xref: /openbmc/linux/fs/ntfs3/frecord.c (revision 5f8b7d4b2e9604d03ae06f1a2dd5a1f34c33e533)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 		      NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 		      NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 	    is_rec_inuse(ni->mi.mrec) &&
107 	    !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
108 		ni_delete_all(ni);
109 
110 	al_destroy(ni);
111 
112 	for (node = rb_first(&ni->mi_tree); node;) {
113 		struct rb_node *next = rb_next(node);
114 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115 
116 		rb_erase(node, &ni->mi_tree);
117 		mi_put(mi);
118 		node = next;
119 	}
120 
121 	/* Bad inode always has mode == S_IFREG. */
122 	if (ni->ni_flags & NI_FLAG_DIR)
123 		indx_clear(&ni->dir);
124 	else {
125 		run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 		if (ni->file.offs_page) {
128 			/* On-demand allocated page for offsets. */
129 			put_page(ni->file.offs_page);
130 			ni->file.offs_page = NULL;
131 		}
132 #endif
133 	}
134 
135 	mi_clear(&ni->mi);
136 }
137 
138 /*
139  * ni_load_mi_ex - Find mft_inode by record number.
140  */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 	int err;
144 	struct mft_inode *r;
145 
146 	r = ni_find_mi(ni, rno);
147 	if (r)
148 		goto out;
149 
150 	err = mi_get(ni->mi.sbi, rno, &r);
151 	if (err)
152 		return err;
153 
154 	ni_add_mi(ni, r);
155 
156 out:
157 	if (mi)
158 		*mi = r;
159 	return 0;
160 }
161 
162 /*
163  * ni_load_mi - Load mft_inode corresponded list_entry.
164  */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)165 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
166 	       struct mft_inode **mi)
167 {
168 	CLST rno;
169 
170 	if (!le) {
171 		*mi = &ni->mi;
172 		return 0;
173 	}
174 
175 	rno = ino_get(&le->ref);
176 	if (rno == ni->mi.rno) {
177 		*mi = &ni->mi;
178 		return 0;
179 	}
180 	return ni_load_mi_ex(ni, rno, mi);
181 }
182 
183 /*
184  * ni_find_attr
185  *
186  * Return: Attribute and record this attribute belongs to.
187  */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)188 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
189 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
190 			    const __le16 *name, u8 name_len, const CLST *vcn,
191 			    struct mft_inode **mi)
192 {
193 	struct ATTR_LIST_ENTRY *le;
194 	struct mft_inode *m;
195 
196 	if (!ni->attr_list.size ||
197 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
198 		if (le_o)
199 			*le_o = NULL;
200 		if (mi)
201 			*mi = &ni->mi;
202 
203 		/* Look for required attribute in primary record. */
204 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
205 	}
206 
207 	/* First look for list entry of required type. */
208 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
209 	if (!le)
210 		return NULL;
211 
212 	if (le_o)
213 		*le_o = le;
214 
215 	/* Load record that contains this attribute. */
216 	if (ni_load_mi(ni, le, &m))
217 		return NULL;
218 
219 	/* Look for required attribute. */
220 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
221 
222 	if (!attr)
223 		goto out;
224 
225 	if (!attr->non_res) {
226 		if (vcn && *vcn)
227 			goto out;
228 	} else if (!vcn) {
229 		if (attr->nres.svcn)
230 			goto out;
231 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
232 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
233 		goto out;
234 	}
235 
236 	if (mi)
237 		*mi = m;
238 	return attr;
239 
240 out:
241 	ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
242 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
243 	return NULL;
244 }
245 
246 /*
247  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
248  */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)249 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
250 			       struct ATTR_LIST_ENTRY **le,
251 			       struct mft_inode **mi)
252 {
253 	struct mft_inode *mi2;
254 	struct ATTR_LIST_ENTRY *le2;
255 
256 	/* Do we have an attribute list? */
257 	if (!ni->attr_list.size) {
258 		*le = NULL;
259 		if (mi)
260 			*mi = &ni->mi;
261 		/* Enum attributes in primary record. */
262 		return mi_enum_attr(&ni->mi, attr);
263 	}
264 
265 	/* Get next list entry. */
266 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
267 	if (!le2)
268 		return NULL;
269 
270 	/* Load record that contains the required attribute. */
271 	if (ni_load_mi(ni, le2, &mi2))
272 		return NULL;
273 
274 	if (mi)
275 		*mi = mi2;
276 
277 	/* Find attribute in loaded record. */
278 	return rec_find_attr_le(mi2, le2);
279 }
280 
281 /*
282  * ni_load_attr - Load attribute that contains given VCN.
283  */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)284 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
285 			    const __le16 *name, u8 name_len, CLST vcn,
286 			    struct mft_inode **pmi)
287 {
288 	struct ATTR_LIST_ENTRY *le;
289 	struct ATTRIB *attr;
290 	struct mft_inode *mi;
291 	struct ATTR_LIST_ENTRY *next;
292 
293 	if (!ni->attr_list.size) {
294 		if (pmi)
295 			*pmi = &ni->mi;
296 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
297 	}
298 
299 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
300 	if (!le)
301 		return NULL;
302 
303 	/*
304 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
305 	 * So to find the ATTRIB segment that contains 'vcn' we should
306 	 * enumerate some entries.
307 	 */
308 	if (vcn) {
309 		for (;; le = next) {
310 			next = al_find_ex(ni, le, type, name, name_len, NULL);
311 			if (!next || le64_to_cpu(next->vcn) > vcn)
312 				break;
313 		}
314 	}
315 
316 	if (ni_load_mi(ni, le, &mi))
317 		return NULL;
318 
319 	if (pmi)
320 		*pmi = mi;
321 
322 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
323 	if (!attr)
324 		return NULL;
325 
326 	if (!attr->non_res)
327 		return attr;
328 
329 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
330 	    vcn <= le64_to_cpu(attr->nres.evcn))
331 		return attr;
332 
333 	return NULL;
334 }
335 
336 /*
337  * ni_load_all_mi - Load all subrecords.
338  */
ni_load_all_mi(struct ntfs_inode * ni)339 int ni_load_all_mi(struct ntfs_inode *ni)
340 {
341 	int err;
342 	struct ATTR_LIST_ENTRY *le;
343 
344 	if (!ni->attr_list.size)
345 		return 0;
346 
347 	le = NULL;
348 
349 	while ((le = al_enumerate(ni, le))) {
350 		CLST rno = ino_get(&le->ref);
351 
352 		if (rno == ni->mi.rno)
353 			continue;
354 
355 		err = ni_load_mi_ex(ni, rno, NULL);
356 		if (err)
357 			return err;
358 	}
359 
360 	return 0;
361 }
362 
363 /*
364  * ni_add_subrecord - Allocate + format + attach a new subrecord.
365  */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)366 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
367 {
368 	struct mft_inode *m;
369 
370 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
371 	if (!m)
372 		return false;
373 
374 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
375 		mi_put(m);
376 		return false;
377 	}
378 
379 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
380 
381 	ni_add_mi(ni, m);
382 	*mi = m;
383 	return true;
384 }
385 
386 /*
387  * ni_remove_attr - Remove all attributes for the given type/name/id.
388  */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)389 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
390 		   const __le16 *name, u8 name_len, bool base_only,
391 		   const __le16 *id)
392 {
393 	int err;
394 	struct ATTRIB *attr;
395 	struct ATTR_LIST_ENTRY *le;
396 	struct mft_inode *mi;
397 	u32 type_in;
398 	int diff;
399 
400 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
401 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
402 		if (!attr)
403 			return -ENOENT;
404 
405 		mi_remove_attr(ni, &ni->mi, attr);
406 		return 0;
407 	}
408 
409 	type_in = le32_to_cpu(type);
410 	le = NULL;
411 
412 	for (;;) {
413 		le = al_enumerate(ni, le);
414 		if (!le)
415 			return 0;
416 
417 next_le2:
418 		diff = le32_to_cpu(le->type) - type_in;
419 		if (diff < 0)
420 			continue;
421 
422 		if (diff > 0)
423 			return 0;
424 
425 		if (le->name_len != name_len)
426 			continue;
427 
428 		if (name_len &&
429 		    memcmp(le_name(le), name, name_len * sizeof(short)))
430 			continue;
431 
432 		if (id && le->id != *id)
433 			continue;
434 		err = ni_load_mi(ni, le, &mi);
435 		if (err)
436 			return err;
437 
438 		al_remove_le(ni, le);
439 
440 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
441 		if (!attr)
442 			return -ENOENT;
443 
444 		mi_remove_attr(ni, mi, attr);
445 
446 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
447 			return 0;
448 		goto next_le2;
449 	}
450 }
451 
452 /*
453  * ni_ins_new_attr - Insert the attribute into record.
454  *
455  * Return: Not full constructed attribute or NULL if not possible to create.
456  */
457 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)458 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
459 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
460 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
461 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
462 {
463 	int err;
464 	struct ATTRIB *attr;
465 	bool le_added = false;
466 	struct MFT_REF ref;
467 
468 	mi_get_ref(mi, &ref);
469 
470 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
471 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
472 				&ref, &le);
473 		if (err) {
474 			/* No memory or no space. */
475 			return ERR_PTR(err);
476 		}
477 		le_added = true;
478 
479 		/*
480 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
481 		 * which moves some attributes out of primary record
482 		 * this means that name may point into moved memory
483 		 * reinit 'name' from le.
484 		 */
485 		name = le->name;
486 	}
487 
488 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
489 	if (!attr) {
490 		if (le_added)
491 			al_remove_le(ni, le);
492 		return NULL;
493 	}
494 
495 	if (type == ATTR_LIST) {
496 		/* Attr list is not in list entry array. */
497 		goto out;
498 	}
499 
500 	if (!le)
501 		goto out;
502 
503 	/* Update ATTRIB Id and record reference. */
504 	le->id = attr->id;
505 	ni->attr_list.dirty = true;
506 	le->ref = ref;
507 
508 out:
509 	if (ins_le)
510 		*ins_le = le;
511 	return attr;
512 }
513 
514 /*
515  * ni_repack
516  *
517  * Random write access to sparsed or compressed file may result to
518  * not optimized packed runs.
519  * Here is the place to optimize it.
520  */
ni_repack(struct ntfs_inode * ni)521 static int ni_repack(struct ntfs_inode *ni)
522 {
523 #if 1
524 	return 0;
525 #else
526 	int err = 0;
527 	struct ntfs_sb_info *sbi = ni->mi.sbi;
528 	struct mft_inode *mi, *mi_p = NULL;
529 	struct ATTRIB *attr = NULL, *attr_p;
530 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
531 	CLST alloc = 0;
532 	u8 cluster_bits = sbi->cluster_bits;
533 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
534 	u32 roff, rs = sbi->record_size;
535 	struct runs_tree run;
536 
537 	run_init(&run);
538 
539 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
540 		if (!attr->non_res)
541 			continue;
542 
543 		svcn = le64_to_cpu(attr->nres.svcn);
544 		if (svcn != le64_to_cpu(le->vcn)) {
545 			err = -EINVAL;
546 			break;
547 		}
548 
549 		if (!svcn) {
550 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
551 				cluster_bits;
552 			mi_p = NULL;
553 		} else if (svcn != evcn + 1) {
554 			err = -EINVAL;
555 			break;
556 		}
557 
558 		evcn = le64_to_cpu(attr->nres.evcn);
559 
560 		if (svcn > evcn + 1) {
561 			err = -EINVAL;
562 			break;
563 		}
564 
565 		if (!mi_p) {
566 			/* Do not try if not enough free space. */
567 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
568 				continue;
569 
570 			/* Do not try if last attribute segment. */
571 			if (evcn + 1 == alloc)
572 				continue;
573 			run_close(&run);
574 		}
575 
576 		roff = le16_to_cpu(attr->nres.run_off);
577 
578 		if (roff > le32_to_cpu(attr->size)) {
579 			err = -EINVAL;
580 			break;
581 		}
582 
583 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
584 				 Add2Ptr(attr, roff),
585 				 le32_to_cpu(attr->size) - roff);
586 		if (err < 0)
587 			break;
588 
589 		if (!mi_p) {
590 			mi_p = mi;
591 			attr_p = attr;
592 			svcn_p = svcn;
593 			evcn_p = evcn;
594 			le_p = le;
595 			err = 0;
596 			continue;
597 		}
598 
599 		/*
600 		 * Run contains data from two records: mi_p and mi
601 		 * Try to pack in one.
602 		 */
603 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
604 		if (err)
605 			break;
606 
607 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
608 
609 		if (next_svcn >= evcn + 1) {
610 			/* We can remove this attribute segment. */
611 			al_remove_le(ni, le);
612 			mi_remove_attr(NULL, mi, attr);
613 			le = le_p;
614 			continue;
615 		}
616 
617 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
618 		mi->dirty = true;
619 		ni->attr_list.dirty = true;
620 
621 		if (evcn + 1 == alloc) {
622 			err = mi_pack_runs(mi, attr, &run,
623 					   evcn + 1 - next_svcn);
624 			if (err)
625 				break;
626 			mi_p = NULL;
627 		} else {
628 			mi_p = mi;
629 			attr_p = attr;
630 			svcn_p = next_svcn;
631 			evcn_p = evcn;
632 			le_p = le;
633 			run_truncate_head(&run, next_svcn);
634 		}
635 	}
636 
637 	if (err) {
638 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
639 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
640 
641 		/* Pack loaded but not packed runs. */
642 		if (mi_p)
643 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
644 	}
645 
646 	run_close(&run);
647 	return err;
648 #endif
649 }
650 
651 /*
652  * ni_try_remove_attr_list
653  *
654  * Can we remove attribute list?
655  * Check the case when primary record contains enough space for all attributes.
656  */
ni_try_remove_attr_list(struct ntfs_inode * ni)657 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
658 {
659 	int err = 0;
660 	struct ntfs_sb_info *sbi = ni->mi.sbi;
661 	struct ATTRIB *attr, *attr_list, *attr_ins;
662 	struct ATTR_LIST_ENTRY *le;
663 	struct mft_inode *mi;
664 	u32 asize, free;
665 	struct MFT_REF ref;
666 	struct MFT_REC *mrec;
667 	__le16 id;
668 
669 	if (!ni->attr_list.dirty)
670 		return 0;
671 
672 	err = ni_repack(ni);
673 	if (err)
674 		return err;
675 
676 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
677 	if (!attr_list)
678 		return 0;
679 
680 	asize = le32_to_cpu(attr_list->size);
681 
682 	/* Free space in primary record without attribute list. */
683 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
684 	mi_get_ref(&ni->mi, &ref);
685 
686 	le = NULL;
687 	while ((le = al_enumerate(ni, le))) {
688 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
689 			continue;
690 
691 		if (le->vcn)
692 			return 0;
693 
694 		mi = ni_find_mi(ni, ino_get(&le->ref));
695 		if (!mi)
696 			return 0;
697 
698 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
699 				    le->name_len, &le->id);
700 		if (!attr)
701 			return 0;
702 
703 		asize = le32_to_cpu(attr->size);
704 		if (asize > free)
705 			return 0;
706 
707 		free -= asize;
708 	}
709 
710 	/* Make a copy of primary record to restore if error. */
711 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
712 	if (!mrec)
713 		return 0; /* Not critical. */
714 
715 	/* It seems that attribute list can be removed from primary record. */
716 	mi_remove_attr(NULL, &ni->mi, attr_list);
717 
718 	/*
719 	 * Repeat the cycle above and copy all attributes to primary record.
720 	 * Do not remove original attributes from subrecords!
721 	 * It should be success!
722 	 */
723 	le = NULL;
724 	while ((le = al_enumerate(ni, le))) {
725 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
726 			continue;
727 
728 		mi = ni_find_mi(ni, ino_get(&le->ref));
729 		if (!mi) {
730 			/* Should never happened, 'cause already checked. */
731 			goto out;
732 		}
733 
734 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
735 				    le->name_len, &le->id);
736 		if (!attr) {
737 			/* Should never happened, 'cause already checked. */
738 			goto out;
739 		}
740 		asize = le32_to_cpu(attr->size);
741 
742 		/* Insert into primary record. */
743 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
744 					  le->name_len, asize,
745 					  le16_to_cpu(attr->name_off));
746 		if (!attr_ins) {
747 			/*
748 			 * No space in primary record (already checked).
749 			 */
750 			goto out;
751 		}
752 
753 		/* Copy all except id. */
754 		id = attr_ins->id;
755 		memcpy(attr_ins, attr, asize);
756 		attr_ins->id = id;
757 	}
758 
759 	/*
760 	 * Repeat the cycle above and remove all attributes from subrecords.
761 	 */
762 	le = NULL;
763 	while ((le = al_enumerate(ni, le))) {
764 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
765 			continue;
766 
767 		mi = ni_find_mi(ni, ino_get(&le->ref));
768 		if (!mi)
769 			continue;
770 
771 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
772 				    le->name_len, &le->id);
773 		if (!attr)
774 			continue;
775 
776 		/* Remove from original record. */
777 		mi_remove_attr(NULL, mi, attr);
778 	}
779 
780 	run_deallocate(sbi, &ni->attr_list.run, true);
781 	run_close(&ni->attr_list.run);
782 	ni->attr_list.size = 0;
783 	kvfree(ni->attr_list.le);
784 	ni->attr_list.le = NULL;
785 	ni->attr_list.dirty = false;
786 
787 	kfree(mrec);
788 	return 0;
789 out:
790 	/* Restore primary record. */
791 	swap(mrec, ni->mi.mrec);
792 	kfree(mrec);
793 	return 0;
794 }
795 
796 /*
797  * ni_create_attr_list - Generates an attribute list for this primary record.
798  */
ni_create_attr_list(struct ntfs_inode * ni)799 int ni_create_attr_list(struct ntfs_inode *ni)
800 {
801 	struct ntfs_sb_info *sbi = ni->mi.sbi;
802 	int err;
803 	u32 lsize;
804 	struct ATTRIB *attr;
805 	struct ATTRIB *arr_move[7];
806 	struct ATTR_LIST_ENTRY *le, *le_b[7];
807 	struct MFT_REC *rec;
808 	bool is_mft;
809 	CLST rno = 0;
810 	struct mft_inode *mi;
811 	u32 free_b, nb, to_free, rs;
812 	u16 sz;
813 
814 	is_mft = ni->mi.rno == MFT_REC_MFT;
815 	rec = ni->mi.mrec;
816 	rs = sbi->record_size;
817 
818 	/*
819 	 * Skip estimating exact memory requirement.
820 	 * Looks like one record_size is always enough.
821 	 */
822 	le = kmalloc(al_aligned(rs), GFP_NOFS);
823 	if (!le)
824 		return -ENOMEM;
825 
826 	mi_get_ref(&ni->mi, &le->ref);
827 	ni->attr_list.le = le;
828 
829 	attr = NULL;
830 	nb = 0;
831 	free_b = 0;
832 	attr = NULL;
833 
834 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
835 		sz = le_size(attr->name_len);
836 		le->type = attr->type;
837 		le->size = cpu_to_le16(sz);
838 		le->name_len = attr->name_len;
839 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
840 		le->vcn = 0;
841 		if (le != ni->attr_list.le)
842 			le->ref = ni->attr_list.le->ref;
843 		le->id = attr->id;
844 
845 		if (attr->name_len)
846 			memcpy(le->name, attr_name(attr),
847 			       sizeof(short) * attr->name_len);
848 		else if (attr->type == ATTR_STD)
849 			continue;
850 		else if (attr->type == ATTR_LIST)
851 			continue;
852 		else if (is_mft && attr->type == ATTR_DATA)
853 			continue;
854 
855 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
856 			le_b[nb] = le;
857 			arr_move[nb++] = attr;
858 			free_b += le32_to_cpu(attr->size);
859 		}
860 	}
861 
862 	lsize = PtrOffset(ni->attr_list.le, le);
863 	ni->attr_list.size = lsize;
864 
865 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
866 	if (to_free <= rs) {
867 		to_free = 0;
868 	} else {
869 		to_free -= rs;
870 
871 		if (to_free > free_b) {
872 			err = -EINVAL;
873 			goto out;
874 		}
875 	}
876 
877 	/* Allocate child MFT. */
878 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
879 	if (err)
880 		goto out;
881 
882 	err = -EINVAL;
883 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
884 	while (to_free > 0) {
885 		struct ATTRIB *b = arr_move[--nb];
886 		u32 asize = le32_to_cpu(b->size);
887 		u16 name_off = le16_to_cpu(b->name_off);
888 
889 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
890 				      b->name_len, asize, name_off);
891 		if (!attr)
892 			goto out;
893 
894 		mi_get_ref(mi, &le_b[nb]->ref);
895 		le_b[nb]->id = attr->id;
896 
897 		/* Copy all except id. */
898 		memcpy(attr, b, asize);
899 		attr->id = le_b[nb]->id;
900 
901 		/* Remove from primary record. */
902 		if (!mi_remove_attr(NULL, &ni->mi, b))
903 			goto out;
904 
905 		if (to_free <= asize)
906 			break;
907 		to_free -= asize;
908 		if (!nb)
909 			goto out;
910 	}
911 
912 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
913 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
914 	if (!attr)
915 		goto out;
916 
917 	attr->non_res = 0;
918 	attr->flags = 0;
919 	attr->res.data_size = cpu_to_le32(lsize);
920 	attr->res.data_off = SIZEOF_RESIDENT_LE;
921 	attr->res.flags = 0;
922 	attr->res.res = 0;
923 
924 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
925 
926 	ni->attr_list.dirty = false;
927 
928 	mark_inode_dirty(&ni->vfs_inode);
929 	return 0;
930 
931 out:
932 	kvfree(ni->attr_list.le);
933 	ni->attr_list.le = NULL;
934 	ni->attr_list.size = 0;
935 	return err;
936 }
937 
938 /*
939  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
940  */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)941 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
942 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
943 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
944 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
945 			   struct ATTR_LIST_ENTRY **ins_le)
946 {
947 	struct ATTRIB *attr;
948 	struct mft_inode *mi;
949 	CLST rno;
950 	u64 vbo;
951 	struct rb_node *node;
952 	int err;
953 	bool is_mft, is_mft_data;
954 	struct ntfs_sb_info *sbi = ni->mi.sbi;
955 
956 	is_mft = ni->mi.rno == MFT_REC_MFT;
957 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
958 
959 	if (asize > sbi->max_bytes_per_attr) {
960 		err = -EINVAL;
961 		goto out;
962 	}
963 
964 	/*
965 	 * Standard information and attr_list cannot be made external.
966 	 * The Log File cannot have any external attributes.
967 	 */
968 	if (type == ATTR_STD || type == ATTR_LIST ||
969 	    ni->mi.rno == MFT_REC_LOG) {
970 		err = -EINVAL;
971 		goto out;
972 	}
973 
974 	/* Create attribute list if it is not already existed. */
975 	if (!ni->attr_list.size) {
976 		err = ni_create_attr_list(ni);
977 		if (err)
978 			goto out;
979 	}
980 
981 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
982 
983 	if (force_ext)
984 		goto insert_ext;
985 
986 	/* Load all subrecords into memory. */
987 	err = ni_load_all_mi(ni);
988 	if (err)
989 		goto out;
990 
991 	/* Check each of loaded subrecord. */
992 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
993 		mi = rb_entry(node, struct mft_inode, node);
994 
995 		if (is_mft_data &&
996 		    (mi_enum_attr(mi, NULL) ||
997 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
998 			/* We can't accept this record 'cause MFT's bootstrapping. */
999 			continue;
1000 		}
1001 		if (is_mft &&
1002 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1003 			/*
1004 			 * This child record already has a ATTR_DATA.
1005 			 * So it can't accept any other records.
1006 			 */
1007 			continue;
1008 		}
1009 
1010 		if ((type != ATTR_NAME || name_len) &&
1011 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1012 			/* Only indexed attributes can share same record. */
1013 			continue;
1014 		}
1015 
1016 		/*
1017 		 * Do not try to insert this attribute
1018 		 * if there is no room in record.
1019 		 */
1020 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1021 			continue;
1022 
1023 		/* Try to insert attribute into this subrecord. */
1024 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1025 				       name_off, svcn, ins_le);
1026 		if (!attr)
1027 			continue;
1028 		if (IS_ERR(attr))
1029 			return PTR_ERR(attr);
1030 
1031 		if (ins_attr)
1032 			*ins_attr = attr;
1033 		if (ins_mi)
1034 			*ins_mi = mi;
1035 		return 0;
1036 	}
1037 
1038 insert_ext:
1039 	/* We have to allocate a new child subrecord. */
1040 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1041 	if (err)
1042 		goto out;
1043 
1044 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1045 		err = -EINVAL;
1046 		goto out1;
1047 	}
1048 
1049 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1050 			       name_off, svcn, ins_le);
1051 	if (!attr) {
1052 		err = -EINVAL;
1053 		goto out2;
1054 	}
1055 
1056 	if (IS_ERR(attr)) {
1057 		err = PTR_ERR(attr);
1058 		goto out2;
1059 	}
1060 
1061 	if (ins_attr)
1062 		*ins_attr = attr;
1063 	if (ins_mi)
1064 		*ins_mi = mi;
1065 
1066 	return 0;
1067 
1068 out2:
1069 	ni_remove_mi(ni, mi);
1070 	mi_put(mi);
1071 
1072 out1:
1073 	ntfs_mark_rec_free(sbi, rno, is_mft);
1074 
1075 out:
1076 	return err;
1077 }
1078 
1079 /*
1080  * ni_insert_attr - Insert an attribute into the file.
1081  *
1082  * If the primary record has room, it will just insert the attribute.
1083  * If not, it may make the attribute external.
1084  * For $MFT::Data it may make room for the attribute by
1085  * making other attributes external.
1086  *
1087  * NOTE:
1088  * The ATTR_LIST and ATTR_STD cannot be made external.
1089  * This function does not fill new attribute full.
1090  * It only fills 'size'/'type'/'id'/'name_len' fields.
1091  */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1092 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1093 			  const __le16 *name, u8 name_len, u32 asize,
1094 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1095 			  struct mft_inode **ins_mi,
1096 			  struct ATTR_LIST_ENTRY **ins_le)
1097 {
1098 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1099 	int err;
1100 	struct ATTRIB *attr, *eattr;
1101 	struct MFT_REC *rec;
1102 	bool is_mft;
1103 	struct ATTR_LIST_ENTRY *le;
1104 	u32 list_reserve, max_free, free, used, t32;
1105 	__le16 id;
1106 	u16 t16;
1107 
1108 	is_mft = ni->mi.rno == MFT_REC_MFT;
1109 	rec = ni->mi.mrec;
1110 
1111 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1112 	used = le32_to_cpu(rec->used);
1113 	free = sbi->record_size - used;
1114 
1115 	if (is_mft && type != ATTR_LIST) {
1116 		/* Reserve space for the ATTRIB list. */
1117 		if (free < list_reserve)
1118 			free = 0;
1119 		else
1120 			free -= list_reserve;
1121 	}
1122 
1123 	if (asize <= free) {
1124 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1125 				       asize, name_off, svcn, ins_le);
1126 		if (IS_ERR(attr)) {
1127 			err = PTR_ERR(attr);
1128 			goto out;
1129 		}
1130 
1131 		if (attr) {
1132 			if (ins_attr)
1133 				*ins_attr = attr;
1134 			if (ins_mi)
1135 				*ins_mi = &ni->mi;
1136 			err = 0;
1137 			goto out;
1138 		}
1139 	}
1140 
1141 	if (!is_mft || type != ATTR_DATA || svcn) {
1142 		/* This ATTRIB will be external. */
1143 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1144 				      svcn, name_off, false, ins_attr, ins_mi,
1145 				      ins_le);
1146 		goto out;
1147 	}
1148 
1149 	/*
1150 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1151 	 *
1152 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1153 	 * Evict as many other attributes as possible.
1154 	 */
1155 	max_free = free;
1156 
1157 	/* Estimate the result of moving all possible attributes away. */
1158 	attr = NULL;
1159 
1160 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1161 		if (attr->type == ATTR_STD)
1162 			continue;
1163 		if (attr->type == ATTR_LIST)
1164 			continue;
1165 		max_free += le32_to_cpu(attr->size);
1166 	}
1167 
1168 	if (max_free < asize + list_reserve) {
1169 		/* Impossible to insert this attribute into primary record. */
1170 		err = -EINVAL;
1171 		goto out;
1172 	}
1173 
1174 	/* Start real attribute moving. */
1175 	attr = NULL;
1176 
1177 	for (;;) {
1178 		attr = mi_enum_attr(&ni->mi, attr);
1179 		if (!attr) {
1180 			/* We should never be here 'cause we have already check this case. */
1181 			err = -EINVAL;
1182 			goto out;
1183 		}
1184 
1185 		/* Skip attributes that MUST be primary record. */
1186 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1187 			continue;
1188 
1189 		le = NULL;
1190 		if (ni->attr_list.size) {
1191 			le = al_find_le(ni, NULL, attr);
1192 			if (!le) {
1193 				/* Really this is a serious bug. */
1194 				err = -EINVAL;
1195 				goto out;
1196 			}
1197 		}
1198 
1199 		t32 = le32_to_cpu(attr->size);
1200 		t16 = le16_to_cpu(attr->name_off);
1201 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1202 				      attr->name_len, t32, attr_svcn(attr), t16,
1203 				      false, &eattr, NULL, NULL);
1204 		if (err)
1205 			return err;
1206 
1207 		id = eattr->id;
1208 		memcpy(eattr, attr, t32);
1209 		eattr->id = id;
1210 
1211 		/* Remove from primary record. */
1212 		mi_remove_attr(NULL, &ni->mi, attr);
1213 
1214 		/* attr now points to next attribute. */
1215 		if (attr->type == ATTR_END)
1216 			goto out;
1217 	}
1218 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1219 		;
1220 
1221 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1222 			       name_off, svcn, ins_le);
1223 	if (!attr) {
1224 		err = -EINVAL;
1225 		goto out;
1226 	}
1227 
1228 	if (IS_ERR(attr)) {
1229 		err = PTR_ERR(attr);
1230 		goto out;
1231 	}
1232 
1233 	if (ins_attr)
1234 		*ins_attr = attr;
1235 	if (ins_mi)
1236 		*ins_mi = &ni->mi;
1237 
1238 out:
1239 	return err;
1240 }
1241 
1242 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1243 static int ni_expand_mft_list(struct ntfs_inode *ni)
1244 {
1245 	int err = 0;
1246 	struct runs_tree *run = &ni->file.run;
1247 	u32 asize, run_size, done = 0;
1248 	struct ATTRIB *attr;
1249 	struct rb_node *node;
1250 	CLST mft_min, mft_new, svcn, evcn, plen;
1251 	struct mft_inode *mi, *mi_min, *mi_new;
1252 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1253 
1254 	/* Find the nearest MFT. */
1255 	mft_min = 0;
1256 	mft_new = 0;
1257 	mi_min = NULL;
1258 
1259 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1260 		mi = rb_entry(node, struct mft_inode, node);
1261 
1262 		attr = mi_enum_attr(mi, NULL);
1263 
1264 		if (!attr) {
1265 			mft_min = mi->rno;
1266 			mi_min = mi;
1267 			break;
1268 		}
1269 	}
1270 
1271 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1272 		mft_new = 0;
1273 		/* Really this is not critical. */
1274 	} else if (mft_min > mft_new) {
1275 		mft_min = mft_new;
1276 		mi_min = mi_new;
1277 	} else {
1278 		ntfs_mark_rec_free(sbi, mft_new, true);
1279 		mft_new = 0;
1280 		ni_remove_mi(ni, mi_new);
1281 	}
1282 
1283 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1284 	if (!attr) {
1285 		err = -EINVAL;
1286 		goto out;
1287 	}
1288 
1289 	asize = le32_to_cpu(attr->size);
1290 
1291 	evcn = le64_to_cpu(attr->nres.evcn);
1292 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1293 	if (evcn + 1 >= svcn) {
1294 		err = -EINVAL;
1295 		goto out;
1296 	}
1297 
1298 	/*
1299 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1300 	 *
1301 	 * Update first part of ATTR_DATA in 'primary MFT.
1302 	 */
1303 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1304 		       asize - SIZEOF_NONRESIDENT, &plen);
1305 	if (err < 0)
1306 		goto out;
1307 
1308 	run_size = ALIGN(err, 8);
1309 	err = 0;
1310 
1311 	if (plen < svcn) {
1312 		err = -EINVAL;
1313 		goto out;
1314 	}
1315 
1316 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1317 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1318 	/* 'done' - How many bytes of primary MFT becomes free. */
1319 	done = asize - run_size - SIZEOF_NONRESIDENT;
1320 	le32_sub_cpu(&ni->mi.mrec->used, done);
1321 
1322 	/* Estimate packed size (run_buf=NULL). */
1323 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1324 		       &plen);
1325 	if (err < 0)
1326 		goto out;
1327 
1328 	run_size = ALIGN(err, 8);
1329 	err = 0;
1330 
1331 	if (plen < evcn + 1 - svcn) {
1332 		err = -EINVAL;
1333 		goto out;
1334 	}
1335 
1336 	/*
1337 	 * This function may implicitly call expand attr_list.
1338 	 * Insert second part of ATTR_DATA in 'mi_min'.
1339 	 */
1340 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1341 			       SIZEOF_NONRESIDENT + run_size,
1342 			       SIZEOF_NONRESIDENT, svcn, NULL);
1343 	if (!attr) {
1344 		err = -EINVAL;
1345 		goto out;
1346 	}
1347 
1348 	if (IS_ERR(attr)) {
1349 		err = PTR_ERR(attr);
1350 		goto out;
1351 	}
1352 
1353 	attr->non_res = 1;
1354 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1355 	attr->flags = 0;
1356 
1357 	/* This function can't fail - cause already checked above. */
1358 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1359 		 run_size, &plen);
1360 
1361 	attr->nres.svcn = cpu_to_le64(svcn);
1362 	attr->nres.evcn = cpu_to_le64(evcn);
1363 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1364 
1365 out:
1366 	if (mft_new) {
1367 		ntfs_mark_rec_free(sbi, mft_new, true);
1368 		ni_remove_mi(ni, mi_new);
1369 	}
1370 
1371 	return !err && !done ? -EOPNOTSUPP : err;
1372 }
1373 
1374 /*
1375  * ni_expand_list - Move all possible attributes out of primary record.
1376  */
ni_expand_list(struct ntfs_inode * ni)1377 int ni_expand_list(struct ntfs_inode *ni)
1378 {
1379 	int err = 0;
1380 	u32 asize, done = 0;
1381 	struct ATTRIB *attr, *ins_attr;
1382 	struct ATTR_LIST_ENTRY *le;
1383 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1384 	struct MFT_REF ref;
1385 
1386 	mi_get_ref(&ni->mi, &ref);
1387 	le = NULL;
1388 
1389 	while ((le = al_enumerate(ni, le))) {
1390 		if (le->type == ATTR_STD)
1391 			continue;
1392 
1393 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1394 			continue;
1395 
1396 		if (is_mft && le->type == ATTR_DATA)
1397 			continue;
1398 
1399 		/* Find attribute in primary record. */
1400 		attr = rec_find_attr_le(&ni->mi, le);
1401 		if (!attr) {
1402 			err = -EINVAL;
1403 			goto out;
1404 		}
1405 
1406 		asize = le32_to_cpu(attr->size);
1407 
1408 		/* Always insert into new record to avoid collisions (deep recursive). */
1409 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1410 				      attr->name_len, asize, attr_svcn(attr),
1411 				      le16_to_cpu(attr->name_off), true,
1412 				      &ins_attr, NULL, NULL);
1413 
1414 		if (err)
1415 			goto out;
1416 
1417 		memcpy(ins_attr, attr, asize);
1418 		ins_attr->id = le->id;
1419 		/* Remove from primary record. */
1420 		mi_remove_attr(NULL, &ni->mi, attr);
1421 
1422 		done += asize;
1423 		goto out;
1424 	}
1425 
1426 	if (!is_mft) {
1427 		err = -EFBIG; /* Attr list is too big(?) */
1428 		goto out;
1429 	}
1430 
1431 	/* Split MFT data as much as possible. */
1432 	err = ni_expand_mft_list(ni);
1433 
1434 out:
1435 	return !err && !done ? -EOPNOTSUPP : err;
1436 }
1437 
1438 /*
1439  * ni_insert_nonresident - Insert new nonresident attribute.
1440  */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1441 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1442 			  const __le16 *name, u8 name_len,
1443 			  const struct runs_tree *run, CLST svcn, CLST len,
1444 			  __le16 flags, struct ATTRIB **new_attr,
1445 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1446 {
1447 	int err;
1448 	CLST plen;
1449 	struct ATTRIB *attr;
1450 	bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1451 		      !svcn;
1452 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1453 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1454 	u32 run_off = name_off + name_size;
1455 	u32 run_size, asize;
1456 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1457 
1458 	/* Estimate packed size (run_buf=NULL). */
1459 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1460 		       &plen);
1461 	if (err < 0)
1462 		goto out;
1463 
1464 	run_size = ALIGN(err, 8);
1465 
1466 	if (plen < len) {
1467 		err = -EINVAL;
1468 		goto out;
1469 	}
1470 
1471 	asize = run_off + run_size;
1472 
1473 	if (asize > sbi->max_bytes_per_attr) {
1474 		err = -EINVAL;
1475 		goto out;
1476 	}
1477 
1478 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1479 			     &attr, mi, le);
1480 
1481 	if (err)
1482 		goto out;
1483 
1484 	attr->non_res = 1;
1485 	attr->name_off = cpu_to_le16(name_off);
1486 	attr->flags = flags;
1487 
1488 	/* This function can't fail - cause already checked above. */
1489 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1490 
1491 	attr->nres.svcn = cpu_to_le64(svcn);
1492 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1493 
1494 	if (new_attr)
1495 		*new_attr = attr;
1496 
1497 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1498 
1499 	attr->nres.alloc_size =
1500 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1501 	attr->nres.data_size = attr->nres.alloc_size;
1502 	attr->nres.valid_size = attr->nres.alloc_size;
1503 
1504 	if (is_ext) {
1505 		if (flags & ATTR_FLAG_COMPRESSED)
1506 			attr->nres.c_unit = NTFS_LZNT_CUNIT;
1507 		attr->nres.total_size = attr->nres.alloc_size;
1508 	}
1509 
1510 out:
1511 	return err;
1512 }
1513 
1514 /*
1515  * ni_insert_resident - Inserts new resident attribute.
1516  */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1517 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1518 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1519 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1520 		       struct ATTR_LIST_ENTRY **le)
1521 {
1522 	int err;
1523 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1524 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1525 	struct ATTRIB *attr;
1526 
1527 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1528 			     0, &attr, mi, le);
1529 	if (err)
1530 		return err;
1531 
1532 	attr->non_res = 0;
1533 	attr->flags = 0;
1534 
1535 	attr->res.data_size = cpu_to_le32(data_size);
1536 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1537 	if (type == ATTR_NAME) {
1538 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1539 
1540 		/* is_attr_indexed(attr)) == true */
1541 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1542 		ni->mi.dirty = true;
1543 	}
1544 	attr->res.res = 0;
1545 
1546 	if (new_attr)
1547 		*new_attr = attr;
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  * ni_remove_attr_le - Remove attribute from record.
1554  */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1555 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1556 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1557 {
1558 	mi_remove_attr(ni, mi, attr);
1559 
1560 	if (le)
1561 		al_remove_le(ni, le);
1562 }
1563 
1564 /*
1565  * ni_delete_all - Remove all attributes and frees allocates space.
1566  *
1567  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1568  */
ni_delete_all(struct ntfs_inode * ni)1569 int ni_delete_all(struct ntfs_inode *ni)
1570 {
1571 	int err;
1572 	struct ATTR_LIST_ENTRY *le = NULL;
1573 	struct ATTRIB *attr = NULL;
1574 	struct rb_node *node;
1575 	u16 roff;
1576 	u32 asize;
1577 	CLST svcn, evcn;
1578 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1579 	bool nt3 = is_ntfs3(sbi);
1580 	struct MFT_REF ref;
1581 
1582 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1583 		if (!nt3 || attr->name_len) {
1584 			;
1585 		} else if (attr->type == ATTR_REPARSE) {
1586 			mi_get_ref(&ni->mi, &ref);
1587 			ntfs_remove_reparse(sbi, 0, &ref);
1588 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1589 			   le32_to_cpu(attr->res.data_size) >=
1590 				   sizeof(struct GUID)) {
1591 			ntfs_objid_remove(sbi, resident_data(attr));
1592 		}
1593 
1594 		if (!attr->non_res)
1595 			continue;
1596 
1597 		svcn = le64_to_cpu(attr->nres.svcn);
1598 		evcn = le64_to_cpu(attr->nres.evcn);
1599 
1600 		if (evcn + 1 <= svcn)
1601 			continue;
1602 
1603 		asize = le32_to_cpu(attr->size);
1604 		roff = le16_to_cpu(attr->nres.run_off);
1605 
1606 		if (roff > asize) {
1607 			_ntfs_bad_inode(&ni->vfs_inode);
1608 			return -EINVAL;
1609 		}
1610 
1611 		/* run==1 means unpack and deallocate. */
1612 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1613 			      Add2Ptr(attr, roff), asize - roff);
1614 	}
1615 
1616 	if (ni->attr_list.size) {
1617 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1618 		al_destroy(ni);
1619 	}
1620 
1621 	/* Free all subrecords. */
1622 	for (node = rb_first(&ni->mi_tree); node;) {
1623 		struct rb_node *next = rb_next(node);
1624 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1625 
1626 		clear_rec_inuse(mi->mrec);
1627 		mi->dirty = true;
1628 		mi_write(mi, 0);
1629 
1630 		ntfs_mark_rec_free(sbi, mi->rno, false);
1631 		ni_remove_mi(ni, mi);
1632 		mi_put(mi);
1633 		node = next;
1634 	}
1635 
1636 	/* Free base record. */
1637 	clear_rec_inuse(ni->mi.mrec);
1638 	ni->mi.dirty = true;
1639 	err = mi_write(&ni->mi, 0);
1640 
1641 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1642 
1643 	return err;
1644 }
1645 
1646 /* ni_fname_name
1647  *
1648  * Return: File name attribute by its value.
1649  */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1650 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1651 				     const struct le_str *uni,
1652 				     const struct MFT_REF *home_dir,
1653 				     struct mft_inode **mi,
1654 				     struct ATTR_LIST_ENTRY **le)
1655 {
1656 	struct ATTRIB *attr = NULL;
1657 	struct ATTR_FILE_NAME *fname;
1658 
1659 	if (le)
1660 		*le = NULL;
1661 
1662 	/* Enumerate all names. */
1663 next:
1664 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1665 	if (!attr)
1666 		return NULL;
1667 
1668 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1669 	if (!fname)
1670 		goto next;
1671 
1672 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1673 		goto next;
1674 
1675 	if (!uni)
1676 		return fname;
1677 
1678 	if (uni->len != fname->name_len)
1679 		goto next;
1680 
1681 	if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1682 			   false))
1683 		goto next;
1684 	return fname;
1685 }
1686 
1687 /*
1688  * ni_fname_type
1689  *
1690  * Return: File name attribute with given type.
1691  */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1692 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1693 				     struct mft_inode **mi,
1694 				     struct ATTR_LIST_ENTRY **le)
1695 {
1696 	struct ATTRIB *attr = NULL;
1697 	struct ATTR_FILE_NAME *fname;
1698 
1699 	*le = NULL;
1700 
1701 	if (name_type == FILE_NAME_POSIX)
1702 		return NULL;
1703 
1704 	/* Enumerate all names. */
1705 	for (;;) {
1706 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1707 		if (!attr)
1708 			return NULL;
1709 
1710 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1711 		if (fname && name_type == fname->type)
1712 			return fname;
1713 	}
1714 }
1715 
1716 /*
1717  * ni_new_attr_flags
1718  *
1719  * Process compressed/sparsed in special way.
1720  * NOTE: You need to set ni->std_fa = new_fa
1721  * after this function to keep internal structures in consistency.
1722  */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1723 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1724 {
1725 	struct ATTRIB *attr;
1726 	struct mft_inode *mi;
1727 	__le16 new_aflags;
1728 	u32 new_asize;
1729 
1730 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1731 	if (!attr)
1732 		return -EINVAL;
1733 
1734 	new_aflags = attr->flags;
1735 
1736 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1737 		new_aflags |= ATTR_FLAG_SPARSED;
1738 	else
1739 		new_aflags &= ~ATTR_FLAG_SPARSED;
1740 
1741 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1742 		new_aflags |= ATTR_FLAG_COMPRESSED;
1743 	else
1744 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1745 
1746 	if (new_aflags == attr->flags)
1747 		return 0;
1748 
1749 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1750 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1751 		ntfs_inode_warn(&ni->vfs_inode,
1752 				"file can't be sparsed and compressed");
1753 		return -EOPNOTSUPP;
1754 	}
1755 
1756 	if (!attr->non_res)
1757 		goto out;
1758 
1759 	if (attr->nres.data_size) {
1760 		ntfs_inode_warn(
1761 			&ni->vfs_inode,
1762 			"one can change sparsed/compressed only for empty files");
1763 		return -EOPNOTSUPP;
1764 	}
1765 
1766 	/* Resize nonresident empty attribute in-place only. */
1767 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1768 			    (SIZEOF_NONRESIDENT_EX + 8) :
1769 			    (SIZEOF_NONRESIDENT + 8);
1770 
1771 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1772 		return -EOPNOTSUPP;
1773 
1774 	if (new_aflags & ATTR_FLAG_SPARSED) {
1775 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1776 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1777 		attr->nres.c_unit = 0;
1778 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1779 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1780 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1781 		/* The only allowed: 16 clusters per frame. */
1782 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1783 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1784 	} else {
1785 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1786 		/* Normal files. */
1787 		attr->nres.c_unit = 0;
1788 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1789 	}
1790 	attr->nres.run_off = attr->name_off;
1791 out:
1792 	attr->flags = new_aflags;
1793 	mi->dirty = true;
1794 
1795 	return 0;
1796 }
1797 
1798 /*
1799  * ni_parse_reparse
1800  *
1801  * buffer - memory for reparse buffer header
1802  */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1803 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1804 				   struct REPARSE_DATA_BUFFER *buffer)
1805 {
1806 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1807 	u8 bits;
1808 	u16 len;
1809 	typeof(rp->CompressReparseBuffer) *cmpr;
1810 
1811 	/* Try to estimate reparse point. */
1812 	if (!attr->non_res) {
1813 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1814 	} else if (le64_to_cpu(attr->nres.data_size) >=
1815 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1816 		struct runs_tree run;
1817 
1818 		run_init(&run);
1819 
1820 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1821 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1822 				      sizeof(struct REPARSE_DATA_BUFFER),
1823 				      NULL)) {
1824 			rp = buffer;
1825 		}
1826 
1827 		run_close(&run);
1828 	}
1829 
1830 	if (!rp)
1831 		return REPARSE_NONE;
1832 
1833 	len = le16_to_cpu(rp->ReparseDataLength);
1834 	switch (rp->ReparseTag) {
1835 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1836 		break; /* Symbolic link. */
1837 	case IO_REPARSE_TAG_MOUNT_POINT:
1838 		break; /* Mount points and junctions. */
1839 	case IO_REPARSE_TAG_SYMLINK:
1840 		break;
1841 	case IO_REPARSE_TAG_COMPRESS:
1842 		/*
1843 		 * WOF - Windows Overlay Filter - Used to compress files with
1844 		 * LZX/Xpress.
1845 		 *
1846 		 * Unlike native NTFS file compression, the Windows
1847 		 * Overlay Filter supports only read operations. This means
1848 		 * that it doesn't need to sector-align each compressed chunk,
1849 		 * so the compressed data can be packed more tightly together.
1850 		 * If you open the file for writing, the WOF just decompresses
1851 		 * the entire file, turning it back into a plain file.
1852 		 *
1853 		 * Ntfs3 driver decompresses the entire file only on write or
1854 		 * change size requests.
1855 		 */
1856 
1857 		cmpr = &rp->CompressReparseBuffer;
1858 		if (len < sizeof(*cmpr) ||
1859 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1860 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1861 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1862 			return REPARSE_NONE;
1863 		}
1864 
1865 		switch (cmpr->CompressionFormat) {
1866 		case WOF_COMPRESSION_XPRESS4K:
1867 			bits = 0xc; // 4k
1868 			break;
1869 		case WOF_COMPRESSION_XPRESS8K:
1870 			bits = 0xd; // 8k
1871 			break;
1872 		case WOF_COMPRESSION_XPRESS16K:
1873 			bits = 0xe; // 16k
1874 			break;
1875 		case WOF_COMPRESSION_LZX32K:
1876 			bits = 0xf; // 32k
1877 			break;
1878 		default:
1879 			bits = 0x10; // 64k
1880 			break;
1881 		}
1882 		ni_set_ext_compress_bits(ni, bits);
1883 		return REPARSE_COMPRESSED;
1884 
1885 	case IO_REPARSE_TAG_DEDUP:
1886 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1887 		return REPARSE_DEDUPLICATED;
1888 
1889 	default:
1890 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1891 			break;
1892 
1893 		return REPARSE_NONE;
1894 	}
1895 
1896 	if (buffer != rp)
1897 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1898 
1899 	/* Looks like normal symlink. */
1900 	return REPARSE_LINK;
1901 }
1902 
1903 /*
1904  * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent
1905  * but it uses 'fe_k' instead of fieinfo->fi_extents_start
1906  */
fiemap_fill_next_extent_k(struct fiemap_extent_info * fieinfo,struct fiemap_extent * fe_k,u64 logical,u64 phys,u64 len,u32 flags)1907 static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo,
1908 				     struct fiemap_extent *fe_k, u64 logical,
1909 				     u64 phys, u64 len, u32 flags)
1910 {
1911 	struct fiemap_extent extent;
1912 
1913 	/* only count the extents */
1914 	if (fieinfo->fi_extents_max == 0) {
1915 		fieinfo->fi_extents_mapped++;
1916 		return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1917 	}
1918 
1919 	if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max)
1920 		return 1;
1921 
1922 	if (flags & FIEMAP_EXTENT_DELALLOC)
1923 		flags |= FIEMAP_EXTENT_UNKNOWN;
1924 	if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED)
1925 		flags |= FIEMAP_EXTENT_ENCODED;
1926 	if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE))
1927 		flags |= FIEMAP_EXTENT_NOT_ALIGNED;
1928 
1929 	memset(&extent, 0, sizeof(extent));
1930 	extent.fe_logical = logical;
1931 	extent.fe_physical = phys;
1932 	extent.fe_length = len;
1933 	extent.fe_flags = flags;
1934 
1935 	memcpy(fe_k + fieinfo->fi_extents_mapped, &extent, sizeof(extent));
1936 
1937 	fieinfo->fi_extents_mapped++;
1938 	if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max)
1939 		return 1;
1940 	return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1941 }
1942 
1943 /*
1944  * ni_fiemap - Helper for file_fiemap().
1945  *
1946  * Assumed ni_lock.
1947  * TODO: Less aggressive locks.
1948  */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1949 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1950 	      __u64 vbo, __u64 len)
1951 {
1952 	int err = 0;
1953 	struct fiemap_extent *fe_k = NULL;
1954 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1955 	u8 cluster_bits = sbi->cluster_bits;
1956 	struct runs_tree *run;
1957 	struct rw_semaphore *run_lock;
1958 	struct ATTRIB *attr;
1959 	CLST vcn = vbo >> cluster_bits;
1960 	CLST lcn, clen;
1961 	u64 valid = ni->i_valid;
1962 	u64 lbo, bytes;
1963 	u64 end, alloc_size;
1964 	size_t idx = -1;
1965 	u32 flags;
1966 	bool ok;
1967 
1968 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1969 		run = &ni->dir.alloc_run;
1970 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1971 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1972 		run_lock = &ni->dir.run_lock;
1973 	} else {
1974 		run = &ni->file.run;
1975 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1976 				    NULL);
1977 		if (!attr) {
1978 			err = -EINVAL;
1979 			goto out;
1980 		}
1981 		if (is_attr_compressed(attr)) {
1982 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1983 			err = -EOPNOTSUPP;
1984 			ntfs_inode_warn(
1985 				&ni->vfs_inode,
1986 				"fiemap is not supported for compressed file (cp -r)");
1987 			goto out;
1988 		}
1989 		run_lock = &ni->file.run_lock;
1990 	}
1991 
1992 	if (!attr || !attr->non_res) {
1993 		err = fiemap_fill_next_extent(
1994 			fieinfo, 0, 0,
1995 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1996 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1997 				FIEMAP_EXTENT_MERGED);
1998 		goto out;
1999 	}
2000 
2001 	/*
2002 	 * To avoid lock problems replace pointer to user memory by pointer to kernel memory.
2003 	 */
2004 	fe_k = kmalloc_array(fieinfo->fi_extents_max,
2005 			     sizeof(struct fiemap_extent),
2006 			     GFP_NOFS | __GFP_ZERO);
2007 	if (!fe_k) {
2008 		err = -ENOMEM;
2009 		goto out;
2010 	}
2011 
2012 	end = vbo + len;
2013 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
2014 	if (end > alloc_size)
2015 		end = alloc_size;
2016 
2017 	down_read(run_lock);
2018 
2019 	while (vbo < end) {
2020 		if (idx == -1) {
2021 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2022 		} else {
2023 			CLST vcn_next = vcn;
2024 
2025 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
2026 			     vcn == vcn_next;
2027 			if (!ok)
2028 				vcn = vcn_next;
2029 		}
2030 
2031 		if (!ok) {
2032 			up_read(run_lock);
2033 			down_write(run_lock);
2034 
2035 			err = attr_load_runs_vcn(ni, attr->type,
2036 						 attr_name(attr),
2037 						 attr->name_len, run, vcn);
2038 
2039 			up_write(run_lock);
2040 			down_read(run_lock);
2041 
2042 			if (err)
2043 				break;
2044 
2045 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2046 
2047 			if (!ok) {
2048 				err = -EINVAL;
2049 				break;
2050 			}
2051 		}
2052 
2053 		if (!clen) {
2054 			err = -EINVAL; // ?
2055 			break;
2056 		}
2057 
2058 		if (lcn == SPARSE_LCN) {
2059 			vcn += clen;
2060 			vbo = (u64)vcn << cluster_bits;
2061 			continue;
2062 		}
2063 
2064 		flags = FIEMAP_EXTENT_MERGED;
2065 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2066 			;
2067 		} else if (is_attr_compressed(attr)) {
2068 			CLST clst_data;
2069 
2070 			err = attr_is_frame_compressed(
2071 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2072 			if (err)
2073 				break;
2074 			if (clst_data < NTFS_LZNT_CLUSTERS)
2075 				flags |= FIEMAP_EXTENT_ENCODED;
2076 		} else if (is_attr_encrypted(attr)) {
2077 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2078 		}
2079 
2080 		vbo = (u64)vcn << cluster_bits;
2081 		bytes = (u64)clen << cluster_bits;
2082 		lbo = (u64)lcn << cluster_bits;
2083 
2084 		vcn += clen;
2085 
2086 		if (vbo + bytes >= end)
2087 			bytes = end - vbo;
2088 
2089 		if (vbo + bytes <= valid) {
2090 			;
2091 		} else if (vbo >= valid) {
2092 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2093 		} else {
2094 			/* vbo < valid && valid < vbo + bytes */
2095 			u64 dlen = valid - vbo;
2096 
2097 			if (vbo + dlen >= end)
2098 				flags |= FIEMAP_EXTENT_LAST;
2099 
2100 			err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo,
2101 							dlen, flags);
2102 
2103 			if (err < 0)
2104 				break;
2105 			if (err == 1) {
2106 				err = 0;
2107 				break;
2108 			}
2109 
2110 			vbo = valid;
2111 			bytes -= dlen;
2112 			if (!bytes)
2113 				continue;
2114 
2115 			lbo += dlen;
2116 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2117 		}
2118 
2119 		if (vbo + bytes >= end)
2120 			flags |= FIEMAP_EXTENT_LAST;
2121 
2122 		err = fiemap_fill_next_extent_k(fieinfo, fe_k, vbo, lbo, bytes,
2123 						flags);
2124 		if (err < 0)
2125 			break;
2126 		if (err == 1) {
2127 			err = 0;
2128 			break;
2129 		}
2130 
2131 		vbo += bytes;
2132 	}
2133 
2134 	up_read(run_lock);
2135 
2136 	/*
2137 	 * Copy to user memory out of lock
2138 	 */
2139 	if (copy_to_user(fieinfo->fi_extents_start, fe_k,
2140 			 fieinfo->fi_extents_max *
2141 				 sizeof(struct fiemap_extent))) {
2142 		err = -EFAULT;
2143 	}
2144 
2145 out:
2146 	kfree(fe_k);
2147 	return err;
2148 }
2149 
2150 /*
2151  * ni_readpage_cmpr
2152  *
2153  * When decompressing, we typically obtain more than one page per reference.
2154  * We inject the additional pages into the page cache.
2155  */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2156 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2157 {
2158 	int err;
2159 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2160 	struct address_space *mapping = page->mapping;
2161 	pgoff_t index = page->index;
2162 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2163 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2164 	u8 frame_bits;
2165 	CLST frame;
2166 	u32 i, idx, frame_size, pages_per_frame;
2167 	gfp_t gfp_mask;
2168 	struct page *pg;
2169 
2170 	if (vbo >= i_size_read(&ni->vfs_inode)) {
2171 		SetPageUptodate(page);
2172 		err = 0;
2173 		goto out;
2174 	}
2175 
2176 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2177 		/* Xpress or LZX. */
2178 		frame_bits = ni_ext_compress_bits(ni);
2179 	} else {
2180 		/* LZNT compression. */
2181 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2182 	}
2183 	frame_size = 1u << frame_bits;
2184 	frame = vbo >> frame_bits;
2185 	frame_vbo = (u64)frame << frame_bits;
2186 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2187 
2188 	pages_per_frame = frame_size >> PAGE_SHIFT;
2189 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2190 	if (!pages) {
2191 		err = -ENOMEM;
2192 		goto out;
2193 	}
2194 
2195 	pages[idx] = page;
2196 	index = frame_vbo >> PAGE_SHIFT;
2197 	gfp_mask = mapping_gfp_mask(mapping);
2198 
2199 	for (i = 0; i < pages_per_frame; i++, index++) {
2200 		if (i == idx)
2201 			continue;
2202 
2203 		pg = find_or_create_page(mapping, index, gfp_mask);
2204 		if (!pg) {
2205 			err = -ENOMEM;
2206 			goto out1;
2207 		}
2208 		pages[i] = pg;
2209 	}
2210 
2211 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2212 
2213 out1:
2214 	if (err)
2215 		SetPageError(page);
2216 
2217 	for (i = 0; i < pages_per_frame; i++) {
2218 		pg = pages[i];
2219 		if (i == idx || !pg)
2220 			continue;
2221 		unlock_page(pg);
2222 		put_page(pg);
2223 	}
2224 
2225 out:
2226 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2227 	kfree(pages);
2228 	unlock_page(page);
2229 
2230 	return err;
2231 }
2232 
2233 #ifdef CONFIG_NTFS3_LZX_XPRESS
2234 /*
2235  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2236  *
2237  * Remove ATTR_DATA::WofCompressedData.
2238  * Remove ATTR_REPARSE.
2239  */
ni_decompress_file(struct ntfs_inode * ni)2240 int ni_decompress_file(struct ntfs_inode *ni)
2241 {
2242 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2243 	struct inode *inode = &ni->vfs_inode;
2244 	loff_t i_size = i_size_read(inode);
2245 	struct address_space *mapping = inode->i_mapping;
2246 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2247 	struct page **pages = NULL;
2248 	struct ATTR_LIST_ENTRY *le;
2249 	struct ATTRIB *attr;
2250 	CLST vcn, cend, lcn, clen, end;
2251 	pgoff_t index;
2252 	u64 vbo;
2253 	u8 frame_bits;
2254 	u32 i, frame_size, pages_per_frame, bytes;
2255 	struct mft_inode *mi;
2256 	int err;
2257 
2258 	/* Clusters for decompressed data. */
2259 	cend = bytes_to_cluster(sbi, i_size);
2260 
2261 	if (!i_size)
2262 		goto remove_wof;
2263 
2264 	/* Check in advance. */
2265 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2266 		err = -ENOSPC;
2267 		goto out;
2268 	}
2269 
2270 	frame_bits = ni_ext_compress_bits(ni);
2271 	frame_size = 1u << frame_bits;
2272 	pages_per_frame = frame_size >> PAGE_SHIFT;
2273 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2274 	if (!pages) {
2275 		err = -ENOMEM;
2276 		goto out;
2277 	}
2278 
2279 	/*
2280 	 * Step 1: Decompress data and copy to new allocated clusters.
2281 	 */
2282 	index = 0;
2283 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2284 		u32 nr_pages;
2285 		bool new;
2286 
2287 		if (vbo + frame_size > i_size) {
2288 			bytes = i_size - vbo;
2289 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2290 		} else {
2291 			nr_pages = pages_per_frame;
2292 			bytes = frame_size;
2293 		}
2294 
2295 		end = bytes_to_cluster(sbi, vbo + bytes);
2296 
2297 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2298 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2299 						  &clen, &new, false);
2300 			if (err)
2301 				goto out;
2302 		}
2303 
2304 		for (i = 0; i < pages_per_frame; i++, index++) {
2305 			struct page *pg;
2306 
2307 			pg = find_or_create_page(mapping, index, gfp_mask);
2308 			if (!pg) {
2309 				while (i--) {
2310 					unlock_page(pages[i]);
2311 					put_page(pages[i]);
2312 				}
2313 				err = -ENOMEM;
2314 				goto out;
2315 			}
2316 			pages[i] = pg;
2317 		}
2318 
2319 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2320 
2321 		if (!err) {
2322 			down_read(&ni->file.run_lock);
2323 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2324 					     nr_pages, vbo, bytes,
2325 					     REQ_OP_WRITE);
2326 			up_read(&ni->file.run_lock);
2327 		}
2328 
2329 		for (i = 0; i < pages_per_frame; i++) {
2330 			unlock_page(pages[i]);
2331 			put_page(pages[i]);
2332 		}
2333 
2334 		if (err)
2335 			goto out;
2336 
2337 		cond_resched();
2338 	}
2339 
2340 remove_wof:
2341 	/*
2342 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2343 	 * and ATTR_REPARSE.
2344 	 */
2345 	attr = NULL;
2346 	le = NULL;
2347 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2348 		CLST svcn, evcn;
2349 		u32 asize, roff;
2350 
2351 		if (attr->type == ATTR_REPARSE) {
2352 			struct MFT_REF ref;
2353 
2354 			mi_get_ref(&ni->mi, &ref);
2355 			ntfs_remove_reparse(sbi, 0, &ref);
2356 		}
2357 
2358 		if (!attr->non_res)
2359 			continue;
2360 
2361 		if (attr->type != ATTR_REPARSE &&
2362 		    (attr->type != ATTR_DATA ||
2363 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2364 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2365 			continue;
2366 
2367 		svcn = le64_to_cpu(attr->nres.svcn);
2368 		evcn = le64_to_cpu(attr->nres.evcn);
2369 
2370 		if (evcn + 1 <= svcn)
2371 			continue;
2372 
2373 		asize = le32_to_cpu(attr->size);
2374 		roff = le16_to_cpu(attr->nres.run_off);
2375 
2376 		if (roff > asize) {
2377 			err = -EINVAL;
2378 			goto out;
2379 		}
2380 
2381 		/*run==1  Means unpack and deallocate. */
2382 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2383 			      Add2Ptr(attr, roff), asize - roff);
2384 	}
2385 
2386 	/*
2387 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2388 	 */
2389 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2390 			     false, NULL);
2391 	if (err)
2392 		goto out;
2393 
2394 	/*
2395 	 * Step 4: Remove ATTR_REPARSE.
2396 	 */
2397 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2398 	if (err)
2399 		goto out;
2400 
2401 	/*
2402 	 * Step 5: Remove sparse flag from data attribute.
2403 	 */
2404 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2405 	if (!attr) {
2406 		err = -EINVAL;
2407 		goto out;
2408 	}
2409 
2410 	if (attr->non_res && is_attr_sparsed(attr)) {
2411 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2412 		struct MFT_REC *rec = mi->mrec;
2413 		u32 used = le32_to_cpu(rec->used);
2414 		u32 asize = le32_to_cpu(attr->size);
2415 		u16 roff = le16_to_cpu(attr->nres.run_off);
2416 		char *rbuf = Add2Ptr(attr, roff);
2417 
2418 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2419 		attr->size = cpu_to_le32(asize - 8);
2420 		attr->flags &= ~ATTR_FLAG_SPARSED;
2421 		attr->nres.run_off = cpu_to_le16(roff - 8);
2422 		attr->nres.c_unit = 0;
2423 		rec->used = cpu_to_le32(used - 8);
2424 		mi->dirty = true;
2425 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2426 				FILE_ATTRIBUTE_REPARSE_POINT);
2427 
2428 		mark_inode_dirty(inode);
2429 	}
2430 
2431 	/* Clear cached flag. */
2432 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2433 	if (ni->file.offs_page) {
2434 		put_page(ni->file.offs_page);
2435 		ni->file.offs_page = NULL;
2436 	}
2437 	mapping->a_ops = &ntfs_aops;
2438 
2439 out:
2440 	kfree(pages);
2441 	if (err)
2442 		_ntfs_bad_inode(inode);
2443 
2444 	return err;
2445 }
2446 
2447 /*
2448  * decompress_lzx_xpress - External compression LZX/Xpress.
2449  */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2450 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2451 				 size_t cmpr_size, void *unc, size_t unc_size,
2452 				 u32 frame_size)
2453 {
2454 	int err;
2455 	void *ctx;
2456 
2457 	if (cmpr_size == unc_size) {
2458 		/* Frame not compressed. */
2459 		memcpy(unc, cmpr, unc_size);
2460 		return 0;
2461 	}
2462 
2463 	err = 0;
2464 	if (frame_size == 0x8000) {
2465 		mutex_lock(&sbi->compress.mtx_lzx);
2466 		/* LZX: Frame compressed. */
2467 		ctx = sbi->compress.lzx;
2468 		if (!ctx) {
2469 			/* Lazy initialize LZX decompress context. */
2470 			ctx = lzx_allocate_decompressor();
2471 			if (!ctx) {
2472 				err = -ENOMEM;
2473 				goto out1;
2474 			}
2475 
2476 			sbi->compress.lzx = ctx;
2477 		}
2478 
2479 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2480 			/* Treat all errors as "invalid argument". */
2481 			err = -EINVAL;
2482 		}
2483 out1:
2484 		mutex_unlock(&sbi->compress.mtx_lzx);
2485 	} else {
2486 		/* XPRESS: Frame compressed. */
2487 		mutex_lock(&sbi->compress.mtx_xpress);
2488 		ctx = sbi->compress.xpress;
2489 		if (!ctx) {
2490 			/* Lazy initialize Xpress decompress context. */
2491 			ctx = xpress_allocate_decompressor();
2492 			if (!ctx) {
2493 				err = -ENOMEM;
2494 				goto out2;
2495 			}
2496 
2497 			sbi->compress.xpress = ctx;
2498 		}
2499 
2500 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2501 			/* Treat all errors as "invalid argument". */
2502 			err = -EINVAL;
2503 		}
2504 out2:
2505 		mutex_unlock(&sbi->compress.mtx_xpress);
2506 	}
2507 	return err;
2508 }
2509 #endif
2510 
2511 /*
2512  * ni_read_frame
2513  *
2514  * Pages - Array of locked pages.
2515  */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2516 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2517 		  u32 pages_per_frame)
2518 {
2519 	int err;
2520 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2521 	u8 cluster_bits = sbi->cluster_bits;
2522 	char *frame_ondisk = NULL;
2523 	char *frame_mem = NULL;
2524 	struct page **pages_disk = NULL;
2525 	struct ATTR_LIST_ENTRY *le = NULL;
2526 	struct runs_tree *run = &ni->file.run;
2527 	u64 valid_size = ni->i_valid;
2528 	u64 vbo_disk;
2529 	size_t unc_size;
2530 	u32 frame_size, i, npages_disk, ondisk_size;
2531 	struct page *pg;
2532 	struct ATTRIB *attr;
2533 	CLST frame, clst_data;
2534 
2535 	/*
2536 	 * To simplify decompress algorithm do vmap for source
2537 	 * and target pages.
2538 	 */
2539 	for (i = 0; i < pages_per_frame; i++)
2540 		kmap(pages[i]);
2541 
2542 	frame_size = pages_per_frame << PAGE_SHIFT;
2543 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2544 	if (!frame_mem) {
2545 		err = -ENOMEM;
2546 		goto out;
2547 	}
2548 
2549 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2550 	if (!attr) {
2551 		err = -ENOENT;
2552 		goto out1;
2553 	}
2554 
2555 	if (!attr->non_res) {
2556 		u32 data_size = le32_to_cpu(attr->res.data_size);
2557 
2558 		memset(frame_mem, 0, frame_size);
2559 		if (frame_vbo < data_size) {
2560 			ondisk_size = data_size - frame_vbo;
2561 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2562 			       min(ondisk_size, frame_size));
2563 		}
2564 		err = 0;
2565 		goto out1;
2566 	}
2567 
2568 	if (frame_vbo >= valid_size) {
2569 		memset(frame_mem, 0, frame_size);
2570 		err = 0;
2571 		goto out1;
2572 	}
2573 
2574 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2575 #ifndef CONFIG_NTFS3_LZX_XPRESS
2576 		err = -EOPNOTSUPP;
2577 		goto out1;
2578 #else
2579 		loff_t i_size = i_size_read(&ni->vfs_inode);
2580 		u32 frame_bits = ni_ext_compress_bits(ni);
2581 		u64 frame64 = frame_vbo >> frame_bits;
2582 		u64 frames, vbo_data;
2583 
2584 		if (frame_size != (1u << frame_bits)) {
2585 			err = -EINVAL;
2586 			goto out1;
2587 		}
2588 		switch (frame_size) {
2589 		case 0x1000:
2590 		case 0x2000:
2591 		case 0x4000:
2592 		case 0x8000:
2593 			break;
2594 		default:
2595 			/* Unknown compression. */
2596 			err = -EOPNOTSUPP;
2597 			goto out1;
2598 		}
2599 
2600 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2601 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2602 		if (!attr) {
2603 			ntfs_inode_err(
2604 				&ni->vfs_inode,
2605 				"external compressed file should contains data attribute \"WofCompressedData\"");
2606 			err = -EINVAL;
2607 			goto out1;
2608 		}
2609 
2610 		if (!attr->non_res) {
2611 			run = NULL;
2612 		} else {
2613 			run = run_alloc();
2614 			if (!run) {
2615 				err = -ENOMEM;
2616 				goto out1;
2617 			}
2618 		}
2619 
2620 		frames = (i_size - 1) >> frame_bits;
2621 
2622 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2623 					  frame_bits, &ondisk_size, &vbo_data);
2624 		if (err)
2625 			goto out2;
2626 
2627 		if (frame64 == frames) {
2628 			unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2629 			ondisk_size = attr_size(attr) - vbo_data;
2630 		} else {
2631 			unc_size = frame_size;
2632 		}
2633 
2634 		if (ondisk_size > frame_size) {
2635 			err = -EINVAL;
2636 			goto out2;
2637 		}
2638 
2639 		if (!attr->non_res) {
2640 			if (vbo_data + ondisk_size >
2641 			    le32_to_cpu(attr->res.data_size)) {
2642 				err = -EINVAL;
2643 				goto out1;
2644 			}
2645 
2646 			err = decompress_lzx_xpress(
2647 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2648 				ondisk_size, frame_mem, unc_size, frame_size);
2649 			goto out1;
2650 		}
2651 		vbo_disk = vbo_data;
2652 		/* Load all runs to read [vbo_disk-vbo_to). */
2653 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2654 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2655 					   vbo_data + ondisk_size);
2656 		if (err)
2657 			goto out2;
2658 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2659 			       PAGE_SIZE - 1) >>
2660 			      PAGE_SHIFT;
2661 #endif
2662 	} else if (is_attr_compressed(attr)) {
2663 		/* LZNT compression. */
2664 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2665 			err = -EOPNOTSUPP;
2666 			goto out1;
2667 		}
2668 
2669 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2670 			err = -EOPNOTSUPP;
2671 			goto out1;
2672 		}
2673 
2674 		down_write(&ni->file.run_lock);
2675 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2676 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2677 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2678 		up_write(&ni->file.run_lock);
2679 		if (err)
2680 			goto out1;
2681 
2682 		if (!clst_data) {
2683 			memset(frame_mem, 0, frame_size);
2684 			goto out1;
2685 		}
2686 
2687 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2688 		ondisk_size = clst_data << cluster_bits;
2689 
2690 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2691 			/* Frame is not compressed. */
2692 			down_read(&ni->file.run_lock);
2693 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2694 					     frame_vbo, ondisk_size,
2695 					     REQ_OP_READ);
2696 			up_read(&ni->file.run_lock);
2697 			goto out1;
2698 		}
2699 		vbo_disk = frame_vbo;
2700 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2701 	} else {
2702 		__builtin_unreachable();
2703 		err = -EINVAL;
2704 		goto out1;
2705 	}
2706 
2707 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2708 	if (!pages_disk) {
2709 		err = -ENOMEM;
2710 		goto out2;
2711 	}
2712 
2713 	for (i = 0; i < npages_disk; i++) {
2714 		pg = alloc_page(GFP_KERNEL);
2715 		if (!pg) {
2716 			err = -ENOMEM;
2717 			goto out3;
2718 		}
2719 		pages_disk[i] = pg;
2720 		lock_page(pg);
2721 		kmap(pg);
2722 	}
2723 
2724 	/* Read 'ondisk_size' bytes from disk. */
2725 	down_read(&ni->file.run_lock);
2726 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2727 			     ondisk_size, REQ_OP_READ);
2728 	up_read(&ni->file.run_lock);
2729 	if (err)
2730 		goto out3;
2731 
2732 	/*
2733 	 * To simplify decompress algorithm do vmap for source and target pages.
2734 	 */
2735 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2736 	if (!frame_ondisk) {
2737 		err = -ENOMEM;
2738 		goto out3;
2739 	}
2740 
2741 	/* Decompress: Frame_ondisk -> frame_mem. */
2742 #ifdef CONFIG_NTFS3_LZX_XPRESS
2743 	if (run != &ni->file.run) {
2744 		/* LZX or XPRESS */
2745 		err = decompress_lzx_xpress(
2746 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2747 			ondisk_size, frame_mem, unc_size, frame_size);
2748 	} else
2749 #endif
2750 	{
2751 		/* LZNT - Native NTFS compression. */
2752 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2753 					   frame_size);
2754 		if ((ssize_t)unc_size < 0)
2755 			err = unc_size;
2756 		else if (!unc_size || unc_size > frame_size)
2757 			err = -EINVAL;
2758 	}
2759 	if (!err && valid_size < frame_vbo + frame_size) {
2760 		size_t ok = valid_size - frame_vbo;
2761 
2762 		memset(frame_mem + ok, 0, frame_size - ok);
2763 	}
2764 
2765 	vunmap(frame_ondisk);
2766 
2767 out3:
2768 	for (i = 0; i < npages_disk; i++) {
2769 		pg = pages_disk[i];
2770 		if (pg) {
2771 			kunmap(pg);
2772 			unlock_page(pg);
2773 			put_page(pg);
2774 		}
2775 	}
2776 	kfree(pages_disk);
2777 
2778 out2:
2779 #ifdef CONFIG_NTFS3_LZX_XPRESS
2780 	if (run != &ni->file.run)
2781 		run_free(run);
2782 #endif
2783 out1:
2784 	vunmap(frame_mem);
2785 out:
2786 	for (i = 0; i < pages_per_frame; i++) {
2787 		pg = pages[i];
2788 		kunmap(pg);
2789 		ClearPageError(pg);
2790 		SetPageUptodate(pg);
2791 	}
2792 
2793 	return err;
2794 }
2795 
2796 /*
2797  * ni_write_frame
2798  *
2799  * Pages - Array of locked pages.
2800  */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2801 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2802 		   u32 pages_per_frame)
2803 {
2804 	int err;
2805 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2806 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2807 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2808 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2809 	CLST frame = frame_vbo >> frame_bits;
2810 	char *frame_ondisk = NULL;
2811 	struct page **pages_disk = NULL;
2812 	struct ATTR_LIST_ENTRY *le = NULL;
2813 	char *frame_mem;
2814 	struct ATTRIB *attr;
2815 	struct mft_inode *mi;
2816 	u32 i;
2817 	struct page *pg;
2818 	size_t compr_size, ondisk_size;
2819 	struct lznt *lznt;
2820 
2821 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2822 	if (!attr) {
2823 		err = -ENOENT;
2824 		goto out;
2825 	}
2826 
2827 	if (WARN_ON(!is_attr_compressed(attr))) {
2828 		err = -EINVAL;
2829 		goto out;
2830 	}
2831 
2832 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2833 		err = -EOPNOTSUPP;
2834 		goto out;
2835 	}
2836 
2837 	if (!attr->non_res) {
2838 		down_write(&ni->file.run_lock);
2839 		err = attr_make_nonresident(ni, attr, le, mi,
2840 					    le32_to_cpu(attr->res.data_size),
2841 					    &ni->file.run, &attr, pages[0]);
2842 		up_write(&ni->file.run_lock);
2843 		if (err)
2844 			goto out;
2845 	}
2846 
2847 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2848 		err = -EOPNOTSUPP;
2849 		goto out;
2850 	}
2851 
2852 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2853 	if (!pages_disk) {
2854 		err = -ENOMEM;
2855 		goto out;
2856 	}
2857 
2858 	for (i = 0; i < pages_per_frame; i++) {
2859 		pg = alloc_page(GFP_KERNEL);
2860 		if (!pg) {
2861 			err = -ENOMEM;
2862 			goto out1;
2863 		}
2864 		pages_disk[i] = pg;
2865 		lock_page(pg);
2866 		kmap(pg);
2867 	}
2868 
2869 	/* To simplify compress algorithm do vmap for source and target pages. */
2870 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2871 	if (!frame_ondisk) {
2872 		err = -ENOMEM;
2873 		goto out1;
2874 	}
2875 
2876 	for (i = 0; i < pages_per_frame; i++)
2877 		kmap(pages[i]);
2878 
2879 	/* Map in-memory frame for read-only. */
2880 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2881 	if (!frame_mem) {
2882 		err = -ENOMEM;
2883 		goto out2;
2884 	}
2885 
2886 	mutex_lock(&sbi->compress.mtx_lznt);
2887 	lznt = NULL;
2888 	if (!sbi->compress.lznt) {
2889 		/*
2890 		 * LZNT implements two levels of compression:
2891 		 * 0 - Standard compression
2892 		 * 1 - Best compression, requires a lot of cpu
2893 		 * use mount option?
2894 		 */
2895 		lznt = get_lznt_ctx(0);
2896 		if (!lznt) {
2897 			mutex_unlock(&sbi->compress.mtx_lznt);
2898 			err = -ENOMEM;
2899 			goto out3;
2900 		}
2901 
2902 		sbi->compress.lznt = lznt;
2903 		lznt = NULL;
2904 	}
2905 
2906 	/* Compress: frame_mem -> frame_ondisk */
2907 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2908 				   frame_size, sbi->compress.lznt);
2909 	mutex_unlock(&sbi->compress.mtx_lznt);
2910 	kfree(lznt);
2911 
2912 	if (compr_size + sbi->cluster_size > frame_size) {
2913 		/* Frame is not compressed. */
2914 		compr_size = frame_size;
2915 		ondisk_size = frame_size;
2916 	} else if (compr_size) {
2917 		/* Frame is compressed. */
2918 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2919 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2920 	} else {
2921 		/* Frame is sparsed. */
2922 		ondisk_size = 0;
2923 	}
2924 
2925 	down_write(&ni->file.run_lock);
2926 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2927 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2928 	up_write(&ni->file.run_lock);
2929 	if (err)
2930 		goto out2;
2931 
2932 	if (!ondisk_size)
2933 		goto out2;
2934 
2935 	down_read(&ni->file.run_lock);
2936 	err = ntfs_bio_pages(sbi, &ni->file.run,
2937 			     ondisk_size < frame_size ? pages_disk : pages,
2938 			     pages_per_frame, frame_vbo, ondisk_size,
2939 			     REQ_OP_WRITE);
2940 	up_read(&ni->file.run_lock);
2941 
2942 out3:
2943 	vunmap(frame_mem);
2944 
2945 out2:
2946 	for (i = 0; i < pages_per_frame; i++)
2947 		kunmap(pages[i]);
2948 
2949 	vunmap(frame_ondisk);
2950 out1:
2951 	for (i = 0; i < pages_per_frame; i++) {
2952 		pg = pages_disk[i];
2953 		if (pg) {
2954 			kunmap(pg);
2955 			unlock_page(pg);
2956 			put_page(pg);
2957 		}
2958 	}
2959 	kfree(pages_disk);
2960 out:
2961 	return err;
2962 }
2963 
2964 /*
2965  * ni_remove_name - Removes name 'de' from MFT and from directory.
2966  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2967  */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2968 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2969 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2970 {
2971 	int err;
2972 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2973 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2974 	struct ATTR_FILE_NAME *fname;
2975 	struct ATTR_LIST_ENTRY *le;
2976 	struct mft_inode *mi;
2977 	u16 de_key_size = le16_to_cpu(de->key_size);
2978 	u8 name_type;
2979 
2980 	*undo_step = 0;
2981 
2982 	/* Find name in record. */
2983 	mi_get_ref(&dir_ni->mi, &de_name->home);
2984 
2985 	fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2986 			      &de_name->home, &mi, &le);
2987 	if (!fname)
2988 		return -ENOENT;
2989 
2990 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2991 	name_type = paired_name(fname->type);
2992 
2993 	/* Mark ntfs as dirty. It will be cleared at umount. */
2994 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2995 
2996 	/* Step 1: Remove name from directory. */
2997 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2998 	if (err)
2999 		return err;
3000 
3001 	/* Step 2: Remove name from MFT. */
3002 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3003 
3004 	*undo_step = 2;
3005 
3006 	/* Get paired name. */
3007 	fname = ni_fname_type(ni, name_type, &mi, &le);
3008 	if (fname) {
3009 		u16 de2_key_size = fname_full_size(fname);
3010 
3011 		*de2 = Add2Ptr(de, 1024);
3012 		(*de2)->key_size = cpu_to_le16(de2_key_size);
3013 
3014 		memcpy(*de2 + 1, fname, de2_key_size);
3015 
3016 		/* Step 3: Remove paired name from directory. */
3017 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
3018 					de2_key_size, sbi);
3019 		if (err)
3020 			return err;
3021 
3022 		/* Step 4: Remove paired name from MFT. */
3023 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3024 
3025 		*undo_step = 4;
3026 	}
3027 	return 0;
3028 }
3029 
3030 /*
3031  * ni_remove_name_undo - Paired function for ni_remove_name.
3032  *
3033  * Return: True if ok
3034  */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)3035 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3036 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
3037 {
3038 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3039 	struct ATTRIB *attr;
3040 	u16 de_key_size;
3041 
3042 	switch (undo_step) {
3043 	case 4:
3044 		de_key_size = le16_to_cpu(de2->key_size);
3045 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3046 				       &attr, NULL, NULL))
3047 			return false;
3048 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
3049 
3050 		mi_get_ref(&ni->mi, &de2->ref);
3051 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
3052 					sizeof(struct NTFS_DE));
3053 		de2->flags = 0;
3054 		de2->res = 0;
3055 
3056 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
3057 			return false;
3058 		fallthrough;
3059 
3060 	case 2:
3061 		de_key_size = le16_to_cpu(de->key_size);
3062 
3063 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3064 				       &attr, NULL, NULL))
3065 			return false;
3066 
3067 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3068 		mi_get_ref(&ni->mi, &de->ref);
3069 
3070 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3071 			return false;
3072 	}
3073 
3074 	return true;
3075 }
3076 
3077 /*
3078  * ni_add_name - Add new name into MFT and into directory.
3079  */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3080 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3081 		struct NTFS_DE *de)
3082 {
3083 	int err;
3084 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3085 	struct ATTRIB *attr;
3086 	struct ATTR_LIST_ENTRY *le;
3087 	struct mft_inode *mi;
3088 	struct ATTR_FILE_NAME *fname;
3089 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3090 	u16 de_key_size = le16_to_cpu(de->key_size);
3091 
3092 	if (sbi->options->windows_names &&
3093 	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3094 		return -EINVAL;
3095 
3096 	/* If option "hide_dot_files" then set hidden attribute for dot files. */
3097 	if (ni->mi.sbi->options->hide_dot_files) {
3098 		if (de_name->name_len > 0 &&
3099 		    le16_to_cpu(de_name->name[0]) == '.')
3100 			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3101 		else
3102 			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3103 	}
3104 
3105 	mi_get_ref(&ni->mi, &de->ref);
3106 	mi_get_ref(&dir_ni->mi, &de_name->home);
3107 
3108 	/* Fill duplicate from any ATTR_NAME. */
3109 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3110 	if (fname)
3111 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3112 	de_name->dup.fa = ni->std_fa;
3113 
3114 	/* Insert new name into MFT. */
3115 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3116 				 &mi, &le);
3117 	if (err)
3118 		return err;
3119 
3120 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3121 
3122 	/* Insert new name into directory. */
3123 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3124 	if (err)
3125 		ni_remove_attr_le(ni, attr, mi, le);
3126 
3127 	return err;
3128 }
3129 
3130 /*
3131  * ni_rename - Remove one name and insert new name.
3132  */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3133 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3134 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3135 	      bool *is_bad)
3136 {
3137 	int err;
3138 	struct NTFS_DE *de2 = NULL;
3139 	int undo = 0;
3140 
3141 	/*
3142 	 * There are two possible ways to rename:
3143 	 * 1) Add new name and remove old name.
3144 	 * 2) Remove old name and add new name.
3145 	 *
3146 	 * In most cases (not all!) adding new name into MFT and into directory can
3147 	 * allocate additional cluster(s).
3148 	 * Second way may result to bad inode if we can't add new name
3149 	 * and then can't restore (add) old name.
3150 	 */
3151 
3152 	/*
3153 	 * Way 1 - Add new + remove old.
3154 	 */
3155 	err = ni_add_name(new_dir_ni, ni, new_de);
3156 	if (!err) {
3157 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3158 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3159 			*is_bad = true;
3160 	}
3161 
3162 	/*
3163 	 * Way 2 - Remove old + add new.
3164 	 */
3165 	/*
3166 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3167 	 *	if (!err) {
3168 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3169 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3170 	 *			*is_bad = true;
3171 	 *	}
3172 	 */
3173 
3174 	return err;
3175 }
3176 
3177 /*
3178  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3179  */
ni_is_dirty(struct inode * inode)3180 bool ni_is_dirty(struct inode *inode)
3181 {
3182 	struct ntfs_inode *ni = ntfs_i(inode);
3183 	struct rb_node *node;
3184 
3185 	if (ni->mi.dirty || ni->attr_list.dirty ||
3186 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3187 		return true;
3188 
3189 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3190 		if (rb_entry(node, struct mft_inode, node)->dirty)
3191 			return true;
3192 	}
3193 
3194 	return false;
3195 }
3196 
3197 /*
3198  * ni_update_parent
3199  *
3200  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3201  */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3202 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3203 			     int sync)
3204 {
3205 	struct ATTRIB *attr;
3206 	struct mft_inode *mi;
3207 	struct ATTR_LIST_ENTRY *le = NULL;
3208 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3209 	struct super_block *sb = sbi->sb;
3210 	bool re_dirty = false;
3211 
3212 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3213 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3214 		attr = NULL;
3215 		dup->alloc_size = 0;
3216 		dup->data_size = 0;
3217 	} else {
3218 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3219 
3220 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3221 				    &mi);
3222 		if (!attr) {
3223 			dup->alloc_size = dup->data_size = 0;
3224 		} else if (!attr->non_res) {
3225 			u32 data_size = le32_to_cpu(attr->res.data_size);
3226 
3227 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3228 			dup->data_size = cpu_to_le64(data_size);
3229 		} else {
3230 			u64 new_valid = ni->i_valid;
3231 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3232 			__le64 valid_le;
3233 
3234 			dup->alloc_size = is_attr_ext(attr) ?
3235 						  attr->nres.total_size :
3236 						  attr->nres.alloc_size;
3237 			dup->data_size = attr->nres.data_size;
3238 
3239 			if (new_valid > data_size)
3240 				new_valid = data_size;
3241 
3242 			valid_le = cpu_to_le64(new_valid);
3243 			if (valid_le != attr->nres.valid_size) {
3244 				attr->nres.valid_size = valid_le;
3245 				mi->dirty = true;
3246 			}
3247 		}
3248 	}
3249 
3250 	/* TODO: Fill reparse info. */
3251 	dup->reparse = 0;
3252 	dup->ea_size = 0;
3253 
3254 	if (ni->ni_flags & NI_FLAG_EA) {
3255 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3256 				    NULL);
3257 		if (attr) {
3258 			const struct EA_INFO *info;
3259 
3260 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3261 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3262 			if (info)
3263 				dup->ea_size = info->size_pack;
3264 		}
3265 	}
3266 
3267 	attr = NULL;
3268 	le = NULL;
3269 
3270 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3271 				    &mi))) {
3272 		struct inode *dir;
3273 		struct ATTR_FILE_NAME *fname;
3274 
3275 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3276 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3277 			continue;
3278 
3279 		/* Check simple case when parent inode equals current inode. */
3280 		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3281 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3282 			continue;
3283 		}
3284 
3285 		/* ntfs_iget5 may sleep. */
3286 		dir = ntfs_iget5(sb, &fname->home, NULL);
3287 		if (IS_ERR(dir)) {
3288 			ntfs_inode_warn(
3289 				&ni->vfs_inode,
3290 				"failed to open parent directory r=%lx to update",
3291 				(long)ino_get(&fname->home));
3292 			continue;
3293 		}
3294 
3295 		if (!is_bad_inode(dir)) {
3296 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3297 
3298 			if (!ni_trylock(dir_ni)) {
3299 				re_dirty = true;
3300 			} else {
3301 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3302 				ni_unlock(dir_ni);
3303 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3304 				mi->dirty = true;
3305 			}
3306 		}
3307 		iput(dir);
3308 	}
3309 
3310 	return re_dirty;
3311 }
3312 
3313 /*
3314  * ni_write_inode - Write MFT base record and all subrecords to disk.
3315  */
ni_write_inode(struct inode * inode,int sync,const char * hint)3316 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3317 {
3318 	int err = 0, err2;
3319 	struct ntfs_inode *ni = ntfs_i(inode);
3320 	struct super_block *sb = inode->i_sb;
3321 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3322 	bool re_dirty = false;
3323 	struct ATTR_STD_INFO *std;
3324 	struct rb_node *node, *next;
3325 	struct NTFS_DUP_INFO dup;
3326 
3327 	if (is_bad_inode(inode) || sb_rdonly(sb))
3328 		return 0;
3329 
3330 	if (unlikely(ntfs3_forced_shutdown(sb)))
3331 		return -EIO;
3332 
3333 	if (!ni_trylock(ni)) {
3334 		/* 'ni' is under modification, skip for now. */
3335 		mark_inode_dirty_sync(inode);
3336 		return 0;
3337 	}
3338 
3339 	if (!ni->mi.mrec)
3340 		goto out;
3341 
3342 	if (is_rec_inuse(ni->mi.mrec) &&
3343 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3344 		bool modified = false;
3345 		struct timespec64 ctime = inode_get_ctime(inode);
3346 
3347 		/* Update times in standard attribute. */
3348 		std = ni_std(ni);
3349 		if (!std) {
3350 			err = -EINVAL;
3351 			goto out;
3352 		}
3353 
3354 		/* Update the access times if they have changed. */
3355 		dup.m_time = kernel2nt(&inode->i_mtime);
3356 		if (std->m_time != dup.m_time) {
3357 			std->m_time = dup.m_time;
3358 			modified = true;
3359 		}
3360 
3361 		dup.c_time = kernel2nt(&ctime);
3362 		if (std->c_time != dup.c_time) {
3363 			std->c_time = dup.c_time;
3364 			modified = true;
3365 		}
3366 
3367 		dup.a_time = kernel2nt(&inode->i_atime);
3368 		if (std->a_time != dup.a_time) {
3369 			std->a_time = dup.a_time;
3370 			modified = true;
3371 		}
3372 
3373 		dup.fa = ni->std_fa;
3374 		if (std->fa != dup.fa) {
3375 			std->fa = dup.fa;
3376 			modified = true;
3377 		}
3378 
3379 		/* std attribute is always in primary MFT record. */
3380 		if (modified)
3381 			ni->mi.dirty = true;
3382 
3383 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3384 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3385 		    /* Avoid __wait_on_freeing_inode(inode). */
3386 		    && (sb->s_flags & SB_ACTIVE)) {
3387 			dup.cr_time = std->cr_time;
3388 			/* Not critical if this function fail. */
3389 			re_dirty = ni_update_parent(ni, &dup, sync);
3390 
3391 			if (re_dirty)
3392 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3393 			else
3394 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3395 		}
3396 
3397 		/* Update attribute list. */
3398 		if (ni->attr_list.size && ni->attr_list.dirty) {
3399 			if (inode->i_ino != MFT_REC_MFT || sync) {
3400 				err = ni_try_remove_attr_list(ni);
3401 				if (err)
3402 					goto out;
3403 			}
3404 
3405 			err = al_update(ni, sync);
3406 			if (err)
3407 				goto out;
3408 		}
3409 	}
3410 
3411 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3412 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3413 		bool is_empty;
3414 
3415 		next = rb_next(node);
3416 
3417 		if (!mi->dirty)
3418 			continue;
3419 
3420 		is_empty = !mi_enum_attr(mi, NULL);
3421 
3422 		if (is_empty)
3423 			clear_rec_inuse(mi->mrec);
3424 
3425 		err2 = mi_write(mi, sync);
3426 		if (!err && err2)
3427 			err = err2;
3428 
3429 		if (is_empty) {
3430 			ntfs_mark_rec_free(sbi, mi->rno, false);
3431 			rb_erase(node, &ni->mi_tree);
3432 			mi_put(mi);
3433 		}
3434 	}
3435 
3436 	if (ni->mi.dirty) {
3437 		err2 = mi_write(&ni->mi, sync);
3438 		if (!err && err2)
3439 			err = err2;
3440 	}
3441 out:
3442 	ni_unlock(ni);
3443 
3444 	if (err) {
3445 		ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3446 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3447 		return err;
3448 	}
3449 
3450 	if (re_dirty)
3451 		mark_inode_dirty_sync(inode);
3452 
3453 	return 0;
3454 }
3455