev;
412 ida_init(&newrec->endp_cnt);
413 if (template->local_priv_sz)
414 newrec->localport.private = &newrec[1];
415 else
416 newrec->localport.private = NULL;
417 newrec->localport.node_name = pinfo->node_name;
418 newrec->localport.port_name = pinfo->port_name;
419 newrec->localport.port_role = pinfo->port_role;
420 newrec->localport.port_id = pinfo->port_id;
421 newrec->localport.port_state = FC_OBJSTATE_ONLINE;
422 newrec->localport.port_num = idx;
423
424 spin_lock_irqsave(&nvme_fc_lock, flags);
425 list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
426 spin_unlock_irqrestore(&nvme_fc_lock, flags);
427
428 if (dev)
429 dma_set_seg_boundary(dev, template->dma_boundary);
430
431 *portptr = &newrec->localport;
432 return 0;
433
434 out_ida_put:
435 ida_free(&nvme_fc_local_port_cnt, idx);
436 out_fail_kfree:
437 kfree(newrec);
438 out_reghost_failed:
439 *portptr = NULL;
440
441 return ret;
442 }
443 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
444
445 /**
446 * nvme_fc_unregister_localport - transport entry point called by an
447 * LLDD to deregister/remove a previously
448 * registered a NVME host FC port.
449 * @portptr: pointer to the (registered) local port that is to be deregistered.
450 *
451 * Returns:
452 * a completion status. Must be 0 upon success; a negative errno
453 * (ex: -ENXIO) upon failure.
454 */
455 int
nvme_fc_unregister_localport(struct nvme_fc_local_port * portptr)456 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
457 {
458 struct nvme_fc_lport *lport = localport_to_lport(portptr);
459 unsigned long flags;
460
461 if (!portptr)
462 return -EINVAL;
463
464 spin_lock_irqsave(&nvme_fc_lock, flags);
465
466 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
467 spin_unlock_irqrestore(&nvme_fc_lock, flags);
468 return -EINVAL;
469 }
470 portptr->port_state = FC_OBJSTATE_DELETED;
471
472 spin_unlock_irqrestore(&nvme_fc_lock, flags);
473
474 if (atomic_read(&lport->act_rport_cnt) == 0)
475 lport->ops->localport_delete(&lport->localport);
476
477 nvme_fc_lport_put(lport);
478
479 return 0;
480 }
481 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
482
483 /*
484 * TRADDR strings, per FC-NVME are fixed format:
485 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
486 * udev event will only differ by prefix of what field is
487 * being specified:
488 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
489 * 19 + 43 + null_fudge = 64 characters
490 */
491 #define FCNVME_TRADDR_LENGTH 64
492
493 static void
nvme_fc_signal_discovery_scan(struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)494 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
495 struct nvme_fc_rport *rport)
496 {
497 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/
498 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/
499 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
500
501 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
502 return;
503
504 snprintf(hostaddr, sizeof(hostaddr),
505 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
506 lport->localport.node_name, lport->localport.port_name);
507 snprintf(tgtaddr, sizeof(tgtaddr),
508 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
509 rport->remoteport.node_name, rport->remoteport.port_name);
510 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
511 }
512
513 static void
nvme_fc_free_rport(struct kref * ref)514 nvme_fc_free_rport(struct kref *ref)
515 {
516 struct nvme_fc_rport *rport =
517 container_of(ref, struct nvme_fc_rport, ref);
518 struct nvme_fc_lport *lport =
519 localport_to_lport(rport->remoteport.localport);
520 unsigned long flags;
521
522 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
523 WARN_ON(!list_empty(&rport->ctrl_list));
524
525 /* remove from lport list */
526 spin_lock_irqsave(&nvme_fc_lock, flags);
527 list_del(&rport->endp_list);
528 spin_unlock_irqrestore(&nvme_fc_lock, flags);
529
530 WARN_ON(!list_empty(&rport->disc_list));
531 ida_free(&lport->endp_cnt, rport->remoteport.port_num);
532
533 kfree(rport);
534
535 nvme_fc_lport_put(lport);
536 }
537
538 static void
nvme_fc_rport_put(struct nvme_fc_rport * rport)539 nvme_fc_rport_put(struct nvme_fc_rport *rport)
540 {
541 kref_put(&rport->ref, nvme_fc_free_rport);
542 }
543
544 static int
nvme_fc_rport_get(struct nvme_fc_rport * rport)545 nvme_fc_rport_get(struct nvme_fc_rport *rport)
546 {
547 return kref_get_unless_zero(&rport->ref);
548 }
549
550 static void
nvme_fc_resume_controller(struct nvme_fc_ctrl * ctrl)551 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
552 {
553 switch (nvme_ctrl_state(&ctrl->ctrl)) {
554 case NVME_CTRL_NEW:
555 case NVME_CTRL_CONNECTING:
556 /*
557 * As all reconnects were suppressed, schedule a
558 * connect.
559 */
560 dev_info(ctrl->ctrl.device,
561 "NVME-FC{%d}: connectivity re-established. "
562 "Attempting reconnect\n", ctrl->cnum);
563
564 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
565 break;
566
567 case NVME_CTRL_RESETTING:
568 /*
569 * Controller is already in the process of terminating the
570 * association. No need to do anything further. The reconnect
571 * step will naturally occur after the reset completes.
572 */
573 break;
574
575 default:
576 /* no action to take - let it delete */
577 break;
578 }
579 }
580
581 static struct nvme_fc_rport *
nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport * lport,struct nvme_fc_port_info * pinfo)582 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
583 struct nvme_fc_port_info *pinfo)
584 {
585 struct nvme_fc_rport *rport;
586 struct nvme_fc_ctrl *ctrl;
587 unsigned long flags;
588
589 spin_lock_irqsave(&nvme_fc_lock, flags);
590
591 list_for_each_entry(rport, &lport->endp_list, endp_list) {
592 if (rport->remoteport.node_name != pinfo->node_name ||
593 rport->remoteport.port_name != pinfo->port_name)
594 continue;
595
596 if (!nvme_fc_rport_get(rport)) {
597 rport = ERR_PTR(-ENOLCK);
598 goto out_done;
599 }
600
601 spin_unlock_irqrestore(&nvme_fc_lock, flags);
602
603 spin_lock_irqsave(&rport->lock, flags);
604
605 /* has it been unregistered */
606 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
607 /* means lldd called us twice */
608 spin_unlock_irqrestore(&rport->lock, flags);
609 nvme_fc_rport_put(rport);
610 return ERR_PTR(-ESTALE);
611 }
612
613 rport->remoteport.port_role = pinfo->port_role;
614 rport->remoteport.port_id = pinfo->port_id;
615 rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
616 rport->dev_loss_end = 0;
617
618 /*
619 * kick off a reconnect attempt on all associations to the
620 * remote port. A successful reconnects will resume i/o.
621 */
622 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
623 nvme_fc_resume_controller(ctrl);
624
625 spin_unlock_irqrestore(&rport->lock, flags);
626
627 return rport;
628 }
629
630 rport = NULL;
631
632 out_done:
633 spin_unlock_irqrestore(&nvme_fc_lock, flags);
634
635 return rport;
636 }
637
638 static inline void
__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport * rport,struct nvme_fc_port_info * pinfo)639 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
640 struct nvme_fc_port_info *pinfo)
641 {
642 if (pinfo->dev_loss_tmo)
643 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
644 else
645 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
646 }
647
648 /**
649 * nvme_fc_register_remoteport - transport entry point called by an
650 * LLDD to register the existence of a NVME
651 * subsystem FC port on its fabric.
652 * @localport: pointer to the (registered) local port that the remote
653 * subsystem port is connected to.
654 * @pinfo: pointer to information about the port to be registered
655 * @portptr: pointer to a remote port pointer. Upon success, the routine
656 * will allocate a nvme_fc_remote_port structure and place its
657 * address in the remote port pointer. Upon failure, remote port
658 * pointer will be set to 0.
659 *
660 * Returns:
661 * a completion status. Must be 0 upon success; a negative errno
662 * (ex: -ENXIO) upon failure.
663 */
664 int
nvme_fc_register_remoteport(struct nvme_fc_local_port * localport,struct nvme_fc_port_info * pinfo,struct nvme_fc_remote_port ** portptr)665 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
666 struct nvme_fc_port_info *pinfo,
667 struct nvme_fc_remote_port **portptr)
668 {
669 struct nvme_fc_lport *lport = localport_to_lport(localport);
670 struct nvme_fc_rport *newrec;
671 unsigned long flags;
672 int ret, idx;
673
674 if (!nvme_fc_lport_get(lport)) {
675 ret = -ESHUTDOWN;
676 goto out_reghost_failed;
677 }
678
679 /*
680 * look to see if there is already a remoteport that is waiting
681 * for a reconnect (within dev_loss_tmo) with the same WWN's.
682 * If so, transition to it and reconnect.
683 */
684 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
685
686 /* found an rport, but something about its state is bad */
687 if (IS_ERR(newrec)) {
688 ret = PTR_ERR(newrec);
689 goto out_lport_put;
690
691 /* found existing rport, which was resumed */
692 } else if (newrec) {
693 nvme_fc_lport_put(lport);
694 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
695 nvme_fc_signal_discovery_scan(lport, newrec);
696 *portptr = &newrec->remoteport;
697 return 0;
698 }
699
700 /* nothing found - allocate a new remoteport struct */
701
702 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
703 GFP_KERNEL);
704 if (!newrec) {
705 ret = -ENOMEM;
706 goto out_lport_put;
707 }
708
709 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL);
710 if (idx < 0) {
711 ret = -ENOSPC;
712 goto out_kfree_rport;
713 }
714
715 INIT_LIST_HEAD(&newrec->endp_list);
716 INIT_LIST_HEAD(&newrec->ctrl_list);
717 INIT_LIST_HEAD(&newrec->ls_req_list);
718 INIT_LIST_HEAD(&newrec->disc_list);
719 kref_init(&newrec->ref);
720 atomic_set(&newrec->act_ctrl_cnt, 0);
721 spin_lock_init(&newrec->lock);
722 newrec->remoteport.localport = &lport->localport;
723 INIT_LIST_HEAD(&newrec->ls_rcv_list);
724 newrec->dev = lport->dev;
725 newrec->lport = lport;
726 if (lport->ops->remote_priv_sz)
727 newrec->remoteport.private = &newrec[1];
728 else
729 newrec->remoteport.private = NULL;
730 newrec->remoteport.port_role = pinfo->port_role;
731 newrec->remoteport.node_name = pinfo->node_name;
732 newrec->remoteport.port_name = pinfo->port_name;
733 newrec->remoteport.port_id = pinfo->port_id;
734 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
735 newrec->remoteport.port_num = idx;
736 __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
737 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
738
739 spin_lock_irqsave(&nvme_fc_lock, flags);
740 list_add_tail(&newrec->endp_list, &lport->endp_list);
741 spin_unlock_irqrestore(&nvme_fc_lock, flags);
742
743 nvme_fc_signal_discovery_scan(lport, newrec);
744
745 *portptr = &newrec->remoteport;
746 return 0;
747
748 out_kfree_rport:
749 kfree(newrec);
750 out_lport_put:
751 nvme_fc_lport_put(lport);
752 out_reghost_failed:
753 *portptr = NULL;
754 return ret;
755 }
756 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
757
758 static int
nvme_fc_abort_lsops(struct nvme_fc_rport * rport)759 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
760 {
761 struct nvmefc_ls_req_op *lsop;
762 unsigned long flags;
763
764 restart:
765 spin_lock_irqsave(&rport->lock, flags);
766
767 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
768 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
769 lsop->flags |= FCOP_FLAGS_TERMIO;
770 spin_unlock_irqrestore(&rport->lock, flags);
771 rport->lport->ops->ls_abort(&rport->lport->localport,
772 &rport->remoteport,
773 &lsop->ls_req);
774 goto restart;
775 }
776 }
777 spin_unlock_irqrestore(&rport->lock, flags);
778
779 return 0;
780 }
781
782 static void
nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl * ctrl)783 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
784 {
785 dev_info(ctrl->ctrl.device,
786 "NVME-FC{%d}: controller connectivity lost. Awaiting "
787 "Reconnect", ctrl->cnum);
788
789 set_bit(ASSOC_FAILED, &ctrl->flags);
790 nvme_reset_ctrl(&ctrl->ctrl);
791 }
792
793 /**
794 * nvme_fc_unregister_remoteport - transport entry point called by an
795 * LLDD to deregister/remove a previously
796 * registered a NVME subsystem FC port.
797 * @portptr: pointer to the (registered) remote port that is to be
798 * deregistered.
799 *
800 * Returns:
801 * a completion status. Must be 0 upon success; a negative errno
802 * (ex: -ENXIO) upon failure.
803 */
804 int
nvme_fc_unregister_remoteport(struct nvme_fc_remote_port * portptr)805 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
806 {
807 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
808 struct nvme_fc_ctrl *ctrl;
809 unsigned long flags;
810
811 if (!portptr)
812 return -EINVAL;
813
814 spin_lock_irqsave(&rport->lock, flags);
815
816 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
817 spin_unlock_irqrestore(&rport->lock, flags);
818 return -EINVAL;
819 }
820 portptr->port_state = FC_OBJSTATE_DELETED;
821
822 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
823
824 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
825 /* if dev_loss_tmo==0, dev loss is immediate */
826 if (!portptr->dev_loss_tmo) {
827 dev_warn(ctrl->ctrl.device,
828 "NVME-FC{%d}: controller connectivity lost.\n",
829 ctrl->cnum);
830 nvme_delete_ctrl(&ctrl->ctrl);
831 } else
832 nvme_fc_ctrl_connectivity_loss(ctrl);
833 }
834
835 spin_unlock_irqrestore(&rport->lock, flags);
836
837 nvme_fc_abort_lsops(rport);
838
839 if (atomic_read(&rport->act_ctrl_cnt) == 0)
840 rport->lport->ops->remoteport_delete(portptr);
841
842 /*
843 * release the reference, which will allow, if all controllers
844 * go away, which should only occur after dev_loss_tmo occurs,
845 * for the rport to be torn down.
846 */
847 nvme_fc_rport_put(rport);
848
849 return 0;
850 }
851 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
852
853 /**
854 * nvme_fc_rescan_remoteport - transport entry point called by an
855 * LLDD to request a nvme device rescan.
856 * @remoteport: pointer to the (registered) remote port that is to be
857 * rescanned.
858 *
859 * Returns: N/A
860 */
861 void
nvme_fc_rescan_remoteport(struct nvme_fc_remote_port * remoteport)862 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
863 {
864 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
865
866 nvme_fc_signal_discovery_scan(rport->lport, rport);
867 }
868 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
869
870 int
nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port * portptr,u32 dev_loss_tmo)871 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
872 u32 dev_loss_tmo)
873 {
874 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
875 unsigned long flags;
876
877 spin_lock_irqsave(&rport->lock, flags);
878
879 if (portptr->port_state != FC_OBJSTATE_ONLINE) {
880 spin_unlock_irqrestore(&rport->lock, flags);
881 return -EINVAL;
882 }
883
884 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
885 rport->remoteport.dev_loss_tmo = dev_loss_tmo;
886
887 spin_unlock_irqrestore(&rport->lock, flags);
888
889 return 0;
890 }
891 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
892
893
894 /* *********************** FC-NVME DMA Handling **************************** */
895
896 /*
897 * The fcloop device passes in a NULL device pointer. Real LLD's will
898 * pass in a valid device pointer. If NULL is passed to the dma mapping
899 * routines, depending on the platform, it may or may not succeed, and
900 * may crash.
901 *
902 * As such:
903 * Wrapper all the dma routines and check the dev pointer.
904 *
905 * If simple mappings (return just a dma address, we'll noop them,
906 * returning a dma address of 0.
907 *
908 * On more complex mappings (dma_map_sg), a pseudo routine fills
909 * in the scatter list, setting all dma addresses to 0.
910 */
911
912 static inline dma_addr_t
fc_dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)913 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
914 enum dma_data_direction dir)
915 {
916 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
917 }
918
919 static inline int
fc_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)920 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
921 {
922 return dev ? dma_mapping_error(dev, dma_addr) : 0;
923 }
924
925 static inline void
fc_dma_unmap_single(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)926 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
927 enum dma_data_direction dir)
928 {
929 if (dev)
930 dma_unmap_single(dev, addr, size, dir);
931 }
932
933 static inline void
fc_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)934 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
935 enum dma_data_direction dir)
936 {
937 if (dev)
938 dma_sync_single_for_cpu(dev, addr, size, dir);
939 }
940
941 static inline void
fc_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)942 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
943 enum dma_data_direction dir)
944 {
945 if (dev)
946 dma_sync_single_for_device(dev, addr, size, dir);
947 }
948
949 /* pseudo dma_map_sg call */
950 static int
fc_map_sg(struct scatterlist * sg,int nents)951 fc_map_sg(struct scatterlist *sg, int nents)
952 {
953 struct scatterlist *s;
954 int i;
955
956 WARN_ON(nents == 0 || sg[0].length == 0);
957
958 for_each_sg(sg, s, nents, i) {
959 s->dma_address = 0L;
960 #ifdef CONFIG_NEED_SG_DMA_LENGTH
961 s->dma_length = s->length;
962 #endif
963 }
964 return nents;
965 }
966
967 static inline int
fc_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)968 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
969 enum dma_data_direction dir)
970 {
971 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
972 }
973
974 static inline void
fc_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)975 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
976 enum dma_data_direction dir)
977 {
978 if (dev)
979 dma_unmap_sg(dev, sg, nents, dir);
980 }
981
982 /* *********************** FC-NVME LS Handling **************************** */
983
984 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
985 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
986
987 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
988
989 static void
__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op * lsop)990 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
991 {
992 struct nvme_fc_rport *rport = lsop->rport;
993 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
994 unsigned long flags;
995
996 spin_lock_irqsave(&rport->lock, flags);
997
998 if (!lsop->req_queued) {
999 spin_unlock_irqrestore(&rport->lock, flags);
1000 return;
1001 }
1002
1003 list_del(&lsop->lsreq_list);
1004
1005 lsop->req_queued = false;
1006
1007 spin_unlock_irqrestore(&rport->lock, flags);
1008
1009 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1010 (lsreq->rqstlen + lsreq->rsplen),
1011 DMA_BIDIRECTIONAL);
1012
1013 nvme_fc_rport_put(rport);
1014 }
1015
1016 static int
__nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1017 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1018 struct nvmefc_ls_req_op *lsop,
1019 void (*done)(struct nvmefc_ls_req *req, int status))
1020 {
1021 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1022 unsigned long flags;
1023 int ret = 0;
1024
1025 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1026 return -ECONNREFUSED;
1027
1028 if (!nvme_fc_rport_get(rport))
1029 return -ESHUTDOWN;
1030
1031 lsreq->done = done;
1032 lsop->rport = rport;
1033 lsop->req_queued = false;
1034 INIT_LIST_HEAD(&lsop->lsreq_list);
1035 init_completion(&lsop->ls_done);
1036
1037 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1038 lsreq->rqstlen + lsreq->rsplen,
1039 DMA_BIDIRECTIONAL);
1040 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1041 ret = -EFAULT;
1042 goto out_putrport;
1043 }
1044 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1045
1046 spin_lock_irqsave(&rport->lock, flags);
1047
1048 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1049
1050 lsop->req_queued = true;
1051
1052 spin_unlock_irqrestore(&rport->lock, flags);
1053
1054 ret = rport->lport->ops->ls_req(&rport->lport->localport,
1055 &rport->remoteport, lsreq);
1056 if (ret)
1057 goto out_unlink;
1058
1059 return 0;
1060
1061 out_unlink:
1062 lsop->ls_error = ret;
1063 spin_lock_irqsave(&rport->lock, flags);
1064 lsop->req_queued = false;
1065 list_del(&lsop->lsreq_list);
1066 spin_unlock_irqrestore(&rport->lock, flags);
1067 fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1068 (lsreq->rqstlen + lsreq->rsplen),
1069 DMA_BIDIRECTIONAL);
1070 out_putrport:
1071 nvme_fc_rport_put(rport);
1072
1073 return ret;
1074 }
1075
1076 static void
nvme_fc_send_ls_req_done(struct nvmefc_ls_req * lsreq,int status)1077 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1078 {
1079 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1080
1081 lsop->ls_error = status;
1082 complete(&lsop->ls_done);
1083 }
1084
1085 static int
nvme_fc_send_ls_req(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop)1086 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1087 {
1088 struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1089 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1090 int ret;
1091
1092 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1093
1094 if (!ret) {
1095 /*
1096 * No timeout/not interruptible as we need the struct
1097 * to exist until the lldd calls us back. Thus mandate
1098 * wait until driver calls back. lldd responsible for
1099 * the timeout action
1100 */
1101 wait_for_completion(&lsop->ls_done);
1102
1103 __nvme_fc_finish_ls_req(lsop);
1104
1105 ret = lsop->ls_error;
1106 }
1107
1108 if (ret)
1109 return ret;
1110
1111 /* ACC or RJT payload ? */
1112 if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1113 return -ENXIO;
1114
1115 return 0;
1116 }
1117
1118 static int
nvme_fc_send_ls_req_async(struct nvme_fc_rport * rport,struct nvmefc_ls_req_op * lsop,void (* done)(struct nvmefc_ls_req * req,int status))1119 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1120 struct nvmefc_ls_req_op *lsop,
1121 void (*done)(struct nvmefc_ls_req *req, int status))
1122 {
1123 /* don't wait for completion */
1124
1125 return __nvme_fc_send_ls_req(rport, lsop, done);
1126 }
1127
1128 static int
nvme_fc_connect_admin_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1129 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1130 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1131 {
1132 struct nvmefc_ls_req_op *lsop;
1133 struct nvmefc_ls_req *lsreq;
1134 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1135 struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1136 unsigned long flags;
1137 int ret, fcret = 0;
1138
1139 lsop = kzalloc((sizeof(*lsop) +
1140 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1141 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1142 if (!lsop) {
1143 dev_info(ctrl->ctrl.device,
1144 "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1145 ctrl->cnum);
1146 ret = -ENOMEM;
1147 goto out_no_memory;
1148 }
1149
1150 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1151 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1152 lsreq = &lsop->ls_req;
1153 if (ctrl->lport->ops->lsrqst_priv_sz)
1154 lsreq->private = &assoc_acc[1];
1155 else
1156 lsreq->private = NULL;
1157
1158 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1159 assoc_rqst->desc_list_len =
1160 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1161
1162 assoc_rqst->assoc_cmd.desc_tag =
1163 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1164 assoc_rqst->assoc_cmd.desc_len =
1165 fcnvme_lsdesc_len(
1166 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1167
1168 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1169 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1170 /* Linux supports only Dynamic controllers */
1171 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1172 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1173 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1174 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1175 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1176 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1177
1178 lsop->queue = queue;
1179 lsreq->rqstaddr = assoc_rqst;
1180 lsreq->rqstlen = sizeof(*assoc_rqst);
1181 lsreq->rspaddr = assoc_acc;
1182 lsreq->rsplen = sizeof(*assoc_acc);
1183 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1184
1185 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1186 if (ret)
1187 goto out_free_buffer;
1188
1189 /* process connect LS completion */
1190
1191 /* validate the ACC response */
1192 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1193 fcret = VERR_LSACC;
1194 else if (assoc_acc->hdr.desc_list_len !=
1195 fcnvme_lsdesc_len(
1196 sizeof(struct fcnvme_ls_cr_assoc_acc)))
1197 fcret = VERR_CR_ASSOC_ACC_LEN;
1198 else if (assoc_acc->hdr.rqst.desc_tag !=
1199 cpu_to_be32(FCNVME_LSDESC_RQST))
1200 fcret = VERR_LSDESC_RQST;
1201 else if (assoc_acc->hdr.rqst.desc_len !=
1202 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1203 fcret = VERR_LSDESC_RQST_LEN;
1204 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1205 fcret = VERR_CR_ASSOC;
1206 else if (assoc_acc->associd.desc_tag !=
1207 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1208 fcret = VERR_ASSOC_ID;
1209 else if (assoc_acc->associd.desc_len !=
1210 fcnvme_lsdesc_len(
1211 sizeof(struct fcnvme_lsdesc_assoc_id)))
1212 fcret = VERR_ASSOC_ID_LEN;
1213 else if (assoc_acc->connectid.desc_tag !=
1214 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1215 fcret = VERR_CONN_ID;
1216 else if (assoc_acc->connectid.desc_len !=
1217 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1218 fcret = VERR_CONN_ID_LEN;
1219
1220 if (fcret) {
1221 ret = -EBADF;
1222 dev_err(ctrl->dev,
1223 "q %d Create Association LS failed: %s\n",
1224 queue->qnum, validation_errors[fcret]);
1225 } else {
1226 spin_lock_irqsave(&ctrl->lock, flags);
1227 ctrl->association_id =
1228 be64_to_cpu(assoc_acc->associd.association_id);
1229 queue->connection_id =
1230 be64_to_cpu(assoc_acc->connectid.connection_id);
1231 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1232 spin_unlock_irqrestore(&ctrl->lock, flags);
1233 }
1234
1235 out_free_buffer:
1236 kfree(lsop);
1237 out_no_memory:
1238 if (ret)
1239 dev_err(ctrl->dev,
1240 "queue %d connect admin queue failed (%d).\n",
1241 queue->qnum, ret);
1242 return ret;
1243 }
1244
1245 static int
nvme_fc_connect_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,u16 qsize,u16 ersp_ratio)1246 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1247 u16 qsize, u16 ersp_ratio)
1248 {
1249 struct nvmefc_ls_req_op *lsop;
1250 struct nvmefc_ls_req *lsreq;
1251 struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1252 struct fcnvme_ls_cr_conn_acc *conn_acc;
1253 int ret, fcret = 0;
1254
1255 lsop = kzalloc((sizeof(*lsop) +
1256 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1257 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1258 if (!lsop) {
1259 dev_info(ctrl->ctrl.device,
1260 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1261 ctrl->cnum);
1262 ret = -ENOMEM;
1263 goto out_no_memory;
1264 }
1265
1266 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1267 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1268 lsreq = &lsop->ls_req;
1269 if (ctrl->lport->ops->lsrqst_priv_sz)
1270 lsreq->private = (void *)&conn_acc[1];
1271 else
1272 lsreq->private = NULL;
1273
1274 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1275 conn_rqst->desc_list_len = cpu_to_be32(
1276 sizeof(struct fcnvme_lsdesc_assoc_id) +
1277 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1278
1279 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1280 conn_rqst->associd.desc_len =
1281 fcnvme_lsdesc_len(
1282 sizeof(struct fcnvme_lsdesc_assoc_id));
1283 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1284 conn_rqst->connect_cmd.desc_tag =
1285 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1286 conn_rqst->connect_cmd.desc_len =
1287 fcnvme_lsdesc_len(
1288 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1289 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1290 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum);
1291 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1292
1293 lsop->queue = queue;
1294 lsreq->rqstaddr = conn_rqst;
1295 lsreq->rqstlen = sizeof(*conn_rqst);
1296 lsreq->rspaddr = conn_acc;
1297 lsreq->rsplen = sizeof(*conn_acc);
1298 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1299
1300 ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1301 if (ret)
1302 goto out_free_buffer;
1303
1304 /* process connect LS completion */
1305
1306 /* validate the ACC response */
1307 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1308 fcret = VERR_LSACC;
1309 else if (conn_acc->hdr.desc_list_len !=
1310 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1311 fcret = VERR_CR_CONN_ACC_LEN;
1312 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1313 fcret = VERR_LSDESC_RQST;
1314 else if (conn_acc->hdr.rqst.desc_len !=
1315 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1316 fcret = VERR_LSDESC_RQST_LEN;
1317 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1318 fcret = VERR_CR_CONN;
1319 else if (conn_acc->connectid.desc_tag !=
1320 cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1321 fcret = VERR_CONN_ID;
1322 else if (conn_acc->connectid.desc_len !=
1323 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1324 fcret = VERR_CONN_ID_LEN;
1325
1326 if (fcret) {
1327 ret = -EBADF;
1328 dev_err(ctrl->dev,
1329 "q %d Create I/O Connection LS failed: %s\n",
1330 queue->qnum, validation_errors[fcret]);
1331 } else {
1332 queue->connection_id =
1333 be64_to_cpu(conn_acc->connectid.connection_id);
1334 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1335 }
1336
1337 out_free_buffer:
1338 kfree(lsop);
1339 out_no_memory:
1340 if (ret)
1341 dev_err(ctrl->dev,
1342 "queue %d connect I/O queue failed (%d).\n",
1343 queue->qnum, ret);
1344 return ret;
1345 }
1346
1347 static void
nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req * lsreq,int status)1348 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1349 {
1350 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1351
1352 __nvme_fc_finish_ls_req(lsop);
1353
1354 /* fc-nvme initiator doesn't care about success or failure of cmd */
1355
1356 kfree(lsop);
1357 }
1358
1359 /*
1360 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1361 * the FC-NVME Association. Terminating the association also
1362 * terminates the FC-NVME connections (per queue, both admin and io
1363 * queues) that are part of the association. E.g. things are torn
1364 * down, and the related FC-NVME Association ID and Connection IDs
1365 * become invalid.
1366 *
1367 * The behavior of the fc-nvme initiator is such that it's
1368 * understanding of the association and connections will implicitly
1369 * be torn down. The action is implicit as it may be due to a loss of
1370 * connectivity with the fc-nvme target, so you may never get a
1371 * response even if you tried. As such, the action of this routine
1372 * is to asynchronously send the LS, ignore any results of the LS, and
1373 * continue on with terminating the association. If the fc-nvme target
1374 * is present and receives the LS, it too can tear down.
1375 */
1376 static void
nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl * ctrl)1377 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1378 {
1379 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1380 struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1381 struct nvmefc_ls_req_op *lsop;
1382 struct nvmefc_ls_req *lsreq;
1383 int ret;
1384
1385 lsop = kzalloc((sizeof(*lsop) +
1386 sizeof(*discon_rqst) + sizeof(*discon_acc) +
1387 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1388 if (!lsop) {
1389 dev_info(ctrl->ctrl.device,
1390 "NVME-FC{%d}: send Disconnect Association "
1391 "failed: ENOMEM\n",
1392 ctrl->cnum);
1393 return;
1394 }
1395
1396 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1397 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1398 lsreq = &lsop->ls_req;
1399 if (ctrl->lport->ops->lsrqst_priv_sz)
1400 lsreq->private = (void *)&discon_acc[1];
1401 else
1402 lsreq->private = NULL;
1403
1404 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1405 ctrl->association_id);
1406
1407 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1408 nvme_fc_disconnect_assoc_done);
1409 if (ret)
1410 kfree(lsop);
1411 }
1412
1413 static void
nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp * lsrsp)1414 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1415 {
1416 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1417 struct nvme_fc_rport *rport = lsop->rport;
1418 struct nvme_fc_lport *lport = rport->lport;
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(&rport->lock, flags);
1422 list_del(&lsop->lsrcv_list);
1423 spin_unlock_irqrestore(&rport->lock, flags);
1424
1425 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1426 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1427 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1428 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1429
1430 kfree(lsop->rspbuf);
1431 kfree(lsop->rqstbuf);
1432 kfree(lsop);
1433
1434 nvme_fc_rport_put(rport);
1435 }
1436
1437 static void
nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op * lsop)1438 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1439 {
1440 struct nvme_fc_rport *rport = lsop->rport;
1441 struct nvme_fc_lport *lport = rport->lport;
1442 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1443 int ret;
1444
1445 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1446 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1447
1448 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1449 lsop->lsrsp);
1450 if (ret) {
1451 dev_warn(lport->dev,
1452 "LLDD rejected LS RSP xmt: LS %d status %d\n",
1453 w0->ls_cmd, ret);
1454 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1455 return;
1456 }
1457 }
1458
1459 static struct nvme_fc_ctrl *
nvme_fc_match_disconn_ls(struct nvme_fc_rport * rport,struct nvmefc_ls_rcv_op * lsop)1460 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1461 struct nvmefc_ls_rcv_op *lsop)
1462 {
1463 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1464 &lsop->rqstbuf->rq_dis_assoc;
1465 struct nvme_fc_ctrl *ctrl, *ret = NULL;
1466 struct nvmefc_ls_rcv_op *oldls = NULL;
1467 u64 association_id = be64_to_cpu(rqst->associd.association_id);
1468 unsigned long flags;
1469
1470 spin_lock_irqsave(&rport->lock, flags);
1471
1472 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1473 if (!nvme_fc_ctrl_get(ctrl))
1474 continue;
1475 spin_lock(&ctrl->lock);
1476 if (association_id == ctrl->association_id) {
1477 oldls = ctrl->rcv_disconn;
1478 ctrl->rcv_disconn = lsop;
1479 ret = ctrl;
1480 }
1481 spin_unlock(&ctrl->lock);
1482 if (ret)
1483 /* leave the ctrl get reference */
1484 break;
1485 nvme_fc_ctrl_put(ctrl);
1486 }
1487
1488 spin_unlock_irqrestore(&rport->lock, flags);
1489
1490 /* transmit a response for anything that was pending */
1491 if (oldls) {
1492 dev_info(rport->lport->dev,
1493 "NVME-FC{%d}: Multiple Disconnect Association "
1494 "LS's received\n", ctrl->cnum);
1495 /* overwrite good response with bogus failure */
1496 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1497 sizeof(*oldls->rspbuf),
1498 rqst->w0.ls_cmd,
1499 FCNVME_RJT_RC_UNAB,
1500 FCNVME_RJT_EXP_NONE, 0);
1501 nvme_fc_xmt_ls_rsp(oldls);
1502 }
1503
1504 return ret;
1505 }
1506
1507 /*
1508 * returns true to mean LS handled and ls_rsp can be sent
1509 * returns false to defer ls_rsp xmt (will be done as part of
1510 * association termination)
1511 */
1512 static bool
nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op * lsop)1513 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1514 {
1515 struct nvme_fc_rport *rport = lsop->rport;
1516 struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1517 &lsop->rqstbuf->rq_dis_assoc;
1518 struct fcnvme_ls_disconnect_assoc_acc *acc =
1519 &lsop->rspbuf->rsp_dis_assoc;
1520 struct nvme_fc_ctrl *ctrl = NULL;
1521 int ret = 0;
1522
1523 memset(acc, 0, sizeof(*acc));
1524
1525 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1526 if (!ret) {
1527 /* match an active association */
1528 ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1529 if (!ctrl)
1530 ret = VERR_NO_ASSOC;
1531 }
1532
1533 if (ret) {
1534 dev_info(rport->lport->dev,
1535 "Disconnect LS failed: %s\n",
1536 validation_errors[ret]);
1537 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1538 sizeof(*acc), rqst->w0.ls_cmd,
1539 (ret == VERR_NO_ASSOC) ?
1540 FCNVME_RJT_RC_INV_ASSOC :
1541 FCNVME_RJT_RC_LOGIC,
1542 FCNVME_RJT_EXP_NONE, 0);
1543 return true;
1544 }
1545
1546 /* format an ACCept response */
1547
1548 lsop->lsrsp->rsplen = sizeof(*acc);
1549
1550 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1551 fcnvme_lsdesc_len(
1552 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1553 FCNVME_LS_DISCONNECT_ASSOC);
1554
1555 /*
1556 * the transmit of the response will occur after the exchanges
1557 * for the association have been ABTS'd by
1558 * nvme_fc_delete_association().
1559 */
1560
1561 /* fail the association */
1562 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1563
1564 /* release the reference taken by nvme_fc_match_disconn_ls() */
1565 nvme_fc_ctrl_put(ctrl);
1566
1567 return false;
1568 }
1569
1570 /*
1571 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1572 * returns true if a response should be sent afterward, false if rsp will
1573 * be sent asynchronously.
1574 */
1575 static bool
nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op * lsop)1576 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1577 {
1578 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1579 bool ret = true;
1580
1581 lsop->lsrsp->nvme_fc_private = lsop;
1582 lsop->lsrsp->rspbuf = lsop->rspbuf;
1583 lsop->lsrsp->rspdma = lsop->rspdma;
1584 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1585 /* Be preventative. handlers will later set to valid length */
1586 lsop->lsrsp->rsplen = 0;
1587
1588 /*
1589 * handlers:
1590 * parse request input, execute the request, and format the
1591 * LS response
1592 */
1593 switch (w0->ls_cmd) {
1594 case FCNVME_LS_DISCONNECT_ASSOC:
1595 ret = nvme_fc_ls_disconnect_assoc(lsop);
1596 break;
1597 case FCNVME_LS_DISCONNECT_CONN:
1598 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1599 sizeof(*lsop->rspbuf), w0->ls_cmd,
1600 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1601 break;
1602 case FCNVME_LS_CREATE_ASSOCIATION:
1603 case FCNVME_LS_CREATE_CONNECTION:
1604 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1605 sizeof(*lsop->rspbuf), w0->ls_cmd,
1606 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1607 break;
1608 default:
1609 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1610 sizeof(*lsop->rspbuf), w0->ls_cmd,
1611 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1612 break;
1613 }
1614
1615 return(ret);
1616 }
1617
1618 static void
nvme_fc_handle_ls_rqst_work(struct work_struct * work)1619 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1620 {
1621 struct nvme_fc_rport *rport =
1622 container_of(work, struct nvme_fc_rport, lsrcv_work);
1623 struct fcnvme_ls_rqst_w0 *w0;
1624 struct nvmefc_ls_rcv_op *lsop;
1625 unsigned long flags;
1626 bool sendrsp;
1627
1628 restart:
1629 sendrsp = true;
1630 spin_lock_irqsave(&rport->lock, flags);
1631 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1632 if (lsop->handled)
1633 continue;
1634
1635 lsop->handled = true;
1636 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1637 spin_unlock_irqrestore(&rport->lock, flags);
1638 sendrsp = nvme_fc_handle_ls_rqst(lsop);
1639 } else {
1640 spin_unlock_irqrestore(&rport->lock, flags);
1641 w0 = &lsop->rqstbuf->w0;
1642 lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1643 lsop->rspbuf,
1644 sizeof(*lsop->rspbuf),
1645 w0->ls_cmd,
1646 FCNVME_RJT_RC_UNAB,
1647 FCNVME_RJT_EXP_NONE, 0);
1648 }
1649 if (sendrsp)
1650 nvme_fc_xmt_ls_rsp(lsop);
1651 goto restart;
1652 }
1653 spin_unlock_irqrestore(&rport->lock, flags);
1654 }
1655
1656 static
nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport * lport,struct fcnvme_ls_rqst_w0 * w0)1657 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport,
1658 struct fcnvme_ls_rqst_w0 *w0)
1659 {
1660 dev_info(lport->dev, "RCV %s LS failed: No memory\n",
1661 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1662 nvmefc_ls_names[w0->ls_cmd] : "");
1663 }
1664
1665 /**
1666 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1667 * upon the reception of a NVME LS request.
1668 *
1669 * The nvme-fc layer will copy payload to an internal structure for
1670 * processing. As such, upon completion of the routine, the LLDD may
1671 * immediately free/reuse the LS request buffer passed in the call.
1672 *
1673 * If this routine returns error, the LLDD should abort the exchange.
1674 *
1675 * @portptr: pointer to the (registered) remote port that the LS
1676 * was received from. The remoteport is associated with
1677 * a specific localport.
1678 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be
1679 * used to reference the exchange corresponding to the LS
1680 * when issuing an ls response.
1681 * @lsreqbuf: pointer to the buffer containing the LS Request
1682 * @lsreqbuf_len: length, in bytes, of the received LS request
1683 */
1684 int
nvme_fc_rcv_ls_req(struct nvme_fc_remote_port * portptr,struct nvmefc_ls_rsp * lsrsp,void * lsreqbuf,u32 lsreqbuf_len)1685 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1686 struct nvmefc_ls_rsp *lsrsp,
1687 void *lsreqbuf, u32 lsreqbuf_len)
1688 {
1689 struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1690 struct nvme_fc_lport *lport = rport->lport;
1691 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1692 struct nvmefc_ls_rcv_op *lsop;
1693 unsigned long flags;
1694 int ret;
1695
1696 nvme_fc_rport_get(rport);
1697
1698 /* validate there's a routine to transmit a response */
1699 if (!lport->ops->xmt_ls_rsp) {
1700 dev_info(lport->dev,
1701 "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1702 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1703 nvmefc_ls_names[w0->ls_cmd] : "");
1704 ret = -EINVAL;
1705 goto out_put;
1706 }
1707
1708 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1709 dev_info(lport->dev,
1710 "RCV %s LS failed: payload too large\n",
1711 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1712 nvmefc_ls_names[w0->ls_cmd] : "");
1713 ret = -E2BIG;
1714 goto out_put;
1715 }
1716
1717 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL);
1718 if (!lsop) {
1719 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1720 ret = -ENOMEM;
1721 goto out_put;
1722 }
1723
1724 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL);
1725 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL);
1726 if (!lsop->rqstbuf || !lsop->rspbuf) {
1727 nvme_fc_rcv_ls_req_err_msg(lport, w0);
1728 ret = -ENOMEM;
1729 goto out_free;
1730 }
1731
1732 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1733 sizeof(*lsop->rspbuf),
1734 DMA_TO_DEVICE);
1735 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1736 dev_info(lport->dev,
1737 "RCV %s LS failed: DMA mapping failure\n",
1738 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1739 nvmefc_ls_names[w0->ls_cmd] : "");
1740 ret = -EFAULT;
1741 goto out_free;
1742 }
1743
1744 lsop->rport = rport;
1745 lsop->lsrsp = lsrsp;
1746
1747 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1748 lsop->rqstdatalen = lsreqbuf_len;
1749
1750 spin_lock_irqsave(&rport->lock, flags);
1751 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1752 spin_unlock_irqrestore(&rport->lock, flags);
1753 ret = -ENOTCONN;
1754 goto out_unmap;
1755 }
1756 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1757 spin_unlock_irqrestore(&rport->lock, flags);
1758
1759 schedule_work(&rport->lsrcv_work);
1760
1761 return 0;
1762
1763 out_unmap:
1764 fc_dma_unmap_single(lport->dev, lsop->rspdma,
1765 sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1766 out_free:
1767 kfree(lsop->rspbuf);
1768 kfree(lsop->rqstbuf);
1769 kfree(lsop);
1770 out_put:
1771 nvme_fc_rport_put(rport);
1772 return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1775
1776
1777 /* *********************** NVME Ctrl Routines **************************** */
1778
1779 static void
__nvme_fc_exit_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1780 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1781 struct nvme_fc_fcp_op *op)
1782 {
1783 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1784 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1785 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1786 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1787
1788 atomic_set(&op->state, FCPOP_STATE_UNINIT);
1789 }
1790
1791 static void
nvme_fc_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1792 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1793 unsigned int hctx_idx)
1794 {
1795 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1796
1797 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op);
1798 }
1799
1800 static int
__nvme_fc_abort_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op)1801 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1802 {
1803 unsigned long flags;
1804 int opstate;
1805
1806 spin_lock_irqsave(&ctrl->lock, flags);
1807 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1808 if (opstate != FCPOP_STATE_ACTIVE)
1809 atomic_set(&op->state, opstate);
1810 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1811 op->flags |= FCOP_FLAGS_TERMIO;
1812 ctrl->iocnt++;
1813 }
1814 spin_unlock_irqrestore(&ctrl->lock, flags);
1815
1816 if (opstate != FCPOP_STATE_ACTIVE)
1817 return -ECANCELED;
1818
1819 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1820 &ctrl->rport->remoteport,
1821 op->queue->lldd_handle,
1822 &op->fcp_req);
1823
1824 return 0;
1825 }
1826
1827 static void
nvme_fc_abort_aen_ops(struct nvme_fc_ctrl * ctrl)1828 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1829 {
1830 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1831 int i;
1832
1833 /* ensure we've initialized the ops once */
1834 if (!(aen_op->flags & FCOP_FLAGS_AEN))
1835 return;
1836
1837 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1838 __nvme_fc_abort_op(ctrl, aen_op);
1839 }
1840
1841 static inline void
__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl * ctrl,struct nvme_fc_fcp_op * op,int opstate)1842 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1843 struct nvme_fc_fcp_op *op, int opstate)
1844 {
1845 unsigned long flags;
1846
1847 if (opstate == FCPOP_STATE_ABORTED) {
1848 spin_lock_irqsave(&ctrl->lock, flags);
1849 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1850 op->flags & FCOP_FLAGS_TERMIO) {
1851 if (!--ctrl->iocnt)
1852 wake_up(&ctrl->ioabort_wait);
1853 }
1854 spin_unlock_irqrestore(&ctrl->lock, flags);
1855 }
1856 }
1857
1858 static void
nvme_fc_ctrl_ioerr_work(struct work_struct * work)1859 nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1860 {
1861 struct nvme_fc_ctrl *ctrl =
1862 container_of(work, struct nvme_fc_ctrl, ioerr_work);
1863
1864 nvme_fc_error_recovery(ctrl, "transport detected io error");
1865 }
1866
1867 /*
1868 * nvme_fc_io_getuuid - Routine called to get the appid field
1869 * associated with request by the lldd
1870 * @req:IO request from nvme fc to driver
1871 * Returns: UUID if there is an appid associated with VM or
1872 * NULL if the user/libvirt has not set the appid to VM
1873 */
nvme_fc_io_getuuid(struct nvmefc_fcp_req * req)1874 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req)
1875 {
1876 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1877 struct request *rq = op->rq;
1878
1879 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio)
1880 return NULL;
1881 return blkcg_get_fc_appid(rq->bio);
1882 }
1883 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid);
1884
1885 static void
nvme_fc_fcpio_done(struct nvmefc_fcp_req * req)1886 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1887 {
1888 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1889 struct request *rq = op->rq;
1890 struct nvmefc_fcp_req *freq = &op->fcp_req;
1891 struct nvme_fc_ctrl *ctrl = op->ctrl;
1892 struct nvme_fc_queue *queue = op->queue;
1893 struct nvme_completion *cqe = &op->rsp_iu.cqe;
1894 struct nvme_command *sqe = &op->cmd_iu.sqe;
1895 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1896 union nvme_result result;
1897 bool terminate_assoc = true;
1898 int opstate;
1899
1900 /*
1901 * WARNING:
1902 * The current linux implementation of a nvme controller
1903 * allocates a single tag set for all io queues and sizes
1904 * the io queues to fully hold all possible tags. Thus, the
1905 * implementation does not reference or care about the sqhd
1906 * value as it never needs to use the sqhd/sqtail pointers
1907 * for submission pacing.
1908 *
1909 * This affects the FC-NVME implementation in two ways:
1910 * 1) As the value doesn't matter, we don't need to waste
1911 * cycles extracting it from ERSPs and stamping it in the
1912 * cases where the transport fabricates CQEs on successful
1913 * completions.
1914 * 2) The FC-NVME implementation requires that delivery of
1915 * ERSP completions are to go back to the nvme layer in order
1916 * relative to the rsn, such that the sqhd value will always
1917 * be "in order" for the nvme layer. As the nvme layer in
1918 * linux doesn't care about sqhd, there's no need to return
1919 * them in order.
1920 *
1921 * Additionally:
1922 * As the core nvme layer in linux currently does not look at
1923 * every field in the cqe - in cases where the FC transport must
1924 * fabricate a CQE, the following fields will not be set as they
1925 * are not referenced:
1926 * cqe.sqid, cqe.sqhd, cqe.command_id
1927 *
1928 * Failure or error of an individual i/o, in a transport
1929 * detected fashion unrelated to the nvme completion status,
1930 * potentially cause the initiator and target sides to get out
1931 * of sync on SQ head/tail (aka outstanding io count allowed).
1932 * Per FC-NVME spec, failure of an individual command requires
1933 * the connection to be terminated, which in turn requires the
1934 * association to be terminated.
1935 */
1936
1937 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1938
1939 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1940 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1941
1942 if (opstate == FCPOP_STATE_ABORTED)
1943 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1944 else if (freq->status) {
1945 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1946 dev_info(ctrl->ctrl.device,
1947 "NVME-FC{%d}: io failed due to lldd error %d\n",
1948 ctrl->cnum, freq->status);
1949 }
1950
1951 /*
1952 * For the linux implementation, if we have an unsuccesful
1953 * status, they blk-mq layer can typically be called with the
1954 * non-zero status and the content of the cqe isn't important.
1955 */
1956 if (status)
1957 goto done;
1958
1959 /*
1960 * command completed successfully relative to the wire
1961 * protocol. However, validate anything received and
1962 * extract the status and result from the cqe (create it
1963 * where necessary).
1964 */
1965
1966 switch (freq->rcv_rsplen) {
1967
1968 case 0:
1969 case NVME_FC_SIZEOF_ZEROS_RSP:
1970 /*
1971 * No response payload or 12 bytes of payload (which
1972 * should all be zeros) are considered successful and
1973 * no payload in the CQE by the transport.
1974 */
1975 if (freq->transferred_length !=
1976 be32_to_cpu(op->cmd_iu.data_len)) {
1977 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1978 dev_info(ctrl->ctrl.device,
1979 "NVME-FC{%d}: io failed due to bad transfer "
1980 "length: %d vs expected %d\n",
1981 ctrl->cnum, freq->transferred_length,
1982 be32_to_cpu(op->cmd_iu.data_len));
1983 goto done;
1984 }
1985 result.u64 = 0;
1986 break;
1987
1988 case sizeof(struct nvme_fc_ersp_iu):
1989 /*
1990 * The ERSP IU contains a full completion with CQE.
1991 * Validate ERSP IU and look at cqe.
1992 */
1993 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1994 (freq->rcv_rsplen / 4) ||
1995 be32_to_cpu(op->rsp_iu.xfrd_len) !=
1996 freq->transferred_length ||
1997 op->rsp_iu.ersp_result ||
1998 sqe->common.command_id != cqe->command_id)) {
1999 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2000 dev_info(ctrl->ctrl.device,
2001 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2002 "iu len %d, xfr len %d vs %d, status code "
2003 "%d, cmdid %d vs %d\n",
2004 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2005 be32_to_cpu(op->rsp_iu.xfrd_len),
2006 freq->transferred_length,
2007 op->rsp_iu.ersp_result,
2008 sqe->common.command_id,
2009 cqe->command_id);
2010 goto done;
2011 }
2012 result = cqe->result;
2013 status = cqe->status;
2014 break;
2015
2016 default:
2017 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2018 dev_info(ctrl->ctrl.device,
2019 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2020 "len %d\n",
2021 ctrl->cnum, freq->rcv_rsplen);
2022 goto done;
2023 }
2024
2025 terminate_assoc = false;
2026
2027 done:
2028 if (op->flags & FCOP_FLAGS_AEN) {
2029 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2030 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2031 atomic_set(&op->state, FCPOP_STATE_IDLE);
2032 op->flags = FCOP_FLAGS_AEN; /* clear other flags */
2033 nvme_fc_ctrl_put(ctrl);
2034 goto check_error;
2035 }
2036
2037 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2038 if (!nvme_try_complete_req(rq, status, result))
2039 nvme_fc_complete_rq(rq);
2040
2041 check_error:
2042 if (terminate_assoc &&
2043 nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_RESETTING)
2044 queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2045 }
2046
2047 static int
__nvme_fc_init_request(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,struct request * rq,u32 rqno)2048 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2049 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2050 struct request *rq, u32 rqno)
2051 {
2052 struct nvme_fcp_op_w_sgl *op_w_sgl =
2053 container_of(op, typeof(*op_w_sgl), op);
2054 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2055 int ret = 0;
2056
2057 memset(op, 0, sizeof(*op));
2058 op->fcp_req.cmdaddr = &op->cmd_iu;
2059 op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2060 op->fcp_req.rspaddr = &op->rsp_iu;
2061 op->fcp_req.rsplen = sizeof(op->rsp_iu);
2062 op->fcp_req.done = nvme_fc_fcpio_done;
2063 op->ctrl = ctrl;
2064 op->queue = queue;
2065 op->rq = rq;
2066 op->rqno = rqno;
2067
2068 cmdiu->format_id = NVME_CMD_FORMAT_ID;
2069 cmdiu->fc_id = NVME_CMD_FC_ID;
2070 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2071 if (queue->qnum)
2072 cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2073 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2074 else
2075 cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2076
2077 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2078 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2079 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2080 dev_err(ctrl->dev,
2081 "FCP Op failed - cmdiu dma mapping failed.\n");
2082 ret = -EFAULT;
2083 goto out_on_error;
2084 }
2085
2086 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2087 &op->rsp_iu, sizeof(op->rsp_iu),
2088 DMA_FROM_DEVICE);
2089 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2090 dev_err(ctrl->dev,
2091 "FCP Op failed - rspiu dma mapping failed.\n");
2092 ret = -EFAULT;
2093 }
2094
2095 atomic_set(&op->state, FCPOP_STATE_IDLE);
2096 out_on_error:
2097 return ret;
2098 }
2099
2100 static int
nvme_fc_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2101 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2102 unsigned int hctx_idx, unsigned int numa_node)
2103 {
2104 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2105 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2106 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2107 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2108 int res;
2109
2110 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2111 if (res)
2112 return res;
2113 op->op.fcp_req.first_sgl = op->sgl;
2114 op->op.fcp_req.private = &op->priv[0];
2115 nvme_req(rq)->ctrl = &ctrl->ctrl;
2116 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2117 return res;
2118 }
2119
2120 static int
nvme_fc_init_aen_ops(struct nvme_fc_ctrl * ctrl)2121 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2122 {
2123 struct nvme_fc_fcp_op *aen_op;
2124 struct nvme_fc_cmd_iu *cmdiu;
2125 struct nvme_command *sqe;
2126 void *private = NULL;
2127 int i, ret;
2128
2129 aen_op = ctrl->aen_ops;
2130 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2131 if (ctrl->lport->ops->fcprqst_priv_sz) {
2132 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2133 GFP_KERNEL);
2134 if (!private)
2135 return -ENOMEM;
2136 }
2137
2138 cmdiu = &aen_op->cmd_iu;
2139 sqe = &cmdiu->sqe;
2140 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2141 aen_op, (struct request *)NULL,
2142 (NVME_AQ_BLK_MQ_DEPTH + i));
2143 if (ret) {
2144 kfree(private);
2145 return ret;
2146 }
2147
2148 aen_op->flags = FCOP_FLAGS_AEN;
2149 aen_op->fcp_req.private = private;
2150
2151 memset(sqe, 0, sizeof(*sqe));
2152 sqe->common.opcode = nvme_admin_async_event;
2153 /* Note: core layer may overwrite the sqe.command_id value */
2154 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2155 }
2156 return 0;
2157 }
2158
2159 static void
nvme_fc_term_aen_ops(struct nvme_fc_ctrl * ctrl)2160 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2161 {
2162 struct nvme_fc_fcp_op *aen_op;
2163 int i;
2164
2165 cancel_work_sync(&ctrl->ctrl.async_event_work);
2166 aen_op = ctrl->aen_ops;
2167 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2168 __nvme_fc_exit_request(ctrl, aen_op);
2169
2170 kfree(aen_op->fcp_req.private);
2171 aen_op->fcp_req.private = NULL;
2172 }
2173 }
2174
2175 static inline int
__nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int qidx)2176 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx)
2177 {
2178 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data);
2179 struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2180
2181 hctx->driver_data = queue;
2182 queue->hctx = hctx;
2183 return 0;
2184 }
2185
2186 static int
nvme_fc_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2187 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx)
2188 {
2189 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1);
2190 }
2191
2192 static int
nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)2193 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2194 unsigned int hctx_idx)
2195 {
2196 return __nvme_fc_init_hctx(hctx, data, hctx_idx);
2197 }
2198
2199 static void
nvme_fc_init_queue(struct nvme_fc_ctrl * ctrl,int idx)2200 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2201 {
2202 struct nvme_fc_queue *queue;
2203
2204 queue = &ctrl->queues[idx];
2205 memset(queue, 0, sizeof(*queue));
2206 queue->ctrl = ctrl;
2207 queue->qnum = idx;
2208 atomic_set(&queue->csn, 0);
2209 queue->dev = ctrl->dev;
2210
2211 if (idx > 0)
2212 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2213 else
2214 queue->cmnd_capsule_len = sizeof(struct nvme_command);
2215
2216 /*
2217 * Considered whether we should allocate buffers for all SQEs
2218 * and CQEs and dma map them - mapping their respective entries
2219 * into the request structures (kernel vm addr and dma address)
2220 * thus the driver could use the buffers/mappings directly.
2221 * It only makes sense if the LLDD would use them for its
2222 * messaging api. It's very unlikely most adapter api's would use
2223 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2224 * structures were used instead.
2225 */
2226 }
2227
2228 /*
2229 * This routine terminates a queue at the transport level.
2230 * The transport has already ensured that all outstanding ios on
2231 * the queue have been terminated.
2232 * The transport will send a Disconnect LS request to terminate
2233 * the queue's connection. Termination of the admin queue will also
2234 * terminate the association at the target.
2235 */
2236 static void
nvme_fc_free_queue(struct nvme_fc_queue * queue)2237 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2238 {
2239 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2240 return;
2241
2242 clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2243 /*
2244 * Current implementation never disconnects a single queue.
2245 * It always terminates a whole association. So there is never
2246 * a disconnect(queue) LS sent to the target.
2247 */
2248
2249 queue->connection_id = 0;
2250 atomic_set(&queue->csn, 0);
2251 }
2252
2253 static void
__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx)2254 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2255 struct nvme_fc_queue *queue, unsigned int qidx)
2256 {
2257 if (ctrl->lport->ops->delete_queue)
2258 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2259 queue->lldd_handle);
2260 queue->lldd_handle = NULL;
2261 }
2262
2263 static void
nvme_fc_free_io_queues(struct nvme_fc_ctrl * ctrl)2264 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2265 {
2266 int i;
2267
2268 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2269 nvme_fc_free_queue(&ctrl->queues[i]);
2270 }
2271
2272 static int
__nvme_fc_create_hw_queue(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,unsigned int qidx,u16 qsize)2273 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2274 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2275 {
2276 int ret = 0;
2277
2278 queue->lldd_handle = NULL;
2279 if (ctrl->lport->ops->create_queue)
2280 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2281 qidx, qsize, &queue->lldd_handle);
2282
2283 return ret;
2284 }
2285
2286 static void
nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl * ctrl)2287 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2288 {
2289 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2290 int i;
2291
2292 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2293 __nvme_fc_delete_hw_queue(ctrl, queue, i);
2294 }
2295
2296 static int
nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2297 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2298 {
2299 struct nvme_fc_queue *queue = &ctrl->queues[1];
2300 int i, ret;
2301
2302 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2303 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2304 if (ret)
2305 goto delete_queues;
2306 }
2307
2308 return 0;
2309
2310 delete_queues:
2311 for (; i > 0; i--)
2312 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2313 return ret;
2314 }
2315
2316 static int
nvme_fc_connect_io_queues(struct nvme_fc_ctrl * ctrl,u16 qsize)2317 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2318 {
2319 int i, ret = 0;
2320
2321 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2322 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2323 (qsize / 5));
2324 if (ret)
2325 break;
2326 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2327 if (ret)
2328 break;
2329
2330 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2331 }
2332
2333 return ret;
2334 }
2335
2336 static void
nvme_fc_init_io_queues(struct nvme_fc_ctrl * ctrl)2337 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2338 {
2339 int i;
2340
2341 for (i = 1; i < ctrl->ctrl.queue_count; i++)
2342 nvme_fc_init_queue(ctrl, i);
2343 }
2344
2345 static void
nvme_fc_ctrl_free(struct kref * ref)2346 nvme_fc_ctrl_free(struct kref *ref)
2347 {
2348 struct nvme_fc_ctrl *ctrl =
2349 container_of(ref, struct nvme_fc_ctrl, ref);
2350 unsigned long flags;
2351
2352 if (ctrl->ctrl.tagset)
2353 nvme_remove_io_tag_set(&ctrl->ctrl);
2354
2355 /* remove from rport list */
2356 spin_lock_irqsave(&ctrl->rport->lock, flags);
2357 list_del(&ctrl->ctrl_list);
2358 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2359
2360 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2361 nvme_remove_admin_tag_set(&ctrl->ctrl);
2362
2363 kfree(ctrl->queues);
2364
2365 put_device(ctrl->dev);
2366 nvme_fc_rport_put(ctrl->rport);
2367
2368 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
2369 if (ctrl->ctrl.opts)
2370 nvmf_free_options(ctrl->ctrl.opts);
2371 kfree(ctrl);
2372 }
2373
2374 static void
nvme_fc_ctrl_put(struct nvme_fc_ctrl * ctrl)2375 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2376 {
2377 kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2378 }
2379
2380 static int
nvme_fc_ctrl_get(struct nvme_fc_ctrl * ctrl)2381 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2382 {
2383 return kref_get_unless_zero(&ctrl->ref);
2384 }
2385
2386 /*
2387 * All accesses from nvme core layer done - can now free the
2388 * controller. Called after last nvme_put_ctrl() call
2389 */
2390 static void
nvme_fc_nvme_ctrl_freed(struct nvme_ctrl * nctrl)2391 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2392 {
2393 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2394
2395 WARN_ON(nctrl != &ctrl->ctrl);
2396
2397 nvme_fc_ctrl_put(ctrl);
2398 }
2399
2400 /*
2401 * This routine is used by the transport when it needs to find active
2402 * io on a queue that is to be terminated. The transport uses
2403 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2404 * this routine to kill them on a 1 by 1 basis.
2405 *
2406 * As FC allocates FC exchange for each io, the transport must contact
2407 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2408 * After terminating the exchange the LLDD will call the transport's
2409 * normal io done path for the request, but it will have an aborted
2410 * status. The done path will return the io request back to the block
2411 * layer with an error status.
2412 */
nvme_fc_terminate_exchange(struct request * req,void * data)2413 static bool nvme_fc_terminate_exchange(struct request *req, void *data)
2414 {
2415 struct nvme_ctrl *nctrl = data;
2416 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2417 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2418
2419 op->nreq.flags |= NVME_REQ_CANCELLED;
2420 __nvme_fc_abort_op(ctrl, op);
2421 return true;
2422 }
2423
2424 /*
2425 * This routine runs through all outstanding commands on the association
2426 * and aborts them. This routine is typically be called by the
2427 * delete_association routine. It is also called due to an error during
2428 * reconnect. In that scenario, it is most likely a command that initializes
2429 * the controller, including fabric Connect commands on io queues, that
2430 * may have timed out or failed thus the io must be killed for the connect
2431 * thread to see the error.
2432 */
2433 static void
__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl * ctrl,bool start_queues)2434 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2435 {
2436 int q;
2437
2438 /*
2439 * if aborting io, the queues are no longer good, mark them
2440 * all as not live.
2441 */
2442 if (ctrl->ctrl.queue_count > 1) {
2443 for (q = 1; q < ctrl->ctrl.queue_count; q++)
2444 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2445 }
2446 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2447
2448 /*
2449 * If io queues are present, stop them and terminate all outstanding
2450 * ios on them. As FC allocates FC exchange for each io, the
2451 * transport must contact the LLDD to terminate the exchange,
2452 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2453 * to tell us what io's are busy and invoke a transport routine
2454 * to kill them with the LLDD. After terminating the exchange
2455 * the LLDD will call the transport's normal io done path, but it
2456 * will have an aborted status. The done path will return the
2457 * io requests back to the block layer as part of normal completions
2458 * (but with error status).
2459 */
2460 if (ctrl->ctrl.queue_count > 1) {
2461 nvme_quiesce_io_queues(&ctrl->ctrl);
2462 nvme_sync_io_queues(&ctrl->ctrl);
2463 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2464 nvme_fc_terminate_exchange, &ctrl->ctrl);
2465 blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2466 if (start_queues)
2467 nvme_unquiesce_io_queues(&ctrl->ctrl);
2468 }
2469
2470 /*
2471 * Other transports, which don't have link-level contexts bound
2472 * to sqe's, would try to gracefully shutdown the controller by
2473 * writing the registers for shutdown and polling (call
2474 * nvme_disable_ctrl()). Given a bunch of i/o was potentially
2475 * just aborted and we will wait on those contexts, and given
2476 * there was no indication of how live the controlelr is on the
2477 * link, don't send more io to create more contexts for the
2478 * shutdown. Let the controller fail via keepalive failure if
2479 * its still present.
2480 */
2481
2482 /*
2483 * clean up the admin queue. Same thing as above.
2484 */
2485 nvme_quiesce_admin_queue(&ctrl->ctrl);
2486 blk_sync_queue(ctrl->ctrl.admin_q);
2487 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2488 nvme_fc_terminate_exchange, &ctrl->ctrl);
2489 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2490 if (start_queues)
2491 nvme_unquiesce_admin_queue(&ctrl->ctrl);
2492 }
2493
2494 static void
nvme_fc_error_recovery(struct nvme_fc_ctrl * ctrl,char * errmsg)2495 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2496 {
2497 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
2498
2499 /*
2500 * if an error (io timeout, etc) while (re)connecting, the remote
2501 * port requested terminating of the association (disconnect_ls)
2502 * or an error (timeout or abort) occurred on an io while creating
2503 * the controller. Abort any ios on the association and let the
2504 * create_association error path resolve things.
2505 */
2506 if (state == NVME_CTRL_CONNECTING) {
2507 __nvme_fc_abort_outstanding_ios(ctrl, true);
2508 dev_warn(ctrl->ctrl.device,
2509 "NVME-FC{%d}: transport error during (re)connect\n",
2510 ctrl->cnum);
2511 return;
2512 }
2513
2514 /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2515 if (state != NVME_CTRL_LIVE)
2516 return;
2517
2518 dev_warn(ctrl->ctrl.device,
2519 "NVME-FC{%d}: transport association event: %s\n",
2520 ctrl->cnum, errmsg);
2521 dev_warn(ctrl->ctrl.device,
2522 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2523
2524 nvme_reset_ctrl(&ctrl->ctrl);
2525 }
2526
nvme_fc_timeout(struct request * rq)2527 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq)
2528 {
2529 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2530 struct nvme_fc_ctrl *ctrl = op->ctrl;
2531 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2532 struct nvme_command *sqe = &cmdiu->sqe;
2533
2534 /*
2535 * Attempt to abort the offending command. Command completion
2536 * will detect the aborted io and will fail the connection.
2537 */
2538 dev_info(ctrl->ctrl.device,
2539 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2540 "x%08x/x%08x\n",
2541 ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2542 sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2543 if (__nvme_fc_abort_op(ctrl, op))
2544 nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2545
2546 /*
2547 * the io abort has been initiated. Have the reset timer
2548 * restarted and the abort completion will complete the io
2549 * shortly. Avoids a synchronous wait while the abort finishes.
2550 */
2551 return BLK_EH_RESET_TIMER;
2552 }
2553
2554 static int
nvme_fc_map_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2555 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2556 struct nvme_fc_fcp_op *op)
2557 {
2558 struct nvmefc_fcp_req *freq = &op->fcp_req;
2559 int ret;
2560
2561 freq->sg_cnt = 0;
2562
2563 if (!blk_rq_nr_phys_segments(rq))
2564 return 0;
2565
2566 freq->sg_table.sgl = freq->first_sgl;
2567 ret = sg_alloc_table_chained(&freq->sg_table,
2568 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2569 NVME_INLINE_SG_CNT);
2570 if (ret)
2571 return -ENOMEM;
2572
2573 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2574 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2575 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2576 op->nents, rq_dma_dir(rq));
2577 if (unlikely(freq->sg_cnt <= 0)) {
2578 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2579 freq->sg_cnt = 0;
2580 return -EFAULT;
2581 }
2582
2583 /*
2584 * TODO: blk_integrity_rq(rq) for DIF
2585 */
2586 return 0;
2587 }
2588
2589 static void
nvme_fc_unmap_data(struct nvme_fc_ctrl * ctrl,struct request * rq,struct nvme_fc_fcp_op * op)2590 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2591 struct nvme_fc_fcp_op *op)
2592 {
2593 struct nvmefc_fcp_req *freq = &op->fcp_req;
2594
2595 if (!freq->sg_cnt)
2596 return;
2597
2598 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2599 rq_dma_dir(rq));
2600
2601 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2602
2603 freq->sg_cnt = 0;
2604 }
2605
2606 /*
2607 * In FC, the queue is a logical thing. At transport connect, the target
2608 * creates its "queue" and returns a handle that is to be given to the
2609 * target whenever it posts something to the corresponding SQ. When an
2610 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2611 * command contained within the SQE, an io, and assigns a FC exchange
2612 * to it. The SQE and the associated SQ handle are sent in the initial
2613 * CMD IU sents on the exchange. All transfers relative to the io occur
2614 * as part of the exchange. The CQE is the last thing for the io,
2615 * which is transferred (explicitly or implicitly) with the RSP IU
2616 * sent on the exchange. After the CQE is received, the FC exchange is
2617 * terminaed and the Exchange may be used on a different io.
2618 *
2619 * The transport to LLDD api has the transport making a request for a
2620 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2621 * resource and transfers the command. The LLDD will then process all
2622 * steps to complete the io. Upon completion, the transport done routine
2623 * is called.
2624 *
2625 * So - while the operation is outstanding to the LLDD, there is a link
2626 * level FC exchange resource that is also outstanding. This must be
2627 * considered in all cleanup operations.
2628 */
2629 static blk_status_t
nvme_fc_start_fcp_op(struct nvme_fc_ctrl * ctrl,struct nvme_fc_queue * queue,struct nvme_fc_fcp_op * op,u32 data_len,enum nvmefc_fcp_datadir io_dir)2630 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2631 struct nvme_fc_fcp_op *op, u32 data_len,
2632 enum nvmefc_fcp_datadir io_dir)
2633 {
2634 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2635 struct nvme_command *sqe = &cmdiu->sqe;
2636 int ret, opstate;
2637
2638 /*
2639 * before attempting to send the io, check to see if we believe
2640 * the target device is present
2641 */
2642 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2643 return BLK_STS_RESOURCE;
2644
2645 if (!nvme_fc_ctrl_get(ctrl))
2646 return BLK_STS_IOERR;
2647
2648 /* format the FC-NVME CMD IU and fcp_req */
2649 cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2650 cmdiu->data_len = cpu_to_be32(data_len);
2651 switch (io_dir) {
2652 case NVMEFC_FCP_WRITE:
2653 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2654 break;
2655 case NVMEFC_FCP_READ:
2656 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2657 break;
2658 case NVMEFC_FCP_NODATA:
2659 cmdiu->flags = 0;
2660 break;
2661 }
2662 op->fcp_req.payload_length = data_len;
2663 op->fcp_req.io_dir = io_dir;
2664 op->fcp_req.transferred_length = 0;
2665 op->fcp_req.rcv_rsplen = 0;
2666 op->fcp_req.status = NVME_SC_SUCCESS;
2667 op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2668
2669 /*
2670 * validate per fabric rules, set fields mandated by fabric spec
2671 * as well as those by FC-NVME spec.
2672 */
2673 WARN_ON_ONCE(sqe->common.metadata);
2674 sqe->common.flags |= NVME_CMD_SGL_METABUF;
2675
2676 /*
2677 * format SQE DPTR field per FC-NVME rules:
2678 * type=0x5 Transport SGL Data Block Descriptor
2679 * subtype=0xA Transport-specific value
2680 * address=0
2681 * length=length of the data series
2682 */
2683 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2684 NVME_SGL_FMT_TRANSPORT_A;
2685 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2686 sqe->rw.dptr.sgl.addr = 0;
2687
2688 if (!(op->flags & FCOP_FLAGS_AEN)) {
2689 ret = nvme_fc_map_data(ctrl, op->rq, op);
2690 if (ret < 0) {
2691 nvme_cleanup_cmd(op->rq);
2692 nvme_fc_ctrl_put(ctrl);
2693 if (ret == -ENOMEM || ret == -EAGAIN)
2694 return BLK_STS_RESOURCE;
2695 return BLK_STS_IOERR;
2696 }
2697 }
2698
2699 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2700 sizeof(op->cmd_iu), DMA_TO_DEVICE);
2701
2702 atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2703
2704 if (!(op->flags & FCOP_FLAGS_AEN))
2705 nvme_start_request(op->rq);
2706
2707 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2708 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2709 &ctrl->rport->remoteport,
2710 queue->lldd_handle, &op->fcp_req);
2711
2712 if (ret) {
2713 /*
2714 * If the lld fails to send the command is there an issue with
2715 * the csn value? If the command that fails is the Connect,
2716 * no - as the connection won't be live. If it is a command
2717 * post-connect, it's possible a gap in csn may be created.
2718 * Does this matter? As Linux initiators don't send fused
2719 * commands, no. The gap would exist, but as there's nothing
2720 * that depends on csn order to be delivered on the target
2721 * side, it shouldn't hurt. It would be difficult for a
2722 * target to even detect the csn gap as it has no idea when the
2723 * cmd with the csn was supposed to arrive.
2724 */
2725 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2726 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2727
2728 if (!(op->flags & FCOP_FLAGS_AEN)) {
2729 nvme_fc_unmap_data(ctrl, op->rq, op);
2730 nvme_cleanup_cmd(op->rq);
2731 }
2732
2733 nvme_fc_ctrl_put(ctrl);
2734
2735 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2736 ret != -EBUSY)
2737 return BLK_STS_IOERR;
2738
2739 return BLK_STS_RESOURCE;
2740 }
2741
2742 return BLK_STS_OK;
2743 }
2744
2745 static blk_status_t
nvme_fc_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2746 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2747 const struct blk_mq_queue_data *bd)
2748 {
2749 struct nvme_ns *ns = hctx->queue->queuedata;
2750 struct nvme_fc_queue *queue = hctx->driver_data;
2751 struct nvme_fc_ctrl *ctrl = queue->ctrl;
2752 struct request *rq = bd->rq;
2753 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2754 enum nvmefc_fcp_datadir io_dir;
2755 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2756 u32 data_len;
2757 blk_status_t ret;
2758
2759 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2760 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2761 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2762
2763 ret = nvme_setup_cmd(ns, rq);
2764 if (ret)
2765 return ret;
2766
2767 /*
2768 * nvme core doesn't quite treat the rq opaquely. Commands such
2769 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2770 * there is no actual payload to be transferred.
2771 * To get it right, key data transmission on there being 1 or
2772 * more physical segments in the sg list. If there is no
2773 * physical segments, there is no payload.
2774 */
2775 if (blk_rq_nr_phys_segments(rq)) {
2776 data_len = blk_rq_payload_bytes(rq);
2777 io_dir = ((rq_data_dir(rq) == WRITE) ?
2778 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2779 } else {
2780 data_len = 0;
2781 io_dir = NVMEFC_FCP_NODATA;
2782 }
2783
2784
2785 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2786 }
2787
2788 static void
nvme_fc_submit_async_event(struct nvme_ctrl * arg)2789 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2790 {
2791 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2792 struct nvme_fc_fcp_op *aen_op;
2793 blk_status_t ret;
2794
2795 if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2796 return;
2797
2798 aen_op = &ctrl->aen_ops[0];
2799
2800 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2801 NVMEFC_FCP_NODATA);
2802 if (ret)
2803 dev_err(ctrl->ctrl.device,
2804 "failed async event work\n");
2805 }
2806
2807 static void
nvme_fc_complete_rq(struct request * rq)2808 nvme_fc_complete_rq(struct request *rq)
2809 {
2810 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2811 struct nvme_fc_ctrl *ctrl = op->ctrl;
2812
2813 atomic_set(&op->state, FCPOP_STATE_IDLE);
2814 op->flags &= ~FCOP_FLAGS_TERMIO;
2815
2816 nvme_fc_unmap_data(ctrl, rq, op);
2817 nvme_complete_rq(rq);
2818 nvme_fc_ctrl_put(ctrl);
2819 }
2820
nvme_fc_map_queues(struct blk_mq_tag_set * set)2821 static void nvme_fc_map_queues(struct blk_mq_tag_set *set)
2822 {
2823 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data);
2824 int i;
2825
2826 for (i = 0; i < set->nr_maps; i++) {
2827 struct blk_mq_queue_map *map = &set->map[i];
2828
2829 if (!map->nr_queues) {
2830 WARN_ON(i == HCTX_TYPE_DEFAULT);
2831 continue;
2832 }
2833
2834 /* Call LLDD map queue functionality if defined */
2835 if (ctrl->lport->ops->map_queues)
2836 ctrl->lport->ops->map_queues(&ctrl->lport->localport,
2837 map);
2838 else
2839 blk_mq_map_queues(map);
2840 }
2841 }
2842
2843 static const struct blk_mq_ops nvme_fc_mq_ops = {
2844 .queue_rq = nvme_fc_queue_rq,
2845 .complete = nvme_fc_complete_rq,
2846 .init_request = nvme_fc_init_request,
2847 .exit_request = nvme_fc_exit_request,
2848 .init_hctx = nvme_fc_init_hctx,
2849 .timeout = nvme_fc_timeout,
2850 .map_queues = nvme_fc_map_queues,
2851 };
2852
2853 static int
nvme_fc_create_io_queues(struct nvme_fc_ctrl * ctrl)2854 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2855 {
2856 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2857 unsigned int nr_io_queues;
2858 int ret;
2859
2860 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2861 ctrl->lport->ops->max_hw_queues);
2862 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2863 if (ret) {
2864 dev_info(ctrl->ctrl.device,
2865 "set_queue_count failed: %d\n", ret);
2866 return ret;
2867 }
2868
2869 ctrl->ctrl.queue_count = nr_io_queues + 1;
2870 if (!nr_io_queues)
2871 return 0;
2872
2873 nvme_fc_init_io_queues(ctrl);
2874
2875 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set,
2876 &nvme_fc_mq_ops, 1,
2877 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
2878 ctrl->lport->ops->fcprqst_priv_sz));
2879 if (ret)
2880 return ret;
2881
2882 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2883 if (ret)
2884 goto out_cleanup_tagset;
2885
2886 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2887 if (ret)
2888 goto out_delete_hw_queues;
2889
2890 ctrl->ioq_live = true;
2891
2892 return 0;
2893
2894 out_delete_hw_queues:
2895 nvme_fc_delete_hw_io_queues(ctrl);
2896 out_cleanup_tagset:
2897 nvme_remove_io_tag_set(&ctrl->ctrl);
2898 nvme_fc_free_io_queues(ctrl);
2899
2900 /* force put free routine to ignore io queues */
2901 ctrl->ctrl.tagset = NULL;
2902
2903 return ret;
2904 }
2905
2906 static int
nvme_fc_recreate_io_queues(struct nvme_fc_ctrl * ctrl)2907 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2908 {
2909 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2910 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2911 unsigned int nr_io_queues;
2912 int ret;
2913
2914 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2915 ctrl->lport->ops->max_hw_queues);
2916 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2917 if (ret) {
2918 dev_info(ctrl->ctrl.device,
2919 "set_queue_count failed: %d\n", ret);
2920 return ret;
2921 }
2922
2923 if (!nr_io_queues && prior_ioq_cnt) {
2924 dev_info(ctrl->ctrl.device,
2925 "Fail Reconnect: At least 1 io queue "
2926 "required (was %d)\n", prior_ioq_cnt);
2927 return -ENOSPC;
2928 }
2929
2930 ctrl->ctrl.queue_count = nr_io_queues + 1;
2931 /* check for io queues existing */
2932 if (ctrl->ctrl.queue_count == 1)
2933 return 0;
2934
2935 if (prior_ioq_cnt != nr_io_queues) {
2936 dev_info(ctrl->ctrl.device,
2937 "reconnect: revising io queue count from %d to %d\n",
2938 prior_ioq_cnt, nr_io_queues);
2939 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2940 }
2941
2942 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2943 if (ret)
2944 goto out_free_io_queues;
2945
2946 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2947 if (ret)
2948 goto out_delete_hw_queues;
2949
2950 return 0;
2951
2952 out_delete_hw_queues:
2953 nvme_fc_delete_hw_io_queues(ctrl);
2954 out_free_io_queues:
2955 nvme_fc_free_io_queues(ctrl);
2956 return ret;
2957 }
2958
2959 static void
nvme_fc_rport_active_on_lport(struct nvme_fc_rport * rport)2960 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2961 {
2962 struct nvme_fc_lport *lport = rport->lport;
2963
2964 atomic_inc(&lport->act_rport_cnt);
2965 }
2966
2967 static void
nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport * rport)2968 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2969 {
2970 struct nvme_fc_lport *lport = rport->lport;
2971 u32 cnt;
2972
2973 cnt = atomic_dec_return(&lport->act_rport_cnt);
2974 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2975 lport->ops->localport_delete(&lport->localport);
2976 }
2977
2978 static int
nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl * ctrl)2979 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2980 {
2981 struct nvme_fc_rport *rport = ctrl->rport;
2982 u32 cnt;
2983
2984 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
2985 return 1;
2986
2987 cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2988 if (cnt == 1)
2989 nvme_fc_rport_active_on_lport(rport);
2990
2991 return 0;
2992 }
2993
2994 static int
nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl * ctrl)2995 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2996 {
2997 struct nvme_fc_rport *rport = ctrl->rport;
2998 struct nvme_fc_lport *lport = rport->lport;
2999 u32 cnt;
3000
3001 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3002
3003 cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3004 if (cnt == 0) {
3005 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3006 lport->ops->remoteport_delete(&rport->remoteport);
3007 nvme_fc_rport_inactive_on_lport(rport);
3008 }
3009
3010 return 0;
3011 }
3012
3013 /*
3014 * This routine restarts the controller on the host side, and
3015 * on the link side, recreates the controller association.
3016 */
3017 static int
nvme_fc_create_association(struct nvme_fc_ctrl * ctrl)3018 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3019 {
3020 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3021 struct nvmefc_ls_rcv_op *disls = NULL;
3022 unsigned long flags;
3023 int ret;
3024
3025 ++ctrl->ctrl.nr_reconnects;
3026
3027 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3028 return -ENODEV;
3029
3030 if (nvme_fc_ctlr_active_on_rport(ctrl))
3031 return -ENOTUNIQ;
3032
3033 dev_info(ctrl->ctrl.device,
3034 "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3035 " rport wwpn 0x%016llx: NQN \"%s\"\n",
3036 ctrl->cnum, ctrl->lport->localport.port_name,
3037 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3038
3039 clear_bit(ASSOC_FAILED, &ctrl->flags);
3040
3041 /*
3042 * Create the admin queue
3043 */
3044
3045 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3046 NVME_AQ_DEPTH);
3047 if (ret)
3048 goto out_free_queue;
3049
3050 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3051 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3052 if (ret)
3053 goto out_delete_hw_queue;
3054
3055 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3056 if (ret)
3057 goto out_disconnect_admin_queue;
3058
3059 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3060
3061 /*
3062 * Check controller capabilities
3063 *
3064 * todo:- add code to check if ctrl attributes changed from
3065 * prior connection values
3066 */
3067
3068 ret = nvme_enable_ctrl(&ctrl->ctrl);
3069 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3070 ret = -EIO;
3071 if (ret)
3072 goto out_disconnect_admin_queue;
3073
3074 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3075 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3076 (ilog2(SZ_4K) - 9);
3077
3078 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3079
3080 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false);
3081 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3082 ret = -EIO;
3083 if (ret)
3084 goto out_disconnect_admin_queue;
3085
3086 /* sanity checks */
3087
3088 /* FC-NVME does not have other data in the capsule */
3089 if (ctrl->ctrl.icdoff) {
3090 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3091 ctrl->ctrl.icdoff);
3092 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3093 goto out_disconnect_admin_queue;
3094 }
3095
3096 /* FC-NVME supports normal SGL Data Block Descriptors */
3097 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3098 dev_err(ctrl->ctrl.device,
3099 "Mandatory sgls are not supported!\n");
3100 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3101 goto out_disconnect_admin_queue;
3102 }
3103
3104 if (opts->queue_size > ctrl->ctrl.maxcmd) {
3105 /* warn if maxcmd is lower than queue_size */
3106 dev_warn(ctrl->ctrl.device,
3107 "queue_size %zu > ctrl maxcmd %u, reducing "
3108 "to maxcmd\n",
3109 opts->queue_size, ctrl->ctrl.maxcmd);
3110 opts->queue_size = ctrl->ctrl.maxcmd;
3111 ctrl->ctrl.sqsize = opts->queue_size - 1;
3112 }
3113
3114 ret = nvme_fc_init_aen_ops(ctrl);
3115 if (ret)
3116 goto out_term_aen_ops;
3117
3118 /*
3119 * Create the io queues
3120 */
3121
3122 if (ctrl->ctrl.queue_count > 1) {
3123 if (!ctrl->ioq_live)
3124 ret = nvme_fc_create_io_queues(ctrl);
3125 else
3126 ret = nvme_fc_recreate_io_queues(ctrl);
3127 }
3128 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags))
3129 ret = -EIO;
3130 if (ret)
3131 goto out_term_aen_ops;
3132
3133 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) {
3134 ret = -EIO;
3135 goto out_term_aen_ops;
3136 }
3137
3138 ctrl->ctrl.nr_reconnects = 0;
3139 nvme_start_ctrl(&ctrl->ctrl);
3140
3141 return 0; /* Success */
3142
3143 out_term_aen_ops:
3144 nvme_fc_term_aen_ops(ctrl);
3145 out_disconnect_admin_queue:
3146 dev_warn(ctrl->ctrl.device,
3147 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n",
3148 ctrl->cnum, ctrl->association_id, ret);
3149 /* send a Disconnect(association) LS to fc-nvme target */
3150 nvme_fc_xmt_disconnect_assoc(ctrl);
3151 spin_lock_irqsave(&ctrl->lock, flags);
3152 ctrl->association_id = 0;
3153 disls = ctrl->rcv_disconn;
3154 ctrl->rcv_disconn = NULL;
3155 spin_unlock_irqrestore(&ctrl->lock, flags);
3156 if (disls)
3157 nvme_fc_xmt_ls_rsp(disls);
3158 out_delete_hw_queue:
3159 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3160 out_free_queue:
3161 nvme_fc_free_queue(&ctrl->queues[0]);
3162 clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3163 nvme_fc_ctlr_inactive_on_rport(ctrl);
3164
3165 return ret;
3166 }
3167
3168
3169 /*
3170 * This routine stops operation of the controller on the host side.
3171 * On the host os stack side: Admin and IO queues are stopped,
3172 * outstanding ios on them terminated via FC ABTS.
3173 * On the link side: the association is terminated.
3174 */
3175 static void
nvme_fc_delete_association(struct nvme_fc_ctrl * ctrl)3176 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3177 {
3178 struct nvmefc_ls_rcv_op *disls = NULL;
3179 unsigned long flags;
3180
3181 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3182 return;
3183
3184 spin_lock_irqsave(&ctrl->lock, flags);
3185 set_bit(FCCTRL_TERMIO, &ctrl->flags);
3186 ctrl->iocnt = 0;
3187 spin_unlock_irqrestore(&ctrl->lock, flags);
3188
3189 __nvme_fc_abort_outstanding_ios(ctrl, false);
3190
3191 /* kill the aens as they are a separate path */
3192 nvme_fc_abort_aen_ops(ctrl);
3193
3194 /* wait for all io that had to be aborted */
3195 spin_lock_irq(&ctrl->lock);
3196 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3197 clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3198 spin_unlock_irq(&ctrl->lock);
3199
3200 nvme_fc_term_aen_ops(ctrl);
3201
3202 /*
3203 * send a Disconnect(association) LS to fc-nvme target
3204 * Note: could have been sent at top of process, but
3205 * cleaner on link traffic if after the aborts complete.
3206 * Note: if association doesn't exist, association_id will be 0
3207 */
3208 if (ctrl->association_id)
3209 nvme_fc_xmt_disconnect_assoc(ctrl);
3210
3211 spin_lock_irqsave(&ctrl->lock, flags);
3212 ctrl->association_id = 0;
3213 disls = ctrl->rcv_disconn;
3214 ctrl->rcv_disconn = NULL;
3215 spin_unlock_irqrestore(&ctrl->lock, flags);
3216 if (disls)
3217 /*
3218 * if a Disconnect Request was waiting for a response, send
3219 * now that all ABTS's have been issued (and are complete).
3220 */
3221 nvme_fc_xmt_ls_rsp(disls);
3222
3223 if (ctrl->ctrl.tagset) {
3224 nvme_fc_delete_hw_io_queues(ctrl);
3225 nvme_fc_free_io_queues(ctrl);
3226 }
3227
3228 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3229 nvme_fc_free_queue(&ctrl->queues[0]);
3230
3231 /* re-enable the admin_q so anything new can fast fail */
3232 nvme_unquiesce_admin_queue(&ctrl->ctrl);
3233
3234 /* resume the io queues so that things will fast fail */
3235 nvme_unquiesce_io_queues(&ctrl->ctrl);
3236
3237 nvme_fc_ctlr_inactive_on_rport(ctrl);
3238 }
3239
3240 static void
nvme_fc_delete_ctrl(struct nvme_ctrl * nctrl)3241 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3242 {
3243 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3244
3245 cancel_work_sync(&ctrl->ioerr_work);
3246 cancel_delayed_work_sync(&ctrl->connect_work);
3247 /*
3248 * kill the association on the link side. this will block
3249 * waiting for io to terminate
3250 */
3251 nvme_fc_delete_association(ctrl);
3252 }
3253
3254 static void
nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl * ctrl,int status)3255 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3256 {
3257 struct nvme_fc_rport *rport = ctrl->rport;
3258 struct nvme_fc_remote_port *portptr = &rport->remoteport;
3259 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3260 bool recon = true;
3261
3262 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING)
3263 return;
3264
3265 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3266 dev_info(ctrl->ctrl.device,
3267 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3268 ctrl->cnum, status);
3269 if (status > 0 && (status & NVME_SC_DNR))
3270 recon = false;
3271 } else if (time_after_eq(jiffies, rport->dev_loss_end))
3272 recon = false;
3273
3274 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3275 if (portptr->port_state == FC_OBJSTATE_ONLINE)
3276 dev_info(ctrl->ctrl.device,
3277 "NVME-FC{%d}: Reconnect attempt in %ld "
3278 "seconds\n",
3279 ctrl->cnum, recon_delay / HZ);
3280 else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3281 recon_delay = rport->dev_loss_end - jiffies;
3282
3283 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3284 } else {
3285 if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3286 if (status > 0 && (status & NVME_SC_DNR))
3287 dev_warn(ctrl->ctrl.device,
3288 "NVME-FC{%d}: reconnect failure\n",
3289 ctrl->cnum);
3290 else
3291 dev_warn(ctrl->ctrl.device,
3292 "NVME-FC{%d}: Max reconnect attempts "
3293 "(%d) reached.\n",
3294 ctrl->cnum, ctrl->ctrl.nr_reconnects);
3295 } else
3296 dev_warn(ctrl->ctrl.device,
3297 "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3298 "while waiting for remoteport connectivity.\n",
3299 ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3300 (ctrl->ctrl.opts->max_reconnects *
3301 ctrl->ctrl.opts->reconnect_delay)));
3302 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3303 }
3304 }
3305
3306 static void
nvme_fc_reset_ctrl_work(struct work_struct * work)3307 nvme_fc_reset_ctrl_work(struct work_struct *work)
3308 {
3309 struct nvme_fc_ctrl *ctrl =
3310 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3311
3312 nvme_stop_ctrl(&ctrl->ctrl);
3313
3314 /* will block will waiting for io to terminate */
3315 nvme_fc_delete_association(ctrl);
3316
3317 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3318 dev_err(ctrl->ctrl.device,
3319 "NVME-FC{%d}: error_recovery: Couldn't change state "
3320 "to CONNECTING\n", ctrl->cnum);
3321
3322 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3323 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3324 dev_err(ctrl->ctrl.device,
3325 "NVME-FC{%d}: failed to schedule connect "
3326 "after reset\n", ctrl->cnum);
3327 } else {
3328 flush_delayed_work(&ctrl->connect_work);
3329 }
3330 } else {
3331 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3332 }
3333 }
3334
3335
3336 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3337 .name = "fc",
3338 .module = THIS_MODULE,
3339 .flags = NVME_F_FABRICS,
3340 .reg_read32 = nvmf_reg_read32,
3341 .reg_read64 = nvmf_reg_read64,
3342 .reg_write32 = nvmf_reg_write32,
3343 .free_ctrl = nvme_fc_nvme_ctrl_freed,
3344 .submit_async_event = nvme_fc_submit_async_event,
3345 .delete_ctrl = nvme_fc_delete_ctrl,
3346 .get_address = nvmf_get_address,
3347 };
3348
3349 static void
nvme_fc_connect_ctrl_work(struct work_struct * work)3350 nvme_fc_connect_ctrl_work(struct work_struct *work)
3351 {
3352 int ret;
3353
3354 struct nvme_fc_ctrl *ctrl =
3355 container_of(to_delayed_work(work),
3356 struct nvme_fc_ctrl, connect_work);
3357
3358 ret = nvme_fc_create_association(ctrl);
3359 if (ret)
3360 nvme_fc_reconnect_or_delete(ctrl, ret);
3361 else
3362 dev_info(ctrl->ctrl.device,
3363 "NVME-FC{%d}: controller connect complete\n",
3364 ctrl->cnum);
3365 }
3366
3367
3368 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3369 .queue_rq = nvme_fc_queue_rq,
3370 .complete = nvme_fc_complete_rq,
3371 .init_request = nvme_fc_init_request,
3372 .exit_request = nvme_fc_exit_request,
3373 .init_hctx = nvme_fc_init_admin_hctx,
3374 .timeout = nvme_fc_timeout,
3375 };
3376
3377
3378 /*
3379 * Fails a controller request if it matches an existing controller
3380 * (association) with the same tuple:
3381 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3382 *
3383 * The ports don't need to be compared as they are intrinsically
3384 * already matched by the port pointers supplied.
3385 */
3386 static bool
nvme_fc_existing_controller(struct nvme_fc_rport * rport,struct nvmf_ctrl_options * opts)3387 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3388 struct nvmf_ctrl_options *opts)
3389 {
3390 struct nvme_fc_ctrl *ctrl;
3391 unsigned long flags;
3392 bool found = false;
3393
3394 spin_lock_irqsave(&rport->lock, flags);
3395 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3396 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3397 if (found)
3398 break;
3399 }
3400 spin_unlock_irqrestore(&rport->lock, flags);
3401
3402 return found;
3403 }
3404
3405 static struct nvme_ctrl *
nvme_fc_init_ctrl(struct device * dev,struct nvmf_ctrl_options * opts,struct nvme_fc_lport * lport,struct nvme_fc_rport * rport)3406 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3407 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3408 {
3409 struct nvme_fc_ctrl *ctrl;
3410 unsigned long flags;
3411 int ret, idx, ctrl_loss_tmo;
3412
3413 if (!(rport->remoteport.port_role &
3414 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3415 ret = -EBADR;
3416 goto out_fail;
3417 }
3418
3419 if (!opts->duplicate_connect &&
3420 nvme_fc_existing_controller(rport, opts)) {
3421 ret = -EALREADY;
3422 goto out_fail;
3423 }
3424
3425 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3426 if (!ctrl) {
3427 ret = -ENOMEM;
3428 goto out_fail;
3429 }
3430
3431 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL);
3432 if (idx < 0) {
3433 ret = -ENOSPC;
3434 goto out_free_ctrl;
3435 }
3436
3437 /*
3438 * if ctrl_loss_tmo is being enforced and the default reconnect delay
3439 * is being used, change to a shorter reconnect delay for FC.
3440 */
3441 if (opts->max_reconnects != -1 &&
3442 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3443 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3444 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3445 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3446 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3447 opts->reconnect_delay);
3448 }
3449
3450 ctrl->ctrl.opts = opts;
3451 ctrl->ctrl.nr_reconnects = 0;
3452 if (lport->dev)
3453 ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3454 else
3455 ctrl->ctrl.numa_node = NUMA_NO_NODE;
3456 INIT_LIST_HEAD(&ctrl->ctrl_list);
3457 ctrl->lport = lport;
3458 ctrl->rport = rport;
3459 ctrl->dev = lport->dev;
3460 ctrl->cnum = idx;
3461 ctrl->ioq_live = false;
3462 init_waitqueue_head(&ctrl->ioabort_wait);
3463
3464 get_device(ctrl->dev);
3465 kref_init(&ctrl->ref);
3466
3467 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3468 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3469 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3470 spin_lock_init(&ctrl->lock);
3471
3472 /* io queue count */
3473 ctrl->ctrl.queue_count = min_t(unsigned int,
3474 opts->nr_io_queues,
3475 lport->ops->max_hw_queues);
3476 ctrl->ctrl.queue_count++; /* +1 for admin queue */
3477
3478 ctrl->ctrl.sqsize = opts->queue_size - 1;
3479 ctrl->ctrl.kato = opts->kato;
3480 ctrl->ctrl.cntlid = 0xffff;
3481
3482 ret = -ENOMEM;
3483 ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3484 sizeof(struct nvme_fc_queue), GFP_KERNEL);
3485 if (!ctrl->queues)
3486 goto out_free_ida;
3487
3488 nvme_fc_init_queue(ctrl, 0);
3489
3490 /*
3491 * Would have been nice to init io queues tag set as well.
3492 * However, we require interaction from the controller
3493 * for max io queue count before we can do so.
3494 * Defer this to the connect path.
3495 */
3496
3497 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3498 if (ret)
3499 goto out_free_queues;
3500
3501 /* at this point, teardown path changes to ref counting on nvme ctrl */
3502
3503 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set,
3504 &nvme_fc_admin_mq_ops,
3505 struct_size_t(struct nvme_fcp_op_w_sgl, priv,
3506 ctrl->lport->ops->fcprqst_priv_sz));
3507 if (ret)
3508 goto fail_ctrl;
3509
3510 spin_lock_irqsave(&rport->lock, flags);
3511 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3512 spin_unlock_irqrestore(&rport->lock, flags);
3513
3514 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3515 dev_err(ctrl->ctrl.device,
3516 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3517 goto fail_ctrl;
3518 }
3519
3520 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3521 dev_err(ctrl->ctrl.device,
3522 "NVME-FC{%d}: failed to schedule initial connect\n",
3523 ctrl->cnum);
3524 goto fail_ctrl;
3525 }
3526
3527 flush_delayed_work(&ctrl->connect_work);
3528
3529 dev_info(ctrl->ctrl.device,
3530 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3531 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl));
3532
3533 return &ctrl->ctrl;
3534
3535 fail_ctrl:
3536 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3537 cancel_work_sync(&ctrl->ioerr_work);
3538 cancel_work_sync(&ctrl->ctrl.reset_work);
3539 cancel_delayed_work_sync(&ctrl->connect_work);
3540
3541 ctrl->ctrl.opts = NULL;
3542
3543 /* initiate nvme ctrl ref counting teardown */
3544 nvme_uninit_ctrl(&ctrl->ctrl);
3545
3546 /* Remove core ctrl ref. */
3547 nvme_put_ctrl(&ctrl->ctrl);
3548
3549 /* as we're past the point where we transition to the ref
3550 * counting teardown path, if we return a bad pointer here,
3551 * the calling routine, thinking it's prior to the
3552 * transition, will do an rport put. Since the teardown
3553 * path also does a rport put, we do an extra get here to
3554 * so proper order/teardown happens.
3555 */
3556 nvme_fc_rport_get(rport);
3557
3558 return ERR_PTR(-EIO);
3559
3560 out_free_queues:
3561 kfree(ctrl->queues);
3562 out_free_ida:
3563 put_device(ctrl->dev);
3564 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum);
3565 out_free_ctrl:
3566 kfree(ctrl);
3567 out_fail:
3568 /* exit via here doesn't follow ctlr ref points */
3569 return ERR_PTR(ret);
3570 }
3571
3572
3573 struct nvmet_fc_traddr {
3574 u64 nn;
3575 u64 pn;
3576 };
3577
3578 static int
__nvme_fc_parse_u64(substring_t * sstr,u64 * val)3579 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3580 {
3581 u64 token64;
3582
3583 if (match_u64(sstr, &token64))
3584 return -EINVAL;
3585 *val = token64;
3586
3587 return 0;
3588 }
3589
3590 /*
3591 * This routine validates and extracts the WWN's from the TRADDR string.
3592 * As kernel parsers need the 0x to determine number base, universally
3593 * build string to parse with 0x prefix before parsing name strings.
3594 */
3595 static int
nvme_fc_parse_traddr(struct nvmet_fc_traddr * traddr,char * buf,size_t blen)3596 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3597 {
3598 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3599 substring_t wwn = { name, &name[sizeof(name)-1] };
3600 int nnoffset, pnoffset;
3601
3602 /* validate if string is one of the 2 allowed formats */
3603 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3604 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3605 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3606 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3607 nnoffset = NVME_FC_TRADDR_OXNNLEN;
3608 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3609 NVME_FC_TRADDR_OXNNLEN;
3610 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3611 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3612 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3613 "pn-", NVME_FC_TRADDR_NNLEN))) {
3614 nnoffset = NVME_FC_TRADDR_NNLEN;
3615 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3616 } else
3617 goto out_einval;
3618
3619 name[0] = '0';
3620 name[1] = 'x';
3621 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3622
3623 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3624 if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3625 goto out_einval;
3626
3627 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3628 if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3629 goto out_einval;
3630
3631 return 0;
3632
3633 out_einval:
3634 pr_warn("%s: bad traddr string\n", __func__);
3635 return -EINVAL;
3636 }
3637
3638 static struct nvme_ctrl *
nvme_fc_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)3639 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3640 {
3641 struct nvme_fc_lport *lport;
3642 struct nvme_fc_rport *rport;
3643 struct nvme_ctrl *ctrl;
3644 struct nvmet_fc_traddr laddr = { 0L, 0L };
3645 struct nvmet_fc_traddr raddr = { 0L, 0L };
3646 unsigned long flags;
3647 int ret;
3648
3649 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3650 if (ret || !raddr.nn || !raddr.pn)
3651 return ERR_PTR(-EINVAL);
3652
3653 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3654 if (ret || !laddr.nn || !laddr.pn)
3655 return ERR_PTR(-EINVAL);
3656
3657 /* find the host and remote ports to connect together */
3658 spin_lock_irqsave(&nvme_fc_lock, flags);
3659 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3660 if (lport->localport.node_name != laddr.nn ||
3661 lport->localport.port_name != laddr.pn ||
3662 lport->localport.port_state != FC_OBJSTATE_ONLINE)
3663 continue;
3664
3665 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3666 if (rport->remoteport.node_name != raddr.nn ||
3667 rport->remoteport.port_name != raddr.pn ||
3668 rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3669 continue;
3670
3671 /* if fail to get reference fall through. Will error */
3672 if (!nvme_fc_rport_get(rport))
3673 break;
3674
3675 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3676
3677 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3678 if (IS_ERR(ctrl))
3679 nvme_fc_rport_put(rport);
3680 return ctrl;
3681 }
3682 }
3683 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3684
3685 pr_warn("%s: %s - %s combination not found\n",
3686 __func__, opts->traddr, opts->host_traddr);
3687 return ERR_PTR(-ENOENT);
3688 }
3689
3690
3691 static struct nvmf_transport_ops nvme_fc_transport = {
3692 .name = "fc",
3693 .module = THIS_MODULE,
3694 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3695 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3696 .create_ctrl = nvme_fc_create_ctrl,
3697 };
3698
3699 /* Arbitrary successive failures max. With lots of subsystems could be high */
3700 #define DISCOVERY_MAX_FAIL 20
3701
nvme_fc_nvme_discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3702 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3703 struct device_attribute *attr, const char *buf, size_t count)
3704 {
3705 unsigned long flags;
3706 LIST_HEAD(local_disc_list);
3707 struct nvme_fc_lport *lport;
3708 struct nvme_fc_rport *rport;
3709 int failcnt = 0;
3710
3711 spin_lock_irqsave(&nvme_fc_lock, flags);
3712 restart:
3713 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3714 list_for_each_entry(rport, &lport->endp_list, endp_list) {
3715 if (!nvme_fc_lport_get(lport))
3716 continue;
3717 if (!nvme_fc_rport_get(rport)) {
3718 /*
3719 * This is a temporary condition. Upon restart
3720 * this rport will be gone from the list.
3721 *
3722 * Revert the lport put and retry. Anything
3723 * added to the list already will be skipped (as
3724 * they are no longer list_empty). Loops should
3725 * resume at rports that were not yet seen.
3726 */
3727 nvme_fc_lport_put(lport);
3728
3729 if (failcnt++ < DISCOVERY_MAX_FAIL)
3730 goto restart;
3731
3732 pr_err("nvme_discovery: too many reference "
3733 "failures\n");
3734 goto process_local_list;
3735 }
3736 if (list_empty(&rport->disc_list))
3737 list_add_tail(&rport->disc_list,
3738 &local_disc_list);
3739 }
3740 }
3741
3742 process_local_list:
3743 while (!list_empty(&local_disc_list)) {
3744 rport = list_first_entry(&local_disc_list,
3745 struct nvme_fc_rport, disc_list);
3746 list_del_init(&rport->disc_list);
3747 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3748
3749 lport = rport->lport;
3750 /* signal discovery. Won't hurt if it repeats */
3751 nvme_fc_signal_discovery_scan(lport, rport);
3752 nvme_fc_rport_put(rport);
3753 nvme_fc_lport_put(lport);
3754
3755 spin_lock_irqsave(&nvme_fc_lock, flags);
3756 }
3757 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3758
3759 return count;
3760 }
3761
3762 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3763
3764 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3765 /* Parse the cgroup id from a buf and return the length of cgrpid */
fc_parse_cgrpid(const char * buf,u64 * id)3766 static int fc_parse_cgrpid(const char *buf, u64 *id)
3767 {
3768 char cgrp_id[16+1];
3769 int cgrpid_len, j;
3770
3771 memset(cgrp_id, 0x0, sizeof(cgrp_id));
3772 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3773 if (buf[cgrpid_len] != ':')
3774 cgrp_id[cgrpid_len] = buf[cgrpid_len];
3775 else {
3776 j = 1;
3777 break;
3778 }
3779 }
3780 if (!j)
3781 return -EINVAL;
3782 if (kstrtou64(cgrp_id, 16, id) < 0)
3783 return -EINVAL;
3784 return cgrpid_len;
3785 }
3786
3787 /*
3788 * Parse and update the appid in the blkcg associated with the cgroupid.
3789 */
fc_appid_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3790 static ssize_t fc_appid_store(struct device *dev,
3791 struct device_attribute *attr, const char *buf, size_t count)
3792 {
3793 size_t orig_count = count;
3794 u64 cgrp_id;
3795 int appid_len = 0;
3796 int cgrpid_len = 0;
3797 char app_id[FC_APPID_LEN];
3798 int ret = 0;
3799
3800 if (buf[count-1] == '\n')
3801 count--;
3802
3803 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3804 return -EINVAL;
3805
3806 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3807 if (cgrpid_len < 0)
3808 return -EINVAL;
3809 appid_len = count - cgrpid_len - 1;
3810 if (appid_len > FC_APPID_LEN)
3811 return -EINVAL;
3812
3813 memset(app_id, 0x0, sizeof(app_id));
3814 memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3815 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3816 if (ret < 0)
3817 return ret;
3818 return orig_count;
3819 }
3820 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3821 #endif /* CONFIG_BLK_CGROUP_FC_APPID */
3822
3823 static struct attribute *nvme_fc_attrs[] = {
3824 &dev_attr_nvme_discovery.attr,
3825 #ifdef CONFIG_BLK_CGROUP_FC_APPID
3826 &dev_attr_appid_store.attr,
3827 #endif
3828 NULL
3829 };
3830
3831 static const struct attribute_group nvme_fc_attr_group = {
3832 .attrs = nvme_fc_attrs,
3833 };
3834
3835 static const struct attribute_group *nvme_fc_attr_groups[] = {
3836 &nvme_fc_attr_group,
3837 NULL
3838 };
3839
3840 static struct class fc_class = {
3841 .name = "fc",
3842 .dev_groups = nvme_fc_attr_groups,
3843 };
3844
nvme_fc_init_module(void)3845 static int __init nvme_fc_init_module(void)
3846 {
3847 int ret;
3848
3849 /*
3850 * NOTE:
3851 * It is expected that in the future the kernel will combine
3852 * the FC-isms that are currently under scsi and now being
3853 * added to by NVME into a new standalone FC class. The SCSI
3854 * and NVME protocols and their devices would be under this
3855 * new FC class.
3856 *
3857 * As we need something to post FC-specific udev events to,
3858 * specifically for nvme probe events, start by creating the
3859 * new device class. When the new standalone FC class is
3860 * put in place, this code will move to a more generic
3861 * location for the class.
3862 */
3863 ret = class_register(&fc_class);
3864 if (ret) {
3865 pr_err("couldn't register class fc\n");
3866 return ret;
3867 }
3868
3869 /*
3870 * Create a device for the FC-centric udev events
3871 */
3872 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3873 "fc_udev_device");
3874 if (IS_ERR(fc_udev_device)) {
3875 pr_err("couldn't create fc_udev device!\n");
3876 ret = PTR_ERR(fc_udev_device);
3877 goto out_destroy_class;
3878 }
3879
3880 ret = nvmf_register_transport(&nvme_fc_transport);
3881 if (ret)
3882 goto out_destroy_device;
3883
3884 return 0;
3885
3886 out_destroy_device:
3887 device_destroy(&fc_class, MKDEV(0, 0));
3888 out_destroy_class:
3889 class_unregister(&fc_class);
3890
3891 return ret;
3892 }
3893
3894 static void
nvme_fc_delete_controllers(struct nvme_fc_rport * rport)3895 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3896 {
3897 struct nvme_fc_ctrl *ctrl;
3898
3899 spin_lock(&rport->lock);
3900 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3901 dev_warn(ctrl->ctrl.device,
3902 "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3903 ctrl->cnum);
3904 nvme_delete_ctrl(&ctrl->ctrl);
3905 }
3906 spin_unlock(&rport->lock);
3907 }
3908
nvme_fc_exit_module(void)3909 static void __exit nvme_fc_exit_module(void)
3910 {
3911 struct nvme_fc_lport *lport;
3912 struct nvme_fc_rport *rport;
3913 unsigned long flags;
3914
3915 spin_lock_irqsave(&nvme_fc_lock, flags);
3916 list_for_each_entry(lport, &nvme_fc_lport_list, port_list)
3917 list_for_each_entry(rport, &lport->endp_list, endp_list)
3918 nvme_fc_delete_controllers(rport);
3919 spin_unlock_irqrestore(&nvme_fc_lock, flags);
3920 flush_workqueue(nvme_delete_wq);
3921
3922 nvmf_unregister_transport(&nvme_fc_transport);
3923
3924 device_destroy(&fc_class, MKDEV(0, 0));
3925 class_unregister(&fc_class);
3926 }
3927
3928 module_init(nvme_fc_init_module);
3929 module_exit(nvme_fc_exit_module);
3930
3931 MODULE_LICENSE("GPL v2");
3932