xref: /openbmc/linux/include/linux/hugetlb.h (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 void free_huge_folio(struct folio *folio);
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #include <linux/mempolicy.h>
34 #include <linux/shm.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * For HugeTLB page, there are more metadata to save in the struct page. But
39  * the head struct page cannot meet our needs, so we have to abuse other tail
40  * struct page to store the metadata.
41  */
42 #define __NR_USED_SUBPAGE 3
43 
44 struct hugepage_subpool {
45 	spinlock_t lock;
46 	long count;
47 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
48 	long used_hpages;	/* Used count against maximum, includes */
49 				/* both allocated and reserved pages. */
50 	struct hstate *hstate;
51 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
52 	long rsv_hpages;	/* Pages reserved against global pool to */
53 				/* satisfy minimum size. */
54 };
55 
56 struct resv_map {
57 	struct kref refs;
58 	spinlock_t lock;
59 	struct list_head regions;
60 	long adds_in_progress;
61 	struct list_head region_cache;
62 	long region_cache_count;
63 	struct rw_semaphore rw_sema;
64 #ifdef CONFIG_CGROUP_HUGETLB
65 	/*
66 	 * On private mappings, the counter to uncharge reservations is stored
67 	 * here. If these fields are 0, then either the mapping is shared, or
68 	 * cgroup accounting is disabled for this resv_map.
69 	 */
70 	struct page_counter *reservation_counter;
71 	unsigned long pages_per_hpage;
72 	struct cgroup_subsys_state *css;
73 #endif
74 };
75 
76 /*
77  * Region tracking -- allows tracking of reservations and instantiated pages
78  *                    across the pages in a mapping.
79  *
80  * The region data structures are embedded into a resv_map and protected
81  * by a resv_map's lock.  The set of regions within the resv_map represent
82  * reservations for huge pages, or huge pages that have already been
83  * instantiated within the map.  The from and to elements are huge page
84  * indices into the associated mapping.  from indicates the starting index
85  * of the region.  to represents the first index past the end of  the region.
86  *
87  * For example, a file region structure with from == 0 and to == 4 represents
88  * four huge pages in a mapping.  It is important to note that the to element
89  * represents the first element past the end of the region. This is used in
90  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
91  *
92  * Interval notation of the form [from, to) will be used to indicate that
93  * the endpoint from is inclusive and to is exclusive.
94  */
95 struct file_region {
96 	struct list_head link;
97 	long from;
98 	long to;
99 #ifdef CONFIG_CGROUP_HUGETLB
100 	/*
101 	 * On shared mappings, each reserved region appears as a struct
102 	 * file_region in resv_map. These fields hold the info needed to
103 	 * uncharge each reservation.
104 	 */
105 	struct page_counter *reservation_counter;
106 	struct cgroup_subsys_state *css;
107 #endif
108 };
109 
110 struct hugetlb_vma_lock {
111 	struct kref refs;
112 	struct rw_semaphore rw_sema;
113 	struct vm_area_struct *vma;
114 };
115 
116 extern struct resv_map *resv_map_alloc(void);
117 void resv_map_release(struct kref *ref);
118 
119 extern spinlock_t hugetlb_lock;
120 extern int hugetlb_max_hstate __read_mostly;
121 #define for_each_hstate(h) \
122 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
123 
124 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
125 						long min_hpages);
126 void hugepage_put_subpool(struct hugepage_subpool *spool);
127 
128 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
129 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
130 int move_hugetlb_page_tables(struct vm_area_struct *vma,
131 			     struct vm_area_struct *new_vma,
132 			     unsigned long old_addr, unsigned long new_addr,
133 			     unsigned long len);
134 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
135 			    struct vm_area_struct *, struct vm_area_struct *);
136 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
137 				      unsigned long address, unsigned int flags,
138 				      unsigned int *page_mask);
139 void unmap_hugepage_range(struct vm_area_struct *,
140 			  unsigned long, unsigned long, struct page *,
141 			  zap_flags_t);
142 void __unmap_hugepage_range(struct mmu_gather *tlb,
143 			  struct vm_area_struct *vma,
144 			  unsigned long start, unsigned long end,
145 			  struct page *ref_page, zap_flags_t zap_flags);
146 void hugetlb_report_meminfo(struct seq_file *);
147 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
148 void hugetlb_show_meminfo_node(int nid);
149 unsigned long hugetlb_total_pages(void);
150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
151 			unsigned long address, unsigned int flags);
152 #ifdef CONFIG_USERFAULTFD
153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
154 			     struct vm_area_struct *dst_vma,
155 			     unsigned long dst_addr,
156 			     unsigned long src_addr,
157 			     uffd_flags_t flags,
158 			     struct folio **foliop);
159 #endif /* CONFIG_USERFAULTFD */
160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
161 						struct vm_area_struct *vma,
162 						vm_flags_t vm_flags);
163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
164 						long freed);
165 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
168 				bool *migratable_cleared);
169 void folio_putback_active_hugetlb(struct folio *folio);
170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
171 void hugetlb_fix_reserve_counts(struct inode *inode);
172 extern struct mutex *hugetlb_fault_mutex_table;
173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
174 
175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
176 		      unsigned long addr, pud_t *pud);
177 
178 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
179 
180 extern int sysctl_hugetlb_shm_group;
181 extern struct list_head huge_boot_pages;
182 
183 /* arch callbacks */
184 
185 #ifndef CONFIG_HIGHPTE
186 /*
187  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188  * which may go down to the lowest PTE level in their huge_pte_offset() and
189  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190  */
pte_offset_huge(pmd_t * pmd,unsigned long address)191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 	return pte_offset_kernel(pmd, address);
194 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 				    unsigned long address)
197 {
198 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201 
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 			unsigned long addr, unsigned long sz);
204 /*
205  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206  * Returns the pte_t* if found, or NULL if the address is not mapped.
207  *
208  * IMPORTANT: we should normally not directly call this function, instead
209  * this is only a common interface to implement arch-specific
210  * walker. Please use hugetlb_walk() instead, because that will attempt to
211  * verify the locking for you.
212  *
213  * Since this function will walk all the pgtable pages (including not only
214  * high-level pgtable page, but also PUD entry that can be unshared
215  * concurrently for VM_SHARED), the caller of this function should be
216  * responsible of its thread safety.  One can follow this rule:
217  *
218  *  (1) For private mappings: pmd unsharing is not possible, so holding the
219  *      mmap_lock for either read or write is sufficient. Most callers
220  *      already hold the mmap_lock, so normally, no special action is
221  *      required.
222  *
223  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224  *      pgtable page can go away from under us!  It can be done by a pmd
225  *      unshare with a follow up munmap() on the other process), then we
226  *      need either:
227  *
228  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229  *           won't happen upon the range (it also makes sure the pte_t we
230  *           read is the right and stable one), or,
231  *
232  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233  *           sure even if unshare happened the racy unmap() will wait until
234  *           i_mmap_rwsem is released.
235  *
236  * Option (2.1) is the safest, which guarantees pte stability from pmd
237  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
238  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239  * access.
240  */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 		       unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 				unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 				unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 			      struct zap_details *details);
253 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 				     unsigned long *start, unsigned long *end)
256 {
257 	if (is_vm_hugetlb_page(vma))
258 		__hugetlb_zap_begin(vma, start, end);
259 }
260 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 				   struct zap_details *details)
263 {
264 	if (is_vm_hugetlb_page(vma))
265 		__hugetlb_zap_end(vma, details);
266 }
267 
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 
276 int pmd_huge(pmd_t pmd);
277 int pud_huge(pud_t pud);
278 long hugetlb_change_protection(struct vm_area_struct *vma,
279 		unsigned long address, unsigned long end, pgprot_t newprot,
280 		unsigned long cp_flags);
281 
282 bool is_hugetlb_entry_migration(pte_t pte);
283 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
284 
285 #else /* !CONFIG_HUGETLB_PAGE */
286 
hugetlb_dup_vma_private(struct vm_area_struct * vma)287 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
288 {
289 }
290 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)291 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
292 {
293 }
294 
hugetlb_total_pages(void)295 static inline unsigned long hugetlb_total_pages(void)
296 {
297 	return 0;
298 }
299 
hugetlb_page_mapping_lock_write(struct page * hpage)300 static inline struct address_space *hugetlb_page_mapping_lock_write(
301 							struct page *hpage)
302 {
303 	return NULL;
304 }
305 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)306 static inline int huge_pmd_unshare(struct mm_struct *mm,
307 					struct vm_area_struct *vma,
308 					unsigned long addr, pte_t *ptep)
309 {
310 	return 0;
311 }
312 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)313 static inline void adjust_range_if_pmd_sharing_possible(
314 				struct vm_area_struct *vma,
315 				unsigned long *start, unsigned long *end)
316 {
317 }
318 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)319 static inline void hugetlb_zap_begin(
320 				struct vm_area_struct *vma,
321 				unsigned long *start, unsigned long *end)
322 {
323 }
324 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)325 static inline void hugetlb_zap_end(
326 				struct vm_area_struct *vma,
327 				struct zap_details *details)
328 {
329 }
330 
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)331 static inline struct page *hugetlb_follow_page_mask(
332     struct vm_area_struct *vma, unsigned long address, unsigned int flags,
333     unsigned int *page_mask)
334 {
335 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
336 }
337 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)338 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
339 					  struct mm_struct *src,
340 					  struct vm_area_struct *dst_vma,
341 					  struct vm_area_struct *src_vma)
342 {
343 	BUG();
344 	return 0;
345 }
346 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)347 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
348 					   struct vm_area_struct *new_vma,
349 					   unsigned long old_addr,
350 					   unsigned long new_addr,
351 					   unsigned long len)
352 {
353 	BUG();
354 	return 0;
355 }
356 
hugetlb_report_meminfo(struct seq_file * m)357 static inline void hugetlb_report_meminfo(struct seq_file *m)
358 {
359 }
360 
hugetlb_report_node_meminfo(char * buf,int len,int nid)361 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
362 {
363 	return 0;
364 }
365 
hugetlb_show_meminfo_node(int nid)366 static inline void hugetlb_show_meminfo_node(int nid)
367 {
368 }
369 
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)370 static inline int prepare_hugepage_range(struct file *file,
371 				unsigned long addr, unsigned long len)
372 {
373 	return -EINVAL;
374 }
375 
hugetlb_vma_lock_read(struct vm_area_struct * vma)376 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
377 {
378 }
379 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)380 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
381 {
382 }
383 
hugetlb_vma_lock_write(struct vm_area_struct * vma)384 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
385 {
386 }
387 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)388 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
389 {
390 }
391 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)392 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
393 {
394 	return 1;
395 }
396 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)397 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
398 {
399 }
400 
pmd_huge(pmd_t pmd)401 static inline int pmd_huge(pmd_t pmd)
402 {
403 	return 0;
404 }
405 
pud_huge(pud_t pud)406 static inline int pud_huge(pud_t pud)
407 {
408 	return 0;
409 }
410 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)411 static inline int is_hugepage_only_range(struct mm_struct *mm,
412 					unsigned long addr, unsigned long len)
413 {
414 	return 0;
415 }
416 
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)417 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
418 				unsigned long addr, unsigned long end,
419 				unsigned long floor, unsigned long ceiling)
420 {
421 	BUG();
422 }
423 
424 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)425 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
426 					   struct vm_area_struct *dst_vma,
427 					   unsigned long dst_addr,
428 					   unsigned long src_addr,
429 					   uffd_flags_t flags,
430 					   struct folio **foliop)
431 {
432 	BUG();
433 	return 0;
434 }
435 #endif /* CONFIG_USERFAULTFD */
436 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)437 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
438 					unsigned long sz)
439 {
440 	return NULL;
441 }
442 
isolate_hugetlb(struct folio * folio,struct list_head * list)443 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
444 {
445 	return false;
446 }
447 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)448 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
449 {
450 	return 0;
451 }
452 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)453 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
454 					bool *migratable_cleared)
455 {
456 	return 0;
457 }
458 
folio_putback_active_hugetlb(struct folio * folio)459 static inline void folio_putback_active_hugetlb(struct folio *folio)
460 {
461 }
462 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)463 static inline void move_hugetlb_state(struct folio *old_folio,
464 					struct folio *new_folio, int reason)
465 {
466 }
467 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)468 static inline long hugetlb_change_protection(
469 			struct vm_area_struct *vma, unsigned long address,
470 			unsigned long end, pgprot_t newprot,
471 			unsigned long cp_flags)
472 {
473 	return 0;
474 }
475 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)476 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
477 			struct vm_area_struct *vma, unsigned long start,
478 			unsigned long end, struct page *ref_page,
479 			zap_flags_t zap_flags)
480 {
481 	BUG();
482 }
483 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)484 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
485 			struct vm_area_struct *vma, unsigned long address,
486 			unsigned int flags)
487 {
488 	BUG();
489 	return 0;
490 }
491 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)492 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
493 
494 #endif /* !CONFIG_HUGETLB_PAGE */
495 /*
496  * hugepages at page global directory. If arch support
497  * hugepages at pgd level, they need to define this.
498  */
499 #ifndef pgd_huge
500 #define pgd_huge(x)	0
501 #endif
502 #ifndef p4d_huge
503 #define p4d_huge(x)	0
504 #endif
505 
506 #ifndef pgd_write
pgd_write(pgd_t pgd)507 static inline int pgd_write(pgd_t pgd)
508 {
509 	BUG();
510 	return 0;
511 }
512 #endif
513 
514 #define HUGETLB_ANON_FILE "anon_hugepage"
515 
516 enum {
517 	/*
518 	 * The file will be used as an shm file so shmfs accounting rules
519 	 * apply
520 	 */
521 	HUGETLB_SHMFS_INODE     = 1,
522 	/*
523 	 * The file is being created on the internal vfs mount and shmfs
524 	 * accounting rules do not apply
525 	 */
526 	HUGETLB_ANONHUGE_INODE  = 2,
527 };
528 
529 #ifdef CONFIG_HUGETLBFS
530 struct hugetlbfs_sb_info {
531 	long	max_inodes;   /* inodes allowed */
532 	long	free_inodes;  /* inodes free */
533 	spinlock_t	stat_lock;
534 	struct hstate *hstate;
535 	struct hugepage_subpool *spool;
536 	kuid_t	uid;
537 	kgid_t	gid;
538 	umode_t mode;
539 };
540 
HUGETLBFS_SB(struct super_block * sb)541 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
542 {
543 	return sb->s_fs_info;
544 }
545 
546 struct hugetlbfs_inode_info {
547 	struct shared_policy policy;
548 	struct inode vfs_inode;
549 	unsigned int seals;
550 };
551 
HUGETLBFS_I(struct inode * inode)552 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
553 {
554 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
555 }
556 
557 extern const struct file_operations hugetlbfs_file_operations;
558 extern const struct vm_operations_struct hugetlb_vm_ops;
559 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
560 				int creat_flags, int page_size_log);
561 
is_file_hugepages(struct file * file)562 static inline bool is_file_hugepages(struct file *file)
563 {
564 	if (file->f_op == &hugetlbfs_file_operations)
565 		return true;
566 
567 	return is_file_shm_hugepages(file);
568 }
569 
hstate_inode(struct inode * i)570 static inline struct hstate *hstate_inode(struct inode *i)
571 {
572 	return HUGETLBFS_SB(i->i_sb)->hstate;
573 }
574 #else /* !CONFIG_HUGETLBFS */
575 
576 #define is_file_hugepages(file)			false
577 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)578 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
579 		int creat_flags, int page_size_log)
580 {
581 	return ERR_PTR(-ENOSYS);
582 }
583 
hstate_inode(struct inode * i)584 static inline struct hstate *hstate_inode(struct inode *i)
585 {
586 	return NULL;
587 }
588 #endif /* !CONFIG_HUGETLBFS */
589 
590 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
591 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
592 					unsigned long len, unsigned long pgoff,
593 					unsigned long flags);
594 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
595 
596 unsigned long
597 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
598 				  unsigned long len, unsigned long pgoff,
599 				  unsigned long flags);
600 
601 /*
602  * huegtlb page specific state flags.  These flags are located in page.private
603  * of the hugetlb head page.  Functions created via the below macros should be
604  * used to manipulate these flags.
605  *
606  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
607  *	allocation time.  Cleared when page is fully instantiated.  Free
608  *	routine checks flag to restore a reservation on error paths.
609  *	Synchronization:  Examined or modified by code that knows it has
610  *	the only reference to page.  i.e. After allocation but before use
611  *	or when the page is being freed.
612  * HPG_migratable  - Set after a newly allocated page is added to the page
613  *	cache and/or page tables.  Indicates the page is a candidate for
614  *	migration.
615  *	Synchronization:  Initially set after new page allocation with no
616  *	locking.  When examined and modified during migration processing
617  *	(isolate, migrate, putback) the hugetlb_lock is held.
618  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
619  *	allocator.  Typically used for migration target pages when no pages
620  *	are available in the pool.  The hugetlb free page path will
621  *	immediately free pages with this flag set to the buddy allocator.
622  *	Synchronization: Can be set after huge page allocation from buddy when
623  *	code knows it has only reference.  All other examinations and
624  *	modifications require hugetlb_lock.
625  * HPG_freed - Set when page is on the free lists.
626  *	Synchronization: hugetlb_lock held for examination and modification.
627  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
628  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
629  *     that is not tracked by raw_hwp_page list.
630  */
631 enum hugetlb_page_flags {
632 	HPG_restore_reserve = 0,
633 	HPG_migratable,
634 	HPG_temporary,
635 	HPG_freed,
636 	HPG_vmemmap_optimized,
637 	HPG_raw_hwp_unreliable,
638 	__NR_HPAGEFLAGS,
639 };
640 
641 /*
642  * Macros to create test, set and clear function definitions for
643  * hugetlb specific page flags.
644  */
645 #ifdef CONFIG_HUGETLB_PAGE
646 #define TESTHPAGEFLAG(uname, flname)				\
647 static __always_inline						\
648 bool folio_test_hugetlb_##flname(struct folio *folio)		\
649 	{	void *private = &folio->private;		\
650 		return test_bit(HPG_##flname, private);		\
651 	}							\
652 static inline int HPage##uname(struct page *page)		\
653 	{ return test_bit(HPG_##flname, &(page->private)); }
654 
655 #define SETHPAGEFLAG(uname, flname)				\
656 static __always_inline						\
657 void folio_set_hugetlb_##flname(struct folio *folio)		\
658 	{	void *private = &folio->private;		\
659 		set_bit(HPG_##flname, private);			\
660 	}							\
661 static inline void SetHPage##uname(struct page *page)		\
662 	{ set_bit(HPG_##flname, &(page->private)); }
663 
664 #define CLEARHPAGEFLAG(uname, flname)				\
665 static __always_inline						\
666 void folio_clear_hugetlb_##flname(struct folio *folio)		\
667 	{	void *private = &folio->private;		\
668 		clear_bit(HPG_##flname, private);		\
669 	}							\
670 static inline void ClearHPage##uname(struct page *page)		\
671 	{ clear_bit(HPG_##flname, &(page->private)); }
672 #else
673 #define TESTHPAGEFLAG(uname, flname)				\
674 static inline bool						\
675 folio_test_hugetlb_##flname(struct folio *folio)		\
676 	{ return 0; }						\
677 static inline int HPage##uname(struct page *page)		\
678 	{ return 0; }
679 
680 #define SETHPAGEFLAG(uname, flname)				\
681 static inline void						\
682 folio_set_hugetlb_##flname(struct folio *folio) 		\
683 	{ }							\
684 static inline void SetHPage##uname(struct page *page)		\
685 	{ }
686 
687 #define CLEARHPAGEFLAG(uname, flname)				\
688 static inline void						\
689 folio_clear_hugetlb_##flname(struct folio *folio)		\
690 	{ }							\
691 static inline void ClearHPage##uname(struct page *page)		\
692 	{ }
693 #endif
694 
695 #define HPAGEFLAG(uname, flname)				\
696 	TESTHPAGEFLAG(uname, flname)				\
697 	SETHPAGEFLAG(uname, flname)				\
698 	CLEARHPAGEFLAG(uname, flname)				\
699 
700 /*
701  * Create functions associated with hugetlb page flags
702  */
703 HPAGEFLAG(RestoreReserve, restore_reserve)
704 HPAGEFLAG(Migratable, migratable)
705 HPAGEFLAG(Temporary, temporary)
706 HPAGEFLAG(Freed, freed)
707 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
708 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
709 
710 #ifdef CONFIG_HUGETLB_PAGE
711 
712 #define HSTATE_NAME_LEN 32
713 /* Defines one hugetlb page size */
714 struct hstate {
715 	struct mutex resize_lock;
716 	struct lock_class_key resize_key;
717 	int next_nid_to_alloc;
718 	int next_nid_to_free;
719 	unsigned int order;
720 	unsigned int demote_order;
721 	unsigned long mask;
722 	unsigned long max_huge_pages;
723 	unsigned long nr_huge_pages;
724 	unsigned long free_huge_pages;
725 	unsigned long resv_huge_pages;
726 	unsigned long surplus_huge_pages;
727 	unsigned long nr_overcommit_huge_pages;
728 	struct list_head hugepage_activelist;
729 	struct list_head hugepage_freelists[MAX_NUMNODES];
730 	unsigned int max_huge_pages_node[MAX_NUMNODES];
731 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
732 	unsigned int free_huge_pages_node[MAX_NUMNODES];
733 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
734 #ifdef CONFIG_CGROUP_HUGETLB
735 	/* cgroup control files */
736 	struct cftype cgroup_files_dfl[8];
737 	struct cftype cgroup_files_legacy[10];
738 #endif
739 	char name[HSTATE_NAME_LEN];
740 };
741 
742 struct huge_bootmem_page {
743 	struct list_head list;
744 	struct hstate *hstate;
745 };
746 
747 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
748 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
749 				unsigned long addr, int avoid_reserve);
750 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
751 				nodemask_t *nmask, gfp_t gfp_mask);
752 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
753 				unsigned long address);
754 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
755 			pgoff_t idx);
756 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
757 				unsigned long address, struct folio *folio);
758 
759 /* arch callback */
760 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
761 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
762 bool __init hugetlb_node_alloc_supported(void);
763 
764 void __init hugetlb_add_hstate(unsigned order);
765 bool __init arch_hugetlb_valid_size(unsigned long size);
766 struct hstate *size_to_hstate(unsigned long size);
767 
768 #ifndef HUGE_MAX_HSTATE
769 #define HUGE_MAX_HSTATE 1
770 #endif
771 
772 extern struct hstate hstates[HUGE_MAX_HSTATE];
773 extern unsigned int default_hstate_idx;
774 
775 #define default_hstate (hstates[default_hstate_idx])
776 
hugetlb_folio_subpool(struct folio * folio)777 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
778 {
779 	return folio->_hugetlb_subpool;
780 }
781 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)782 static inline void hugetlb_set_folio_subpool(struct folio *folio,
783 					struct hugepage_subpool *subpool)
784 {
785 	folio->_hugetlb_subpool = subpool;
786 }
787 
hstate_file(struct file * f)788 static inline struct hstate *hstate_file(struct file *f)
789 {
790 	return hstate_inode(file_inode(f));
791 }
792 
hstate_sizelog(int page_size_log)793 static inline struct hstate *hstate_sizelog(int page_size_log)
794 {
795 	if (!page_size_log)
796 		return &default_hstate;
797 
798 	if (page_size_log < BITS_PER_LONG)
799 		return size_to_hstate(1UL << page_size_log);
800 
801 	return NULL;
802 }
803 
hstate_vma(struct vm_area_struct * vma)804 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
805 {
806 	return hstate_file(vma->vm_file);
807 }
808 
huge_page_size(const struct hstate * h)809 static inline unsigned long huge_page_size(const struct hstate *h)
810 {
811 	return (unsigned long)PAGE_SIZE << h->order;
812 }
813 
814 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
815 
816 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
817 
huge_page_mask(struct hstate * h)818 static inline unsigned long huge_page_mask(struct hstate *h)
819 {
820 	return h->mask;
821 }
822 
huge_page_order(struct hstate * h)823 static inline unsigned int huge_page_order(struct hstate *h)
824 {
825 	return h->order;
826 }
827 
huge_page_shift(struct hstate * h)828 static inline unsigned huge_page_shift(struct hstate *h)
829 {
830 	return h->order + PAGE_SHIFT;
831 }
832 
hstate_is_gigantic(struct hstate * h)833 static inline bool hstate_is_gigantic(struct hstate *h)
834 {
835 	return huge_page_order(h) > MAX_ORDER;
836 }
837 
pages_per_huge_page(const struct hstate * h)838 static inline unsigned int pages_per_huge_page(const struct hstate *h)
839 {
840 	return 1 << h->order;
841 }
842 
blocks_per_huge_page(struct hstate * h)843 static inline unsigned int blocks_per_huge_page(struct hstate *h)
844 {
845 	return huge_page_size(h) / 512;
846 }
847 
848 #include <asm/hugetlb.h>
849 
850 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)851 static inline int is_hugepage_only_range(struct mm_struct *mm,
852 					unsigned long addr, unsigned long len)
853 {
854 	return 0;
855 }
856 #define is_hugepage_only_range is_hugepage_only_range
857 #endif
858 
859 #ifndef arch_clear_hugepage_flags
arch_clear_hugepage_flags(struct page * page)860 static inline void arch_clear_hugepage_flags(struct page *page) { }
861 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
862 #endif
863 
864 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)865 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
866 				       vm_flags_t flags)
867 {
868 	return pte_mkhuge(entry);
869 }
870 #endif
871 
folio_hstate(struct folio * folio)872 static inline struct hstate *folio_hstate(struct folio *folio)
873 {
874 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
875 	return size_to_hstate(folio_size(folio));
876 }
877 
hstate_index_to_shift(unsigned index)878 static inline unsigned hstate_index_to_shift(unsigned index)
879 {
880 	return hstates[index].order + PAGE_SHIFT;
881 }
882 
hstate_index(struct hstate * h)883 static inline int hstate_index(struct hstate *h)
884 {
885 	return h - hstates;
886 }
887 
888 extern int dissolve_free_huge_page(struct page *page);
889 extern int dissolve_free_huge_pages(unsigned long start_pfn,
890 				    unsigned long end_pfn);
891 
892 #ifdef CONFIG_MEMORY_FAILURE
893 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
894 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)895 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
896 {
897 }
898 #endif
899 
900 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
901 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)902 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
903 {
904 	if ((huge_page_shift(h) == PMD_SHIFT) ||
905 		(huge_page_shift(h) == PUD_SHIFT) ||
906 			(huge_page_shift(h) == PGDIR_SHIFT))
907 		return true;
908 	else
909 		return false;
910 }
911 #endif
912 #else
arch_hugetlb_migration_supported(struct hstate * h)913 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
914 {
915 	return false;
916 }
917 #endif
918 
hugepage_migration_supported(struct hstate * h)919 static inline bool hugepage_migration_supported(struct hstate *h)
920 {
921 	return arch_hugetlb_migration_supported(h);
922 }
923 
924 /*
925  * Movability check is different as compared to migration check.
926  * It determines whether or not a huge page should be placed on
927  * movable zone or not. Movability of any huge page should be
928  * required only if huge page size is supported for migration.
929  * There won't be any reason for the huge page to be movable if
930  * it is not migratable to start with. Also the size of the huge
931  * page should be large enough to be placed under a movable zone
932  * and still feasible enough to be migratable. Just the presence
933  * in movable zone does not make the migration feasible.
934  *
935  * So even though large huge page sizes like the gigantic ones
936  * are migratable they should not be movable because its not
937  * feasible to migrate them from movable zone.
938  */
hugepage_movable_supported(struct hstate * h)939 static inline bool hugepage_movable_supported(struct hstate *h)
940 {
941 	if (!hugepage_migration_supported(h))
942 		return false;
943 
944 	if (hstate_is_gigantic(h))
945 		return false;
946 	return true;
947 }
948 
949 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)950 static inline gfp_t htlb_alloc_mask(struct hstate *h)
951 {
952 	if (hugepage_movable_supported(h))
953 		return GFP_HIGHUSER_MOVABLE;
954 	else
955 		return GFP_HIGHUSER;
956 }
957 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)958 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
959 {
960 	gfp_t modified_mask = htlb_alloc_mask(h);
961 
962 	/* Some callers might want to enforce node */
963 	modified_mask |= (gfp_mask & __GFP_THISNODE);
964 
965 	modified_mask |= (gfp_mask & __GFP_NOWARN);
966 
967 	return modified_mask;
968 }
969 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)970 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
971 					   struct mm_struct *mm, pte_t *pte)
972 {
973 	if (huge_page_size(h) == PMD_SIZE)
974 		return pmd_lockptr(mm, (pmd_t *) pte);
975 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
976 	return &mm->page_table_lock;
977 }
978 
979 #ifndef hugepages_supported
980 /*
981  * Some platform decide whether they support huge pages at boot
982  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
983  * when there is no such support
984  */
985 #define hugepages_supported() (HPAGE_SHIFT != 0)
986 #endif
987 
988 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
989 
hugetlb_count_init(struct mm_struct * mm)990 static inline void hugetlb_count_init(struct mm_struct *mm)
991 {
992 	atomic_long_set(&mm->hugetlb_usage, 0);
993 }
994 
hugetlb_count_add(long l,struct mm_struct * mm)995 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
996 {
997 	atomic_long_add(l, &mm->hugetlb_usage);
998 }
999 
hugetlb_count_sub(long l,struct mm_struct * mm)1000 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1001 {
1002 	atomic_long_sub(l, &mm->hugetlb_usage);
1003 }
1004 
1005 #ifndef huge_ptep_modify_prot_start
1006 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1007 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1008 						unsigned long addr, pte_t *ptep)
1009 {
1010 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1011 }
1012 #endif
1013 
1014 #ifndef huge_ptep_modify_prot_commit
1015 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1016 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1017 						unsigned long addr, pte_t *ptep,
1018 						pte_t old_pte, pte_t pte)
1019 {
1020 	unsigned long psize = huge_page_size(hstate_vma(vma));
1021 
1022 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1023 }
1024 #endif
1025 
1026 #ifdef CONFIG_NUMA
1027 void hugetlb_register_node(struct node *node);
1028 void hugetlb_unregister_node(struct node *node);
1029 #endif
1030 
1031 /*
1032  * Check if a given raw @page in a hugepage is HWPOISON.
1033  */
1034 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1035 
1036 #else	/* CONFIG_HUGETLB_PAGE */
1037 struct hstate {};
1038 
1039 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1040 {
1041 	return NULL;
1042 }
1043 
1044 static inline int isolate_or_dissolve_huge_page(struct page *page,
1045 						struct list_head *list)
1046 {
1047 	return -ENOMEM;
1048 }
1049 
1050 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1051 					   unsigned long addr,
1052 					   int avoid_reserve)
1053 {
1054 	return NULL;
1055 }
1056 
1057 static inline struct folio *
1058 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1059 			nodemask_t *nmask, gfp_t gfp_mask)
1060 {
1061 	return NULL;
1062 }
1063 
1064 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1065 					       struct vm_area_struct *vma,
1066 					       unsigned long address)
1067 {
1068 	return NULL;
1069 }
1070 
1071 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1072 {
1073 	return 0;
1074 }
1075 
1076 static inline struct hstate *hstate_file(struct file *f)
1077 {
1078 	return NULL;
1079 }
1080 
1081 static inline struct hstate *hstate_sizelog(int page_size_log)
1082 {
1083 	return NULL;
1084 }
1085 
1086 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline struct hstate *folio_hstate(struct folio *folio)
1092 {
1093 	return NULL;
1094 }
1095 
1096 static inline struct hstate *size_to_hstate(unsigned long size)
1097 {
1098 	return NULL;
1099 }
1100 
1101 static inline unsigned long huge_page_size(struct hstate *h)
1102 {
1103 	return PAGE_SIZE;
1104 }
1105 
1106 static inline unsigned long huge_page_mask(struct hstate *h)
1107 {
1108 	return PAGE_MASK;
1109 }
1110 
1111 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1112 {
1113 	return PAGE_SIZE;
1114 }
1115 
1116 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1117 {
1118 	return PAGE_SIZE;
1119 }
1120 
1121 static inline unsigned int huge_page_order(struct hstate *h)
1122 {
1123 	return 0;
1124 }
1125 
1126 static inline unsigned int huge_page_shift(struct hstate *h)
1127 {
1128 	return PAGE_SHIFT;
1129 }
1130 
1131 static inline bool hstate_is_gigantic(struct hstate *h)
1132 {
1133 	return false;
1134 }
1135 
1136 static inline unsigned int pages_per_huge_page(struct hstate *h)
1137 {
1138 	return 1;
1139 }
1140 
1141 static inline unsigned hstate_index_to_shift(unsigned index)
1142 {
1143 	return 0;
1144 }
1145 
1146 static inline int hstate_index(struct hstate *h)
1147 {
1148 	return 0;
1149 }
1150 
1151 static inline int dissolve_free_huge_page(struct page *page)
1152 {
1153 	return 0;
1154 }
1155 
1156 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1157 					   unsigned long end_pfn)
1158 {
1159 	return 0;
1160 }
1161 
1162 static inline bool hugepage_migration_supported(struct hstate *h)
1163 {
1164 	return false;
1165 }
1166 
1167 static inline bool hugepage_movable_supported(struct hstate *h)
1168 {
1169 	return false;
1170 }
1171 
1172 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1173 {
1174 	return 0;
1175 }
1176 
1177 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1178 {
1179 	return 0;
1180 }
1181 
1182 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1183 					   struct mm_struct *mm, pte_t *pte)
1184 {
1185 	return &mm->page_table_lock;
1186 }
1187 
1188 static inline void hugetlb_count_init(struct mm_struct *mm)
1189 {
1190 }
1191 
1192 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1193 {
1194 }
1195 
1196 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1197 {
1198 }
1199 
1200 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1201 					  unsigned long addr, pte_t *ptep)
1202 {
1203 #ifdef CONFIG_MMU
1204 	return ptep_get(ptep);
1205 #else
1206 	return *ptep;
1207 #endif
1208 }
1209 
1210 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1211 				   pte_t *ptep, pte_t pte, unsigned long sz)
1212 {
1213 }
1214 
1215 static inline void hugetlb_register_node(struct node *node)
1216 {
1217 }
1218 
1219 static inline void hugetlb_unregister_node(struct node *node)
1220 {
1221 }
1222 #endif	/* CONFIG_HUGETLB_PAGE */
1223 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1224 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1225 					struct mm_struct *mm, pte_t *pte)
1226 {
1227 	spinlock_t *ptl;
1228 
1229 	ptl = huge_pte_lockptr(h, mm, pte);
1230 	spin_lock(ptl);
1231 	return ptl;
1232 }
1233 
1234 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1235 extern void __init hugetlb_cma_reserve(int order);
1236 #else
hugetlb_cma_reserve(int order)1237 static inline __init void hugetlb_cma_reserve(int order)
1238 {
1239 }
1240 #endif
1241 
1242 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1243 static inline bool hugetlb_pmd_shared(pte_t *pte)
1244 {
1245 	return page_count(virt_to_page(pte)) > 1;
1246 }
1247 #else
hugetlb_pmd_shared(pte_t * pte)1248 static inline bool hugetlb_pmd_shared(pte_t *pte)
1249 {
1250 	return false;
1251 }
1252 #endif
1253 
1254 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1255 
1256 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1257 /*
1258  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1259  * implement this.
1260  */
1261 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1262 #endif
1263 
__vma_shareable_lock(struct vm_area_struct * vma)1264 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1265 {
1266 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1267 }
1268 
1269 bool __vma_private_lock(struct vm_area_struct *vma);
1270 
1271 /*
1272  * Safe version of huge_pte_offset() to check the locks.  See comments
1273  * above huge_pte_offset().
1274  */
1275 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1276 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1277 {
1278 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1279 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1280 
1281 	/*
1282 	 * If pmd sharing possible, locking needed to safely walk the
1283 	 * hugetlb pgtables.  More information can be found at the comment
1284 	 * above huge_pte_offset() in the same file.
1285 	 *
1286 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1287 	 */
1288 	if (__vma_shareable_lock(vma))
1289 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1290 			     !lockdep_is_held(
1291 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1292 #endif
1293 	return huge_pte_offset(vma->vm_mm, addr, sz);
1294 }
1295 
1296 #endif /* _LINUX_HUGETLB_H */
1297