xref: /openbmc/qemu/target/hexagon/decode.c (revision 28188253dc26bc3038f30eed0d79798b51f81a94)
1 /*
2  *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include "qemu/osdep.h"
19 #include "iclass.h"
20 #include "attribs.h"
21 #include "genptr.h"
22 #include "decode.h"
23 #include "insn.h"
24 #include "printinsn.h"
25 #include "mmvec/decode_ext_mmvec.h"
26 
27 #define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
28 
29 enum {
30     EXT_IDX_noext = 0,
31     EXT_IDX_noext_AFTER = 4,
32     EXT_IDX_mmvec = 4,
33     EXT_IDX_mmvec_AFTER = 8,
34     XX_LAST_EXT_IDX
35 };
36 
37 /*
38  *  Certain operand types represent a non-contiguous set of values.
39  *  For example, the compound compare-and-jump instruction can only access
40  *  registers R0-R7 and R16-23.
41  *  This table represents the mapping from the encoding to the actual values.
42  */
43 
44 #define DEF_REGMAP(NAME, ELEMENTS, ...) \
45     static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
46     { __VA_ARGS__ };
47         /* Name   Num Table */
48 DEF_REGMAP(R_16,  16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
49 DEF_REGMAP(R__8,  8,  0, 2, 4, 6, 16, 18, 20, 22)
50 DEF_REGMAP(R_8,   8,  0, 1, 2, 3, 4, 5, 6, 7)
51 
52 #define DECODE_MAPPED_REG(OPNUM, NAME) \
53     insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]];
54 
55 /* Helper functions for decode_*_generated.c.inc */
56 #define DECODE_MAPPED(NAME) \
57 static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \
58 { \
59     return DECODE_REGISTER_##NAME[x]; \
60 }
DECODE_MAPPED(R_16)61 DECODE_MAPPED(R_16)
62 DECODE_MAPPED(R_8)
63 DECODE_MAPPED(R__8)
64 
65 /* Helper function for decodetree_trans_funcs_generated.c.inc */
66 static int shift_left(DisasContext *ctx, int x, int n, int immno)
67 {
68     int ret = x;
69     Insn *insn = ctx->insn;
70     if (!insn->extension_valid ||
71         insn->which_extended != immno) {
72         ret <<= n;
73     }
74     return ret;
75 }
76 
77 /* Include the generated decoder for 32 bit insn */
78 #include "decode_normal_generated.c.inc"
79 #include "decode_hvx_generated.c.inc"
80 
81 /* Include the generated decoder for 16 bit insn */
82 #include "decode_subinsn_a_generated.c.inc"
83 #include "decode_subinsn_l1_generated.c.inc"
84 #include "decode_subinsn_l2_generated.c.inc"
85 #include "decode_subinsn_s1_generated.c.inc"
86 #include "decode_subinsn_s2_generated.c.inc"
87 
88 /* Include the generated helpers for the decoder */
89 #include "decodetree_trans_funcs_generated.c.inc"
90 
decode_send_insn_to(Packet * packet,int start,int newloc)91 void decode_send_insn_to(Packet *packet, int start, int newloc)
92 {
93     Insn tmpinsn;
94     int direction;
95     int i;
96     if (start == newloc) {
97         return;
98     }
99     if (start < newloc) {
100         /* Move towards end */
101         direction = 1;
102     } else {
103         /* move towards beginning */
104         direction = -1;
105     }
106     for (i = start; i != newloc; i += direction) {
107         tmpinsn = packet->insn[i];
108         packet->insn[i] = packet->insn[i + direction];
109         packet->insn[i + direction] = tmpinsn;
110     }
111 }
112 
113 /* Fill newvalue registers with the correct regno */
114 static void
decode_fill_newvalue_regno(Packet * packet)115 decode_fill_newvalue_regno(Packet *packet)
116 {
117     int i, use_regidx, offset, def_idx, dst_idx;
118 
119     for (i = 1; i < packet->num_insns; i++) {
120         if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
121             !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
122 
123             g_assert(packet->insn[i].new_read_idx != -1);
124             use_regidx = packet->insn[i].new_read_idx;
125 
126             /*
127              * What's encoded at the N-field is the offset to who's producing
128              * the value.  Shift off the LSB which indicates odd/even register,
129              * then walk backwards and skip over the constant extenders.
130              */
131             offset = packet->insn[i].regno[use_regidx] >> 1;
132             def_idx = i - offset;
133             for (int j = 0; j < offset; j++) {
134                 if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
135                     def_idx--;
136                 }
137             }
138 
139             /*
140              * Check for a badly encoded N-field which points to an instruction
141              * out-of-range
142              */
143             g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));
144 
145             /* Now patch up the consumer with the register number */
146             g_assert(packet->insn[def_idx].dest_idx != -1);
147             dst_idx = packet->insn[def_idx].dest_idx;
148             packet->insn[i].regno[use_regidx] =
149                 packet->insn[def_idx].regno[dst_idx];
150             /*
151              * We need to remember who produces this value to later
152              * check if it was dynamically cancelled
153              */
154             packet->insn[i].new_value_producer_slot =
155                 packet->insn[def_idx].slot;
156         }
157     }
158 }
159 
160 /* Split CJ into a compare and a jump */
decode_split_cmpjump(Packet * pkt)161 static void decode_split_cmpjump(Packet *pkt)
162 {
163     int last, i;
164     int numinsns = pkt->num_insns;
165 
166     /*
167      * First, split all compare-jumps.
168      * The compare is sent to the end as a new instruction.
169      * Do it this way so we don't reorder dual jumps. Those need to stay in
170      * original order.
171      */
172     for (i = 0; i < numinsns; i++) {
173         /* It's a cmp-jump */
174         if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
175             last = pkt->num_insns;
176             pkt->insn[last] = pkt->insn[i];    /* copy the instruction */
177             pkt->insn[last].part1 = true;      /* last insn does the CMP */
178             pkt->insn[i].part1 = false;        /* existing insn does the JUMP */
179             pkt->num_insns++;
180         }
181     }
182 
183     /* Now re-shuffle all the compares back to the beginning */
184     for (i = 0; i < pkt->num_insns; i++) {
185         if (pkt->insn[i].part1) {
186             decode_send_insn_to(pkt, i, 0);
187         }
188     }
189 }
190 
decode_opcode_can_jump(int opcode)191 static bool decode_opcode_can_jump(int opcode)
192 {
193     if ((GET_ATTRIB(opcode, A_JUMP)) ||
194         (GET_ATTRIB(opcode, A_CALL)) ||
195         (opcode == J2_trap0) ||
196         (opcode == J2_pause)) {
197         /* Exception to A_JUMP attribute */
198         if (opcode == J4_hintjumpr) {
199             return false;
200         }
201         return true;
202     }
203 
204     return false;
205 }
206 
decode_opcode_ends_loop(int opcode)207 static bool decode_opcode_ends_loop(int opcode)
208 {
209     return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
210            GET_ATTRIB(opcode, A_HWLOOP1_END);
211 }
212 
213 /* Set the is_* fields in each instruction */
decode_set_insn_attr_fields(Packet * pkt)214 static void decode_set_insn_attr_fields(Packet *pkt)
215 {
216     int i;
217     int numinsns = pkt->num_insns;
218     uint16_t opcode;
219 
220     pkt->pkt_has_cof = false;
221     pkt->pkt_has_multi_cof = false;
222     pkt->pkt_has_endloop = false;
223     pkt->pkt_has_dczeroa = false;
224 
225     for (i = 0; i < numinsns; i++) {
226         opcode = pkt->insn[i].opcode;
227         if (pkt->insn[i].part1) {
228             continue;    /* Skip compare of cmp-jumps */
229         }
230 
231         if (GET_ATTRIB(opcode, A_DCZEROA)) {
232             pkt->pkt_has_dczeroa = true;
233         }
234 
235         if (GET_ATTRIB(opcode, A_STORE)) {
236             if (GET_ATTRIB(opcode, A_SCALAR_STORE) &&
237                 !GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
238                 if (pkt->insn[i].slot == 0) {
239                     pkt->pkt_has_store_s0 = true;
240                 } else {
241                     pkt->pkt_has_store_s1 = true;
242                 }
243             }
244         }
245 
246         if (decode_opcode_can_jump(opcode)) {
247             if (pkt->pkt_has_cof) {
248                 pkt->pkt_has_multi_cof = true;
249             }
250             pkt->pkt_has_cof = true;
251         }
252 
253         pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);
254 
255         pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;
256 
257         if (pkt->pkt_has_endloop) {
258             if (pkt->pkt_has_cof) {
259                 pkt->pkt_has_multi_cof = true;
260             }
261             pkt->pkt_has_cof = true;
262         }
263     }
264 }
265 
266 /*
267  * Shuffle for execution
268  * Move stores to end (in same order as encoding)
269  * Move compares to beginning (for use by .new insns)
270  */
decode_shuffle_for_execution(Packet * packet)271 static void decode_shuffle_for_execution(Packet *packet)
272 {
273     bool changed = false;
274     int i;
275     bool flag;    /* flag means we've seen a non-memory instruction */
276     int n_mems;
277     int last_insn = packet->num_insns - 1;
278 
279     /*
280      * Skip end loops, somehow an end loop is getting in and messing
281      * up the order
282      */
283     if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
284         last_insn--;
285     }
286 
287     do {
288         changed = false;
289         /*
290          * Stores go last, must not reorder.
291          * Cannot shuffle stores past loads, either.
292          * Iterate backwards.  If we see a non-memory instruction,
293          * then a store, shuffle the store to the front.  Don't shuffle
294          * stores wrt each other or a load.
295          */
296         for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) {
297             int opcode = packet->insn[i].opcode;
298 
299             if (flag && GET_ATTRIB(opcode, A_STORE)) {
300                 decode_send_insn_to(packet, i, last_insn - n_mems);
301                 n_mems++;
302                 changed = true;
303             } else if (GET_ATTRIB(opcode, A_STORE)) {
304                 n_mems++;
305             } else if (GET_ATTRIB(opcode, A_LOAD)) {
306                 /*
307                  * Don't set flag, since we don't want to shuffle a
308                  * store past a load
309                  */
310                 n_mems++;
311             } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
312                 /*
313                  * Don't set flag, since we don't want to shuffle past
314                  * a .new value
315                  */
316             } else {
317                 flag = true;
318             }
319         }
320 
321         if (changed) {
322             continue;
323         }
324         /* Compares go first, may be reordered wrt each other */
325         for (flag = false, i = 0; i < last_insn + 1; i++) {
326             int opcode = packet->insn[i].opcode;
327 
328             if (packet->insn[i].has_pred_dest &&
329                 GET_ATTRIB(opcode, A_STORE) == 0) {
330                 /* This should be a compare (not a store conditional) */
331                 if (flag) {
332                     decode_send_insn_to(packet, i, 0);
333                     changed = true;
334                     continue;
335                 }
336             } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
337                        !decode_opcode_ends_loop(packet->insn[i].opcode)) {
338                 /*
339                  * spNloop instruction
340                  * Don't reorder endloops; they are not valid for .new uses,
341                  * and we want to match HW
342                  */
343                 if (flag) {
344                     decode_send_insn_to(packet, i, 0);
345                     changed = true;
346                     continue;
347                 }
348             } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
349                        !GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
350                 if (flag) {
351                     decode_send_insn_to(packet, i, 0);
352                     changed = true;
353                     continue;
354                 }
355             } else {
356                 flag = true;
357             }
358         }
359         if (changed) {
360             continue;
361         }
362     } while (changed);
363 
364     /*
365      * If we have a .new register compare/branch, move that to the very
366      * very end, past stores
367      */
368     for (i = 0; i < last_insn; i++) {
369         if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
370             decode_send_insn_to(packet, i, last_insn);
371             break;
372         }
373     }
374 }
375 
376 static void
apply_extender(Packet * pkt,int i,uint32_t extender)377 apply_extender(Packet *pkt, int i, uint32_t extender)
378 {
379     int immed_num;
380     uint32_t base_immed;
381 
382     immed_num = pkt->insn[i].which_extended;
383     base_immed = pkt->insn[i].immed[immed_num];
384 
385     pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
386 }
387 
decode_apply_extenders(Packet * packet)388 static void decode_apply_extenders(Packet *packet)
389 {
390     int i;
391     for (i = 0; i < packet->num_insns; i++) {
392         if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
393             packet->insn[i + 1].extension_valid = true;
394             apply_extender(packet, i + 1, packet->insn[i].immed[0]);
395         }
396     }
397 }
398 
decode_remove_extenders(Packet * packet)399 static void decode_remove_extenders(Packet *packet)
400 {
401     int i, j;
402     for (i = 0; i < packet->num_insns; i++) {
403         if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
404             /* Remove this one by moving the remaining instructions down */
405             for (j = i;
406                 (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
407                 j++) {
408                 packet->insn[j] = packet->insn[j + 1];
409             }
410             packet->num_insns--;
411         }
412     }
413 }
414 
get_valid_slots(const Packet * pkt,unsigned int slot)415 static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
416 {
417     if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) {
418         return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode);
419     } else {
420         return find_iclass_slots(pkt->insn[slot].opcode,
421                                  pkt->insn[slot].iclass);
422     }
423 }
424 
425 /*
426  * Section 10.3 of the Hexagon V73 Programmer's Reference Manual
427  *
428  * A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00.
429  * The sub-instructions that comprise a duplex are encoded as 13-bit fields
430  * in the duplex.
431  *
432  * Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13
433  */
get_duplex_iclass(uint32_t encoding)434 static uint32_t get_duplex_iclass(uint32_t encoding)
435 {
436     uint32_t iclass = extract32(encoding, 13, 1);
437     iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3));
438     return iclass;
439 }
440 
441 /*
442  * Per table 10-5, the duplex ICLASS field values that specify the group of
443  * each sub-instruction in a duplex
444  *
445  * This table points to the decode instruction for each entry in the table
446  */
447 typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn);
448 typedef struct {
449     subinsn_decode_func decode_slot0_subinsn;
450     subinsn_decode_func decode_slot1_subinsn;
451 } subinsn_decode_groups;
452 
453 static const subinsn_decode_groups decode_groups[16] = {
454     [0x0] = { decode_subinsn_l1, decode_subinsn_l1 },
455     [0x1] = { decode_subinsn_l2, decode_subinsn_l1 },
456     [0x2] = { decode_subinsn_l2, decode_subinsn_l2 },
457     [0x3] = { decode_subinsn_a,  decode_subinsn_a },
458     [0x4] = { decode_subinsn_l1, decode_subinsn_a },
459     [0x5] = { decode_subinsn_l2, decode_subinsn_a },
460     [0x6] = { decode_subinsn_s1, decode_subinsn_a },
461     [0x7] = { decode_subinsn_s2, decode_subinsn_a },
462     [0x8] = { decode_subinsn_s1, decode_subinsn_l1 },
463     [0x9] = { decode_subinsn_s1, decode_subinsn_l2 },
464     [0xa] = { decode_subinsn_s1, decode_subinsn_s1 },
465     [0xb] = { decode_subinsn_s2, decode_subinsn_s1 },
466     [0xc] = { decode_subinsn_s2, decode_subinsn_l1 },
467     [0xd] = { decode_subinsn_s2, decode_subinsn_l2 },
468     [0xe] = { decode_subinsn_s2, decode_subinsn_s2 },
469     [0xf] = { NULL,              NULL },              /* Reserved */
470 };
471 
get_slot0_subinsn(uint32_t encoding)472 static uint16_t get_slot0_subinsn(uint32_t encoding)
473 {
474     return extract32(encoding, 0, 13);
475 }
476 
get_slot1_subinsn(uint32_t encoding)477 static uint16_t get_slot1_subinsn(uint32_t encoding)
478 {
479     return extract32(encoding, 16, 13);
480 }
481 
482 static unsigned int
decode_insns(DisasContext * ctx,Insn * insn,uint32_t encoding)483 decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding)
484 {
485     if (parse_bits(encoding) != 0) {
486         if (decode_normal(ctx, encoding) ||
487             decode_hvx(ctx, encoding)) {
488             insn->generate = opcode_genptr[insn->opcode];
489             insn->iclass = iclass_bits(encoding);
490             return 1;
491         }
492         g_assert_not_reached();
493     } else {
494         uint32_t iclass = get_duplex_iclass(encoding);
495         unsigned int slot0_subinsn = get_slot0_subinsn(encoding);
496         unsigned int slot1_subinsn = get_slot1_subinsn(encoding);
497         subinsn_decode_func decode_slot0_subinsn =
498             decode_groups[iclass].decode_slot0_subinsn;
499         subinsn_decode_func decode_slot1_subinsn =
500             decode_groups[iclass].decode_slot1_subinsn;
501 
502         /* The slot1 subinsn needs to be in the packet first */
503         if (decode_slot1_subinsn(ctx, slot1_subinsn)) {
504             insn->generate = opcode_genptr[insn->opcode];
505             insn->iclass = iclass_bits(encoding);
506             ctx->insn = ++insn;
507             if (decode_slot0_subinsn(ctx, slot0_subinsn)) {
508                 insn->generate = opcode_genptr[insn->opcode];
509                 insn->iclass = iclass_bits(encoding);
510                 return 2;
511             }
512         }
513         g_assert_not_reached();
514     }
515 }
516 
decode_add_endloop_insn(Insn * insn,int loopnum)517 static void decode_add_endloop_insn(Insn *insn, int loopnum)
518 {
519     if (loopnum == 10) {
520         insn->opcode = J2_endloop01;
521         insn->generate = opcode_genptr[J2_endloop01];
522     } else if (loopnum == 1) {
523         insn->opcode = J2_endloop1;
524         insn->generate = opcode_genptr[J2_endloop1];
525     } else if (loopnum == 0) {
526         insn->opcode = J2_endloop0;
527         insn->generate = opcode_genptr[J2_endloop0];
528     } else {
529         g_assert_not_reached();
530     }
531 }
532 
decode_parsebits_is_loopend(uint32_t encoding32)533 static bool decode_parsebits_is_loopend(uint32_t encoding32)
534 {
535     uint32_t bits = parse_bits(encoding32);
536     return bits == 0x2;
537 }
538 
has_valid_slot_assignment(Packet * pkt)539 static bool has_valid_slot_assignment(Packet *pkt)
540 {
541     int used_slots = 0;
542     for (int i = 0; i < pkt->num_insns; i++) {
543         int slot_mask;
544         Insn *insn = &pkt->insn[i];
545         if (decode_opcode_ends_loop(insn->opcode)) {
546             /* We overload slot 0 for endloop. */
547             continue;
548         }
549         slot_mask = 1 << insn->slot;
550         if (used_slots & slot_mask) {
551             return false;
552         }
553         used_slots |= slot_mask;
554     }
555     return true;
556 }
557 
558 static bool
decode_set_slot_number(Packet * pkt)559 decode_set_slot_number(Packet *pkt)
560 {
561     int slot;
562     int i;
563     bool hit_mem_insn = false;
564     bool hit_duplex = false;
565     bool slot0_found = false;
566     bool slot1_found = false;
567     int slot1_iidx = 0;
568 
569     /*
570      * The slots are encoded in reverse order
571      * For each instruction, count down until you find a suitable slot
572      */
573     for (i = 0, slot = 3; i < pkt->num_insns; i++) {
574         SlotMask valid_slots = get_valid_slots(pkt, i);
575 
576         while (!(valid_slots & (1 << slot))) {
577             slot--;
578         }
579         pkt->insn[i].slot = slot;
580         if (slot) {
581             /* I've assigned the slot, now decrement it for the next insn */
582             slot--;
583         }
584     }
585 
586     /* Fix the exceptions - mem insns to slot 0,1 */
587     for (i = pkt->num_insns - 1; i >= 0; i--) {
588         /* First memory instruction always goes to slot 0 */
589         if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
590              GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
591             !hit_mem_insn) {
592             hit_mem_insn = true;
593             pkt->insn[i].slot = 0;
594             continue;
595         }
596 
597         /* Next memory instruction always goes to slot 1 */
598         if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
599              GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
600             hit_mem_insn) {
601             pkt->insn[i].slot = 1;
602         }
603     }
604 
605     /* Fix the exceptions - duplex always slot 0,1 */
606     for (i = pkt->num_insns - 1; i >= 0; i--) {
607         /* First subinsn always goes to slot 0 */
608         if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
609             hit_duplex = true;
610             pkt->insn[i].slot = 0;
611             continue;
612         }
613 
614         /* Next subinsn always goes to slot 1 */
615         if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
616             pkt->insn[i].slot = 1;
617         }
618     }
619 
620     /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
621     for (i = pkt->num_insns - 1; i >= 0; i--) {
622         /* Is slot0 used? */
623         if (pkt->insn[i].slot == 0) {
624             bool is_endloop = (pkt->insn[i].opcode == J2_endloop01);
625             is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
626             is_endloop |= (pkt->insn[i].opcode == J2_endloop1);
627 
628             /*
629              * Make sure it's not endloop since, we're overloading
630              * slot0 for endloop
631              */
632             if (!is_endloop) {
633                 slot0_found = true;
634             }
635         }
636         /* Is slot1 used? */
637         if (pkt->insn[i].slot == 1) {
638             slot1_found = true;
639             slot1_iidx = i;
640         }
641     }
642     /* Is slot0 empty and slot1 used? */
643     if ((!slot0_found) && slot1_found) {
644         /* Then push it to slot0 */
645         pkt->insn[slot1_iidx].slot = 0;
646     }
647 
648     return has_valid_slot_assignment(pkt);
649 }
650 
651 /*
652  * decode_packet
653  * Decodes packet with given words
654  * Returns 0 on insufficient words,
655  * or number of words used on success
656  */
657 
decode_packet(DisasContext * ctx,int max_words,const uint32_t * words,Packet * pkt,bool disas_only)658 int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words,
659                   Packet *pkt, bool disas_only)
660 {
661     int num_insns = 0;
662     int words_read = 0;
663     bool end_of_packet = false;
664     int new_insns = 0;
665     int i;
666     uint32_t encoding32;
667 
668     /* Initialize */
669     memset(pkt, 0, sizeof(*pkt));
670     /* Try to build packet */
671     while (!end_of_packet && (words_read < max_words)) {
672         Insn *insn = &pkt->insn[num_insns];
673         ctx->insn = insn;
674         encoding32 = words[words_read];
675         end_of_packet = is_packet_end(encoding32);
676         new_insns = decode_insns(ctx, insn, encoding32);
677         g_assert(new_insns > 0);
678         /*
679          * If we saw an extender, mark next word extended so immediate
680          * decode works
681          */
682         if (pkt->insn[num_insns].opcode == A4_ext) {
683             pkt->insn[num_insns + 1].extension_valid = true;
684         }
685         num_insns += new_insns;
686         words_read++;
687     }
688 
689     pkt->num_insns = num_insns;
690     if (!end_of_packet) {
691         /* Ran out of words! */
692         return 0;
693     }
694     pkt->encod_pkt_size_in_bytes = words_read * 4;
695     pkt->pkt_has_hvx = false;
696     for (i = 0; i < num_insns; i++) {
697         pkt->pkt_has_hvx |=
698             GET_ATTRIB(pkt->insn[i].opcode, A_CVI);
699     }
700 
701     /*
702      * Check for :endloop in the parse bits
703      * Section 10.6 of the Programmer's Reference describes the encoding
704      *     The end of hardware loop 0 can be encoded with 2 words
705      *     The end of hardware loop 1 needs 3 words
706      */
707     if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
708         decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
709     }
710     if (words_read >= 3) {
711         bool has_loop0, has_loop1;
712         has_loop0 = decode_parsebits_is_loopend(words[0]);
713         has_loop1 = decode_parsebits_is_loopend(words[1]);
714         if (has_loop0 && has_loop1) {
715             decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
716         } else if (has_loop1) {
717             decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
718         } else if (has_loop0) {
719             decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
720         }
721     }
722 
723     decode_apply_extenders(pkt);
724     if (!disas_only) {
725         decode_remove_extenders(pkt);
726         if (!decode_set_slot_number(pkt)) {
727             /* Invalid packet */
728             return 0;
729         }
730     }
731     decode_fill_newvalue_regno(pkt);
732 
733     if (pkt->pkt_has_hvx) {
734         mmvec_ext_decode_checks(pkt, disas_only);
735     }
736 
737     if (!disas_only) {
738         decode_shuffle_for_execution(pkt);
739         decode_split_cmpjump(pkt);
740         decode_set_insn_attr_fields(pkt);
741     }
742 
743     return words_read;
744 }
745 
746 /* Used for "-d in_asm" logging */
disassemble_hexagon(uint32_t * words,int nwords,bfd_vma pc,GString * buf)747 int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
748                         GString *buf)
749 {
750     DisasContext ctx;
751     Packet pkt;
752 
753     memset(&ctx, 0, sizeof(DisasContext));
754     ctx.pkt = &pkt;
755 
756     if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) {
757         snprint_a_pkt_disas(buf, &pkt, words, pc);
758         return pkt.encod_pkt_size_in_bytes;
759     } else {
760         g_string_assign(buf, "<invalid>");
761         return 0;
762     }
763 }
764