xref: /openbmc/linux/net/netfilter/nf_conntrack_core.c (revision 816ffd28002651a469e86d1118a225862e392ecd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	u32			avg_timeout;
70 	u32			count;
71 	u32			start_time;
72 	bool			exiting;
73 	bool			early_drop;
74 };
75 
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79 
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82 
83 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
85 
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
88 
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90  * wakeup often just because we have three entries with a 1s timeout while still
91  * allowing non-idle machines to wakeup more often when needed.
92  */
93 #define GC_SCAN_INITIAL_COUNT	100
94 #define GC_SCAN_INTERVAL_INIT	GC_SCAN_INTERVAL_MAX
95 
96 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
98 
99 #define MIN_CHAINLEN	50u
100 #define MAX_CHAINLEN	(80u - MIN_CHAINLEN)
101 
102 static struct conntrack_gc_work conntrack_gc_work;
103 
nf_conntrack_lock(spinlock_t * lock)104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106 	/* 1) Acquire the lock */
107 	spin_lock(lock);
108 
109 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 	 */
112 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 		return;
114 
115 	/* fast path failed, unlock */
116 	spin_unlock(lock);
117 
118 	/* Slow path 1) get global lock */
119 	spin_lock(&nf_conntrack_locks_all_lock);
120 
121 	/* Slow path 2) get the lock we want */
122 	spin_lock(lock);
123 
124 	/* Slow path 3) release the global lock */
125 	spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131 	h1 %= CONNTRACK_LOCKS;
132 	h2 %= CONNTRACK_LOCKS;
133 	spin_unlock(&nf_conntrack_locks[h1]);
134 	if (h1 != h2)
135 		spin_unlock(&nf_conntrack_locks[h2]);
136 }
137 
138 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 				     unsigned int h2, unsigned int sequence)
141 {
142 	h1 %= CONNTRACK_LOCKS;
143 	h2 %= CONNTRACK_LOCKS;
144 	if (h1 <= h2) {
145 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 		if (h1 != h2)
147 			spin_lock_nested(&nf_conntrack_locks[h2],
148 					 SINGLE_DEPTH_NESTING);
149 	} else {
150 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 		spin_lock_nested(&nf_conntrack_locks[h1],
152 				 SINGLE_DEPTH_NESTING);
153 	}
154 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 		nf_conntrack_double_unlock(h1, h2);
156 		return true;
157 	}
158 	return false;
159 }
160 
nf_conntrack_all_lock(void)161 static void nf_conntrack_all_lock(void)
162 	__acquires(&nf_conntrack_locks_all_lock)
163 {
164 	int i;
165 
166 	spin_lock(&nf_conntrack_locks_all_lock);
167 
168 	/* For nf_contrack_locks_all, only the latest time when another
169 	 * CPU will see an update is controlled, by the "release" of the
170 	 * spin_lock below.
171 	 * The earliest time is not controlled, an thus KCSAN could detect
172 	 * a race when nf_conntract_lock() reads the variable.
173 	 * WRITE_ONCE() is used to ensure the compiler will not
174 	 * optimize the write.
175 	 */
176 	WRITE_ONCE(nf_conntrack_locks_all, true);
177 
178 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 		spin_lock(&nf_conntrack_locks[i]);
180 
181 		/* This spin_unlock provides the "release" to ensure that
182 		 * nf_conntrack_locks_all==true is visible to everyone that
183 		 * acquired spin_lock(&nf_conntrack_locks[]).
184 		 */
185 		spin_unlock(&nf_conntrack_locks[i]);
186 	}
187 }
188 
nf_conntrack_all_unlock(void)189 static void nf_conntrack_all_unlock(void)
190 	__releases(&nf_conntrack_locks_all_lock)
191 {
192 	/* All prior stores must be complete before we clear
193 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 	 * might observe the false value but not the entire
195 	 * critical section.
196 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 	 */
198 	smp_store_release(&nf_conntrack_locks_all, false);
199 	spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201 
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204 
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 			      unsigned int zoneid,
212 			      const struct net *net)
213 {
214 	siphash_key_t key;
215 
216 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217 
218 	key = nf_conntrack_hash_rnd;
219 
220 	key.key[0] ^= zoneid;
221 	key.key[1] ^= net_hash_mix(net);
222 
223 	return siphash((void *)tuple,
224 			offsetofend(struct nf_conntrack_tuple, dst.__nfct_hash_offsetend),
225 			&key);
226 }
227 
scale_hash(u32 hash)228 static u32 scale_hash(u32 hash)
229 {
230 	return reciprocal_scale(hash, nf_conntrack_htable_size);
231 }
232 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)233 static u32 __hash_conntrack(const struct net *net,
234 			    const struct nf_conntrack_tuple *tuple,
235 			    unsigned int zoneid,
236 			    unsigned int size)
237 {
238 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
239 }
240 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)241 static u32 hash_conntrack(const struct net *net,
242 			  const struct nf_conntrack_tuple *tuple,
243 			  unsigned int zoneid)
244 {
245 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
246 }
247 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)248 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
249 				  unsigned int dataoff,
250 				  struct nf_conntrack_tuple *tuple)
251 {	struct {
252 		__be16 sport;
253 		__be16 dport;
254 	} _inet_hdr, *inet_hdr;
255 
256 	/* Actually only need first 4 bytes to get ports. */
257 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
258 	if (!inet_hdr)
259 		return false;
260 
261 	tuple->src.u.udp.port = inet_hdr->sport;
262 	tuple->dst.u.udp.port = inet_hdr->dport;
263 	return true;
264 }
265 
266 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)267 nf_ct_get_tuple(const struct sk_buff *skb,
268 		unsigned int nhoff,
269 		unsigned int dataoff,
270 		u_int16_t l3num,
271 		u_int8_t protonum,
272 		struct net *net,
273 		struct nf_conntrack_tuple *tuple)
274 {
275 	unsigned int size;
276 	const __be32 *ap;
277 	__be32 _addrs[8];
278 
279 	memset(tuple, 0, sizeof(*tuple));
280 
281 	tuple->src.l3num = l3num;
282 	switch (l3num) {
283 	case NFPROTO_IPV4:
284 		nhoff += offsetof(struct iphdr, saddr);
285 		size = 2 * sizeof(__be32);
286 		break;
287 	case NFPROTO_IPV6:
288 		nhoff += offsetof(struct ipv6hdr, saddr);
289 		size = sizeof(_addrs);
290 		break;
291 	default:
292 		return true;
293 	}
294 
295 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
296 	if (!ap)
297 		return false;
298 
299 	switch (l3num) {
300 	case NFPROTO_IPV4:
301 		tuple->src.u3.ip = ap[0];
302 		tuple->dst.u3.ip = ap[1];
303 		break;
304 	case NFPROTO_IPV6:
305 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
306 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
307 		break;
308 	}
309 
310 	tuple->dst.protonum = protonum;
311 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
312 
313 	switch (protonum) {
314 #if IS_ENABLED(CONFIG_IPV6)
315 	case IPPROTO_ICMPV6:
316 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
317 #endif
318 	case IPPROTO_ICMP:
319 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
320 #ifdef CONFIG_NF_CT_PROTO_GRE
321 	case IPPROTO_GRE:
322 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
323 #endif
324 	case IPPROTO_TCP:
325 	case IPPROTO_UDP:
326 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
327 	case IPPROTO_UDPLITE:
328 #endif
329 #ifdef CONFIG_NF_CT_PROTO_SCTP
330 	case IPPROTO_SCTP:
331 #endif
332 #ifdef CONFIG_NF_CT_PROTO_DCCP
333 	case IPPROTO_DCCP:
334 #endif
335 		/* fallthrough */
336 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 	default:
338 		break;
339 	}
340 
341 	return true;
342 }
343 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)344 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
345 			    u_int8_t *protonum)
346 {
347 	int dataoff = -1;
348 	const struct iphdr *iph;
349 	struct iphdr _iph;
350 
351 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
352 	if (!iph)
353 		return -1;
354 
355 	/* Conntrack defragments packets, we might still see fragments
356 	 * inside ICMP packets though.
357 	 */
358 	if (iph->frag_off & htons(IP_OFFSET))
359 		return -1;
360 
361 	dataoff = nhoff + (iph->ihl << 2);
362 	*protonum = iph->protocol;
363 
364 	/* Check bogus IP headers */
365 	if (dataoff > skb->len) {
366 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
367 			 nhoff, iph->ihl << 2, skb->len);
368 		return -1;
369 	}
370 	return dataoff;
371 }
372 
373 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)374 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
375 			    u8 *protonum)
376 {
377 	int protoff = -1;
378 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
379 	__be16 frag_off;
380 	u8 nexthdr;
381 
382 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
383 			  &nexthdr, sizeof(nexthdr)) != 0) {
384 		pr_debug("can't get nexthdr\n");
385 		return -1;
386 	}
387 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
388 	/*
389 	 * (protoff == skb->len) means the packet has not data, just
390 	 * IPv6 and possibly extensions headers, but it is tracked anyway
391 	 */
392 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
393 		pr_debug("can't find proto in pkt\n");
394 		return -1;
395 	}
396 
397 	*protonum = nexthdr;
398 	return protoff;
399 }
400 #endif
401 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)402 static int get_l4proto(const struct sk_buff *skb,
403 		       unsigned int nhoff, u8 pf, u8 *l4num)
404 {
405 	switch (pf) {
406 	case NFPROTO_IPV4:
407 		return ipv4_get_l4proto(skb, nhoff, l4num);
408 #if IS_ENABLED(CONFIG_IPV6)
409 	case NFPROTO_IPV6:
410 		return ipv6_get_l4proto(skb, nhoff, l4num);
411 #endif
412 	default:
413 		*l4num = 0;
414 		break;
415 	}
416 	return -1;
417 }
418 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)419 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
420 		       u_int16_t l3num,
421 		       struct net *net, struct nf_conntrack_tuple *tuple)
422 {
423 	u8 protonum;
424 	int protoff;
425 
426 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
427 	if (protoff <= 0)
428 		return false;
429 
430 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
431 }
432 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
433 
434 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)435 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
436 		   const struct nf_conntrack_tuple *orig)
437 {
438 	memset(inverse, 0, sizeof(*inverse));
439 
440 	inverse->src.l3num = orig->src.l3num;
441 
442 	switch (orig->src.l3num) {
443 	case NFPROTO_IPV4:
444 		inverse->src.u3.ip = orig->dst.u3.ip;
445 		inverse->dst.u3.ip = orig->src.u3.ip;
446 		break;
447 	case NFPROTO_IPV6:
448 		inverse->src.u3.in6 = orig->dst.u3.in6;
449 		inverse->dst.u3.in6 = orig->src.u3.in6;
450 		break;
451 	default:
452 		break;
453 	}
454 
455 	inverse->dst.dir = !orig->dst.dir;
456 
457 	inverse->dst.protonum = orig->dst.protonum;
458 
459 	switch (orig->dst.protonum) {
460 	case IPPROTO_ICMP:
461 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
462 #if IS_ENABLED(CONFIG_IPV6)
463 	case IPPROTO_ICMPV6:
464 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
465 #endif
466 	}
467 
468 	inverse->src.u.all = orig->dst.u.all;
469 	inverse->dst.u.all = orig->src.u.all;
470 	return true;
471 }
472 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
473 
474 /* Generate a almost-unique pseudo-id for a given conntrack.
475  *
476  * intentionally doesn't re-use any of the seeds used for hash
477  * table location, we assume id gets exposed to userspace.
478  *
479  * Following nf_conn items do not change throughout lifetime
480  * of the nf_conn:
481  *
482  * 1. nf_conn address
483  * 2. nf_conn->master address (normally NULL)
484  * 3. the associated net namespace
485  * 4. the original direction tuple
486  */
nf_ct_get_id(const struct nf_conn * ct)487 u32 nf_ct_get_id(const struct nf_conn *ct)
488 {
489 	static siphash_aligned_key_t ct_id_seed;
490 	unsigned long a, b, c, d;
491 
492 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
493 
494 	a = (unsigned long)ct;
495 	b = (unsigned long)ct->master;
496 	c = (unsigned long)nf_ct_net(ct);
497 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
498 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
499 				   &ct_id_seed);
500 #ifdef CONFIG_64BIT
501 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
502 #else
503 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
504 #endif
505 }
506 EXPORT_SYMBOL_GPL(nf_ct_get_id);
507 
508 static void
clean_from_lists(struct nf_conn * ct)509 clean_from_lists(struct nf_conn *ct)
510 {
511 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
512 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
513 
514 	/* Destroy all pending expectations */
515 	nf_ct_remove_expectations(ct);
516 }
517 
518 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
519 
520 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)521 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
522 				 const struct nf_conntrack_zone *zone,
523 				 gfp_t flags)
524 {
525 	struct nf_conn *tmpl, *p;
526 
527 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
528 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
529 		if (!tmpl)
530 			return NULL;
531 
532 		p = tmpl;
533 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
534 		if (tmpl != p) {
535 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
536 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
537 		}
538 	} else {
539 		tmpl = kzalloc(sizeof(*tmpl), flags);
540 		if (!tmpl)
541 			return NULL;
542 	}
543 
544 	tmpl->status = IPS_TEMPLATE;
545 	write_pnet(&tmpl->ct_net, net);
546 	nf_ct_zone_add(tmpl, zone);
547 	refcount_set(&tmpl->ct_general.use, 1);
548 
549 	return tmpl;
550 }
551 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
552 
nf_ct_tmpl_free(struct nf_conn * tmpl)553 void nf_ct_tmpl_free(struct nf_conn *tmpl)
554 {
555 	kfree(tmpl->ext);
556 
557 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
558 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
559 	else
560 		kfree(tmpl);
561 }
562 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
563 
destroy_gre_conntrack(struct nf_conn * ct)564 static void destroy_gre_conntrack(struct nf_conn *ct)
565 {
566 #ifdef CONFIG_NF_CT_PROTO_GRE
567 	struct nf_conn *master = ct->master;
568 
569 	if (master)
570 		nf_ct_gre_keymap_destroy(master);
571 #endif
572 }
573 
nf_ct_destroy(struct nf_conntrack * nfct)574 void nf_ct_destroy(struct nf_conntrack *nfct)
575 {
576 	struct nf_conn *ct = (struct nf_conn *)nfct;
577 
578 	WARN_ON(refcount_read(&nfct->use) != 0);
579 
580 	if (unlikely(nf_ct_is_template(ct))) {
581 		nf_ct_tmpl_free(ct);
582 		return;
583 	}
584 
585 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
586 		destroy_gre_conntrack(ct);
587 
588 	/* Expectations will have been removed in clean_from_lists,
589 	 * except TFTP can create an expectation on the first packet,
590 	 * before connection is in the list, so we need to clean here,
591 	 * too.
592 	 */
593 	nf_ct_remove_expectations(ct);
594 
595 	if (ct->master)
596 		nf_ct_put(ct->master);
597 
598 	nf_conntrack_free(ct);
599 }
600 EXPORT_SYMBOL(nf_ct_destroy);
601 
__nf_ct_delete_from_lists(struct nf_conn * ct)602 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
603 {
604 	struct net *net = nf_ct_net(ct);
605 	unsigned int hash, reply_hash;
606 	unsigned int sequence;
607 
608 	do {
609 		sequence = read_seqcount_begin(&nf_conntrack_generation);
610 		hash = hash_conntrack(net,
611 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
612 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
613 		reply_hash = hash_conntrack(net,
614 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
615 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
616 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
617 
618 	clean_from_lists(ct);
619 	nf_conntrack_double_unlock(hash, reply_hash);
620 }
621 
nf_ct_delete_from_lists(struct nf_conn * ct)622 static void nf_ct_delete_from_lists(struct nf_conn *ct)
623 {
624 	nf_ct_helper_destroy(ct);
625 	local_bh_disable();
626 
627 	__nf_ct_delete_from_lists(ct);
628 
629 	local_bh_enable();
630 }
631 
nf_ct_add_to_ecache_list(struct nf_conn * ct)632 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
633 {
634 #ifdef CONFIG_NF_CONNTRACK_EVENTS
635 	struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
636 
637 	spin_lock(&cnet->ecache.dying_lock);
638 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
639 				 &cnet->ecache.dying_list);
640 	spin_unlock(&cnet->ecache.dying_lock);
641 #endif
642 }
643 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)644 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
645 {
646 	struct nf_conn_tstamp *tstamp;
647 	struct net *net;
648 
649 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
650 		return false;
651 
652 	tstamp = nf_conn_tstamp_find(ct);
653 	if (tstamp) {
654 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
655 
656 		tstamp->stop = ktime_get_real_ns();
657 		if (timeout < 0)
658 			tstamp->stop -= jiffies_to_nsecs(-timeout);
659 	}
660 
661 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
662 				    portid, report) < 0) {
663 		/* destroy event was not delivered. nf_ct_put will
664 		 * be done by event cache worker on redelivery.
665 		 */
666 		nf_ct_helper_destroy(ct);
667 		local_bh_disable();
668 		__nf_ct_delete_from_lists(ct);
669 		nf_ct_add_to_ecache_list(ct);
670 		local_bh_enable();
671 
672 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
673 		return false;
674 	}
675 
676 	net = nf_ct_net(ct);
677 	if (nf_conntrack_ecache_dwork_pending(net))
678 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
679 	nf_ct_delete_from_lists(ct);
680 	nf_ct_put(ct);
681 	return true;
682 }
683 EXPORT_SYMBOL_GPL(nf_ct_delete);
684 
685 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)686 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
687 		const struct nf_conntrack_tuple *tuple,
688 		const struct nf_conntrack_zone *zone,
689 		const struct net *net)
690 {
691 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
692 
693 	/* A conntrack can be recreated with the equal tuple,
694 	 * so we need to check that the conntrack is confirmed
695 	 */
696 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
697 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
698 	       nf_ct_is_confirmed(ct) &&
699 	       net_eq(net, nf_ct_net(ct));
700 }
701 
702 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)703 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
704 {
705 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
706 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
707 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
708 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
709 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
710 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
711 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
712 }
713 
714 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)715 static void nf_ct_gc_expired(struct nf_conn *ct)
716 {
717 	if (!refcount_inc_not_zero(&ct->ct_general.use))
718 		return;
719 
720 	/* load ->status after refcount increase */
721 	smp_acquire__after_ctrl_dep();
722 
723 	if (nf_ct_should_gc(ct))
724 		nf_ct_kill(ct);
725 
726 	nf_ct_put(ct);
727 }
728 
729 /*
730  * Warning :
731  * - Caller must take a reference on returned object
732  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
733  */
734 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)735 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
736 		      const struct nf_conntrack_tuple *tuple, u32 hash)
737 {
738 	struct nf_conntrack_tuple_hash *h;
739 	struct hlist_nulls_head *ct_hash;
740 	struct hlist_nulls_node *n;
741 	unsigned int bucket, hsize;
742 
743 begin:
744 	nf_conntrack_get_ht(&ct_hash, &hsize);
745 	bucket = reciprocal_scale(hash, hsize);
746 
747 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
748 		struct nf_conn *ct;
749 
750 		ct = nf_ct_tuplehash_to_ctrack(h);
751 		if (nf_ct_is_expired(ct)) {
752 			nf_ct_gc_expired(ct);
753 			continue;
754 		}
755 
756 		if (nf_ct_key_equal(h, tuple, zone, net))
757 			return h;
758 	}
759 	/*
760 	 * if the nulls value we got at the end of this lookup is
761 	 * not the expected one, we must restart lookup.
762 	 * We probably met an item that was moved to another chain.
763 	 */
764 	if (get_nulls_value(n) != bucket) {
765 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
766 		goto begin;
767 	}
768 
769 	return NULL;
770 }
771 
772 /* Find a connection corresponding to a tuple. */
773 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)774 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
775 			const struct nf_conntrack_tuple *tuple, u32 hash)
776 {
777 	struct nf_conntrack_tuple_hash *h;
778 	struct nf_conn *ct;
779 
780 	h = ____nf_conntrack_find(net, zone, tuple, hash);
781 	if (h) {
782 		/* We have a candidate that matches the tuple we're interested
783 		 * in, try to obtain a reference and re-check tuple
784 		 */
785 		ct = nf_ct_tuplehash_to_ctrack(h);
786 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
787 			/* re-check key after refcount */
788 			smp_acquire__after_ctrl_dep();
789 
790 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
791 				return h;
792 
793 			/* TYPESAFE_BY_RCU recycled the candidate */
794 			nf_ct_put(ct);
795 		}
796 
797 		h = NULL;
798 	}
799 
800 	return h;
801 }
802 
803 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)804 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
805 		      const struct nf_conntrack_tuple *tuple)
806 {
807 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
808 	struct nf_conntrack_tuple_hash *thash;
809 
810 	rcu_read_lock();
811 
812 	thash = __nf_conntrack_find_get(net, zone, tuple,
813 					hash_conntrack_raw(tuple, zone_id, net));
814 
815 	if (thash)
816 		goto out_unlock;
817 
818 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
819 	if (rid != zone_id)
820 		thash = __nf_conntrack_find_get(net, zone, tuple,
821 						hash_conntrack_raw(tuple, rid, net));
822 
823 out_unlock:
824 	rcu_read_unlock();
825 	return thash;
826 }
827 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
828 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)829 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
830 				       unsigned int hash,
831 				       unsigned int reply_hash)
832 {
833 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
834 			   &nf_conntrack_hash[hash]);
835 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
836 			   &nf_conntrack_hash[reply_hash]);
837 }
838 
nf_ct_ext_valid_pre(const struct nf_ct_ext * ext)839 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
840 {
841 	/* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
842 	 * may contain stale pointers to e.g. helper that has been removed.
843 	 *
844 	 * The helper can't clear this because the nf_conn object isn't in
845 	 * any hash and synchronize_rcu() isn't enough because associated skb
846 	 * might sit in a queue.
847 	 */
848 	return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
849 }
850 
nf_ct_ext_valid_post(struct nf_ct_ext * ext)851 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
852 {
853 	if (!ext)
854 		return true;
855 
856 	if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
857 		return false;
858 
859 	/* inserted into conntrack table, nf_ct_iterate_cleanup()
860 	 * will find it.  Disable nf_ct_ext_find() id check.
861 	 */
862 	WRITE_ONCE(ext->gen_id, 0);
863 	return true;
864 }
865 
866 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)867 nf_conntrack_hash_check_insert(struct nf_conn *ct)
868 {
869 	const struct nf_conntrack_zone *zone;
870 	struct net *net = nf_ct_net(ct);
871 	unsigned int hash, reply_hash;
872 	struct nf_conntrack_tuple_hash *h;
873 	struct hlist_nulls_node *n;
874 	unsigned int max_chainlen;
875 	unsigned int chainlen = 0;
876 	unsigned int sequence;
877 	int err = -EEXIST;
878 
879 	zone = nf_ct_zone(ct);
880 
881 	if (!nf_ct_ext_valid_pre(ct->ext))
882 		return -EAGAIN;
883 
884 	local_bh_disable();
885 	do {
886 		sequence = read_seqcount_begin(&nf_conntrack_generation);
887 		hash = hash_conntrack(net,
888 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
889 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
890 		reply_hash = hash_conntrack(net,
891 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
892 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
893 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
894 
895 	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
896 
897 	/* See if there's one in the list already, including reverse */
898 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
899 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
900 				    zone, net))
901 			goto out;
902 
903 		if (chainlen++ > max_chainlen)
904 			goto chaintoolong;
905 	}
906 
907 	chainlen = 0;
908 
909 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
910 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
911 				    zone, net))
912 			goto out;
913 		if (chainlen++ > max_chainlen)
914 			goto chaintoolong;
915 	}
916 
917 	/* If genid has changed, we can't insert anymore because ct
918 	 * extensions could have stale pointers and nf_ct_iterate_destroy
919 	 * might have completed its table scan already.
920 	 *
921 	 * Increment of the ext genid right after this check is fine:
922 	 * nf_ct_iterate_destroy blocks until locks are released.
923 	 */
924 	if (!nf_ct_ext_valid_post(ct->ext)) {
925 		err = -EAGAIN;
926 		goto out;
927 	}
928 
929 	smp_wmb();
930 	/* The caller holds a reference to this object */
931 	refcount_set(&ct->ct_general.use, 2);
932 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
933 	nf_conntrack_double_unlock(hash, reply_hash);
934 	NF_CT_STAT_INC(net, insert);
935 	local_bh_enable();
936 
937 	return 0;
938 chaintoolong:
939 	NF_CT_STAT_INC(net, chaintoolong);
940 	err = -ENOSPC;
941 out:
942 	nf_conntrack_double_unlock(hash, reply_hash);
943 	local_bh_enable();
944 	return err;
945 }
946 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
947 
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)948 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
949 		    unsigned int bytes)
950 {
951 	struct nf_conn_acct *acct;
952 
953 	acct = nf_conn_acct_find(ct);
954 	if (acct) {
955 		struct nf_conn_counter *counter = acct->counter;
956 
957 		atomic64_add(packets, &counter[dir].packets);
958 		atomic64_add(bytes, &counter[dir].bytes);
959 	}
960 }
961 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
962 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)963 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
964 			     const struct nf_conn *loser_ct)
965 {
966 	struct nf_conn_acct *acct;
967 
968 	acct = nf_conn_acct_find(loser_ct);
969 	if (acct) {
970 		struct nf_conn_counter *counter = acct->counter;
971 		unsigned int bytes;
972 
973 		/* u32 should be fine since we must have seen one packet. */
974 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
975 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
976 	}
977 }
978 
__nf_conntrack_insert_prepare(struct nf_conn * ct)979 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
980 {
981 	struct nf_conn_tstamp *tstamp;
982 
983 	refcount_inc(&ct->ct_general.use);
984 
985 	/* set conntrack timestamp, if enabled. */
986 	tstamp = nf_conn_tstamp_find(ct);
987 	if (tstamp)
988 		tstamp->start = ktime_get_real_ns();
989 }
990 
991 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)992 static int __nf_ct_resolve_clash(struct sk_buff *skb,
993 				 struct nf_conntrack_tuple_hash *h)
994 {
995 	/* This is the conntrack entry already in hashes that won race. */
996 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
997 	enum ip_conntrack_info ctinfo;
998 	struct nf_conn *loser_ct;
999 
1000 	loser_ct = nf_ct_get(skb, &ctinfo);
1001 
1002 	if (nf_ct_is_dying(ct))
1003 		return NF_DROP;
1004 
1005 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1006 	    nf_ct_match(ct, loser_ct)) {
1007 		struct net *net = nf_ct_net(ct);
1008 
1009 		nf_conntrack_get(&ct->ct_general);
1010 
1011 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1012 		nf_ct_put(loser_ct);
1013 		nf_ct_set(skb, ct, ctinfo);
1014 
1015 		NF_CT_STAT_INC(net, clash_resolve);
1016 		return NF_ACCEPT;
1017 	}
1018 
1019 	return NF_DROP;
1020 }
1021 
1022 /**
1023  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1024  *
1025  * @skb: skb that causes the collision
1026  * @repl_idx: hash slot for reply direction
1027  *
1028  * Called when origin or reply direction had a clash.
1029  * The skb can be handled without packet drop provided the reply direction
1030  * is unique or there the existing entry has the identical tuple in both
1031  * directions.
1032  *
1033  * Caller must hold conntrack table locks to prevent concurrent updates.
1034  *
1035  * Returns NF_DROP if the clash could not be handled.
1036  */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1037 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1038 {
1039 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1040 	const struct nf_conntrack_zone *zone;
1041 	struct nf_conntrack_tuple_hash *h;
1042 	struct hlist_nulls_node *n;
1043 	struct net *net;
1044 
1045 	zone = nf_ct_zone(loser_ct);
1046 	net = nf_ct_net(loser_ct);
1047 
1048 	/* Reply direction must never result in a clash, unless both origin
1049 	 * and reply tuples are identical.
1050 	 */
1051 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1052 		if (nf_ct_key_equal(h,
1053 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1054 				    zone, net))
1055 			return __nf_ct_resolve_clash(skb, h);
1056 	}
1057 
1058 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1059 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1060 
1061 	/* IPS_NAT_CLASH removes the entry automatically on the first
1062 	 * reply.  Also prevents UDP tracker from moving the entry to
1063 	 * ASSURED state, i.e. the entry can always be evicted under
1064 	 * pressure.
1065 	 */
1066 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1067 
1068 	__nf_conntrack_insert_prepare(loser_ct);
1069 
1070 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1071 	 * already in the table.  This also hides the clashing entry from
1072 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1073 	 */
1074 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1075 
1076 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1077 				 &nf_conntrack_hash[repl_idx]);
1078 
1079 	NF_CT_STAT_INC(net, clash_resolve);
1080 	return NF_ACCEPT;
1081 }
1082 
1083 /**
1084  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1085  *
1086  * @skb: skb that causes the clash
1087  * @h: tuplehash of the clashing entry already in table
1088  * @reply_hash: hash slot for reply direction
1089  *
1090  * A conntrack entry can be inserted to the connection tracking table
1091  * if there is no existing entry with an identical tuple.
1092  *
1093  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1094  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1095  * will find the already-existing entry.
1096  *
1097  * The major problem with such packet drop is the extra delay added by
1098  * the packet loss -- it will take some time for a retransmit to occur
1099  * (or the sender to time out when waiting for a reply).
1100  *
1101  * This function attempts to handle the situation without packet drop.
1102  *
1103  * If @skb has no NAT transformation or if the colliding entries are
1104  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1105  * and @skb is associated with the conntrack entry already in the table.
1106  *
1107  * Failing that, the new, unconfirmed conntrack is still added to the table
1108  * provided that the collision only occurs in the ORIGINAL direction.
1109  * The new entry will be added only in the non-clashing REPLY direction,
1110  * so packets in the ORIGINAL direction will continue to match the existing
1111  * entry.  The new entry will also have a fixed timeout so it expires --
1112  * due to the collision, it will only see reply traffic.
1113  *
1114  * Returns NF_DROP if the clash could not be resolved.
1115  */
1116 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1117 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1118 		    u32 reply_hash)
1119 {
1120 	/* This is the conntrack entry already in hashes that won race. */
1121 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1122 	const struct nf_conntrack_l4proto *l4proto;
1123 	enum ip_conntrack_info ctinfo;
1124 	struct nf_conn *loser_ct;
1125 	struct net *net;
1126 	int ret;
1127 
1128 	loser_ct = nf_ct_get(skb, &ctinfo);
1129 	net = nf_ct_net(loser_ct);
1130 
1131 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1132 	if (!l4proto->allow_clash)
1133 		goto drop;
1134 
1135 	ret = __nf_ct_resolve_clash(skb, h);
1136 	if (ret == NF_ACCEPT)
1137 		return ret;
1138 
1139 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1140 	if (ret == NF_ACCEPT)
1141 		return ret;
1142 
1143 drop:
1144 	NF_CT_STAT_INC(net, drop);
1145 	NF_CT_STAT_INC(net, insert_failed);
1146 	return NF_DROP;
1147 }
1148 
1149 /* Confirm a connection given skb; places it in hash table */
1150 int
__nf_conntrack_confirm(struct sk_buff * skb)1151 __nf_conntrack_confirm(struct sk_buff *skb)
1152 {
1153 	unsigned int chainlen = 0, sequence, max_chainlen;
1154 	const struct nf_conntrack_zone *zone;
1155 	unsigned int hash, reply_hash;
1156 	struct nf_conntrack_tuple_hash *h;
1157 	struct nf_conn *ct;
1158 	struct nf_conn_help *help;
1159 	struct hlist_nulls_node *n;
1160 	enum ip_conntrack_info ctinfo;
1161 	struct net *net;
1162 	int ret = NF_DROP;
1163 
1164 	ct = nf_ct_get(skb, &ctinfo);
1165 	net = nf_ct_net(ct);
1166 
1167 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1168 	   ICMP/TCP RST packets in other direction.  Actual packet
1169 	   which created connection will be IP_CT_NEW or for an
1170 	   expected connection, IP_CT_RELATED. */
1171 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1172 		return NF_ACCEPT;
1173 
1174 	zone = nf_ct_zone(ct);
1175 	local_bh_disable();
1176 
1177 	do {
1178 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1179 		/* reuse the hash saved before */
1180 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1181 		hash = scale_hash(hash);
1182 		reply_hash = hash_conntrack(net,
1183 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1184 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1185 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1186 
1187 	/* We're not in hash table, and we refuse to set up related
1188 	 * connections for unconfirmed conns.  But packet copies and
1189 	 * REJECT will give spurious warnings here.
1190 	 */
1191 
1192 	/* Another skb with the same unconfirmed conntrack may
1193 	 * win the race. This may happen for bridge(br_flood)
1194 	 * or broadcast/multicast packets do skb_clone with
1195 	 * unconfirmed conntrack.
1196 	 */
1197 	if (unlikely(nf_ct_is_confirmed(ct))) {
1198 		WARN_ON_ONCE(1);
1199 		nf_conntrack_double_unlock(hash, reply_hash);
1200 		local_bh_enable();
1201 		return NF_DROP;
1202 	}
1203 
1204 	if (!nf_ct_ext_valid_pre(ct->ext)) {
1205 		NF_CT_STAT_INC(net, insert_failed);
1206 		goto dying;
1207 	}
1208 
1209 	/* We have to check the DYING flag after unlink to prevent
1210 	 * a race against nf_ct_get_next_corpse() possibly called from
1211 	 * user context, else we insert an already 'dead' hash, blocking
1212 	 * further use of that particular connection -JM.
1213 	 */
1214 	ct->status |= IPS_CONFIRMED;
1215 
1216 	if (unlikely(nf_ct_is_dying(ct))) {
1217 		NF_CT_STAT_INC(net, insert_failed);
1218 		goto dying;
1219 	}
1220 
1221 	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1222 	/* See if there's one in the list already, including reverse:
1223 	   NAT could have grabbed it without realizing, since we're
1224 	   not in the hash.  If there is, we lost race. */
1225 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1226 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1227 				    zone, net))
1228 			goto out;
1229 		if (chainlen++ > max_chainlen)
1230 			goto chaintoolong;
1231 	}
1232 
1233 	chainlen = 0;
1234 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1235 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1236 				    zone, net))
1237 			goto out;
1238 		if (chainlen++ > max_chainlen) {
1239 chaintoolong:
1240 			NF_CT_STAT_INC(net, chaintoolong);
1241 			NF_CT_STAT_INC(net, insert_failed);
1242 			ret = NF_DROP;
1243 			goto dying;
1244 		}
1245 	}
1246 
1247 	/* Timer relative to confirmation time, not original
1248 	   setting time, otherwise we'd get timer wrap in
1249 	   weird delay cases. */
1250 	ct->timeout += nfct_time_stamp;
1251 
1252 	__nf_conntrack_insert_prepare(ct);
1253 
1254 	/* Since the lookup is lockless, hash insertion must be done after
1255 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1256 	 * guarantee that no other CPU can find the conntrack before the above
1257 	 * stores are visible.
1258 	 */
1259 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1260 	nf_conntrack_double_unlock(hash, reply_hash);
1261 	local_bh_enable();
1262 
1263 	/* ext area is still valid (rcu read lock is held,
1264 	 * but will go out of scope soon, we need to remove
1265 	 * this conntrack again.
1266 	 */
1267 	if (!nf_ct_ext_valid_post(ct->ext)) {
1268 		nf_ct_kill(ct);
1269 		NF_CT_STAT_INC_ATOMIC(net, drop);
1270 		return NF_DROP;
1271 	}
1272 
1273 	help = nfct_help(ct);
1274 	if (help && help->helper)
1275 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1276 
1277 	nf_conntrack_event_cache(master_ct(ct) ?
1278 				 IPCT_RELATED : IPCT_NEW, ct);
1279 	return NF_ACCEPT;
1280 
1281 out:
1282 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1283 dying:
1284 	nf_conntrack_double_unlock(hash, reply_hash);
1285 	local_bh_enable();
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1289 
1290 /* Returns true if a connection corresponds to the tuple (required
1291    for NAT). */
1292 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1293 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1294 			 const struct nf_conn *ignored_conntrack)
1295 {
1296 	struct net *net = nf_ct_net(ignored_conntrack);
1297 	const struct nf_conntrack_zone *zone;
1298 	struct nf_conntrack_tuple_hash *h;
1299 	struct hlist_nulls_head *ct_hash;
1300 	unsigned int hash, hsize;
1301 	struct hlist_nulls_node *n;
1302 	struct nf_conn *ct;
1303 
1304 	zone = nf_ct_zone(ignored_conntrack);
1305 
1306 	rcu_read_lock();
1307  begin:
1308 	nf_conntrack_get_ht(&ct_hash, &hsize);
1309 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1310 
1311 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1312 		ct = nf_ct_tuplehash_to_ctrack(h);
1313 
1314 		if (ct == ignored_conntrack)
1315 			continue;
1316 
1317 		if (nf_ct_is_expired(ct)) {
1318 			nf_ct_gc_expired(ct);
1319 			continue;
1320 		}
1321 
1322 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1323 			/* Tuple is taken already, so caller will need to find
1324 			 * a new source port to use.
1325 			 *
1326 			 * Only exception:
1327 			 * If the *original tuples* are identical, then both
1328 			 * conntracks refer to the same flow.
1329 			 * This is a rare situation, it can occur e.g. when
1330 			 * more than one UDP packet is sent from same socket
1331 			 * in different threads.
1332 			 *
1333 			 * Let nf_ct_resolve_clash() deal with this later.
1334 			 */
1335 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1336 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1337 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1338 				continue;
1339 
1340 			NF_CT_STAT_INC_ATOMIC(net, found);
1341 			rcu_read_unlock();
1342 			return 1;
1343 		}
1344 	}
1345 
1346 	if (get_nulls_value(n) != hash) {
1347 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1348 		goto begin;
1349 	}
1350 
1351 	rcu_read_unlock();
1352 
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1356 
1357 #define NF_CT_EVICTION_RANGE	8
1358 
1359 /* There's a small race here where we may free a just-assured
1360    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1361 static unsigned int early_drop_list(struct net *net,
1362 				    struct hlist_nulls_head *head)
1363 {
1364 	struct nf_conntrack_tuple_hash *h;
1365 	struct hlist_nulls_node *n;
1366 	unsigned int drops = 0;
1367 	struct nf_conn *tmp;
1368 
1369 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1370 		tmp = nf_ct_tuplehash_to_ctrack(h);
1371 
1372 		if (nf_ct_is_expired(tmp)) {
1373 			nf_ct_gc_expired(tmp);
1374 			continue;
1375 		}
1376 
1377 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1378 		    !net_eq(nf_ct_net(tmp), net) ||
1379 		    nf_ct_is_dying(tmp))
1380 			continue;
1381 
1382 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1383 			continue;
1384 
1385 		/* load ->ct_net and ->status after refcount increase */
1386 		smp_acquire__after_ctrl_dep();
1387 
1388 		/* kill only if still in same netns -- might have moved due to
1389 		 * SLAB_TYPESAFE_BY_RCU rules.
1390 		 *
1391 		 * We steal the timer reference.  If that fails timer has
1392 		 * already fired or someone else deleted it. Just drop ref
1393 		 * and move to next entry.
1394 		 */
1395 		if (net_eq(nf_ct_net(tmp), net) &&
1396 		    nf_ct_is_confirmed(tmp) &&
1397 		    nf_ct_delete(tmp, 0, 0))
1398 			drops++;
1399 
1400 		nf_ct_put(tmp);
1401 	}
1402 
1403 	return drops;
1404 }
1405 
early_drop(struct net * net,unsigned int hash)1406 static noinline int early_drop(struct net *net, unsigned int hash)
1407 {
1408 	unsigned int i, bucket;
1409 
1410 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1411 		struct hlist_nulls_head *ct_hash;
1412 		unsigned int hsize, drops;
1413 
1414 		rcu_read_lock();
1415 		nf_conntrack_get_ht(&ct_hash, &hsize);
1416 		if (!i)
1417 			bucket = reciprocal_scale(hash, hsize);
1418 		else
1419 			bucket = (bucket + 1) % hsize;
1420 
1421 		drops = early_drop_list(net, &ct_hash[bucket]);
1422 		rcu_read_unlock();
1423 
1424 		if (drops) {
1425 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1426 			return true;
1427 		}
1428 	}
1429 
1430 	return false;
1431 }
1432 
gc_worker_skip_ct(const struct nf_conn * ct)1433 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1434 {
1435 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1436 }
1437 
gc_worker_can_early_drop(const struct nf_conn * ct)1438 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1439 {
1440 	const struct nf_conntrack_l4proto *l4proto;
1441 	u8 protonum = nf_ct_protonum(ct);
1442 
1443 	if (test_bit(IPS_OFFLOAD_BIT, &ct->status) && protonum != IPPROTO_UDP)
1444 		return false;
1445 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1446 		return true;
1447 
1448 	l4proto = nf_ct_l4proto_find(protonum);
1449 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1450 		return true;
1451 
1452 	return false;
1453 }
1454 
gc_worker(struct work_struct * work)1455 static void gc_worker(struct work_struct *work)
1456 {
1457 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1458 	u32 end_time, start_time = nfct_time_stamp;
1459 	struct conntrack_gc_work *gc_work;
1460 	unsigned int expired_count = 0;
1461 	unsigned long next_run;
1462 	s32 delta_time;
1463 	long count;
1464 
1465 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1466 
1467 	i = gc_work->next_bucket;
1468 	if (gc_work->early_drop)
1469 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1470 
1471 	if (i == 0) {
1472 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1473 		gc_work->count = GC_SCAN_INITIAL_COUNT;
1474 		gc_work->start_time = start_time;
1475 	}
1476 
1477 	next_run = gc_work->avg_timeout;
1478 	count = gc_work->count;
1479 
1480 	end_time = start_time + GC_SCAN_MAX_DURATION;
1481 
1482 	do {
1483 		struct nf_conntrack_tuple_hash *h;
1484 		struct hlist_nulls_head *ct_hash;
1485 		struct hlist_nulls_node *n;
1486 		struct nf_conn *tmp;
1487 
1488 		rcu_read_lock();
1489 
1490 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1491 		if (i >= hashsz) {
1492 			rcu_read_unlock();
1493 			break;
1494 		}
1495 
1496 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1497 			struct nf_conntrack_net *cnet;
1498 			struct net *net;
1499 			long expires;
1500 
1501 			tmp = nf_ct_tuplehash_to_ctrack(h);
1502 
1503 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1504 				nf_ct_offload_timeout(tmp);
1505 				if (!nf_conntrack_max95)
1506 					continue;
1507 			}
1508 
1509 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1510 				rcu_read_unlock();
1511 
1512 				gc_work->next_bucket = i;
1513 				gc_work->avg_timeout = next_run;
1514 				gc_work->count = count;
1515 
1516 				delta_time = nfct_time_stamp - gc_work->start_time;
1517 
1518 				/* re-sched immediately if total cycle time is exceeded */
1519 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1520 				goto early_exit;
1521 			}
1522 
1523 			if (nf_ct_is_expired(tmp)) {
1524 				nf_ct_gc_expired(tmp);
1525 				expired_count++;
1526 				continue;
1527 			}
1528 
1529 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1530 			expires = (expires - (long)next_run) / ++count;
1531 			next_run += expires;
1532 
1533 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1534 				continue;
1535 
1536 			net = nf_ct_net(tmp);
1537 			cnet = nf_ct_pernet(net);
1538 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1539 				continue;
1540 
1541 			/* need to take reference to avoid possible races */
1542 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1543 				continue;
1544 
1545 			/* load ->status after refcount increase */
1546 			smp_acquire__after_ctrl_dep();
1547 
1548 			if (gc_worker_skip_ct(tmp)) {
1549 				nf_ct_put(tmp);
1550 				continue;
1551 			}
1552 
1553 			if (gc_worker_can_early_drop(tmp)) {
1554 				nf_ct_kill(tmp);
1555 				expired_count++;
1556 			}
1557 
1558 			nf_ct_put(tmp);
1559 		}
1560 
1561 		/* could check get_nulls_value() here and restart if ct
1562 		 * was moved to another chain.  But given gc is best-effort
1563 		 * we will just continue with next hash slot.
1564 		 */
1565 		rcu_read_unlock();
1566 		cond_resched();
1567 		i++;
1568 
1569 		delta_time = nfct_time_stamp - end_time;
1570 		if (delta_time > 0 && i < hashsz) {
1571 			gc_work->avg_timeout = next_run;
1572 			gc_work->count = count;
1573 			gc_work->next_bucket = i;
1574 			next_run = 0;
1575 			goto early_exit;
1576 		}
1577 	} while (i < hashsz);
1578 
1579 	gc_work->next_bucket = 0;
1580 
1581 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1582 
1583 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1584 	if (next_run > (unsigned long)delta_time)
1585 		next_run -= delta_time;
1586 	else
1587 		next_run = 1;
1588 
1589 early_exit:
1590 	if (gc_work->exiting)
1591 		return;
1592 
1593 	if (next_run)
1594 		gc_work->early_drop = false;
1595 
1596 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1597 }
1598 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1599 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1600 {
1601 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1602 	gc_work->exiting = false;
1603 }
1604 
1605 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1606 __nf_conntrack_alloc(struct net *net,
1607 		     const struct nf_conntrack_zone *zone,
1608 		     const struct nf_conntrack_tuple *orig,
1609 		     const struct nf_conntrack_tuple *repl,
1610 		     gfp_t gfp, u32 hash)
1611 {
1612 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1613 	unsigned int ct_count;
1614 	struct nf_conn *ct;
1615 
1616 	/* We don't want any race condition at early drop stage */
1617 	ct_count = atomic_inc_return(&cnet->count);
1618 
1619 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1620 		if (!early_drop(net, hash)) {
1621 			if (!conntrack_gc_work.early_drop)
1622 				conntrack_gc_work.early_drop = true;
1623 			atomic_dec(&cnet->count);
1624 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1625 			return ERR_PTR(-ENOMEM);
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * Do not use kmem_cache_zalloc(), as this cache uses
1631 	 * SLAB_TYPESAFE_BY_RCU.
1632 	 */
1633 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1634 	if (ct == NULL)
1635 		goto out;
1636 
1637 	spin_lock_init(&ct->lock);
1638 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1639 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1640 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1641 	/* save hash for reusing when confirming */
1642 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1643 	ct->status = 0;
1644 	WRITE_ONCE(ct->timeout, 0);
1645 	write_pnet(&ct->ct_net, net);
1646 	memset_after(ct, 0, __nfct_init_offset);
1647 
1648 	nf_ct_zone_add(ct, zone);
1649 
1650 	/* Because we use RCU lookups, we set ct_general.use to zero before
1651 	 * this is inserted in any list.
1652 	 */
1653 	refcount_set(&ct->ct_general.use, 0);
1654 	return ct;
1655 out:
1656 	atomic_dec(&cnet->count);
1657 	return ERR_PTR(-ENOMEM);
1658 }
1659 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1660 struct nf_conn *nf_conntrack_alloc(struct net *net,
1661 				   const struct nf_conntrack_zone *zone,
1662 				   const struct nf_conntrack_tuple *orig,
1663 				   const struct nf_conntrack_tuple *repl,
1664 				   gfp_t gfp)
1665 {
1666 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1667 }
1668 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1669 
nf_conntrack_free(struct nf_conn * ct)1670 void nf_conntrack_free(struct nf_conn *ct)
1671 {
1672 	struct net *net = nf_ct_net(ct);
1673 	struct nf_conntrack_net *cnet;
1674 
1675 	/* A freed object has refcnt == 0, that's
1676 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1677 	 */
1678 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1679 
1680 	if (ct->status & IPS_SRC_NAT_DONE) {
1681 		const struct nf_nat_hook *nat_hook;
1682 
1683 		rcu_read_lock();
1684 		nat_hook = rcu_dereference(nf_nat_hook);
1685 		if (nat_hook)
1686 			nat_hook->remove_nat_bysrc(ct);
1687 		rcu_read_unlock();
1688 	}
1689 
1690 	kfree(ct->ext);
1691 	kmem_cache_free(nf_conntrack_cachep, ct);
1692 	cnet = nf_ct_pernet(net);
1693 
1694 	smp_mb__before_atomic();
1695 	atomic_dec(&cnet->count);
1696 }
1697 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1698 
1699 
1700 /* Allocate a new conntrack: we return -ENOMEM if classification
1701    failed due to stress.  Otherwise it really is unclassifiable. */
1702 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1703 init_conntrack(struct net *net, struct nf_conn *tmpl,
1704 	       const struct nf_conntrack_tuple *tuple,
1705 	       struct sk_buff *skb,
1706 	       unsigned int dataoff, u32 hash)
1707 {
1708 	struct nf_conn *ct;
1709 	struct nf_conn_help *help;
1710 	struct nf_conntrack_tuple repl_tuple;
1711 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1712 	struct nf_conntrack_ecache *ecache;
1713 #endif
1714 	struct nf_conntrack_expect *exp = NULL;
1715 	const struct nf_conntrack_zone *zone;
1716 	struct nf_conn_timeout *timeout_ext;
1717 	struct nf_conntrack_zone tmp;
1718 	struct nf_conntrack_net *cnet;
1719 
1720 	if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1721 		return NULL;
1722 
1723 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1724 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1725 				  hash);
1726 	if (IS_ERR(ct))
1727 		return (struct nf_conntrack_tuple_hash *)ct;
1728 
1729 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1730 		nf_conntrack_free(ct);
1731 		return ERR_PTR(-ENOMEM);
1732 	}
1733 
1734 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1735 
1736 	if (timeout_ext)
1737 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1738 				      GFP_ATOMIC);
1739 
1740 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1741 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1742 	nf_ct_labels_ext_add(ct);
1743 
1744 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1745 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1746 
1747 	if ((ecache || net->ct.sysctl_events) &&
1748 	    !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1749 				  ecache ? ecache->expmask : 0,
1750 				  GFP_ATOMIC)) {
1751 		nf_conntrack_free(ct);
1752 		return ERR_PTR(-ENOMEM);
1753 	}
1754 #endif
1755 
1756 	cnet = nf_ct_pernet(net);
1757 	if (cnet->expect_count) {
1758 		spin_lock_bh(&nf_conntrack_expect_lock);
1759 		exp = nf_ct_find_expectation(net, zone, tuple, !tmpl || nf_ct_is_confirmed(tmpl));
1760 		if (exp) {
1761 			/* Welcome, Mr. Bond.  We've been expecting you... */
1762 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1763 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1764 			ct->master = exp->master;
1765 			if (exp->helper) {
1766 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1767 				if (help)
1768 					rcu_assign_pointer(help->helper, exp->helper);
1769 			}
1770 
1771 #ifdef CONFIG_NF_CONNTRACK_MARK
1772 			ct->mark = READ_ONCE(exp->master->mark);
1773 #endif
1774 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1775 			ct->secmark = exp->master->secmark;
1776 #endif
1777 			NF_CT_STAT_INC(net, expect_new);
1778 		}
1779 		spin_unlock_bh(&nf_conntrack_expect_lock);
1780 	}
1781 	if (!exp && tmpl)
1782 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1783 
1784 	/* Other CPU might have obtained a pointer to this object before it was
1785 	 * released.  Because refcount is 0, refcount_inc_not_zero() will fail.
1786 	 *
1787 	 * After refcount_set(1) it will succeed; ensure that zeroing of
1788 	 * ct->status and the correct ct->net pointer are visible; else other
1789 	 * core might observe CONFIRMED bit which means the entry is valid and
1790 	 * in the hash table, but its not (anymore).
1791 	 */
1792 	smp_wmb();
1793 
1794 	/* Now it is going to be associated with an sk_buff, set refcount to 1. */
1795 	refcount_set(&ct->ct_general.use, 1);
1796 
1797 	if (exp) {
1798 		if (exp->expectfn)
1799 			exp->expectfn(ct, exp);
1800 		nf_ct_expect_put(exp);
1801 	}
1802 
1803 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1804 }
1805 
1806 /* On success, returns 0, sets skb->_nfct | ctinfo */
1807 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1808 resolve_normal_ct(struct nf_conn *tmpl,
1809 		  struct sk_buff *skb,
1810 		  unsigned int dataoff,
1811 		  u_int8_t protonum,
1812 		  const struct nf_hook_state *state)
1813 {
1814 	const struct nf_conntrack_zone *zone;
1815 	struct nf_conntrack_tuple tuple;
1816 	struct nf_conntrack_tuple_hash *h;
1817 	enum ip_conntrack_info ctinfo;
1818 	struct nf_conntrack_zone tmp;
1819 	u32 hash, zone_id, rid;
1820 	struct nf_conn *ct;
1821 
1822 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1823 			     dataoff, state->pf, protonum, state->net,
1824 			     &tuple))
1825 		return 0;
1826 
1827 	/* look for tuple match */
1828 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1829 
1830 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1831 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1832 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1833 
1834 	if (!h) {
1835 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1836 		if (zone_id != rid) {
1837 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1838 
1839 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1840 		}
1841 	}
1842 
1843 	if (!h) {
1844 		h = init_conntrack(state->net, tmpl, &tuple,
1845 				   skb, dataoff, hash);
1846 		if (!h)
1847 			return 0;
1848 		if (IS_ERR(h))
1849 			return PTR_ERR(h);
1850 	}
1851 	ct = nf_ct_tuplehash_to_ctrack(h);
1852 
1853 	/* It exists; we have (non-exclusive) reference. */
1854 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1855 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1856 	} else {
1857 		unsigned long status = READ_ONCE(ct->status);
1858 
1859 		/* Once we've had two way comms, always ESTABLISHED. */
1860 		if (likely(status & IPS_SEEN_REPLY))
1861 			ctinfo = IP_CT_ESTABLISHED;
1862 		else if (status & IPS_EXPECTED)
1863 			ctinfo = IP_CT_RELATED;
1864 		else
1865 			ctinfo = IP_CT_NEW;
1866 	}
1867 	nf_ct_set(skb, ct, ctinfo);
1868 	return 0;
1869 }
1870 
1871 /*
1872  * icmp packets need special treatment to handle error messages that are
1873  * related to a connection.
1874  *
1875  * Callers need to check if skb has a conntrack assigned when this
1876  * helper returns; in such case skb belongs to an already known connection.
1877  */
1878 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1879 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1880 			 struct sk_buff *skb,
1881 			 unsigned int dataoff,
1882 			 u8 protonum,
1883 			 const struct nf_hook_state *state)
1884 {
1885 	int ret;
1886 
1887 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1888 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1889 #if IS_ENABLED(CONFIG_IPV6)
1890 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1891 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1892 #endif
1893 	else
1894 		return NF_ACCEPT;
1895 
1896 	if (ret <= 0)
1897 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1898 
1899 	return ret;
1900 }
1901 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1902 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1903 			  enum ip_conntrack_info ctinfo)
1904 {
1905 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1906 
1907 	if (!timeout)
1908 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1909 
1910 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1911 	return NF_ACCEPT;
1912 }
1913 
1914 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1915 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1916 				      struct sk_buff *skb,
1917 				      unsigned int dataoff,
1918 				      enum ip_conntrack_info ctinfo,
1919 				      const struct nf_hook_state *state)
1920 {
1921 	switch (nf_ct_protonum(ct)) {
1922 	case IPPROTO_TCP:
1923 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1924 					       ctinfo, state);
1925 	case IPPROTO_UDP:
1926 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1927 					       ctinfo, state);
1928 	case IPPROTO_ICMP:
1929 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1930 #if IS_ENABLED(CONFIG_IPV6)
1931 	case IPPROTO_ICMPV6:
1932 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1933 #endif
1934 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1935 	case IPPROTO_UDPLITE:
1936 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1937 						   ctinfo, state);
1938 #endif
1939 #ifdef CONFIG_NF_CT_PROTO_SCTP
1940 	case IPPROTO_SCTP:
1941 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1942 						ctinfo, state);
1943 #endif
1944 #ifdef CONFIG_NF_CT_PROTO_DCCP
1945 	case IPPROTO_DCCP:
1946 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1947 						ctinfo, state);
1948 #endif
1949 #ifdef CONFIG_NF_CT_PROTO_GRE
1950 	case IPPROTO_GRE:
1951 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1952 					       ctinfo, state);
1953 #endif
1954 	}
1955 
1956 	return generic_packet(ct, skb, ctinfo);
1957 }
1958 
1959 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1960 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1961 {
1962 	enum ip_conntrack_info ctinfo;
1963 	struct nf_conn *ct, *tmpl;
1964 	u_int8_t protonum;
1965 	int dataoff, ret;
1966 
1967 	tmpl = nf_ct_get(skb, &ctinfo);
1968 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1969 		/* Previously seen (loopback or untracked)?  Ignore. */
1970 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1971 		     ctinfo == IP_CT_UNTRACKED)
1972 			return NF_ACCEPT;
1973 		skb->_nfct = 0;
1974 	}
1975 
1976 	/* rcu_read_lock()ed by nf_hook_thresh */
1977 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1978 	if (dataoff <= 0) {
1979 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1980 		ret = NF_ACCEPT;
1981 		goto out;
1982 	}
1983 
1984 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1985 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1986 					       protonum, state);
1987 		if (ret <= 0) {
1988 			ret = -ret;
1989 			goto out;
1990 		}
1991 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1992 		if (skb->_nfct)
1993 			goto out;
1994 	}
1995 repeat:
1996 	ret = resolve_normal_ct(tmpl, skb, dataoff,
1997 				protonum, state);
1998 	if (ret < 0) {
1999 		/* Too stressed to deal. */
2000 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
2001 		ret = NF_DROP;
2002 		goto out;
2003 	}
2004 
2005 	ct = nf_ct_get(skb, &ctinfo);
2006 	if (!ct) {
2007 		/* Not valid part of a connection */
2008 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2009 		ret = NF_ACCEPT;
2010 		goto out;
2011 	}
2012 
2013 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2014 	if (ret <= 0) {
2015 		/* Invalid: inverse of the return code tells
2016 		 * the netfilter core what to do */
2017 		nf_ct_put(ct);
2018 		skb->_nfct = 0;
2019 		/* Special case: TCP tracker reports an attempt to reopen a
2020 		 * closed/aborted connection. We have to go back and create a
2021 		 * fresh conntrack.
2022 		 */
2023 		if (ret == -NF_REPEAT)
2024 			goto repeat;
2025 
2026 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2027 		if (ret == -NF_DROP)
2028 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
2029 
2030 		ret = -ret;
2031 		goto out;
2032 	}
2033 
2034 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2035 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2036 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2037 out:
2038 	if (tmpl)
2039 		nf_ct_put(tmpl);
2040 
2041 	return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2044 
2045 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2046    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)2047 void nf_conntrack_alter_reply(struct nf_conn *ct,
2048 			      const struct nf_conntrack_tuple *newreply)
2049 {
2050 	struct nf_conn_help *help = nfct_help(ct);
2051 
2052 	/* Should be unconfirmed, so not in hash table yet */
2053 	WARN_ON(nf_ct_is_confirmed(ct));
2054 
2055 	nf_ct_dump_tuple(newreply);
2056 
2057 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2058 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2059 		return;
2060 }
2061 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2062 
2063 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2064 void __nf_ct_refresh_acct(struct nf_conn *ct,
2065 			  enum ip_conntrack_info ctinfo,
2066 			  const struct sk_buff *skb,
2067 			  u32 extra_jiffies,
2068 			  bool do_acct)
2069 {
2070 	/* Only update if this is not a fixed timeout */
2071 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2072 		goto acct;
2073 
2074 	/* If not in hash table, timer will not be active yet */
2075 	if (nf_ct_is_confirmed(ct))
2076 		extra_jiffies += nfct_time_stamp;
2077 
2078 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2079 		WRITE_ONCE(ct->timeout, extra_jiffies);
2080 acct:
2081 	if (do_acct)
2082 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2083 }
2084 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2085 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2086 bool nf_ct_kill_acct(struct nf_conn *ct,
2087 		     enum ip_conntrack_info ctinfo,
2088 		     const struct sk_buff *skb)
2089 {
2090 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2091 
2092 	return nf_ct_delete(ct, 0, 0);
2093 }
2094 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2095 
2096 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2097 
2098 #include <linux/netfilter/nfnetlink.h>
2099 #include <linux/netfilter/nfnetlink_conntrack.h>
2100 #include <linux/mutex.h>
2101 
2102 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2103 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2104 			       const struct nf_conntrack_tuple *tuple)
2105 {
2106 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2107 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2108 		goto nla_put_failure;
2109 	return 0;
2110 
2111 nla_put_failure:
2112 	return -1;
2113 }
2114 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2115 
2116 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2117 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2118 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2119 };
2120 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2121 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2122 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2123 			       struct nf_conntrack_tuple *t,
2124 			       u_int32_t flags)
2125 {
2126 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2127 		if (!tb[CTA_PROTO_SRC_PORT])
2128 			return -EINVAL;
2129 
2130 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2131 	}
2132 
2133 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2134 		if (!tb[CTA_PROTO_DST_PORT])
2135 			return -EINVAL;
2136 
2137 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2138 	}
2139 
2140 	return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2143 
nf_ct_port_nlattr_tuple_size(void)2144 unsigned int nf_ct_port_nlattr_tuple_size(void)
2145 {
2146 	static unsigned int size __read_mostly;
2147 
2148 	if (!size)
2149 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2150 
2151 	return size;
2152 }
2153 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2154 #endif
2155 
2156 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2157 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2158 {
2159 	struct nf_conn *ct;
2160 	enum ip_conntrack_info ctinfo;
2161 
2162 	/* This ICMP is in reverse direction to the packet which caused it */
2163 	ct = nf_ct_get(skb, &ctinfo);
2164 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2165 		ctinfo = IP_CT_RELATED_REPLY;
2166 	else
2167 		ctinfo = IP_CT_RELATED;
2168 
2169 	/* Attach to new skbuff, and increment count */
2170 	nf_ct_set(nskb, ct, ctinfo);
2171 	nf_conntrack_get(skb_nfct(nskb));
2172 }
2173 
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2174 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2175 				 struct nf_conn *ct,
2176 				 enum ip_conntrack_info ctinfo)
2177 {
2178 	const struct nf_nat_hook *nat_hook;
2179 	struct nf_conntrack_tuple_hash *h;
2180 	struct nf_conntrack_tuple tuple;
2181 	unsigned int status;
2182 	int dataoff;
2183 	u16 l3num;
2184 	u8 l4num;
2185 
2186 	l3num = nf_ct_l3num(ct);
2187 
2188 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2189 	if (dataoff <= 0)
2190 		return -1;
2191 
2192 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2193 			     l4num, net, &tuple))
2194 		return -1;
2195 
2196 	if (ct->status & IPS_SRC_NAT) {
2197 		memcpy(tuple.src.u3.all,
2198 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2199 		       sizeof(tuple.src.u3.all));
2200 		tuple.src.u.all =
2201 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2202 	}
2203 
2204 	if (ct->status & IPS_DST_NAT) {
2205 		memcpy(tuple.dst.u3.all,
2206 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2207 		       sizeof(tuple.dst.u3.all));
2208 		tuple.dst.u.all =
2209 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2210 	}
2211 
2212 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2213 	if (!h)
2214 		return 0;
2215 
2216 	/* Store status bits of the conntrack that is clashing to re-do NAT
2217 	 * mangling according to what it has been done already to this packet.
2218 	 */
2219 	status = ct->status;
2220 
2221 	nf_ct_put(ct);
2222 	ct = nf_ct_tuplehash_to_ctrack(h);
2223 	nf_ct_set(skb, ct, ctinfo);
2224 
2225 	nat_hook = rcu_dereference(nf_nat_hook);
2226 	if (!nat_hook)
2227 		return 0;
2228 
2229 	if (status & IPS_SRC_NAT &&
2230 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2231 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2232 		return -1;
2233 
2234 	if (status & IPS_DST_NAT &&
2235 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2236 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2237 		return -1;
2238 
2239 	return 0;
2240 }
2241 
2242 /* This packet is coming from userspace via nf_queue, complete the packet
2243  * processing after the helper invocation in nf_confirm().
2244  */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2245 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2246 			       enum ip_conntrack_info ctinfo)
2247 {
2248 	const struct nf_conntrack_helper *helper;
2249 	const struct nf_conn_help *help;
2250 	int protoff;
2251 
2252 	help = nfct_help(ct);
2253 	if (!help)
2254 		return 0;
2255 
2256 	helper = rcu_dereference(help->helper);
2257 	if (!helper)
2258 		return 0;
2259 
2260 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2261 		return 0;
2262 
2263 	switch (nf_ct_l3num(ct)) {
2264 	case NFPROTO_IPV4:
2265 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2266 		break;
2267 #if IS_ENABLED(CONFIG_IPV6)
2268 	case NFPROTO_IPV6: {
2269 		__be16 frag_off;
2270 		u8 pnum;
2271 
2272 		pnum = ipv6_hdr(skb)->nexthdr;
2273 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2274 					   &frag_off);
2275 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2276 			return 0;
2277 		break;
2278 	}
2279 #endif
2280 	default:
2281 		return 0;
2282 	}
2283 
2284 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2285 	    !nf_is_loopback_packet(skb)) {
2286 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2287 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2288 			return -1;
2289 		}
2290 	}
2291 
2292 	/* We've seen it coming out the other side: confirm it */
2293 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2294 }
2295 
nf_conntrack_update(struct net * net,struct sk_buff * skb)2296 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2297 {
2298 	enum ip_conntrack_info ctinfo;
2299 	struct nf_conn *ct;
2300 	int err;
2301 
2302 	ct = nf_ct_get(skb, &ctinfo);
2303 	if (!ct)
2304 		return 0;
2305 
2306 	if (!nf_ct_is_confirmed(ct)) {
2307 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2308 		if (err < 0)
2309 			return err;
2310 
2311 		ct = nf_ct_get(skb, &ctinfo);
2312 	}
2313 
2314 	return nf_confirm_cthelper(skb, ct, ctinfo);
2315 }
2316 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2317 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2318 				       const struct sk_buff *skb)
2319 {
2320 	const struct nf_conntrack_tuple *src_tuple;
2321 	const struct nf_conntrack_tuple_hash *hash;
2322 	struct nf_conntrack_tuple srctuple;
2323 	enum ip_conntrack_info ctinfo;
2324 	struct nf_conn *ct;
2325 
2326 	ct = nf_ct_get(skb, &ctinfo);
2327 	if (ct) {
2328 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2329 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2330 		return true;
2331 	}
2332 
2333 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2334 			       NFPROTO_IPV4, dev_net(skb->dev),
2335 			       &srctuple))
2336 		return false;
2337 
2338 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2339 				     &nf_ct_zone_dflt,
2340 				     &srctuple);
2341 	if (!hash)
2342 		return false;
2343 
2344 	ct = nf_ct_tuplehash_to_ctrack(hash);
2345 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2346 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2347 	nf_ct_put(ct);
2348 
2349 	return true;
2350 }
2351 
2352 /* Bring out ya dead! */
2353 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data,unsigned int * bucket)2354 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2355 		const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2356 {
2357 	struct nf_conntrack_tuple_hash *h;
2358 	struct nf_conn *ct;
2359 	struct hlist_nulls_node *n;
2360 	spinlock_t *lockp;
2361 
2362 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2363 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2364 
2365 		if (hlist_nulls_empty(hslot))
2366 			continue;
2367 
2368 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2369 		local_bh_disable();
2370 		nf_conntrack_lock(lockp);
2371 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2372 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2373 				continue;
2374 			/* All nf_conn objects are added to hash table twice, one
2375 			 * for original direction tuple, once for the reply tuple.
2376 			 *
2377 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2378 			 * tuple is added (the original tuple already existed for
2379 			 * a different object).
2380 			 *
2381 			 * We only need to call the iterator once for each
2382 			 * conntrack, so we just use the 'reply' direction
2383 			 * tuple while iterating.
2384 			 */
2385 			ct = nf_ct_tuplehash_to_ctrack(h);
2386 
2387 			if (iter_data->net &&
2388 			    !net_eq(iter_data->net, nf_ct_net(ct)))
2389 				continue;
2390 
2391 			if (iter(ct, iter_data->data))
2392 				goto found;
2393 		}
2394 		spin_unlock(lockp);
2395 		local_bh_enable();
2396 		cond_resched();
2397 	}
2398 
2399 	return NULL;
2400 found:
2401 	refcount_inc(&ct->ct_general.use);
2402 	spin_unlock(lockp);
2403 	local_bh_enable();
2404 	return ct;
2405 }
2406 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2407 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2408 				  const struct nf_ct_iter_data *iter_data)
2409 {
2410 	unsigned int bucket = 0;
2411 	struct nf_conn *ct;
2412 
2413 	might_sleep();
2414 
2415 	mutex_lock(&nf_conntrack_mutex);
2416 	while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2417 		/* Time to push up daises... */
2418 
2419 		nf_ct_delete(ct, iter_data->portid, iter_data->report);
2420 		nf_ct_put(ct);
2421 		cond_resched();
2422 	}
2423 	mutex_unlock(&nf_conntrack_mutex);
2424 }
2425 
nf_ct_iterate_cleanup_net(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2426 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2427 			       const struct nf_ct_iter_data *iter_data)
2428 {
2429 	struct net *net = iter_data->net;
2430 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2431 
2432 	might_sleep();
2433 
2434 	if (atomic_read(&cnet->count) == 0)
2435 		return;
2436 
2437 	nf_ct_iterate_cleanup(iter, iter_data);
2438 }
2439 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2440 
2441 /**
2442  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2443  * @iter: callback to invoke for each conntrack
2444  * @data: data to pass to @iter
2445  *
2446  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2447  * unconfirmed list as dying (so they will not be inserted into
2448  * main table).
2449  *
2450  * Can only be called in module exit path.
2451  */
2452 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2453 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2454 {
2455 	struct nf_ct_iter_data iter_data = {};
2456 	struct net *net;
2457 
2458 	down_read(&net_rwsem);
2459 	for_each_net(net) {
2460 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2461 
2462 		if (atomic_read(&cnet->count) == 0)
2463 			continue;
2464 		nf_queue_nf_hook_drop(net);
2465 	}
2466 	up_read(&net_rwsem);
2467 
2468 	/* Need to wait for netns cleanup worker to finish, if its
2469 	 * running -- it might have deleted a net namespace from
2470 	 * the global list, so hook drop above might not have
2471 	 * affected all namespaces.
2472 	 */
2473 	net_ns_barrier();
2474 
2475 	/* a skb w. unconfirmed conntrack could have been reinjected just
2476 	 * before we called nf_queue_nf_hook_drop().
2477 	 *
2478 	 * This makes sure its inserted into conntrack table.
2479 	 */
2480 	synchronize_net();
2481 
2482 	nf_ct_ext_bump_genid();
2483 	iter_data.data = data;
2484 	nf_ct_iterate_cleanup(iter, &iter_data);
2485 
2486 	/* Another cpu might be in a rcu read section with
2487 	 * rcu protected pointer cleared in iter callback
2488 	 * or hidden via nf_ct_ext_bump_genid() above.
2489 	 *
2490 	 * Wait until those are done.
2491 	 */
2492 	synchronize_rcu();
2493 }
2494 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2495 
kill_all(struct nf_conn * i,void * data)2496 static int kill_all(struct nf_conn *i, void *data)
2497 {
2498 	return 1;
2499 }
2500 
nf_conntrack_cleanup_start(void)2501 void nf_conntrack_cleanup_start(void)
2502 {
2503 	cleanup_nf_conntrack_bpf();
2504 	conntrack_gc_work.exiting = true;
2505 }
2506 
nf_conntrack_cleanup_end(void)2507 void nf_conntrack_cleanup_end(void)
2508 {
2509 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2510 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2511 	kvfree(nf_conntrack_hash);
2512 
2513 	nf_conntrack_proto_fini();
2514 	nf_conntrack_helper_fini();
2515 	nf_conntrack_expect_fini();
2516 
2517 	kmem_cache_destroy(nf_conntrack_cachep);
2518 }
2519 
2520 /*
2521  * Mishearing the voices in his head, our hero wonders how he's
2522  * supposed to kill the mall.
2523  */
nf_conntrack_cleanup_net(struct net * net)2524 void nf_conntrack_cleanup_net(struct net *net)
2525 {
2526 	LIST_HEAD(single);
2527 
2528 	list_add(&net->exit_list, &single);
2529 	nf_conntrack_cleanup_net_list(&single);
2530 }
2531 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2532 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2533 {
2534 	struct nf_ct_iter_data iter_data = {};
2535 	struct net *net;
2536 	int busy;
2537 
2538 	/*
2539 	 * This makes sure all current packets have passed through
2540 	 *  netfilter framework.  Roll on, two-stage module
2541 	 *  delete...
2542 	 */
2543 	synchronize_net();
2544 i_see_dead_people:
2545 	busy = 0;
2546 	list_for_each_entry(net, net_exit_list, exit_list) {
2547 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2548 
2549 		iter_data.net = net;
2550 		nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2551 		if (atomic_read(&cnet->count) != 0)
2552 			busy = 1;
2553 	}
2554 	if (busy) {
2555 		schedule();
2556 		goto i_see_dead_people;
2557 	}
2558 
2559 	list_for_each_entry(net, net_exit_list, exit_list) {
2560 		nf_conntrack_ecache_pernet_fini(net);
2561 		nf_conntrack_expect_pernet_fini(net);
2562 		free_percpu(net->ct.stat);
2563 	}
2564 }
2565 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2566 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2567 {
2568 	struct hlist_nulls_head *hash;
2569 	unsigned int nr_slots, i;
2570 
2571 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2572 		return NULL;
2573 
2574 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2575 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2576 
2577 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2578 
2579 	if (hash && nulls)
2580 		for (i = 0; i < nr_slots; i++)
2581 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2582 
2583 	return hash;
2584 }
2585 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2586 
nf_conntrack_hash_resize(unsigned int hashsize)2587 int nf_conntrack_hash_resize(unsigned int hashsize)
2588 {
2589 	int i, bucket;
2590 	unsigned int old_size;
2591 	struct hlist_nulls_head *hash, *old_hash;
2592 	struct nf_conntrack_tuple_hash *h;
2593 	struct nf_conn *ct;
2594 
2595 	if (!hashsize)
2596 		return -EINVAL;
2597 
2598 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2599 	if (!hash)
2600 		return -ENOMEM;
2601 
2602 	mutex_lock(&nf_conntrack_mutex);
2603 	old_size = nf_conntrack_htable_size;
2604 	if (old_size == hashsize) {
2605 		mutex_unlock(&nf_conntrack_mutex);
2606 		kvfree(hash);
2607 		return 0;
2608 	}
2609 
2610 	local_bh_disable();
2611 	nf_conntrack_all_lock();
2612 	write_seqcount_begin(&nf_conntrack_generation);
2613 
2614 	/* Lookups in the old hash might happen in parallel, which means we
2615 	 * might get false negatives during connection lookup. New connections
2616 	 * created because of a false negative won't make it into the hash
2617 	 * though since that required taking the locks.
2618 	 */
2619 
2620 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2621 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2622 			unsigned int zone_id;
2623 
2624 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2625 					      struct nf_conntrack_tuple_hash, hnnode);
2626 			ct = nf_ct_tuplehash_to_ctrack(h);
2627 			hlist_nulls_del_rcu(&h->hnnode);
2628 
2629 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2630 			bucket = __hash_conntrack(nf_ct_net(ct),
2631 						  &h->tuple, zone_id, hashsize);
2632 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2633 		}
2634 	}
2635 	old_hash = nf_conntrack_hash;
2636 
2637 	nf_conntrack_hash = hash;
2638 	nf_conntrack_htable_size = hashsize;
2639 
2640 	write_seqcount_end(&nf_conntrack_generation);
2641 	nf_conntrack_all_unlock();
2642 	local_bh_enable();
2643 
2644 	mutex_unlock(&nf_conntrack_mutex);
2645 
2646 	synchronize_net();
2647 	kvfree(old_hash);
2648 	return 0;
2649 }
2650 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2651 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2652 {
2653 	unsigned int hashsize;
2654 	int rc;
2655 
2656 	if (current->nsproxy->net_ns != &init_net)
2657 		return -EOPNOTSUPP;
2658 
2659 	/* On boot, we can set this without any fancy locking. */
2660 	if (!nf_conntrack_hash)
2661 		return param_set_uint(val, kp);
2662 
2663 	rc = kstrtouint(val, 0, &hashsize);
2664 	if (rc)
2665 		return rc;
2666 
2667 	return nf_conntrack_hash_resize(hashsize);
2668 }
2669 
nf_conntrack_init_start(void)2670 int nf_conntrack_init_start(void)
2671 {
2672 	unsigned long nr_pages = totalram_pages();
2673 	int max_factor = 8;
2674 	int ret = -ENOMEM;
2675 	int i;
2676 
2677 	seqcount_spinlock_init(&nf_conntrack_generation,
2678 			       &nf_conntrack_locks_all_lock);
2679 
2680 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2681 		spin_lock_init(&nf_conntrack_locks[i]);
2682 
2683 	if (!nf_conntrack_htable_size) {
2684 		nf_conntrack_htable_size
2685 			= (((nr_pages << PAGE_SHIFT) / 16384)
2686 			   / sizeof(struct hlist_head));
2687 		if (BITS_PER_LONG >= 64 &&
2688 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2689 			nf_conntrack_htable_size = 262144;
2690 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2691 			nf_conntrack_htable_size = 65536;
2692 
2693 		if (nf_conntrack_htable_size < 1024)
2694 			nf_conntrack_htable_size = 1024;
2695 		/* Use a max. factor of one by default to keep the average
2696 		 * hash chain length at 2 entries.  Each entry has to be added
2697 		 * twice (once for original direction, once for reply).
2698 		 * When a table size is given we use the old value of 8 to
2699 		 * avoid implicit reduction of the max entries setting.
2700 		 */
2701 		max_factor = 1;
2702 	}
2703 
2704 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2705 	if (!nf_conntrack_hash)
2706 		return -ENOMEM;
2707 
2708 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2709 
2710 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2711 						sizeof(struct nf_conn),
2712 						NFCT_INFOMASK + 1,
2713 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2714 	if (!nf_conntrack_cachep)
2715 		goto err_cachep;
2716 
2717 	ret = nf_conntrack_expect_init();
2718 	if (ret < 0)
2719 		goto err_expect;
2720 
2721 	ret = nf_conntrack_helper_init();
2722 	if (ret < 0)
2723 		goto err_helper;
2724 
2725 	ret = nf_conntrack_proto_init();
2726 	if (ret < 0)
2727 		goto err_proto;
2728 
2729 	conntrack_gc_work_init(&conntrack_gc_work);
2730 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2731 
2732 	ret = register_nf_conntrack_bpf();
2733 	if (ret < 0)
2734 		goto err_kfunc;
2735 
2736 	return 0;
2737 
2738 err_kfunc:
2739 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2740 	nf_conntrack_proto_fini();
2741 err_proto:
2742 	nf_conntrack_helper_fini();
2743 err_helper:
2744 	nf_conntrack_expect_fini();
2745 err_expect:
2746 	kmem_cache_destroy(nf_conntrack_cachep);
2747 err_cachep:
2748 	kvfree(nf_conntrack_hash);
2749 	return ret;
2750 }
2751 
nf_conntrack_set_closing(struct nf_conntrack * nfct)2752 static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2753 {
2754 	struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2755 
2756 	switch (nf_ct_protonum(ct)) {
2757 	case IPPROTO_TCP:
2758 		nf_conntrack_tcp_set_closing(ct);
2759 		break;
2760 	}
2761 }
2762 
2763 static const struct nf_ct_hook nf_conntrack_hook = {
2764 	.update		= nf_conntrack_update,
2765 	.destroy	= nf_ct_destroy,
2766 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2767 	.attach		= nf_conntrack_attach,
2768 	.set_closing	= nf_conntrack_set_closing,
2769 	.confirm	= __nf_conntrack_confirm,
2770 };
2771 
nf_conntrack_init_end(void)2772 void nf_conntrack_init_end(void)
2773 {
2774 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2775 }
2776 
2777 /*
2778  * We need to use special "null" values, not used in hash table
2779  */
2780 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2781 
nf_conntrack_init_net(struct net * net)2782 int nf_conntrack_init_net(struct net *net)
2783 {
2784 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2785 	int ret = -ENOMEM;
2786 
2787 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2788 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2789 	atomic_set(&cnet->count, 0);
2790 
2791 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2792 	if (!net->ct.stat)
2793 		return ret;
2794 
2795 	ret = nf_conntrack_expect_pernet_init(net);
2796 	if (ret < 0)
2797 		goto err_expect;
2798 
2799 	nf_conntrack_acct_pernet_init(net);
2800 	nf_conntrack_tstamp_pernet_init(net);
2801 	nf_conntrack_ecache_pernet_init(net);
2802 	nf_conntrack_proto_pernet_init(net);
2803 
2804 	return 0;
2805 
2806 err_expect:
2807 	free_percpu(net->ct.stat);
2808 	return ret;
2809 }
2810 
2811 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2812 
__nf_ct_change_timeout(struct nf_conn * ct,u64 timeout)2813 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2814 {
2815 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2816 		return -EPERM;
2817 
2818 	__nf_ct_set_timeout(ct, timeout);
2819 
2820 	if (test_bit(IPS_DYING_BIT, &ct->status))
2821 		return -ETIME;
2822 
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2826 
__nf_ct_change_status(struct nf_conn * ct,unsigned long on,unsigned long off)2827 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2828 {
2829 	unsigned int bit;
2830 
2831 	/* Ignore these unchangable bits */
2832 	on &= ~IPS_UNCHANGEABLE_MASK;
2833 	off &= ~IPS_UNCHANGEABLE_MASK;
2834 
2835 	for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2836 		if (on & (1 << bit))
2837 			set_bit(bit, &ct->status);
2838 		else if (off & (1 << bit))
2839 			clear_bit(bit, &ct->status);
2840 	}
2841 }
2842 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2843 
nf_ct_change_status_common(struct nf_conn * ct,unsigned int status)2844 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2845 {
2846 	unsigned long d;
2847 
2848 	d = ct->status ^ status;
2849 
2850 	if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2851 		/* unchangeable */
2852 		return -EBUSY;
2853 
2854 	if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2855 		/* SEEN_REPLY bit can only be set */
2856 		return -EBUSY;
2857 
2858 	if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2859 		/* ASSURED bit can only be set */
2860 		return -EBUSY;
2861 
2862 	__nf_ct_change_status(ct, status, 0);
2863 	return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2866