1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/range.h"
28 #include "qemu/notify.h"
29 #include "qom/object.h"
30 #include "qemu/rcu.h"
31
32 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33
34 #define MAX_PHYS_ADDR_SPACE_BITS 62
35 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36
37 #define TYPE_MEMORY_REGION "memory-region"
38 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
39 TYPE_MEMORY_REGION)
40
41 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
42 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
43 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
44 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45
46 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
47 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
48 typedef struct RamDiscardManager RamDiscardManager;
49 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
50 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51
52 #ifdef CONFIG_FUZZ
53 void fuzz_dma_read_cb(size_t addr,
54 size_t len,
55 MemoryRegion *mr);
56 #else
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)57 static inline void fuzz_dma_read_cb(size_t addr,
58 size_t len,
59 MemoryRegion *mr)
60 {
61 /* Do Nothing */
62 }
63 #endif
64
65 /* Possible bits for global_dirty_log_{start|stop} */
66
67 /* Dirty tracking enabled because migration is running */
68 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
69
70 /* Dirty tracking enabled because measuring dirty rate */
71 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72
73 /* Dirty tracking enabled because dirty limit */
74 #define GLOBAL_DIRTY_LIMIT (1U << 2)
75
76 #define GLOBAL_DIRTY_MASK (0x7)
77
78 extern unsigned int global_dirty_tracking;
79
80 typedef struct MemoryRegionOps MemoryRegionOps;
81
82 struct ReservedRegion {
83 Range range;
84 unsigned type;
85 };
86
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89 *
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 * @unmergeable: this section should not get merged with adjacent sections
99 */
100 struct MemoryRegionSection {
101 Int128 size;
102 MemoryRegion *mr;
103 FlatView *fv;
104 hwaddr offset_within_region;
105 hwaddr offset_within_address_space;
106 bool readonly;
107 bool nonvolatile;
108 bool unmergeable;
109 };
110
111 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
112
113 /* See address_space_translate: bit 0 is read, bit 1 is write. */
114 typedef enum {
115 IOMMU_NONE = 0,
116 IOMMU_RO = 1,
117 IOMMU_WO = 2,
118 IOMMU_RW = 3,
119 } IOMMUAccessFlags;
120
121 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
122
123 struct IOMMUTLBEntry {
124 AddressSpace *target_as;
125 hwaddr iova;
126 hwaddr translated_addr;
127 hwaddr addr_mask; /* 0xfff = 4k translation */
128 IOMMUAccessFlags perm;
129 };
130
131 /*
132 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
133 * register with one or multiple IOMMU Notifier capability bit(s).
134 *
135 * Normally there're two use cases for the notifiers:
136 *
137 * (1) When the device needs accurate synchronizations of the vIOMMU page
138 * tables, it needs to register with both MAP|UNMAP notifies (which
139 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
140 *
141 * Regarding to accurate synchronization, it's when the notified
142 * device maintains a shadow page table and must be notified on each
143 * guest MAP (page table entry creation) and UNMAP (invalidation)
144 * events (e.g. VFIO). Both notifications must be accurate so that
145 * the shadow page table is fully in sync with the guest view.
146 *
147 * (2) When the device doesn't need accurate synchronizations of the
148 * vIOMMU page tables, it needs to register only with UNMAP or
149 * DEVIOTLB_UNMAP notifies.
150 *
151 * It's when the device maintains a cache of IOMMU translations
152 * (IOTLB) and is able to fill that cache by requesting translations
153 * from the vIOMMU through a protocol similar to ATS (Address
154 * Translation Service).
155 *
156 * Note that in this mode the vIOMMU will not maintain a shadowed
157 * page table for the address space, and the UNMAP messages can cover
158 * more than the pages that used to get mapped. The IOMMU notifiee
159 * should be able to take care of over-sized invalidations.
160 */
161 typedef enum {
162 IOMMU_NOTIFIER_NONE = 0,
163 /* Notify cache invalidations */
164 IOMMU_NOTIFIER_UNMAP = 0x1,
165 /* Notify entry changes (newly created entries) */
166 IOMMU_NOTIFIER_MAP = 0x2,
167 /* Notify changes on device IOTLB entries */
168 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
169 } IOMMUNotifierFlag;
170
171 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
172 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
173 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
174 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
175
176 struct IOMMUNotifier;
177 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
178 IOMMUTLBEntry *data);
179
180 struct IOMMUNotifier {
181 IOMMUNotify notify;
182 IOMMUNotifierFlag notifier_flags;
183 /* Notify for address space range start <= addr <= end */
184 hwaddr start;
185 hwaddr end;
186 int iommu_idx;
187 QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190
191 typedef struct IOMMUTLBEvent {
192 IOMMUNotifierFlag type;
193 IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC (1 << 0)
198
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED (1 << 1)
201
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203 * Resizing RAM while migrating can result in the migration being canceled.
204 */
205 #define RAM_RESIZEABLE (1 << 2)
206
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208 * zero the page and wake waiting processes.
209 * (Set during postcopy)
210 */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218
219
220 /*
221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222 * support 'write-tracking' migration type.
223 * Implies ram_state->ram_wt_enabled.
224 */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226
227 /*
228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229 * pages if applicable) is skipped: will bail out if not supported. When not
230 * set, the OS will do the reservation, if supported for the memory type.
231 */
232 #define RAM_NORESERVE (1 << 7)
233
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD (1 << 12)
248
249 /*
250 * In RAMBlock creation functions, if MAP_SHARED is 0 in the flags parameter,
251 * the implementation may still create a shared mapping if other conditions
252 * require it. Callers who specifically want a private mapping, eg objects
253 * specified by the user, must pass RAM_PRIVATE.
254 * After RAMBlock creation, MAP_SHARED in the block's flags indicates whether
255 * the block is shared or private, and MAP_PRIVATE is omitted.
256 */
257 #define RAM_PRIVATE (1 << 13)
258
iommu_notifier_init(IOMMUNotifier * n,IOMMUNotify fn,IOMMUNotifierFlag flags,hwaddr start,hwaddr end,int iommu_idx)259 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
260 IOMMUNotifierFlag flags,
261 hwaddr start, hwaddr end,
262 int iommu_idx)
263 {
264 n->notify = fn;
265 n->notifier_flags = flags;
266 n->start = start;
267 n->end = end;
268 n->iommu_idx = iommu_idx;
269 }
270
271 /*
272 * Memory region callbacks
273 */
274 struct MemoryRegionOps {
275 /* Read from the memory region. @addr is relative to @mr; @size is
276 * in bytes. */
277 uint64_t (*read)(void *opaque,
278 hwaddr addr,
279 unsigned size);
280 /* Write to the memory region. @addr is relative to @mr; @size is
281 * in bytes. */
282 void (*write)(void *opaque,
283 hwaddr addr,
284 uint64_t data,
285 unsigned size);
286
287 MemTxResult (*read_with_attrs)(void *opaque,
288 hwaddr addr,
289 uint64_t *data,
290 unsigned size,
291 MemTxAttrs attrs);
292 MemTxResult (*write_with_attrs)(void *opaque,
293 hwaddr addr,
294 uint64_t data,
295 unsigned size,
296 MemTxAttrs attrs);
297
298 enum device_endian endianness;
299 /* Guest-visible constraints: */
300 struct {
301 /* If nonzero, specify bounds on access sizes beyond which a machine
302 * check is thrown.
303 */
304 unsigned min_access_size;
305 unsigned max_access_size;
306 /* If true, unaligned accesses are supported. Otherwise unaligned
307 * accesses throw machine checks.
308 */
309 bool unaligned;
310 /*
311 * If present, and returns #false, the transaction is not accepted
312 * by the device (and results in machine dependent behaviour such
313 * as a machine check exception).
314 */
315 bool (*accepts)(void *opaque, hwaddr addr,
316 unsigned size, bool is_write,
317 MemTxAttrs attrs);
318 } valid;
319 /* Internal implementation constraints: */
320 struct {
321 /* If nonzero, specifies the minimum size implemented. Smaller sizes
322 * will be rounded upwards and a partial result will be returned.
323 */
324 unsigned min_access_size;
325 /* If nonzero, specifies the maximum size implemented. Larger sizes
326 * will be done as a series of accesses with smaller sizes.
327 */
328 unsigned max_access_size;
329 /* If true, unaligned accesses are supported. Otherwise all accesses
330 * are converted to (possibly multiple) naturally aligned accesses.
331 */
332 bool unaligned;
333 } impl;
334 };
335
336 typedef struct MemoryRegionClass {
337 /* private */
338 ObjectClass parent_class;
339 } MemoryRegionClass;
340
341
342 enum IOMMUMemoryRegionAttr {
343 IOMMU_ATTR_SPAPR_TCE_FD
344 };
345
346 /*
347 * IOMMUMemoryRegionClass:
348 *
349 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
350 * and provide an implementation of at least the @translate method here
351 * to handle requests to the memory region. Other methods are optional.
352 *
353 * The IOMMU implementation must use the IOMMU notifier infrastructure
354 * to report whenever mappings are changed, by calling
355 * memory_region_notify_iommu() (or, if necessary, by calling
356 * memory_region_notify_iommu_one() for each registered notifier).
357 *
358 * Conceptually an IOMMU provides a mapping from input address
359 * to an output TLB entry. If the IOMMU is aware of memory transaction
360 * attributes and the output TLB entry depends on the transaction
361 * attributes, we represent this using IOMMU indexes. Each index
362 * selects a particular translation table that the IOMMU has:
363 *
364 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
365 *
366 * @translate takes an input address and an IOMMU index
367 *
368 * and the mapping returned can only depend on the input address and the
369 * IOMMU index.
370 *
371 * Most IOMMUs don't care about the transaction attributes and support
372 * only a single IOMMU index. A more complex IOMMU might have one index
373 * for secure transactions and one for non-secure transactions.
374 */
375 struct IOMMUMemoryRegionClass {
376 /* private: */
377 MemoryRegionClass parent_class;
378
379 /* public: */
380 /**
381 * @translate:
382 *
383 * Return a TLB entry that contains a given address.
384 *
385 * The IOMMUAccessFlags indicated via @flag are optional and may
386 * be specified as IOMMU_NONE to indicate that the caller needs
387 * the full translation information for both reads and writes. If
388 * the access flags are specified then the IOMMU implementation
389 * may use this as an optimization, to stop doing a page table
390 * walk as soon as it knows that the requested permissions are not
391 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
392 * full page table walk and report the permissions in the returned
393 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
394 * return different mappings for reads and writes.)
395 *
396 * The returned information remains valid while the caller is
397 * holding the big QEMU lock or is inside an RCU critical section;
398 * if the caller wishes to cache the mapping beyond that it must
399 * register an IOMMU notifier so it can invalidate its cached
400 * information when the IOMMU mapping changes.
401 *
402 * @iommu: the IOMMUMemoryRegion
403 *
404 * @hwaddr: address to be translated within the memory region
405 *
406 * @flag: requested access permission
407 *
408 * @iommu_idx: IOMMU index for the translation
409 */
410 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
411 IOMMUAccessFlags flag, int iommu_idx);
412 /**
413 * @get_min_page_size:
414 *
415 * Returns minimum supported page size in bytes.
416 *
417 * If this method is not provided then the minimum is assumed to
418 * be TARGET_PAGE_SIZE.
419 *
420 * @iommu: the IOMMUMemoryRegion
421 */
422 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
423 /**
424 * @notify_flag_changed:
425 *
426 * Called when IOMMU Notifier flag changes (ie when the set of
427 * events which IOMMU users are requesting notification for changes).
428 * Optional method -- need not be provided if the IOMMU does not
429 * need to know exactly which events must be notified.
430 *
431 * @iommu: the IOMMUMemoryRegion
432 *
433 * @old_flags: events which previously needed to be notified
434 *
435 * @new_flags: events which now need to be notified
436 *
437 * Returns 0 on success, or a negative errno; in particular
438 * returns -EINVAL if the new flag bitmap is not supported by the
439 * IOMMU memory region. In case of failure, the error object
440 * must be created
441 */
442 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
443 IOMMUNotifierFlag old_flags,
444 IOMMUNotifierFlag new_flags,
445 Error **errp);
446 /**
447 * @replay:
448 *
449 * Called to handle memory_region_iommu_replay().
450 *
451 * The default implementation of memory_region_iommu_replay() is to
452 * call the IOMMU translate method for every page in the address space
453 * with flag == IOMMU_NONE and then call the notifier if translate
454 * returns a valid mapping. If this method is implemented then it
455 * overrides the default behaviour, and must provide the full semantics
456 * of memory_region_iommu_replay(), by calling @notifier for every
457 * translation present in the IOMMU.
458 *
459 * Optional method -- an IOMMU only needs to provide this method
460 * if the default is inefficient or produces undesirable side effects.
461 *
462 * Note: this is not related to record-and-replay functionality.
463 */
464 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
465
466 /**
467 * @get_attr:
468 *
469 * Get IOMMU misc attributes. This is an optional method that
470 * can be used to allow users of the IOMMU to get implementation-specific
471 * information. The IOMMU implements this method to handle calls
472 * by IOMMU users to memory_region_iommu_get_attr() by filling in
473 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
474 * the IOMMU supports. If the method is unimplemented then
475 * memory_region_iommu_get_attr() will always return -EINVAL.
476 *
477 * @iommu: the IOMMUMemoryRegion
478 *
479 * @attr: attribute being queried
480 *
481 * @data: memory to fill in with the attribute data
482 *
483 * Returns 0 on success, or a negative errno; in particular
484 * returns -EINVAL for unrecognized or unimplemented attribute types.
485 */
486 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
487 void *data);
488
489 /**
490 * @attrs_to_index:
491 *
492 * Return the IOMMU index to use for a given set of transaction attributes.
493 *
494 * Optional method: if an IOMMU only supports a single IOMMU index then
495 * the default implementation of memory_region_iommu_attrs_to_index()
496 * will return 0.
497 *
498 * The indexes supported by an IOMMU must be contiguous, starting at 0.
499 *
500 * @iommu: the IOMMUMemoryRegion
501 * @attrs: memory transaction attributes
502 */
503 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
504
505 /**
506 * @num_indexes:
507 *
508 * Return the number of IOMMU indexes this IOMMU supports.
509 *
510 * Optional method: if this method is not provided, then
511 * memory_region_iommu_num_indexes() will return 1, indicating that
512 * only a single IOMMU index is supported.
513 *
514 * @iommu: the IOMMUMemoryRegion
515 */
516 int (*num_indexes)(IOMMUMemoryRegion *iommu);
517 };
518
519 typedef struct RamDiscardListener RamDiscardListener;
520 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
521 MemoryRegionSection *section);
522 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
523 MemoryRegionSection *section);
524
525 struct RamDiscardListener {
526 /*
527 * @notify_populate:
528 *
529 * Notification that previously discarded memory is about to get populated.
530 * Listeners are able to object. If any listener objects, already
531 * successfully notified listeners are notified about a discard again.
532 *
533 * @rdl: the #RamDiscardListener getting notified
534 * @section: the #MemoryRegionSection to get populated. The section
535 * is aligned within the memory region to the minimum granularity
536 * unless it would exceed the registered section.
537 *
538 * Returns 0 on success. If the notification is rejected by the listener,
539 * an error is returned.
540 */
541 NotifyRamPopulate notify_populate;
542
543 /*
544 * @notify_discard:
545 *
546 * Notification that previously populated memory was discarded successfully
547 * and listeners should drop all references to such memory and prevent
548 * new population (e.g., unmap).
549 *
550 * @rdl: the #RamDiscardListener getting notified
551 * @section: the #MemoryRegionSection to get populated. The section
552 * is aligned within the memory region to the minimum granularity
553 * unless it would exceed the registered section.
554 */
555 NotifyRamDiscard notify_discard;
556
557 /*
558 * @double_discard_supported:
559 *
560 * The listener suppors getting @notify_discard notifications that span
561 * already discarded parts.
562 */
563 bool double_discard_supported;
564
565 MemoryRegionSection *section;
566 QLIST_ENTRY(RamDiscardListener) next;
567 };
568
ram_discard_listener_init(RamDiscardListener * rdl,NotifyRamPopulate populate_fn,NotifyRamDiscard discard_fn,bool double_discard_supported)569 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
570 NotifyRamPopulate populate_fn,
571 NotifyRamDiscard discard_fn,
572 bool double_discard_supported)
573 {
574 rdl->notify_populate = populate_fn;
575 rdl->notify_discard = discard_fn;
576 rdl->double_discard_supported = double_discard_supported;
577 }
578
579 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
580 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
581
582 /*
583 * RamDiscardManagerClass:
584 *
585 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
586 * regions are currently populated to be used/accessed by the VM, notifying
587 * after parts were discarded (freeing up memory) and before parts will be
588 * populated (consuming memory), to be used/accessed by the VM.
589 *
590 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
591 * #MemoryRegion isn't mapped into an address space yet (either directly
592 * or via an alias); it cannot change while the #MemoryRegion is
593 * mapped into an address space.
594 *
595 * The #RamDiscardManager is intended to be used by technologies that are
596 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
597 * memory inside a #MemoryRegion), and require proper coordination to only
598 * map the currently populated parts, to hinder parts that are expected to
599 * remain discarded from silently getting populated and consuming memory.
600 * Technologies that support discarding of RAM don't have to bother and can
601 * simply map the whole #MemoryRegion.
602 *
603 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
604 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
605 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
606 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
607 * properly coordinate with listeners before memory is plugged (populated),
608 * and after memory is unplugged (discarded).
609 *
610 * Listeners are called in multiples of the minimum granularity (unless it
611 * would exceed the registered range) and changes are aligned to the minimum
612 * granularity within the #MemoryRegion. Listeners have to prepare for memory
613 * becoming discarded in a different granularity than it was populated and the
614 * other way around.
615 */
616 struct RamDiscardManagerClass {
617 /* private */
618 InterfaceClass parent_class;
619
620 /* public */
621
622 /**
623 * @get_min_granularity:
624 *
625 * Get the minimum granularity in which listeners will get notified
626 * about changes within the #MemoryRegion via the #RamDiscardManager.
627 *
628 * @rdm: the #RamDiscardManager
629 * @mr: the #MemoryRegion
630 *
631 * Returns the minimum granularity.
632 */
633 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
634 const MemoryRegion *mr);
635
636 /**
637 * @is_populated:
638 *
639 * Check whether the given #MemoryRegionSection is completely populated
640 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
641 * There are no alignment requirements.
642 *
643 * @rdm: the #RamDiscardManager
644 * @section: the #MemoryRegionSection
645 *
646 * Returns whether the given range is completely populated.
647 */
648 bool (*is_populated)(const RamDiscardManager *rdm,
649 const MemoryRegionSection *section);
650
651 /**
652 * @replay_populated:
653 *
654 * Call the #ReplayRamPopulate callback for all populated parts within the
655 * #MemoryRegionSection via the #RamDiscardManager.
656 *
657 * In case any call fails, no further calls are made.
658 *
659 * @rdm: the #RamDiscardManager
660 * @section: the #MemoryRegionSection
661 * @replay_fn: the #ReplayRamPopulate callback
662 * @opaque: pointer to forward to the callback
663 *
664 * Returns 0 on success, or a negative error if any notification failed.
665 */
666 int (*replay_populated)(const RamDiscardManager *rdm,
667 MemoryRegionSection *section,
668 ReplayRamPopulate replay_fn, void *opaque);
669
670 /**
671 * @replay_discarded:
672 *
673 * Call the #ReplayRamDiscard callback for all discarded parts within the
674 * #MemoryRegionSection via the #RamDiscardManager.
675 *
676 * @rdm: the #RamDiscardManager
677 * @section: the #MemoryRegionSection
678 * @replay_fn: the #ReplayRamDiscard callback
679 * @opaque: pointer to forward to the callback
680 */
681 void (*replay_discarded)(const RamDiscardManager *rdm,
682 MemoryRegionSection *section,
683 ReplayRamDiscard replay_fn, void *opaque);
684
685 /**
686 * @register_listener:
687 *
688 * Register a #RamDiscardListener for the given #MemoryRegionSection and
689 * immediately notify the #RamDiscardListener about all populated parts
690 * within the #MemoryRegionSection via the #RamDiscardManager.
691 *
692 * In case any notification fails, no further notifications are triggered
693 * and an error is logged.
694 *
695 * @rdm: the #RamDiscardManager
696 * @rdl: the #RamDiscardListener
697 * @section: the #MemoryRegionSection
698 */
699 void (*register_listener)(RamDiscardManager *rdm,
700 RamDiscardListener *rdl,
701 MemoryRegionSection *section);
702
703 /**
704 * @unregister_listener:
705 *
706 * Unregister a previously registered #RamDiscardListener via the
707 * #RamDiscardManager after notifying the #RamDiscardListener about all
708 * populated parts becoming unpopulated within the registered
709 * #MemoryRegionSection.
710 *
711 * @rdm: the #RamDiscardManager
712 * @rdl: the #RamDiscardListener
713 */
714 void (*unregister_listener)(RamDiscardManager *rdm,
715 RamDiscardListener *rdl);
716 };
717
718 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
719 const MemoryRegion *mr);
720
721 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
722 const MemoryRegionSection *section);
723
724 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
725 MemoryRegionSection *section,
726 ReplayRamPopulate replay_fn,
727 void *opaque);
728
729 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
730 MemoryRegionSection *section,
731 ReplayRamDiscard replay_fn,
732 void *opaque);
733
734 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
735 RamDiscardListener *rdl,
736 MemoryRegionSection *section);
737
738 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
739 RamDiscardListener *rdl);
740
741 /**
742 * memory_get_xlat_addr: Extract addresses from a TLB entry
743 *
744 * @iotlb: pointer to an #IOMMUTLBEntry
745 * @vaddr: virtual address
746 * @ram_addr: RAM address
747 * @read_only: indicates if writes are allowed
748 * @mr_has_discard_manager: indicates memory is controlled by a
749 * RamDiscardManager
750 * @errp: pointer to Error*, to store an error if it happens.
751 *
752 * Return: true on success, else false setting @errp with error.
753 */
754 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
755 ram_addr_t *ram_addr, bool *read_only,
756 bool *mr_has_discard_manager, Error **errp);
757
758 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
759 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
760
761 /** MemoryRegion:
762 *
763 * A struct representing a memory region.
764 */
765 struct MemoryRegion {
766 Object parent_obj;
767
768 /* private: */
769
770 /* The following fields should fit in a cache line */
771 bool romd_mode;
772 bool ram;
773 bool subpage;
774 bool readonly; /* For RAM regions */
775 bool nonvolatile;
776 bool rom_device;
777 bool flush_coalesced_mmio;
778 bool unmergeable;
779 uint8_t dirty_log_mask;
780 bool is_iommu;
781 RAMBlock *ram_block;
782 Object *owner;
783 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
784 DeviceState *dev;
785
786 const MemoryRegionOps *ops;
787 void *opaque;
788 MemoryRegion *container;
789 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
790 Int128 size;
791 hwaddr addr;
792 void (*destructor)(MemoryRegion *mr);
793 uint64_t align;
794 bool terminates;
795 bool ram_device;
796 bool enabled;
797 uint8_t vga_logging_count;
798 MemoryRegion *alias;
799 hwaddr alias_offset;
800 int32_t priority;
801 QTAILQ_HEAD(, MemoryRegion) subregions;
802 QTAILQ_ENTRY(MemoryRegion) subregions_link;
803 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
804 const char *name;
805 unsigned ioeventfd_nb;
806 MemoryRegionIoeventfd *ioeventfds;
807 RamDiscardManager *rdm; /* Only for RAM */
808
809 /* For devices designed to perform re-entrant IO into their own IO MRs */
810 bool disable_reentrancy_guard;
811 };
812
813 struct IOMMUMemoryRegion {
814 MemoryRegion parent_obj;
815
816 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
817 IOMMUNotifierFlag iommu_notify_flags;
818 };
819
820 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
821 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
822
823 #define MEMORY_LISTENER_PRIORITY_MIN 0
824 #define MEMORY_LISTENER_PRIORITY_ACCEL 10
825 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
826
827 /**
828 * struct MemoryListener: callbacks structure for updates to the physical memory map
829 *
830 * Allows a component to adjust to changes in the guest-visible memory map.
831 * Use with memory_listener_register() and memory_listener_unregister().
832 */
833 struct MemoryListener {
834 /**
835 * @begin:
836 *
837 * Called at the beginning of an address space update transaction.
838 * Followed by calls to #MemoryListener.region_add(),
839 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
840 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
841 * increasing address order.
842 *
843 * @listener: The #MemoryListener.
844 */
845 void (*begin)(MemoryListener *listener);
846
847 /**
848 * @commit:
849 *
850 * Called at the end of an address space update transaction,
851 * after the last call to #MemoryListener.region_add(),
852 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
853 * #MemoryListener.log_start() and #MemoryListener.log_stop().
854 *
855 * @listener: The #MemoryListener.
856 */
857 void (*commit)(MemoryListener *listener);
858
859 /**
860 * @region_add:
861 *
862 * Called during an address space update transaction,
863 * for a section of the address space that is new in this address space
864 * space since the last transaction.
865 *
866 * @listener: The #MemoryListener.
867 * @section: The new #MemoryRegionSection.
868 */
869 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
870
871 /**
872 * @region_del:
873 *
874 * Called during an address space update transaction,
875 * for a section of the address space that has disappeared in the address
876 * space since the last transaction.
877 *
878 * @listener: The #MemoryListener.
879 * @section: The old #MemoryRegionSection.
880 */
881 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
882
883 /**
884 * @region_nop:
885 *
886 * Called during an address space update transaction,
887 * for a section of the address space that is in the same place in the address
888 * space as in the last transaction.
889 *
890 * @listener: The #MemoryListener.
891 * @section: The #MemoryRegionSection.
892 */
893 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
894
895 /**
896 * @log_start:
897 *
898 * Called during an address space update transaction, after
899 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
900 * #MemoryListener.region_nop(), if dirty memory logging clients have
901 * become active since the last transaction.
902 *
903 * @listener: The #MemoryListener.
904 * @section: The #MemoryRegionSection.
905 * @old: A bitmap of dirty memory logging clients that were active in
906 * the previous transaction.
907 * @new: A bitmap of dirty memory logging clients that are active in
908 * the current transaction.
909 */
910 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
911 int old_val, int new_val);
912
913 /**
914 * @log_stop:
915 *
916 * Called during an address space update transaction, after
917 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
918 * #MemoryListener.region_nop() and possibly after
919 * #MemoryListener.log_start(), if dirty memory logging clients have
920 * become inactive since the last transaction.
921 *
922 * @listener: The #MemoryListener.
923 * @section: The #MemoryRegionSection.
924 * @old: A bitmap of dirty memory logging clients that were active in
925 * the previous transaction.
926 * @new: A bitmap of dirty memory logging clients that are active in
927 * the current transaction.
928 */
929 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
930 int old_val, int new_val);
931
932 /**
933 * @log_sync:
934 *
935 * Called by memory_region_snapshot_and_clear_dirty() and
936 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
937 * copy of the dirty memory bitmap for a #MemoryRegionSection.
938 *
939 * @listener: The #MemoryListener.
940 * @section: The #MemoryRegionSection.
941 */
942 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
943
944 /**
945 * @log_sync_global:
946 *
947 * This is the global version of @log_sync when the listener does
948 * not have a way to synchronize the log with finer granularity.
949 * When the listener registers with @log_sync_global defined, then
950 * its @log_sync must be NULL. Vice versa.
951 *
952 * @listener: The #MemoryListener.
953 * @last_stage: The last stage to synchronize the log during migration.
954 * The caller should guarantee that the synchronization with true for
955 * @last_stage is triggered for once after all VCPUs have been stopped.
956 */
957 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
958
959 /**
960 * @log_clear:
961 *
962 * Called before reading the dirty memory bitmap for a
963 * #MemoryRegionSection.
964 *
965 * @listener: The #MemoryListener.
966 * @section: The #MemoryRegionSection.
967 */
968 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
969
970 /**
971 * @log_global_start:
972 *
973 * Called by memory_global_dirty_log_start(), which
974 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
975 * the address space. #MemoryListener.log_global_start() is also
976 * called when a #MemoryListener is added, if global dirty logging is
977 * active at that time.
978 *
979 * @listener: The #MemoryListener.
980 * @errp: pointer to Error*, to store an error if it happens.
981 *
982 * Return: true on success, else false setting @errp with error.
983 */
984 bool (*log_global_start)(MemoryListener *listener, Error **errp);
985
986 /**
987 * @log_global_stop:
988 *
989 * Called by memory_global_dirty_log_stop(), which
990 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
991 * the address space.
992 *
993 * @listener: The #MemoryListener.
994 */
995 void (*log_global_stop)(MemoryListener *listener);
996
997 /**
998 * @log_global_after_sync:
999 *
1000 * Called after reading the dirty memory bitmap
1001 * for any #MemoryRegionSection.
1002 *
1003 * @listener: The #MemoryListener.
1004 */
1005 void (*log_global_after_sync)(MemoryListener *listener);
1006
1007 /**
1008 * @eventfd_add:
1009 *
1010 * Called during an address space update transaction,
1011 * for a section of the address space that has had a new ioeventfd
1012 * registration since the last transaction.
1013 *
1014 * @listener: The #MemoryListener.
1015 * @section: The new #MemoryRegionSection.
1016 * @match_data: The @match_data parameter for the new ioeventfd.
1017 * @data: The @data parameter for the new ioeventfd.
1018 * @e: The #EventNotifier parameter for the new ioeventfd.
1019 */
1020 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1021 bool match_data, uint64_t data, EventNotifier *e);
1022
1023 /**
1024 * @eventfd_del:
1025 *
1026 * Called during an address space update transaction,
1027 * for a section of the address space that has dropped an ioeventfd
1028 * registration since the last transaction.
1029 *
1030 * @listener: The #MemoryListener.
1031 * @section: The new #MemoryRegionSection.
1032 * @match_data: The @match_data parameter for the dropped ioeventfd.
1033 * @data: The @data parameter for the dropped ioeventfd.
1034 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1035 */
1036 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1037 bool match_data, uint64_t data, EventNotifier *e);
1038
1039 /**
1040 * @coalesced_io_add:
1041 *
1042 * Called during an address space update transaction,
1043 * for a section of the address space that has had a new coalesced
1044 * MMIO range registration since the last transaction.
1045 *
1046 * @listener: The #MemoryListener.
1047 * @section: The new #MemoryRegionSection.
1048 * @addr: The starting address for the coalesced MMIO range.
1049 * @len: The length of the coalesced MMIO range.
1050 */
1051 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1052 hwaddr addr, hwaddr len);
1053
1054 /**
1055 * @coalesced_io_del:
1056 *
1057 * Called during an address space update transaction,
1058 * for a section of the address space that has dropped a coalesced
1059 * MMIO range since the last transaction.
1060 *
1061 * @listener: The #MemoryListener.
1062 * @section: The new #MemoryRegionSection.
1063 * @addr: The starting address for the coalesced MMIO range.
1064 * @len: The length of the coalesced MMIO range.
1065 */
1066 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1067 hwaddr addr, hwaddr len);
1068 /**
1069 * @priority:
1070 *
1071 * Govern the order in which memory listeners are invoked. Lower priorities
1072 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1073 * or "stop" callbacks.
1074 */
1075 unsigned priority;
1076
1077 /**
1078 * @name:
1079 *
1080 * Name of the listener. It can be used in contexts where we'd like to
1081 * identify one memory listener with the rest.
1082 */
1083 const char *name;
1084
1085 /* private: */
1086 AddressSpace *address_space;
1087 QTAILQ_ENTRY(MemoryListener) link;
1088 QTAILQ_ENTRY(MemoryListener) link_as;
1089 };
1090
1091 typedef struct AddressSpaceMapClient {
1092 QEMUBH *bh;
1093 QLIST_ENTRY(AddressSpaceMapClient) link;
1094 } AddressSpaceMapClient;
1095
1096 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096)
1097
1098 /**
1099 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1100 */
1101 struct AddressSpace {
1102 /* private: */
1103 struct rcu_head rcu;
1104 char *name;
1105 MemoryRegion *root;
1106
1107 /* Accessed via RCU. */
1108 struct FlatView *current_map;
1109
1110 int ioeventfd_nb;
1111 int ioeventfd_notifiers;
1112 struct MemoryRegionIoeventfd *ioeventfds;
1113 QTAILQ_HEAD(, MemoryListener) listeners;
1114 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1115
1116 /*
1117 * Maximum DMA bounce buffer size used for indirect memory map requests.
1118 * This limits the total size of bounce buffer allocations made for
1119 * DMA requests to indirect memory regions within this AddressSpace. DMA
1120 * requests that exceed the limit (e.g. due to overly large requested size
1121 * or concurrent DMA requests having claimed too much buffer space) will be
1122 * rejected and left to the caller to handle.
1123 */
1124 size_t max_bounce_buffer_size;
1125 /* Total size of bounce buffers currently allocated, atomically accessed */
1126 size_t bounce_buffer_size;
1127 /* List of callbacks to invoke when buffers free up */
1128 QemuMutex map_client_list_lock;
1129 QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1130 };
1131
1132 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1133 typedef struct FlatRange FlatRange;
1134
1135 /* Flattened global view of current active memory hierarchy. Kept in sorted
1136 * order.
1137 */
1138 struct FlatView {
1139 struct rcu_head rcu;
1140 unsigned ref;
1141 FlatRange *ranges;
1142 unsigned nr;
1143 unsigned nr_allocated;
1144 struct AddressSpaceDispatch *dispatch;
1145 MemoryRegion *root;
1146 };
1147
address_space_to_flatview(AddressSpace * as)1148 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1149 {
1150 return qatomic_rcu_read(&as->current_map);
1151 }
1152
1153 /**
1154 * typedef flatview_cb: callback for flatview_for_each_range()
1155 *
1156 * @start: start address of the range within the FlatView
1157 * @len: length of the range in bytes
1158 * @mr: MemoryRegion covering this range
1159 * @offset_in_region: offset of the first byte of the range within @mr
1160 * @opaque: data pointer passed to flatview_for_each_range()
1161 *
1162 * Returns: true to stop the iteration, false to keep going.
1163 */
1164 typedef bool (*flatview_cb)(Int128 start,
1165 Int128 len,
1166 const MemoryRegion *mr,
1167 hwaddr offset_in_region,
1168 void *opaque);
1169
1170 /**
1171 * flatview_for_each_range: Iterate through a FlatView
1172 * @fv: the FlatView to iterate through
1173 * @cb: function to call for each range
1174 * @opaque: opaque data pointer to pass to @cb
1175 *
1176 * A FlatView is made up of a list of non-overlapping ranges, each of
1177 * which is a slice of a MemoryRegion. This function iterates through
1178 * each range in @fv, calling @cb. The callback function can terminate
1179 * iteration early by returning 'true'.
1180 */
1181 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1182
MemoryRegionSection_eq(MemoryRegionSection * a,MemoryRegionSection * b)1183 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1184 MemoryRegionSection *b)
1185 {
1186 return a->mr == b->mr &&
1187 a->fv == b->fv &&
1188 a->offset_within_region == b->offset_within_region &&
1189 a->offset_within_address_space == b->offset_within_address_space &&
1190 int128_eq(a->size, b->size) &&
1191 a->readonly == b->readonly &&
1192 a->nonvolatile == b->nonvolatile;
1193 }
1194
1195 /**
1196 * memory_region_section_new_copy: Copy a memory region section
1197 *
1198 * Allocate memory for a new copy, copy the memory region section, and
1199 * properly take a reference on all relevant members.
1200 *
1201 * @s: the #MemoryRegionSection to copy
1202 */
1203 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1204
1205 /**
1206 * memory_region_section_free_copy: Free a copied memory region section
1207 *
1208 * Free a copy of a memory section created via memory_region_section_new_copy().
1209 * properly dropping references on all relevant members.
1210 *
1211 * @s: the #MemoryRegionSection to copy
1212 */
1213 void memory_region_section_free_copy(MemoryRegionSection *s);
1214
1215 /**
1216 * memory_region_init: Initialize a memory region
1217 *
1218 * The region typically acts as a container for other memory regions. Use
1219 * memory_region_add_subregion() to add subregions.
1220 *
1221 * @mr: the #MemoryRegion to be initialized
1222 * @owner: the object that tracks the region's reference count
1223 * @name: used for debugging; not visible to the user or ABI
1224 * @size: size of the region; any subregions beyond this size will be clipped
1225 */
1226 void memory_region_init(MemoryRegion *mr,
1227 Object *owner,
1228 const char *name,
1229 uint64_t size);
1230
1231 /**
1232 * memory_region_ref: Add 1 to a memory region's reference count
1233 *
1234 * Whenever memory regions are accessed outside the BQL, they need to be
1235 * preserved against hot-unplug. MemoryRegions actually do not have their
1236 * own reference count; they piggyback on a QOM object, their "owner".
1237 * This function adds a reference to the owner.
1238 *
1239 * All MemoryRegions must have an owner if they can disappear, even if the
1240 * device they belong to operates exclusively under the BQL. This is because
1241 * the region could be returned at any time by memory_region_find, and this
1242 * is usually under guest control.
1243 *
1244 * @mr: the #MemoryRegion
1245 */
1246 void memory_region_ref(MemoryRegion *mr);
1247
1248 /**
1249 * memory_region_unref: Remove 1 to a memory region's reference count
1250 *
1251 * Whenever memory regions are accessed outside the BQL, they need to be
1252 * preserved against hot-unplug. MemoryRegions actually do not have their
1253 * own reference count; they piggyback on a QOM object, their "owner".
1254 * This function removes a reference to the owner and possibly destroys it.
1255 *
1256 * @mr: the #MemoryRegion
1257 */
1258 void memory_region_unref(MemoryRegion *mr);
1259
1260 /**
1261 * memory_region_init_io: Initialize an I/O memory region.
1262 *
1263 * Accesses into the region will cause the callbacks in @ops to be called.
1264 * if @size is nonzero, subregions will be clipped to @size.
1265 *
1266 * @mr: the #MemoryRegion to be initialized.
1267 * @owner: the object that tracks the region's reference count
1268 * @ops: a structure containing read and write callbacks to be used when
1269 * I/O is performed on the region.
1270 * @opaque: passed to the read and write callbacks of the @ops structure.
1271 * @name: used for debugging; not visible to the user or ABI
1272 * @size: size of the region.
1273 */
1274 void memory_region_init_io(MemoryRegion *mr,
1275 Object *owner,
1276 const MemoryRegionOps *ops,
1277 void *opaque,
1278 const char *name,
1279 uint64_t size);
1280
1281 /**
1282 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1283 * into the region will modify memory
1284 * directly.
1285 *
1286 * @mr: the #MemoryRegion to be initialized.
1287 * @owner: the object that tracks the region's reference count
1288 * @name: Region name, becomes part of RAMBlock name used in migration stream
1289 * must be unique within any device
1290 * @size: size of the region.
1291 * @errp: pointer to Error*, to store an error if it happens.
1292 *
1293 * Note that this function does not do anything to cause the data in the
1294 * RAM memory region to be migrated; that is the responsibility of the caller.
1295 *
1296 * Return: true on success, else false setting @errp with error.
1297 */
1298 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1299 Object *owner,
1300 const char *name,
1301 uint64_t size,
1302 Error **errp);
1303
1304 /**
1305 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1306 * Accesses into the region will
1307 * modify memory directly.
1308 *
1309 * @mr: the #MemoryRegion to be initialized.
1310 * @owner: the object that tracks the region's reference count
1311 * @name: Region name, becomes part of RAMBlock name used in migration stream
1312 * must be unique within any device
1313 * @size: size of the region.
1314 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1315 * RAM_GUEST_MEMFD.
1316 * @errp: pointer to Error*, to store an error if it happens.
1317 *
1318 * Note that this function does not do anything to cause the data in the
1319 * RAM memory region to be migrated; that is the responsibility of the caller.
1320 *
1321 * Return: true on success, else false setting @errp with error.
1322 */
1323 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1324 Object *owner,
1325 const char *name,
1326 uint64_t size,
1327 uint32_t ram_flags,
1328 Error **errp);
1329
1330 /**
1331 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1332 * RAM. Accesses into the region will
1333 * modify memory directly. Only an initial
1334 * portion of this RAM is actually used.
1335 * Changing the size while migrating
1336 * can result in the migration being
1337 * canceled.
1338 *
1339 * @mr: the #MemoryRegion to be initialized.
1340 * @owner: the object that tracks the region's reference count
1341 * @name: Region name, becomes part of RAMBlock name used in migration stream
1342 * must be unique within any device
1343 * @size: used size of the region.
1344 * @max_size: max size of the region.
1345 * @resized: callback to notify owner about used size change.
1346 * @errp: pointer to Error*, to store an error if it happens.
1347 *
1348 * Note that this function does not do anything to cause the data in the
1349 * RAM memory region to be migrated; that is the responsibility of the caller.
1350 *
1351 * Return: true on success, else false setting @errp with error.
1352 */
1353 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1354 Object *owner,
1355 const char *name,
1356 uint64_t size,
1357 uint64_t max_size,
1358 void (*resized)(const char*,
1359 uint64_t length,
1360 void *host),
1361 Error **errp);
1362 #ifdef CONFIG_POSIX
1363
1364 /**
1365 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1366 * mmap-ed backend.
1367 *
1368 * @mr: the #MemoryRegion to be initialized.
1369 * @owner: the object that tracks the region's reference count
1370 * @name: Region name, becomes part of RAMBlock name used in migration stream
1371 * must be unique within any device
1372 * @size: size of the region.
1373 * @align: alignment of the region base address; if 0, the default alignment
1374 * (getpagesize()) will be used.
1375 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1376 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1377 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1378 * @path: the path in which to allocate the RAM.
1379 * @offset: offset within the file referenced by path
1380 * @errp: pointer to Error*, to store an error if it happens.
1381 *
1382 * Note that this function does not do anything to cause the data in the
1383 * RAM memory region to be migrated; that is the responsibility of the caller.
1384 *
1385 * Return: true on success, else false setting @errp with error.
1386 */
1387 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1388 Object *owner,
1389 const char *name,
1390 uint64_t size,
1391 uint64_t align,
1392 uint32_t ram_flags,
1393 const char *path,
1394 ram_addr_t offset,
1395 Error **errp);
1396
1397 /**
1398 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1399 * mmap-ed backend.
1400 *
1401 * @mr: the #MemoryRegion to be initialized.
1402 * @owner: the object that tracks the region's reference count
1403 * @name: the name of the region.
1404 * @size: size of the region.
1405 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1406 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1407 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1408 * @fd: the fd to mmap.
1409 * @offset: offset within the file referenced by fd
1410 * @errp: pointer to Error*, to store an error if it happens.
1411 *
1412 * Note that this function does not do anything to cause the data in the
1413 * RAM memory region to be migrated; that is the responsibility of the caller.
1414 *
1415 * Return: true on success, else false setting @errp with error.
1416 */
1417 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1418 Object *owner,
1419 const char *name,
1420 uint64_t size,
1421 uint32_t ram_flags,
1422 int fd,
1423 ram_addr_t offset,
1424 Error **errp);
1425 #endif
1426
1427 /**
1428 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1429 * user-provided pointer. Accesses into the
1430 * region will modify memory directly.
1431 *
1432 * @mr: the #MemoryRegion to be initialized.
1433 * @owner: the object that tracks the region's reference count
1434 * @name: Region name, becomes part of RAMBlock name used in migration stream
1435 * must be unique within any device
1436 * @size: size of the region.
1437 * @ptr: memory to be mapped; must contain at least @size bytes.
1438 *
1439 * Note that this function does not do anything to cause the data in the
1440 * RAM memory region to be migrated; that is the responsibility of the caller.
1441 */
1442 void memory_region_init_ram_ptr(MemoryRegion *mr,
1443 Object *owner,
1444 const char *name,
1445 uint64_t size,
1446 void *ptr);
1447
1448 /**
1449 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1450 * a user-provided pointer.
1451 *
1452 * A RAM device represents a mapping to a physical device, such as to a PCI
1453 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1454 * into the VM address space and access to the region will modify memory
1455 * directly. However, the memory region should not be included in a memory
1456 * dump (device may not be enabled/mapped at the time of the dump), and
1457 * operations incompatible with manipulating MMIO should be avoided. Replaces
1458 * skip_dump flag.
1459 *
1460 * @mr: the #MemoryRegion to be initialized.
1461 * @owner: the object that tracks the region's reference count
1462 * @name: the name of the region.
1463 * @size: size of the region.
1464 * @ptr: memory to be mapped; must contain at least @size bytes.
1465 *
1466 * Note that this function does not do anything to cause the data in the
1467 * RAM memory region to be migrated; that is the responsibility of the caller.
1468 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1469 */
1470 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1471 Object *owner,
1472 const char *name,
1473 uint64_t size,
1474 void *ptr);
1475
1476 /**
1477 * memory_region_init_alias: Initialize a memory region that aliases all or a
1478 * part of another memory region.
1479 *
1480 * @mr: the #MemoryRegion to be initialized.
1481 * @owner: the object that tracks the region's reference count
1482 * @name: used for debugging; not visible to the user or ABI
1483 * @orig: the region to be referenced; @mr will be equivalent to
1484 * @orig between @offset and @offset + @size - 1.
1485 * @offset: start of the section in @orig to be referenced.
1486 * @size: size of the region.
1487 */
1488 void memory_region_init_alias(MemoryRegion *mr,
1489 Object *owner,
1490 const char *name,
1491 MemoryRegion *orig,
1492 hwaddr offset,
1493 uint64_t size);
1494
1495 /**
1496 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1497 *
1498 * This has the same effect as calling memory_region_init_ram_nomigrate()
1499 * and then marking the resulting region read-only with
1500 * memory_region_set_readonly().
1501 *
1502 * Note that this function does not do anything to cause the data in the
1503 * RAM side of the memory region to be migrated; that is the responsibility
1504 * of the caller.
1505 *
1506 * @mr: the #MemoryRegion to be initialized.
1507 * @owner: the object that tracks the region's reference count
1508 * @name: Region name, becomes part of RAMBlock name used in migration stream
1509 * must be unique within any device
1510 * @size: size of the region.
1511 * @errp: pointer to Error*, to store an error if it happens.
1512 *
1513 * Return: true on success, else false setting @errp with error.
1514 */
1515 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1516 Object *owner,
1517 const char *name,
1518 uint64_t size,
1519 Error **errp);
1520
1521 /**
1522 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1523 * Writes are handled via callbacks.
1524 *
1525 * Note that this function does not do anything to cause the data in the
1526 * RAM side of the memory region to be migrated; that is the responsibility
1527 * of the caller.
1528 *
1529 * @mr: the #MemoryRegion to be initialized.
1530 * @owner: the object that tracks the region's reference count
1531 * @ops: callbacks for write access handling (must not be NULL).
1532 * @opaque: passed to the read and write callbacks of the @ops structure.
1533 * @name: Region name, becomes part of RAMBlock name used in migration stream
1534 * must be unique within any device
1535 * @size: size of the region.
1536 * @errp: pointer to Error*, to store an error if it happens.
1537 *
1538 * Return: true on success, else false setting @errp with error.
1539 */
1540 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1541 Object *owner,
1542 const MemoryRegionOps *ops,
1543 void *opaque,
1544 const char *name,
1545 uint64_t size,
1546 Error **errp);
1547
1548 /**
1549 * memory_region_init_iommu: Initialize a memory region of a custom type
1550 * that translates addresses
1551 *
1552 * An IOMMU region translates addresses and forwards accesses to a target
1553 * memory region.
1554 *
1555 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1556 * @_iommu_mr should be a pointer to enough memory for an instance of
1557 * that subclass, @instance_size is the size of that subclass, and
1558 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1559 * instance of the subclass, and its methods will then be called to handle
1560 * accesses to the memory region. See the documentation of
1561 * #IOMMUMemoryRegionClass for further details.
1562 *
1563 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1564 * @instance_size: the IOMMUMemoryRegion subclass instance size
1565 * @mrtypename: the type name of the #IOMMUMemoryRegion
1566 * @owner: the object that tracks the region's reference count
1567 * @name: used for debugging; not visible to the user or ABI
1568 * @size: size of the region.
1569 */
1570 void memory_region_init_iommu(void *_iommu_mr,
1571 size_t instance_size,
1572 const char *mrtypename,
1573 Object *owner,
1574 const char *name,
1575 uint64_t size);
1576
1577 /**
1578 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1579 * region will modify memory directly.
1580 *
1581 * @mr: the #MemoryRegion to be initialized
1582 * @owner: the object that tracks the region's reference count (must be
1583 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1584 * @name: name of the memory region
1585 * @size: size of the region in bytes
1586 * @errp: pointer to Error*, to store an error if it happens.
1587 *
1588 * This function allocates RAM for a board model or device, and
1589 * arranges for it to be migrated (by calling vmstate_register_ram()
1590 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1591 * @owner is NULL).
1592 *
1593 * TODO: Currently we restrict @owner to being either NULL (for
1594 * global RAM regions with no owner) or devices, so that we can
1595 * give the RAM block a unique name for migration purposes.
1596 * We should lift this restriction and allow arbitrary Objects.
1597 * If you pass a non-NULL non-device @owner then we will assert.
1598 *
1599 * Return: true on success, else false setting @errp with error.
1600 */
1601 bool memory_region_init_ram(MemoryRegion *mr,
1602 Object *owner,
1603 const char *name,
1604 uint64_t size,
1605 Error **errp);
1606
1607 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1608 Object *owner,
1609 const char *name,
1610 uint64_t size,
1611 Error **errp);
1612
1613 /**
1614 * memory_region_init_rom: Initialize a ROM memory region.
1615 *
1616 * This has the same effect as calling memory_region_init_ram()
1617 * and then marking the resulting region read-only with
1618 * memory_region_set_readonly(). This includes arranging for the
1619 * contents to be migrated.
1620 *
1621 * TODO: Currently we restrict @owner to being either NULL (for
1622 * global RAM regions with no owner) or devices, so that we can
1623 * give the RAM block a unique name for migration purposes.
1624 * We should lift this restriction and allow arbitrary Objects.
1625 * If you pass a non-NULL non-device @owner then we will assert.
1626 *
1627 * @mr: the #MemoryRegion to be initialized.
1628 * @owner: the object that tracks the region's reference count
1629 * @name: Region name, becomes part of RAMBlock name used in migration stream
1630 * must be unique within any device
1631 * @size: size of the region.
1632 * @errp: pointer to Error*, to store an error if it happens.
1633 *
1634 * Return: true on success, else false setting @errp with error.
1635 */
1636 bool memory_region_init_rom(MemoryRegion *mr,
1637 Object *owner,
1638 const char *name,
1639 uint64_t size,
1640 Error **errp);
1641
1642 /**
1643 * memory_region_init_rom_device: Initialize a ROM memory region.
1644 * Writes are handled via callbacks.
1645 *
1646 * This function initializes a memory region backed by RAM for reads
1647 * and callbacks for writes, and arranges for the RAM backing to
1648 * be migrated (by calling vmstate_register_ram()
1649 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1650 * @owner is NULL).
1651 *
1652 * TODO: Currently we restrict @owner to being either NULL (for
1653 * global RAM regions with no owner) or devices, so that we can
1654 * give the RAM block a unique name for migration purposes.
1655 * We should lift this restriction and allow arbitrary Objects.
1656 * If you pass a non-NULL non-device @owner then we will assert.
1657 *
1658 * @mr: the #MemoryRegion to be initialized.
1659 * @owner: the object that tracks the region's reference count
1660 * @ops: callbacks for write access handling (must not be NULL).
1661 * @opaque: passed to the read and write callbacks of the @ops structure.
1662 * @name: Region name, becomes part of RAMBlock name used in migration stream
1663 * must be unique within any device
1664 * @size: size of the region.
1665 * @errp: pointer to Error*, to store an error if it happens.
1666 *
1667 * Return: true on success, else false setting @errp with error.
1668 */
1669 bool memory_region_init_rom_device(MemoryRegion *mr,
1670 Object *owner,
1671 const MemoryRegionOps *ops,
1672 void *opaque,
1673 const char *name,
1674 uint64_t size,
1675 Error **errp);
1676
1677
1678 /**
1679 * memory_region_owner: get a memory region's owner.
1680 *
1681 * @mr: the memory region being queried.
1682 */
1683 Object *memory_region_owner(MemoryRegion *mr);
1684
1685 /**
1686 * memory_region_size: get a memory region's size.
1687 *
1688 * @mr: the memory region being queried.
1689 */
1690 uint64_t memory_region_size(MemoryRegion *mr);
1691
1692 /**
1693 * memory_region_is_ram: check whether a memory region is random access
1694 *
1695 * Returns %true if a memory region is random access.
1696 *
1697 * @mr: the memory region being queried
1698 */
memory_region_is_ram(MemoryRegion * mr)1699 static inline bool memory_region_is_ram(MemoryRegion *mr)
1700 {
1701 return mr->ram;
1702 }
1703
1704 /**
1705 * memory_region_is_ram_device: check whether a memory region is a ram device
1706 *
1707 * Returns %true if a memory region is a device backed ram region
1708 *
1709 * @mr: the memory region being queried
1710 */
1711 bool memory_region_is_ram_device(MemoryRegion *mr);
1712
1713 /**
1714 * memory_region_is_romd: check whether a memory region is in ROMD mode
1715 *
1716 * Returns %true if a memory region is a ROM device and currently set to allow
1717 * direct reads.
1718 *
1719 * @mr: the memory region being queried
1720 */
memory_region_is_romd(MemoryRegion * mr)1721 static inline bool memory_region_is_romd(MemoryRegion *mr)
1722 {
1723 return mr->rom_device && mr->romd_mode;
1724 }
1725
1726 /**
1727 * memory_region_is_protected: check whether a memory region is protected
1728 *
1729 * Returns %true if a memory region is protected RAM and cannot be accessed
1730 * via standard mechanisms, e.g. DMA.
1731 *
1732 * @mr: the memory region being queried
1733 */
1734 bool memory_region_is_protected(MemoryRegion *mr);
1735
1736 /**
1737 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1738 * associated
1739 *
1740 * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1741 *
1742 * @mr: the memory region being queried
1743 */
1744 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1745
1746 /**
1747 * memory_region_get_iommu: check whether a memory region is an iommu
1748 *
1749 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1750 * otherwise NULL.
1751 *
1752 * @mr: the memory region being queried
1753 */
memory_region_get_iommu(MemoryRegion * mr)1754 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1755 {
1756 if (mr->alias) {
1757 return memory_region_get_iommu(mr->alias);
1758 }
1759 if (mr->is_iommu) {
1760 return (IOMMUMemoryRegion *) mr;
1761 }
1762 return NULL;
1763 }
1764
1765 /**
1766 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1767 * if an iommu or NULL if not
1768 *
1769 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1770 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1771 *
1772 * @iommu_mr: the memory region being queried
1773 */
memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)1774 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1775 IOMMUMemoryRegion *iommu_mr)
1776 {
1777 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1778 }
1779
1780 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1781
1782 /**
1783 * memory_region_iommu_get_min_page_size: get minimum supported page size
1784 * for an iommu
1785 *
1786 * Returns minimum supported page size for an iommu.
1787 *
1788 * @iommu_mr: the memory region being queried
1789 */
1790 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1791
1792 /**
1793 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1794 *
1795 * Note: for any IOMMU implementation, an in-place mapping change
1796 * should be notified with an UNMAP followed by a MAP.
1797 *
1798 * @iommu_mr: the memory region that was changed
1799 * @iommu_idx: the IOMMU index for the translation table which has changed
1800 * @event: TLB event with the new entry in the IOMMU translation table.
1801 * The entry replaces all old entries for the same virtual I/O address
1802 * range.
1803 */
1804 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1805 int iommu_idx,
1806 const IOMMUTLBEvent event);
1807
1808 /**
1809 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1810 * entry to a single notifier
1811 *
1812 * This works just like memory_region_notify_iommu(), but it only
1813 * notifies a specific notifier, not all of them.
1814 *
1815 * @notifier: the notifier to be notified
1816 * @event: TLB event with the new entry in the IOMMU translation table.
1817 * The entry replaces all old entries for the same virtual I/O address
1818 * range.
1819 */
1820 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1821 const IOMMUTLBEvent *event);
1822
1823 /**
1824 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1825 * translation that covers the
1826 * range of a notifier
1827 *
1828 * @notifier: the notifier to be notified
1829 */
1830 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1831
1832
1833 /**
1834 * memory_region_register_iommu_notifier: register a notifier for changes to
1835 * IOMMU translation entries.
1836 *
1837 * Returns 0 on success, or a negative errno otherwise. In particular,
1838 * -EINVAL indicates that at least one of the attributes of the notifier
1839 * is not supported (flag/range) by the IOMMU memory region. In case of error
1840 * the error object must be created.
1841 *
1842 * @mr: the memory region to observe
1843 * @n: the IOMMUNotifier to be added; the notify callback receives a
1844 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1845 * ceases to be valid on exit from the notifier.
1846 * @errp: pointer to Error*, to store an error if it happens.
1847 */
1848 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1849 IOMMUNotifier *n, Error **errp);
1850
1851 /**
1852 * memory_region_iommu_replay: replay existing IOMMU translations to
1853 * a notifier with the minimum page granularity returned by
1854 * mr->iommu_ops->get_page_size().
1855 *
1856 * Note: this is not related to record-and-replay functionality.
1857 *
1858 * @iommu_mr: the memory region to observe
1859 * @n: the notifier to which to replay iommu mappings
1860 */
1861 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1862
1863 /**
1864 * memory_region_unregister_iommu_notifier: unregister a notifier for
1865 * changes to IOMMU translation entries.
1866 *
1867 * @mr: the memory region which was observed and for which notify_stopped()
1868 * needs to be called
1869 * @n: the notifier to be removed.
1870 */
1871 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1872 IOMMUNotifier *n);
1873
1874 /**
1875 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1876 * defined on the IOMMU.
1877 *
1878 * Returns 0 on success, or a negative errno otherwise. In particular,
1879 * -EINVAL indicates that the IOMMU does not support the requested
1880 * attribute.
1881 *
1882 * @iommu_mr: the memory region
1883 * @attr: the requested attribute
1884 * @data: a pointer to the requested attribute data
1885 */
1886 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1887 enum IOMMUMemoryRegionAttr attr,
1888 void *data);
1889
1890 /**
1891 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1892 * use for translations with the given memory transaction attributes.
1893 *
1894 * @iommu_mr: the memory region
1895 * @attrs: the memory transaction attributes
1896 */
1897 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1898 MemTxAttrs attrs);
1899
1900 /**
1901 * memory_region_iommu_num_indexes: return the total number of IOMMU
1902 * indexes that this IOMMU supports.
1903 *
1904 * @iommu_mr: the memory region
1905 */
1906 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1907
1908 /**
1909 * memory_region_name: get a memory region's name
1910 *
1911 * Returns the string that was used to initialize the memory region.
1912 *
1913 * @mr: the memory region being queried
1914 */
1915 const char *memory_region_name(const MemoryRegion *mr);
1916
1917 /**
1918 * memory_region_is_logging: return whether a memory region is logging writes
1919 *
1920 * Returns %true if the memory region is logging writes for the given client
1921 *
1922 * @mr: the memory region being queried
1923 * @client: the client being queried
1924 */
1925 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1926
1927 /**
1928 * memory_region_get_dirty_log_mask: return the clients for which a
1929 * memory region is logging writes.
1930 *
1931 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1932 * are the bit indices.
1933 *
1934 * @mr: the memory region being queried
1935 */
1936 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1937
1938 /**
1939 * memory_region_is_rom: check whether a memory region is ROM
1940 *
1941 * Returns %true if a memory region is read-only memory.
1942 *
1943 * @mr: the memory region being queried
1944 */
memory_region_is_rom(MemoryRegion * mr)1945 static inline bool memory_region_is_rom(MemoryRegion *mr)
1946 {
1947 return mr->ram && mr->readonly;
1948 }
1949
1950 /**
1951 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1952 *
1953 * Returns %true is a memory region is non-volatile memory.
1954 *
1955 * @mr: the memory region being queried
1956 */
memory_region_is_nonvolatile(MemoryRegion * mr)1957 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1958 {
1959 return mr->nonvolatile;
1960 }
1961
1962 /**
1963 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1964 *
1965 * Returns a file descriptor backing a file-based RAM memory region,
1966 * or -1 if the region is not a file-based RAM memory region.
1967 *
1968 * @mr: the RAM or alias memory region being queried.
1969 */
1970 int memory_region_get_fd(MemoryRegion *mr);
1971
1972 /**
1973 * memory_region_from_host: Convert a pointer into a RAM memory region
1974 * and an offset within it.
1975 *
1976 * Given a host pointer inside a RAM memory region (created with
1977 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1978 * the MemoryRegion and the offset within it.
1979 *
1980 * Use with care; by the time this function returns, the returned pointer is
1981 * not protected by RCU anymore. If the caller is not within an RCU critical
1982 * section and does not hold the BQL, it must have other means of
1983 * protecting the pointer, such as a reference to the region that includes
1984 * the incoming ram_addr_t.
1985 *
1986 * @ptr: the host pointer to be converted
1987 * @offset: the offset within memory region
1988 */
1989 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1990
1991 /**
1992 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1993 *
1994 * Returns a host pointer to a RAM memory region (created with
1995 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1996 *
1997 * Use with care; by the time this function returns, the returned pointer is
1998 * not protected by RCU anymore. If the caller is not within an RCU critical
1999 * section and does not hold the BQL, it must have other means of
2000 * protecting the pointer, such as a reference to the region that includes
2001 * the incoming ram_addr_t.
2002 *
2003 * @mr: the memory region being queried.
2004 */
2005 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2006
2007 /* memory_region_ram_resize: Resize a RAM region.
2008 *
2009 * Resizing RAM while migrating can result in the migration being canceled.
2010 * Care has to be taken if the guest might have already detected the memory.
2011 *
2012 * @mr: a memory region created with @memory_region_init_resizeable_ram.
2013 * @newsize: the new size the region
2014 * @errp: pointer to Error*, to store an error if it happens.
2015 */
2016 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2017 Error **errp);
2018
2019 /**
2020 * memory_region_msync: Synchronize selected address range of
2021 * a memory mapped region
2022 *
2023 * @mr: the memory region to be msync
2024 * @addr: the initial address of the range to be sync
2025 * @size: the size of the range to be sync
2026 */
2027 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2028
2029 /**
2030 * memory_region_writeback: Trigger cache writeback for
2031 * selected address range
2032 *
2033 * @mr: the memory region to be updated
2034 * @addr: the initial address of the range to be written back
2035 * @size: the size of the range to be written back
2036 */
2037 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2038
2039 /**
2040 * memory_region_set_log: Turn dirty logging on or off for a region.
2041 *
2042 * Turns dirty logging on or off for a specified client (display, migration).
2043 * Only meaningful for RAM regions.
2044 *
2045 * @mr: the memory region being updated.
2046 * @log: whether dirty logging is to be enabled or disabled.
2047 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2048 */
2049 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2050
2051 /**
2052 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2053 *
2054 * Marks a range of bytes as dirty, after it has been dirtied outside
2055 * guest code.
2056 *
2057 * @mr: the memory region being dirtied.
2058 * @addr: the address (relative to the start of the region) being dirtied.
2059 * @size: size of the range being dirtied.
2060 */
2061 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2062 hwaddr size);
2063
2064 /**
2065 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2066 *
2067 * This function is called when the caller wants to clear the remote
2068 * dirty bitmap of a memory range within the memory region. This can
2069 * be used by e.g. KVM to manually clear dirty log when
2070 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2071 * kernel.
2072 *
2073 * @mr: the memory region to clear the dirty log upon
2074 * @start: start address offset within the memory region
2075 * @len: length of the memory region to clear dirty bitmap
2076 */
2077 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2078 hwaddr len);
2079
2080 /**
2081 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2082 * bitmap and clear it.
2083 *
2084 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2085 * returns the snapshot. The snapshot can then be used to query dirty
2086 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2087 * querying the same page multiple times, which is especially useful for
2088 * display updates where the scanlines often are not page aligned.
2089 *
2090 * The dirty bitmap region which gets copied into the snapshot (and
2091 * cleared afterwards) can be larger than requested. The boundaries
2092 * are rounded up/down so complete bitmap longs (covering 64 pages on
2093 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2094 * isn't a problem for display updates as the extra pages are outside
2095 * the visible area, and in case the visible area changes a full
2096 * display redraw is due anyway. Should other use cases for this
2097 * function emerge we might have to revisit this implementation
2098 * detail.
2099 *
2100 * Use g_free to release DirtyBitmapSnapshot.
2101 *
2102 * @mr: the memory region being queried.
2103 * @addr: the address (relative to the start of the region) being queried.
2104 * @size: the size of the range being queried.
2105 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2106 */
2107 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2108 hwaddr addr,
2109 hwaddr size,
2110 unsigned client);
2111
2112 /**
2113 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2114 * in the specified dirty bitmap snapshot.
2115 *
2116 * @mr: the memory region being queried.
2117 * @snap: the dirty bitmap snapshot
2118 * @addr: the address (relative to the start of the region) being queried.
2119 * @size: the size of the range being queried.
2120 */
2121 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2122 DirtyBitmapSnapshot *snap,
2123 hwaddr addr, hwaddr size);
2124
2125 /**
2126 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2127 * client.
2128 *
2129 * Marks a range of pages as no longer dirty.
2130 *
2131 * @mr: the region being updated.
2132 * @addr: the start of the subrange being cleaned.
2133 * @size: the size of the subrange being cleaned.
2134 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2135 * %DIRTY_MEMORY_VGA.
2136 */
2137 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2138 hwaddr size, unsigned client);
2139
2140 /**
2141 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2142 * TBs (for self-modifying code).
2143 *
2144 * The MemoryRegionOps->write() callback of a ROM device must use this function
2145 * to mark byte ranges that have been modified internally, such as by directly
2146 * accessing the memory returned by memory_region_get_ram_ptr().
2147 *
2148 * This function marks the range dirty and invalidates TBs so that TCG can
2149 * detect self-modifying code.
2150 *
2151 * @mr: the region being flushed.
2152 * @addr: the start, relative to the start of the region, of the range being
2153 * flushed.
2154 * @size: the size, in bytes, of the range being flushed.
2155 */
2156 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2157
2158 /**
2159 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2160 *
2161 * Allows a memory region to be marked as read-only (turning it into a ROM).
2162 * only useful on RAM regions.
2163 *
2164 * @mr: the region being updated.
2165 * @readonly: whether the region is to be ROM or RAM.
2166 */
2167 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2168
2169 /**
2170 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2171 *
2172 * Allows a memory region to be marked as non-volatile.
2173 * only useful on RAM regions.
2174 *
2175 * @mr: the region being updated.
2176 * @nonvolatile: whether the region is to be non-volatile.
2177 */
2178 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2179
2180 /**
2181 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2182 *
2183 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2184 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2185 * device is mapped to guest memory and satisfies read access directly.
2186 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2187 * Writes are always handled by the #MemoryRegion.write function.
2188 *
2189 * @mr: the memory region to be updated
2190 * @romd_mode: %true to put the region into ROMD mode
2191 */
2192 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2193
2194 /**
2195 * memory_region_set_coalescing: Enable memory coalescing for the region.
2196 *
2197 * Enabled writes to a region to be queued for later processing. MMIO ->write
2198 * callbacks may be delayed until a non-coalesced MMIO is issued.
2199 * Only useful for IO regions. Roughly similar to write-combining hardware.
2200 *
2201 * @mr: the memory region to be write coalesced
2202 */
2203 void memory_region_set_coalescing(MemoryRegion *mr);
2204
2205 /**
2206 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2207 * a region.
2208 *
2209 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2210 * Multiple calls can be issued coalesced disjoint ranges.
2211 *
2212 * @mr: the memory region to be updated.
2213 * @offset: the start of the range within the region to be coalesced.
2214 * @size: the size of the subrange to be coalesced.
2215 */
2216 void memory_region_add_coalescing(MemoryRegion *mr,
2217 hwaddr offset,
2218 uint64_t size);
2219
2220 /**
2221 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2222 *
2223 * Disables any coalescing caused by memory_region_set_coalescing() or
2224 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2225 * hardware.
2226 *
2227 * @mr: the memory region to be updated.
2228 */
2229 void memory_region_clear_coalescing(MemoryRegion *mr);
2230
2231 /**
2232 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2233 * accesses.
2234 *
2235 * Ensure that pending coalesced MMIO request are flushed before the memory
2236 * region is accessed. This property is automatically enabled for all regions
2237 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2238 *
2239 * @mr: the memory region to be updated.
2240 */
2241 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2242
2243 /**
2244 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2245 * accesses.
2246 *
2247 * Clear the automatic coalesced MMIO flushing enabled via
2248 * memory_region_set_flush_coalesced. Note that this service has no effect on
2249 * memory regions that have MMIO coalescing enabled for themselves. For them,
2250 * automatic flushing will stop once coalescing is disabled.
2251 *
2252 * @mr: the memory region to be updated.
2253 */
2254 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2255
2256 /**
2257 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2258 * is written to a location.
2259 *
2260 * Marks a word in an IO region (initialized with memory_region_init_io())
2261 * as a trigger for an eventfd event. The I/O callback will not be called.
2262 * The caller must be prepared to handle failure (that is, take the required
2263 * action if the callback _is_ called).
2264 *
2265 * @mr: the memory region being updated.
2266 * @addr: the address within @mr that is to be monitored
2267 * @size: the size of the access to trigger the eventfd
2268 * @match_data: whether to match against @data, instead of just @addr
2269 * @data: the data to match against the guest write
2270 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2271 **/
2272 void memory_region_add_eventfd(MemoryRegion *mr,
2273 hwaddr addr,
2274 unsigned size,
2275 bool match_data,
2276 uint64_t data,
2277 EventNotifier *e);
2278
2279 /**
2280 * memory_region_del_eventfd: Cancel an eventfd.
2281 *
2282 * Cancels an eventfd trigger requested by a previous
2283 * memory_region_add_eventfd() call.
2284 *
2285 * @mr: the memory region being updated.
2286 * @addr: the address within @mr that is to be monitored
2287 * @size: the size of the access to trigger the eventfd
2288 * @match_data: whether to match against @data, instead of just @addr
2289 * @data: the data to match against the guest write
2290 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2291 */
2292 void memory_region_del_eventfd(MemoryRegion *mr,
2293 hwaddr addr,
2294 unsigned size,
2295 bool match_data,
2296 uint64_t data,
2297 EventNotifier *e);
2298
2299 /**
2300 * memory_region_add_subregion: Add a subregion to a container.
2301 *
2302 * Adds a subregion at @offset. The subregion may not overlap with other
2303 * subregions (except for those explicitly marked as overlapping). A region
2304 * may only be added once as a subregion (unless removed with
2305 * memory_region_del_subregion()); use memory_region_init_alias() if you
2306 * want a region to be a subregion in multiple locations.
2307 *
2308 * @mr: the region to contain the new subregion; must be a container
2309 * initialized with memory_region_init().
2310 * @offset: the offset relative to @mr where @subregion is added.
2311 * @subregion: the subregion to be added.
2312 */
2313 void memory_region_add_subregion(MemoryRegion *mr,
2314 hwaddr offset,
2315 MemoryRegion *subregion);
2316 /**
2317 * memory_region_add_subregion_overlap: Add a subregion to a container
2318 * with overlap.
2319 *
2320 * Adds a subregion at @offset. The subregion may overlap with other
2321 * subregions. Conflicts are resolved by having a higher @priority hide a
2322 * lower @priority. Subregions without priority are taken as @priority 0.
2323 * A region may only be added once as a subregion (unless removed with
2324 * memory_region_del_subregion()); use memory_region_init_alias() if you
2325 * want a region to be a subregion in multiple locations.
2326 *
2327 * @mr: the region to contain the new subregion; must be a container
2328 * initialized with memory_region_init().
2329 * @offset: the offset relative to @mr where @subregion is added.
2330 * @subregion: the subregion to be added.
2331 * @priority: used for resolving overlaps; highest priority wins.
2332 */
2333 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2334 hwaddr offset,
2335 MemoryRegion *subregion,
2336 int priority);
2337
2338 /**
2339 * memory_region_get_ram_addr: Get the ram address associated with a memory
2340 * region
2341 *
2342 * @mr: the region to be queried
2343 */
2344 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2345
2346 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2347 /**
2348 * memory_region_del_subregion: Remove a subregion.
2349 *
2350 * Removes a subregion from its container.
2351 *
2352 * @mr: the container to be updated.
2353 * @subregion: the region being removed; must be a current subregion of @mr.
2354 */
2355 void memory_region_del_subregion(MemoryRegion *mr,
2356 MemoryRegion *subregion);
2357
2358 /*
2359 * memory_region_set_enabled: dynamically enable or disable a region
2360 *
2361 * Enables or disables a memory region. A disabled memory region
2362 * ignores all accesses to itself and its subregions. It does not
2363 * obscure sibling subregions with lower priority - it simply behaves as
2364 * if it was removed from the hierarchy.
2365 *
2366 * Regions default to being enabled.
2367 *
2368 * @mr: the region to be updated
2369 * @enabled: whether to enable or disable the region
2370 */
2371 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2372
2373 /*
2374 * memory_region_set_address: dynamically update the address of a region
2375 *
2376 * Dynamically updates the address of a region, relative to its container.
2377 * May be used on regions are currently part of a memory hierarchy.
2378 *
2379 * @mr: the region to be updated
2380 * @addr: new address, relative to container region
2381 */
2382 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2383
2384 /*
2385 * memory_region_set_size: dynamically update the size of a region.
2386 *
2387 * Dynamically updates the size of a region.
2388 *
2389 * @mr: the region to be updated
2390 * @size: used size of the region.
2391 */
2392 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2393
2394 /*
2395 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2396 *
2397 * Dynamically updates the offset into the target region that an alias points
2398 * to, as if the fourth argument to memory_region_init_alias() has changed.
2399 *
2400 * @mr: the #MemoryRegion to be updated; should be an alias.
2401 * @offset: the new offset into the target memory region
2402 */
2403 void memory_region_set_alias_offset(MemoryRegion *mr,
2404 hwaddr offset);
2405
2406 /*
2407 * memory_region_set_unmergeable: Set a memory region unmergeable
2408 *
2409 * Mark a memory region unmergeable, resulting in the memory region (or
2410 * everything contained in a memory region container) not getting merged when
2411 * simplifying the address space and notifying memory listeners. Consequently,
2412 * memory listeners will never get notified about ranges that are larger than
2413 * the original memory regions.
2414 *
2415 * This is primarily useful when multiple aliases to a RAM memory region are
2416 * mapped into a memory region container, and updates (e.g., enable/disable or
2417 * map/unmap) of individual memory region aliases are not supposed to affect
2418 * other memory regions in the same container.
2419 *
2420 * @mr: the #MemoryRegion to be updated
2421 * @unmergeable: whether to mark the #MemoryRegion unmergeable
2422 */
2423 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2424
2425 /**
2426 * memory_region_present: checks if an address relative to a @container
2427 * translates into #MemoryRegion within @container
2428 *
2429 * Answer whether a #MemoryRegion within @container covers the address
2430 * @addr.
2431 *
2432 * @container: a #MemoryRegion within which @addr is a relative address
2433 * @addr: the area within @container to be searched
2434 */
2435 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2436
2437 /**
2438 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2439 * into another memory region, which does not necessarily imply that it is
2440 * mapped into an address space.
2441 *
2442 * @mr: a #MemoryRegion which should be checked if it's mapped
2443 */
2444 bool memory_region_is_mapped(MemoryRegion *mr);
2445
2446 /**
2447 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2448 * #MemoryRegion
2449 *
2450 * The #RamDiscardManager cannot change while a memory region is mapped.
2451 *
2452 * @mr: the #MemoryRegion
2453 */
2454 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2455
2456 /**
2457 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2458 * #RamDiscardManager assigned
2459 *
2460 * @mr: the #MemoryRegion
2461 */
memory_region_has_ram_discard_manager(MemoryRegion * mr)2462 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2463 {
2464 return !!memory_region_get_ram_discard_manager(mr);
2465 }
2466
2467 /**
2468 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2469 * #MemoryRegion
2470 *
2471 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2472 * that does not cover RAM, or a #MemoryRegion that already has a
2473 * #RamDiscardManager assigned.
2474 *
2475 * @mr: the #MemoryRegion
2476 * @rdm: #RamDiscardManager to set
2477 */
2478 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2479 RamDiscardManager *rdm);
2480
2481 /**
2482 * memory_region_find: translate an address/size relative to a
2483 * MemoryRegion into a #MemoryRegionSection.
2484 *
2485 * Locates the first #MemoryRegion within @mr that overlaps the range
2486 * given by @addr and @size.
2487 *
2488 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2489 * It will have the following characteristics:
2490 * - @size = 0 iff no overlap was found
2491 * - @mr is non-%NULL iff an overlap was found
2492 *
2493 * Remember that in the return value the @offset_within_region is
2494 * relative to the returned region (in the .@mr field), not to the
2495 * @mr argument.
2496 *
2497 * Similarly, the .@offset_within_address_space is relative to the
2498 * address space that contains both regions, the passed and the
2499 * returned one. However, in the special case where the @mr argument
2500 * has no container (and thus is the root of the address space), the
2501 * following will hold:
2502 * - @offset_within_address_space >= @addr
2503 * - @offset_within_address_space + .@size <= @addr + @size
2504 *
2505 * @mr: a MemoryRegion within which @addr is a relative address
2506 * @addr: start of the area within @as to be searched
2507 * @size: size of the area to be searched
2508 */
2509 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2510 hwaddr addr, uint64_t size);
2511
2512 /**
2513 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2514 *
2515 * Synchronizes the dirty page log for all address spaces.
2516 *
2517 * @last_stage: whether this is the last stage of live migration
2518 */
2519 void memory_global_dirty_log_sync(bool last_stage);
2520
2521 /**
2522 * memory_global_after_dirty_log_sync: synchronize the dirty log for all memory
2523 *
2524 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2525 * This function must be called after the dirty log bitmap is cleared, and
2526 * before dirty guest memory pages are read. If you are using
2527 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2528 * care of doing this.
2529 */
2530 void memory_global_after_dirty_log_sync(void);
2531
2532 /**
2533 * memory_region_transaction_begin: Start a transaction.
2534 *
2535 * During a transaction, changes will be accumulated and made visible
2536 * only when the transaction ends (is committed).
2537 */
2538 void memory_region_transaction_begin(void);
2539
2540 /**
2541 * memory_region_transaction_commit: Commit a transaction and make changes
2542 * visible to the guest.
2543 */
2544 void memory_region_transaction_commit(void);
2545
2546 /**
2547 * memory_listener_register: register callbacks to be called when memory
2548 * sections are mapped or unmapped into an address
2549 * space
2550 *
2551 * @listener: an object containing the callbacks to be called
2552 * @filter: if non-%NULL, only regions in this address space will be observed
2553 */
2554 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2555
2556 /**
2557 * memory_listener_unregister: undo the effect of memory_listener_register()
2558 *
2559 * @listener: an object containing the callbacks to be removed
2560 */
2561 void memory_listener_unregister(MemoryListener *listener);
2562
2563 /**
2564 * memory_global_dirty_log_start: begin dirty logging for all regions
2565 *
2566 * @flags: purpose of starting dirty log, migration or dirty rate
2567 * @errp: pointer to Error*, to store an error if it happens.
2568 *
2569 * Return: true on success, else false setting @errp with error.
2570 */
2571 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2572
2573 /**
2574 * memory_global_dirty_log_stop: end dirty logging for all regions
2575 *
2576 * @flags: purpose of stopping dirty log, migration or dirty rate
2577 */
2578 void memory_global_dirty_log_stop(unsigned int flags);
2579
2580 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2581
2582 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2583 unsigned size, bool is_write,
2584 MemTxAttrs attrs);
2585
2586 /**
2587 * memory_region_dispatch_read: perform a read directly to the specified
2588 * MemoryRegion.
2589 *
2590 * @mr: #MemoryRegion to access
2591 * @addr: address within that region
2592 * @pval: pointer to uint64_t which the data is written to
2593 * @op: size, sign, and endianness of the memory operation
2594 * @attrs: memory transaction attributes to use for the access
2595 */
2596 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2597 hwaddr addr,
2598 uint64_t *pval,
2599 MemOp op,
2600 MemTxAttrs attrs);
2601 /**
2602 * memory_region_dispatch_write: perform a write directly to the specified
2603 * MemoryRegion.
2604 *
2605 * @mr: #MemoryRegion to access
2606 * @addr: address within that region
2607 * @data: data to write
2608 * @op: size, sign, and endianness of the memory operation
2609 * @attrs: memory transaction attributes to use for the access
2610 */
2611 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2612 hwaddr addr,
2613 uint64_t data,
2614 MemOp op,
2615 MemTxAttrs attrs);
2616
2617 /**
2618 * address_space_init: initializes an address space
2619 *
2620 * @as: an uninitialized #AddressSpace
2621 * @root: a #MemoryRegion that routes addresses for the address space
2622 * @name: an address space name. The name is only used for debugging
2623 * output.
2624 */
2625 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2626
2627 /**
2628 * address_space_destroy: destroy an address space
2629 *
2630 * Releases all resources associated with an address space. After an address space
2631 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2632 * as well.
2633 *
2634 * @as: address space to be destroyed
2635 */
2636 void address_space_destroy(AddressSpace *as);
2637
2638 /**
2639 * address_space_remove_listeners: unregister all listeners of an address space
2640 *
2641 * Removes all callbacks previously registered with memory_listener_register()
2642 * for @as.
2643 *
2644 * @as: an initialized #AddressSpace
2645 */
2646 void address_space_remove_listeners(AddressSpace *as);
2647
2648 /**
2649 * address_space_rw: read from or write to an address space.
2650 *
2651 * Return a MemTxResult indicating whether the operation succeeded
2652 * or failed (eg unassigned memory, device rejected the transaction,
2653 * IOMMU fault).
2654 *
2655 * @as: #AddressSpace to be accessed
2656 * @addr: address within that address space
2657 * @attrs: memory transaction attributes
2658 * @buf: buffer with the data transferred
2659 * @len: the number of bytes to read or write
2660 * @is_write: indicates the transfer direction
2661 */
2662 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2663 MemTxAttrs attrs, void *buf,
2664 hwaddr len, bool is_write);
2665
2666 /**
2667 * address_space_write: write to address space.
2668 *
2669 * Return a MemTxResult indicating whether the operation succeeded
2670 * or failed (eg unassigned memory, device rejected the transaction,
2671 * IOMMU fault).
2672 *
2673 * @as: #AddressSpace to be accessed
2674 * @addr: address within that address space
2675 * @attrs: memory transaction attributes
2676 * @buf: buffer with the data transferred
2677 * @len: the number of bytes to write
2678 */
2679 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2680 MemTxAttrs attrs,
2681 const void *buf, hwaddr len);
2682
2683 /**
2684 * address_space_write_rom: write to address space, including ROM.
2685 *
2686 * This function writes to the specified address space, but will
2687 * write data to both ROM and RAM. This is used for non-guest
2688 * writes like writes from the gdb debug stub or initial loading
2689 * of ROM contents.
2690 *
2691 * Note that portions of the write which attempt to write data to
2692 * a device will be silently ignored -- only real RAM and ROM will
2693 * be written to.
2694 *
2695 * Return a MemTxResult indicating whether the operation succeeded
2696 * or failed (eg unassigned memory, device rejected the transaction,
2697 * IOMMU fault).
2698 *
2699 * @as: #AddressSpace to be accessed
2700 * @addr: address within that address space
2701 * @attrs: memory transaction attributes
2702 * @buf: buffer with the data transferred
2703 * @len: the number of bytes to write
2704 */
2705 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2706 MemTxAttrs attrs,
2707 const void *buf, hwaddr len);
2708
2709 /* address_space_ld*: load from an address space
2710 * address_space_st*: store to an address space
2711 *
2712 * These functions perform a load or store of the byte, word,
2713 * longword or quad to the specified address within the AddressSpace.
2714 * The _le suffixed functions treat the data as little endian;
2715 * _be indicates big endian; no suffix indicates "same endianness
2716 * as guest CPU".
2717 *
2718 * The "guest CPU endianness" accessors are deprecated for use outside
2719 * target-* code; devices should be CPU-agnostic and use either the LE
2720 * or the BE accessors.
2721 *
2722 * @as #AddressSpace to be accessed
2723 * @addr: address within that address space
2724 * @val: data value, for stores
2725 * @attrs: memory transaction attributes
2726 * @result: location to write the success/failure of the transaction;
2727 * if NULL, this information is discarded
2728 */
2729
2730 #define SUFFIX
2731 #define ARG1 as
2732 #define ARG1_DECL AddressSpace *as
2733 #include "exec/memory_ldst.h.inc"
2734
2735 #define SUFFIX
2736 #define ARG1 as
2737 #define ARG1_DECL AddressSpace *as
2738 #include "exec/memory_ldst_phys.h.inc"
2739
2740 struct MemoryRegionCache {
2741 uint8_t *ptr;
2742 hwaddr xlat;
2743 hwaddr len;
2744 FlatView *fv;
2745 MemoryRegionSection mrs;
2746 bool is_write;
2747 };
2748
2749 /* address_space_ld*_cached: load from a cached #MemoryRegion
2750 * address_space_st*_cached: store into a cached #MemoryRegion
2751 *
2752 * These functions perform a load or store of the byte, word,
2753 * longword or quad to the specified address. The address is
2754 * a physical address in the AddressSpace, but it must lie within
2755 * a #MemoryRegion that was mapped with address_space_cache_init.
2756 *
2757 * The _le suffixed functions treat the data as little endian;
2758 * _be indicates big endian; no suffix indicates "same endianness
2759 * as guest CPU".
2760 *
2761 * The "guest CPU endianness" accessors are deprecated for use outside
2762 * target-* code; devices should be CPU-agnostic and use either the LE
2763 * or the BE accessors.
2764 *
2765 * @cache: previously initialized #MemoryRegionCache to be accessed
2766 * @addr: address within the address space
2767 * @val: data value, for stores
2768 * @attrs: memory transaction attributes
2769 * @result: location to write the success/failure of the transaction;
2770 * if NULL, this information is discarded
2771 */
2772
2773 #define SUFFIX _cached_slow
2774 #define ARG1 cache
2775 #define ARG1_DECL MemoryRegionCache *cache
2776 #include "exec/memory_ldst.h.inc"
2777
2778 /* Inline fast path for direct RAM access. */
address_space_ldub_cached(MemoryRegionCache * cache,hwaddr addr,MemTxAttrs attrs,MemTxResult * result)2779 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2780 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2781 {
2782 assert(addr < cache->len);
2783 if (likely(cache->ptr)) {
2784 return ldub_p(cache->ptr + addr);
2785 } else {
2786 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2787 }
2788 }
2789
address_space_stb_cached(MemoryRegionCache * cache,hwaddr addr,uint8_t val,MemTxAttrs attrs,MemTxResult * result)2790 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2791 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2792 {
2793 assert(addr < cache->len);
2794 if (likely(cache->ptr)) {
2795 stb_p(cache->ptr + addr, val);
2796 } else {
2797 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2798 }
2799 }
2800
2801 #define ENDIANNESS _le
2802 #include "exec/memory_ldst_cached.h.inc"
2803
2804 #define ENDIANNESS _be
2805 #include "exec/memory_ldst_cached.h.inc"
2806
2807 #define SUFFIX _cached
2808 #define ARG1 cache
2809 #define ARG1_DECL MemoryRegionCache *cache
2810 #include "exec/memory_ldst_phys.h.inc"
2811
2812 /* address_space_cache_init: prepare for repeated access to a physical
2813 * memory region
2814 *
2815 * @cache: #MemoryRegionCache to be filled
2816 * @as: #AddressSpace to be accessed
2817 * @addr: address within that address space
2818 * @len: length of buffer
2819 * @is_write: indicates the transfer direction
2820 *
2821 * Will only work with RAM, and may map a subset of the requested range by
2822 * returning a value that is less than @len. On failure, return a negative
2823 * errno value.
2824 *
2825 * Because it only works with RAM, this function can be used for
2826 * read-modify-write operations. In this case, is_write should be %true.
2827 *
2828 * Note that addresses passed to the address_space_*_cached functions
2829 * are relative to @addr.
2830 */
2831 int64_t address_space_cache_init(MemoryRegionCache *cache,
2832 AddressSpace *as,
2833 hwaddr addr,
2834 hwaddr len,
2835 bool is_write);
2836
2837 /**
2838 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2839 *
2840 * @cache: The #MemoryRegionCache to operate on.
2841 *
2842 * Initializes #MemoryRegionCache structure without memory region attached.
2843 * Cache initialized this way can only be safely destroyed, but not used.
2844 */
address_space_cache_init_empty(MemoryRegionCache * cache)2845 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2846 {
2847 cache->mrs.mr = NULL;
2848 /* There is no real need to initialize fv, but it makes Coverity happy. */
2849 cache->fv = NULL;
2850 }
2851
2852 /**
2853 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2854 *
2855 * @cache: The #MemoryRegionCache to operate on.
2856 * @addr: The first physical address that was written, relative to the
2857 * address that was passed to @address_space_cache_init.
2858 * @access_len: The number of bytes that were written starting at @addr.
2859 */
2860 void address_space_cache_invalidate(MemoryRegionCache *cache,
2861 hwaddr addr,
2862 hwaddr access_len);
2863
2864 /**
2865 * address_space_cache_destroy: free a #MemoryRegionCache
2866 *
2867 * @cache: The #MemoryRegionCache whose memory should be released.
2868 */
2869 void address_space_cache_destroy(MemoryRegionCache *cache);
2870
2871 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2872 * entry. Should be called from an RCU critical section.
2873 */
2874 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2875 bool is_write, MemTxAttrs attrs);
2876
2877 /* address_space_translate: translate an address range into an address space
2878 * into a MemoryRegion and an address range into that section. Should be
2879 * called from an RCU critical section, to avoid that the last reference
2880 * to the returned region disappears after address_space_translate returns.
2881 *
2882 * @fv: #FlatView to be accessed
2883 * @addr: address within that address space
2884 * @xlat: pointer to address within the returned memory region section's
2885 * #MemoryRegion.
2886 * @len: pointer to length
2887 * @is_write: indicates the transfer direction
2888 * @attrs: memory attributes
2889 */
2890 MemoryRegion *flatview_translate(FlatView *fv,
2891 hwaddr addr, hwaddr *xlat,
2892 hwaddr *len, bool is_write,
2893 MemTxAttrs attrs);
2894
address_space_translate(AddressSpace * as,hwaddr addr,hwaddr * xlat,hwaddr * len,bool is_write,MemTxAttrs attrs)2895 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2896 hwaddr addr, hwaddr *xlat,
2897 hwaddr *len, bool is_write,
2898 MemTxAttrs attrs)
2899 {
2900 return flatview_translate(address_space_to_flatview(as),
2901 addr, xlat, len, is_write, attrs);
2902 }
2903
2904 /* address_space_access_valid: check for validity of accessing an address
2905 * space range
2906 *
2907 * Check whether memory is assigned to the given address space range, and
2908 * access is permitted by any IOMMU regions that are active for the address
2909 * space.
2910 *
2911 * For now, addr and len should be aligned to a page size. This limitation
2912 * will be lifted in the future.
2913 *
2914 * @as: #AddressSpace to be accessed
2915 * @addr: address within that address space
2916 * @len: length of the area to be checked
2917 * @is_write: indicates the transfer direction
2918 * @attrs: memory attributes
2919 */
2920 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2921 bool is_write, MemTxAttrs attrs);
2922
2923 /* address_space_map: map a physical memory region into a host virtual address
2924 *
2925 * May map a subset of the requested range, given by and returned in @plen.
2926 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2927 * the mapping are exhausted.
2928 * Use only for reads OR writes - not for read-modify-write operations.
2929 * Use address_space_register_map_client() to know when retrying the map
2930 * operation is likely to succeed.
2931 *
2932 * @as: #AddressSpace to be accessed
2933 * @addr: address within that address space
2934 * @plen: pointer to length of buffer; updated on return
2935 * @is_write: indicates the transfer direction
2936 * @attrs: memory attributes
2937 */
2938 void *address_space_map(AddressSpace *as, hwaddr addr,
2939 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2940
2941 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2942 *
2943 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2944 * the amount of memory that was actually read or written by the caller.
2945 *
2946 * @as: #AddressSpace used
2947 * @buffer: host pointer as returned by address_space_map()
2948 * @len: buffer length as returned by address_space_map()
2949 * @access_len: amount of data actually transferred
2950 * @is_write: indicates the transfer direction
2951 */
2952 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2953 bool is_write, hwaddr access_len);
2954
2955 /*
2956 * address_space_register_map_client: Register a callback to invoke when
2957 * resources for address_space_map() are available again.
2958 *
2959 * address_space_map may fail when there are not enough resources available,
2960 * such as when bounce buffer memory would exceed the limit. The callback can
2961 * be used to retry the address_space_map operation. Note that the callback
2962 * gets automatically removed after firing.
2963 *
2964 * @as: #AddressSpace to be accessed
2965 * @bh: callback to invoke when address_space_map() retry is appropriate
2966 */
2967 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
2968
2969 /*
2970 * address_space_unregister_map_client: Unregister a callback that has
2971 * previously been registered and not fired yet.
2972 *
2973 * @as: #AddressSpace to be accessed
2974 * @bh: callback to unregister
2975 */
2976 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
2977
2978 /* Internal functions, part of the implementation of address_space_read. */
2979 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2980 MemTxAttrs attrs, void *buf, hwaddr len);
2981 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2982 MemTxAttrs attrs, void *buf,
2983 hwaddr len, hwaddr addr1, hwaddr l,
2984 MemoryRegion *mr);
2985 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2986
2987 /* Internal functions, part of the implementation of address_space_read_cached
2988 * and address_space_write_cached. */
2989 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2990 hwaddr addr, void *buf, hwaddr len);
2991 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2992 hwaddr addr, const void *buf,
2993 hwaddr len);
2994
2995 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2996 bool prepare_mmio_access(MemoryRegion *mr);
2997
memory_region_supports_direct_access(MemoryRegion * mr)2998 static inline bool memory_region_supports_direct_access(MemoryRegion *mr)
2999 {
3000 /* ROM DEVICE regions only allow direct access if in ROMD mode. */
3001 if (memory_region_is_romd(mr)) {
3002 return true;
3003 }
3004 if (!memory_region_is_ram(mr)) {
3005 return false;
3006 }
3007 /*
3008 * RAM DEVICE regions can be accessed directly using memcpy, but it might
3009 * be MMIO and access using mempy can be wrong (e.g., using instructions not
3010 * intended for MMIO access). So we treat this as IO.
3011 */
3012 return !memory_region_is_ram_device(mr);
3013 }
3014
memory_access_is_direct(MemoryRegion * mr,bool is_write,MemTxAttrs attrs)3015 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write,
3016 MemTxAttrs attrs)
3017 {
3018 if (!memory_region_supports_direct_access(mr)) {
3019 return false;
3020 }
3021 /* Debug access can write to ROM. */
3022 if (is_write && !attrs.debug) {
3023 return !mr->readonly && !mr->rom_device;
3024 }
3025 return true;
3026 }
3027
3028 /**
3029 * address_space_read: read from an address space.
3030 *
3031 * Return a MemTxResult indicating whether the operation succeeded
3032 * or failed (eg unassigned memory, device rejected the transaction,
3033 * IOMMU fault). Called within RCU critical section.
3034 *
3035 * @as: #AddressSpace to be accessed
3036 * @addr: address within that address space
3037 * @attrs: memory transaction attributes
3038 * @buf: buffer with the data transferred
3039 * @len: length of the data transferred
3040 */
3041 static inline __attribute__((__always_inline__))
address_space_read(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3042 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3043 MemTxAttrs attrs, void *buf,
3044 hwaddr len)
3045 {
3046 MemTxResult result = MEMTX_OK;
3047 hwaddr l, addr1;
3048 void *ptr;
3049 MemoryRegion *mr;
3050 FlatView *fv;
3051
3052 if (__builtin_constant_p(len)) {
3053 if (len) {
3054 RCU_READ_LOCK_GUARD();
3055 fv = address_space_to_flatview(as);
3056 l = len;
3057 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3058 if (len == l && memory_access_is_direct(mr, false, attrs)) {
3059 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3060 memcpy(buf, ptr, len);
3061 } else {
3062 result = flatview_read_continue(fv, addr, attrs, buf, len,
3063 addr1, l, mr);
3064 }
3065 }
3066 } else {
3067 result = address_space_read_full(as, addr, attrs, buf, len);
3068 }
3069 return result;
3070 }
3071
3072 /**
3073 * address_space_read_cached: read from a cached RAM region
3074 *
3075 * @cache: Cached region to be addressed
3076 * @addr: address relative to the base of the RAM region
3077 * @buf: buffer with the data transferred
3078 * @len: length of the data transferred
3079 */
3080 static inline MemTxResult
address_space_read_cached(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3081 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3082 void *buf, hwaddr len)
3083 {
3084 assert(addr < cache->len && len <= cache->len - addr);
3085 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3086 if (likely(cache->ptr)) {
3087 memcpy(buf, cache->ptr + addr, len);
3088 return MEMTX_OK;
3089 } else {
3090 return address_space_read_cached_slow(cache, addr, buf, len);
3091 }
3092 }
3093
3094 /**
3095 * address_space_write_cached: write to a cached RAM region
3096 *
3097 * @cache: Cached region to be addressed
3098 * @addr: address relative to the base of the RAM region
3099 * @buf: buffer with the data transferred
3100 * @len: length of the data transferred
3101 */
3102 static inline MemTxResult
address_space_write_cached(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3103 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3104 const void *buf, hwaddr len)
3105 {
3106 assert(addr < cache->len && len <= cache->len - addr);
3107 if (likely(cache->ptr)) {
3108 memcpy(cache->ptr + addr, buf, len);
3109 return MEMTX_OK;
3110 } else {
3111 return address_space_write_cached_slow(cache, addr, buf, len);
3112 }
3113 }
3114
3115 /**
3116 * address_space_set: Fill address space with a constant byte.
3117 *
3118 * Return a MemTxResult indicating whether the operation succeeded
3119 * or failed (eg unassigned memory, device rejected the transaction,
3120 * IOMMU fault).
3121 *
3122 * @as: #AddressSpace to be accessed
3123 * @addr: address within that address space
3124 * @c: constant byte to fill the memory
3125 * @len: the number of bytes to fill with the constant byte
3126 * @attrs: memory transaction attributes
3127 */
3128 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3129 uint8_t c, hwaddr len, MemTxAttrs attrs);
3130
3131 #ifdef COMPILING_PER_TARGET
3132 /* enum device_endian to MemOp. */
devend_memop(enum device_endian end)3133 static inline MemOp devend_memop(enum device_endian end)
3134 {
3135 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
3136 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
3137
3138 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
3139 /* Swap if non-host endianness or native (target) endianness */
3140 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
3141 #else
3142 const int non_host_endianness =
3143 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3144
3145 /* In this case, native (target) endianness needs no swap. */
3146 return (end == non_host_endianness) ? MO_BSWAP : 0;
3147 #endif
3148 }
3149 #endif /* COMPILING_PER_TARGET */
3150
3151 /*
3152 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3153 * to manage the actual amount of memory consumed by the VM (then, the memory
3154 * provided by RAM blocks might be bigger than the desired memory consumption).
3155 * This *must* be set if:
3156 * - Discarding parts of a RAM blocks does not result in the change being
3157 * reflected in the VM and the pages getting freed.
3158 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3159 * discards blindly.
3160 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3161 * encrypted VMs).
3162 * Technologies that only temporarily pin the current working set of a
3163 * driver are fine, because we don't expect such pages to be discarded
3164 * (esp. based on guest action like balloon inflation).
3165 *
3166 * This is *not* to be used to protect from concurrent discards (esp.,
3167 * postcopy).
3168 *
3169 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3170 * discards to work reliably is active.
3171 */
3172 int ram_block_discard_disable(bool state);
3173
3174 /*
3175 * See ram_block_discard_disable(): only disable uncoordinated discards,
3176 * keeping coordinated discards (via the RamDiscardManager) enabled.
3177 */
3178 int ram_block_uncoordinated_discard_disable(bool state);
3179
3180 /*
3181 * Inhibit technologies that disable discarding of pages in RAM blocks.
3182 *
3183 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3184 * broken.
3185 */
3186 int ram_block_discard_require(bool state);
3187
3188 /*
3189 * See ram_block_discard_require(): only inhibit technologies that disable
3190 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3191 * technologies that only inhibit uncoordinated discards (via the
3192 * RamDiscardManager).
3193 */
3194 int ram_block_coordinated_discard_require(bool state);
3195
3196 /*
3197 * Test if any discarding of memory in ram blocks is disabled.
3198 */
3199 bool ram_block_discard_is_disabled(void);
3200
3201 /*
3202 * Test if any discarding of memory in ram blocks is required to work reliably.
3203 */
3204 bool ram_block_discard_is_required(void);
3205
3206 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp);
3207 void ram_block_del_cpr_blocker(RAMBlock *rb);
3208
3209 #endif
3210
3211 #endif
3212