1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44 #define NVME_MAX_KB_SZ 8192
45 #define NVME_MAX_SEGS 128
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144
145 mempool_t *iod_mempool;
146
147 /* shadow doorbell buffer support: */
148 __le32 *dbbuf_dbs;
149 dma_addr_t dbbuf_dbs_dma_addr;
150 __le32 *dbbuf_eis;
151 dma_addr_t dbbuf_eis_dma_addr;
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
156 u32 host_mem_descs_size;
157 dma_addr_t host_mem_descs_dma;
158 struct nvme_host_mem_buf_desc *host_mem_descs;
159 void **host_mem_desc_bufs;
160 unsigned int nr_allocated_queues;
161 unsigned int nr_write_queues;
162 unsigned int nr_poll_queues;
163 };
164
io_queue_depth_set(const char * val,const struct kernel_param * kp)165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 return qid * 2 * stride;
174 }
175
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 return (qid * 2 + 1) * stride;
179 }
180
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190 struct nvme_queue {
191 struct nvme_dev *dev;
192 spinlock_t sq_lock;
193 void *sq_cmds;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
199 u32 __iomem *q_db;
200 u32 q_depth;
201 u16 cq_vector;
202 u16 sq_tail;
203 u16 last_sq_tail;
204 u16 cq_head;
205 u16 qid;
206 u8 cq_phase;
207 u8 sqes;
208 unsigned long flags;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
213 __le32 *dbbuf_sq_db;
214 __le32 *dbbuf_cq_db;
215 __le32 *dbbuf_sq_ei;
216 __le32 *dbbuf_cq_ei;
217 struct completion delete_done;
218 };
219
220 union nvme_descriptor {
221 struct nvme_sgl_desc *sg_list;
222 __le64 *prp_list;
223 };
224
225 /*
226 * The nvme_iod describes the data in an I/O.
227 *
228 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229 * to the actual struct scatterlist.
230 */
231 struct nvme_iod {
232 struct nvme_request req;
233 struct nvme_command cmd;
234 bool aborted;
235 s8 nr_allocations; /* PRP list pool allocations. 0 means small
236 pool in use */
237 unsigned int dma_len; /* length of single DMA segment mapping */
238 dma_addr_t first_dma;
239 dma_addr_t meta_dma;
240 struct sg_table sgt;
241 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
242 };
243
nvme_dbbuf_size(struct nvme_dev * dev)244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 {
246 return dev->nr_allocated_queues * 8 * dev->db_stride;
247 }
248
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 {
251 unsigned int mem_size = nvme_dbbuf_size(dev);
252
253 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 return;
255
256 if (dev->dbbuf_dbs) {
257 /*
258 * Clear the dbbuf memory so the driver doesn't observe stale
259 * values from the previous instantiation.
260 */
261 memset(dev->dbbuf_dbs, 0, mem_size);
262 memset(dev->dbbuf_eis, 0, mem_size);
263 return;
264 }
265
266 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 &dev->dbbuf_dbs_dma_addr,
268 GFP_KERNEL);
269 if (!dev->dbbuf_dbs)
270 goto fail;
271 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 &dev->dbbuf_eis_dma_addr,
273 GFP_KERNEL);
274 if (!dev->dbbuf_eis)
275 goto fail_free_dbbuf_dbs;
276 return;
277
278 fail_free_dbbuf_dbs:
279 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 dev->dbbuf_dbs_dma_addr);
281 dev->dbbuf_dbs = NULL;
282 fail:
283 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
284 }
285
nvme_dbbuf_dma_free(struct nvme_dev * dev)286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 {
288 unsigned int mem_size = nvme_dbbuf_size(dev);
289
290 if (dev->dbbuf_dbs) {
291 dma_free_coherent(dev->dev, mem_size,
292 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 dev->dbbuf_dbs = NULL;
294 }
295 if (dev->dbbuf_eis) {
296 dma_free_coherent(dev->dev, mem_size,
297 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 dev->dbbuf_eis = NULL;
299 }
300 }
301
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)302 static void nvme_dbbuf_init(struct nvme_dev *dev,
303 struct nvme_queue *nvmeq, int qid)
304 {
305 if (!dev->dbbuf_dbs || !qid)
306 return;
307
308 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312 }
313
nvme_dbbuf_free(struct nvme_queue * nvmeq)314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315 {
316 if (!nvmeq->qid)
317 return;
318
319 nvmeq->dbbuf_sq_db = NULL;
320 nvmeq->dbbuf_cq_db = NULL;
321 nvmeq->dbbuf_sq_ei = NULL;
322 nvmeq->dbbuf_cq_ei = NULL;
323 }
324
nvme_dbbuf_set(struct nvme_dev * dev)325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 struct nvme_command c = { };
328 unsigned int i;
329
330 if (!dev->dbbuf_dbs)
331 return;
332
333 c.dbbuf.opcode = nvme_admin_dbbuf;
334 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336
337 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 /* Free memory and continue on */
340 nvme_dbbuf_dma_free(dev);
341
342 for (i = 1; i <= dev->online_queues; i++)
343 nvme_dbbuf_free(&dev->queues[i]);
344 }
345 }
346
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 {
349 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350 }
351
352 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 volatile __le32 *dbbuf_ei)
355 {
356 if (dbbuf_db) {
357 u16 old_value, event_idx;
358
359 /*
360 * Ensure that the queue is written before updating
361 * the doorbell in memory
362 */
363 wmb();
364
365 old_value = le32_to_cpu(*dbbuf_db);
366 *dbbuf_db = cpu_to_le32(value);
367
368 /*
369 * Ensure that the doorbell is updated before reading the event
370 * index from memory. The controller needs to provide similar
371 * ordering to ensure the envent index is updated before reading
372 * the doorbell.
373 */
374 mb();
375
376 event_idx = le32_to_cpu(*dbbuf_ei);
377 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
378 return false;
379 }
380
381 return true;
382 }
383
384 /*
385 * Will slightly overestimate the number of pages needed. This is OK
386 * as it only leads to a small amount of wasted memory for the lifetime of
387 * the I/O.
388 */
nvme_pci_npages_prp(void)389 static int nvme_pci_npages_prp(void)
390 {
391 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
393 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
394 }
395
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 unsigned int hctx_idx)
398 {
399 struct nvme_dev *dev = to_nvme_dev(data);
400 struct nvme_queue *nvmeq = &dev->queues[0];
401
402 WARN_ON(hctx_idx != 0);
403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404
405 hctx->driver_data = nvmeq;
406 return 0;
407 }
408
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 unsigned int hctx_idx)
411 {
412 struct nvme_dev *dev = to_nvme_dev(data);
413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414
415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 hctx->driver_data = nvmeq;
417 return 0;
418 }
419
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)420 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 struct request *req, unsigned int hctx_idx,
422 unsigned int numa_node)
423 {
424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425
426 nvme_req(req)->ctrl = set->driver_data;
427 nvme_req(req)->cmd = &iod->cmd;
428 return 0;
429 }
430
queue_irq_offset(struct nvme_dev * dev)431 static int queue_irq_offset(struct nvme_dev *dev)
432 {
433 /* if we have more than 1 vec, admin queue offsets us by 1 */
434 if (dev->num_vecs > 1)
435 return 1;
436
437 return 0;
438 }
439
nvme_pci_map_queues(struct blk_mq_tag_set * set)440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 {
442 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
443 int i, qoff, offset;
444
445 offset = queue_irq_offset(dev);
446 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 struct blk_mq_queue_map *map = &set->map[i];
448
449 map->nr_queues = dev->io_queues[i];
450 if (!map->nr_queues) {
451 BUG_ON(i == HCTX_TYPE_DEFAULT);
452 continue;
453 }
454
455 /*
456 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 * affinity), so use the regular blk-mq cpu mapping
458 */
459 map->queue_offset = qoff;
460 if (i != HCTX_TYPE_POLL && offset)
461 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 else
463 blk_mq_map_queues(map);
464 qoff += map->nr_queues;
465 offset += map->nr_queues;
466 }
467 }
468
469 /*
470 * Write sq tail if we are asked to, or if the next command would wrap.
471 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 if (!write_sq) {
475 u16 next_tail = nvmeq->sq_tail + 1;
476
477 if (next_tail == nvmeq->q_depth)
478 next_tail = 0;
479 if (next_tail != nvmeq->last_sq_tail)
480 return;
481 }
482
483 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 writel(nvmeq->sq_tail, nvmeq->q_db);
486 nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 struct nvme_command *cmd)
491 {
492 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 absolute_pointer(cmd), sizeof(*cmd));
494 if (++nvmeq->sq_tail == nvmeq->q_depth)
495 nvmeq->sq_tail = 0;
496 }
497
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 struct nvme_queue *nvmeq = hctx->driver_data;
501
502 spin_lock(&nvmeq->sq_lock);
503 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 nvme_write_sq_db(nvmeq, true);
505 spin_unlock(&nvmeq->sq_lock);
506 }
507
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 int nseg)
510 {
511 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
512 unsigned int avg_seg_size;
513
514 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515
516 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
517 return false;
518 if (!nvmeq->qid)
519 return false;
520 if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 return false;
522 return true;
523 }
524
nvme_free_prps(struct nvme_dev * dev,struct request * req)525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 {
527 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
528 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 dma_addr_t dma_addr = iod->first_dma;
530 int i;
531
532 for (i = 0; i < iod->nr_allocations; i++) {
533 __le64 *prp_list = iod->list[i].prp_list;
534 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535
536 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 dma_addr = next_dma_addr;
538 }
539 }
540
nvme_unmap_data(struct nvme_dev * dev,struct request * req)541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 {
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544
545 if (iod->dma_len) {
546 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 rq_dma_dir(req));
548 return;
549 }
550
551 WARN_ON_ONCE(!iod->sgt.nents);
552
553 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554
555 if (iod->nr_allocations == 0)
556 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 iod->first_dma);
558 else if (iod->nr_allocations == 1)
559 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
560 iod->first_dma);
561 else
562 nvme_free_prps(dev, req);
563 mempool_free(iod->sgt.sgl, dev->iod_mempool);
564 }
565
nvme_print_sgl(struct scatterlist * sgl,int nents)566 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567 {
568 int i;
569 struct scatterlist *sg;
570
571 for_each_sg(sgl, sg, nents, i) {
572 dma_addr_t phys = sg_phys(sg);
573 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 "dma_address:%pad dma_length:%d\n",
575 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 sg_dma_len(sg));
577 }
578 }
579
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 struct request *req, struct nvme_rw_command *cmnd)
582 {
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 struct dma_pool *pool;
585 int length = blk_rq_payload_bytes(req);
586 struct scatterlist *sg = iod->sgt.sgl;
587 int dma_len = sg_dma_len(sg);
588 u64 dma_addr = sg_dma_address(sg);
589 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
590 __le64 *prp_list;
591 dma_addr_t prp_dma;
592 int nprps, i;
593
594 length -= (NVME_CTRL_PAGE_SIZE - offset);
595 if (length <= 0) {
596 iod->first_dma = 0;
597 goto done;
598 }
599
600 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 if (dma_len) {
602 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
603 } else {
604 sg = sg_next(sg);
605 dma_addr = sg_dma_address(sg);
606 dma_len = sg_dma_len(sg);
607 }
608
609 if (length <= NVME_CTRL_PAGE_SIZE) {
610 iod->first_dma = dma_addr;
611 goto done;
612 }
613
614 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
615 if (nprps <= (256 / 8)) {
616 pool = dev->prp_small_pool;
617 iod->nr_allocations = 0;
618 } else {
619 pool = dev->prp_page_pool;
620 iod->nr_allocations = 1;
621 }
622
623 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 if (!prp_list) {
625 iod->nr_allocations = -1;
626 return BLK_STS_RESOURCE;
627 }
628 iod->list[0].prp_list = prp_list;
629 iod->first_dma = prp_dma;
630 i = 0;
631 for (;;) {
632 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
633 __le64 *old_prp_list = prp_list;
634 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
635 if (!prp_list)
636 goto free_prps;
637 iod->list[iod->nr_allocations++].prp_list = prp_list;
638 prp_list[0] = old_prp_list[i - 1];
639 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 i = 1;
641 }
642 prp_list[i++] = cpu_to_le64(dma_addr);
643 dma_len -= NVME_CTRL_PAGE_SIZE;
644 dma_addr += NVME_CTRL_PAGE_SIZE;
645 length -= NVME_CTRL_PAGE_SIZE;
646 if (length <= 0)
647 break;
648 if (dma_len > 0)
649 continue;
650 if (unlikely(dma_len < 0))
651 goto bad_sgl;
652 sg = sg_next(sg);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
655 }
656 done:
657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 return BLK_STS_OK;
660 free_prps:
661 nvme_free_prps(dev, req);
662 return BLK_STS_RESOURCE;
663 bad_sgl:
664 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
665 "Invalid SGL for payload:%d nents:%d\n",
666 blk_rq_payload_bytes(req), iod->sgt.nents);
667 return BLK_STS_IOERR;
668 }
669
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 struct scatterlist *sg)
672 {
673 sge->addr = cpu_to_le64(sg_dma_address(sg));
674 sge->length = cpu_to_le32(sg_dma_len(sg));
675 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676 }
677
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 dma_addr_t dma_addr, int entries)
680 {
681 sge->addr = cpu_to_le64(dma_addr);
682 sge->length = cpu_to_le32(entries * sizeof(*sge));
683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 }
685
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
687 struct request *req, struct nvme_rw_command *cmd)
688 {
689 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
690 struct dma_pool *pool;
691 struct nvme_sgl_desc *sg_list;
692 struct scatterlist *sg = iod->sgt.sgl;
693 unsigned int entries = iod->sgt.nents;
694 dma_addr_t sgl_dma;
695 int i = 0;
696
697 /* setting the transfer type as SGL */
698 cmd->flags = NVME_CMD_SGL_METABUF;
699
700 if (entries == 1) {
701 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 return BLK_STS_OK;
703 }
704
705 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 pool = dev->prp_small_pool;
707 iod->nr_allocations = 0;
708 } else {
709 pool = dev->prp_page_pool;
710 iod->nr_allocations = 1;
711 }
712
713 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 if (!sg_list) {
715 iod->nr_allocations = -1;
716 return BLK_STS_RESOURCE;
717 }
718
719 iod->list[0].sg_list = sg_list;
720 iod->first_dma = sgl_dma;
721
722 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 do {
724 nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 sg = sg_next(sg);
726 } while (--entries > 0);
727
728 return BLK_STS_OK;
729 }
730
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 struct request *req, struct nvme_rw_command *cmnd,
733 struct bio_vec *bv)
734 {
735 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738
739 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 if (dma_mapping_error(dev->dev, iod->first_dma))
741 return BLK_STS_RESOURCE;
742 iod->dma_len = bv->bv_len;
743
744 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 if (bv->bv_len > first_prp_len)
746 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
747 else
748 cmnd->dptr.prp2 = 0;
749 return BLK_STS_OK;
750 }
751
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 struct request *req, struct nvme_rw_command *cmnd,
754 struct bio_vec *bv)
755 {
756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 if (dma_mapping_error(dev->dev, iod->first_dma))
760 return BLK_STS_RESOURCE;
761 iod->dma_len = bv->bv_len;
762
763 cmnd->flags = NVME_CMD_SGL_METABUF;
764 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
767 return BLK_STS_OK;
768 }
769
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
771 struct nvme_command *cmnd)
772 {
773 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
774 blk_status_t ret = BLK_STS_RESOURCE;
775 int rc;
776
777 if (blk_rq_nr_phys_segments(req) == 1) {
778 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
779 struct bio_vec bv = req_bvec(req);
780
781 if (!is_pci_p2pdma_page(bv.bv_page)) {
782 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
783 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
784 return nvme_setup_prp_simple(dev, req,
785 &cmnd->rw, &bv);
786
787 if (nvmeq->qid && sgl_threshold &&
788 nvme_ctrl_sgl_supported(&dev->ctrl))
789 return nvme_setup_sgl_simple(dev, req,
790 &cmnd->rw, &bv);
791 }
792 }
793
794 iod->dma_len = 0;
795 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 if (!iod->sgt.sgl)
797 return BLK_STS_RESOURCE;
798 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 if (!iod->sgt.orig_nents)
801 goto out_free_sg;
802
803 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 DMA_ATTR_NO_WARN);
805 if (rc) {
806 if (rc == -EREMOTEIO)
807 ret = BLK_STS_TARGET;
808 goto out_free_sg;
809 }
810
811 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
812 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 else
814 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
815 if (ret != BLK_STS_OK)
816 goto out_unmap_sg;
817 return BLK_STS_OK;
818
819 out_unmap_sg:
820 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 out_free_sg:
822 mempool_free(iod->sgt.sgl, dev->iod_mempool);
823 return ret;
824 }
825
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 struct nvme_command *cmnd)
828 {
829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 struct bio_vec bv = rq_integrity_vec(req);
831
832 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
833 if (dma_mapping_error(dev->dev, iod->meta_dma))
834 return BLK_STS_IOERR;
835 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
836 return BLK_STS_OK;
837 }
838
nvme_prep_rq(struct nvme_dev * dev,struct request * req)839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 {
841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 blk_status_t ret;
843
844 iod->aborted = false;
845 iod->nr_allocations = -1;
846 iod->sgt.nents = 0;
847
848 ret = nvme_setup_cmd(req->q->queuedata, req);
849 if (ret)
850 return ret;
851
852 if (blk_rq_nr_phys_segments(req)) {
853 ret = nvme_map_data(dev, req, &iod->cmd);
854 if (ret)
855 goto out_free_cmd;
856 }
857
858 if (blk_integrity_rq(req)) {
859 ret = nvme_map_metadata(dev, req, &iod->cmd);
860 if (ret)
861 goto out_unmap_data;
862 }
863
864 nvme_start_request(req);
865 return BLK_STS_OK;
866 out_unmap_data:
867 if (blk_rq_nr_phys_segments(req))
868 nvme_unmap_data(dev, req);
869 out_free_cmd:
870 nvme_cleanup_cmd(req);
871 return ret;
872 }
873
874 /*
875 * NOTE: ns is NULL when called on the admin queue.
876 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)877 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
878 const struct blk_mq_queue_data *bd)
879 {
880 struct nvme_queue *nvmeq = hctx->driver_data;
881 struct nvme_dev *dev = nvmeq->dev;
882 struct request *req = bd->rq;
883 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
884 blk_status_t ret;
885
886 /*
887 * We should not need to do this, but we're still using this to
888 * ensure we can drain requests on a dying queue.
889 */
890 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
891 return BLK_STS_IOERR;
892
893 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
894 return nvme_fail_nonready_command(&dev->ctrl, req);
895
896 ret = nvme_prep_rq(dev, req);
897 if (unlikely(ret))
898 return ret;
899 spin_lock(&nvmeq->sq_lock);
900 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
901 nvme_write_sq_db(nvmeq, bd->last);
902 spin_unlock(&nvmeq->sq_lock);
903 return BLK_STS_OK;
904 }
905
nvme_submit_cmds(struct nvme_queue * nvmeq,struct request ** rqlist)906 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
907 {
908 struct request *req;
909
910 spin_lock(&nvmeq->sq_lock);
911 while ((req = rq_list_pop(rqlist))) {
912 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
913
914 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
915 }
916 nvme_write_sq_db(nvmeq, true);
917 spin_unlock(&nvmeq->sq_lock);
918 }
919
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)920 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
921 {
922 /*
923 * We should not need to do this, but we're still using this to
924 * ensure we can drain requests on a dying queue.
925 */
926 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
927 return false;
928 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
929 return false;
930
931 req->mq_hctx->tags->rqs[req->tag] = req;
932 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
933 }
934
nvme_queue_rqs(struct request ** rqlist)935 static void nvme_queue_rqs(struct request **rqlist)
936 {
937 struct request *submit_list = NULL;
938 struct request *requeue_list = NULL;
939 struct request **requeue_lastp = &requeue_list;
940 struct nvme_queue *nvmeq = NULL;
941 struct request *req;
942
943 while ((req = rq_list_pop(rqlist))) {
944 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
945 nvme_submit_cmds(nvmeq, &submit_list);
946 nvmeq = req->mq_hctx->driver_data;
947
948 if (nvme_prep_rq_batch(nvmeq, req))
949 rq_list_add(&submit_list, req); /* reverse order */
950 else
951 rq_list_add_tail(&requeue_lastp, req);
952 }
953
954 if (nvmeq)
955 nvme_submit_cmds(nvmeq, &submit_list);
956 *rqlist = requeue_list;
957 }
958
nvme_pci_unmap_rq(struct request * req)959 static __always_inline void nvme_pci_unmap_rq(struct request *req)
960 {
961 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
962 struct nvme_dev *dev = nvmeq->dev;
963
964 if (blk_integrity_rq(req)) {
965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966
967 dma_unmap_page(dev->dev, iod->meta_dma,
968 rq_integrity_vec(req).bv_len, rq_dma_dir(req));
969 }
970
971 if (blk_rq_nr_phys_segments(req))
972 nvme_unmap_data(dev, req);
973 }
974
nvme_pci_complete_rq(struct request * req)975 static void nvme_pci_complete_rq(struct request *req)
976 {
977 nvme_pci_unmap_rq(req);
978 nvme_complete_rq(req);
979 }
980
nvme_pci_complete_batch(struct io_comp_batch * iob)981 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
982 {
983 nvme_complete_batch(iob, nvme_pci_unmap_rq);
984 }
985
986 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)987 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
988 {
989 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
990
991 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
992 }
993
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)994 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
995 {
996 u16 head = nvmeq->cq_head;
997
998 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
999 nvmeq->dbbuf_cq_ei))
1000 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1001 }
1002
nvme_queue_tagset(struct nvme_queue * nvmeq)1003 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1004 {
1005 if (!nvmeq->qid)
1006 return nvmeq->dev->admin_tagset.tags[0];
1007 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1008 }
1009
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1010 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1011 struct io_comp_batch *iob, u16 idx)
1012 {
1013 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1014 __u16 command_id = READ_ONCE(cqe->command_id);
1015 struct request *req;
1016
1017 /*
1018 * AEN requests are special as they don't time out and can
1019 * survive any kind of queue freeze and often don't respond to
1020 * aborts. We don't even bother to allocate a struct request
1021 * for them but rather special case them here.
1022 */
1023 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1024 nvme_complete_async_event(&nvmeq->dev->ctrl,
1025 cqe->status, &cqe->result);
1026 return;
1027 }
1028
1029 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1030 if (unlikely(!req)) {
1031 dev_warn(nvmeq->dev->ctrl.device,
1032 "invalid id %d completed on queue %d\n",
1033 command_id, le16_to_cpu(cqe->sq_id));
1034 return;
1035 }
1036
1037 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1038 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1039 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1040 nvme_pci_complete_batch))
1041 nvme_pci_complete_rq(req);
1042 }
1043
nvme_update_cq_head(struct nvme_queue * nvmeq)1044 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1045 {
1046 u32 tmp = nvmeq->cq_head + 1;
1047
1048 if (tmp == nvmeq->q_depth) {
1049 nvmeq->cq_head = 0;
1050 nvmeq->cq_phase ^= 1;
1051 } else {
1052 nvmeq->cq_head = tmp;
1053 }
1054 }
1055
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1056 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1057 struct io_comp_batch *iob)
1058 {
1059 int found = 0;
1060
1061 while (nvme_cqe_pending(nvmeq)) {
1062 found++;
1063 /*
1064 * load-load control dependency between phase and the rest of
1065 * the cqe requires a full read memory barrier
1066 */
1067 dma_rmb();
1068 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1069 nvme_update_cq_head(nvmeq);
1070 }
1071
1072 if (found)
1073 nvme_ring_cq_doorbell(nvmeq);
1074 return found;
1075 }
1076
nvme_irq(int irq,void * data)1077 static irqreturn_t nvme_irq(int irq, void *data)
1078 {
1079 struct nvme_queue *nvmeq = data;
1080 DEFINE_IO_COMP_BATCH(iob);
1081
1082 if (nvme_poll_cq(nvmeq, &iob)) {
1083 if (!rq_list_empty(iob.req_list))
1084 nvme_pci_complete_batch(&iob);
1085 return IRQ_HANDLED;
1086 }
1087 return IRQ_NONE;
1088 }
1089
nvme_irq_check(int irq,void * data)1090 static irqreturn_t nvme_irq_check(int irq, void *data)
1091 {
1092 struct nvme_queue *nvmeq = data;
1093
1094 if (nvme_cqe_pending(nvmeq))
1095 return IRQ_WAKE_THREAD;
1096 return IRQ_NONE;
1097 }
1098
1099 /*
1100 * Poll for completions for any interrupt driven queue
1101 * Can be called from any context.
1102 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1103 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1104 {
1105 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1106
1107 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1108
1109 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1110 nvme_poll_cq(nvmeq, NULL);
1111 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 }
1113
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1114 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1115 {
1116 struct nvme_queue *nvmeq = hctx->driver_data;
1117 bool found;
1118
1119 if (!nvme_cqe_pending(nvmeq))
1120 return 0;
1121
1122 spin_lock(&nvmeq->cq_poll_lock);
1123 found = nvme_poll_cq(nvmeq, iob);
1124 spin_unlock(&nvmeq->cq_poll_lock);
1125
1126 return found;
1127 }
1128
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1129 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1130 {
1131 struct nvme_dev *dev = to_nvme_dev(ctrl);
1132 struct nvme_queue *nvmeq = &dev->queues[0];
1133 struct nvme_command c = { };
1134
1135 c.common.opcode = nvme_admin_async_event;
1136 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137
1138 spin_lock(&nvmeq->sq_lock);
1139 nvme_sq_copy_cmd(nvmeq, &c);
1140 nvme_write_sq_db(nvmeq, true);
1141 spin_unlock(&nvmeq->sq_lock);
1142 }
1143
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1144 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1145 {
1146 struct nvme_command c = { };
1147
1148 c.delete_queue.opcode = opcode;
1149 c.delete_queue.qid = cpu_to_le16(id);
1150
1151 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1152 }
1153
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1154 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1155 struct nvme_queue *nvmeq, s16 vector)
1156 {
1157 struct nvme_command c = { };
1158 int flags = NVME_QUEUE_PHYS_CONTIG;
1159
1160 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1161 flags |= NVME_CQ_IRQ_ENABLED;
1162
1163 /*
1164 * Note: we (ab)use the fact that the prp fields survive if no data
1165 * is attached to the request.
1166 */
1167 c.create_cq.opcode = nvme_admin_create_cq;
1168 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1169 c.create_cq.cqid = cpu_to_le16(qid);
1170 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1171 c.create_cq.cq_flags = cpu_to_le16(flags);
1172 c.create_cq.irq_vector = cpu_to_le16(vector);
1173
1174 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1175 }
1176
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1177 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1178 struct nvme_queue *nvmeq)
1179 {
1180 struct nvme_ctrl *ctrl = &dev->ctrl;
1181 struct nvme_command c = { };
1182 int flags = NVME_QUEUE_PHYS_CONTIG;
1183
1184 /*
1185 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1186 * set. Since URGENT priority is zeroes, it makes all queues
1187 * URGENT.
1188 */
1189 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1190 flags |= NVME_SQ_PRIO_MEDIUM;
1191
1192 /*
1193 * Note: we (ab)use the fact that the prp fields survive if no data
1194 * is attached to the request.
1195 */
1196 c.create_sq.opcode = nvme_admin_create_sq;
1197 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1198 c.create_sq.sqid = cpu_to_le16(qid);
1199 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1200 c.create_sq.sq_flags = cpu_to_le16(flags);
1201 c.create_sq.cqid = cpu_to_le16(qid);
1202
1203 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1204 }
1205
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1206 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1207 {
1208 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1209 }
1210
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1211 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1212 {
1213 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1214 }
1215
abort_endio(struct request * req,blk_status_t error)1216 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1217 {
1218 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1219
1220 dev_warn(nvmeq->dev->ctrl.device,
1221 "Abort status: 0x%x", nvme_req(req)->status);
1222 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1223 blk_mq_free_request(req);
1224 return RQ_END_IO_NONE;
1225 }
1226
nvme_should_reset(struct nvme_dev * dev,u32 csts)1227 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1228 {
1229 /* If true, indicates loss of adapter communication, possibly by a
1230 * NVMe Subsystem reset.
1231 */
1232 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1233
1234 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1235 switch (nvme_ctrl_state(&dev->ctrl)) {
1236 case NVME_CTRL_RESETTING:
1237 case NVME_CTRL_CONNECTING:
1238 return false;
1239 default:
1240 break;
1241 }
1242
1243 /* We shouldn't reset unless the controller is on fatal error state
1244 * _or_ if we lost the communication with it.
1245 */
1246 if (!(csts & NVME_CSTS_CFS) && !nssro)
1247 return false;
1248
1249 return true;
1250 }
1251
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254 /* Read a config register to help see what died. */
1255 u16 pci_status;
1256 int result;
1257
1258 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1259 &pci_status);
1260 if (result == PCIBIOS_SUCCESSFUL)
1261 dev_warn(dev->ctrl.device,
1262 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1263 csts, pci_status);
1264 else
1265 dev_warn(dev->ctrl.device,
1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267 csts, result);
1268
1269 if (csts != ~0)
1270 return;
1271
1272 dev_warn(dev->ctrl.device,
1273 "Does your device have a faulty power saving mode enabled?\n");
1274 dev_warn(dev->ctrl.device,
1275 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1276 }
1277
nvme_timeout(struct request * req)1278 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1279 {
1280 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1281 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1282 struct nvme_dev *dev = nvmeq->dev;
1283 struct request *abort_req;
1284 struct nvme_command cmd = { };
1285 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1286
1287 if (nvme_state_terminal(&dev->ctrl))
1288 goto disable;
1289
1290 /* If PCI error recovery process is happening, we cannot reset or
1291 * the recovery mechanism will surely fail.
1292 */
1293 mb();
1294 if (pci_channel_offline(to_pci_dev(dev->dev)))
1295 return BLK_EH_RESET_TIMER;
1296
1297 /*
1298 * Reset immediately if the controller is failed
1299 */
1300 if (nvme_should_reset(dev, csts)) {
1301 nvme_warn_reset(dev, csts);
1302 goto disable;
1303 }
1304
1305 /*
1306 * Did we miss an interrupt?
1307 */
1308 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1309 nvme_poll(req->mq_hctx, NULL);
1310 else
1311 nvme_poll_irqdisable(nvmeq);
1312
1313 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1314 dev_warn(dev->ctrl.device,
1315 "I/O %d QID %d timeout, completion polled\n",
1316 req->tag, nvmeq->qid);
1317 return BLK_EH_DONE;
1318 }
1319
1320 /*
1321 * Shutdown immediately if controller times out while starting. The
1322 * reset work will see the pci device disabled when it gets the forced
1323 * cancellation error. All outstanding requests are completed on
1324 * shutdown, so we return BLK_EH_DONE.
1325 */
1326 switch (nvme_ctrl_state(&dev->ctrl)) {
1327 case NVME_CTRL_CONNECTING:
1328 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1329 fallthrough;
1330 case NVME_CTRL_DELETING:
1331 dev_warn_ratelimited(dev->ctrl.device,
1332 "I/O %d QID %d timeout, disable controller\n",
1333 req->tag, nvmeq->qid);
1334 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1335 nvme_dev_disable(dev, true);
1336 return BLK_EH_DONE;
1337 case NVME_CTRL_RESETTING:
1338 return BLK_EH_RESET_TIMER;
1339 default:
1340 break;
1341 }
1342
1343 /*
1344 * Shutdown the controller immediately and schedule a reset if the
1345 * command was already aborted once before and still hasn't been
1346 * returned to the driver, or if this is the admin queue.
1347 */
1348 if (!nvmeq->qid || iod->aborted) {
1349 dev_warn(dev->ctrl.device,
1350 "I/O %d QID %d timeout, reset controller\n",
1351 req->tag, nvmeq->qid);
1352 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1353 goto disable;
1354 }
1355
1356 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1357 atomic_inc(&dev->ctrl.abort_limit);
1358 return BLK_EH_RESET_TIMER;
1359 }
1360 iod->aborted = true;
1361
1362 cmd.abort.opcode = nvme_admin_abort_cmd;
1363 cmd.abort.cid = nvme_cid(req);
1364 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1365
1366 dev_warn(nvmeq->dev->ctrl.device,
1367 "I/O %d (%s) QID %d timeout, aborting\n",
1368 req->tag,
1369 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1370 nvmeq->qid);
1371
1372 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1373 BLK_MQ_REQ_NOWAIT);
1374 if (IS_ERR(abort_req)) {
1375 atomic_inc(&dev->ctrl.abort_limit);
1376 return BLK_EH_RESET_TIMER;
1377 }
1378 nvme_init_request(abort_req, &cmd);
1379
1380 abort_req->end_io = abort_endio;
1381 abort_req->end_io_data = NULL;
1382 blk_execute_rq_nowait(abort_req, false);
1383
1384 /*
1385 * The aborted req will be completed on receiving the abort req.
1386 * We enable the timer again. If hit twice, it'll cause a device reset,
1387 * as the device then is in a faulty state.
1388 */
1389 return BLK_EH_RESET_TIMER;
1390
1391 disable:
1392 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1393 if (nvme_state_terminal(&dev->ctrl))
1394 nvme_dev_disable(dev, true);
1395 return BLK_EH_DONE;
1396 }
1397
1398 nvme_dev_disable(dev, false);
1399 if (nvme_try_sched_reset(&dev->ctrl))
1400 nvme_unquiesce_io_queues(&dev->ctrl);
1401 return BLK_EH_DONE;
1402 }
1403
nvme_free_queue(struct nvme_queue * nvmeq)1404 static void nvme_free_queue(struct nvme_queue *nvmeq)
1405 {
1406 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1407 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1408 if (!nvmeq->sq_cmds)
1409 return;
1410
1411 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1412 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1413 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1414 } else {
1415 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1416 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1417 }
1418 }
1419
nvme_free_queues(struct nvme_dev * dev,int lowest)1420 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1421 {
1422 int i;
1423
1424 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1425 dev->ctrl.queue_count--;
1426 nvme_free_queue(&dev->queues[i]);
1427 }
1428 }
1429
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1430 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1431 {
1432 struct nvme_queue *nvmeq = &dev->queues[qid];
1433
1434 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1435 return;
1436
1437 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1438 mb();
1439
1440 nvmeq->dev->online_queues--;
1441 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1442 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1443 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1444 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1445 }
1446
nvme_suspend_io_queues(struct nvme_dev * dev)1447 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1448 {
1449 int i;
1450
1451 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1452 nvme_suspend_queue(dev, i);
1453 }
1454
1455 /*
1456 * Called only on a device that has been disabled and after all other threads
1457 * that can check this device's completion queues have synced, except
1458 * nvme_poll(). This is the last chance for the driver to see a natural
1459 * completion before nvme_cancel_request() terminates all incomplete requests.
1460 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1461 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1462 {
1463 int i;
1464
1465 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1466 spin_lock(&dev->queues[i].cq_poll_lock);
1467 nvme_poll_cq(&dev->queues[i], NULL);
1468 spin_unlock(&dev->queues[i].cq_poll_lock);
1469 }
1470 }
1471
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1472 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1473 int entry_size)
1474 {
1475 int q_depth = dev->q_depth;
1476 unsigned q_size_aligned = roundup(q_depth * entry_size,
1477 NVME_CTRL_PAGE_SIZE);
1478
1479 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1480 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1481
1482 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1483 q_depth = div_u64(mem_per_q, entry_size);
1484
1485 /*
1486 * Ensure the reduced q_depth is above some threshold where it
1487 * would be better to map queues in system memory with the
1488 * original depth
1489 */
1490 if (q_depth < 64)
1491 return -ENOMEM;
1492 }
1493
1494 return q_depth;
1495 }
1496
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1497 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1498 int qid)
1499 {
1500 struct pci_dev *pdev = to_pci_dev(dev->dev);
1501
1502 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1503 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1504 if (nvmeq->sq_cmds) {
1505 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1506 nvmeq->sq_cmds);
1507 if (nvmeq->sq_dma_addr) {
1508 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1509 return 0;
1510 }
1511
1512 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1513 }
1514 }
1515
1516 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1517 &nvmeq->sq_dma_addr, GFP_KERNEL);
1518 if (!nvmeq->sq_cmds)
1519 return -ENOMEM;
1520 return 0;
1521 }
1522
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1523 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1524 {
1525 struct nvme_queue *nvmeq = &dev->queues[qid];
1526
1527 if (dev->ctrl.queue_count > qid)
1528 return 0;
1529
1530 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1531 nvmeq->q_depth = depth;
1532 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1533 &nvmeq->cq_dma_addr, GFP_KERNEL);
1534 if (!nvmeq->cqes)
1535 goto free_nvmeq;
1536
1537 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1538 goto free_cqdma;
1539
1540 nvmeq->dev = dev;
1541 spin_lock_init(&nvmeq->sq_lock);
1542 spin_lock_init(&nvmeq->cq_poll_lock);
1543 nvmeq->cq_head = 0;
1544 nvmeq->cq_phase = 1;
1545 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1546 nvmeq->qid = qid;
1547 dev->ctrl.queue_count++;
1548
1549 return 0;
1550
1551 free_cqdma:
1552 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1553 nvmeq->cq_dma_addr);
1554 free_nvmeq:
1555 return -ENOMEM;
1556 }
1557
queue_request_irq(struct nvme_queue * nvmeq)1558 static int queue_request_irq(struct nvme_queue *nvmeq)
1559 {
1560 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1561 int nr = nvmeq->dev->ctrl.instance;
1562
1563 if (use_threaded_interrupts) {
1564 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1565 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1566 } else {
1567 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1568 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1569 }
1570 }
1571
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1572 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1573 {
1574 struct nvme_dev *dev = nvmeq->dev;
1575
1576 nvmeq->sq_tail = 0;
1577 nvmeq->last_sq_tail = 0;
1578 nvmeq->cq_head = 0;
1579 nvmeq->cq_phase = 1;
1580 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1581 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1582 nvme_dbbuf_init(dev, nvmeq, qid);
1583 dev->online_queues++;
1584 wmb(); /* ensure the first interrupt sees the initialization */
1585 }
1586
1587 /*
1588 * Try getting shutdown_lock while setting up IO queues.
1589 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1590 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1591 {
1592 /*
1593 * Give up if the lock is being held by nvme_dev_disable.
1594 */
1595 if (!mutex_trylock(&dev->shutdown_lock))
1596 return -ENODEV;
1597
1598 /*
1599 * Controller is in wrong state, fail early.
1600 */
1601 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1602 mutex_unlock(&dev->shutdown_lock);
1603 return -ENODEV;
1604 }
1605
1606 return 0;
1607 }
1608
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1609 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1610 {
1611 struct nvme_dev *dev = nvmeq->dev;
1612 int result;
1613 u16 vector = 0;
1614
1615 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1616
1617 /*
1618 * A queue's vector matches the queue identifier unless the controller
1619 * has only one vector available.
1620 */
1621 if (!polled)
1622 vector = dev->num_vecs == 1 ? 0 : qid;
1623 else
1624 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1625
1626 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1627 if (result)
1628 return result;
1629
1630 result = adapter_alloc_sq(dev, qid, nvmeq);
1631 if (result < 0)
1632 return result;
1633 if (result)
1634 goto release_cq;
1635
1636 nvmeq->cq_vector = vector;
1637
1638 result = nvme_setup_io_queues_trylock(dev);
1639 if (result)
1640 return result;
1641 nvme_init_queue(nvmeq, qid);
1642 if (!polled) {
1643 result = queue_request_irq(nvmeq);
1644 if (result < 0)
1645 goto release_sq;
1646 }
1647
1648 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1649 mutex_unlock(&dev->shutdown_lock);
1650 return result;
1651
1652 release_sq:
1653 dev->online_queues--;
1654 mutex_unlock(&dev->shutdown_lock);
1655 adapter_delete_sq(dev, qid);
1656 release_cq:
1657 adapter_delete_cq(dev, qid);
1658 return result;
1659 }
1660
1661 static const struct blk_mq_ops nvme_mq_admin_ops = {
1662 .queue_rq = nvme_queue_rq,
1663 .complete = nvme_pci_complete_rq,
1664 .init_hctx = nvme_admin_init_hctx,
1665 .init_request = nvme_pci_init_request,
1666 .timeout = nvme_timeout,
1667 };
1668
1669 static const struct blk_mq_ops nvme_mq_ops = {
1670 .queue_rq = nvme_queue_rq,
1671 .queue_rqs = nvme_queue_rqs,
1672 .complete = nvme_pci_complete_rq,
1673 .commit_rqs = nvme_commit_rqs,
1674 .init_hctx = nvme_init_hctx,
1675 .init_request = nvme_pci_init_request,
1676 .map_queues = nvme_pci_map_queues,
1677 .timeout = nvme_timeout,
1678 .poll = nvme_poll,
1679 };
1680
nvme_dev_remove_admin(struct nvme_dev * dev)1681 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1682 {
1683 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1684 /*
1685 * If the controller was reset during removal, it's possible
1686 * user requests may be waiting on a stopped queue. Start the
1687 * queue to flush these to completion.
1688 */
1689 nvme_unquiesce_admin_queue(&dev->ctrl);
1690 nvme_remove_admin_tag_set(&dev->ctrl);
1691 }
1692 }
1693
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1694 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1695 {
1696 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1697 }
1698
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1699 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1700 {
1701 struct pci_dev *pdev = to_pci_dev(dev->dev);
1702
1703 if (size <= dev->bar_mapped_size)
1704 return 0;
1705 if (size > pci_resource_len(pdev, 0))
1706 return -ENOMEM;
1707 if (dev->bar)
1708 iounmap(dev->bar);
1709 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1710 if (!dev->bar) {
1711 dev->bar_mapped_size = 0;
1712 return -ENOMEM;
1713 }
1714 dev->bar_mapped_size = size;
1715 dev->dbs = dev->bar + NVME_REG_DBS;
1716
1717 return 0;
1718 }
1719
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1720 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1721 {
1722 int result;
1723 u32 aqa;
1724 struct nvme_queue *nvmeq;
1725
1726 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1727 if (result < 0)
1728 return result;
1729
1730 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1731 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1732
1733 if (dev->subsystem &&
1734 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1735 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1736
1737 /*
1738 * If the device has been passed off to us in an enabled state, just
1739 * clear the enabled bit. The spec says we should set the 'shutdown
1740 * notification bits', but doing so may cause the device to complete
1741 * commands to the admin queue ... and we don't know what memory that
1742 * might be pointing at!
1743 */
1744 result = nvme_disable_ctrl(&dev->ctrl, false);
1745 if (result < 0)
1746 return result;
1747
1748 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1749 if (result)
1750 return result;
1751
1752 dev->ctrl.numa_node = dev_to_node(dev->dev);
1753
1754 nvmeq = &dev->queues[0];
1755 aqa = nvmeq->q_depth - 1;
1756 aqa |= aqa << 16;
1757
1758 writel(aqa, dev->bar + NVME_REG_AQA);
1759 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1760 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1761
1762 result = nvme_enable_ctrl(&dev->ctrl);
1763 if (result)
1764 return result;
1765
1766 nvmeq->cq_vector = 0;
1767 nvme_init_queue(nvmeq, 0);
1768 result = queue_request_irq(nvmeq);
1769 if (result) {
1770 dev->online_queues--;
1771 return result;
1772 }
1773
1774 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1775 return result;
1776 }
1777
nvme_create_io_queues(struct nvme_dev * dev)1778 static int nvme_create_io_queues(struct nvme_dev *dev)
1779 {
1780 unsigned i, max, rw_queues;
1781 int ret = 0;
1782
1783 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1784 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1785 ret = -ENOMEM;
1786 break;
1787 }
1788 }
1789
1790 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1791 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1792 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1793 dev->io_queues[HCTX_TYPE_READ];
1794 } else {
1795 rw_queues = max;
1796 }
1797
1798 for (i = dev->online_queues; i <= max; i++) {
1799 bool polled = i > rw_queues;
1800
1801 ret = nvme_create_queue(&dev->queues[i], i, polled);
1802 if (ret)
1803 break;
1804 }
1805
1806 /*
1807 * Ignore failing Create SQ/CQ commands, we can continue with less
1808 * than the desired amount of queues, and even a controller without
1809 * I/O queues can still be used to issue admin commands. This might
1810 * be useful to upgrade a buggy firmware for example.
1811 */
1812 return ret >= 0 ? 0 : ret;
1813 }
1814
nvme_cmb_size_unit(struct nvme_dev * dev)1815 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1816 {
1817 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1818
1819 return 1ULL << (12 + 4 * szu);
1820 }
1821
nvme_cmb_size(struct nvme_dev * dev)1822 static u32 nvme_cmb_size(struct nvme_dev *dev)
1823 {
1824 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1825 }
1826
nvme_map_cmb(struct nvme_dev * dev)1827 static void nvme_map_cmb(struct nvme_dev *dev)
1828 {
1829 u64 size, offset;
1830 resource_size_t bar_size;
1831 struct pci_dev *pdev = to_pci_dev(dev->dev);
1832 int bar;
1833
1834 if (dev->cmb_size)
1835 return;
1836
1837 if (NVME_CAP_CMBS(dev->ctrl.cap))
1838 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1839
1840 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1841 if (!dev->cmbsz)
1842 return;
1843 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1844
1845 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1846 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1847 bar = NVME_CMB_BIR(dev->cmbloc);
1848 bar_size = pci_resource_len(pdev, bar);
1849
1850 if (offset > bar_size)
1851 return;
1852
1853 /*
1854 * Tell the controller about the host side address mapping the CMB,
1855 * and enable CMB decoding for the NVMe 1.4+ scheme:
1856 */
1857 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1858 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1859 (pci_bus_address(pdev, bar) + offset),
1860 dev->bar + NVME_REG_CMBMSC);
1861 }
1862
1863 /*
1864 * Controllers may support a CMB size larger than their BAR,
1865 * for example, due to being behind a bridge. Reduce the CMB to
1866 * the reported size of the BAR
1867 */
1868 if (size > bar_size - offset)
1869 size = bar_size - offset;
1870
1871 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1872 dev_warn(dev->ctrl.device,
1873 "failed to register the CMB\n");
1874 return;
1875 }
1876
1877 dev->cmb_size = size;
1878 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1879
1880 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1881 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1882 pci_p2pmem_publish(pdev, true);
1883
1884 nvme_update_attrs(dev);
1885 }
1886
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1887 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1888 {
1889 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1890 u64 dma_addr = dev->host_mem_descs_dma;
1891 struct nvme_command c = { };
1892 int ret;
1893
1894 c.features.opcode = nvme_admin_set_features;
1895 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1896 c.features.dword11 = cpu_to_le32(bits);
1897 c.features.dword12 = cpu_to_le32(host_mem_size);
1898 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1899 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1900 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1901
1902 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1903 if (ret) {
1904 dev_warn(dev->ctrl.device,
1905 "failed to set host mem (err %d, flags %#x).\n",
1906 ret, bits);
1907 } else
1908 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1909
1910 return ret;
1911 }
1912
nvme_free_host_mem(struct nvme_dev * dev)1913 static void nvme_free_host_mem(struct nvme_dev *dev)
1914 {
1915 int i;
1916
1917 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1918 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1919 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1920
1921 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1922 le64_to_cpu(desc->addr),
1923 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1924 }
1925
1926 kfree(dev->host_mem_desc_bufs);
1927 dev->host_mem_desc_bufs = NULL;
1928 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1929 dev->host_mem_descs, dev->host_mem_descs_dma);
1930 dev->host_mem_descs = NULL;
1931 dev->host_mem_descs_size = 0;
1932 dev->nr_host_mem_descs = 0;
1933 }
1934
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1935 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1936 u32 chunk_size)
1937 {
1938 struct nvme_host_mem_buf_desc *descs;
1939 u32 max_entries, len, descs_size;
1940 dma_addr_t descs_dma;
1941 int i = 0;
1942 void **bufs;
1943 u64 size, tmp;
1944
1945 tmp = (preferred + chunk_size - 1);
1946 do_div(tmp, chunk_size);
1947 max_entries = tmp;
1948
1949 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1950 max_entries = dev->ctrl.hmmaxd;
1951
1952 descs_size = max_entries * sizeof(*descs);
1953 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1954 GFP_KERNEL);
1955 if (!descs)
1956 goto out;
1957
1958 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1959 if (!bufs)
1960 goto out_free_descs;
1961
1962 for (size = 0; size < preferred && i < max_entries; size += len) {
1963 dma_addr_t dma_addr;
1964
1965 len = min_t(u64, chunk_size, preferred - size);
1966 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1967 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 if (!bufs[i])
1969 break;
1970
1971 descs[i].addr = cpu_to_le64(dma_addr);
1972 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1973 i++;
1974 }
1975
1976 if (!size)
1977 goto out_free_bufs;
1978
1979 dev->nr_host_mem_descs = i;
1980 dev->host_mem_size = size;
1981 dev->host_mem_descs = descs;
1982 dev->host_mem_descs_dma = descs_dma;
1983 dev->host_mem_descs_size = descs_size;
1984 dev->host_mem_desc_bufs = bufs;
1985 return 0;
1986
1987 out_free_bufs:
1988 while (--i >= 0) {
1989 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1990
1991 dma_free_attrs(dev->dev, size, bufs[i],
1992 le64_to_cpu(descs[i].addr),
1993 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1994 }
1995
1996 kfree(bufs);
1997 out_free_descs:
1998 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
1999 out:
2000 dev->host_mem_descs = NULL;
2001 return -ENOMEM;
2002 }
2003
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2004 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2005 {
2006 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2007 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2008 u64 chunk_size;
2009
2010 /* start big and work our way down */
2011 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2012 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2013 if (!min || dev->host_mem_size >= min)
2014 return 0;
2015 nvme_free_host_mem(dev);
2016 }
2017 }
2018
2019 return -ENOMEM;
2020 }
2021
nvme_setup_host_mem(struct nvme_dev * dev)2022 static int nvme_setup_host_mem(struct nvme_dev *dev)
2023 {
2024 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2025 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2026 u64 min = (u64)dev->ctrl.hmmin * 4096;
2027 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2028 int ret;
2029
2030 if (!dev->ctrl.hmpre)
2031 return 0;
2032
2033 preferred = min(preferred, max);
2034 if (min > max) {
2035 dev_warn(dev->ctrl.device,
2036 "min host memory (%lld MiB) above limit (%d MiB).\n",
2037 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2038 nvme_free_host_mem(dev);
2039 return 0;
2040 }
2041
2042 /*
2043 * If we already have a buffer allocated check if we can reuse it.
2044 */
2045 if (dev->host_mem_descs) {
2046 if (dev->host_mem_size >= min)
2047 enable_bits |= NVME_HOST_MEM_RETURN;
2048 else
2049 nvme_free_host_mem(dev);
2050 }
2051
2052 if (!dev->host_mem_descs) {
2053 if (nvme_alloc_host_mem(dev, min, preferred)) {
2054 dev_warn(dev->ctrl.device,
2055 "failed to allocate host memory buffer.\n");
2056 return 0; /* controller must work without HMB */
2057 }
2058
2059 dev_info(dev->ctrl.device,
2060 "allocated %lld MiB host memory buffer.\n",
2061 dev->host_mem_size >> ilog2(SZ_1M));
2062 }
2063
2064 ret = nvme_set_host_mem(dev, enable_bits);
2065 if (ret)
2066 nvme_free_host_mem(dev);
2067 return ret;
2068 }
2069
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2070 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2071 char *buf)
2072 {
2073 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2074
2075 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2076 ndev->cmbloc, ndev->cmbsz);
2077 }
2078 static DEVICE_ATTR_RO(cmb);
2079
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2080 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2081 char *buf)
2082 {
2083 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2084
2085 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2086 }
2087 static DEVICE_ATTR_RO(cmbloc);
2088
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2089 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2090 char *buf)
2091 {
2092 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2093
2094 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2095 }
2096 static DEVICE_ATTR_RO(cmbsz);
2097
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2098 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2099 char *buf)
2100 {
2101 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2102
2103 return sysfs_emit(buf, "%d\n", ndev->hmb);
2104 }
2105
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2106 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2107 const char *buf, size_t count)
2108 {
2109 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2110 bool new;
2111 int ret;
2112
2113 if (kstrtobool(buf, &new) < 0)
2114 return -EINVAL;
2115
2116 if (new == ndev->hmb)
2117 return count;
2118
2119 if (new) {
2120 ret = nvme_setup_host_mem(ndev);
2121 } else {
2122 ret = nvme_set_host_mem(ndev, 0);
2123 if (!ret)
2124 nvme_free_host_mem(ndev);
2125 }
2126
2127 if (ret < 0)
2128 return ret;
2129
2130 return count;
2131 }
2132 static DEVICE_ATTR_RW(hmb);
2133
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2134 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2135 struct attribute *a, int n)
2136 {
2137 struct nvme_ctrl *ctrl =
2138 dev_get_drvdata(container_of(kobj, struct device, kobj));
2139 struct nvme_dev *dev = to_nvme_dev(ctrl);
2140
2141 if (a == &dev_attr_cmb.attr ||
2142 a == &dev_attr_cmbloc.attr ||
2143 a == &dev_attr_cmbsz.attr) {
2144 if (!dev->cmbsz)
2145 return 0;
2146 }
2147 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2148 return 0;
2149
2150 return a->mode;
2151 }
2152
2153 static struct attribute *nvme_pci_attrs[] = {
2154 &dev_attr_cmb.attr,
2155 &dev_attr_cmbloc.attr,
2156 &dev_attr_cmbsz.attr,
2157 &dev_attr_hmb.attr,
2158 NULL,
2159 };
2160
2161 static const struct attribute_group nvme_pci_dev_attrs_group = {
2162 .attrs = nvme_pci_attrs,
2163 .is_visible = nvme_pci_attrs_are_visible,
2164 };
2165
2166 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2167 &nvme_dev_attrs_group,
2168 &nvme_pci_dev_attrs_group,
2169 NULL,
2170 };
2171
nvme_update_attrs(struct nvme_dev * dev)2172 static void nvme_update_attrs(struct nvme_dev *dev)
2173 {
2174 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2175 }
2176
2177 /*
2178 * nirqs is the number of interrupts available for write and read
2179 * queues. The core already reserved an interrupt for the admin queue.
2180 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2181 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2182 {
2183 struct nvme_dev *dev = affd->priv;
2184 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2185
2186 /*
2187 * If there is no interrupt available for queues, ensure that
2188 * the default queue is set to 1. The affinity set size is
2189 * also set to one, but the irq core ignores it for this case.
2190 *
2191 * If only one interrupt is available or 'write_queue' == 0, combine
2192 * write and read queues.
2193 *
2194 * If 'write_queues' > 0, ensure it leaves room for at least one read
2195 * queue.
2196 */
2197 if (!nrirqs) {
2198 nrirqs = 1;
2199 nr_read_queues = 0;
2200 } else if (nrirqs == 1 || !nr_write_queues) {
2201 nr_read_queues = 0;
2202 } else if (nr_write_queues >= nrirqs) {
2203 nr_read_queues = 1;
2204 } else {
2205 nr_read_queues = nrirqs - nr_write_queues;
2206 }
2207
2208 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2209 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2210 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2211 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2212 affd->nr_sets = nr_read_queues ? 2 : 1;
2213 }
2214
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2215 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2216 {
2217 struct pci_dev *pdev = to_pci_dev(dev->dev);
2218 struct irq_affinity affd = {
2219 .pre_vectors = 1,
2220 .calc_sets = nvme_calc_irq_sets,
2221 .priv = dev,
2222 };
2223 unsigned int irq_queues, poll_queues;
2224 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2225
2226 /*
2227 * Poll queues don't need interrupts, but we need at least one I/O queue
2228 * left over for non-polled I/O.
2229 */
2230 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2231 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2232
2233 /*
2234 * Initialize for the single interrupt case, will be updated in
2235 * nvme_calc_irq_sets().
2236 */
2237 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2238 dev->io_queues[HCTX_TYPE_READ] = 0;
2239
2240 /*
2241 * We need interrupts for the admin queue and each non-polled I/O queue,
2242 * but some Apple controllers require all queues to use the first
2243 * vector.
2244 */
2245 irq_queues = 1;
2246 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2247 irq_queues += (nr_io_queues - poll_queues);
2248 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2249 flags &= ~PCI_IRQ_MSI;
2250 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2251 &affd);
2252 }
2253
nvme_max_io_queues(struct nvme_dev * dev)2254 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2255 {
2256 /*
2257 * If tags are shared with admin queue (Apple bug), then
2258 * make sure we only use one IO queue.
2259 */
2260 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2261 return 1;
2262 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2263 }
2264
nvme_setup_io_queues(struct nvme_dev * dev)2265 static int nvme_setup_io_queues(struct nvme_dev *dev)
2266 {
2267 struct nvme_queue *adminq = &dev->queues[0];
2268 struct pci_dev *pdev = to_pci_dev(dev->dev);
2269 unsigned int nr_io_queues;
2270 unsigned long size;
2271 int result;
2272
2273 /*
2274 * Sample the module parameters once at reset time so that we have
2275 * stable values to work with.
2276 */
2277 dev->nr_write_queues = write_queues;
2278 dev->nr_poll_queues = poll_queues;
2279
2280 nr_io_queues = dev->nr_allocated_queues - 1;
2281 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2282 if (result < 0)
2283 return result;
2284
2285 if (nr_io_queues == 0)
2286 return 0;
2287
2288 /*
2289 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2290 * from set to unset. If there is a window to it is truely freed,
2291 * pci_free_irq_vectors() jumping into this window will crash.
2292 * And take lock to avoid racing with pci_free_irq_vectors() in
2293 * nvme_dev_disable() path.
2294 */
2295 result = nvme_setup_io_queues_trylock(dev);
2296 if (result)
2297 return result;
2298 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2299 pci_free_irq(pdev, 0, adminq);
2300
2301 if (dev->cmb_use_sqes) {
2302 result = nvme_cmb_qdepth(dev, nr_io_queues,
2303 sizeof(struct nvme_command));
2304 if (result > 0) {
2305 dev->q_depth = result;
2306 dev->ctrl.sqsize = result - 1;
2307 } else {
2308 dev->cmb_use_sqes = false;
2309 }
2310 }
2311
2312 do {
2313 size = db_bar_size(dev, nr_io_queues);
2314 result = nvme_remap_bar(dev, size);
2315 if (!result)
2316 break;
2317 if (!--nr_io_queues) {
2318 result = -ENOMEM;
2319 goto out_unlock;
2320 }
2321 } while (1);
2322 adminq->q_db = dev->dbs;
2323
2324 retry:
2325 /* Deregister the admin queue's interrupt */
2326 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2327 pci_free_irq(pdev, 0, adminq);
2328
2329 /*
2330 * If we enable msix early due to not intx, disable it again before
2331 * setting up the full range we need.
2332 */
2333 pci_free_irq_vectors(pdev);
2334
2335 result = nvme_setup_irqs(dev, nr_io_queues);
2336 if (result <= 0) {
2337 result = -EIO;
2338 goto out_unlock;
2339 }
2340
2341 dev->num_vecs = result;
2342 result = max(result - 1, 1);
2343 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2344
2345 /*
2346 * Should investigate if there's a performance win from allocating
2347 * more queues than interrupt vectors; it might allow the submission
2348 * path to scale better, even if the receive path is limited by the
2349 * number of interrupts.
2350 */
2351 result = queue_request_irq(adminq);
2352 if (result)
2353 goto out_unlock;
2354 set_bit(NVMEQ_ENABLED, &adminq->flags);
2355 mutex_unlock(&dev->shutdown_lock);
2356
2357 result = nvme_create_io_queues(dev);
2358 if (result || dev->online_queues < 2)
2359 return result;
2360
2361 if (dev->online_queues - 1 < dev->max_qid) {
2362 nr_io_queues = dev->online_queues - 1;
2363 nvme_delete_io_queues(dev);
2364 result = nvme_setup_io_queues_trylock(dev);
2365 if (result)
2366 return result;
2367 nvme_suspend_io_queues(dev);
2368 goto retry;
2369 }
2370 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2371 dev->io_queues[HCTX_TYPE_DEFAULT],
2372 dev->io_queues[HCTX_TYPE_READ],
2373 dev->io_queues[HCTX_TYPE_POLL]);
2374 return 0;
2375 out_unlock:
2376 mutex_unlock(&dev->shutdown_lock);
2377 return result;
2378 }
2379
nvme_del_queue_end(struct request * req,blk_status_t error)2380 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2381 blk_status_t error)
2382 {
2383 struct nvme_queue *nvmeq = req->end_io_data;
2384
2385 blk_mq_free_request(req);
2386 complete(&nvmeq->delete_done);
2387 return RQ_END_IO_NONE;
2388 }
2389
nvme_del_cq_end(struct request * req,blk_status_t error)2390 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2391 blk_status_t error)
2392 {
2393 struct nvme_queue *nvmeq = req->end_io_data;
2394
2395 if (error)
2396 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2397
2398 return nvme_del_queue_end(req, error);
2399 }
2400
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2401 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2402 {
2403 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2404 struct request *req;
2405 struct nvme_command cmd = { };
2406
2407 cmd.delete_queue.opcode = opcode;
2408 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2409
2410 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2411 if (IS_ERR(req))
2412 return PTR_ERR(req);
2413 nvme_init_request(req, &cmd);
2414
2415 if (opcode == nvme_admin_delete_cq)
2416 req->end_io = nvme_del_cq_end;
2417 else
2418 req->end_io = nvme_del_queue_end;
2419 req->end_io_data = nvmeq;
2420
2421 init_completion(&nvmeq->delete_done);
2422 blk_execute_rq_nowait(req, false);
2423 return 0;
2424 }
2425
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2426 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2427 {
2428 int nr_queues = dev->online_queues - 1, sent = 0;
2429 unsigned long timeout;
2430
2431 retry:
2432 timeout = NVME_ADMIN_TIMEOUT;
2433 while (nr_queues > 0) {
2434 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2435 break;
2436 nr_queues--;
2437 sent++;
2438 }
2439 while (sent) {
2440 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2441
2442 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2443 timeout);
2444 if (timeout == 0)
2445 return false;
2446
2447 sent--;
2448 if (nr_queues)
2449 goto retry;
2450 }
2451 return true;
2452 }
2453
nvme_delete_io_queues(struct nvme_dev * dev)2454 static void nvme_delete_io_queues(struct nvme_dev *dev)
2455 {
2456 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2457 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2458 }
2459
nvme_pci_nr_maps(struct nvme_dev * dev)2460 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2461 {
2462 if (dev->io_queues[HCTX_TYPE_POLL])
2463 return 3;
2464 if (dev->io_queues[HCTX_TYPE_READ])
2465 return 2;
2466 return 1;
2467 }
2468
nvme_pci_update_nr_queues(struct nvme_dev * dev)2469 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2470 {
2471 if (!dev->ctrl.tagset) {
2472 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2473 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2474 return true;
2475 }
2476
2477 /* Give up if we are racing with nvme_dev_disable() */
2478 if (!mutex_trylock(&dev->shutdown_lock))
2479 return false;
2480
2481 /* Check if nvme_dev_disable() has been executed already */
2482 if (!dev->online_queues) {
2483 mutex_unlock(&dev->shutdown_lock);
2484 return false;
2485 }
2486
2487 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2488 /* free previously allocated queues that are no longer usable */
2489 nvme_free_queues(dev, dev->online_queues);
2490 mutex_unlock(&dev->shutdown_lock);
2491 return true;
2492 }
2493
nvme_pci_enable(struct nvme_dev * dev)2494 static int nvme_pci_enable(struct nvme_dev *dev)
2495 {
2496 int result = -ENOMEM;
2497 struct pci_dev *pdev = to_pci_dev(dev->dev);
2498 unsigned int flags = PCI_IRQ_ALL_TYPES;
2499
2500 if (pci_enable_device_mem(pdev))
2501 return result;
2502
2503 pci_set_master(pdev);
2504
2505 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2506 result = -ENODEV;
2507 goto disable;
2508 }
2509
2510 /*
2511 * Some devices and/or platforms don't advertise or work with INTx
2512 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2513 * adjust this later.
2514 */
2515 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2516 flags &= ~PCI_IRQ_MSI;
2517 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2518 if (result < 0)
2519 goto disable;
2520
2521 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2522
2523 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2524 io_queue_depth);
2525 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2526 dev->dbs = dev->bar + 4096;
2527
2528 /*
2529 * Some Apple controllers require a non-standard SQE size.
2530 * Interestingly they also seem to ignore the CC:IOSQES register
2531 * so we don't bother updating it here.
2532 */
2533 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2534 dev->io_sqes = 7;
2535 else
2536 dev->io_sqes = NVME_NVM_IOSQES;
2537
2538 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2539 dev->q_depth = 2;
2540 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2541 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2542 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2543 dev->q_depth = 64;
2544 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2545 "set queue depth=%u\n", dev->q_depth);
2546 }
2547
2548 /*
2549 * Controllers with the shared tags quirk need the IO queue to be
2550 * big enough so that we get 32 tags for the admin queue
2551 */
2552 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2553 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2554 dev->q_depth = NVME_AQ_DEPTH + 2;
2555 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2556 dev->q_depth);
2557 }
2558 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2559
2560 nvme_map_cmb(dev);
2561
2562 pci_save_state(pdev);
2563
2564 result = nvme_pci_configure_admin_queue(dev);
2565 if (result)
2566 goto free_irq;
2567 return result;
2568
2569 free_irq:
2570 pci_free_irq_vectors(pdev);
2571 disable:
2572 pci_disable_device(pdev);
2573 return result;
2574 }
2575
nvme_dev_unmap(struct nvme_dev * dev)2576 static void nvme_dev_unmap(struct nvme_dev *dev)
2577 {
2578 if (dev->bar)
2579 iounmap(dev->bar);
2580 pci_release_mem_regions(to_pci_dev(dev->dev));
2581 }
2582
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2583 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2584 {
2585 struct pci_dev *pdev = to_pci_dev(dev->dev);
2586 u32 csts;
2587
2588 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2589 return true;
2590 if (pdev->error_state != pci_channel_io_normal)
2591 return true;
2592
2593 csts = readl(dev->bar + NVME_REG_CSTS);
2594 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2595 }
2596
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2597 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2598 {
2599 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2600 struct pci_dev *pdev = to_pci_dev(dev->dev);
2601 bool dead;
2602
2603 mutex_lock(&dev->shutdown_lock);
2604 dead = nvme_pci_ctrl_is_dead(dev);
2605 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2606 if (pci_is_enabled(pdev))
2607 nvme_start_freeze(&dev->ctrl);
2608 /*
2609 * Give the controller a chance to complete all entered requests
2610 * if doing a safe shutdown.
2611 */
2612 if (!dead && shutdown)
2613 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2614 }
2615
2616 nvme_quiesce_io_queues(&dev->ctrl);
2617
2618 if (!dead && dev->ctrl.queue_count > 0) {
2619 nvme_delete_io_queues(dev);
2620 nvme_disable_ctrl(&dev->ctrl, shutdown);
2621 nvme_poll_irqdisable(&dev->queues[0]);
2622 }
2623 nvme_suspend_io_queues(dev);
2624 nvme_suspend_queue(dev, 0);
2625 pci_free_irq_vectors(pdev);
2626 if (pci_is_enabled(pdev))
2627 pci_disable_device(pdev);
2628 nvme_reap_pending_cqes(dev);
2629
2630 nvme_cancel_tagset(&dev->ctrl);
2631 nvme_cancel_admin_tagset(&dev->ctrl);
2632
2633 /*
2634 * The driver will not be starting up queues again if shutting down so
2635 * must flush all entered requests to their failed completion to avoid
2636 * deadlocking blk-mq hot-cpu notifier.
2637 */
2638 if (shutdown) {
2639 nvme_unquiesce_io_queues(&dev->ctrl);
2640 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2641 nvme_unquiesce_admin_queue(&dev->ctrl);
2642 }
2643 mutex_unlock(&dev->shutdown_lock);
2644 }
2645
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2646 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2647 {
2648 if (!nvme_wait_reset(&dev->ctrl))
2649 return -EBUSY;
2650 nvme_dev_disable(dev, shutdown);
2651 return 0;
2652 }
2653
nvme_setup_prp_pools(struct nvme_dev * dev)2654 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2655 {
2656 size_t small_align = 256;
2657
2658 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2659 NVME_CTRL_PAGE_SIZE,
2660 NVME_CTRL_PAGE_SIZE, 0);
2661 if (!dev->prp_page_pool)
2662 return -ENOMEM;
2663
2664 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2665 small_align = 512;
2666
2667 /* Optimisation for I/Os between 4k and 128k */
2668 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2669 256, small_align, 0);
2670 if (!dev->prp_small_pool) {
2671 dma_pool_destroy(dev->prp_page_pool);
2672 return -ENOMEM;
2673 }
2674 return 0;
2675 }
2676
nvme_release_prp_pools(struct nvme_dev * dev)2677 static void nvme_release_prp_pools(struct nvme_dev *dev)
2678 {
2679 dma_pool_destroy(dev->prp_page_pool);
2680 dma_pool_destroy(dev->prp_small_pool);
2681 }
2682
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2683 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2684 {
2685 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2686
2687 dev->iod_mempool = mempool_create_node(1,
2688 mempool_kmalloc, mempool_kfree,
2689 (void *)alloc_size, GFP_KERNEL,
2690 dev_to_node(dev->dev));
2691 if (!dev->iod_mempool)
2692 return -ENOMEM;
2693 return 0;
2694 }
2695
nvme_free_tagset(struct nvme_dev * dev)2696 static void nvme_free_tagset(struct nvme_dev *dev)
2697 {
2698 if (dev->tagset.tags)
2699 nvme_remove_io_tag_set(&dev->ctrl);
2700 dev->ctrl.tagset = NULL;
2701 }
2702
2703 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2704 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2705 {
2706 struct nvme_dev *dev = to_nvme_dev(ctrl);
2707
2708 nvme_free_tagset(dev);
2709 put_device(dev->dev);
2710 kfree(dev->queues);
2711 kfree(dev);
2712 }
2713
nvme_reset_work(struct work_struct * work)2714 static void nvme_reset_work(struct work_struct *work)
2715 {
2716 struct nvme_dev *dev =
2717 container_of(work, struct nvme_dev, ctrl.reset_work);
2718 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2719 int result;
2720
2721 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2722 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2723 dev->ctrl.state);
2724 result = -ENODEV;
2725 goto out;
2726 }
2727
2728 /*
2729 * If we're called to reset a live controller first shut it down before
2730 * moving on.
2731 */
2732 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2733 nvme_dev_disable(dev, false);
2734 nvme_sync_queues(&dev->ctrl);
2735
2736 mutex_lock(&dev->shutdown_lock);
2737 result = nvme_pci_enable(dev);
2738 if (result)
2739 goto out_unlock;
2740 nvme_unquiesce_admin_queue(&dev->ctrl);
2741 mutex_unlock(&dev->shutdown_lock);
2742
2743 /*
2744 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2745 * initializing procedure here.
2746 */
2747 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2748 dev_warn(dev->ctrl.device,
2749 "failed to mark controller CONNECTING\n");
2750 result = -EBUSY;
2751 goto out;
2752 }
2753
2754 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2755 if (result)
2756 goto out;
2757
2758 nvme_dbbuf_dma_alloc(dev);
2759
2760 result = nvme_setup_host_mem(dev);
2761 if (result < 0)
2762 goto out;
2763
2764 result = nvme_setup_io_queues(dev);
2765 if (result)
2766 goto out;
2767
2768 /*
2769 * Freeze and update the number of I/O queues as thos might have
2770 * changed. If there are no I/O queues left after this reset, keep the
2771 * controller around but remove all namespaces.
2772 */
2773 if (dev->online_queues > 1) {
2774 nvme_dbbuf_set(dev);
2775 nvme_unquiesce_io_queues(&dev->ctrl);
2776 nvme_wait_freeze(&dev->ctrl);
2777 if (!nvme_pci_update_nr_queues(dev))
2778 goto out;
2779 nvme_unfreeze(&dev->ctrl);
2780 } else {
2781 dev_warn(dev->ctrl.device, "IO queues lost\n");
2782 nvme_mark_namespaces_dead(&dev->ctrl);
2783 nvme_unquiesce_io_queues(&dev->ctrl);
2784 nvme_remove_namespaces(&dev->ctrl);
2785 nvme_free_tagset(dev);
2786 }
2787
2788 /*
2789 * If only admin queue live, keep it to do further investigation or
2790 * recovery.
2791 */
2792 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2793 dev_warn(dev->ctrl.device,
2794 "failed to mark controller live state\n");
2795 result = -ENODEV;
2796 goto out;
2797 }
2798
2799 nvme_start_ctrl(&dev->ctrl);
2800 return;
2801
2802 out_unlock:
2803 mutex_unlock(&dev->shutdown_lock);
2804 out:
2805 /*
2806 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2807 * may be holding this pci_dev's device lock.
2808 */
2809 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2810 result);
2811 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2812 nvme_dev_disable(dev, true);
2813 nvme_sync_queues(&dev->ctrl);
2814 nvme_mark_namespaces_dead(&dev->ctrl);
2815 nvme_unquiesce_io_queues(&dev->ctrl);
2816 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2817 }
2818
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2819 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2820 {
2821 *val = readl(to_nvme_dev(ctrl)->bar + off);
2822 return 0;
2823 }
2824
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2825 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2826 {
2827 writel(val, to_nvme_dev(ctrl)->bar + off);
2828 return 0;
2829 }
2830
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2831 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2832 {
2833 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2834 return 0;
2835 }
2836
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2837 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2838 {
2839 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2840
2841 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2842 }
2843
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)2844 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2845 {
2846 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2847 struct nvme_subsystem *subsys = ctrl->subsys;
2848
2849 dev_err(ctrl->device,
2850 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2851 pdev->vendor, pdev->device,
2852 nvme_strlen(subsys->model, sizeof(subsys->model)),
2853 subsys->model, nvme_strlen(subsys->firmware_rev,
2854 sizeof(subsys->firmware_rev)),
2855 subsys->firmware_rev);
2856 }
2857
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)2858 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2859 {
2860 struct nvme_dev *dev = to_nvme_dev(ctrl);
2861
2862 return dma_pci_p2pdma_supported(dev->dev);
2863 }
2864
2865 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2866 .name = "pcie",
2867 .module = THIS_MODULE,
2868 .flags = NVME_F_METADATA_SUPPORTED,
2869 .dev_attr_groups = nvme_pci_dev_attr_groups,
2870 .reg_read32 = nvme_pci_reg_read32,
2871 .reg_write32 = nvme_pci_reg_write32,
2872 .reg_read64 = nvme_pci_reg_read64,
2873 .free_ctrl = nvme_pci_free_ctrl,
2874 .submit_async_event = nvme_pci_submit_async_event,
2875 .get_address = nvme_pci_get_address,
2876 .print_device_info = nvme_pci_print_device_info,
2877 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2878 };
2879
nvme_dev_map(struct nvme_dev * dev)2880 static int nvme_dev_map(struct nvme_dev *dev)
2881 {
2882 struct pci_dev *pdev = to_pci_dev(dev->dev);
2883
2884 if (pci_request_mem_regions(pdev, "nvme"))
2885 return -ENODEV;
2886
2887 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2888 goto release;
2889
2890 return 0;
2891 release:
2892 pci_release_mem_regions(pdev);
2893 return -ENODEV;
2894 }
2895
check_vendor_combination_bug(struct pci_dev * pdev)2896 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2897 {
2898 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2899 /*
2900 * Several Samsung devices seem to drop off the PCIe bus
2901 * randomly when APST is on and uses the deepest sleep state.
2902 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2903 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2904 * 950 PRO 256GB", but it seems to be restricted to two Dell
2905 * laptops.
2906 */
2907 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2908 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2909 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2910 return NVME_QUIRK_NO_DEEPEST_PS;
2911 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2912 /*
2913 * Samsung SSD 960 EVO drops off the PCIe bus after system
2914 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2915 * within few minutes after bootup on a Coffee Lake board -
2916 * ASUS PRIME Z370-A
2917 */
2918 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2919 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2920 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2921 return NVME_QUIRK_NO_APST;
2922 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2923 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2924 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2925 /*
2926 * Forcing to use host managed nvme power settings for
2927 * lowest idle power with quick resume latency on
2928 * Samsung and Toshiba SSDs based on suspend behavior
2929 * on Coffee Lake board for LENOVO C640
2930 */
2931 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2932 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2933 return NVME_QUIRK_SIMPLE_SUSPEND;
2934 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2935 pdev->device == 0x500f)) {
2936 /*
2937 * Exclude some Kingston NV1 and A2000 devices from
2938 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2939 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2940 */
2941 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2942 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2943 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2944 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2945 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2946 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
2947 /*
2948 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
2949 * because of high power consumption (> 2 Watt) in s2idle
2950 * sleep. Only some boards with Intel CPU are affected.
2951 */
2952 if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
2953 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
2954 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
2955 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
2956 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2957 }
2958
2959 /*
2960 * NVMe SSD drops off the PCIe bus after system idle
2961 * for 10 hours on a Lenovo N60z board.
2962 */
2963 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2964 return NVME_QUIRK_NO_APST;
2965
2966 return 0;
2967 }
2968
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2969 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2970 const struct pci_device_id *id)
2971 {
2972 unsigned long quirks = id->driver_data;
2973 int node = dev_to_node(&pdev->dev);
2974 struct nvme_dev *dev;
2975 int ret = -ENOMEM;
2976
2977 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2978 if (!dev)
2979 return ERR_PTR(-ENOMEM);
2980 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2981 mutex_init(&dev->shutdown_lock);
2982
2983 dev->nr_write_queues = write_queues;
2984 dev->nr_poll_queues = poll_queues;
2985 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2986 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2987 sizeof(struct nvme_queue), GFP_KERNEL, node);
2988 if (!dev->queues)
2989 goto out_free_dev;
2990
2991 dev->dev = get_device(&pdev->dev);
2992
2993 quirks |= check_vendor_combination_bug(pdev);
2994 if (!noacpi &&
2995 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2996 acpi_storage_d3(&pdev->dev)) {
2997 /*
2998 * Some systems use a bios work around to ask for D3 on
2999 * platforms that support kernel managed suspend.
3000 */
3001 dev_info(&pdev->dev,
3002 "platform quirk: setting simple suspend\n");
3003 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3004 }
3005 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3006 quirks);
3007 if (ret)
3008 goto out_put_device;
3009
3010 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3011 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3012 else
3013 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3014 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3015 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3016
3017 /*
3018 * Limit the max command size to prevent iod->sg allocations going
3019 * over a single page.
3020 */
3021 dev->ctrl.max_hw_sectors = min_t(u32,
3022 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3023 dev->ctrl.max_segments = NVME_MAX_SEGS;
3024
3025 /*
3026 * There is no support for SGLs for metadata (yet), so we are limited to
3027 * a single integrity segment for the separate metadata pointer.
3028 */
3029 dev->ctrl.max_integrity_segments = 1;
3030 return dev;
3031
3032 out_put_device:
3033 put_device(dev->dev);
3034 kfree(dev->queues);
3035 out_free_dev:
3036 kfree(dev);
3037 return ERR_PTR(ret);
3038 }
3039
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3040 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3041 {
3042 struct nvme_dev *dev;
3043 int result = -ENOMEM;
3044
3045 dev = nvme_pci_alloc_dev(pdev, id);
3046 if (IS_ERR(dev))
3047 return PTR_ERR(dev);
3048
3049 result = nvme_dev_map(dev);
3050 if (result)
3051 goto out_uninit_ctrl;
3052
3053 result = nvme_setup_prp_pools(dev);
3054 if (result)
3055 goto out_dev_unmap;
3056
3057 result = nvme_pci_alloc_iod_mempool(dev);
3058 if (result)
3059 goto out_release_prp_pools;
3060
3061 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3062
3063 result = nvme_pci_enable(dev);
3064 if (result)
3065 goto out_release_iod_mempool;
3066
3067 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3068 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3069 if (result)
3070 goto out_disable;
3071
3072 /*
3073 * Mark the controller as connecting before sending admin commands to
3074 * allow the timeout handler to do the right thing.
3075 */
3076 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3077 dev_warn(dev->ctrl.device,
3078 "failed to mark controller CONNECTING\n");
3079 result = -EBUSY;
3080 goto out_disable;
3081 }
3082
3083 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3084 if (result)
3085 goto out_disable;
3086
3087 nvme_dbbuf_dma_alloc(dev);
3088
3089 result = nvme_setup_host_mem(dev);
3090 if (result < 0)
3091 goto out_disable;
3092
3093 result = nvme_setup_io_queues(dev);
3094 if (result)
3095 goto out_disable;
3096
3097 if (dev->online_queues > 1) {
3098 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3099 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3100 nvme_dbbuf_set(dev);
3101 }
3102
3103 if (!dev->ctrl.tagset)
3104 dev_warn(dev->ctrl.device, "IO queues not created\n");
3105
3106 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3107 dev_warn(dev->ctrl.device,
3108 "failed to mark controller live state\n");
3109 result = -ENODEV;
3110 goto out_disable;
3111 }
3112
3113 pci_set_drvdata(pdev, dev);
3114
3115 nvme_start_ctrl(&dev->ctrl);
3116 nvme_put_ctrl(&dev->ctrl);
3117 flush_work(&dev->ctrl.scan_work);
3118 return 0;
3119
3120 out_disable:
3121 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3122 nvme_dev_disable(dev, true);
3123 nvme_free_host_mem(dev);
3124 nvme_dev_remove_admin(dev);
3125 nvme_dbbuf_dma_free(dev);
3126 nvme_free_queues(dev, 0);
3127 out_release_iod_mempool:
3128 mempool_destroy(dev->iod_mempool);
3129 out_release_prp_pools:
3130 nvme_release_prp_pools(dev);
3131 out_dev_unmap:
3132 nvme_dev_unmap(dev);
3133 out_uninit_ctrl:
3134 nvme_uninit_ctrl(&dev->ctrl);
3135 nvme_put_ctrl(&dev->ctrl);
3136 return result;
3137 }
3138
nvme_reset_prepare(struct pci_dev * pdev)3139 static void nvme_reset_prepare(struct pci_dev *pdev)
3140 {
3141 struct nvme_dev *dev = pci_get_drvdata(pdev);
3142
3143 /*
3144 * We don't need to check the return value from waiting for the reset
3145 * state as pci_dev device lock is held, making it impossible to race
3146 * with ->remove().
3147 */
3148 nvme_disable_prepare_reset(dev, false);
3149 nvme_sync_queues(&dev->ctrl);
3150 }
3151
nvme_reset_done(struct pci_dev * pdev)3152 static void nvme_reset_done(struct pci_dev *pdev)
3153 {
3154 struct nvme_dev *dev = pci_get_drvdata(pdev);
3155
3156 if (!nvme_try_sched_reset(&dev->ctrl))
3157 flush_work(&dev->ctrl.reset_work);
3158 }
3159
nvme_shutdown(struct pci_dev * pdev)3160 static void nvme_shutdown(struct pci_dev *pdev)
3161 {
3162 struct nvme_dev *dev = pci_get_drvdata(pdev);
3163
3164 nvme_disable_prepare_reset(dev, true);
3165 }
3166
3167 /*
3168 * The driver's remove may be called on a device in a partially initialized
3169 * state. This function must not have any dependencies on the device state in
3170 * order to proceed.
3171 */
nvme_remove(struct pci_dev * pdev)3172 static void nvme_remove(struct pci_dev *pdev)
3173 {
3174 struct nvme_dev *dev = pci_get_drvdata(pdev);
3175
3176 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3177 pci_set_drvdata(pdev, NULL);
3178
3179 if (!pci_device_is_present(pdev)) {
3180 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3181 nvme_dev_disable(dev, true);
3182 }
3183
3184 flush_work(&dev->ctrl.reset_work);
3185 nvme_stop_ctrl(&dev->ctrl);
3186 nvme_remove_namespaces(&dev->ctrl);
3187 nvme_dev_disable(dev, true);
3188 nvme_free_host_mem(dev);
3189 nvme_dev_remove_admin(dev);
3190 nvme_dbbuf_dma_free(dev);
3191 nvme_free_queues(dev, 0);
3192 mempool_destroy(dev->iod_mempool);
3193 nvme_release_prp_pools(dev);
3194 nvme_dev_unmap(dev);
3195 nvme_uninit_ctrl(&dev->ctrl);
3196 }
3197
3198 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3199 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3200 {
3201 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3202 }
3203
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3204 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3205 {
3206 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3207 }
3208
nvme_resume(struct device * dev)3209 static int nvme_resume(struct device *dev)
3210 {
3211 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3212 struct nvme_ctrl *ctrl = &ndev->ctrl;
3213
3214 if (ndev->last_ps == U32_MAX ||
3215 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3216 goto reset;
3217 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3218 goto reset;
3219
3220 return 0;
3221 reset:
3222 return nvme_try_sched_reset(ctrl);
3223 }
3224
nvme_suspend(struct device * dev)3225 static int nvme_suspend(struct device *dev)
3226 {
3227 struct pci_dev *pdev = to_pci_dev(dev);
3228 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3229 struct nvme_ctrl *ctrl = &ndev->ctrl;
3230 int ret = -EBUSY;
3231
3232 ndev->last_ps = U32_MAX;
3233
3234 /*
3235 * The platform does not remove power for a kernel managed suspend so
3236 * use host managed nvme power settings for lowest idle power if
3237 * possible. This should have quicker resume latency than a full device
3238 * shutdown. But if the firmware is involved after the suspend or the
3239 * device does not support any non-default power states, shut down the
3240 * device fully.
3241 *
3242 * If ASPM is not enabled for the device, shut down the device and allow
3243 * the PCI bus layer to put it into D3 in order to take the PCIe link
3244 * down, so as to allow the platform to achieve its minimum low-power
3245 * state (which may not be possible if the link is up).
3246 */
3247 if (pm_suspend_via_firmware() || !ctrl->npss ||
3248 !pcie_aspm_enabled(pdev) ||
3249 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3250 return nvme_disable_prepare_reset(ndev, true);
3251
3252 nvme_start_freeze(ctrl);
3253 nvme_wait_freeze(ctrl);
3254 nvme_sync_queues(ctrl);
3255
3256 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3257 goto unfreeze;
3258
3259 /*
3260 * Host memory access may not be successful in a system suspend state,
3261 * but the specification allows the controller to access memory in a
3262 * non-operational power state.
3263 */
3264 if (ndev->hmb) {
3265 ret = nvme_set_host_mem(ndev, 0);
3266 if (ret < 0)
3267 goto unfreeze;
3268 }
3269
3270 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3271 if (ret < 0)
3272 goto unfreeze;
3273
3274 /*
3275 * A saved state prevents pci pm from generically controlling the
3276 * device's power. If we're using protocol specific settings, we don't
3277 * want pci interfering.
3278 */
3279 pci_save_state(pdev);
3280
3281 ret = nvme_set_power_state(ctrl, ctrl->npss);
3282 if (ret < 0)
3283 goto unfreeze;
3284
3285 if (ret) {
3286 /* discard the saved state */
3287 pci_load_saved_state(pdev, NULL);
3288
3289 /*
3290 * Clearing npss forces a controller reset on resume. The
3291 * correct value will be rediscovered then.
3292 */
3293 ret = nvme_disable_prepare_reset(ndev, true);
3294 ctrl->npss = 0;
3295 }
3296 unfreeze:
3297 nvme_unfreeze(ctrl);
3298 return ret;
3299 }
3300
nvme_simple_suspend(struct device * dev)3301 static int nvme_simple_suspend(struct device *dev)
3302 {
3303 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3304
3305 return nvme_disable_prepare_reset(ndev, true);
3306 }
3307
nvme_simple_resume(struct device * dev)3308 static int nvme_simple_resume(struct device *dev)
3309 {
3310 struct pci_dev *pdev = to_pci_dev(dev);
3311 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3312
3313 return nvme_try_sched_reset(&ndev->ctrl);
3314 }
3315
3316 static const struct dev_pm_ops nvme_dev_pm_ops = {
3317 .suspend = nvme_suspend,
3318 .resume = nvme_resume,
3319 .freeze = nvme_simple_suspend,
3320 .thaw = nvme_simple_resume,
3321 .poweroff = nvme_simple_suspend,
3322 .restore = nvme_simple_resume,
3323 };
3324 #endif /* CONFIG_PM_SLEEP */
3325
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3326 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3327 pci_channel_state_t state)
3328 {
3329 struct nvme_dev *dev = pci_get_drvdata(pdev);
3330
3331 /*
3332 * A frozen channel requires a reset. When detected, this method will
3333 * shutdown the controller to quiesce. The controller will be restarted
3334 * after the slot reset through driver's slot_reset callback.
3335 */
3336 switch (state) {
3337 case pci_channel_io_normal:
3338 return PCI_ERS_RESULT_CAN_RECOVER;
3339 case pci_channel_io_frozen:
3340 dev_warn(dev->ctrl.device,
3341 "frozen state error detected, reset controller\n");
3342 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3343 nvme_dev_disable(dev, true);
3344 return PCI_ERS_RESULT_DISCONNECT;
3345 }
3346 nvme_dev_disable(dev, false);
3347 return PCI_ERS_RESULT_NEED_RESET;
3348 case pci_channel_io_perm_failure:
3349 dev_warn(dev->ctrl.device,
3350 "failure state error detected, request disconnect\n");
3351 return PCI_ERS_RESULT_DISCONNECT;
3352 }
3353 return PCI_ERS_RESULT_NEED_RESET;
3354 }
3355
nvme_slot_reset(struct pci_dev * pdev)3356 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3357 {
3358 struct nvme_dev *dev = pci_get_drvdata(pdev);
3359
3360 dev_info(dev->ctrl.device, "restart after slot reset\n");
3361 pci_restore_state(pdev);
3362 if (!nvme_try_sched_reset(&dev->ctrl))
3363 nvme_unquiesce_io_queues(&dev->ctrl);
3364 return PCI_ERS_RESULT_RECOVERED;
3365 }
3366
nvme_error_resume(struct pci_dev * pdev)3367 static void nvme_error_resume(struct pci_dev *pdev)
3368 {
3369 struct nvme_dev *dev = pci_get_drvdata(pdev);
3370
3371 flush_work(&dev->ctrl.reset_work);
3372 }
3373
3374 static const struct pci_error_handlers nvme_err_handler = {
3375 .error_detected = nvme_error_detected,
3376 .slot_reset = nvme_slot_reset,
3377 .resume = nvme_error_resume,
3378 .reset_prepare = nvme_reset_prepare,
3379 .reset_done = nvme_reset_done,
3380 };
3381
3382 static const struct pci_device_id nvme_id_table[] = {
3383 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3384 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3385 NVME_QUIRK_DEALLOCATE_ZEROES, },
3386 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3387 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3388 NVME_QUIRK_DEALLOCATE_ZEROES, },
3389 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3390 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3391 NVME_QUIRK_DEALLOCATE_ZEROES |
3392 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3393 NVME_QUIRK_BOGUS_NID, },
3394 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3395 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3396 NVME_QUIRK_DEALLOCATE_ZEROES, },
3397 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3398 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3399 NVME_QUIRK_MEDIUM_PRIO_SQ |
3400 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3401 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3402 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3403 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3404 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3405 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3406 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3407 NVME_QUIRK_BOGUS_NID, },
3408 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3409 .driver_data = NVME_QUIRK_BOGUS_NID, },
3410 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3411 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3412 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3413 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3414 NVME_QUIRK_BOGUS_NID, },
3415 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3416 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3417 NVME_QUIRK_BOGUS_NID, },
3418 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3419 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3420 NVME_QUIRK_NO_NS_DESC_LIST, },
3421 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3422 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3423 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3424 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3425 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3426 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3427 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3428 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3429 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3430 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3431 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3432 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3433 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3434 .driver_data = NVME_QUIRK_BROKEN_MSI },
3435 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3436 .driver_data = NVME_QUIRK_BOGUS_NID, },
3437 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3438 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3439 NVME_QUIRK_BOGUS_NID, },
3440 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3441 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3443 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3445 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3446 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3447 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3448 .driver_data = NVME_QUIRK_BOGUS_NID, },
3449 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3450 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3451 NVME_QUIRK_BOGUS_NID, },
3452 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3453 .driver_data = NVME_QUIRK_BOGUS_NID, },
3454 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3455 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3456 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3457 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3458 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3459 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3460 .driver_data = NVME_QUIRK_BOGUS_NID, },
3461 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3462 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3463 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3464 .driver_data = NVME_QUIRK_BOGUS_NID, },
3465 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3466 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3467 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3468 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3469 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3470 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3471 NVME_QUIRK_BOGUS_NID, },
3472 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3473 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3474 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3475 .driver_data = NVME_QUIRK_BOGUS_NID, },
3476 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3477 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3478 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3479 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3480 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3481 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3482 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3483 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3484 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3485 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3486 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3487 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3488 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3489 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3490 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3491 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3493 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3494 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3497 .driver_data = NVME_QUIRK_BOGUS_NID, },
3498 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3499 .driver_data = NVME_QUIRK_BOGUS_NID, },
3500 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3501 .driver_data = NVME_QUIRK_BOGUS_NID, },
3502 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3503 .driver_data = NVME_QUIRK_BOGUS_NID, },
3504 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3505 .driver_data = NVME_QUIRK_BOGUS_NID, },
3506 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3507 .driver_data = NVME_QUIRK_BOGUS_NID, },
3508 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3509 .driver_data = NVME_QUIRK_BOGUS_NID, },
3510 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3511 .driver_data = NVME_QUIRK_BOGUS_NID, },
3512 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3513 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3514 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3515 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3516 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3517 .driver_data = NVME_QUIRK_BOGUS_NID, },
3518 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3519 .driver_data = NVME_QUIRK_BOGUS_NID, },
3520 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3521 .driver_data = NVME_QUIRK_BOGUS_NID, },
3522 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3523 .driver_data = NVME_QUIRK_BOGUS_NID |
3524 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3525 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3526 .driver_data = NVME_QUIRK_BOGUS_NID, },
3527 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3528 .driver_data = NVME_QUIRK_BOGUS_NID, },
3529 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3530 .driver_data = NVME_QUIRK_BOGUS_NID, },
3531 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3532 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3533 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3534 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3535 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3536 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3537 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3538 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3539 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3540 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3541 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3542 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3543 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3544 /*
3545 * Fix for the Apple controller found in the MacBook8,1 and
3546 * some MacBook7,1 to avoid controller resets and data loss.
3547 */
3548 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3549 NVME_QUIRK_QDEPTH_ONE },
3550 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3551 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3552 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3553 NVME_QUIRK_128_BYTES_SQES |
3554 NVME_QUIRK_SHARED_TAGS |
3555 NVME_QUIRK_SKIP_CID_GEN |
3556 NVME_QUIRK_IDENTIFY_CNS },
3557 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3558 { 0, }
3559 };
3560 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3561
3562 static struct pci_driver nvme_driver = {
3563 .name = "nvme",
3564 .id_table = nvme_id_table,
3565 .probe = nvme_probe,
3566 .remove = nvme_remove,
3567 .shutdown = nvme_shutdown,
3568 .driver = {
3569 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3570 #ifdef CONFIG_PM_SLEEP
3571 .pm = &nvme_dev_pm_ops,
3572 #endif
3573 },
3574 .sriov_configure = pci_sriov_configure_simple,
3575 .err_handler = &nvme_err_handler,
3576 };
3577
nvme_init(void)3578 static int __init nvme_init(void)
3579 {
3580 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3581 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3582 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3583 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3584 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3585 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3586 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3587
3588 return pci_register_driver(&nvme_driver);
3589 }
3590
nvme_exit(void)3591 static void __exit nvme_exit(void)
3592 {
3593 pci_unregister_driver(&nvme_driver);
3594 flush_workqueue(nvme_wq);
3595 }
3596
3597 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3598 MODULE_LICENSE("GPL");
3599 MODULE_VERSION("1.0");
3600 module_init(nvme_init);
3601 module_exit(nvme_exit);
3602