1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
4 *
5 * Copyright (c) 2019-2020 Red Hat GmbH
6 *
7 * Author: Stefano Brivio <sbrivio@redhat.com>
8 */
9
10 /**
11 * DOC: Theory of Operation
12 *
13 *
14 * Problem
15 * -------
16 *
17 * Match packet bytes against entries composed of ranged or non-ranged packet
18 * field specifiers, mapping them to arbitrary references. For example:
19 *
20 * ::
21 *
22 * --- fields --->
23 * | [net],[port],[net]... => [reference]
24 * entries [net],[port],[net]... => [reference]
25 * | [net],[port],[net]... => [reference]
26 * V ...
27 *
28 * where [net] fields can be IP ranges or netmasks, and [port] fields are port
29 * ranges. Arbitrary packet fields can be matched.
30 *
31 *
32 * Algorithm Overview
33 * ------------------
34 *
35 * This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
36 * relies on the consideration that every contiguous range in a space of b bits
37 * can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
38 * as also illustrated in Section 9 of [Kogan 2014].
39 *
40 * Classification against a number of entries, that require matching given bits
41 * of a packet field, is performed by grouping those bits in sets of arbitrary
42 * size, and classifying packet bits one group at a time.
43 *
44 * Example:
45 * to match the source port (16 bits) of a packet, we can divide those 16 bits
46 * in 4 groups of 4 bits each. Given the entry:
47 * 0000 0001 0101 1001
48 * and a packet with source port:
49 * 0000 0001 1010 1001
50 * first and second groups match, but the third doesn't. We conclude that the
51 * packet doesn't match the given entry.
52 *
53 * Translate the set to a sequence of lookup tables, one per field. Each table
54 * has two dimensions: bit groups to be matched for a single packet field, and
55 * all the possible values of said groups (buckets). Input entries are
56 * represented as one or more rules, depending on the number of composing
57 * netmasks for the given field specifier, and a group match is indicated as a
58 * set bit, with number corresponding to the rule index, in all the buckets
59 * whose value matches the entry for a given group.
60 *
61 * Rules are mapped between fields through an array of x, n pairs, with each
62 * item mapping a matched rule to one or more rules. The position of the pair in
63 * the array indicates the matched rule to be mapped to the next field, x
64 * indicates the first rule index in the next field, and n the amount of
65 * next-field rules the current rule maps to.
66 *
67 * The mapping array for the last field maps to the desired references.
68 *
69 * To match, we perform table lookups using the values of grouped packet bits,
70 * and use a sequence of bitwise operations to progressively evaluate rule
71 * matching.
72 *
73 * A stand-alone, reference implementation, also including notes about possible
74 * future optimisations, is available at:
75 * https://pipapo.lameexcu.se/
76 *
77 * Insertion
78 * ---------
79 *
80 * - For each packet field:
81 *
82 * - divide the b packet bits we want to classify into groups of size t,
83 * obtaining ceil(b / t) groups
84 *
85 * Example: match on destination IP address, with t = 4: 32 bits, 8 groups
86 * of 4 bits each
87 *
88 * - allocate a lookup table with one column ("bucket") for each possible
89 * value of a group, and with one row for each group
90 *
91 * Example: 8 groups, 2^4 buckets:
92 *
93 * ::
94 *
95 * bucket
96 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 * 0
98 * 1
99 * 2
100 * 3
101 * 4
102 * 5
103 * 6
104 * 7
105 *
106 * - map the bits we want to classify for the current field, for a given
107 * entry, to a single rule for non-ranged and netmask set items, and to one
108 * or multiple rules for ranges. Ranges are expanded to composing netmasks
109 * by pipapo_expand().
110 *
111 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
112 * - rule #0: 10.0.0.5
113 * - rule #1: 192.168.1.0/24
114 * - rule #2: 192.168.2.0/31
115 *
116 * - insert references to the rules in the lookup table, selecting buckets
117 * according to bit values of a rule in the given group. This is done by
118 * pipapo_insert().
119 *
120 * Example: given:
121 * - rule #0: 10.0.0.5 mapping to buckets
122 * < 0 10 0 0 0 0 0 5 >
123 * - rule #1: 192.168.1.0/24 mapping to buckets
124 * < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
125 * - rule #2: 192.168.2.0/31 mapping to buckets
126 * < 12 0 10 8 0 2 0 < 0..1 > >
127 *
128 * these bits are set in the lookup table:
129 *
130 * ::
131 *
132 * bucket
133 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
134 * 0 0 1,2
135 * 1 1,2 0
136 * 2 0 1,2
137 * 3 0 1,2
138 * 4 0,1,2
139 * 5 0 1 2
140 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
141 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
142 *
143 * - if this is not the last field in the set, fill a mapping array that maps
144 * rules from the lookup table to rules belonging to the same entry in
145 * the next lookup table, done by pipapo_map().
146 *
147 * Note that as rules map to contiguous ranges of rules, given how netmask
148 * expansion and insertion is performed, &union nft_pipapo_map_bucket stores
149 * this information as pairs of first rule index, rule count.
150 *
151 * Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
152 * given lookup table #0 for field 0 (see example above):
153 *
154 * ::
155 *
156 * bucket
157 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
158 * 0 0 1,2
159 * 1 1,2 0
160 * 2 0 1,2
161 * 3 0 1,2
162 * 4 0,1,2
163 * 5 0 1 2
164 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
166 *
167 * and lookup table #1 for field 1 with:
168 * - rule #0: 1024 mapping to buckets
169 * < 0 0 4 0 >
170 * - rule #1: 2048 mapping to buckets
171 * < 0 0 5 0 >
172 *
173 * ::
174 *
175 * bucket
176 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
177 * 0 0,1
178 * 1 0,1
179 * 2 0 1
180 * 3 0,1
181 *
182 * we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
183 * in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
184 * (rules #1, #2) to 2048 in lookup table #2 (rule #1):
185 *
186 * ::
187 *
188 * rule indices in current field: 0 1 2
189 * map to rules in next field: 0 1 1
190 *
191 * - if this is the last field in the set, fill a mapping array that maps
192 * rules from the last lookup table to element pointers, also done by
193 * pipapo_map().
194 *
195 * Note that, in this implementation, we have two elements (start, end) for
196 * each entry. The pointer to the end element is stored in this array, and
197 * the pointer to the start element is linked from it.
198 *
199 * Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
200 * pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
201 * From the rules of lookup table #1 as mapped above:
202 *
203 * ::
204 *
205 * rule indices in last field: 0 1
206 * map to elements: 0x66 0x42
207 *
208 *
209 * Matching
210 * --------
211 *
212 * We use a result bitmap, with the size of a single lookup table bucket, to
213 * represent the matching state that applies at every algorithm step. This is
214 * done by pipapo_lookup().
215 *
216 * - For each packet field:
217 *
218 * - start with an all-ones result bitmap (res_map in pipapo_lookup())
219 *
220 * - perform a lookup into the table corresponding to the current field,
221 * for each group, and at every group, AND the current result bitmap with
222 * the value from the lookup table bucket
223 *
224 * ::
225 *
226 * Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
227 * insertion examples.
228 * Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
229 * convenience in this example. Initial result bitmap is 0xff, the steps
230 * below show the value of the result bitmap after each group is processed:
231 *
232 * bucket
233 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
234 * 0 0 1,2
235 * result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
236 *
237 * 1 1,2 0
238 * result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
239 *
240 * 2 0 1,2
241 * result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
242 *
243 * 3 0 1,2
244 * result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
245 *
246 * 4 0,1,2
247 * result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
248 *
249 * 5 0 1 2
250 * result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
251 *
252 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253 * result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
254 *
255 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
256 * final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
257 *
258 * - at the next field, start with a new, all-zeroes result bitmap. For each
259 * bit set in the previous result bitmap, fill the new result bitmap
260 * (fill_map in pipapo_lookup()) with the rule indices from the
261 * corresponding buckets of the mapping field for this field, done by
262 * pipapo_refill()
263 *
264 * Example: with mapping table from insertion examples, with the current
265 * result bitmap from the previous example, 0x02:
266 *
267 * ::
268 *
269 * rule indices in current field: 0 1 2
270 * map to rules in next field: 0 1 1
271 *
272 * the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
273 * set.
274 *
275 * We can now extend this example to cover the second iteration of the step
276 * above (lookup and AND bitmap): assuming the port field is
277 * 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
278 * for "port" field from pre-computation example:
279 *
280 * ::
281 *
282 * bucket
283 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
284 * 0 0,1
285 * 1 0,1
286 * 2 0 1
287 * 3 0,1
288 *
289 * operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
290 * & 0x3 [bucket 0], resulting bitmap is 0x2.
291 *
292 * - if this is the last field in the set, look up the value from the mapping
293 * array corresponding to the final result bitmap
294 *
295 * Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
296 * last field from insertion example:
297 *
298 * ::
299 *
300 * rule indices in last field: 0 1
301 * map to elements: 0x66 0x42
302 *
303 * the matching element is at 0x42.
304 *
305 *
306 * References
307 * ----------
308 *
309 * [Ligatti 2010]
310 * A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
311 * Automatic Time-space Tradeoffs
312 * Jay Ligatti, Josh Kuhn, and Chris Gage.
313 * Proceedings of the IEEE International Conference on Computer
314 * Communication Networks (ICCCN), August 2010.
315 * https://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
316 *
317 * [Rottenstreich 2010]
318 * Worst-Case TCAM Rule Expansion
319 * Ori Rottenstreich and Isaac Keslassy.
320 * 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
321 * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
322 *
323 * [Kogan 2014]
324 * SAX-PAC (Scalable And eXpressive PAcket Classification)
325 * Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
326 * and Patrick Eugster.
327 * Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
328 * https://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
329 */
330
331 #include <linux/kernel.h>
332 #include <linux/init.h>
333 #include <linux/module.h>
334 #include <linux/netlink.h>
335 #include <linux/netfilter.h>
336 #include <linux/netfilter/nf_tables.h>
337 #include <net/netfilter/nf_tables_core.h>
338 #include <uapi/linux/netfilter/nf_tables.h>
339 #include <linux/bitmap.h>
340 #include <linux/bitops.h>
341
342 #include "nft_set_pipapo_avx2.h"
343 #include "nft_set_pipapo.h"
344
345 /**
346 * pipapo_refill() - For each set bit, set bits from selected mapping table item
347 * @map: Bitmap to be scanned for set bits
348 * @len: Length of bitmap in longs
349 * @rules: Number of rules in field
350 * @dst: Destination bitmap
351 * @mt: Mapping table containing bit set specifiers
352 * @match_only: Find a single bit and return, don't fill
353 *
354 * Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
355 *
356 * For each bit set in map, select the bucket from mapping table with index
357 * corresponding to the position of the bit set. Use start bit and amount of
358 * bits specified in bucket to fill region in dst.
359 *
360 * Return: -1 on no match, bit position on 'match_only', 0 otherwise.
361 */
pipapo_refill(unsigned long * map,int len,int rules,unsigned long * dst,const union nft_pipapo_map_bucket * mt,bool match_only)362 int pipapo_refill(unsigned long *map, int len, int rules, unsigned long *dst,
363 const union nft_pipapo_map_bucket *mt, bool match_only)
364 {
365 unsigned long bitset;
366 int k, ret = -1;
367
368 for (k = 0; k < len; k++) {
369 bitset = map[k];
370 while (bitset) {
371 unsigned long t = bitset & -bitset;
372 int r = __builtin_ctzl(bitset);
373 int i = k * BITS_PER_LONG + r;
374
375 if (unlikely(i >= rules)) {
376 map[k] = 0;
377 return -1;
378 }
379
380 if (match_only) {
381 bitmap_clear(map, i, 1);
382 return i;
383 }
384
385 ret = 0;
386
387 bitmap_set(dst, mt[i].to, mt[i].n);
388
389 bitset ^= t;
390 }
391 map[k] = 0;
392 }
393
394 return ret;
395 }
396
397 /**
398 * nft_pipapo_lookup() - Lookup function
399 * @net: Network namespace
400 * @set: nftables API set representation
401 * @key: nftables API element representation containing key data
402 * @ext: nftables API extension pointer, filled with matching reference
403 *
404 * For more details, see DOC: Theory of Operation.
405 *
406 * Return: true on match, false otherwise.
407 */
nft_pipapo_lookup(const struct net * net,const struct nft_set * set,const u32 * key,const struct nft_set_ext ** ext)408 bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
409 const u32 *key, const struct nft_set_ext **ext)
410 {
411 struct nft_pipapo *priv = nft_set_priv(set);
412 struct nft_pipapo_scratch *scratch;
413 unsigned long *res_map, *fill_map;
414 u8 genmask = nft_genmask_cur(net);
415 const struct nft_pipapo_match *m;
416 const struct nft_pipapo_field *f;
417 const u8 *rp = (const u8 *)key;
418 bool map_index;
419 int i;
420
421 local_bh_disable();
422
423 m = rcu_dereference(priv->match);
424
425 if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
426 goto out;
427
428 scratch = *raw_cpu_ptr(m->scratch);
429
430 map_index = scratch->map_index;
431
432 res_map = scratch->map + (map_index ? m->bsize_max : 0);
433 fill_map = scratch->map + (map_index ? 0 : m->bsize_max);
434
435 pipapo_resmap_init(m, res_map);
436
437 nft_pipapo_for_each_field(f, i, m) {
438 bool last = i == m->field_count - 1;
439 int b;
440
441 /* For each bit group: select lookup table bucket depending on
442 * packet bytes value, then AND bucket value
443 */
444 if (likely(f->bb == 8))
445 pipapo_and_field_buckets_8bit(f, res_map, rp);
446 else
447 pipapo_and_field_buckets_4bit(f, res_map, rp);
448 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
449
450 rp += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
451
452 /* Now populate the bitmap for the next field, unless this is
453 * the last field, in which case return the matched 'ext'
454 * pointer if any.
455 *
456 * Now res_map contains the matching bitmap, and fill_map is the
457 * bitmap for the next field.
458 */
459 next_match:
460 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
461 last);
462 if (b < 0) {
463 scratch->map_index = map_index;
464 local_bh_enable();
465
466 return false;
467 }
468
469 if (last) {
470 *ext = &f->mt[b].e->ext;
471 if (unlikely(nft_set_elem_expired(*ext) ||
472 !nft_set_elem_active(*ext, genmask)))
473 goto next_match;
474
475 /* Last field: we're just returning the key without
476 * filling the initial bitmap for the next field, so the
477 * current inactive bitmap is clean and can be reused as
478 * *next* bitmap (not initial) for the next packet.
479 */
480 scratch->map_index = map_index;
481 local_bh_enable();
482
483 return true;
484 }
485
486 /* Swap bitmap indices: res_map is the initial bitmap for the
487 * next field, and fill_map is guaranteed to be all-zeroes at
488 * this point.
489 */
490 map_index = !map_index;
491 swap(res_map, fill_map);
492
493 rp += NFT_PIPAPO_GROUPS_PADDING(f);
494 }
495
496 out:
497 local_bh_enable();
498 return false;
499 }
500
501 /**
502 * pipapo_get() - Get matching element reference given key data
503 * @net: Network namespace
504 * @set: nftables API set representation
505 * @data: Key data to be matched against existing elements
506 * @genmask: If set, check that element is active in given genmask
507 * @tstamp: timestamp to check for expired elements
508 *
509 * This is essentially the same as the lookup function, except that it matches
510 * key data against the uncommitted copy and doesn't use preallocated maps for
511 * bitmap results.
512 *
513 * Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
514 */
pipapo_get(const struct net * net,const struct nft_set * set,const u8 * data,u8 genmask,u64 tstamp)515 static struct nft_pipapo_elem *pipapo_get(const struct net *net,
516 const struct nft_set *set,
517 const u8 *data, u8 genmask,
518 u64 tstamp)
519 {
520 struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
521 struct nft_pipapo *priv = nft_set_priv(set);
522 unsigned long *res_map, *fill_map = NULL;
523 const struct nft_pipapo_match *m;
524 const struct nft_pipapo_field *f;
525 int i;
526
527 m = priv->clone;
528
529 res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
530 if (!res_map) {
531 ret = ERR_PTR(-ENOMEM);
532 goto out;
533 }
534
535 fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
536 if (!fill_map) {
537 ret = ERR_PTR(-ENOMEM);
538 goto out;
539 }
540
541 pipapo_resmap_init(m, res_map);
542
543 nft_pipapo_for_each_field(f, i, m) {
544 bool last = i == m->field_count - 1;
545 int b;
546
547 /* For each bit group: select lookup table bucket depending on
548 * packet bytes value, then AND bucket value
549 */
550 if (f->bb == 8)
551 pipapo_and_field_buckets_8bit(f, res_map, data);
552 else if (f->bb == 4)
553 pipapo_and_field_buckets_4bit(f, res_map, data);
554 else
555 BUG();
556
557 data += f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f);
558
559 /* Now populate the bitmap for the next field, unless this is
560 * the last field, in which case return the matched 'ext'
561 * pointer if any.
562 *
563 * Now res_map contains the matching bitmap, and fill_map is the
564 * bitmap for the next field.
565 */
566 next_match:
567 b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
568 last);
569 if (b < 0)
570 goto out;
571
572 if (last) {
573 if (__nft_set_elem_expired(&f->mt[b].e->ext, tstamp))
574 goto next_match;
575 if ((genmask &&
576 !nft_set_elem_active(&f->mt[b].e->ext, genmask)))
577 goto next_match;
578
579 ret = f->mt[b].e;
580 goto out;
581 }
582
583 data += NFT_PIPAPO_GROUPS_PADDING(f);
584
585 /* Swap bitmap indices: fill_map will be the initial bitmap for
586 * the next field (i.e. the new res_map), and res_map is
587 * guaranteed to be all-zeroes at this point, ready to be filled
588 * according to the next mapping table.
589 */
590 swap(res_map, fill_map);
591 }
592
593 out:
594 kfree(fill_map);
595 kfree(res_map);
596 return ret;
597 }
598
599 /**
600 * nft_pipapo_get() - Get matching element reference given key data
601 * @net: Network namespace
602 * @set: nftables API set representation
603 * @elem: nftables API element representation containing key data
604 * @flags: Unused
605 */
nft_pipapo_get(const struct net * net,const struct nft_set * set,const struct nft_set_elem * elem,unsigned int flags)606 static void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
607 const struct nft_set_elem *elem, unsigned int flags)
608 {
609 return pipapo_get(net, set, (const u8 *)elem->key.val.data,
610 nft_genmask_cur(net), get_jiffies_64());
611 }
612
613 /**
614 * pipapo_resize() - Resize lookup or mapping table, or both
615 * @f: Field containing lookup and mapping tables
616 * @old_rules: Previous amount of rules in field
617 * @rules: New amount of rules
618 *
619 * Increase, decrease or maintain tables size depending on new amount of rules,
620 * and copy data over. In case the new size is smaller, throw away data for
621 * highest-numbered rules.
622 *
623 * Return: 0 on success, -ENOMEM on allocation failure.
624 */
pipapo_resize(struct nft_pipapo_field * f,int old_rules,int rules)625 static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
626 {
627 long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
628 union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
629 size_t new_bucket_size, copy;
630 int group, bucket;
631
632 new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
633 #ifdef NFT_PIPAPO_ALIGN
634 new_bucket_size = roundup(new_bucket_size,
635 NFT_PIPAPO_ALIGN / sizeof(*new_lt));
636 #endif
637
638 if (new_bucket_size == f->bsize)
639 goto mt;
640
641 if (new_bucket_size > f->bsize)
642 copy = f->bsize;
643 else
644 copy = new_bucket_size;
645
646 new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS(f->bb) *
647 new_bucket_size * sizeof(*new_lt) +
648 NFT_PIPAPO_ALIGN_HEADROOM,
649 GFP_KERNEL);
650 if (!new_lt)
651 return -ENOMEM;
652
653 new_p = NFT_PIPAPO_LT_ALIGN(new_lt);
654 old_p = NFT_PIPAPO_LT_ALIGN(old_lt);
655
656 for (group = 0; group < f->groups; group++) {
657 for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS(f->bb); bucket++) {
658 memcpy(new_p, old_p, copy * sizeof(*new_p));
659 new_p += copy;
660 old_p += copy;
661
662 if (new_bucket_size > f->bsize)
663 new_p += new_bucket_size - f->bsize;
664 else
665 old_p += f->bsize - new_bucket_size;
666 }
667 }
668
669 mt:
670 new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
671 if (!new_mt) {
672 kvfree(new_lt);
673 return -ENOMEM;
674 }
675
676 memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
677 if (rules > old_rules) {
678 memset(new_mt + old_rules, 0,
679 (rules - old_rules) * sizeof(*new_mt));
680 }
681
682 if (new_lt) {
683 f->bsize = new_bucket_size;
684 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
685 kvfree(old_lt);
686 }
687
688 f->mt = new_mt;
689 kvfree(old_mt);
690
691 return 0;
692 }
693
694 /**
695 * pipapo_bucket_set() - Set rule bit in bucket given group and group value
696 * @f: Field containing lookup table
697 * @rule: Rule index
698 * @group: Group index
699 * @v: Value of bit group
700 */
pipapo_bucket_set(struct nft_pipapo_field * f,int rule,int group,int v)701 static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
702 int v)
703 {
704 unsigned long *pos;
705
706 pos = NFT_PIPAPO_LT_ALIGN(f->lt);
707 pos += f->bsize * NFT_PIPAPO_BUCKETS(f->bb) * group;
708 pos += f->bsize * v;
709
710 __set_bit(rule, pos);
711 }
712
713 /**
714 * pipapo_lt_4b_to_8b() - Switch lookup table group width from 4 bits to 8 bits
715 * @old_groups: Number of current groups
716 * @bsize: Size of one bucket, in longs
717 * @old_lt: Pointer to the current lookup table
718 * @new_lt: Pointer to the new, pre-allocated lookup table
719 *
720 * Each bucket with index b in the new lookup table, belonging to group g, is
721 * filled with the bit intersection between:
722 * - bucket with index given by the upper 4 bits of b, from group g, and
723 * - bucket with index given by the lower 4 bits of b, from group g + 1
724 *
725 * That is, given buckets from the new lookup table N(x, y) and the old lookup
726 * table O(x, y), with x bucket index, and y group index:
727 *
728 * N(b, g) := O(b / 16, g) & O(b % 16, g + 1)
729 *
730 * This ensures equivalence of the matching results on lookup. Two examples in
731 * pictures:
732 *
733 * bucket
734 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 254 255
735 * 0 ^
736 * 1 | ^
737 * ... ( & ) |
738 * / \ |
739 * / \ .-( & )-.
740 * / bucket \ | |
741 * group 0 / 1 2 3 \ 4 5 6 7 8 9 10 11 12 13 |14 15 |
742 * 0 / \ | |
743 * 1 \ | |
744 * 2 | --'
745 * 3 '-
746 * ...
747 */
pipapo_lt_4b_to_8b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)748 static void pipapo_lt_4b_to_8b(int old_groups, int bsize,
749 unsigned long *old_lt, unsigned long *new_lt)
750 {
751 int g, b, i;
752
753 for (g = 0; g < old_groups / 2; g++) {
754 int src_g0 = g * 2, src_g1 = g * 2 + 1;
755
756 for (b = 0; b < NFT_PIPAPO_BUCKETS(8); b++) {
757 int src_b0 = b / NFT_PIPAPO_BUCKETS(4);
758 int src_b1 = b % NFT_PIPAPO_BUCKETS(4);
759 int src_i0 = src_g0 * NFT_PIPAPO_BUCKETS(4) + src_b0;
760 int src_i1 = src_g1 * NFT_PIPAPO_BUCKETS(4) + src_b1;
761
762 for (i = 0; i < bsize; i++) {
763 *new_lt = old_lt[src_i0 * bsize + i] &
764 old_lt[src_i1 * bsize + i];
765 new_lt++;
766 }
767 }
768 }
769 }
770
771 /**
772 * pipapo_lt_8b_to_4b() - Switch lookup table group width from 8 bits to 4 bits
773 * @old_groups: Number of current groups
774 * @bsize: Size of one bucket, in longs
775 * @old_lt: Pointer to the current lookup table
776 * @new_lt: Pointer to the new, pre-allocated lookup table
777 *
778 * Each bucket with index b in the new lookup table, belonging to group g, is
779 * filled with the bit union of:
780 * - all the buckets with index such that the upper four bits of the lower byte
781 * equal b, from group g, with g odd
782 * - all the buckets with index such that the lower four bits equal b, from
783 * group g, with g even
784 *
785 * That is, given buckets from the new lookup table N(x, y) and the old lookup
786 * table O(x, y), with x bucket index, and y group index:
787 *
788 * - with g odd: N(b, g) := U(O(x, g) for each x : x = (b & 0xf0) >> 4)
789 * - with g even: N(b, g) := U(O(x, g) for each x : x = b & 0x0f)
790 *
791 * where U() denotes the arbitrary union operation (binary OR of n terms). This
792 * ensures equivalence of the matching results on lookup.
793 */
pipapo_lt_8b_to_4b(int old_groups,int bsize,unsigned long * old_lt,unsigned long * new_lt)794 static void pipapo_lt_8b_to_4b(int old_groups, int bsize,
795 unsigned long *old_lt, unsigned long *new_lt)
796 {
797 int g, b, bsrc, i;
798
799 memset(new_lt, 0, old_groups * 2 * NFT_PIPAPO_BUCKETS(4) * bsize *
800 sizeof(unsigned long));
801
802 for (g = 0; g < old_groups * 2; g += 2) {
803 int src_g = g / 2;
804
805 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
806 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
807 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
808 bsrc++) {
809 if (((bsrc & 0xf0) >> 4) != b)
810 continue;
811
812 for (i = 0; i < bsize; i++)
813 new_lt[i] |= old_lt[bsrc * bsize + i];
814 }
815
816 new_lt += bsize;
817 }
818
819 for (b = 0; b < NFT_PIPAPO_BUCKETS(4); b++) {
820 for (bsrc = NFT_PIPAPO_BUCKETS(8) * src_g;
821 bsrc < NFT_PIPAPO_BUCKETS(8) * (src_g + 1);
822 bsrc++) {
823 if ((bsrc & 0x0f) != b)
824 continue;
825
826 for (i = 0; i < bsize; i++)
827 new_lt[i] |= old_lt[bsrc * bsize + i];
828 }
829
830 new_lt += bsize;
831 }
832 }
833 }
834
835 /**
836 * pipapo_lt_bits_adjust() - Adjust group size for lookup table if needed
837 * @f: Field containing lookup table
838 */
pipapo_lt_bits_adjust(struct nft_pipapo_field * f)839 static void pipapo_lt_bits_adjust(struct nft_pipapo_field *f)
840 {
841 unsigned long *new_lt;
842 int groups, bb;
843 size_t lt_size;
844
845 lt_size = f->groups * NFT_PIPAPO_BUCKETS(f->bb) * f->bsize *
846 sizeof(*f->lt);
847
848 if (f->bb == NFT_PIPAPO_GROUP_BITS_SMALL_SET &&
849 lt_size > NFT_PIPAPO_LT_SIZE_HIGH) {
850 groups = f->groups * 2;
851 bb = NFT_PIPAPO_GROUP_BITS_LARGE_SET;
852
853 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
854 sizeof(*f->lt);
855 } else if (f->bb == NFT_PIPAPO_GROUP_BITS_LARGE_SET &&
856 lt_size < NFT_PIPAPO_LT_SIZE_LOW) {
857 groups = f->groups / 2;
858 bb = NFT_PIPAPO_GROUP_BITS_SMALL_SET;
859
860 lt_size = groups * NFT_PIPAPO_BUCKETS(bb) * f->bsize *
861 sizeof(*f->lt);
862
863 /* Don't increase group width if the resulting lookup table size
864 * would exceed the upper size threshold for a "small" set.
865 */
866 if (lt_size > NFT_PIPAPO_LT_SIZE_HIGH)
867 return;
868 } else {
869 return;
870 }
871
872 new_lt = kvzalloc(lt_size + NFT_PIPAPO_ALIGN_HEADROOM, GFP_KERNEL);
873 if (!new_lt)
874 return;
875
876 NFT_PIPAPO_GROUP_BITS_ARE_8_OR_4;
877 if (f->bb == 4 && bb == 8) {
878 pipapo_lt_4b_to_8b(f->groups, f->bsize,
879 NFT_PIPAPO_LT_ALIGN(f->lt),
880 NFT_PIPAPO_LT_ALIGN(new_lt));
881 } else if (f->bb == 8 && bb == 4) {
882 pipapo_lt_8b_to_4b(f->groups, f->bsize,
883 NFT_PIPAPO_LT_ALIGN(f->lt),
884 NFT_PIPAPO_LT_ALIGN(new_lt));
885 } else {
886 BUG();
887 }
888
889 f->groups = groups;
890 f->bb = bb;
891 kvfree(f->lt);
892 NFT_PIPAPO_LT_ASSIGN(f, new_lt);
893 }
894
895 /**
896 * pipapo_insert() - Insert new rule in field given input key and mask length
897 * @f: Field containing lookup table
898 * @k: Input key for classification, without nftables padding
899 * @mask_bits: Length of mask; matches field length for non-ranged entry
900 *
901 * Insert a new rule reference in lookup buckets corresponding to k and
902 * mask_bits.
903 *
904 * Return: 1 on success (one rule inserted), negative error code on failure.
905 */
pipapo_insert(struct nft_pipapo_field * f,const uint8_t * k,int mask_bits)906 static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
907 int mask_bits)
908 {
909 int rule = f->rules, group, ret, bit_offset = 0;
910
911 ret = pipapo_resize(f, f->rules, f->rules + 1);
912 if (ret)
913 return ret;
914
915 f->rules++;
916
917 for (group = 0; group < f->groups; group++) {
918 int i, v;
919 u8 mask;
920
921 v = k[group / (BITS_PER_BYTE / f->bb)];
922 v &= GENMASK(BITS_PER_BYTE - bit_offset - 1, 0);
923 v >>= (BITS_PER_BYTE - bit_offset) - f->bb;
924
925 bit_offset += f->bb;
926 bit_offset %= BITS_PER_BYTE;
927
928 if (mask_bits >= (group + 1) * f->bb) {
929 /* Not masked */
930 pipapo_bucket_set(f, rule, group, v);
931 } else if (mask_bits <= group * f->bb) {
932 /* Completely masked */
933 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++)
934 pipapo_bucket_set(f, rule, group, i);
935 } else {
936 /* The mask limit falls on this group */
937 mask = GENMASK(f->bb - 1, 0);
938 mask >>= mask_bits - group * f->bb;
939 for (i = 0; i < NFT_PIPAPO_BUCKETS(f->bb); i++) {
940 if ((i & ~mask) == (v & ~mask))
941 pipapo_bucket_set(f, rule, group, i);
942 }
943 }
944 }
945
946 pipapo_lt_bits_adjust(f);
947
948 return 1;
949 }
950
951 /**
952 * pipapo_step_diff() - Check if setting @step bit in netmask would change it
953 * @base: Mask we are expanding
954 * @step: Step bit for given expansion step
955 * @len: Total length of mask space (set and unset bits), bytes
956 *
957 * Convenience function for mask expansion.
958 *
959 * Return: true if step bit changes mask (i.e. isn't set), false otherwise.
960 */
pipapo_step_diff(u8 * base,int step,int len)961 static bool pipapo_step_diff(u8 *base, int step, int len)
962 {
963 /* Network order, byte-addressed */
964 #ifdef __BIG_ENDIAN__
965 return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
966 #else
967 return !(BIT(step % BITS_PER_BYTE) &
968 base[len - 1 - step / BITS_PER_BYTE]);
969 #endif
970 }
971
972 /**
973 * pipapo_step_after_end() - Check if mask exceeds range end with given step
974 * @base: Mask we are expanding
975 * @end: End of range
976 * @step: Step bit for given expansion step, highest bit to be set
977 * @len: Total length of mask space (set and unset bits), bytes
978 *
979 * Convenience function for mask expansion.
980 *
981 * Return: true if mask exceeds range setting step bits, false otherwise.
982 */
pipapo_step_after_end(const u8 * base,const u8 * end,int step,int len)983 static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
984 int len)
985 {
986 u8 tmp[NFT_PIPAPO_MAX_BYTES];
987 int i;
988
989 memcpy(tmp, base, len);
990
991 /* Network order, byte-addressed */
992 for (i = 0; i <= step; i++)
993 #ifdef __BIG_ENDIAN__
994 tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
995 #else
996 tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
997 #endif
998
999 return memcmp(tmp, end, len) > 0;
1000 }
1001
1002 /**
1003 * pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
1004 * @base: Netmask base
1005 * @step: Step bit to sum
1006 * @len: Netmask length, bytes
1007 */
pipapo_base_sum(u8 * base,int step,int len)1008 static void pipapo_base_sum(u8 *base, int step, int len)
1009 {
1010 bool carry = false;
1011 int i;
1012
1013 /* Network order, byte-addressed */
1014 #ifdef __BIG_ENDIAN__
1015 for (i = step / BITS_PER_BYTE; i < len; i++) {
1016 #else
1017 for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
1018 #endif
1019 if (carry)
1020 base[i]++;
1021 else
1022 base[i] += 1 << (step % BITS_PER_BYTE);
1023
1024 if (base[i])
1025 break;
1026
1027 carry = true;
1028 }
1029 }
1030
1031 /**
1032 * pipapo_expand() - Expand to composing netmasks, insert into lookup table
1033 * @f: Field containing lookup table
1034 * @start: Start of range
1035 * @end: End of range
1036 * @len: Length of value in bits
1037 *
1038 * Expand range to composing netmasks and insert corresponding rule references
1039 * in lookup buckets.
1040 *
1041 * Return: number of inserted rules on success, negative error code on failure.
1042 */
1043 static int pipapo_expand(struct nft_pipapo_field *f,
1044 const u8 *start, const u8 *end, int len)
1045 {
1046 int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
1047 u8 base[NFT_PIPAPO_MAX_BYTES];
1048
1049 memcpy(base, start, bytes);
1050 while (memcmp(base, end, bytes) <= 0) {
1051 int err;
1052
1053 step = 0;
1054 while (pipapo_step_diff(base, step, bytes)) {
1055 if (pipapo_step_after_end(base, end, step, bytes))
1056 break;
1057
1058 step++;
1059 if (step >= len) {
1060 if (!masks) {
1061 err = pipapo_insert(f, base, 0);
1062 if (err < 0)
1063 return err;
1064 masks = 1;
1065 }
1066 goto out;
1067 }
1068 }
1069
1070 err = pipapo_insert(f, base, len - step);
1071
1072 if (err < 0)
1073 return err;
1074
1075 masks++;
1076 pipapo_base_sum(base, step, bytes);
1077 }
1078 out:
1079 return masks;
1080 }
1081
1082 /**
1083 * pipapo_map() - Insert rules in mapping tables, mapping them between fields
1084 * @m: Matching data, including mapping table
1085 * @map: Table of rule maps: array of first rule and amount of rules
1086 * in next field a given rule maps to, for each field
1087 * @e: For last field, nft_set_ext pointer matching rules map to
1088 */
1089 static void pipapo_map(struct nft_pipapo_match *m,
1090 union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
1091 struct nft_pipapo_elem *e)
1092 {
1093 struct nft_pipapo_field *f;
1094 int i, j;
1095
1096 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
1097 for (j = 0; j < map[i].n; j++) {
1098 f->mt[map[i].to + j].to = map[i + 1].to;
1099 f->mt[map[i].to + j].n = map[i + 1].n;
1100 }
1101 }
1102
1103 /* Last field: map to ext instead of mapping to next field */
1104 for (j = 0; j < map[i].n; j++)
1105 f->mt[map[i].to + j].e = e;
1106 }
1107
1108 /**
1109 * pipapo_free_scratch() - Free per-CPU map at original (not aligned) address
1110 * @m: Matching data
1111 * @cpu: CPU number
1112 */
1113 static void pipapo_free_scratch(const struct nft_pipapo_match *m, unsigned int cpu)
1114 {
1115 struct nft_pipapo_scratch *s;
1116 void *mem;
1117
1118 s = *per_cpu_ptr(m->scratch, cpu);
1119 if (!s)
1120 return;
1121
1122 mem = s;
1123 mem -= s->align_off;
1124 kfree(mem);
1125 }
1126
1127 /**
1128 * pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
1129 * @clone: Copy of matching data with pending insertions and deletions
1130 * @bsize_max: Maximum bucket size, scratch maps cover two buckets
1131 *
1132 * Return: 0 on success, -ENOMEM on failure.
1133 */
1134 static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
1135 unsigned long bsize_max)
1136 {
1137 int i;
1138
1139 for_each_possible_cpu(i) {
1140 struct nft_pipapo_scratch *scratch;
1141 #ifdef NFT_PIPAPO_ALIGN
1142 void *scratch_aligned;
1143 u32 align_off;
1144 #endif
1145 scratch = kzalloc_node(struct_size(scratch, map,
1146 bsize_max * 2) +
1147 NFT_PIPAPO_ALIGN_HEADROOM,
1148 GFP_KERNEL, cpu_to_node(i));
1149 if (!scratch) {
1150 /* On failure, there's no need to undo previous
1151 * allocations: this means that some scratch maps have
1152 * a bigger allocated size now (this is only called on
1153 * insertion), but the extra space won't be used by any
1154 * CPU as new elements are not inserted and m->bsize_max
1155 * is not updated.
1156 */
1157 return -ENOMEM;
1158 }
1159
1160 pipapo_free_scratch(clone, i);
1161
1162 #ifdef NFT_PIPAPO_ALIGN
1163 /* Align &scratch->map (not the struct itself): the extra
1164 * %NFT_PIPAPO_ALIGN_HEADROOM bytes passed to kzalloc_node()
1165 * above guarantee we can waste up to those bytes in order
1166 * to align the map field regardless of its offset within
1167 * the struct.
1168 */
1169 BUILD_BUG_ON(offsetof(struct nft_pipapo_scratch, map) > NFT_PIPAPO_ALIGN_HEADROOM);
1170
1171 scratch_aligned = NFT_PIPAPO_LT_ALIGN(&scratch->map);
1172 scratch_aligned -= offsetof(struct nft_pipapo_scratch, map);
1173 align_off = scratch_aligned - (void *)scratch;
1174
1175 scratch = scratch_aligned;
1176 scratch->align_off = align_off;
1177 #endif
1178 *per_cpu_ptr(clone->scratch, i) = scratch;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /**
1185 * nft_pipapo_insert() - Validate and insert ranged elements
1186 * @net: Network namespace
1187 * @set: nftables API set representation
1188 * @elem: nftables API element representation containing key data
1189 * @ext2: Filled with pointer to &struct nft_set_ext in inserted element
1190 *
1191 * Return: 0 on success, error pointer on failure.
1192 */
1193 static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
1194 const struct nft_set_elem *elem,
1195 struct nft_set_ext **ext2)
1196 {
1197 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1198 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1199 const u8 *start = (const u8 *)elem->key.val.data, *end;
1200 struct nft_pipapo_elem *e = elem->priv, *dup;
1201 struct nft_pipapo *priv = nft_set_priv(set);
1202 struct nft_pipapo_match *m = priv->clone;
1203 u8 genmask = nft_genmask_next(net);
1204 u64 tstamp = nft_net_tstamp(net);
1205 struct nft_pipapo_field *f;
1206 const u8 *start_p, *end_p;
1207 int i, bsize_max, err = 0;
1208
1209 if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
1210 end = (const u8 *)nft_set_ext_key_end(ext)->data;
1211 else
1212 end = start;
1213
1214 dup = pipapo_get(net, set, start, genmask, tstamp);
1215 if (!IS_ERR(dup)) {
1216 /* Check if we already have the same exact entry */
1217 const struct nft_data *dup_key, *dup_end;
1218
1219 dup_key = nft_set_ext_key(&dup->ext);
1220 if (nft_set_ext_exists(&dup->ext, NFT_SET_EXT_KEY_END))
1221 dup_end = nft_set_ext_key_end(&dup->ext);
1222 else
1223 dup_end = dup_key;
1224
1225 if (!memcmp(start, dup_key->data, sizeof(*dup_key->data)) &&
1226 !memcmp(end, dup_end->data, sizeof(*dup_end->data))) {
1227 *ext2 = &dup->ext;
1228 return -EEXIST;
1229 }
1230
1231 return -ENOTEMPTY;
1232 }
1233
1234 if (PTR_ERR(dup) == -ENOENT) {
1235 /* Look for partially overlapping entries */
1236 dup = pipapo_get(net, set, end, nft_genmask_next(net), tstamp);
1237 }
1238
1239 if (PTR_ERR(dup) != -ENOENT) {
1240 if (IS_ERR(dup))
1241 return PTR_ERR(dup);
1242 *ext2 = &dup->ext;
1243 return -ENOTEMPTY;
1244 }
1245
1246 /* Validate */
1247 start_p = start;
1248 end_p = end;
1249 nft_pipapo_for_each_field(f, i, m) {
1250 if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
1251 return -ENOSPC;
1252
1253 if (memcmp(start_p, end_p,
1254 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) > 0)
1255 return -EINVAL;
1256
1257 start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1258 end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1259 }
1260
1261 /* Insert */
1262 priv->dirty = true;
1263
1264 bsize_max = m->bsize_max;
1265
1266 nft_pipapo_for_each_field(f, i, m) {
1267 int ret;
1268
1269 rulemap[i].to = f->rules;
1270
1271 ret = memcmp(start, end,
1272 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1273 if (!ret)
1274 ret = pipapo_insert(f, start, f->groups * f->bb);
1275 else
1276 ret = pipapo_expand(f, start, end, f->groups * f->bb);
1277
1278 if (ret < 0)
1279 return ret;
1280
1281 if (f->bsize > bsize_max)
1282 bsize_max = f->bsize;
1283
1284 rulemap[i].n = ret;
1285
1286 start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1287 end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
1288 }
1289
1290 if (!*get_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
1291 put_cpu_ptr(m->scratch);
1292
1293 err = pipapo_realloc_scratch(m, bsize_max);
1294 if (err)
1295 return err;
1296
1297 m->bsize_max = bsize_max;
1298 } else {
1299 put_cpu_ptr(m->scratch);
1300 }
1301
1302 *ext2 = &e->ext;
1303
1304 pipapo_map(m, rulemap, e);
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * pipapo_clone() - Clone matching data to create new working copy
1311 * @old: Existing matching data
1312 *
1313 * Return: copy of matching data passed as 'old', error pointer on failure
1314 */
1315 static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
1316 {
1317 struct nft_pipapo_field *dst, *src;
1318 struct nft_pipapo_match *new;
1319 int i;
1320
1321 new = kmalloc(struct_size(new, f, old->field_count), GFP_KERNEL);
1322 if (!new)
1323 return ERR_PTR(-ENOMEM);
1324
1325 new->field_count = old->field_count;
1326 new->bsize_max = old->bsize_max;
1327
1328 new->scratch = alloc_percpu(*new->scratch);
1329 if (!new->scratch)
1330 goto out_scratch;
1331
1332 for_each_possible_cpu(i)
1333 *per_cpu_ptr(new->scratch, i) = NULL;
1334
1335 if (pipapo_realloc_scratch(new, old->bsize_max))
1336 goto out_scratch_realloc;
1337
1338 rcu_head_init(&new->rcu);
1339
1340 src = old->f;
1341 dst = new->f;
1342
1343 for (i = 0; i < old->field_count; i++) {
1344 unsigned long *new_lt;
1345
1346 memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
1347
1348 new_lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS(src->bb) *
1349 src->bsize * sizeof(*dst->lt) +
1350 NFT_PIPAPO_ALIGN_HEADROOM,
1351 GFP_KERNEL);
1352 if (!new_lt)
1353 goto out_lt;
1354
1355 NFT_PIPAPO_LT_ASSIGN(dst, new_lt);
1356
1357 memcpy(NFT_PIPAPO_LT_ALIGN(new_lt),
1358 NFT_PIPAPO_LT_ALIGN(src->lt),
1359 src->bsize * sizeof(*dst->lt) *
1360 src->groups * NFT_PIPAPO_BUCKETS(src->bb));
1361
1362 dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
1363 if (!dst->mt)
1364 goto out_mt;
1365
1366 memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
1367 src++;
1368 dst++;
1369 }
1370
1371 return new;
1372
1373 out_mt:
1374 kvfree(dst->lt);
1375 out_lt:
1376 for (dst--; i > 0; i--) {
1377 kvfree(dst->mt);
1378 kvfree(dst->lt);
1379 dst--;
1380 }
1381 out_scratch_realloc:
1382 for_each_possible_cpu(i)
1383 pipapo_free_scratch(new, i);
1384 out_scratch:
1385 free_percpu(new->scratch);
1386 kfree(new);
1387
1388 return ERR_PTR(-ENOMEM);
1389 }
1390
1391 /**
1392 * pipapo_rules_same_key() - Get number of rules originated from the same entry
1393 * @f: Field containing mapping table
1394 * @first: Index of first rule in set of rules mapping to same entry
1395 *
1396 * Using the fact that all rules in a field that originated from the same entry
1397 * will map to the same set of rules in the next field, or to the same element
1398 * reference, return the cardinality of the set of rules that originated from
1399 * the same entry as the rule with index @first, @first rule included.
1400 *
1401 * In pictures:
1402 * rules
1403 * field #0 0 1 2 3 4
1404 * map to: 0 1 2-4 2-4 5-9
1405 * . . ....... . ...
1406 * | | | | \ \
1407 * | | | | \ \
1408 * | | | | \ \
1409 * ' ' ' ' ' \
1410 * in field #1 0 1 2 3 4 5 ...
1411 *
1412 * if this is called for rule 2 on field #0, it will return 3, as also rules 2
1413 * and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
1414 *
1415 * For the last field in a set, we can rely on associated entries to map to the
1416 * same element references.
1417 *
1418 * Return: Number of rules that originated from the same entry as @first.
1419 */
1420 static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
1421 {
1422 struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
1423 int r;
1424
1425 for (r = first; r < f->rules; r++) {
1426 if (r != first && e != f->mt[r].e)
1427 return r - first;
1428
1429 e = f->mt[r].e;
1430 }
1431
1432 if (r != first)
1433 return r - first;
1434
1435 return 0;
1436 }
1437
1438 /**
1439 * pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
1440 * @mt: Mapping array
1441 * @rules: Original amount of rules in mapping table
1442 * @start: First rule index to be removed
1443 * @n: Amount of rules to be removed
1444 * @to_offset: First rule index, in next field, this group of rules maps to
1445 * @is_last: If this is the last field, delete reference from mapping array
1446 *
1447 * This is used to unmap rules from the mapping table for a single field,
1448 * maintaining consistency and compactness for the existing ones.
1449 *
1450 * In pictures: let's assume that we want to delete rules 2 and 3 from the
1451 * following mapping array:
1452 *
1453 * rules
1454 * 0 1 2 3 4
1455 * map to: 4-10 4-10 11-15 11-15 16-18
1456 *
1457 * the result will be:
1458 *
1459 * rules
1460 * 0 1 2
1461 * map to: 4-10 4-10 11-13
1462 *
1463 * for fields before the last one. In case this is the mapping table for the
1464 * last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
1465 *
1466 * rules
1467 * 0 1 2 3 4
1468 * element pointers: 0x42 0x42 0x33 0x33 0x44
1469 *
1470 * the result will be:
1471 *
1472 * rules
1473 * 0 1 2
1474 * element pointers: 0x42 0x42 0x44
1475 */
1476 static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
1477 int start, int n, int to_offset, bool is_last)
1478 {
1479 int i;
1480
1481 memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
1482 memset(mt + rules - n, 0, n * sizeof(*mt));
1483
1484 if (is_last)
1485 return;
1486
1487 for (i = start; i < rules - n; i++)
1488 mt[i].to -= to_offset;
1489 }
1490
1491 /**
1492 * pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
1493 * @m: Matching data
1494 * @rulemap: Table of rule maps, arrays of first rule and amount of rules
1495 * in next field a given entry maps to, for each field
1496 *
1497 * For each rule in lookup table buckets mapping to this set of rules, drop
1498 * all bits set in lookup table mapping. In pictures, assuming we want to drop
1499 * rules 0 and 1 from this lookup table:
1500 *
1501 * bucket
1502 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1503 * 0 0 1,2
1504 * 1 1,2 0
1505 * 2 0 1,2
1506 * 3 0 1,2
1507 * 4 0,1,2
1508 * 5 0 1 2
1509 * 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1510 * 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
1511 *
1512 * rule 2 becomes rule 0, and the result will be:
1513 *
1514 * bucket
1515 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1516 * 0 0
1517 * 1 0
1518 * 2 0
1519 * 3 0
1520 * 4 0
1521 * 5 0
1522 * 6 0
1523 * 7 0 0
1524 *
1525 * once this is done, call unmap() to drop all the corresponding rule references
1526 * from mapping tables.
1527 */
1528 static void pipapo_drop(struct nft_pipapo_match *m,
1529 union nft_pipapo_map_bucket rulemap[])
1530 {
1531 struct nft_pipapo_field *f;
1532 int i;
1533
1534 nft_pipapo_for_each_field(f, i, m) {
1535 int g;
1536
1537 for (g = 0; g < f->groups; g++) {
1538 unsigned long *pos;
1539 int b;
1540
1541 pos = NFT_PIPAPO_LT_ALIGN(f->lt) + g *
1542 NFT_PIPAPO_BUCKETS(f->bb) * f->bsize;
1543
1544 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1545 bitmap_cut(pos, pos, rulemap[i].to,
1546 rulemap[i].n,
1547 f->bsize * BITS_PER_LONG);
1548
1549 pos += f->bsize;
1550 }
1551 }
1552
1553 pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
1554 rulemap[i + 1].n, i == m->field_count - 1);
1555 if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
1556 /* We can ignore this, a failure to shrink tables down
1557 * doesn't make tables invalid.
1558 */
1559 ;
1560 }
1561 f->rules -= rulemap[i].n;
1562
1563 pipapo_lt_bits_adjust(f);
1564 }
1565 }
1566
1567 static void nft_pipapo_gc_deactivate(struct net *net, struct nft_set *set,
1568 struct nft_pipapo_elem *e)
1569
1570 {
1571 struct nft_set_elem elem = {
1572 .priv = e,
1573 };
1574
1575 nft_setelem_data_deactivate(net, set, &elem);
1576 }
1577
1578 /**
1579 * pipapo_gc() - Drop expired entries from set, destroy start and end elements
1580 * @set: nftables API set representation
1581 * @m: Matching data
1582 */
1583 static void pipapo_gc(struct nft_set *set, struct nft_pipapo_match *m)
1584 {
1585 struct nft_pipapo *priv = nft_set_priv(set);
1586 struct net *net = read_pnet(&set->net);
1587 u64 tstamp = nft_net_tstamp(net);
1588 int rules_f0, first_rule = 0;
1589 struct nft_pipapo_elem *e;
1590 struct nft_trans_gc *gc;
1591
1592 gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
1593 if (!gc)
1594 return;
1595
1596 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1597 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1598 const struct nft_pipapo_field *f;
1599 int i, start, rules_fx;
1600
1601 start = first_rule;
1602 rules_fx = rules_f0;
1603
1604 nft_pipapo_for_each_field(f, i, m) {
1605 rulemap[i].to = start;
1606 rulemap[i].n = rules_fx;
1607
1608 if (i < m->field_count - 1) {
1609 rules_fx = f->mt[start].n;
1610 start = f->mt[start].to;
1611 }
1612 }
1613
1614 /* Pick the last field, and its last index */
1615 f--;
1616 i--;
1617 e = f->mt[rulemap[i].to].e;
1618
1619 /* synchronous gc never fails, there is no need to set on
1620 * NFT_SET_ELEM_DEAD_BIT.
1621 */
1622 if (__nft_set_elem_expired(&e->ext, tstamp)) {
1623 priv->dirty = true;
1624
1625 gc = nft_trans_gc_queue_sync(gc, GFP_ATOMIC);
1626 if (!gc)
1627 return;
1628
1629 nft_pipapo_gc_deactivate(net, set, e);
1630 pipapo_drop(m, rulemap);
1631 nft_trans_gc_elem_add(gc, e);
1632
1633 /* And check again current first rule, which is now the
1634 * first we haven't checked.
1635 */
1636 } else {
1637 first_rule += rules_f0;
1638 }
1639 }
1640
1641 gc = nft_trans_gc_catchall_sync(gc);
1642 if (gc) {
1643 nft_trans_gc_queue_sync_done(gc);
1644 priv->last_gc = jiffies;
1645 }
1646 }
1647
1648 /**
1649 * pipapo_free_fields() - Free per-field tables contained in matching data
1650 * @m: Matching data
1651 */
1652 static void pipapo_free_fields(struct nft_pipapo_match *m)
1653 {
1654 struct nft_pipapo_field *f;
1655 int i;
1656
1657 nft_pipapo_for_each_field(f, i, m) {
1658 kvfree(f->lt);
1659 kvfree(f->mt);
1660 }
1661 }
1662
1663 static void pipapo_free_match(struct nft_pipapo_match *m)
1664 {
1665 int i;
1666
1667 for_each_possible_cpu(i)
1668 pipapo_free_scratch(m, i);
1669
1670 free_percpu(m->scratch);
1671 pipapo_free_fields(m);
1672
1673 kfree(m);
1674 }
1675
1676 /**
1677 * pipapo_reclaim_match - RCU callback to free fields from old matching data
1678 * @rcu: RCU head
1679 */
1680 static void pipapo_reclaim_match(struct rcu_head *rcu)
1681 {
1682 struct nft_pipapo_match *m;
1683
1684 m = container_of(rcu, struct nft_pipapo_match, rcu);
1685 pipapo_free_match(m);
1686 }
1687
1688 /**
1689 * nft_pipapo_commit() - Replace lookup data with current working copy
1690 * @set: nftables API set representation
1691 *
1692 * While at it, check if we should perform garbage collection on the working
1693 * copy before committing it for lookup, and don't replace the table if the
1694 * working copy doesn't have pending changes.
1695 *
1696 * We also need to create a new working copy for subsequent insertions and
1697 * deletions.
1698 */
1699 static void nft_pipapo_commit(struct nft_set *set)
1700 {
1701 struct nft_pipapo *priv = nft_set_priv(set);
1702 struct nft_pipapo_match *new_clone, *old;
1703
1704 if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
1705 pipapo_gc(set, priv->clone);
1706
1707 if (!priv->dirty)
1708 return;
1709
1710 new_clone = pipapo_clone(priv->clone);
1711 if (IS_ERR(new_clone))
1712 return;
1713
1714 priv->dirty = false;
1715
1716 old = rcu_access_pointer(priv->match);
1717 rcu_assign_pointer(priv->match, priv->clone);
1718 if (old)
1719 call_rcu(&old->rcu, pipapo_reclaim_match);
1720
1721 priv->clone = new_clone;
1722 }
1723
1724 static bool nft_pipapo_transaction_mutex_held(const struct nft_set *set)
1725 {
1726 #ifdef CONFIG_PROVE_LOCKING
1727 const struct net *net = read_pnet(&set->net);
1728
1729 return lockdep_is_held(&nft_pernet(net)->commit_mutex);
1730 #else
1731 return true;
1732 #endif
1733 }
1734
1735 static void nft_pipapo_abort(const struct nft_set *set)
1736 {
1737 struct nft_pipapo *priv = nft_set_priv(set);
1738 struct nft_pipapo_match *new_clone, *m;
1739
1740 if (!priv->dirty)
1741 return;
1742
1743 m = rcu_dereference_protected(priv->match, nft_pipapo_transaction_mutex_held(set));
1744
1745 new_clone = pipapo_clone(m);
1746 if (IS_ERR(new_clone))
1747 return;
1748
1749 priv->dirty = false;
1750
1751 pipapo_free_match(priv->clone);
1752 priv->clone = new_clone;
1753 }
1754
1755 /**
1756 * nft_pipapo_activate() - Mark element reference as active given key, commit
1757 * @net: Network namespace
1758 * @set: nftables API set representation
1759 * @elem: nftables API element representation containing key data
1760 *
1761 * On insertion, elements are added to a copy of the matching data currently
1762 * in use for lookups, and not directly inserted into current lookup data. Both
1763 * nft_pipapo_insert() and nft_pipapo_activate() are called once for each
1764 * element, hence we can't purpose either one as a real commit operation.
1765 */
1766 static void nft_pipapo_activate(const struct net *net,
1767 const struct nft_set *set,
1768 const struct nft_set_elem *elem)
1769 {
1770 struct nft_pipapo_elem *e = elem->priv;
1771
1772 nft_clear(net, &e->ext);
1773 }
1774
1775 /**
1776 * pipapo_deactivate() - Check that element is in set, mark as inactive
1777 * @net: Network namespace
1778 * @set: nftables API set representation
1779 * @data: Input key data
1780 * @ext: nftables API extension pointer, used to check for end element
1781 *
1782 * This is a convenience function that can be called from both
1783 * nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
1784 * operation.
1785 *
1786 * Return: deactivated element if found, NULL otherwise.
1787 */
1788 static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
1789 const u8 *data, const struct nft_set_ext *ext)
1790 {
1791 struct nft_pipapo_elem *e;
1792
1793 e = pipapo_get(net, set, data, nft_genmask_next(net), nft_net_tstamp(net));
1794 if (IS_ERR(e))
1795 return NULL;
1796
1797 nft_set_elem_change_active(net, set, &e->ext);
1798
1799 return e;
1800 }
1801
1802 /**
1803 * nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
1804 * @net: Network namespace
1805 * @set: nftables API set representation
1806 * @elem: nftables API element representation containing key data
1807 *
1808 * Return: deactivated element if found, NULL otherwise.
1809 */
1810 static void *nft_pipapo_deactivate(const struct net *net,
1811 const struct nft_set *set,
1812 const struct nft_set_elem *elem)
1813 {
1814 const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
1815
1816 return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
1817 }
1818
1819 /**
1820 * nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
1821 * @net: Network namespace
1822 * @set: nftables API set representation
1823 * @elem: nftables API element representation containing key data
1824 *
1825 * This is functionally the same as nft_pipapo_deactivate(), with a slightly
1826 * different interface, and it's also called once for each element in a set
1827 * being flushed, so we can't implement, strictly speaking, a flush operation,
1828 * which would otherwise be as simple as allocating an empty copy of the
1829 * matching data.
1830 *
1831 * Note that we could in theory do that, mark the set as flushed, and ignore
1832 * subsequent calls, but we would leak all the elements after the first one,
1833 * because they wouldn't then be freed as result of API calls.
1834 *
1835 * Return: true if element was found and deactivated.
1836 */
1837 static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
1838 void *elem)
1839 {
1840 struct nft_pipapo_elem *e = elem;
1841
1842 return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
1843 &e->ext);
1844 }
1845
1846 /**
1847 * pipapo_get_boundaries() - Get byte interval for associated rules
1848 * @f: Field including lookup table
1849 * @first_rule: First rule (lowest index)
1850 * @rule_count: Number of associated rules
1851 * @left: Byte expression for left boundary (start of range)
1852 * @right: Byte expression for right boundary (end of range)
1853 *
1854 * Given the first rule and amount of rules that originated from the same entry,
1855 * build the original range associated with the entry, and calculate the length
1856 * of the originating netmask.
1857 *
1858 * In pictures:
1859 *
1860 * bucket
1861 * group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1862 * 0 1,2
1863 * 1 1,2
1864 * 2 1,2
1865 * 3 1,2
1866 * 4 1,2
1867 * 5 1 2
1868 * 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1869 * 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1870 *
1871 * this is the lookup table corresponding to the IPv4 range
1872 * 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
1873 * rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
1874 *
1875 * This function fills @left and @right with the byte values of the leftmost
1876 * and rightmost bucket indices for the lowest and highest rule indices,
1877 * respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
1878 * nibbles:
1879 * left: < 12, 0, 10, 8, 0, 1, 0, 0 >
1880 * right: < 12, 0, 10, 8, 0, 2, 2, 1 >
1881 * corresponding to bytes:
1882 * left: < 192, 168, 1, 0 >
1883 * right: < 192, 168, 2, 1 >
1884 * with mask length irrelevant here, unused on return, as the range is already
1885 * defined by its start and end points. The mask length is relevant for a single
1886 * ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
1887 * rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
1888 * < 192, 168, 1, 255 >, and the mask length, calculated from the distances
1889 * between leftmost and rightmost bucket indices for each group, would be 24.
1890 *
1891 * Return: mask length, in bits.
1892 */
1893 static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
1894 int rule_count, u8 *left, u8 *right)
1895 {
1896 int g, mask_len = 0, bit_offset = 0;
1897 u8 *l = left, *r = right;
1898
1899 for (g = 0; g < f->groups; g++) {
1900 int b, x0, x1;
1901
1902 x0 = -1;
1903 x1 = -1;
1904 for (b = 0; b < NFT_PIPAPO_BUCKETS(f->bb); b++) {
1905 unsigned long *pos;
1906
1907 pos = NFT_PIPAPO_LT_ALIGN(f->lt) +
1908 (g * NFT_PIPAPO_BUCKETS(f->bb) + b) * f->bsize;
1909 if (test_bit(first_rule, pos) && x0 == -1)
1910 x0 = b;
1911 if (test_bit(first_rule + rule_count - 1, pos))
1912 x1 = b;
1913 }
1914
1915 *l |= x0 << (BITS_PER_BYTE - f->bb - bit_offset);
1916 *r |= x1 << (BITS_PER_BYTE - f->bb - bit_offset);
1917
1918 bit_offset += f->bb;
1919 if (bit_offset >= BITS_PER_BYTE) {
1920 bit_offset %= BITS_PER_BYTE;
1921 l++;
1922 r++;
1923 }
1924
1925 if (x1 - x0 == 0)
1926 mask_len += 4;
1927 else if (x1 - x0 == 1)
1928 mask_len += 3;
1929 else if (x1 - x0 == 3)
1930 mask_len += 2;
1931 else if (x1 - x0 == 7)
1932 mask_len += 1;
1933 }
1934
1935 return mask_len;
1936 }
1937
1938 /**
1939 * pipapo_match_field() - Match rules against byte ranges
1940 * @f: Field including the lookup table
1941 * @first_rule: First of associated rules originating from same entry
1942 * @rule_count: Amount of associated rules
1943 * @start: Start of range to be matched
1944 * @end: End of range to be matched
1945 *
1946 * Return: true on match, false otherwise.
1947 */
1948 static bool pipapo_match_field(struct nft_pipapo_field *f,
1949 int first_rule, int rule_count,
1950 const u8 *start, const u8 *end)
1951 {
1952 u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
1953 u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
1954
1955 pipapo_get_boundaries(f, first_rule, rule_count, left, right);
1956
1957 return !memcmp(start, left,
1958 f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f)) &&
1959 !memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE(f));
1960 }
1961
1962 /**
1963 * nft_pipapo_remove() - Remove element given key, commit
1964 * @net: Network namespace
1965 * @set: nftables API set representation
1966 * @elem: nftables API element representation containing key data
1967 *
1968 * Similarly to nft_pipapo_activate(), this is used as commit operation by the
1969 * API, but it's called once per element in the pending transaction, so we can't
1970 * implement this as a single commit operation. Closest we can get is to remove
1971 * the matched element here, if any, and commit the updated matching data.
1972 */
1973 static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
1974 const struct nft_set_elem *elem)
1975 {
1976 struct nft_pipapo *priv = nft_set_priv(set);
1977 struct nft_pipapo_match *m = priv->clone;
1978 struct nft_pipapo_elem *e = elem->priv;
1979 int rules_f0, first_rule = 0;
1980 const u8 *data;
1981
1982 data = (const u8 *)nft_set_ext_key(&e->ext);
1983
1984 while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
1985 union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
1986 const u8 *match_start, *match_end;
1987 struct nft_pipapo_field *f;
1988 int i, start, rules_fx;
1989
1990 match_start = data;
1991
1992 if (nft_set_ext_exists(&e->ext, NFT_SET_EXT_KEY_END))
1993 match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
1994 else
1995 match_end = data;
1996
1997 start = first_rule;
1998 rules_fx = rules_f0;
1999
2000 nft_pipapo_for_each_field(f, i, m) {
2001 bool last = i == m->field_count - 1;
2002
2003 if (!pipapo_match_field(f, start, rules_fx,
2004 match_start, match_end))
2005 break;
2006
2007 rulemap[i].to = start;
2008 rulemap[i].n = rules_fx;
2009
2010 rules_fx = f->mt[start].n;
2011 start = f->mt[start].to;
2012
2013 match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2014 match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f);
2015
2016 if (last && f->mt[rulemap[i].to].e == e) {
2017 priv->dirty = true;
2018 pipapo_drop(m, rulemap);
2019 return;
2020 }
2021 }
2022
2023 first_rule += rules_f0;
2024 }
2025
2026 WARN_ON_ONCE(1); /* elem_priv not found */
2027 }
2028
2029 /**
2030 * nft_pipapo_walk() - Walk over elements
2031 * @ctx: nftables API context
2032 * @set: nftables API set representation
2033 * @iter: Iterator
2034 *
2035 * As elements are referenced in the mapping array for the last field, directly
2036 * scan that array: there's no need to follow rule mappings from the first
2037 * field.
2038 */
2039 static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
2040 struct nft_set_iter *iter)
2041 {
2042 struct nft_pipapo *priv = nft_set_priv(set);
2043 const struct nft_pipapo_match *m;
2044 const struct nft_pipapo_field *f;
2045 int i, r;
2046
2047 WARN_ON_ONCE(iter->type != NFT_ITER_READ &&
2048 iter->type != NFT_ITER_UPDATE);
2049
2050 rcu_read_lock();
2051 if (iter->type == NFT_ITER_READ)
2052 m = rcu_dereference(priv->match);
2053 else
2054 m = priv->clone;
2055
2056 if (unlikely(!m))
2057 goto out;
2058
2059 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2060 ;
2061
2062 for (r = 0; r < f->rules; r++) {
2063 struct nft_pipapo_elem *e;
2064 struct nft_set_elem elem;
2065
2066 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2067 continue;
2068
2069 if (iter->count < iter->skip)
2070 goto cont;
2071
2072 e = f->mt[r].e;
2073
2074 elem.priv = e;
2075
2076 iter->err = iter->fn(ctx, set, iter, &elem);
2077 if (iter->err < 0)
2078 goto out;
2079
2080 cont:
2081 iter->count++;
2082 }
2083
2084 out:
2085 rcu_read_unlock();
2086 }
2087
2088 /**
2089 * nft_pipapo_privsize() - Return the size of private data for the set
2090 * @nla: netlink attributes, ignored as size doesn't depend on them
2091 * @desc: Set description, ignored as size doesn't depend on it
2092 *
2093 * Return: size of private data for this set implementation, in bytes
2094 */
2095 static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
2096 const struct nft_set_desc *desc)
2097 {
2098 return sizeof(struct nft_pipapo);
2099 }
2100
2101 /**
2102 * nft_pipapo_estimate() - Set size, space and lookup complexity
2103 * @desc: Set description, element count and field description used
2104 * @features: Flags: NFT_SET_INTERVAL needs to be there
2105 * @est: Storage for estimation data
2106 *
2107 * Return: true if set description is compatible, false otherwise
2108 */
2109 static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
2110 struct nft_set_estimate *est)
2111 {
2112 if (!(features & NFT_SET_INTERVAL) ||
2113 desc->field_count < NFT_PIPAPO_MIN_FIELDS)
2114 return false;
2115
2116 est->size = pipapo_estimate_size(desc);
2117 if (!est->size)
2118 return false;
2119
2120 est->lookup = NFT_SET_CLASS_O_LOG_N;
2121
2122 est->space = NFT_SET_CLASS_O_N;
2123
2124 return true;
2125 }
2126
2127 /**
2128 * nft_pipapo_init() - Initialise data for a set instance
2129 * @set: nftables API set representation
2130 * @desc: Set description
2131 * @nla: netlink attributes
2132 *
2133 * Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
2134 * attributes, initialise internal set parameters, current instance of matching
2135 * data and a copy for subsequent insertions.
2136 *
2137 * Return: 0 on success, negative error code on failure.
2138 */
2139 static int nft_pipapo_init(const struct nft_set *set,
2140 const struct nft_set_desc *desc,
2141 const struct nlattr * const nla[])
2142 {
2143 struct nft_pipapo *priv = nft_set_priv(set);
2144 struct nft_pipapo_match *m;
2145 struct nft_pipapo_field *f;
2146 int err, i, field_count;
2147
2148 field_count = desc->field_count ? : 1;
2149
2150 if (field_count > NFT_PIPAPO_MAX_FIELDS)
2151 return -EINVAL;
2152
2153 m = kmalloc(struct_size(m, f, field_count), GFP_KERNEL);
2154 if (!m)
2155 return -ENOMEM;
2156
2157 m->field_count = field_count;
2158 m->bsize_max = 0;
2159
2160 m->scratch = alloc_percpu(struct nft_pipapo_scratch *);
2161 if (!m->scratch) {
2162 err = -ENOMEM;
2163 goto out_scratch;
2164 }
2165 for_each_possible_cpu(i)
2166 *per_cpu_ptr(m->scratch, i) = NULL;
2167
2168 rcu_head_init(&m->rcu);
2169
2170 nft_pipapo_for_each_field(f, i, m) {
2171 int len = desc->field_len[i] ? : set->klen;
2172
2173 f->bb = NFT_PIPAPO_GROUP_BITS_INIT;
2174 f->groups = len * NFT_PIPAPO_GROUPS_PER_BYTE(f);
2175
2176 priv->width += round_up(len, sizeof(u32));
2177
2178 f->bsize = 0;
2179 f->rules = 0;
2180 NFT_PIPAPO_LT_ASSIGN(f, NULL);
2181 f->mt = NULL;
2182 }
2183
2184 /* Create an initial clone of matching data for next insertion */
2185 priv->clone = pipapo_clone(m);
2186 if (IS_ERR(priv->clone)) {
2187 err = PTR_ERR(priv->clone);
2188 goto out_free;
2189 }
2190
2191 priv->dirty = false;
2192
2193 rcu_assign_pointer(priv->match, m);
2194
2195 return 0;
2196
2197 out_free:
2198 free_percpu(m->scratch);
2199 out_scratch:
2200 kfree(m);
2201
2202 return err;
2203 }
2204
2205 /**
2206 * nft_set_pipapo_match_destroy() - Destroy elements from key mapping array
2207 * @ctx: context
2208 * @set: nftables API set representation
2209 * @m: matching data pointing to key mapping array
2210 */
2211 static void nft_set_pipapo_match_destroy(const struct nft_ctx *ctx,
2212 const struct nft_set *set,
2213 struct nft_pipapo_match *m)
2214 {
2215 struct nft_pipapo_field *f;
2216 int i, r;
2217
2218 for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
2219 ;
2220
2221 for (r = 0; r < f->rules; r++) {
2222 struct nft_pipapo_elem *e;
2223
2224 if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
2225 continue;
2226
2227 e = f->mt[r].e;
2228
2229 nf_tables_set_elem_destroy(ctx, set, e);
2230 }
2231 }
2232
2233 /**
2234 * nft_pipapo_destroy() - Free private data for set and all committed elements
2235 * @ctx: context
2236 * @set: nftables API set representation
2237 */
2238 static void nft_pipapo_destroy(const struct nft_ctx *ctx,
2239 const struct nft_set *set)
2240 {
2241 struct nft_pipapo *priv = nft_set_priv(set);
2242 struct nft_pipapo_match *m;
2243 int cpu;
2244
2245 m = rcu_dereference_protected(priv->match, true);
2246 if (m) {
2247 rcu_barrier();
2248
2249 for_each_possible_cpu(cpu)
2250 pipapo_free_scratch(m, cpu);
2251 free_percpu(m->scratch);
2252 pipapo_free_fields(m);
2253 kfree(m);
2254 priv->match = NULL;
2255 }
2256
2257 if (priv->clone) {
2258 m = priv->clone;
2259
2260 nft_set_pipapo_match_destroy(ctx, set, m);
2261
2262 for_each_possible_cpu(cpu)
2263 pipapo_free_scratch(priv->clone, cpu);
2264 free_percpu(priv->clone->scratch);
2265
2266 pipapo_free_fields(priv->clone);
2267 kfree(priv->clone);
2268 priv->clone = NULL;
2269 }
2270 }
2271
2272 /**
2273 * nft_pipapo_gc_init() - Initialise garbage collection
2274 * @set: nftables API set representation
2275 *
2276 * Instead of actually setting up a periodic work for garbage collection, as
2277 * this operation requires a swap of matching data with the working copy, we'll
2278 * do that opportunistically with other commit operations if the interval is
2279 * elapsed, so we just need to set the current jiffies timestamp here.
2280 */
2281 static void nft_pipapo_gc_init(const struct nft_set *set)
2282 {
2283 struct nft_pipapo *priv = nft_set_priv(set);
2284
2285 priv->last_gc = jiffies;
2286 }
2287
2288 const struct nft_set_type nft_set_pipapo_type = {
2289 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2290 NFT_SET_TIMEOUT,
2291 .ops = {
2292 .lookup = nft_pipapo_lookup,
2293 .insert = nft_pipapo_insert,
2294 .activate = nft_pipapo_activate,
2295 .deactivate = nft_pipapo_deactivate,
2296 .flush = nft_pipapo_flush,
2297 .remove = nft_pipapo_remove,
2298 .walk = nft_pipapo_walk,
2299 .get = nft_pipapo_get,
2300 .privsize = nft_pipapo_privsize,
2301 .estimate = nft_pipapo_estimate,
2302 .init = nft_pipapo_init,
2303 .destroy = nft_pipapo_destroy,
2304 .gc_init = nft_pipapo_gc_init,
2305 .commit = nft_pipapo_commit,
2306 .abort = nft_pipapo_abort,
2307 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2308 },
2309 };
2310
2311 #if defined(CONFIG_X86_64) && !defined(CONFIG_UML)
2312 const struct nft_set_type nft_set_pipapo_avx2_type = {
2313 .features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
2314 NFT_SET_TIMEOUT,
2315 .ops = {
2316 .lookup = nft_pipapo_avx2_lookup,
2317 .insert = nft_pipapo_insert,
2318 .activate = nft_pipapo_activate,
2319 .deactivate = nft_pipapo_deactivate,
2320 .flush = nft_pipapo_flush,
2321 .remove = nft_pipapo_remove,
2322 .walk = nft_pipapo_walk,
2323 .get = nft_pipapo_get,
2324 .privsize = nft_pipapo_privsize,
2325 .estimate = nft_pipapo_avx2_estimate,
2326 .init = nft_pipapo_init,
2327 .destroy = nft_pipapo_destroy,
2328 .gc_init = nft_pipapo_gc_init,
2329 .commit = nft_pipapo_commit,
2330 .abort = nft_pipapo_abort,
2331 .elemsize = offsetof(struct nft_pipapo_elem, ext),
2332 },
2333 };
2334 #endif
2335