xref: /openbmc/linux/include/linux/hugetlb.h (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 void free_huge_folio(struct folio *folio);
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #include <linux/mempolicy.h>
34 #include <linux/shm.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * For HugeTLB page, there are more metadata to save in the struct page. But
39  * the head struct page cannot meet our needs, so we have to abuse other tail
40  * struct page to store the metadata.
41  */
42 #define __NR_USED_SUBPAGE 3
43 
44 struct hugepage_subpool {
45 	spinlock_t lock;
46 	long count;
47 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
48 	long used_hpages;	/* Used count against maximum, includes */
49 				/* both allocated and reserved pages. */
50 	struct hstate *hstate;
51 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
52 	long rsv_hpages;	/* Pages reserved against global pool to */
53 				/* satisfy minimum size. */
54 };
55 
56 struct resv_map {
57 	struct kref refs;
58 	spinlock_t lock;
59 	struct list_head regions;
60 	long adds_in_progress;
61 	struct list_head region_cache;
62 	long region_cache_count;
63 	struct rw_semaphore rw_sema;
64 #ifdef CONFIG_CGROUP_HUGETLB
65 	/*
66 	 * On private mappings, the counter to uncharge reservations is stored
67 	 * here. If these fields are 0, then either the mapping is shared, or
68 	 * cgroup accounting is disabled for this resv_map.
69 	 */
70 	struct page_counter *reservation_counter;
71 	unsigned long pages_per_hpage;
72 	struct cgroup_subsys_state *css;
73 #endif
74 };
75 
76 /*
77  * Region tracking -- allows tracking of reservations and instantiated pages
78  *                    across the pages in a mapping.
79  *
80  * The region data structures are embedded into a resv_map and protected
81  * by a resv_map's lock.  The set of regions within the resv_map represent
82  * reservations for huge pages, or huge pages that have already been
83  * instantiated within the map.  The from and to elements are huge page
84  * indices into the associated mapping.  from indicates the starting index
85  * of the region.  to represents the first index past the end of  the region.
86  *
87  * For example, a file region structure with from == 0 and to == 4 represents
88  * four huge pages in a mapping.  It is important to note that the to element
89  * represents the first element past the end of the region. This is used in
90  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
91  *
92  * Interval notation of the form [from, to) will be used to indicate that
93  * the endpoint from is inclusive and to is exclusive.
94  */
95 struct file_region {
96 	struct list_head link;
97 	long from;
98 	long to;
99 #ifdef CONFIG_CGROUP_HUGETLB
100 	/*
101 	 * On shared mappings, each reserved region appears as a struct
102 	 * file_region in resv_map. These fields hold the info needed to
103 	 * uncharge each reservation.
104 	 */
105 	struct page_counter *reservation_counter;
106 	struct cgroup_subsys_state *css;
107 #endif
108 };
109 
110 struct hugetlb_vma_lock {
111 	struct kref refs;
112 	struct rw_semaphore rw_sema;
113 	struct vm_area_struct *vma;
114 };
115 
116 extern struct resv_map *resv_map_alloc(void);
117 void resv_map_release(struct kref *ref);
118 
119 extern spinlock_t hugetlb_lock;
120 extern int hugetlb_max_hstate __read_mostly;
121 #define for_each_hstate(h) \
122 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
123 
124 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
125 						long min_hpages);
126 void hugepage_put_subpool(struct hugepage_subpool *spool);
127 
128 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
129 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
130 int move_hugetlb_page_tables(struct vm_area_struct *vma,
131 			     struct vm_area_struct *new_vma,
132 			     unsigned long old_addr, unsigned long new_addr,
133 			     unsigned long len);
134 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
135 			    struct vm_area_struct *, struct vm_area_struct *);
136 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
137 				      unsigned long address, unsigned int flags,
138 				      unsigned int *page_mask);
139 void unmap_hugepage_range(struct vm_area_struct *,
140 			  unsigned long, unsigned long, struct page *,
141 			  zap_flags_t);
142 void __unmap_hugepage_range(struct mmu_gather *tlb,
143 			  struct vm_area_struct *vma,
144 			  unsigned long start, unsigned long end,
145 			  struct page *ref_page, zap_flags_t zap_flags);
146 void hugetlb_report_meminfo(struct seq_file *);
147 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
148 void hugetlb_show_meminfo_node(int nid);
149 unsigned long hugetlb_total_pages(void);
150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
151 			unsigned long address, unsigned int flags);
152 #ifdef CONFIG_USERFAULTFD
153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
154 			     struct vm_area_struct *dst_vma,
155 			     unsigned long dst_addr,
156 			     unsigned long src_addr,
157 			     uffd_flags_t flags,
158 			     struct folio **foliop);
159 #endif /* CONFIG_USERFAULTFD */
160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
161 						struct vm_area_struct *vma,
162 						vm_flags_t vm_flags);
163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
164 						long freed);
165 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
168 				bool *migratable_cleared);
169 void folio_putback_active_hugetlb(struct folio *folio);
170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
171 void hugetlb_fix_reserve_counts(struct inode *inode);
172 extern struct mutex *hugetlb_fault_mutex_table;
173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
174 
175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
176 		      unsigned long addr, pud_t *pud);
177 
178 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
179 
180 extern int sysctl_hugetlb_shm_group;
181 extern struct list_head huge_boot_pages;
182 
183 /* arch callbacks */
184 
185 #ifndef CONFIG_HIGHPTE
186 /*
187  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188  * which may go down to the lowest PTE level in their huge_pte_offset() and
189  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190  */
pte_offset_huge(pmd_t * pmd,unsigned long address)191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 	return pte_offset_kernel(pmd, address);
194 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 				    unsigned long address)
197 {
198 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201 
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 			unsigned long addr, unsigned long sz);
204 /*
205  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206  * Returns the pte_t* if found, or NULL if the address is not mapped.
207  *
208  * IMPORTANT: we should normally not directly call this function, instead
209  * this is only a common interface to implement arch-specific
210  * walker. Please use hugetlb_walk() instead, because that will attempt to
211  * verify the locking for you.
212  *
213  * Since this function will walk all the pgtable pages (including not only
214  * high-level pgtable page, but also PUD entry that can be unshared
215  * concurrently for VM_SHARED), the caller of this function should be
216  * responsible of its thread safety.  One can follow this rule:
217  *
218  *  (1) For private mappings: pmd unsharing is not possible, so holding the
219  *      mmap_lock for either read or write is sufficient. Most callers
220  *      already hold the mmap_lock, so normally, no special action is
221  *      required.
222  *
223  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224  *      pgtable page can go away from under us!  It can be done by a pmd
225  *      unshare with a follow up munmap() on the other process), then we
226  *      need either:
227  *
228  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229  *           won't happen upon the range (it also makes sure the pte_t we
230  *           read is the right and stable one), or,
231  *
232  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233  *           sure even if unshare happened the racy unmap() will wait until
234  *           i_mmap_rwsem is released.
235  *
236  * Option (2.1) is the safest, which guarantees pte stability from pmd
237  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
238  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239  * access.
240  */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 		       unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 				unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 				unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 			      struct zap_details *details);
253 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 				     unsigned long *start, unsigned long *end)
256 {
257 	if (is_vm_hugetlb_page(vma))
258 		__hugetlb_zap_begin(vma, start, end);
259 }
260 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 				   struct zap_details *details)
263 {
264 	if (is_vm_hugetlb_page(vma))
265 		__hugetlb_zap_end(vma, details);
266 }
267 
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 
276 int pmd_huge(pmd_t pmd);
277 int pud_huge(pud_t pud);
278 long hugetlb_change_protection(struct vm_area_struct *vma,
279 		unsigned long address, unsigned long end, pgprot_t newprot,
280 		unsigned long cp_flags);
281 
282 bool is_hugetlb_entry_migration(pte_t pte);
283 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
284 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
285 
286 #else /* !CONFIG_HUGETLB_PAGE */
287 
hugetlb_dup_vma_private(struct vm_area_struct * vma)288 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
289 {
290 }
291 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)292 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
293 {
294 }
295 
hugetlb_total_pages(void)296 static inline unsigned long hugetlb_total_pages(void)
297 {
298 	return 0;
299 }
300 
hugetlb_page_mapping_lock_write(struct page * hpage)301 static inline struct address_space *hugetlb_page_mapping_lock_write(
302 							struct page *hpage)
303 {
304 	return NULL;
305 }
306 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)307 static inline int huge_pmd_unshare(struct mm_struct *mm,
308 					struct vm_area_struct *vma,
309 					unsigned long addr, pte_t *ptep)
310 {
311 	return 0;
312 }
313 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)314 static inline void adjust_range_if_pmd_sharing_possible(
315 				struct vm_area_struct *vma,
316 				unsigned long *start, unsigned long *end)
317 {
318 }
319 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)320 static inline void hugetlb_zap_begin(
321 				struct vm_area_struct *vma,
322 				unsigned long *start, unsigned long *end)
323 {
324 }
325 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)326 static inline void hugetlb_zap_end(
327 				struct vm_area_struct *vma,
328 				struct zap_details *details)
329 {
330 }
331 
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)332 static inline struct page *hugetlb_follow_page_mask(
333     struct vm_area_struct *vma, unsigned long address, unsigned int flags,
334     unsigned int *page_mask)
335 {
336 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
337 }
338 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)339 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
340 					  struct mm_struct *src,
341 					  struct vm_area_struct *dst_vma,
342 					  struct vm_area_struct *src_vma)
343 {
344 	BUG();
345 	return 0;
346 }
347 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)348 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
349 					   struct vm_area_struct *new_vma,
350 					   unsigned long old_addr,
351 					   unsigned long new_addr,
352 					   unsigned long len)
353 {
354 	BUG();
355 	return 0;
356 }
357 
hugetlb_report_meminfo(struct seq_file * m)358 static inline void hugetlb_report_meminfo(struct seq_file *m)
359 {
360 }
361 
hugetlb_report_node_meminfo(char * buf,int len,int nid)362 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
363 {
364 	return 0;
365 }
366 
hugetlb_show_meminfo_node(int nid)367 static inline void hugetlb_show_meminfo_node(int nid)
368 {
369 }
370 
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)371 static inline int prepare_hugepage_range(struct file *file,
372 				unsigned long addr, unsigned long len)
373 {
374 	return -EINVAL;
375 }
376 
hugetlb_vma_lock_read(struct vm_area_struct * vma)377 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
378 {
379 }
380 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)381 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
382 {
383 }
384 
hugetlb_vma_lock_write(struct vm_area_struct * vma)385 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
386 {
387 }
388 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)389 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
390 {
391 }
392 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)393 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
394 {
395 	return 1;
396 }
397 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)398 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
399 {
400 }
401 
pmd_huge(pmd_t pmd)402 static inline int pmd_huge(pmd_t pmd)
403 {
404 	return 0;
405 }
406 
pud_huge(pud_t pud)407 static inline int pud_huge(pud_t pud)
408 {
409 	return 0;
410 }
411 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)412 static inline int is_hugepage_only_range(struct mm_struct *mm,
413 					unsigned long addr, unsigned long len)
414 {
415 	return 0;
416 }
417 
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)418 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
419 				unsigned long addr, unsigned long end,
420 				unsigned long floor, unsigned long ceiling)
421 {
422 	BUG();
423 }
424 
425 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)426 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
427 					   struct vm_area_struct *dst_vma,
428 					   unsigned long dst_addr,
429 					   unsigned long src_addr,
430 					   uffd_flags_t flags,
431 					   struct folio **foliop)
432 {
433 	BUG();
434 	return 0;
435 }
436 #endif /* CONFIG_USERFAULTFD */
437 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)438 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
439 					unsigned long sz)
440 {
441 	return NULL;
442 }
443 
isolate_hugetlb(struct folio * folio,struct list_head * list)444 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
445 {
446 	return false;
447 }
448 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)449 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
450 {
451 	return 0;
452 }
453 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)454 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
455 					bool *migratable_cleared)
456 {
457 	return 0;
458 }
459 
folio_putback_active_hugetlb(struct folio * folio)460 static inline void folio_putback_active_hugetlb(struct folio *folio)
461 {
462 }
463 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)464 static inline void move_hugetlb_state(struct folio *old_folio,
465 					struct folio *new_folio, int reason)
466 {
467 }
468 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)469 static inline long hugetlb_change_protection(
470 			struct vm_area_struct *vma, unsigned long address,
471 			unsigned long end, pgprot_t newprot,
472 			unsigned long cp_flags)
473 {
474 	return 0;
475 }
476 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)477 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
478 			struct vm_area_struct *vma, unsigned long start,
479 			unsigned long end, struct page *ref_page,
480 			zap_flags_t zap_flags)
481 {
482 	BUG();
483 }
484 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)485 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
486 			struct vm_area_struct *vma, unsigned long address,
487 			unsigned int flags)
488 {
489 	BUG();
490 	return 0;
491 }
492 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)493 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
494 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)495 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
496 
497 #endif /* !CONFIG_HUGETLB_PAGE */
498 /*
499  * hugepages at page global directory. If arch support
500  * hugepages at pgd level, they need to define this.
501  */
502 #ifndef pgd_huge
503 #define pgd_huge(x)	0
504 #endif
505 #ifndef p4d_huge
506 #define p4d_huge(x)	0
507 #endif
508 
509 #ifndef pgd_write
pgd_write(pgd_t pgd)510 static inline int pgd_write(pgd_t pgd)
511 {
512 	BUG();
513 	return 0;
514 }
515 #endif
516 
517 #define HUGETLB_ANON_FILE "anon_hugepage"
518 
519 enum {
520 	/*
521 	 * The file will be used as an shm file so shmfs accounting rules
522 	 * apply
523 	 */
524 	HUGETLB_SHMFS_INODE     = 1,
525 	/*
526 	 * The file is being created on the internal vfs mount and shmfs
527 	 * accounting rules do not apply
528 	 */
529 	HUGETLB_ANONHUGE_INODE  = 2,
530 };
531 
532 #ifdef CONFIG_HUGETLBFS
533 struct hugetlbfs_sb_info {
534 	long	max_inodes;   /* inodes allowed */
535 	long	free_inodes;  /* inodes free */
536 	spinlock_t	stat_lock;
537 	struct hstate *hstate;
538 	struct hugepage_subpool *spool;
539 	kuid_t	uid;
540 	kgid_t	gid;
541 	umode_t mode;
542 };
543 
HUGETLBFS_SB(struct super_block * sb)544 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
545 {
546 	return sb->s_fs_info;
547 }
548 
549 struct hugetlbfs_inode_info {
550 	struct shared_policy policy;
551 	struct inode vfs_inode;
552 	unsigned int seals;
553 };
554 
HUGETLBFS_I(struct inode * inode)555 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
556 {
557 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
558 }
559 
560 extern const struct file_operations hugetlbfs_file_operations;
561 extern const struct vm_operations_struct hugetlb_vm_ops;
562 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
563 				int creat_flags, int page_size_log);
564 
is_file_hugepages(struct file * file)565 static inline bool is_file_hugepages(struct file *file)
566 {
567 	if (file->f_op == &hugetlbfs_file_operations)
568 		return true;
569 
570 	return is_file_shm_hugepages(file);
571 }
572 
hstate_inode(struct inode * i)573 static inline struct hstate *hstate_inode(struct inode *i)
574 {
575 	return HUGETLBFS_SB(i->i_sb)->hstate;
576 }
577 #else /* !CONFIG_HUGETLBFS */
578 
579 #define is_file_hugepages(file)			false
580 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)581 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
582 		int creat_flags, int page_size_log)
583 {
584 	return ERR_PTR(-ENOSYS);
585 }
586 
hstate_inode(struct inode * i)587 static inline struct hstate *hstate_inode(struct inode *i)
588 {
589 	return NULL;
590 }
591 #endif /* !CONFIG_HUGETLBFS */
592 
593 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
594 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
595 					unsigned long len, unsigned long pgoff,
596 					unsigned long flags);
597 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
598 
599 unsigned long
600 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
601 				  unsigned long len, unsigned long pgoff,
602 				  unsigned long flags);
603 
604 /*
605  * huegtlb page specific state flags.  These flags are located in page.private
606  * of the hugetlb head page.  Functions created via the below macros should be
607  * used to manipulate these flags.
608  *
609  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
610  *	allocation time.  Cleared when page is fully instantiated.  Free
611  *	routine checks flag to restore a reservation on error paths.
612  *	Synchronization:  Examined or modified by code that knows it has
613  *	the only reference to page.  i.e. After allocation but before use
614  *	or when the page is being freed.
615  * HPG_migratable  - Set after a newly allocated page is added to the page
616  *	cache and/or page tables.  Indicates the page is a candidate for
617  *	migration.
618  *	Synchronization:  Initially set after new page allocation with no
619  *	locking.  When examined and modified during migration processing
620  *	(isolate, migrate, putback) the hugetlb_lock is held.
621  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
622  *	allocator.  Typically used for migration target pages when no pages
623  *	are available in the pool.  The hugetlb free page path will
624  *	immediately free pages with this flag set to the buddy allocator.
625  *	Synchronization: Can be set after huge page allocation from buddy when
626  *	code knows it has only reference.  All other examinations and
627  *	modifications require hugetlb_lock.
628  * HPG_freed - Set when page is on the free lists.
629  *	Synchronization: hugetlb_lock held for examination and modification.
630  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
631  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
632  *     that is not tracked by raw_hwp_page list.
633  */
634 enum hugetlb_page_flags {
635 	HPG_restore_reserve = 0,
636 	HPG_migratable,
637 	HPG_temporary,
638 	HPG_freed,
639 	HPG_vmemmap_optimized,
640 	HPG_raw_hwp_unreliable,
641 	__NR_HPAGEFLAGS,
642 };
643 
644 /*
645  * Macros to create test, set and clear function definitions for
646  * hugetlb specific page flags.
647  */
648 #ifdef CONFIG_HUGETLB_PAGE
649 #define TESTHPAGEFLAG(uname, flname)				\
650 static __always_inline						\
651 bool folio_test_hugetlb_##flname(struct folio *folio)		\
652 	{	void *private = &folio->private;		\
653 		return test_bit(HPG_##flname, private);		\
654 	}							\
655 static inline int HPage##uname(struct page *page)		\
656 	{ return test_bit(HPG_##flname, &(page->private)); }
657 
658 #define SETHPAGEFLAG(uname, flname)				\
659 static __always_inline						\
660 void folio_set_hugetlb_##flname(struct folio *folio)		\
661 	{	void *private = &folio->private;		\
662 		set_bit(HPG_##flname, private);			\
663 	}							\
664 static inline void SetHPage##uname(struct page *page)		\
665 	{ set_bit(HPG_##flname, &(page->private)); }
666 
667 #define CLEARHPAGEFLAG(uname, flname)				\
668 static __always_inline						\
669 void folio_clear_hugetlb_##flname(struct folio *folio)		\
670 	{	void *private = &folio->private;		\
671 		clear_bit(HPG_##flname, private);		\
672 	}							\
673 static inline void ClearHPage##uname(struct page *page)		\
674 	{ clear_bit(HPG_##flname, &(page->private)); }
675 #else
676 #define TESTHPAGEFLAG(uname, flname)				\
677 static inline bool						\
678 folio_test_hugetlb_##flname(struct folio *folio)		\
679 	{ return 0; }						\
680 static inline int HPage##uname(struct page *page)		\
681 	{ return 0; }
682 
683 #define SETHPAGEFLAG(uname, flname)				\
684 static inline void						\
685 folio_set_hugetlb_##flname(struct folio *folio) 		\
686 	{ }							\
687 static inline void SetHPage##uname(struct page *page)		\
688 	{ }
689 
690 #define CLEARHPAGEFLAG(uname, flname)				\
691 static inline void						\
692 folio_clear_hugetlb_##flname(struct folio *folio)		\
693 	{ }							\
694 static inline void ClearHPage##uname(struct page *page)		\
695 	{ }
696 #endif
697 
698 #define HPAGEFLAG(uname, flname)				\
699 	TESTHPAGEFLAG(uname, flname)				\
700 	SETHPAGEFLAG(uname, flname)				\
701 	CLEARHPAGEFLAG(uname, flname)				\
702 
703 /*
704  * Create functions associated with hugetlb page flags
705  */
706 HPAGEFLAG(RestoreReserve, restore_reserve)
707 HPAGEFLAG(Migratable, migratable)
708 HPAGEFLAG(Temporary, temporary)
709 HPAGEFLAG(Freed, freed)
710 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
711 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
712 
713 #ifdef CONFIG_HUGETLB_PAGE
714 
715 #define HSTATE_NAME_LEN 32
716 /* Defines one hugetlb page size */
717 struct hstate {
718 	struct mutex resize_lock;
719 	struct lock_class_key resize_key;
720 	int next_nid_to_alloc;
721 	int next_nid_to_free;
722 	unsigned int order;
723 	unsigned int demote_order;
724 	unsigned long mask;
725 	unsigned long max_huge_pages;
726 	unsigned long nr_huge_pages;
727 	unsigned long free_huge_pages;
728 	unsigned long resv_huge_pages;
729 	unsigned long surplus_huge_pages;
730 	unsigned long nr_overcommit_huge_pages;
731 	struct list_head hugepage_activelist;
732 	struct list_head hugepage_freelists[MAX_NUMNODES];
733 	unsigned int max_huge_pages_node[MAX_NUMNODES];
734 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
735 	unsigned int free_huge_pages_node[MAX_NUMNODES];
736 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
737 #ifdef CONFIG_CGROUP_HUGETLB
738 	/* cgroup control files */
739 	struct cftype cgroup_files_dfl[8];
740 	struct cftype cgroup_files_legacy[10];
741 #endif
742 	char name[HSTATE_NAME_LEN];
743 };
744 
745 struct huge_bootmem_page {
746 	struct list_head list;
747 	struct hstate *hstate;
748 };
749 
750 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
751 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
752 				unsigned long addr, int avoid_reserve);
753 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
754 				nodemask_t *nmask, gfp_t gfp_mask);
755 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
756 				unsigned long address);
757 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
758 			pgoff_t idx);
759 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
760 				unsigned long address, struct folio *folio);
761 
762 /* arch callback */
763 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
764 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
765 bool __init hugetlb_node_alloc_supported(void);
766 
767 void __init hugetlb_add_hstate(unsigned order);
768 bool __init arch_hugetlb_valid_size(unsigned long size);
769 struct hstate *size_to_hstate(unsigned long size);
770 
771 #ifndef HUGE_MAX_HSTATE
772 #define HUGE_MAX_HSTATE 1
773 #endif
774 
775 extern struct hstate hstates[HUGE_MAX_HSTATE];
776 extern unsigned int default_hstate_idx;
777 
778 #define default_hstate (hstates[default_hstate_idx])
779 
hugetlb_folio_subpool(struct folio * folio)780 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
781 {
782 	return folio->_hugetlb_subpool;
783 }
784 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)785 static inline void hugetlb_set_folio_subpool(struct folio *folio,
786 					struct hugepage_subpool *subpool)
787 {
788 	folio->_hugetlb_subpool = subpool;
789 }
790 
hstate_file(struct file * f)791 static inline struct hstate *hstate_file(struct file *f)
792 {
793 	return hstate_inode(file_inode(f));
794 }
795 
hstate_sizelog(int page_size_log)796 static inline struct hstate *hstate_sizelog(int page_size_log)
797 {
798 	if (!page_size_log)
799 		return &default_hstate;
800 
801 	if (page_size_log < BITS_PER_LONG)
802 		return size_to_hstate(1UL << page_size_log);
803 
804 	return NULL;
805 }
806 
hstate_vma(struct vm_area_struct * vma)807 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
808 {
809 	return hstate_file(vma->vm_file);
810 }
811 
huge_page_size(const struct hstate * h)812 static inline unsigned long huge_page_size(const struct hstate *h)
813 {
814 	return (unsigned long)PAGE_SIZE << h->order;
815 }
816 
817 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
818 
819 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
820 
huge_page_mask(struct hstate * h)821 static inline unsigned long huge_page_mask(struct hstate *h)
822 {
823 	return h->mask;
824 }
825 
huge_page_order(struct hstate * h)826 static inline unsigned int huge_page_order(struct hstate *h)
827 {
828 	return h->order;
829 }
830 
huge_page_shift(struct hstate * h)831 static inline unsigned huge_page_shift(struct hstate *h)
832 {
833 	return h->order + PAGE_SHIFT;
834 }
835 
hstate_is_gigantic(struct hstate * h)836 static inline bool hstate_is_gigantic(struct hstate *h)
837 {
838 	return huge_page_order(h) > MAX_ORDER;
839 }
840 
pages_per_huge_page(const struct hstate * h)841 static inline unsigned int pages_per_huge_page(const struct hstate *h)
842 {
843 	return 1 << h->order;
844 }
845 
blocks_per_huge_page(struct hstate * h)846 static inline unsigned int blocks_per_huge_page(struct hstate *h)
847 {
848 	return huge_page_size(h) / 512;
849 }
850 
851 #include <asm/hugetlb.h>
852 
853 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)854 static inline int is_hugepage_only_range(struct mm_struct *mm,
855 					unsigned long addr, unsigned long len)
856 {
857 	return 0;
858 }
859 #define is_hugepage_only_range is_hugepage_only_range
860 #endif
861 
862 #ifndef arch_clear_hugepage_flags
arch_clear_hugepage_flags(struct page * page)863 static inline void arch_clear_hugepage_flags(struct page *page) { }
864 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
865 #endif
866 
867 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)868 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
869 				       vm_flags_t flags)
870 {
871 	return pte_mkhuge(entry);
872 }
873 #endif
874 
folio_hstate(struct folio * folio)875 static inline struct hstate *folio_hstate(struct folio *folio)
876 {
877 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
878 	return size_to_hstate(folio_size(folio));
879 }
880 
hstate_index_to_shift(unsigned index)881 static inline unsigned hstate_index_to_shift(unsigned index)
882 {
883 	return hstates[index].order + PAGE_SHIFT;
884 }
885 
hstate_index(struct hstate * h)886 static inline int hstate_index(struct hstate *h)
887 {
888 	return h - hstates;
889 }
890 
891 extern int dissolve_free_huge_page(struct page *page);
892 extern int dissolve_free_huge_pages(unsigned long start_pfn,
893 				    unsigned long end_pfn);
894 
895 #ifdef CONFIG_MEMORY_FAILURE
896 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
897 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)898 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
899 {
900 }
901 #endif
902 
903 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
904 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)905 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
906 {
907 	if ((huge_page_shift(h) == PMD_SHIFT) ||
908 		(huge_page_shift(h) == PUD_SHIFT) ||
909 			(huge_page_shift(h) == PGDIR_SHIFT))
910 		return true;
911 	else
912 		return false;
913 }
914 #endif
915 #else
arch_hugetlb_migration_supported(struct hstate * h)916 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
917 {
918 	return false;
919 }
920 #endif
921 
hugepage_migration_supported(struct hstate * h)922 static inline bool hugepage_migration_supported(struct hstate *h)
923 {
924 	return arch_hugetlb_migration_supported(h);
925 }
926 
927 /*
928  * Movability check is different as compared to migration check.
929  * It determines whether or not a huge page should be placed on
930  * movable zone or not. Movability of any huge page should be
931  * required only if huge page size is supported for migration.
932  * There won't be any reason for the huge page to be movable if
933  * it is not migratable to start with. Also the size of the huge
934  * page should be large enough to be placed under a movable zone
935  * and still feasible enough to be migratable. Just the presence
936  * in movable zone does not make the migration feasible.
937  *
938  * So even though large huge page sizes like the gigantic ones
939  * are migratable they should not be movable because its not
940  * feasible to migrate them from movable zone.
941  */
hugepage_movable_supported(struct hstate * h)942 static inline bool hugepage_movable_supported(struct hstate *h)
943 {
944 	if (!hugepage_migration_supported(h))
945 		return false;
946 
947 	if (hstate_is_gigantic(h))
948 		return false;
949 	return true;
950 }
951 
952 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)953 static inline gfp_t htlb_alloc_mask(struct hstate *h)
954 {
955 	if (hugepage_movable_supported(h))
956 		return GFP_HIGHUSER_MOVABLE;
957 	else
958 		return GFP_HIGHUSER;
959 }
960 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)961 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
962 {
963 	gfp_t modified_mask = htlb_alloc_mask(h);
964 
965 	/* Some callers might want to enforce node */
966 	modified_mask |= (gfp_mask & __GFP_THISNODE);
967 
968 	modified_mask |= (gfp_mask & __GFP_NOWARN);
969 
970 	return modified_mask;
971 }
972 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)973 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
974 					   struct mm_struct *mm, pte_t *pte)
975 {
976 	if (huge_page_size(h) == PMD_SIZE)
977 		return pmd_lockptr(mm, (pmd_t *) pte);
978 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
979 	return &mm->page_table_lock;
980 }
981 
982 #ifndef hugepages_supported
983 /*
984  * Some platform decide whether they support huge pages at boot
985  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
986  * when there is no such support
987  */
988 #define hugepages_supported() (HPAGE_SHIFT != 0)
989 #endif
990 
991 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
992 
hugetlb_count_init(struct mm_struct * mm)993 static inline void hugetlb_count_init(struct mm_struct *mm)
994 {
995 	atomic_long_set(&mm->hugetlb_usage, 0);
996 }
997 
hugetlb_count_add(long l,struct mm_struct * mm)998 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
999 {
1000 	atomic_long_add(l, &mm->hugetlb_usage);
1001 }
1002 
hugetlb_count_sub(long l,struct mm_struct * mm)1003 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1004 {
1005 	atomic_long_sub(l, &mm->hugetlb_usage);
1006 }
1007 
1008 #ifndef huge_ptep_modify_prot_start
1009 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1010 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1011 						unsigned long addr, pte_t *ptep)
1012 {
1013 	unsigned long psize = huge_page_size(hstate_vma(vma));
1014 
1015 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1016 }
1017 #endif
1018 
1019 #ifndef huge_ptep_modify_prot_commit
1020 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1021 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1022 						unsigned long addr, pte_t *ptep,
1023 						pte_t old_pte, pte_t pte)
1024 {
1025 	unsigned long psize = huge_page_size(hstate_vma(vma));
1026 
1027 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1028 }
1029 #endif
1030 
1031 #ifdef CONFIG_NUMA
1032 void hugetlb_register_node(struct node *node);
1033 void hugetlb_unregister_node(struct node *node);
1034 #endif
1035 
1036 /*
1037  * Check if a given raw @page in a hugepage is HWPOISON.
1038  */
1039 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1040 
1041 #else	/* CONFIG_HUGETLB_PAGE */
1042 struct hstate {};
1043 
1044 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1045 {
1046 	return NULL;
1047 }
1048 
1049 static inline int isolate_or_dissolve_huge_page(struct page *page,
1050 						struct list_head *list)
1051 {
1052 	return -ENOMEM;
1053 }
1054 
1055 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1056 					   unsigned long addr,
1057 					   int avoid_reserve)
1058 {
1059 	return NULL;
1060 }
1061 
1062 static inline struct folio *
1063 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1064 			nodemask_t *nmask, gfp_t gfp_mask)
1065 {
1066 	return NULL;
1067 }
1068 
1069 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1070 					       struct vm_area_struct *vma,
1071 					       unsigned long address)
1072 {
1073 	return NULL;
1074 }
1075 
1076 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1077 {
1078 	return 0;
1079 }
1080 
1081 static inline struct hstate *hstate_file(struct file *f)
1082 {
1083 	return NULL;
1084 }
1085 
1086 static inline struct hstate *hstate_sizelog(int page_size_log)
1087 {
1088 	return NULL;
1089 }
1090 
1091 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1092 {
1093 	return NULL;
1094 }
1095 
1096 static inline struct hstate *folio_hstate(struct folio *folio)
1097 {
1098 	return NULL;
1099 }
1100 
1101 static inline struct hstate *size_to_hstate(unsigned long size)
1102 {
1103 	return NULL;
1104 }
1105 
1106 static inline unsigned long huge_page_size(struct hstate *h)
1107 {
1108 	return PAGE_SIZE;
1109 }
1110 
1111 static inline unsigned long huge_page_mask(struct hstate *h)
1112 {
1113 	return PAGE_MASK;
1114 }
1115 
1116 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1117 {
1118 	return PAGE_SIZE;
1119 }
1120 
1121 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1122 {
1123 	return PAGE_SIZE;
1124 }
1125 
1126 static inline unsigned int huge_page_order(struct hstate *h)
1127 {
1128 	return 0;
1129 }
1130 
1131 static inline unsigned int huge_page_shift(struct hstate *h)
1132 {
1133 	return PAGE_SHIFT;
1134 }
1135 
1136 static inline bool hstate_is_gigantic(struct hstate *h)
1137 {
1138 	return false;
1139 }
1140 
1141 static inline unsigned int pages_per_huge_page(struct hstate *h)
1142 {
1143 	return 1;
1144 }
1145 
1146 static inline unsigned hstate_index_to_shift(unsigned index)
1147 {
1148 	return 0;
1149 }
1150 
1151 static inline int hstate_index(struct hstate *h)
1152 {
1153 	return 0;
1154 }
1155 
1156 static inline int dissolve_free_huge_page(struct page *page)
1157 {
1158 	return 0;
1159 }
1160 
1161 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1162 					   unsigned long end_pfn)
1163 {
1164 	return 0;
1165 }
1166 
1167 static inline bool hugepage_migration_supported(struct hstate *h)
1168 {
1169 	return false;
1170 }
1171 
1172 static inline bool hugepage_movable_supported(struct hstate *h)
1173 {
1174 	return false;
1175 }
1176 
1177 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1178 {
1179 	return 0;
1180 }
1181 
1182 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1183 {
1184 	return 0;
1185 }
1186 
1187 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1188 					   struct mm_struct *mm, pte_t *pte)
1189 {
1190 	return &mm->page_table_lock;
1191 }
1192 
1193 static inline void hugetlb_count_init(struct mm_struct *mm)
1194 {
1195 }
1196 
1197 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1198 {
1199 }
1200 
1201 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1202 {
1203 }
1204 
1205 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1206 					  unsigned long addr, pte_t *ptep)
1207 {
1208 #ifdef CONFIG_MMU
1209 	return ptep_get(ptep);
1210 #else
1211 	return *ptep;
1212 #endif
1213 }
1214 
1215 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1216 				   pte_t *ptep, pte_t pte, unsigned long sz)
1217 {
1218 }
1219 
1220 static inline void hugetlb_register_node(struct node *node)
1221 {
1222 }
1223 
1224 static inline void hugetlb_unregister_node(struct node *node)
1225 {
1226 }
1227 #endif	/* CONFIG_HUGETLB_PAGE */
1228 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1229 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1230 					struct mm_struct *mm, pte_t *pte)
1231 {
1232 	spinlock_t *ptl;
1233 
1234 	ptl = huge_pte_lockptr(h, mm, pte);
1235 	spin_lock(ptl);
1236 	return ptl;
1237 }
1238 
1239 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1240 extern void __init hugetlb_cma_reserve(int order);
1241 #else
hugetlb_cma_reserve(int order)1242 static inline __init void hugetlb_cma_reserve(int order)
1243 {
1244 }
1245 #endif
1246 
1247 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1248 static inline bool hugetlb_pmd_shared(pte_t *pte)
1249 {
1250 	return page_count(virt_to_page(pte)) > 1;
1251 }
1252 #else
hugetlb_pmd_shared(pte_t * pte)1253 static inline bool hugetlb_pmd_shared(pte_t *pte)
1254 {
1255 	return false;
1256 }
1257 #endif
1258 
1259 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1260 
1261 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1262 /*
1263  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1264  * implement this.
1265  */
1266 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1267 #endif
1268 
__vma_shareable_lock(struct vm_area_struct * vma)1269 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1270 {
1271 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1272 }
1273 
1274 bool __vma_private_lock(struct vm_area_struct *vma);
1275 
1276 /*
1277  * Safe version of huge_pte_offset() to check the locks.  See comments
1278  * above huge_pte_offset().
1279  */
1280 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1281 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1282 {
1283 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1284 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1285 
1286 	/*
1287 	 * If pmd sharing possible, locking needed to safely walk the
1288 	 * hugetlb pgtables.  More information can be found at the comment
1289 	 * above huge_pte_offset() in the same file.
1290 	 *
1291 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1292 	 */
1293 	if (__vma_shareable_lock(vma))
1294 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1295 			     !lockdep_is_held(
1296 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1297 #endif
1298 	return huge_pte_offset(vma->vm_mm, addr, sz);
1299 }
1300 
1301 #endif /* _LINUX_HUGETLB_H */
1302