xref: /openbmc/linux/fs/btrfs/ctree.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
abort_should_print_stack(int errno)233 bool __cold abort_should_print_stack(int errno)
234 {
235 	switch (errno) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 
320 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321 		trans->transid != fs_info->running_transaction->transid);
322 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323 		trans->transid != root->last_trans);
324 
325 	level = btrfs_header_level(buf);
326 	if (level == 0)
327 		btrfs_item_key(buf, &disk_key, 0);
328 	else
329 		btrfs_node_key(buf, &disk_key, 0);
330 
331 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332 				     &disk_key, level, buf->start, 0,
333 				     BTRFS_NESTING_NEW_ROOT);
334 	if (IS_ERR(cow))
335 		return PTR_ERR(cow);
336 
337 	copy_extent_buffer_full(cow, buf);
338 	btrfs_set_header_bytenr(cow, cow->start);
339 	btrfs_set_header_generation(cow, trans->transid);
340 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342 				     BTRFS_HEADER_FLAG_RELOC);
343 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345 	else
346 		btrfs_set_header_owner(cow, new_root_objectid);
347 
348 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349 
350 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
351 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352 		ret = btrfs_inc_ref(trans, root, cow, 1);
353 	else
354 		ret = btrfs_inc_ref(trans, root, cow, 0);
355 	if (ret) {
356 		btrfs_tree_unlock(cow);
357 		free_extent_buffer(cow);
358 		btrfs_abort_transaction(trans, ret);
359 		return ret;
360 	}
361 
362 	btrfs_mark_buffer_dirty(trans, cow);
363 	*cow_ret = cow;
364 	return 0;
365 }
366 
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)370 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
371 			      struct btrfs_root *root,
372 			      struct extent_buffer *buf)
373 {
374 	/*
375 	 * Tree blocks not in shareable trees and tree roots are never shared.
376 	 * If a block was allocated after the last snapshot and the block was
377 	 * not allocated by tree relocation, we know the block is not shared.
378 	 */
379 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
380 	    buf != root->node &&
381 	    (btrfs_header_generation(buf) <=
382 	     btrfs_root_last_snapshot(&root->root_item) ||
383 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
384 		if (buf != root->commit_root)
385 			return 1;
386 		/*
387 		 * An extent buffer that used to be the commit root may still be
388 		 * shared because the tree height may have increased and it
389 		 * became a child of a higher level root. This can happen when
390 		 * snapshotting a subvolume created in the current transaction.
391 		 */
392 		if (btrfs_header_generation(buf) == trans->transid)
393 			return 1;
394 	}
395 
396 	return 0;
397 }
398 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)399 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
400 				       struct btrfs_root *root,
401 				       struct extent_buffer *buf,
402 				       struct extent_buffer *cow,
403 				       int *last_ref)
404 {
405 	struct btrfs_fs_info *fs_info = root->fs_info;
406 	u64 refs;
407 	u64 owner;
408 	u64 flags;
409 	u64 new_flags = 0;
410 	int ret;
411 
412 	/*
413 	 * Backrefs update rules:
414 	 *
415 	 * Always use full backrefs for extent pointers in tree block
416 	 * allocated by tree relocation.
417 	 *
418 	 * If a shared tree block is no longer referenced by its owner
419 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
420 	 * use full backrefs for extent pointers in tree block.
421 	 *
422 	 * If a tree block is been relocating
423 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
424 	 * use full backrefs for extent pointers in tree block.
425 	 * The reason for this is some operations (such as drop tree)
426 	 * are only allowed for blocks use full backrefs.
427 	 */
428 
429 	if (btrfs_block_can_be_shared(trans, root, buf)) {
430 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
431 					       btrfs_header_level(buf), 1,
432 					       &refs, &flags);
433 		if (ret)
434 			return ret;
435 		if (unlikely(refs == 0)) {
436 			btrfs_crit(fs_info,
437 		"found 0 references for tree block at bytenr %llu level %d root %llu",
438 				   buf->start, btrfs_header_level(buf),
439 				   btrfs_root_id(root));
440 			ret = -EUCLEAN;
441 			btrfs_abort_transaction(trans, ret);
442 			return ret;
443 		}
444 	} else {
445 		refs = 1;
446 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
448 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
449 		else
450 			flags = 0;
451 	}
452 
453 	owner = btrfs_header_owner(buf);
454 	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
455 		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
456 		btrfs_crit(fs_info,
457 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
458 			   buf->start, btrfs_header_level(buf),
459 			   btrfs_root_id(root), refs, flags);
460 		ret = -EUCLEAN;
461 		btrfs_abort_transaction(trans, ret);
462 		return ret;
463 	}
464 
465 	if (refs > 1) {
466 		if ((owner == root->root_key.objectid ||
467 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
468 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
469 			ret = btrfs_inc_ref(trans, root, buf, 1);
470 			if (ret)
471 				return ret;
472 
473 			if (root->root_key.objectid ==
474 			    BTRFS_TREE_RELOC_OBJECTID) {
475 				ret = btrfs_dec_ref(trans, root, buf, 0);
476 				if (ret)
477 					return ret;
478 				ret = btrfs_inc_ref(trans, root, cow, 1);
479 				if (ret)
480 					return ret;
481 			}
482 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
483 		} else {
484 
485 			if (root->root_key.objectid ==
486 			    BTRFS_TREE_RELOC_OBJECTID)
487 				ret = btrfs_inc_ref(trans, root, cow, 1);
488 			else
489 				ret = btrfs_inc_ref(trans, root, cow, 0);
490 			if (ret)
491 				return ret;
492 		}
493 		if (new_flags != 0) {
494 			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
495 			if (ret)
496 				return ret;
497 		}
498 	} else {
499 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
500 			if (root->root_key.objectid ==
501 			    BTRFS_TREE_RELOC_OBJECTID)
502 				ret = btrfs_inc_ref(trans, root, cow, 1);
503 			else
504 				ret = btrfs_inc_ref(trans, root, cow, 0);
505 			if (ret)
506 				return ret;
507 			ret = btrfs_dec_ref(trans, root, buf, 1);
508 			if (ret)
509 				return ret;
510 		}
511 		btrfs_clear_buffer_dirty(trans, buf);
512 		*last_ref = 1;
513 	}
514 	return 0;
515 }
516 
517 /*
518  * does the dirty work in cow of a single block.  The parent block (if
519  * supplied) is updated to point to the new cow copy.  The new buffer is marked
520  * dirty and returned locked.  If you modify the block it needs to be marked
521  * dirty again.
522  *
523  * search_start -- an allocation hint for the new block
524  *
525  * empty_size -- a hint that you plan on doing more cow.  This is the size in
526  * bytes the allocator should try to find free next to the block it returns.
527  * This is just a hint and may be ignored by the allocator.
528  */
btrfs_force_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)529 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
530 			  struct btrfs_root *root,
531 			  struct extent_buffer *buf,
532 			  struct extent_buffer *parent, int parent_slot,
533 			  struct extent_buffer **cow_ret,
534 			  u64 search_start, u64 empty_size,
535 			  enum btrfs_lock_nesting nest)
536 {
537 	struct btrfs_fs_info *fs_info = root->fs_info;
538 	struct btrfs_disk_key disk_key;
539 	struct extent_buffer *cow;
540 	int level, ret;
541 	int last_ref = 0;
542 	int unlock_orig = 0;
543 	u64 parent_start = 0;
544 
545 	if (*cow_ret == buf)
546 		unlock_orig = 1;
547 
548 	btrfs_assert_tree_write_locked(buf);
549 
550 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
551 		trans->transid != fs_info->running_transaction->transid);
552 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
553 		trans->transid != root->last_trans);
554 
555 	level = btrfs_header_level(buf);
556 
557 	if (level == 0)
558 		btrfs_item_key(buf, &disk_key, 0);
559 	else
560 		btrfs_node_key(buf, &disk_key, 0);
561 
562 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
563 		parent_start = parent->start;
564 
565 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
566 				     root->root_key.objectid, &disk_key, level,
567 				     search_start, empty_size, nest);
568 	if (IS_ERR(cow))
569 		return PTR_ERR(cow);
570 
571 	/* cow is set to blocking by btrfs_init_new_buffer */
572 
573 	copy_extent_buffer_full(cow, buf);
574 	btrfs_set_header_bytenr(cow, cow->start);
575 	btrfs_set_header_generation(cow, trans->transid);
576 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
577 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
578 				     BTRFS_HEADER_FLAG_RELOC);
579 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
580 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
581 	else
582 		btrfs_set_header_owner(cow, root->root_key.objectid);
583 
584 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
585 
586 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
587 	if (ret) {
588 		btrfs_tree_unlock(cow);
589 		free_extent_buffer(cow);
590 		btrfs_abort_transaction(trans, ret);
591 		return ret;
592 	}
593 
594 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
595 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
596 		if (ret) {
597 			btrfs_tree_unlock(cow);
598 			free_extent_buffer(cow);
599 			btrfs_abort_transaction(trans, ret);
600 			return ret;
601 		}
602 	}
603 
604 	if (buf == root->node) {
605 		WARN_ON(parent && parent != buf);
606 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
607 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
608 			parent_start = buf->start;
609 
610 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
611 		if (ret < 0) {
612 			btrfs_tree_unlock(cow);
613 			free_extent_buffer(cow);
614 			btrfs_abort_transaction(trans, ret);
615 			return ret;
616 		}
617 		atomic_inc(&cow->refs);
618 		rcu_assign_pointer(root->node, cow);
619 
620 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
621 					    parent_start, last_ref);
622 		free_extent_buffer(buf);
623 		add_root_to_dirty_list(root);
624 		if (ret < 0) {
625 			btrfs_tree_unlock(cow);
626 			free_extent_buffer(cow);
627 			btrfs_abort_transaction(trans, ret);
628 			return ret;
629 		}
630 	} else {
631 		WARN_ON(trans->transid != btrfs_header_generation(parent));
632 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 						    BTRFS_MOD_LOG_KEY_REPLACE);
634 		if (ret) {
635 			btrfs_tree_unlock(cow);
636 			free_extent_buffer(cow);
637 			btrfs_abort_transaction(trans, ret);
638 			return ret;
639 		}
640 		btrfs_set_node_blockptr(parent, parent_slot,
641 					cow->start);
642 		btrfs_set_node_ptr_generation(parent, parent_slot,
643 					      trans->transid);
644 		btrfs_mark_buffer_dirty(trans, parent);
645 		if (last_ref) {
646 			ret = btrfs_tree_mod_log_free_eb(buf);
647 			if (ret) {
648 				btrfs_tree_unlock(cow);
649 				free_extent_buffer(cow);
650 				btrfs_abort_transaction(trans, ret);
651 				return ret;
652 			}
653 		}
654 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
655 					    parent_start, last_ref);
656 		if (ret < 0) {
657 			btrfs_tree_unlock(cow);
658 			free_extent_buffer(cow);
659 			btrfs_abort_transaction(trans, ret);
660 			return ret;
661 		}
662 	}
663 
664 	trace_btrfs_cow_block(root, buf, cow);
665 	if (unlock_orig)
666 		btrfs_tree_unlock(buf);
667 	free_extent_buffer_stale(buf);
668 	btrfs_mark_buffer_dirty(trans, cow);
669 	*cow_ret = cow;
670 	return 0;
671 }
672 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)673 static inline int should_cow_block(struct btrfs_trans_handle *trans,
674 				   struct btrfs_root *root,
675 				   struct extent_buffer *buf)
676 {
677 	if (btrfs_is_testing(root->fs_info))
678 		return 0;
679 
680 	/* Ensure we can see the FORCE_COW bit */
681 	smp_mb__before_atomic();
682 
683 	/*
684 	 * We do not need to cow a block if
685 	 * 1) this block is not created or changed in this transaction;
686 	 * 2) this block does not belong to TREE_RELOC tree;
687 	 * 3) the root is not forced COW.
688 	 *
689 	 * What is forced COW:
690 	 *    when we create snapshot during committing the transaction,
691 	 *    after we've finished copying src root, we must COW the shared
692 	 *    block to ensure the metadata consistency.
693 	 */
694 	if (btrfs_header_generation(buf) == trans->transid &&
695 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
696 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
697 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
698 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
699 		return 0;
700 	return 1;
701 }
702 
703 /*
704  * COWs a single block, see btrfs_force_cow_block() for the real work.
705  * This version of it has extra checks so that a block isn't COWed more than
706  * once per transaction, as long as it hasn't been written yet
707  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)708 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
709 		    struct btrfs_root *root, struct extent_buffer *buf,
710 		    struct extent_buffer *parent, int parent_slot,
711 		    struct extent_buffer **cow_ret,
712 		    enum btrfs_lock_nesting nest)
713 {
714 	struct btrfs_fs_info *fs_info = root->fs_info;
715 	u64 search_start;
716 
717 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
718 		btrfs_abort_transaction(trans, -EUCLEAN);
719 		btrfs_crit(fs_info,
720 		   "attempt to COW block %llu on root %llu that is being deleted",
721 			   buf->start, btrfs_root_id(root));
722 		return -EUCLEAN;
723 	}
724 
725 	/*
726 	 * COWing must happen through a running transaction, which always
727 	 * matches the current fs generation (it's a transaction with a state
728 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
729 	 * into error state to prevent the commit of any transaction.
730 	 */
731 	if (unlikely(trans->transaction != fs_info->running_transaction ||
732 		     trans->transid != fs_info->generation)) {
733 		btrfs_abort_transaction(trans, -EUCLEAN);
734 		btrfs_crit(fs_info,
735 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
736 			   buf->start, btrfs_root_id(root), trans->transid,
737 			   fs_info->running_transaction->transid,
738 			   fs_info->generation);
739 		return -EUCLEAN;
740 	}
741 
742 	if (!should_cow_block(trans, root, buf)) {
743 		*cow_ret = buf;
744 		return 0;
745 	}
746 
747 	search_start = buf->start & ~((u64)SZ_1G - 1);
748 
749 	/*
750 	 * Before CoWing this block for later modification, check if it's
751 	 * the subtree root and do the delayed subtree trace if needed.
752 	 *
753 	 * Also We don't care about the error, as it's handled internally.
754 	 */
755 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
756 	return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
757 				     cow_ret, search_start, 0, nest);
758 }
759 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
760 
761 /*
762  * helper function for defrag to decide if two blocks pointed to by a
763  * node are actually close by
764  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)765 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
766 {
767 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
768 		return 1;
769 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
770 		return 1;
771 	return 0;
772 }
773 
774 #ifdef __LITTLE_ENDIAN
775 
776 /*
777  * Compare two keys, on little-endian the disk order is same as CPU order and
778  * we can avoid the conversion.
779  */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)780 static int comp_keys(const struct btrfs_disk_key *disk_key,
781 		     const struct btrfs_key *k2)
782 {
783 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
784 
785 	return btrfs_comp_cpu_keys(k1, k2);
786 }
787 
788 #else
789 
790 /*
791  * compare two keys in a memcmp fashion
792  */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)793 static int comp_keys(const struct btrfs_disk_key *disk,
794 		     const struct btrfs_key *k2)
795 {
796 	struct btrfs_key k1;
797 
798 	btrfs_disk_key_to_cpu(&k1, disk);
799 
800 	return btrfs_comp_cpu_keys(&k1, k2);
801 }
802 #endif
803 
804 /*
805  * same as comp_keys only with two btrfs_key's
806  */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)807 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
808 {
809 	if (k1->objectid > k2->objectid)
810 		return 1;
811 	if (k1->objectid < k2->objectid)
812 		return -1;
813 	if (k1->type > k2->type)
814 		return 1;
815 	if (k1->type < k2->type)
816 		return -1;
817 	if (k1->offset > k2->offset)
818 		return 1;
819 	if (k1->offset < k2->offset)
820 		return -1;
821 	return 0;
822 }
823 
824 /*
825  * this is used by the defrag code to go through all the
826  * leaves pointed to by a node and reallocate them so that
827  * disk order is close to key order
828  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)829 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
830 		       struct btrfs_root *root, struct extent_buffer *parent,
831 		       int start_slot, u64 *last_ret,
832 		       struct btrfs_key *progress)
833 {
834 	struct btrfs_fs_info *fs_info = root->fs_info;
835 	struct extent_buffer *cur;
836 	u64 blocknr;
837 	u64 search_start = *last_ret;
838 	u64 last_block = 0;
839 	u64 other;
840 	u32 parent_nritems;
841 	int end_slot;
842 	int i;
843 	int err = 0;
844 	u32 blocksize;
845 	int progress_passed = 0;
846 	struct btrfs_disk_key disk_key;
847 
848 	/*
849 	 * COWing must happen through a running transaction, which always
850 	 * matches the current fs generation (it's a transaction with a state
851 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
852 	 * into error state to prevent the commit of any transaction.
853 	 */
854 	if (unlikely(trans->transaction != fs_info->running_transaction ||
855 		     trans->transid != fs_info->generation)) {
856 		btrfs_abort_transaction(trans, -EUCLEAN);
857 		btrfs_crit(fs_info,
858 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
859 			   parent->start, btrfs_root_id(root), trans->transid,
860 			   fs_info->running_transaction->transid,
861 			   fs_info->generation);
862 		return -EUCLEAN;
863 	}
864 
865 	parent_nritems = btrfs_header_nritems(parent);
866 	blocksize = fs_info->nodesize;
867 	end_slot = parent_nritems - 1;
868 
869 	if (parent_nritems <= 1)
870 		return 0;
871 
872 	for (i = start_slot; i <= end_slot; i++) {
873 		int close = 1;
874 
875 		btrfs_node_key(parent, &disk_key, i);
876 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
877 			continue;
878 
879 		progress_passed = 1;
880 		blocknr = btrfs_node_blockptr(parent, i);
881 		if (last_block == 0)
882 			last_block = blocknr;
883 
884 		if (i > 0) {
885 			other = btrfs_node_blockptr(parent, i - 1);
886 			close = close_blocks(blocknr, other, blocksize);
887 		}
888 		if (!close && i < end_slot) {
889 			other = btrfs_node_blockptr(parent, i + 1);
890 			close = close_blocks(blocknr, other, blocksize);
891 		}
892 		if (close) {
893 			last_block = blocknr;
894 			continue;
895 		}
896 
897 		cur = btrfs_read_node_slot(parent, i);
898 		if (IS_ERR(cur))
899 			return PTR_ERR(cur);
900 		if (search_start == 0)
901 			search_start = last_block;
902 
903 		btrfs_tree_lock(cur);
904 		err = btrfs_force_cow_block(trans, root, cur, parent, i,
905 					    &cur, search_start,
906 					    min(16 * blocksize,
907 						(end_slot - i) * blocksize),
908 					    BTRFS_NESTING_COW);
909 		if (err) {
910 			btrfs_tree_unlock(cur);
911 			free_extent_buffer(cur);
912 			break;
913 		}
914 		search_start = cur->start;
915 		last_block = cur->start;
916 		*last_ret = search_start;
917 		btrfs_tree_unlock(cur);
918 		free_extent_buffer(cur);
919 	}
920 	return err;
921 }
922 
923 /*
924  * Search for a key in the given extent_buffer.
925  *
926  * The lower boundary for the search is specified by the slot number @first_slot.
927  * Use a value of 0 to search over the whole extent buffer. Works for both
928  * leaves and nodes.
929  *
930  * The slot in the extent buffer is returned via @slot. If the key exists in the
931  * extent buffer, then @slot will point to the slot where the key is, otherwise
932  * it points to the slot where you would insert the key.
933  *
934  * Slot may point to the total number of items (i.e. one position beyond the last
935  * key) if the key is bigger than the last key in the extent buffer.
936  */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)937 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
938 		     const struct btrfs_key *key, int *slot)
939 {
940 	unsigned long p;
941 	int item_size;
942 	/*
943 	 * Use unsigned types for the low and high slots, so that we get a more
944 	 * efficient division in the search loop below.
945 	 */
946 	u32 low = first_slot;
947 	u32 high = btrfs_header_nritems(eb);
948 	int ret;
949 	const int key_size = sizeof(struct btrfs_disk_key);
950 
951 	if (unlikely(low > high)) {
952 		btrfs_err(eb->fs_info,
953 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
954 			  __func__, low, high, eb->start,
955 			  btrfs_header_owner(eb), btrfs_header_level(eb));
956 		return -EINVAL;
957 	}
958 
959 	if (btrfs_header_level(eb) == 0) {
960 		p = offsetof(struct btrfs_leaf, items);
961 		item_size = sizeof(struct btrfs_item);
962 	} else {
963 		p = offsetof(struct btrfs_node, ptrs);
964 		item_size = sizeof(struct btrfs_key_ptr);
965 	}
966 
967 	while (low < high) {
968 		unsigned long oip;
969 		unsigned long offset;
970 		struct btrfs_disk_key *tmp;
971 		struct btrfs_disk_key unaligned;
972 		int mid;
973 
974 		mid = (low + high) / 2;
975 		offset = p + mid * item_size;
976 		oip = offset_in_page(offset);
977 
978 		if (oip + key_size <= PAGE_SIZE) {
979 			const unsigned long idx = get_eb_page_index(offset);
980 			char *kaddr = page_address(eb->pages[idx]);
981 
982 			oip = get_eb_offset_in_page(eb, offset);
983 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
984 		} else {
985 			read_extent_buffer(eb, &unaligned, offset, key_size);
986 			tmp = &unaligned;
987 		}
988 
989 		ret = comp_keys(tmp, key);
990 
991 		if (ret < 0)
992 			low = mid + 1;
993 		else if (ret > 0)
994 			high = mid;
995 		else {
996 			*slot = mid;
997 			return 0;
998 		}
999 	}
1000 	*slot = low;
1001 	return 1;
1002 }
1003 
root_add_used(struct btrfs_root * root,u32 size)1004 static void root_add_used(struct btrfs_root *root, u32 size)
1005 {
1006 	spin_lock(&root->accounting_lock);
1007 	btrfs_set_root_used(&root->root_item,
1008 			    btrfs_root_used(&root->root_item) + size);
1009 	spin_unlock(&root->accounting_lock);
1010 }
1011 
root_sub_used(struct btrfs_root * root,u32 size)1012 static void root_sub_used(struct btrfs_root *root, u32 size)
1013 {
1014 	spin_lock(&root->accounting_lock);
1015 	btrfs_set_root_used(&root->root_item,
1016 			    btrfs_root_used(&root->root_item) - size);
1017 	spin_unlock(&root->accounting_lock);
1018 }
1019 
1020 /* given a node and slot number, this reads the blocks it points to.  The
1021  * extent buffer is returned with a reference taken (but unlocked).
1022  */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)1023 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1024 					   int slot)
1025 {
1026 	int level = btrfs_header_level(parent);
1027 	struct btrfs_tree_parent_check check = { 0 };
1028 	struct extent_buffer *eb;
1029 
1030 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1031 		return ERR_PTR(-ENOENT);
1032 
1033 	ASSERT(level);
1034 
1035 	check.level = level - 1;
1036 	check.transid = btrfs_node_ptr_generation(parent, slot);
1037 	check.owner_root = btrfs_header_owner(parent);
1038 	check.has_first_key = true;
1039 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1040 
1041 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1042 			     &check);
1043 	if (IS_ERR(eb))
1044 		return eb;
1045 	if (!extent_buffer_uptodate(eb)) {
1046 		free_extent_buffer(eb);
1047 		return ERR_PTR(-EIO);
1048 	}
1049 
1050 	return eb;
1051 }
1052 
1053 /*
1054  * node level balancing, used to make sure nodes are in proper order for
1055  * item deletion.  We balance from the top down, so we have to make sure
1056  * that a deletion won't leave an node completely empty later on.
1057  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1058 static noinline int balance_level(struct btrfs_trans_handle *trans,
1059 			 struct btrfs_root *root,
1060 			 struct btrfs_path *path, int level)
1061 {
1062 	struct btrfs_fs_info *fs_info = root->fs_info;
1063 	struct extent_buffer *right = NULL;
1064 	struct extent_buffer *mid;
1065 	struct extent_buffer *left = NULL;
1066 	struct extent_buffer *parent = NULL;
1067 	int ret = 0;
1068 	int wret;
1069 	int pslot;
1070 	int orig_slot = path->slots[level];
1071 	u64 orig_ptr;
1072 
1073 	ASSERT(level > 0);
1074 
1075 	mid = path->nodes[level];
1076 
1077 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1078 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1079 
1080 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1081 
1082 	if (level < BTRFS_MAX_LEVEL - 1) {
1083 		parent = path->nodes[level + 1];
1084 		pslot = path->slots[level + 1];
1085 	}
1086 
1087 	/*
1088 	 * deal with the case where there is only one pointer in the root
1089 	 * by promoting the node below to a root
1090 	 */
1091 	if (!parent) {
1092 		struct extent_buffer *child;
1093 
1094 		if (btrfs_header_nritems(mid) != 1)
1095 			return 0;
1096 
1097 		/* promote the child to a root */
1098 		child = btrfs_read_node_slot(mid, 0);
1099 		if (IS_ERR(child)) {
1100 			ret = PTR_ERR(child);
1101 			goto out;
1102 		}
1103 
1104 		btrfs_tree_lock(child);
1105 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1106 				      BTRFS_NESTING_COW);
1107 		if (ret) {
1108 			btrfs_tree_unlock(child);
1109 			free_extent_buffer(child);
1110 			goto out;
1111 		}
1112 
1113 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1114 		if (ret < 0) {
1115 			btrfs_tree_unlock(child);
1116 			free_extent_buffer(child);
1117 			btrfs_abort_transaction(trans, ret);
1118 			goto out;
1119 		}
1120 		rcu_assign_pointer(root->node, child);
1121 
1122 		add_root_to_dirty_list(root);
1123 		btrfs_tree_unlock(child);
1124 
1125 		path->locks[level] = 0;
1126 		path->nodes[level] = NULL;
1127 		btrfs_clear_buffer_dirty(trans, mid);
1128 		btrfs_tree_unlock(mid);
1129 		/* once for the path */
1130 		free_extent_buffer(mid);
1131 
1132 		root_sub_used(root, mid->len);
1133 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1134 		/* once for the root ptr */
1135 		free_extent_buffer_stale(mid);
1136 		if (ret < 0) {
1137 			btrfs_abort_transaction(trans, ret);
1138 			goto out;
1139 		}
1140 		return 0;
1141 	}
1142 	if (btrfs_header_nritems(mid) >
1143 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1144 		return 0;
1145 
1146 	if (pslot) {
1147 		left = btrfs_read_node_slot(parent, pslot - 1);
1148 		if (IS_ERR(left)) {
1149 			ret = PTR_ERR(left);
1150 			left = NULL;
1151 			goto out;
1152 		}
1153 
1154 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1155 		wret = btrfs_cow_block(trans, root, left,
1156 				       parent, pslot - 1, &left,
1157 				       BTRFS_NESTING_LEFT_COW);
1158 		if (wret) {
1159 			ret = wret;
1160 			goto out;
1161 		}
1162 	}
1163 
1164 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1165 		right = btrfs_read_node_slot(parent, pslot + 1);
1166 		if (IS_ERR(right)) {
1167 			ret = PTR_ERR(right);
1168 			right = NULL;
1169 			goto out;
1170 		}
1171 
1172 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1173 		wret = btrfs_cow_block(trans, root, right,
1174 				       parent, pslot + 1, &right,
1175 				       BTRFS_NESTING_RIGHT_COW);
1176 		if (wret) {
1177 			ret = wret;
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	/* first, try to make some room in the middle buffer */
1183 	if (left) {
1184 		orig_slot += btrfs_header_nritems(left);
1185 		wret = push_node_left(trans, left, mid, 1);
1186 		if (wret < 0)
1187 			ret = wret;
1188 	}
1189 
1190 	/*
1191 	 * then try to empty the right most buffer into the middle
1192 	 */
1193 	if (right) {
1194 		wret = push_node_left(trans, mid, right, 1);
1195 		if (wret < 0 && wret != -ENOSPC)
1196 			ret = wret;
1197 		if (btrfs_header_nritems(right) == 0) {
1198 			btrfs_clear_buffer_dirty(trans, right);
1199 			btrfs_tree_unlock(right);
1200 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1201 			if (ret < 0) {
1202 				free_extent_buffer_stale(right);
1203 				right = NULL;
1204 				goto out;
1205 			}
1206 			root_sub_used(root, right->len);
1207 			ret = btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1208 					      0, 1);
1209 			free_extent_buffer_stale(right);
1210 			right = NULL;
1211 			if (ret < 0) {
1212 				btrfs_abort_transaction(trans, ret);
1213 				goto out;
1214 			}
1215 		} else {
1216 			struct btrfs_disk_key right_key;
1217 			btrfs_node_key(right, &right_key, 0);
1218 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1219 					BTRFS_MOD_LOG_KEY_REPLACE);
1220 			if (ret < 0) {
1221 				btrfs_abort_transaction(trans, ret);
1222 				goto out;
1223 			}
1224 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1225 			btrfs_mark_buffer_dirty(trans, parent);
1226 		}
1227 	}
1228 	if (btrfs_header_nritems(mid) == 1) {
1229 		/*
1230 		 * we're not allowed to leave a node with one item in the
1231 		 * tree during a delete.  A deletion from lower in the tree
1232 		 * could try to delete the only pointer in this node.
1233 		 * So, pull some keys from the left.
1234 		 * There has to be a left pointer at this point because
1235 		 * otherwise we would have pulled some pointers from the
1236 		 * right
1237 		 */
1238 		if (unlikely(!left)) {
1239 			btrfs_crit(fs_info,
1240 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1241 				   parent->start, btrfs_header_level(parent),
1242 				   mid->start, btrfs_root_id(root));
1243 			ret = -EUCLEAN;
1244 			btrfs_abort_transaction(trans, ret);
1245 			goto out;
1246 		}
1247 		wret = balance_node_right(trans, mid, left);
1248 		if (wret < 0) {
1249 			ret = wret;
1250 			goto out;
1251 		}
1252 		if (wret == 1) {
1253 			wret = push_node_left(trans, left, mid, 1);
1254 			if (wret < 0)
1255 				ret = wret;
1256 		}
1257 		BUG_ON(wret == 1);
1258 	}
1259 	if (btrfs_header_nritems(mid) == 0) {
1260 		btrfs_clear_buffer_dirty(trans, mid);
1261 		btrfs_tree_unlock(mid);
1262 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1263 		if (ret < 0) {
1264 			free_extent_buffer_stale(mid);
1265 			mid = NULL;
1266 			goto out;
1267 		}
1268 		root_sub_used(root, mid->len);
1269 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1270 		free_extent_buffer_stale(mid);
1271 		mid = NULL;
1272 		if (ret < 0) {
1273 			btrfs_abort_transaction(trans, ret);
1274 			goto out;
1275 		}
1276 	} else {
1277 		/* update the parent key to reflect our changes */
1278 		struct btrfs_disk_key mid_key;
1279 		btrfs_node_key(mid, &mid_key, 0);
1280 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1281 						    BTRFS_MOD_LOG_KEY_REPLACE);
1282 		if (ret < 0) {
1283 			btrfs_abort_transaction(trans, ret);
1284 			goto out;
1285 		}
1286 		btrfs_set_node_key(parent, &mid_key, pslot);
1287 		btrfs_mark_buffer_dirty(trans, parent);
1288 	}
1289 
1290 	/* update the path */
1291 	if (left) {
1292 		if (btrfs_header_nritems(left) > orig_slot) {
1293 			atomic_inc(&left->refs);
1294 			/* left was locked after cow */
1295 			path->nodes[level] = left;
1296 			path->slots[level + 1] -= 1;
1297 			path->slots[level] = orig_slot;
1298 			if (mid) {
1299 				btrfs_tree_unlock(mid);
1300 				free_extent_buffer(mid);
1301 			}
1302 		} else {
1303 			orig_slot -= btrfs_header_nritems(left);
1304 			path->slots[level] = orig_slot;
1305 		}
1306 	}
1307 	/* double check we haven't messed things up */
1308 	if (orig_ptr !=
1309 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1310 		BUG();
1311 out:
1312 	if (right) {
1313 		btrfs_tree_unlock(right);
1314 		free_extent_buffer(right);
1315 	}
1316 	if (left) {
1317 		if (path->nodes[level] != left)
1318 			btrfs_tree_unlock(left);
1319 		free_extent_buffer(left);
1320 	}
1321 	return ret;
1322 }
1323 
1324 /* Node balancing for insertion.  Here we only split or push nodes around
1325  * when they are completely full.  This is also done top down, so we
1326  * have to be pessimistic.
1327  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1328 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1329 					  struct btrfs_root *root,
1330 					  struct btrfs_path *path, int level)
1331 {
1332 	struct btrfs_fs_info *fs_info = root->fs_info;
1333 	struct extent_buffer *right = NULL;
1334 	struct extent_buffer *mid;
1335 	struct extent_buffer *left = NULL;
1336 	struct extent_buffer *parent = NULL;
1337 	int ret = 0;
1338 	int wret;
1339 	int pslot;
1340 	int orig_slot = path->slots[level];
1341 
1342 	if (level == 0)
1343 		return 1;
1344 
1345 	mid = path->nodes[level];
1346 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1347 
1348 	if (level < BTRFS_MAX_LEVEL - 1) {
1349 		parent = path->nodes[level + 1];
1350 		pslot = path->slots[level + 1];
1351 	}
1352 
1353 	if (!parent)
1354 		return 1;
1355 
1356 	/* first, try to make some room in the middle buffer */
1357 	if (pslot) {
1358 		u32 left_nr;
1359 
1360 		left = btrfs_read_node_slot(parent, pslot - 1);
1361 		if (IS_ERR(left))
1362 			return PTR_ERR(left);
1363 
1364 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1365 
1366 		left_nr = btrfs_header_nritems(left);
1367 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1368 			wret = 1;
1369 		} else {
1370 			ret = btrfs_cow_block(trans, root, left, parent,
1371 					      pslot - 1, &left,
1372 					      BTRFS_NESTING_LEFT_COW);
1373 			if (ret)
1374 				wret = 1;
1375 			else {
1376 				wret = push_node_left(trans, left, mid, 0);
1377 			}
1378 		}
1379 		if (wret < 0)
1380 			ret = wret;
1381 		if (wret == 0) {
1382 			struct btrfs_disk_key disk_key;
1383 			orig_slot += left_nr;
1384 			btrfs_node_key(mid, &disk_key, 0);
1385 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1386 					BTRFS_MOD_LOG_KEY_REPLACE);
1387 			if (ret < 0) {
1388 				btrfs_tree_unlock(left);
1389 				free_extent_buffer(left);
1390 				btrfs_abort_transaction(trans, ret);
1391 				return ret;
1392 			}
1393 			btrfs_set_node_key(parent, &disk_key, pslot);
1394 			btrfs_mark_buffer_dirty(trans, parent);
1395 			if (btrfs_header_nritems(left) > orig_slot) {
1396 				path->nodes[level] = left;
1397 				path->slots[level + 1] -= 1;
1398 				path->slots[level] = orig_slot;
1399 				btrfs_tree_unlock(mid);
1400 				free_extent_buffer(mid);
1401 			} else {
1402 				orig_slot -=
1403 					btrfs_header_nritems(left);
1404 				path->slots[level] = orig_slot;
1405 				btrfs_tree_unlock(left);
1406 				free_extent_buffer(left);
1407 			}
1408 			return 0;
1409 		}
1410 		btrfs_tree_unlock(left);
1411 		free_extent_buffer(left);
1412 	}
1413 
1414 	/*
1415 	 * then try to empty the right most buffer into the middle
1416 	 */
1417 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1418 		u32 right_nr;
1419 
1420 		right = btrfs_read_node_slot(parent, pslot + 1);
1421 		if (IS_ERR(right))
1422 			return PTR_ERR(right);
1423 
1424 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1425 
1426 		right_nr = btrfs_header_nritems(right);
1427 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1428 			wret = 1;
1429 		} else {
1430 			ret = btrfs_cow_block(trans, root, right,
1431 					      parent, pslot + 1,
1432 					      &right, BTRFS_NESTING_RIGHT_COW);
1433 			if (ret)
1434 				wret = 1;
1435 			else {
1436 				wret = balance_node_right(trans, right, mid);
1437 			}
1438 		}
1439 		if (wret < 0)
1440 			ret = wret;
1441 		if (wret == 0) {
1442 			struct btrfs_disk_key disk_key;
1443 
1444 			btrfs_node_key(right, &disk_key, 0);
1445 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1446 					BTRFS_MOD_LOG_KEY_REPLACE);
1447 			if (ret < 0) {
1448 				btrfs_tree_unlock(right);
1449 				free_extent_buffer(right);
1450 				btrfs_abort_transaction(trans, ret);
1451 				return ret;
1452 			}
1453 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1454 			btrfs_mark_buffer_dirty(trans, parent);
1455 
1456 			if (btrfs_header_nritems(mid) <= orig_slot) {
1457 				path->nodes[level] = right;
1458 				path->slots[level + 1] += 1;
1459 				path->slots[level] = orig_slot -
1460 					btrfs_header_nritems(mid);
1461 				btrfs_tree_unlock(mid);
1462 				free_extent_buffer(mid);
1463 			} else {
1464 				btrfs_tree_unlock(right);
1465 				free_extent_buffer(right);
1466 			}
1467 			return 0;
1468 		}
1469 		btrfs_tree_unlock(right);
1470 		free_extent_buffer(right);
1471 	}
1472 	return 1;
1473 }
1474 
1475 /*
1476  * readahead one full node of leaves, finding things that are close
1477  * to the block in 'slot', and triggering ra on them.
1478  */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1479 static void reada_for_search(struct btrfs_fs_info *fs_info,
1480 			     struct btrfs_path *path,
1481 			     int level, int slot, u64 objectid)
1482 {
1483 	struct extent_buffer *node;
1484 	struct btrfs_disk_key disk_key;
1485 	u32 nritems;
1486 	u64 search;
1487 	u64 target;
1488 	u64 nread = 0;
1489 	u64 nread_max;
1490 	u32 nr;
1491 	u32 blocksize;
1492 	u32 nscan = 0;
1493 
1494 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1495 		return;
1496 
1497 	if (!path->nodes[level])
1498 		return;
1499 
1500 	node = path->nodes[level];
1501 
1502 	/*
1503 	 * Since the time between visiting leaves is much shorter than the time
1504 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1505 	 * much IO at once (possibly random).
1506 	 */
1507 	if (path->reada == READA_FORWARD_ALWAYS) {
1508 		if (level > 1)
1509 			nread_max = node->fs_info->nodesize;
1510 		else
1511 			nread_max = SZ_128K;
1512 	} else {
1513 		nread_max = SZ_64K;
1514 	}
1515 
1516 	search = btrfs_node_blockptr(node, slot);
1517 	blocksize = fs_info->nodesize;
1518 	if (path->reada != READA_FORWARD_ALWAYS) {
1519 		struct extent_buffer *eb;
1520 
1521 		eb = find_extent_buffer(fs_info, search);
1522 		if (eb) {
1523 			free_extent_buffer(eb);
1524 			return;
1525 		}
1526 	}
1527 
1528 	target = search;
1529 
1530 	nritems = btrfs_header_nritems(node);
1531 	nr = slot;
1532 
1533 	while (1) {
1534 		if (path->reada == READA_BACK) {
1535 			if (nr == 0)
1536 				break;
1537 			nr--;
1538 		} else if (path->reada == READA_FORWARD ||
1539 			   path->reada == READA_FORWARD_ALWAYS) {
1540 			nr++;
1541 			if (nr >= nritems)
1542 				break;
1543 		}
1544 		if (path->reada == READA_BACK && objectid) {
1545 			btrfs_node_key(node, &disk_key, nr);
1546 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1547 				break;
1548 		}
1549 		search = btrfs_node_blockptr(node, nr);
1550 		if (path->reada == READA_FORWARD_ALWAYS ||
1551 		    (search <= target && target - search <= 65536) ||
1552 		    (search > target && search - target <= 65536)) {
1553 			btrfs_readahead_node_child(node, nr);
1554 			nread += blocksize;
1555 		}
1556 		nscan++;
1557 		if (nread > nread_max || nscan > 32)
1558 			break;
1559 	}
1560 }
1561 
reada_for_balance(struct btrfs_path * path,int level)1562 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1563 {
1564 	struct extent_buffer *parent;
1565 	int slot;
1566 	int nritems;
1567 
1568 	parent = path->nodes[level + 1];
1569 	if (!parent)
1570 		return;
1571 
1572 	nritems = btrfs_header_nritems(parent);
1573 	slot = path->slots[level + 1];
1574 
1575 	if (slot > 0)
1576 		btrfs_readahead_node_child(parent, slot - 1);
1577 	if (slot + 1 < nritems)
1578 		btrfs_readahead_node_child(parent, slot + 1);
1579 }
1580 
1581 
1582 /*
1583  * when we walk down the tree, it is usually safe to unlock the higher layers
1584  * in the tree.  The exceptions are when our path goes through slot 0, because
1585  * operations on the tree might require changing key pointers higher up in the
1586  * tree.
1587  *
1588  * callers might also have set path->keep_locks, which tells this code to keep
1589  * the lock if the path points to the last slot in the block.  This is part of
1590  * walking through the tree, and selecting the next slot in the higher block.
1591  *
1592  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1593  * if lowest_unlock is 1, level 0 won't be unlocked
1594  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1595 static noinline void unlock_up(struct btrfs_path *path, int level,
1596 			       int lowest_unlock, int min_write_lock_level,
1597 			       int *write_lock_level)
1598 {
1599 	int i;
1600 	int skip_level = level;
1601 	bool check_skip = true;
1602 
1603 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1604 		if (!path->nodes[i])
1605 			break;
1606 		if (!path->locks[i])
1607 			break;
1608 
1609 		if (check_skip) {
1610 			if (path->slots[i] == 0) {
1611 				skip_level = i + 1;
1612 				continue;
1613 			}
1614 
1615 			if (path->keep_locks) {
1616 				u32 nritems;
1617 
1618 				nritems = btrfs_header_nritems(path->nodes[i]);
1619 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1620 					skip_level = i + 1;
1621 					continue;
1622 				}
1623 			}
1624 		}
1625 
1626 		if (i >= lowest_unlock && i > skip_level) {
1627 			check_skip = false;
1628 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1629 			path->locks[i] = 0;
1630 			if (write_lock_level &&
1631 			    i > min_write_lock_level &&
1632 			    i <= *write_lock_level) {
1633 				*write_lock_level = i - 1;
1634 			}
1635 		}
1636 	}
1637 }
1638 
1639 /*
1640  * Helper function for btrfs_search_slot() and other functions that do a search
1641  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1642  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1643  * its pages from disk.
1644  *
1645  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1646  * whole btree search, starting again from the current root node.
1647  */
1648 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1649 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1650 		      struct extent_buffer **eb_ret, int level, int slot,
1651 		      const struct btrfs_key *key)
1652 {
1653 	struct btrfs_fs_info *fs_info = root->fs_info;
1654 	struct btrfs_tree_parent_check check = { 0 };
1655 	u64 blocknr;
1656 	u64 gen;
1657 	struct extent_buffer *tmp;
1658 	int ret;
1659 	int parent_level;
1660 	bool unlock_up;
1661 
1662 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1663 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1664 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1665 	parent_level = btrfs_header_level(*eb_ret);
1666 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1667 	check.has_first_key = true;
1668 	check.level = parent_level - 1;
1669 	check.transid = gen;
1670 	check.owner_root = root->root_key.objectid;
1671 
1672 	/*
1673 	 * If we need to read an extent buffer from disk and we are holding locks
1674 	 * on upper level nodes, we unlock all the upper nodes before reading the
1675 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1676 	 * restart the search. We don't release the lock on the current level
1677 	 * because we need to walk this node to figure out which blocks to read.
1678 	 */
1679 	tmp = find_extent_buffer(fs_info, blocknr);
1680 	if (tmp) {
1681 		if (p->reada == READA_FORWARD_ALWAYS)
1682 			reada_for_search(fs_info, p, level, slot, key->objectid);
1683 
1684 		/* first we do an atomic uptodate check */
1685 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1686 			/*
1687 			 * Do extra check for first_key, eb can be stale due to
1688 			 * being cached, read from scrub, or have multiple
1689 			 * parents (shared tree blocks).
1690 			 */
1691 			if (btrfs_verify_level_key(tmp,
1692 					parent_level - 1, &check.first_key, gen)) {
1693 				free_extent_buffer(tmp);
1694 				return -EUCLEAN;
1695 			}
1696 			*eb_ret = tmp;
1697 			return 0;
1698 		}
1699 
1700 		if (p->nowait) {
1701 			free_extent_buffer(tmp);
1702 			return -EAGAIN;
1703 		}
1704 
1705 		if (unlock_up)
1706 			btrfs_unlock_up_safe(p, level + 1);
1707 
1708 		/* now we're allowed to do a blocking uptodate check */
1709 		ret = btrfs_read_extent_buffer(tmp, &check);
1710 		if (ret) {
1711 			free_extent_buffer(tmp);
1712 			btrfs_release_path(p);
1713 			return -EIO;
1714 		}
1715 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1716 			free_extent_buffer(tmp);
1717 			btrfs_release_path(p);
1718 			return -EUCLEAN;
1719 		}
1720 
1721 		if (unlock_up)
1722 			ret = -EAGAIN;
1723 
1724 		goto out;
1725 	} else if (p->nowait) {
1726 		return -EAGAIN;
1727 	}
1728 
1729 	if (unlock_up) {
1730 		btrfs_unlock_up_safe(p, level + 1);
1731 		ret = -EAGAIN;
1732 	} else {
1733 		ret = 0;
1734 	}
1735 
1736 	if (p->reada != READA_NONE)
1737 		reada_for_search(fs_info, p, level, slot, key->objectid);
1738 
1739 	tmp = read_tree_block(fs_info, blocknr, &check);
1740 	if (IS_ERR(tmp)) {
1741 		btrfs_release_path(p);
1742 		return PTR_ERR(tmp);
1743 	}
1744 	/*
1745 	 * If the read above didn't mark this buffer up to date,
1746 	 * it will never end up being up to date.  Set ret to EIO now
1747 	 * and give up so that our caller doesn't loop forever
1748 	 * on our EAGAINs.
1749 	 */
1750 	if (!extent_buffer_uptodate(tmp))
1751 		ret = -EIO;
1752 
1753 out:
1754 	if (ret == 0) {
1755 		*eb_ret = tmp;
1756 	} else {
1757 		free_extent_buffer(tmp);
1758 		btrfs_release_path(p);
1759 	}
1760 
1761 	return ret;
1762 }
1763 
1764 /*
1765  * helper function for btrfs_search_slot.  This does all of the checks
1766  * for node-level blocks and does any balancing required based on
1767  * the ins_len.
1768  *
1769  * If no extra work was required, zero is returned.  If we had to
1770  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1771  * start over
1772  */
1773 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1774 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1775 		       struct btrfs_root *root, struct btrfs_path *p,
1776 		       struct extent_buffer *b, int level, int ins_len,
1777 		       int *write_lock_level)
1778 {
1779 	struct btrfs_fs_info *fs_info = root->fs_info;
1780 	int ret = 0;
1781 
1782 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1783 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1784 
1785 		if (*write_lock_level < level + 1) {
1786 			*write_lock_level = level + 1;
1787 			btrfs_release_path(p);
1788 			return -EAGAIN;
1789 		}
1790 
1791 		reada_for_balance(p, level);
1792 		ret = split_node(trans, root, p, level);
1793 
1794 		b = p->nodes[level];
1795 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1796 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1797 
1798 		if (*write_lock_level < level + 1) {
1799 			*write_lock_level = level + 1;
1800 			btrfs_release_path(p);
1801 			return -EAGAIN;
1802 		}
1803 
1804 		reada_for_balance(p, level);
1805 		ret = balance_level(trans, root, p, level);
1806 		if (ret)
1807 			return ret;
1808 
1809 		b = p->nodes[level];
1810 		if (!b) {
1811 			btrfs_release_path(p);
1812 			return -EAGAIN;
1813 		}
1814 		BUG_ON(btrfs_header_nritems(b) == 1);
1815 	}
1816 	return ret;
1817 }
1818 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1819 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1820 		u64 iobjectid, u64 ioff, u8 key_type,
1821 		struct btrfs_key *found_key)
1822 {
1823 	int ret;
1824 	struct btrfs_key key;
1825 	struct extent_buffer *eb;
1826 
1827 	ASSERT(path);
1828 	ASSERT(found_key);
1829 
1830 	key.type = key_type;
1831 	key.objectid = iobjectid;
1832 	key.offset = ioff;
1833 
1834 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1835 	if (ret < 0)
1836 		return ret;
1837 
1838 	eb = path->nodes[0];
1839 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1840 		ret = btrfs_next_leaf(fs_root, path);
1841 		if (ret)
1842 			return ret;
1843 		eb = path->nodes[0];
1844 	}
1845 
1846 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1847 	if (found_key->type != key.type ||
1848 			found_key->objectid != key.objectid)
1849 		return 1;
1850 
1851 	return 0;
1852 }
1853 
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1854 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1855 							struct btrfs_path *p,
1856 							int write_lock_level)
1857 {
1858 	struct extent_buffer *b;
1859 	int root_lock = 0;
1860 	int level = 0;
1861 
1862 	if (p->search_commit_root) {
1863 		b = root->commit_root;
1864 		atomic_inc(&b->refs);
1865 		level = btrfs_header_level(b);
1866 		/*
1867 		 * Ensure that all callers have set skip_locking when
1868 		 * p->search_commit_root = 1.
1869 		 */
1870 		ASSERT(p->skip_locking == 1);
1871 
1872 		goto out;
1873 	}
1874 
1875 	if (p->skip_locking) {
1876 		b = btrfs_root_node(root);
1877 		level = btrfs_header_level(b);
1878 		goto out;
1879 	}
1880 
1881 	/* We try very hard to do read locks on the root */
1882 	root_lock = BTRFS_READ_LOCK;
1883 
1884 	/*
1885 	 * If the level is set to maximum, we can skip trying to get the read
1886 	 * lock.
1887 	 */
1888 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1889 		/*
1890 		 * We don't know the level of the root node until we actually
1891 		 * have it read locked
1892 		 */
1893 		if (p->nowait) {
1894 			b = btrfs_try_read_lock_root_node(root);
1895 			if (IS_ERR(b))
1896 				return b;
1897 		} else {
1898 			b = btrfs_read_lock_root_node(root);
1899 		}
1900 		level = btrfs_header_level(b);
1901 		if (level > write_lock_level)
1902 			goto out;
1903 
1904 		/* Whoops, must trade for write lock */
1905 		btrfs_tree_read_unlock(b);
1906 		free_extent_buffer(b);
1907 	}
1908 
1909 	b = btrfs_lock_root_node(root);
1910 	root_lock = BTRFS_WRITE_LOCK;
1911 
1912 	/* The level might have changed, check again */
1913 	level = btrfs_header_level(b);
1914 
1915 out:
1916 	/*
1917 	 * The root may have failed to write out at some point, and thus is no
1918 	 * longer valid, return an error in this case.
1919 	 */
1920 	if (!extent_buffer_uptodate(b)) {
1921 		if (root_lock)
1922 			btrfs_tree_unlock_rw(b, root_lock);
1923 		free_extent_buffer(b);
1924 		return ERR_PTR(-EIO);
1925 	}
1926 
1927 	p->nodes[level] = b;
1928 	if (!p->skip_locking)
1929 		p->locks[level] = root_lock;
1930 	/*
1931 	 * Callers are responsible for dropping b's references.
1932 	 */
1933 	return b;
1934 }
1935 
1936 /*
1937  * Replace the extent buffer at the lowest level of the path with a cloned
1938  * version. The purpose is to be able to use it safely, after releasing the
1939  * commit root semaphore, even if relocation is happening in parallel, the
1940  * transaction used for relocation is committed and the extent buffer is
1941  * reallocated in the next transaction.
1942  *
1943  * This is used in a context where the caller does not prevent transaction
1944  * commits from happening, either by holding a transaction handle or holding
1945  * some lock, while it's doing searches through a commit root.
1946  * At the moment it's only used for send operations.
1947  */
finish_need_commit_sem_search(struct btrfs_path * path)1948 static int finish_need_commit_sem_search(struct btrfs_path *path)
1949 {
1950 	const int i = path->lowest_level;
1951 	const int slot = path->slots[i];
1952 	struct extent_buffer *lowest = path->nodes[i];
1953 	struct extent_buffer *clone;
1954 
1955 	ASSERT(path->need_commit_sem);
1956 
1957 	if (!lowest)
1958 		return 0;
1959 
1960 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1961 
1962 	clone = btrfs_clone_extent_buffer(lowest);
1963 	if (!clone)
1964 		return -ENOMEM;
1965 
1966 	btrfs_release_path(path);
1967 	path->nodes[i] = clone;
1968 	path->slots[i] = slot;
1969 
1970 	return 0;
1971 }
1972 
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1973 static inline int search_for_key_slot(struct extent_buffer *eb,
1974 				      int search_low_slot,
1975 				      const struct btrfs_key *key,
1976 				      int prev_cmp,
1977 				      int *slot)
1978 {
1979 	/*
1980 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1981 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1982 	 * always be at slot 0 on lower levels, since each key pointer
1983 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1984 	 * subtree it points to. Thus we can skip searching lower levels.
1985 	 */
1986 	if (prev_cmp == 0) {
1987 		*slot = 0;
1988 		return 0;
1989 	}
1990 
1991 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1992 }
1993 
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1994 static int search_leaf(struct btrfs_trans_handle *trans,
1995 		       struct btrfs_root *root,
1996 		       const struct btrfs_key *key,
1997 		       struct btrfs_path *path,
1998 		       int ins_len,
1999 		       int prev_cmp)
2000 {
2001 	struct extent_buffer *leaf = path->nodes[0];
2002 	int leaf_free_space = -1;
2003 	int search_low_slot = 0;
2004 	int ret;
2005 	bool do_bin_search = true;
2006 
2007 	/*
2008 	 * If we are doing an insertion, the leaf has enough free space and the
2009 	 * destination slot for the key is not slot 0, then we can unlock our
2010 	 * write lock on the parent, and any other upper nodes, before doing the
2011 	 * binary search on the leaf (with search_for_key_slot()), allowing other
2012 	 * tasks to lock the parent and any other upper nodes.
2013 	 */
2014 	if (ins_len > 0) {
2015 		/*
2016 		 * Cache the leaf free space, since we will need it later and it
2017 		 * will not change until then.
2018 		 */
2019 		leaf_free_space = btrfs_leaf_free_space(leaf);
2020 
2021 		/*
2022 		 * !path->locks[1] means we have a single node tree, the leaf is
2023 		 * the root of the tree.
2024 		 */
2025 		if (path->locks[1] && leaf_free_space >= ins_len) {
2026 			struct btrfs_disk_key first_key;
2027 
2028 			ASSERT(btrfs_header_nritems(leaf) > 0);
2029 			btrfs_item_key(leaf, &first_key, 0);
2030 
2031 			/*
2032 			 * Doing the extra comparison with the first key is cheap,
2033 			 * taking into account that the first key is very likely
2034 			 * already in a cache line because it immediately follows
2035 			 * the extent buffer's header and we have recently accessed
2036 			 * the header's level field.
2037 			 */
2038 			ret = comp_keys(&first_key, key);
2039 			if (ret < 0) {
2040 				/*
2041 				 * The first key is smaller than the key we want
2042 				 * to insert, so we are safe to unlock all upper
2043 				 * nodes and we have to do the binary search.
2044 				 *
2045 				 * We do use btrfs_unlock_up_safe() and not
2046 				 * unlock_up() because the later does not unlock
2047 				 * nodes with a slot of 0 - we can safely unlock
2048 				 * any node even if its slot is 0 since in this
2049 				 * case the key does not end up at slot 0 of the
2050 				 * leaf and there's no need to split the leaf.
2051 				 */
2052 				btrfs_unlock_up_safe(path, 1);
2053 				search_low_slot = 1;
2054 			} else {
2055 				/*
2056 				 * The first key is >= then the key we want to
2057 				 * insert, so we can skip the binary search as
2058 				 * the target key will be at slot 0.
2059 				 *
2060 				 * We can not unlock upper nodes when the key is
2061 				 * less than the first key, because we will need
2062 				 * to update the key at slot 0 of the parent node
2063 				 * and possibly of other upper nodes too.
2064 				 * If the key matches the first key, then we can
2065 				 * unlock all the upper nodes, using
2066 				 * btrfs_unlock_up_safe() instead of unlock_up()
2067 				 * as stated above.
2068 				 */
2069 				if (ret == 0)
2070 					btrfs_unlock_up_safe(path, 1);
2071 				/*
2072 				 * ret is already 0 or 1, matching the result of
2073 				 * a btrfs_bin_search() call, so there is no need
2074 				 * to adjust it.
2075 				 */
2076 				do_bin_search = false;
2077 				path->slots[0] = 0;
2078 			}
2079 		}
2080 	}
2081 
2082 	if (do_bin_search) {
2083 		ret = search_for_key_slot(leaf, search_low_slot, key,
2084 					  prev_cmp, &path->slots[0]);
2085 		if (ret < 0)
2086 			return ret;
2087 	}
2088 
2089 	if (ins_len > 0) {
2090 		/*
2091 		 * Item key already exists. In this case, if we are allowed to
2092 		 * insert the item (for example, in dir_item case, item key
2093 		 * collision is allowed), it will be merged with the original
2094 		 * item. Only the item size grows, no new btrfs item will be
2095 		 * added. If search_for_extension is not set, ins_len already
2096 		 * accounts the size btrfs_item, deduct it here so leaf space
2097 		 * check will be correct.
2098 		 */
2099 		if (ret == 0 && !path->search_for_extension) {
2100 			ASSERT(ins_len >= sizeof(struct btrfs_item));
2101 			ins_len -= sizeof(struct btrfs_item);
2102 		}
2103 
2104 		ASSERT(leaf_free_space >= 0);
2105 
2106 		if (leaf_free_space < ins_len) {
2107 			int err;
2108 
2109 			err = split_leaf(trans, root, key, path, ins_len,
2110 					 (ret == 0));
2111 			ASSERT(err <= 0);
2112 			if (WARN_ON(err > 0))
2113 				err = -EUCLEAN;
2114 			if (err)
2115 				ret = err;
2116 		}
2117 	}
2118 
2119 	return ret;
2120 }
2121 
2122 /*
2123  * btrfs_search_slot - look for a key in a tree and perform necessary
2124  * modifications to preserve tree invariants.
2125  *
2126  * @trans:	Handle of transaction, used when modifying the tree
2127  * @p:		Holds all btree nodes along the search path
2128  * @root:	The root node of the tree
2129  * @key:	The key we are looking for
2130  * @ins_len:	Indicates purpose of search:
2131  *              >0  for inserts it's size of item inserted (*)
2132  *              <0  for deletions
2133  *               0  for plain searches, not modifying the tree
2134  *
2135  *              (*) If size of item inserted doesn't include
2136  *              sizeof(struct btrfs_item), then p->search_for_extension must
2137  *              be set.
2138  * @cow:	boolean should CoW operations be performed. Must always be 1
2139  *		when modifying the tree.
2140  *
2141  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2142  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2143  *
2144  * If @key is found, 0 is returned and you can find the item in the leaf level
2145  * of the path (level 0)
2146  *
2147  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2148  * points to the slot where it should be inserted
2149  *
2150  * If an error is encountered while searching the tree a negative error number
2151  * is returned
2152  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2153 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2154 		      const struct btrfs_key *key, struct btrfs_path *p,
2155 		      int ins_len, int cow)
2156 {
2157 	struct btrfs_fs_info *fs_info;
2158 	struct extent_buffer *b;
2159 	int slot;
2160 	int ret;
2161 	int err;
2162 	int level;
2163 	int lowest_unlock = 1;
2164 	/* everything at write_lock_level or lower must be write locked */
2165 	int write_lock_level = 0;
2166 	u8 lowest_level = 0;
2167 	int min_write_lock_level;
2168 	int prev_cmp;
2169 
2170 	if (!root)
2171 		return -EINVAL;
2172 
2173 	fs_info = root->fs_info;
2174 	might_sleep();
2175 
2176 	lowest_level = p->lowest_level;
2177 	WARN_ON(lowest_level && ins_len > 0);
2178 	WARN_ON(p->nodes[0] != NULL);
2179 	BUG_ON(!cow && ins_len);
2180 
2181 	/*
2182 	 * For now only allow nowait for read only operations.  There's no
2183 	 * strict reason why we can't, we just only need it for reads so it's
2184 	 * only implemented for reads.
2185 	 */
2186 	ASSERT(!p->nowait || !cow);
2187 
2188 	if (ins_len < 0) {
2189 		lowest_unlock = 2;
2190 
2191 		/* when we are removing items, we might have to go up to level
2192 		 * two as we update tree pointers  Make sure we keep write
2193 		 * for those levels as well
2194 		 */
2195 		write_lock_level = 2;
2196 	} else if (ins_len > 0) {
2197 		/*
2198 		 * for inserting items, make sure we have a write lock on
2199 		 * level 1 so we can update keys
2200 		 */
2201 		write_lock_level = 1;
2202 	}
2203 
2204 	if (!cow)
2205 		write_lock_level = -1;
2206 
2207 	if (cow && (p->keep_locks || p->lowest_level))
2208 		write_lock_level = BTRFS_MAX_LEVEL;
2209 
2210 	min_write_lock_level = write_lock_level;
2211 
2212 	if (p->need_commit_sem) {
2213 		ASSERT(p->search_commit_root);
2214 		if (p->nowait) {
2215 			if (!down_read_trylock(&fs_info->commit_root_sem))
2216 				return -EAGAIN;
2217 		} else {
2218 			down_read(&fs_info->commit_root_sem);
2219 		}
2220 	}
2221 
2222 again:
2223 	prev_cmp = -1;
2224 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2225 	if (IS_ERR(b)) {
2226 		ret = PTR_ERR(b);
2227 		goto done;
2228 	}
2229 
2230 	while (b) {
2231 		int dec = 0;
2232 
2233 		level = btrfs_header_level(b);
2234 
2235 		if (cow) {
2236 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2237 
2238 			/*
2239 			 * if we don't really need to cow this block
2240 			 * then we don't want to set the path blocking,
2241 			 * so we test it here
2242 			 */
2243 			if (!should_cow_block(trans, root, b))
2244 				goto cow_done;
2245 
2246 			/*
2247 			 * must have write locks on this node and the
2248 			 * parent
2249 			 */
2250 			if (level > write_lock_level ||
2251 			    (level + 1 > write_lock_level &&
2252 			    level + 1 < BTRFS_MAX_LEVEL &&
2253 			    p->nodes[level + 1])) {
2254 				write_lock_level = level + 1;
2255 				btrfs_release_path(p);
2256 				goto again;
2257 			}
2258 
2259 			if (last_level)
2260 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2261 						      &b,
2262 						      BTRFS_NESTING_COW);
2263 			else
2264 				err = btrfs_cow_block(trans, root, b,
2265 						      p->nodes[level + 1],
2266 						      p->slots[level + 1], &b,
2267 						      BTRFS_NESTING_COW);
2268 			if (err) {
2269 				ret = err;
2270 				goto done;
2271 			}
2272 		}
2273 cow_done:
2274 		p->nodes[level] = b;
2275 
2276 		/*
2277 		 * we have a lock on b and as long as we aren't changing
2278 		 * the tree, there is no way to for the items in b to change.
2279 		 * It is safe to drop the lock on our parent before we
2280 		 * go through the expensive btree search on b.
2281 		 *
2282 		 * If we're inserting or deleting (ins_len != 0), then we might
2283 		 * be changing slot zero, which may require changing the parent.
2284 		 * So, we can't drop the lock until after we know which slot
2285 		 * we're operating on.
2286 		 */
2287 		if (!ins_len && !p->keep_locks) {
2288 			int u = level + 1;
2289 
2290 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2291 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2292 				p->locks[u] = 0;
2293 			}
2294 		}
2295 
2296 		if (level == 0) {
2297 			if (ins_len > 0)
2298 				ASSERT(write_lock_level >= 1);
2299 
2300 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2301 			if (!p->search_for_split)
2302 				unlock_up(p, level, lowest_unlock,
2303 					  min_write_lock_level, NULL);
2304 			goto done;
2305 		}
2306 
2307 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2308 		if (ret < 0)
2309 			goto done;
2310 		prev_cmp = ret;
2311 
2312 		if (ret && slot > 0) {
2313 			dec = 1;
2314 			slot--;
2315 		}
2316 		p->slots[level] = slot;
2317 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2318 					     &write_lock_level);
2319 		if (err == -EAGAIN)
2320 			goto again;
2321 		if (err) {
2322 			ret = err;
2323 			goto done;
2324 		}
2325 		b = p->nodes[level];
2326 		slot = p->slots[level];
2327 
2328 		/*
2329 		 * Slot 0 is special, if we change the key we have to update
2330 		 * the parent pointer which means we must have a write lock on
2331 		 * the parent
2332 		 */
2333 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2334 			write_lock_level = level + 1;
2335 			btrfs_release_path(p);
2336 			goto again;
2337 		}
2338 
2339 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2340 			  &write_lock_level);
2341 
2342 		if (level == lowest_level) {
2343 			if (dec)
2344 				p->slots[level]++;
2345 			goto done;
2346 		}
2347 
2348 		err = read_block_for_search(root, p, &b, level, slot, key);
2349 		if (err == -EAGAIN)
2350 			goto again;
2351 		if (err) {
2352 			ret = err;
2353 			goto done;
2354 		}
2355 
2356 		if (!p->skip_locking) {
2357 			level = btrfs_header_level(b);
2358 
2359 			btrfs_maybe_reset_lockdep_class(root, b);
2360 
2361 			if (level <= write_lock_level) {
2362 				btrfs_tree_lock(b);
2363 				p->locks[level] = BTRFS_WRITE_LOCK;
2364 			} else {
2365 				if (p->nowait) {
2366 					if (!btrfs_try_tree_read_lock(b)) {
2367 						free_extent_buffer(b);
2368 						ret = -EAGAIN;
2369 						goto done;
2370 					}
2371 				} else {
2372 					btrfs_tree_read_lock(b);
2373 				}
2374 				p->locks[level] = BTRFS_READ_LOCK;
2375 			}
2376 			p->nodes[level] = b;
2377 		}
2378 	}
2379 	ret = 1;
2380 done:
2381 	if (ret < 0 && !p->skip_release_on_error)
2382 		btrfs_release_path(p);
2383 
2384 	if (p->need_commit_sem) {
2385 		int ret2;
2386 
2387 		ret2 = finish_need_commit_sem_search(p);
2388 		up_read(&fs_info->commit_root_sem);
2389 		if (ret2)
2390 			ret = ret2;
2391 	}
2392 
2393 	return ret;
2394 }
2395 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2396 
2397 /*
2398  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2399  * current state of the tree together with the operations recorded in the tree
2400  * modification log to search for the key in a previous version of this tree, as
2401  * denoted by the time_seq parameter.
2402  *
2403  * Naturally, there is no support for insert, delete or cow operations.
2404  *
2405  * The resulting path and return value will be set up as if we called
2406  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2407  */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2408 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2409 			  struct btrfs_path *p, u64 time_seq)
2410 {
2411 	struct btrfs_fs_info *fs_info = root->fs_info;
2412 	struct extent_buffer *b;
2413 	int slot;
2414 	int ret;
2415 	int err;
2416 	int level;
2417 	int lowest_unlock = 1;
2418 	u8 lowest_level = 0;
2419 
2420 	lowest_level = p->lowest_level;
2421 	WARN_ON(p->nodes[0] != NULL);
2422 	ASSERT(!p->nowait);
2423 
2424 	if (p->search_commit_root) {
2425 		BUG_ON(time_seq);
2426 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2427 	}
2428 
2429 again:
2430 	b = btrfs_get_old_root(root, time_seq);
2431 	if (!b) {
2432 		ret = -EIO;
2433 		goto done;
2434 	}
2435 	level = btrfs_header_level(b);
2436 	p->locks[level] = BTRFS_READ_LOCK;
2437 
2438 	while (b) {
2439 		int dec = 0;
2440 
2441 		level = btrfs_header_level(b);
2442 		p->nodes[level] = b;
2443 
2444 		/*
2445 		 * we have a lock on b and as long as we aren't changing
2446 		 * the tree, there is no way to for the items in b to change.
2447 		 * It is safe to drop the lock on our parent before we
2448 		 * go through the expensive btree search on b.
2449 		 */
2450 		btrfs_unlock_up_safe(p, level + 1);
2451 
2452 		ret = btrfs_bin_search(b, 0, key, &slot);
2453 		if (ret < 0)
2454 			goto done;
2455 
2456 		if (level == 0) {
2457 			p->slots[level] = slot;
2458 			unlock_up(p, level, lowest_unlock, 0, NULL);
2459 			goto done;
2460 		}
2461 
2462 		if (ret && slot > 0) {
2463 			dec = 1;
2464 			slot--;
2465 		}
2466 		p->slots[level] = slot;
2467 		unlock_up(p, level, lowest_unlock, 0, NULL);
2468 
2469 		if (level == lowest_level) {
2470 			if (dec)
2471 				p->slots[level]++;
2472 			goto done;
2473 		}
2474 
2475 		err = read_block_for_search(root, p, &b, level, slot, key);
2476 		if (err == -EAGAIN)
2477 			goto again;
2478 		if (err) {
2479 			ret = err;
2480 			goto done;
2481 		}
2482 
2483 		level = btrfs_header_level(b);
2484 		btrfs_tree_read_lock(b);
2485 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2486 		if (!b) {
2487 			ret = -ENOMEM;
2488 			goto done;
2489 		}
2490 		p->locks[level] = BTRFS_READ_LOCK;
2491 		p->nodes[level] = b;
2492 	}
2493 	ret = 1;
2494 done:
2495 	if (ret < 0)
2496 		btrfs_release_path(p);
2497 
2498 	return ret;
2499 }
2500 
2501 /*
2502  * Search the tree again to find a leaf with smaller keys.
2503  * Returns 0 if it found something.
2504  * Returns 1 if there are no smaller keys.
2505  * Returns < 0 on error.
2506  *
2507  * This may release the path, and so you may lose any locks held at the
2508  * time you call it.
2509  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2510 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2511 {
2512 	struct btrfs_key key;
2513 	struct btrfs_key orig_key;
2514 	struct btrfs_disk_key found_key;
2515 	int ret;
2516 
2517 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2518 	orig_key = key;
2519 
2520 	if (key.offset > 0) {
2521 		key.offset--;
2522 	} else if (key.type > 0) {
2523 		key.type--;
2524 		key.offset = (u64)-1;
2525 	} else if (key.objectid > 0) {
2526 		key.objectid--;
2527 		key.type = (u8)-1;
2528 		key.offset = (u64)-1;
2529 	} else {
2530 		return 1;
2531 	}
2532 
2533 	btrfs_release_path(path);
2534 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2535 	if (ret <= 0)
2536 		return ret;
2537 
2538 	/*
2539 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2540 	 * before releasing the path and calling btrfs_search_slot(), we now may
2541 	 * be in a slot pointing to the same original key - this can happen if
2542 	 * after we released the path, one of more items were moved from a
2543 	 * sibling leaf into the front of the leaf we had due to an insertion
2544 	 * (see push_leaf_right()).
2545 	 * If we hit this case and our slot is > 0 and just decrement the slot
2546 	 * so that the caller does not process the same key again, which may or
2547 	 * may not break the caller, depending on its logic.
2548 	 */
2549 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2550 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2551 		ret = comp_keys(&found_key, &orig_key);
2552 		if (ret == 0) {
2553 			if (path->slots[0] > 0) {
2554 				path->slots[0]--;
2555 				return 0;
2556 			}
2557 			/*
2558 			 * At slot 0, same key as before, it means orig_key is
2559 			 * the lowest, leftmost, key in the tree. We're done.
2560 			 */
2561 			return 1;
2562 		}
2563 	}
2564 
2565 	btrfs_item_key(path->nodes[0], &found_key, 0);
2566 	ret = comp_keys(&found_key, &key);
2567 	/*
2568 	 * We might have had an item with the previous key in the tree right
2569 	 * before we released our path. And after we released our path, that
2570 	 * item might have been pushed to the first slot (0) of the leaf we
2571 	 * were holding due to a tree balance. Alternatively, an item with the
2572 	 * previous key can exist as the only element of a leaf (big fat item).
2573 	 * Therefore account for these 2 cases, so that our callers (like
2574 	 * btrfs_previous_item) don't miss an existing item with a key matching
2575 	 * the previous key we computed above.
2576 	 */
2577 	if (ret <= 0)
2578 		return 0;
2579 	return 1;
2580 }
2581 
2582 /*
2583  * helper to use instead of search slot if no exact match is needed but
2584  * instead the next or previous item should be returned.
2585  * When find_higher is true, the next higher item is returned, the next lower
2586  * otherwise.
2587  * When return_any and find_higher are both true, and no higher item is found,
2588  * return the next lower instead.
2589  * When return_any is true and find_higher is false, and no lower item is found,
2590  * return the next higher instead.
2591  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2592  * < 0 on error
2593  */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2594 int btrfs_search_slot_for_read(struct btrfs_root *root,
2595 			       const struct btrfs_key *key,
2596 			       struct btrfs_path *p, int find_higher,
2597 			       int return_any)
2598 {
2599 	int ret;
2600 	struct extent_buffer *leaf;
2601 
2602 again:
2603 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2604 	if (ret <= 0)
2605 		return ret;
2606 	/*
2607 	 * a return value of 1 means the path is at the position where the
2608 	 * item should be inserted. Normally this is the next bigger item,
2609 	 * but in case the previous item is the last in a leaf, path points
2610 	 * to the first free slot in the previous leaf, i.e. at an invalid
2611 	 * item.
2612 	 */
2613 	leaf = p->nodes[0];
2614 
2615 	if (find_higher) {
2616 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2617 			ret = btrfs_next_leaf(root, p);
2618 			if (ret <= 0)
2619 				return ret;
2620 			if (!return_any)
2621 				return 1;
2622 			/*
2623 			 * no higher item found, return the next
2624 			 * lower instead
2625 			 */
2626 			return_any = 0;
2627 			find_higher = 0;
2628 			btrfs_release_path(p);
2629 			goto again;
2630 		}
2631 	} else {
2632 		if (p->slots[0] == 0) {
2633 			ret = btrfs_prev_leaf(root, p);
2634 			if (ret < 0)
2635 				return ret;
2636 			if (!ret) {
2637 				leaf = p->nodes[0];
2638 				if (p->slots[0] == btrfs_header_nritems(leaf))
2639 					p->slots[0]--;
2640 				return 0;
2641 			}
2642 			if (!return_any)
2643 				return 1;
2644 			/*
2645 			 * no lower item found, return the next
2646 			 * higher instead
2647 			 */
2648 			return_any = 0;
2649 			find_higher = 1;
2650 			btrfs_release_path(p);
2651 			goto again;
2652 		} else {
2653 			--p->slots[0];
2654 		}
2655 	}
2656 	return 0;
2657 }
2658 
2659 /*
2660  * Execute search and call btrfs_previous_item to traverse backwards if the item
2661  * was not found.
2662  *
2663  * Return 0 if found, 1 if not found and < 0 if error.
2664  */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2665 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2666 			   struct btrfs_path *path)
2667 {
2668 	int ret;
2669 
2670 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2671 	if (ret > 0)
2672 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2673 
2674 	if (ret == 0)
2675 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2676 
2677 	return ret;
2678 }
2679 
2680 /*
2681  * Search for a valid slot for the given path.
2682  *
2683  * @root:	The root node of the tree.
2684  * @key:	Will contain a valid item if found.
2685  * @path:	The starting point to validate the slot.
2686  *
2687  * Return: 0  if the item is valid
2688  *         1  if not found
2689  *         <0 if error.
2690  */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2691 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2692 			      struct btrfs_path *path)
2693 {
2694 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2695 		int ret;
2696 
2697 		ret = btrfs_next_leaf(root, path);
2698 		if (ret)
2699 			return ret;
2700 	}
2701 
2702 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2703 	return 0;
2704 }
2705 
2706 /*
2707  * adjust the pointers going up the tree, starting at level
2708  * making sure the right key of each node is points to 'key'.
2709  * This is used after shifting pointers to the left, so it stops
2710  * fixing up pointers when a given leaf/node is not in slot 0 of the
2711  * higher levels
2712  *
2713  */
fixup_low_keys(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,int level)2714 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2715 			   struct btrfs_path *path,
2716 			   struct btrfs_disk_key *key, int level)
2717 {
2718 	int i;
2719 	struct extent_buffer *t;
2720 	int ret;
2721 
2722 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2723 		int tslot = path->slots[i];
2724 
2725 		if (!path->nodes[i])
2726 			break;
2727 		t = path->nodes[i];
2728 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2729 						    BTRFS_MOD_LOG_KEY_REPLACE);
2730 		BUG_ON(ret < 0);
2731 		btrfs_set_node_key(t, key, tslot);
2732 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2733 		if (tslot != 0)
2734 			break;
2735 	}
2736 }
2737 
2738 /*
2739  * update item key.
2740  *
2741  * This function isn't completely safe. It's the caller's responsibility
2742  * that the new key won't break the order
2743  */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key)2744 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2745 			     struct btrfs_path *path,
2746 			     const struct btrfs_key *new_key)
2747 {
2748 	struct btrfs_fs_info *fs_info = trans->fs_info;
2749 	struct btrfs_disk_key disk_key;
2750 	struct extent_buffer *eb;
2751 	int slot;
2752 
2753 	eb = path->nodes[0];
2754 	slot = path->slots[0];
2755 	if (slot > 0) {
2756 		btrfs_item_key(eb, &disk_key, slot - 1);
2757 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2758 			btrfs_print_leaf(eb);
2759 			btrfs_crit(fs_info,
2760 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2761 				   slot, btrfs_disk_key_objectid(&disk_key),
2762 				   btrfs_disk_key_type(&disk_key),
2763 				   btrfs_disk_key_offset(&disk_key),
2764 				   new_key->objectid, new_key->type,
2765 				   new_key->offset);
2766 			BUG();
2767 		}
2768 	}
2769 	if (slot < btrfs_header_nritems(eb) - 1) {
2770 		btrfs_item_key(eb, &disk_key, slot + 1);
2771 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2772 			btrfs_print_leaf(eb);
2773 			btrfs_crit(fs_info,
2774 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2775 				   slot, btrfs_disk_key_objectid(&disk_key),
2776 				   btrfs_disk_key_type(&disk_key),
2777 				   btrfs_disk_key_offset(&disk_key),
2778 				   new_key->objectid, new_key->type,
2779 				   new_key->offset);
2780 			BUG();
2781 		}
2782 	}
2783 
2784 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2785 	btrfs_set_item_key(eb, &disk_key, slot);
2786 	btrfs_mark_buffer_dirty(trans, eb);
2787 	if (slot == 0)
2788 		fixup_low_keys(trans, path, &disk_key, 1);
2789 }
2790 
2791 /*
2792  * Check key order of two sibling extent buffers.
2793  *
2794  * Return true if something is wrong.
2795  * Return false if everything is fine.
2796  *
2797  * Tree-checker only works inside one tree block, thus the following
2798  * corruption can not be detected by tree-checker:
2799  *
2800  * Leaf @left			| Leaf @right
2801  * --------------------------------------------------------------
2802  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2803  *
2804  * Key f6 in leaf @left itself is valid, but not valid when the next
2805  * key in leaf @right is 7.
2806  * This can only be checked at tree block merge time.
2807  * And since tree checker has ensured all key order in each tree block
2808  * is correct, we only need to bother the last key of @left and the first
2809  * key of @right.
2810  */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2811 static bool check_sibling_keys(struct extent_buffer *left,
2812 			       struct extent_buffer *right)
2813 {
2814 	struct btrfs_key left_last;
2815 	struct btrfs_key right_first;
2816 	int level = btrfs_header_level(left);
2817 	int nr_left = btrfs_header_nritems(left);
2818 	int nr_right = btrfs_header_nritems(right);
2819 
2820 	/* No key to check in one of the tree blocks */
2821 	if (!nr_left || !nr_right)
2822 		return false;
2823 
2824 	if (level) {
2825 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2826 		btrfs_node_key_to_cpu(right, &right_first, 0);
2827 	} else {
2828 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2829 		btrfs_item_key_to_cpu(right, &right_first, 0);
2830 	}
2831 
2832 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2833 		btrfs_crit(left->fs_info, "left extent buffer:");
2834 		btrfs_print_tree(left, false);
2835 		btrfs_crit(left->fs_info, "right extent buffer:");
2836 		btrfs_print_tree(right, false);
2837 		btrfs_crit(left->fs_info,
2838 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2839 			   left_last.objectid, left_last.type,
2840 			   left_last.offset, right_first.objectid,
2841 			   right_first.type, right_first.offset);
2842 		return true;
2843 	}
2844 	return false;
2845 }
2846 
2847 /*
2848  * try to push data from one node into the next node left in the
2849  * tree.
2850  *
2851  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2852  * error, and > 0 if there was no room in the left hand block.
2853  */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2854 static int push_node_left(struct btrfs_trans_handle *trans,
2855 			  struct extent_buffer *dst,
2856 			  struct extent_buffer *src, int empty)
2857 {
2858 	struct btrfs_fs_info *fs_info = trans->fs_info;
2859 	int push_items = 0;
2860 	int src_nritems;
2861 	int dst_nritems;
2862 	int ret = 0;
2863 
2864 	src_nritems = btrfs_header_nritems(src);
2865 	dst_nritems = btrfs_header_nritems(dst);
2866 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2867 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2868 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2869 
2870 	if (!empty && src_nritems <= 8)
2871 		return 1;
2872 
2873 	if (push_items <= 0)
2874 		return 1;
2875 
2876 	if (empty) {
2877 		push_items = min(src_nritems, push_items);
2878 		if (push_items < src_nritems) {
2879 			/* leave at least 8 pointers in the node if
2880 			 * we aren't going to empty it
2881 			 */
2882 			if (src_nritems - push_items < 8) {
2883 				if (push_items <= 8)
2884 					return 1;
2885 				push_items -= 8;
2886 			}
2887 		}
2888 	} else
2889 		push_items = min(src_nritems - 8, push_items);
2890 
2891 	/* dst is the left eb, src is the middle eb */
2892 	if (check_sibling_keys(dst, src)) {
2893 		ret = -EUCLEAN;
2894 		btrfs_abort_transaction(trans, ret);
2895 		return ret;
2896 	}
2897 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2898 	if (ret) {
2899 		btrfs_abort_transaction(trans, ret);
2900 		return ret;
2901 	}
2902 	copy_extent_buffer(dst, src,
2903 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2904 			   btrfs_node_key_ptr_offset(src, 0),
2905 			   push_items * sizeof(struct btrfs_key_ptr));
2906 
2907 	if (push_items < src_nritems) {
2908 		/*
2909 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2910 		 * don't need to do an explicit tree mod log operation for it.
2911 		 */
2912 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2913 				      btrfs_node_key_ptr_offset(src, push_items),
2914 				      (src_nritems - push_items) *
2915 				      sizeof(struct btrfs_key_ptr));
2916 	}
2917 	btrfs_set_header_nritems(src, src_nritems - push_items);
2918 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2919 	btrfs_mark_buffer_dirty(trans, src);
2920 	btrfs_mark_buffer_dirty(trans, dst);
2921 
2922 	return ret;
2923 }
2924 
2925 /*
2926  * try to push data from one node into the next node right in the
2927  * tree.
2928  *
2929  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2930  * error, and > 0 if there was no room in the right hand block.
2931  *
2932  * this will  only push up to 1/2 the contents of the left node over
2933  */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2934 static int balance_node_right(struct btrfs_trans_handle *trans,
2935 			      struct extent_buffer *dst,
2936 			      struct extent_buffer *src)
2937 {
2938 	struct btrfs_fs_info *fs_info = trans->fs_info;
2939 	int push_items = 0;
2940 	int max_push;
2941 	int src_nritems;
2942 	int dst_nritems;
2943 	int ret = 0;
2944 
2945 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2946 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2947 
2948 	src_nritems = btrfs_header_nritems(src);
2949 	dst_nritems = btrfs_header_nritems(dst);
2950 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2951 	if (push_items <= 0)
2952 		return 1;
2953 
2954 	if (src_nritems < 4)
2955 		return 1;
2956 
2957 	max_push = src_nritems / 2 + 1;
2958 	/* don't try to empty the node */
2959 	if (max_push >= src_nritems)
2960 		return 1;
2961 
2962 	if (max_push < push_items)
2963 		push_items = max_push;
2964 
2965 	/* dst is the right eb, src is the middle eb */
2966 	if (check_sibling_keys(src, dst)) {
2967 		ret = -EUCLEAN;
2968 		btrfs_abort_transaction(trans, ret);
2969 		return ret;
2970 	}
2971 
2972 	/*
2973 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2974 	 * need to do an explicit tree mod log operation for it.
2975 	 */
2976 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2977 				      btrfs_node_key_ptr_offset(dst, 0),
2978 				      (dst_nritems) *
2979 				      sizeof(struct btrfs_key_ptr));
2980 
2981 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2982 					 push_items);
2983 	if (ret) {
2984 		btrfs_abort_transaction(trans, ret);
2985 		return ret;
2986 	}
2987 	copy_extent_buffer(dst, src,
2988 			   btrfs_node_key_ptr_offset(dst, 0),
2989 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2990 			   push_items * sizeof(struct btrfs_key_ptr));
2991 
2992 	btrfs_set_header_nritems(src, src_nritems - push_items);
2993 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2994 
2995 	btrfs_mark_buffer_dirty(trans, src);
2996 	btrfs_mark_buffer_dirty(trans, dst);
2997 
2998 	return ret;
2999 }
3000 
3001 /*
3002  * helper function to insert a new root level in the tree.
3003  * A new node is allocated, and a single item is inserted to
3004  * point to the existing root
3005  *
3006  * returns zero on success or < 0 on failure.
3007  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3008 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3009 			   struct btrfs_root *root,
3010 			   struct btrfs_path *path, int level)
3011 {
3012 	struct btrfs_fs_info *fs_info = root->fs_info;
3013 	u64 lower_gen;
3014 	struct extent_buffer *lower;
3015 	struct extent_buffer *c;
3016 	struct extent_buffer *old;
3017 	struct btrfs_disk_key lower_key;
3018 	int ret;
3019 
3020 	BUG_ON(path->nodes[level]);
3021 	BUG_ON(path->nodes[level-1] != root->node);
3022 
3023 	lower = path->nodes[level-1];
3024 	if (level == 1)
3025 		btrfs_item_key(lower, &lower_key, 0);
3026 	else
3027 		btrfs_node_key(lower, &lower_key, 0);
3028 
3029 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3030 				   &lower_key, level, root->node->start, 0,
3031 				   BTRFS_NESTING_NEW_ROOT);
3032 	if (IS_ERR(c))
3033 		return PTR_ERR(c);
3034 
3035 	root_add_used(root, fs_info->nodesize);
3036 
3037 	btrfs_set_header_nritems(c, 1);
3038 	btrfs_set_node_key(c, &lower_key, 0);
3039 	btrfs_set_node_blockptr(c, 0, lower->start);
3040 	lower_gen = btrfs_header_generation(lower);
3041 	WARN_ON(lower_gen != trans->transid);
3042 
3043 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3044 
3045 	btrfs_mark_buffer_dirty(trans, c);
3046 
3047 	old = root->node;
3048 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3049 	if (ret < 0) {
3050 		int ret2;
3051 
3052 		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3053 		if (ret2 < 0)
3054 			btrfs_abort_transaction(trans, ret2);
3055 		btrfs_tree_unlock(c);
3056 		free_extent_buffer(c);
3057 		return ret;
3058 	}
3059 	rcu_assign_pointer(root->node, c);
3060 
3061 	/* the super has an extra ref to root->node */
3062 	free_extent_buffer(old);
3063 
3064 	add_root_to_dirty_list(root);
3065 	atomic_inc(&c->refs);
3066 	path->nodes[level] = c;
3067 	path->locks[level] = BTRFS_WRITE_LOCK;
3068 	path->slots[level] = 0;
3069 	return 0;
3070 }
3071 
3072 /*
3073  * worker function to insert a single pointer in a node.
3074  * the node should have enough room for the pointer already
3075  *
3076  * slot and level indicate where you want the key to go, and
3077  * blocknr is the block the key points to.
3078  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3079 static int insert_ptr(struct btrfs_trans_handle *trans,
3080 		      struct btrfs_path *path,
3081 		      struct btrfs_disk_key *key, u64 bytenr,
3082 		      int slot, int level)
3083 {
3084 	struct extent_buffer *lower;
3085 	int nritems;
3086 	int ret;
3087 
3088 	BUG_ON(!path->nodes[level]);
3089 	btrfs_assert_tree_write_locked(path->nodes[level]);
3090 	lower = path->nodes[level];
3091 	nritems = btrfs_header_nritems(lower);
3092 	BUG_ON(slot > nritems);
3093 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3094 	if (slot != nritems) {
3095 		if (level) {
3096 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3097 					slot, nritems - slot);
3098 			if (ret < 0) {
3099 				btrfs_abort_transaction(trans, ret);
3100 				return ret;
3101 			}
3102 		}
3103 		memmove_extent_buffer(lower,
3104 			      btrfs_node_key_ptr_offset(lower, slot + 1),
3105 			      btrfs_node_key_ptr_offset(lower, slot),
3106 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3107 	}
3108 	if (level) {
3109 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3110 						    BTRFS_MOD_LOG_KEY_ADD);
3111 		if (ret < 0) {
3112 			btrfs_abort_transaction(trans, ret);
3113 			return ret;
3114 		}
3115 	}
3116 	btrfs_set_node_key(lower, key, slot);
3117 	btrfs_set_node_blockptr(lower, slot, bytenr);
3118 	WARN_ON(trans->transid == 0);
3119 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3120 	btrfs_set_header_nritems(lower, nritems + 1);
3121 	btrfs_mark_buffer_dirty(trans, lower);
3122 
3123 	return 0;
3124 }
3125 
3126 /*
3127  * split the node at the specified level in path in two.
3128  * The path is corrected to point to the appropriate node after the split
3129  *
3130  * Before splitting this tries to make some room in the node by pushing
3131  * left and right, if either one works, it returns right away.
3132  *
3133  * returns 0 on success and < 0 on failure
3134  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3135 static noinline int split_node(struct btrfs_trans_handle *trans,
3136 			       struct btrfs_root *root,
3137 			       struct btrfs_path *path, int level)
3138 {
3139 	struct btrfs_fs_info *fs_info = root->fs_info;
3140 	struct extent_buffer *c;
3141 	struct extent_buffer *split;
3142 	struct btrfs_disk_key disk_key;
3143 	int mid;
3144 	int ret;
3145 	u32 c_nritems;
3146 
3147 	c = path->nodes[level];
3148 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3149 	if (c == root->node) {
3150 		/*
3151 		 * trying to split the root, lets make a new one
3152 		 *
3153 		 * tree mod log: We don't log_removal old root in
3154 		 * insert_new_root, because that root buffer will be kept as a
3155 		 * normal node. We are going to log removal of half of the
3156 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3157 		 * holding a tree lock on the buffer, which is why we cannot
3158 		 * race with other tree_mod_log users.
3159 		 */
3160 		ret = insert_new_root(trans, root, path, level + 1);
3161 		if (ret)
3162 			return ret;
3163 	} else {
3164 		ret = push_nodes_for_insert(trans, root, path, level);
3165 		c = path->nodes[level];
3166 		if (!ret && btrfs_header_nritems(c) <
3167 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3168 			return 0;
3169 		if (ret < 0)
3170 			return ret;
3171 	}
3172 
3173 	c_nritems = btrfs_header_nritems(c);
3174 	mid = (c_nritems + 1) / 2;
3175 	btrfs_node_key(c, &disk_key, mid);
3176 
3177 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3178 				       &disk_key, level, c->start, 0,
3179 				       BTRFS_NESTING_SPLIT);
3180 	if (IS_ERR(split))
3181 		return PTR_ERR(split);
3182 
3183 	root_add_used(root, fs_info->nodesize);
3184 	ASSERT(btrfs_header_level(c) == level);
3185 
3186 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3187 	if (ret) {
3188 		btrfs_tree_unlock(split);
3189 		free_extent_buffer(split);
3190 		btrfs_abort_transaction(trans, ret);
3191 		return ret;
3192 	}
3193 	copy_extent_buffer(split, c,
3194 			   btrfs_node_key_ptr_offset(split, 0),
3195 			   btrfs_node_key_ptr_offset(c, mid),
3196 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3197 	btrfs_set_header_nritems(split, c_nritems - mid);
3198 	btrfs_set_header_nritems(c, mid);
3199 
3200 	btrfs_mark_buffer_dirty(trans, c);
3201 	btrfs_mark_buffer_dirty(trans, split);
3202 
3203 	ret = insert_ptr(trans, path, &disk_key, split->start,
3204 			 path->slots[level + 1] + 1, level + 1);
3205 	if (ret < 0) {
3206 		btrfs_tree_unlock(split);
3207 		free_extent_buffer(split);
3208 		return ret;
3209 	}
3210 
3211 	if (path->slots[level] >= mid) {
3212 		path->slots[level] -= mid;
3213 		btrfs_tree_unlock(c);
3214 		free_extent_buffer(c);
3215 		path->nodes[level] = split;
3216 		path->slots[level + 1] += 1;
3217 	} else {
3218 		btrfs_tree_unlock(split);
3219 		free_extent_buffer(split);
3220 	}
3221 	return 0;
3222 }
3223 
3224 /*
3225  * how many bytes are required to store the items in a leaf.  start
3226  * and nr indicate which items in the leaf to check.  This totals up the
3227  * space used both by the item structs and the item data
3228  */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3229 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3230 {
3231 	int data_len;
3232 	int nritems = btrfs_header_nritems(l);
3233 	int end = min(nritems, start + nr) - 1;
3234 
3235 	if (!nr)
3236 		return 0;
3237 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3238 	data_len = data_len - btrfs_item_offset(l, end);
3239 	data_len += sizeof(struct btrfs_item) * nr;
3240 	WARN_ON(data_len < 0);
3241 	return data_len;
3242 }
3243 
3244 /*
3245  * The space between the end of the leaf items and
3246  * the start of the leaf data.  IOW, how much room
3247  * the leaf has left for both items and data
3248  */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3249 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3250 {
3251 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3252 	int nritems = btrfs_header_nritems(leaf);
3253 	int ret;
3254 
3255 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3256 	if (ret < 0) {
3257 		btrfs_crit(fs_info,
3258 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3259 			   ret,
3260 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3261 			   leaf_space_used(leaf, 0, nritems), nritems);
3262 	}
3263 	return ret;
3264 }
3265 
3266 /*
3267  * min slot controls the lowest index we're willing to push to the
3268  * right.  We'll push up to and including min_slot, but no lower
3269  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3270 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3271 				      struct btrfs_path *path,
3272 				      int data_size, int empty,
3273 				      struct extent_buffer *right,
3274 				      int free_space, u32 left_nritems,
3275 				      u32 min_slot)
3276 {
3277 	struct btrfs_fs_info *fs_info = right->fs_info;
3278 	struct extent_buffer *left = path->nodes[0];
3279 	struct extent_buffer *upper = path->nodes[1];
3280 	struct btrfs_map_token token;
3281 	struct btrfs_disk_key disk_key;
3282 	int slot;
3283 	u32 i;
3284 	int push_space = 0;
3285 	int push_items = 0;
3286 	u32 nr;
3287 	u32 right_nritems;
3288 	u32 data_end;
3289 	u32 this_item_size;
3290 
3291 	if (empty)
3292 		nr = 0;
3293 	else
3294 		nr = max_t(u32, 1, min_slot);
3295 
3296 	if (path->slots[0] >= left_nritems)
3297 		push_space += data_size;
3298 
3299 	slot = path->slots[1];
3300 	i = left_nritems - 1;
3301 	while (i >= nr) {
3302 		if (!empty && push_items > 0) {
3303 			if (path->slots[0] > i)
3304 				break;
3305 			if (path->slots[0] == i) {
3306 				int space = btrfs_leaf_free_space(left);
3307 
3308 				if (space + push_space * 2 > free_space)
3309 					break;
3310 			}
3311 		}
3312 
3313 		if (path->slots[0] == i)
3314 			push_space += data_size;
3315 
3316 		this_item_size = btrfs_item_size(left, i);
3317 		if (this_item_size + sizeof(struct btrfs_item) +
3318 		    push_space > free_space)
3319 			break;
3320 
3321 		push_items++;
3322 		push_space += this_item_size + sizeof(struct btrfs_item);
3323 		if (i == 0)
3324 			break;
3325 		i--;
3326 	}
3327 
3328 	if (push_items == 0)
3329 		goto out_unlock;
3330 
3331 	WARN_ON(!empty && push_items == left_nritems);
3332 
3333 	/* push left to right */
3334 	right_nritems = btrfs_header_nritems(right);
3335 
3336 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3337 	push_space -= leaf_data_end(left);
3338 
3339 	/* make room in the right data area */
3340 	data_end = leaf_data_end(right);
3341 	memmove_leaf_data(right, data_end - push_space, data_end,
3342 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3343 
3344 	/* copy from the left data area */
3345 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3346 		       leaf_data_end(left), push_space);
3347 
3348 	memmove_leaf_items(right, push_items, 0, right_nritems);
3349 
3350 	/* copy the items from left to right */
3351 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3352 
3353 	/* update the item pointers */
3354 	btrfs_init_map_token(&token, right);
3355 	right_nritems += push_items;
3356 	btrfs_set_header_nritems(right, right_nritems);
3357 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3358 	for (i = 0; i < right_nritems; i++) {
3359 		push_space -= btrfs_token_item_size(&token, i);
3360 		btrfs_set_token_item_offset(&token, i, push_space);
3361 	}
3362 
3363 	left_nritems -= push_items;
3364 	btrfs_set_header_nritems(left, left_nritems);
3365 
3366 	if (left_nritems)
3367 		btrfs_mark_buffer_dirty(trans, left);
3368 	else
3369 		btrfs_clear_buffer_dirty(trans, left);
3370 
3371 	btrfs_mark_buffer_dirty(trans, right);
3372 
3373 	btrfs_item_key(right, &disk_key, 0);
3374 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3375 	btrfs_mark_buffer_dirty(trans, upper);
3376 
3377 	/* then fixup the leaf pointer in the path */
3378 	if (path->slots[0] >= left_nritems) {
3379 		path->slots[0] -= left_nritems;
3380 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3381 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3382 		btrfs_tree_unlock(path->nodes[0]);
3383 		free_extent_buffer(path->nodes[0]);
3384 		path->nodes[0] = right;
3385 		path->slots[1] += 1;
3386 	} else {
3387 		btrfs_tree_unlock(right);
3388 		free_extent_buffer(right);
3389 	}
3390 	return 0;
3391 
3392 out_unlock:
3393 	btrfs_tree_unlock(right);
3394 	free_extent_buffer(right);
3395 	return 1;
3396 }
3397 
3398 /*
3399  * push some data in the path leaf to the right, trying to free up at
3400  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3401  *
3402  * returns 1 if the push failed because the other node didn't have enough
3403  * room, 0 if everything worked out and < 0 if there were major errors.
3404  *
3405  * this will push starting from min_slot to the end of the leaf.  It won't
3406  * push any slot lower than min_slot
3407  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3408 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3409 			   *root, struct btrfs_path *path,
3410 			   int min_data_size, int data_size,
3411 			   int empty, u32 min_slot)
3412 {
3413 	struct extent_buffer *left = path->nodes[0];
3414 	struct extent_buffer *right;
3415 	struct extent_buffer *upper;
3416 	int slot;
3417 	int free_space;
3418 	u32 left_nritems;
3419 	int ret;
3420 
3421 	if (!path->nodes[1])
3422 		return 1;
3423 
3424 	slot = path->slots[1];
3425 	upper = path->nodes[1];
3426 	if (slot >= btrfs_header_nritems(upper) - 1)
3427 		return 1;
3428 
3429 	btrfs_assert_tree_write_locked(path->nodes[1]);
3430 
3431 	right = btrfs_read_node_slot(upper, slot + 1);
3432 	if (IS_ERR(right))
3433 		return PTR_ERR(right);
3434 
3435 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3436 
3437 	free_space = btrfs_leaf_free_space(right);
3438 	if (free_space < data_size)
3439 		goto out_unlock;
3440 
3441 	ret = btrfs_cow_block(trans, root, right, upper,
3442 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3443 	if (ret)
3444 		goto out_unlock;
3445 
3446 	left_nritems = btrfs_header_nritems(left);
3447 	if (left_nritems == 0)
3448 		goto out_unlock;
3449 
3450 	if (check_sibling_keys(left, right)) {
3451 		ret = -EUCLEAN;
3452 		btrfs_abort_transaction(trans, ret);
3453 		btrfs_tree_unlock(right);
3454 		free_extent_buffer(right);
3455 		return ret;
3456 	}
3457 	if (path->slots[0] == left_nritems && !empty) {
3458 		/* Key greater than all keys in the leaf, right neighbor has
3459 		 * enough room for it and we're not emptying our leaf to delete
3460 		 * it, therefore use right neighbor to insert the new item and
3461 		 * no need to touch/dirty our left leaf. */
3462 		btrfs_tree_unlock(left);
3463 		free_extent_buffer(left);
3464 		path->nodes[0] = right;
3465 		path->slots[0] = 0;
3466 		path->slots[1]++;
3467 		return 0;
3468 	}
3469 
3470 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3471 				 free_space, left_nritems, min_slot);
3472 out_unlock:
3473 	btrfs_tree_unlock(right);
3474 	free_extent_buffer(right);
3475 	return 1;
3476 }
3477 
3478 /*
3479  * push some data in the path leaf to the left, trying to free up at
3480  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3481  *
3482  * max_slot can put a limit on how far into the leaf we'll push items.  The
3483  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3484  * items
3485  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3486 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3487 				     struct btrfs_path *path, int data_size,
3488 				     int empty, struct extent_buffer *left,
3489 				     int free_space, u32 right_nritems,
3490 				     u32 max_slot)
3491 {
3492 	struct btrfs_fs_info *fs_info = left->fs_info;
3493 	struct btrfs_disk_key disk_key;
3494 	struct extent_buffer *right = path->nodes[0];
3495 	int i;
3496 	int push_space = 0;
3497 	int push_items = 0;
3498 	u32 old_left_nritems;
3499 	u32 nr;
3500 	int ret = 0;
3501 	u32 this_item_size;
3502 	u32 old_left_item_size;
3503 	struct btrfs_map_token token;
3504 
3505 	if (empty)
3506 		nr = min(right_nritems, max_slot);
3507 	else
3508 		nr = min(right_nritems - 1, max_slot);
3509 
3510 	for (i = 0; i < nr; i++) {
3511 		if (!empty && push_items > 0) {
3512 			if (path->slots[0] < i)
3513 				break;
3514 			if (path->slots[0] == i) {
3515 				int space = btrfs_leaf_free_space(right);
3516 
3517 				if (space + push_space * 2 > free_space)
3518 					break;
3519 			}
3520 		}
3521 
3522 		if (path->slots[0] == i)
3523 			push_space += data_size;
3524 
3525 		this_item_size = btrfs_item_size(right, i);
3526 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3527 		    free_space)
3528 			break;
3529 
3530 		push_items++;
3531 		push_space += this_item_size + sizeof(struct btrfs_item);
3532 	}
3533 
3534 	if (push_items == 0) {
3535 		ret = 1;
3536 		goto out;
3537 	}
3538 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3539 
3540 	/* push data from right to left */
3541 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3542 
3543 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3544 		     btrfs_item_offset(right, push_items - 1);
3545 
3546 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3547 		       btrfs_item_offset(right, push_items - 1), push_space);
3548 	old_left_nritems = btrfs_header_nritems(left);
3549 	BUG_ON(old_left_nritems <= 0);
3550 
3551 	btrfs_init_map_token(&token, left);
3552 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3553 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3554 		u32 ioff;
3555 
3556 		ioff = btrfs_token_item_offset(&token, i);
3557 		btrfs_set_token_item_offset(&token, i,
3558 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3559 	}
3560 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3561 
3562 	/* fixup right node */
3563 	if (push_items > right_nritems)
3564 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3565 		       right_nritems);
3566 
3567 	if (push_items < right_nritems) {
3568 		push_space = btrfs_item_offset(right, push_items - 1) -
3569 						  leaf_data_end(right);
3570 		memmove_leaf_data(right,
3571 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3572 				  leaf_data_end(right), push_space);
3573 
3574 		memmove_leaf_items(right, 0, push_items,
3575 				   btrfs_header_nritems(right) - push_items);
3576 	}
3577 
3578 	btrfs_init_map_token(&token, right);
3579 	right_nritems -= push_items;
3580 	btrfs_set_header_nritems(right, right_nritems);
3581 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3582 	for (i = 0; i < right_nritems; i++) {
3583 		push_space = push_space - btrfs_token_item_size(&token, i);
3584 		btrfs_set_token_item_offset(&token, i, push_space);
3585 	}
3586 
3587 	btrfs_mark_buffer_dirty(trans, left);
3588 	if (right_nritems)
3589 		btrfs_mark_buffer_dirty(trans, right);
3590 	else
3591 		btrfs_clear_buffer_dirty(trans, right);
3592 
3593 	btrfs_item_key(right, &disk_key, 0);
3594 	fixup_low_keys(trans, path, &disk_key, 1);
3595 
3596 	/* then fixup the leaf pointer in the path */
3597 	if (path->slots[0] < push_items) {
3598 		path->slots[0] += old_left_nritems;
3599 		btrfs_tree_unlock(path->nodes[0]);
3600 		free_extent_buffer(path->nodes[0]);
3601 		path->nodes[0] = left;
3602 		path->slots[1] -= 1;
3603 	} else {
3604 		btrfs_tree_unlock(left);
3605 		free_extent_buffer(left);
3606 		path->slots[0] -= push_items;
3607 	}
3608 	BUG_ON(path->slots[0] < 0);
3609 	return ret;
3610 out:
3611 	btrfs_tree_unlock(left);
3612 	free_extent_buffer(left);
3613 	return ret;
3614 }
3615 
3616 /*
3617  * push some data in the path leaf to the left, trying to free up at
3618  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3619  *
3620  * max_slot can put a limit on how far into the leaf we'll push items.  The
3621  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3622  * items
3623  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3624 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3625 			  *root, struct btrfs_path *path, int min_data_size,
3626 			  int data_size, int empty, u32 max_slot)
3627 {
3628 	struct extent_buffer *right = path->nodes[0];
3629 	struct extent_buffer *left;
3630 	int slot;
3631 	int free_space;
3632 	u32 right_nritems;
3633 	int ret = 0;
3634 
3635 	slot = path->slots[1];
3636 	if (slot == 0)
3637 		return 1;
3638 	if (!path->nodes[1])
3639 		return 1;
3640 
3641 	right_nritems = btrfs_header_nritems(right);
3642 	if (right_nritems == 0)
3643 		return 1;
3644 
3645 	btrfs_assert_tree_write_locked(path->nodes[1]);
3646 
3647 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3648 	if (IS_ERR(left))
3649 		return PTR_ERR(left);
3650 
3651 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3652 
3653 	free_space = btrfs_leaf_free_space(left);
3654 	if (free_space < data_size) {
3655 		ret = 1;
3656 		goto out;
3657 	}
3658 
3659 	ret = btrfs_cow_block(trans, root, left,
3660 			      path->nodes[1], slot - 1, &left,
3661 			      BTRFS_NESTING_LEFT_COW);
3662 	if (ret) {
3663 		/* we hit -ENOSPC, but it isn't fatal here */
3664 		if (ret == -ENOSPC)
3665 			ret = 1;
3666 		goto out;
3667 	}
3668 
3669 	if (check_sibling_keys(left, right)) {
3670 		ret = -EUCLEAN;
3671 		btrfs_abort_transaction(trans, ret);
3672 		goto out;
3673 	}
3674 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3675 				free_space, right_nritems, max_slot);
3676 out:
3677 	btrfs_tree_unlock(left);
3678 	free_extent_buffer(left);
3679 	return ret;
3680 }
3681 
3682 /*
3683  * split the path's leaf in two, making sure there is at least data_size
3684  * available for the resulting leaf level of the path.
3685  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3686 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3687 				   struct btrfs_path *path,
3688 				   struct extent_buffer *l,
3689 				   struct extent_buffer *right,
3690 				   int slot, int mid, int nritems)
3691 {
3692 	struct btrfs_fs_info *fs_info = trans->fs_info;
3693 	int data_copy_size;
3694 	int rt_data_off;
3695 	int i;
3696 	int ret;
3697 	struct btrfs_disk_key disk_key;
3698 	struct btrfs_map_token token;
3699 
3700 	nritems = nritems - mid;
3701 	btrfs_set_header_nritems(right, nritems);
3702 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3703 
3704 	copy_leaf_items(right, l, 0, mid, nritems);
3705 
3706 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3707 		       leaf_data_end(l), data_copy_size);
3708 
3709 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3710 
3711 	btrfs_init_map_token(&token, right);
3712 	for (i = 0; i < nritems; i++) {
3713 		u32 ioff;
3714 
3715 		ioff = btrfs_token_item_offset(&token, i);
3716 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3717 	}
3718 
3719 	btrfs_set_header_nritems(l, mid);
3720 	btrfs_item_key(right, &disk_key, 0);
3721 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3722 	if (ret < 0)
3723 		return ret;
3724 
3725 	btrfs_mark_buffer_dirty(trans, right);
3726 	btrfs_mark_buffer_dirty(trans, l);
3727 	BUG_ON(path->slots[0] != slot);
3728 
3729 	if (mid <= slot) {
3730 		btrfs_tree_unlock(path->nodes[0]);
3731 		free_extent_buffer(path->nodes[0]);
3732 		path->nodes[0] = right;
3733 		path->slots[0] -= mid;
3734 		path->slots[1] += 1;
3735 	} else {
3736 		btrfs_tree_unlock(right);
3737 		free_extent_buffer(right);
3738 	}
3739 
3740 	BUG_ON(path->slots[0] < 0);
3741 
3742 	return 0;
3743 }
3744 
3745 /*
3746  * double splits happen when we need to insert a big item in the middle
3747  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3748  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3749  *          A                 B                 C
3750  *
3751  * We avoid this by trying to push the items on either side of our target
3752  * into the adjacent leaves.  If all goes well we can avoid the double split
3753  * completely.
3754  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3755 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3756 					  struct btrfs_root *root,
3757 					  struct btrfs_path *path,
3758 					  int data_size)
3759 {
3760 	int ret;
3761 	int progress = 0;
3762 	int slot;
3763 	u32 nritems;
3764 	int space_needed = data_size;
3765 
3766 	slot = path->slots[0];
3767 	if (slot < btrfs_header_nritems(path->nodes[0]))
3768 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3769 
3770 	/*
3771 	 * try to push all the items after our slot into the
3772 	 * right leaf
3773 	 */
3774 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3775 	if (ret < 0)
3776 		return ret;
3777 
3778 	if (ret == 0)
3779 		progress++;
3780 
3781 	nritems = btrfs_header_nritems(path->nodes[0]);
3782 	/*
3783 	 * our goal is to get our slot at the start or end of a leaf.  If
3784 	 * we've done so we're done
3785 	 */
3786 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3787 		return 0;
3788 
3789 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3790 		return 0;
3791 
3792 	/* try to push all the items before our slot into the next leaf */
3793 	slot = path->slots[0];
3794 	space_needed = data_size;
3795 	if (slot > 0)
3796 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3797 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3798 	if (ret < 0)
3799 		return ret;
3800 
3801 	if (ret == 0)
3802 		progress++;
3803 
3804 	if (progress)
3805 		return 0;
3806 	return 1;
3807 }
3808 
3809 /*
3810  * split the path's leaf in two, making sure there is at least data_size
3811  * available for the resulting leaf level of the path.
3812  *
3813  * returns 0 if all went well and < 0 on failure.
3814  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3815 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3816 			       struct btrfs_root *root,
3817 			       const struct btrfs_key *ins_key,
3818 			       struct btrfs_path *path, int data_size,
3819 			       int extend)
3820 {
3821 	struct btrfs_disk_key disk_key;
3822 	struct extent_buffer *l;
3823 	u32 nritems;
3824 	int mid;
3825 	int slot;
3826 	struct extent_buffer *right;
3827 	struct btrfs_fs_info *fs_info = root->fs_info;
3828 	int ret = 0;
3829 	int wret;
3830 	int split;
3831 	int num_doubles = 0;
3832 	int tried_avoid_double = 0;
3833 
3834 	l = path->nodes[0];
3835 	slot = path->slots[0];
3836 	if (extend && data_size + btrfs_item_size(l, slot) +
3837 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3838 		return -EOVERFLOW;
3839 
3840 	/* first try to make some room by pushing left and right */
3841 	if (data_size && path->nodes[1]) {
3842 		int space_needed = data_size;
3843 
3844 		if (slot < btrfs_header_nritems(l))
3845 			space_needed -= btrfs_leaf_free_space(l);
3846 
3847 		wret = push_leaf_right(trans, root, path, space_needed,
3848 				       space_needed, 0, 0);
3849 		if (wret < 0)
3850 			return wret;
3851 		if (wret) {
3852 			space_needed = data_size;
3853 			if (slot > 0)
3854 				space_needed -= btrfs_leaf_free_space(l);
3855 			wret = push_leaf_left(trans, root, path, space_needed,
3856 					      space_needed, 0, (u32)-1);
3857 			if (wret < 0)
3858 				return wret;
3859 		}
3860 		l = path->nodes[0];
3861 
3862 		/* did the pushes work? */
3863 		if (btrfs_leaf_free_space(l) >= data_size)
3864 			return 0;
3865 	}
3866 
3867 	if (!path->nodes[1]) {
3868 		ret = insert_new_root(trans, root, path, 1);
3869 		if (ret)
3870 			return ret;
3871 	}
3872 again:
3873 	split = 1;
3874 	l = path->nodes[0];
3875 	slot = path->slots[0];
3876 	nritems = btrfs_header_nritems(l);
3877 	mid = (nritems + 1) / 2;
3878 
3879 	if (mid <= slot) {
3880 		if (nritems == 1 ||
3881 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3882 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3883 			if (slot >= nritems) {
3884 				split = 0;
3885 			} else {
3886 				mid = slot;
3887 				if (mid != nritems &&
3888 				    leaf_space_used(l, mid, nritems - mid) +
3889 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3890 					if (data_size && !tried_avoid_double)
3891 						goto push_for_double;
3892 					split = 2;
3893 				}
3894 			}
3895 		}
3896 	} else {
3897 		if (leaf_space_used(l, 0, mid) + data_size >
3898 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3899 			if (!extend && data_size && slot == 0) {
3900 				split = 0;
3901 			} else if ((extend || !data_size) && slot == 0) {
3902 				mid = 1;
3903 			} else {
3904 				mid = slot;
3905 				if (mid != nritems &&
3906 				    leaf_space_used(l, mid, nritems - mid) +
3907 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3908 					if (data_size && !tried_avoid_double)
3909 						goto push_for_double;
3910 					split = 2;
3911 				}
3912 			}
3913 		}
3914 	}
3915 
3916 	if (split == 0)
3917 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3918 	else
3919 		btrfs_item_key(l, &disk_key, mid);
3920 
3921 	/*
3922 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3923 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3924 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3925 	 * out.  In the future we could add a
3926 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3927 	 * use BTRFS_NESTING_NEW_ROOT.
3928 	 */
3929 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3930 				       &disk_key, 0, l->start, 0,
3931 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3932 				       BTRFS_NESTING_SPLIT);
3933 	if (IS_ERR(right))
3934 		return PTR_ERR(right);
3935 
3936 	root_add_used(root, fs_info->nodesize);
3937 
3938 	if (split == 0) {
3939 		if (mid <= slot) {
3940 			btrfs_set_header_nritems(right, 0);
3941 			ret = insert_ptr(trans, path, &disk_key,
3942 					 right->start, path->slots[1] + 1, 1);
3943 			if (ret < 0) {
3944 				btrfs_tree_unlock(right);
3945 				free_extent_buffer(right);
3946 				return ret;
3947 			}
3948 			btrfs_tree_unlock(path->nodes[0]);
3949 			free_extent_buffer(path->nodes[0]);
3950 			path->nodes[0] = right;
3951 			path->slots[0] = 0;
3952 			path->slots[1] += 1;
3953 		} else {
3954 			btrfs_set_header_nritems(right, 0);
3955 			ret = insert_ptr(trans, path, &disk_key,
3956 					 right->start, path->slots[1], 1);
3957 			if (ret < 0) {
3958 				btrfs_tree_unlock(right);
3959 				free_extent_buffer(right);
3960 				return ret;
3961 			}
3962 			btrfs_tree_unlock(path->nodes[0]);
3963 			free_extent_buffer(path->nodes[0]);
3964 			path->nodes[0] = right;
3965 			path->slots[0] = 0;
3966 			if (path->slots[1] == 0)
3967 				fixup_low_keys(trans, path, &disk_key, 1);
3968 		}
3969 		/*
3970 		 * We create a new leaf 'right' for the required ins_len and
3971 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3972 		 * the content of ins_len to 'right'.
3973 		 */
3974 		return ret;
3975 	}
3976 
3977 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3978 	if (ret < 0) {
3979 		btrfs_tree_unlock(right);
3980 		free_extent_buffer(right);
3981 		return ret;
3982 	}
3983 
3984 	if (split == 2) {
3985 		BUG_ON(num_doubles != 0);
3986 		num_doubles++;
3987 		goto again;
3988 	}
3989 
3990 	return 0;
3991 
3992 push_for_double:
3993 	push_for_double_split(trans, root, path, data_size);
3994 	tried_avoid_double = 1;
3995 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3996 		return 0;
3997 	goto again;
3998 }
3999 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4000 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4001 					 struct btrfs_root *root,
4002 					 struct btrfs_path *path, int ins_len)
4003 {
4004 	struct btrfs_key key;
4005 	struct extent_buffer *leaf;
4006 	struct btrfs_file_extent_item *fi;
4007 	u64 extent_len = 0;
4008 	u32 item_size;
4009 	int ret;
4010 
4011 	leaf = path->nodes[0];
4012 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4013 
4014 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4015 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4016 
4017 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4018 		return 0;
4019 
4020 	item_size = btrfs_item_size(leaf, path->slots[0]);
4021 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4022 		fi = btrfs_item_ptr(leaf, path->slots[0],
4023 				    struct btrfs_file_extent_item);
4024 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4025 	}
4026 	btrfs_release_path(path);
4027 
4028 	path->keep_locks = 1;
4029 	path->search_for_split = 1;
4030 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4031 	path->search_for_split = 0;
4032 	if (ret > 0)
4033 		ret = -EAGAIN;
4034 	if (ret < 0)
4035 		goto err;
4036 
4037 	ret = -EAGAIN;
4038 	leaf = path->nodes[0];
4039 	/* if our item isn't there, return now */
4040 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
4041 		goto err;
4042 
4043 	/* the leaf has  changed, it now has room.  return now */
4044 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4045 		goto err;
4046 
4047 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4048 		fi = btrfs_item_ptr(leaf, path->slots[0],
4049 				    struct btrfs_file_extent_item);
4050 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4051 			goto err;
4052 	}
4053 
4054 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4055 	if (ret)
4056 		goto err;
4057 
4058 	path->keep_locks = 0;
4059 	btrfs_unlock_up_safe(path, 1);
4060 	return 0;
4061 err:
4062 	path->keep_locks = 0;
4063 	return ret;
4064 }
4065 
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4066 static noinline int split_item(struct btrfs_trans_handle *trans,
4067 			       struct btrfs_path *path,
4068 			       const struct btrfs_key *new_key,
4069 			       unsigned long split_offset)
4070 {
4071 	struct extent_buffer *leaf;
4072 	int orig_slot, slot;
4073 	char *buf;
4074 	u32 nritems;
4075 	u32 item_size;
4076 	u32 orig_offset;
4077 	struct btrfs_disk_key disk_key;
4078 
4079 	leaf = path->nodes[0];
4080 	/*
4081 	 * Shouldn't happen because the caller must have previously called
4082 	 * setup_leaf_for_split() to make room for the new item in the leaf.
4083 	 */
4084 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4085 		return -ENOSPC;
4086 
4087 	orig_slot = path->slots[0];
4088 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4089 	item_size = btrfs_item_size(leaf, path->slots[0]);
4090 
4091 	buf = kmalloc(item_size, GFP_NOFS);
4092 	if (!buf)
4093 		return -ENOMEM;
4094 
4095 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4096 			    path->slots[0]), item_size);
4097 
4098 	slot = path->slots[0] + 1;
4099 	nritems = btrfs_header_nritems(leaf);
4100 	if (slot != nritems) {
4101 		/* shift the items */
4102 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4103 	}
4104 
4105 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4106 	btrfs_set_item_key(leaf, &disk_key, slot);
4107 
4108 	btrfs_set_item_offset(leaf, slot, orig_offset);
4109 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4110 
4111 	btrfs_set_item_offset(leaf, orig_slot,
4112 				 orig_offset + item_size - split_offset);
4113 	btrfs_set_item_size(leaf, orig_slot, split_offset);
4114 
4115 	btrfs_set_header_nritems(leaf, nritems + 1);
4116 
4117 	/* write the data for the start of the original item */
4118 	write_extent_buffer(leaf, buf,
4119 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4120 			    split_offset);
4121 
4122 	/* write the data for the new item */
4123 	write_extent_buffer(leaf, buf + split_offset,
4124 			    btrfs_item_ptr_offset(leaf, slot),
4125 			    item_size - split_offset);
4126 	btrfs_mark_buffer_dirty(trans, leaf);
4127 
4128 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4129 	kfree(buf);
4130 	return 0;
4131 }
4132 
4133 /*
4134  * This function splits a single item into two items,
4135  * giving 'new_key' to the new item and splitting the
4136  * old one at split_offset (from the start of the item).
4137  *
4138  * The path may be released by this operation.  After
4139  * the split, the path is pointing to the old item.  The
4140  * new item is going to be in the same node as the old one.
4141  *
4142  * Note, the item being split must be smaller enough to live alone on
4143  * a tree block with room for one extra struct btrfs_item
4144  *
4145  * This allows us to split the item in place, keeping a lock on the
4146  * leaf the entire time.
4147  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4148 int btrfs_split_item(struct btrfs_trans_handle *trans,
4149 		     struct btrfs_root *root,
4150 		     struct btrfs_path *path,
4151 		     const struct btrfs_key *new_key,
4152 		     unsigned long split_offset)
4153 {
4154 	int ret;
4155 	ret = setup_leaf_for_split(trans, root, path,
4156 				   sizeof(struct btrfs_item));
4157 	if (ret)
4158 		return ret;
4159 
4160 	ret = split_item(trans, path, new_key, split_offset);
4161 	return ret;
4162 }
4163 
4164 /*
4165  * make the item pointed to by the path smaller.  new_size indicates
4166  * how small to make it, and from_end tells us if we just chop bytes
4167  * off the end of the item or if we shift the item to chop bytes off
4168  * the front.
4169  */
btrfs_truncate_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 new_size,int from_end)4170 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4171 			 struct btrfs_path *path, u32 new_size, int from_end)
4172 {
4173 	int slot;
4174 	struct extent_buffer *leaf;
4175 	u32 nritems;
4176 	unsigned int data_end;
4177 	unsigned int old_data_start;
4178 	unsigned int old_size;
4179 	unsigned int size_diff;
4180 	int i;
4181 	struct btrfs_map_token token;
4182 
4183 	leaf = path->nodes[0];
4184 	slot = path->slots[0];
4185 
4186 	old_size = btrfs_item_size(leaf, slot);
4187 	if (old_size == new_size)
4188 		return;
4189 
4190 	nritems = btrfs_header_nritems(leaf);
4191 	data_end = leaf_data_end(leaf);
4192 
4193 	old_data_start = btrfs_item_offset(leaf, slot);
4194 
4195 	size_diff = old_size - new_size;
4196 
4197 	BUG_ON(slot < 0);
4198 	BUG_ON(slot >= nritems);
4199 
4200 	/*
4201 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4202 	 */
4203 	/* first correct the data pointers */
4204 	btrfs_init_map_token(&token, leaf);
4205 	for (i = slot; i < nritems; i++) {
4206 		u32 ioff;
4207 
4208 		ioff = btrfs_token_item_offset(&token, i);
4209 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4210 	}
4211 
4212 	/* shift the data */
4213 	if (from_end) {
4214 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4215 				  old_data_start + new_size - data_end);
4216 	} else {
4217 		struct btrfs_disk_key disk_key;
4218 		u64 offset;
4219 
4220 		btrfs_item_key(leaf, &disk_key, slot);
4221 
4222 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4223 			unsigned long ptr;
4224 			struct btrfs_file_extent_item *fi;
4225 
4226 			fi = btrfs_item_ptr(leaf, slot,
4227 					    struct btrfs_file_extent_item);
4228 			fi = (struct btrfs_file_extent_item *)(
4229 			     (unsigned long)fi - size_diff);
4230 
4231 			if (btrfs_file_extent_type(leaf, fi) ==
4232 			    BTRFS_FILE_EXTENT_INLINE) {
4233 				ptr = btrfs_item_ptr_offset(leaf, slot);
4234 				memmove_extent_buffer(leaf, ptr,
4235 				      (unsigned long)fi,
4236 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4237 			}
4238 		}
4239 
4240 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4241 				  old_data_start - data_end);
4242 
4243 		offset = btrfs_disk_key_offset(&disk_key);
4244 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4245 		btrfs_set_item_key(leaf, &disk_key, slot);
4246 		if (slot == 0)
4247 			fixup_low_keys(trans, path, &disk_key, 1);
4248 	}
4249 
4250 	btrfs_set_item_size(leaf, slot, new_size);
4251 	btrfs_mark_buffer_dirty(trans, leaf);
4252 
4253 	if (btrfs_leaf_free_space(leaf) < 0) {
4254 		btrfs_print_leaf(leaf);
4255 		BUG();
4256 	}
4257 }
4258 
4259 /*
4260  * make the item pointed to by the path bigger, data_size is the added size.
4261  */
btrfs_extend_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 data_size)4262 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4263 		       struct btrfs_path *path, u32 data_size)
4264 {
4265 	int slot;
4266 	struct extent_buffer *leaf;
4267 	u32 nritems;
4268 	unsigned int data_end;
4269 	unsigned int old_data;
4270 	unsigned int old_size;
4271 	int i;
4272 	struct btrfs_map_token token;
4273 
4274 	leaf = path->nodes[0];
4275 
4276 	nritems = btrfs_header_nritems(leaf);
4277 	data_end = leaf_data_end(leaf);
4278 
4279 	if (btrfs_leaf_free_space(leaf) < data_size) {
4280 		btrfs_print_leaf(leaf);
4281 		BUG();
4282 	}
4283 	slot = path->slots[0];
4284 	old_data = btrfs_item_data_end(leaf, slot);
4285 
4286 	BUG_ON(slot < 0);
4287 	if (slot >= nritems) {
4288 		btrfs_print_leaf(leaf);
4289 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4290 			   slot, nritems);
4291 		BUG();
4292 	}
4293 
4294 	/*
4295 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4296 	 */
4297 	/* first correct the data pointers */
4298 	btrfs_init_map_token(&token, leaf);
4299 	for (i = slot; i < nritems; i++) {
4300 		u32 ioff;
4301 
4302 		ioff = btrfs_token_item_offset(&token, i);
4303 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4304 	}
4305 
4306 	/* shift the data */
4307 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4308 			  old_data - data_end);
4309 
4310 	data_end = old_data;
4311 	old_size = btrfs_item_size(leaf, slot);
4312 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4313 	btrfs_mark_buffer_dirty(trans, leaf);
4314 
4315 	if (btrfs_leaf_free_space(leaf) < 0) {
4316 		btrfs_print_leaf(leaf);
4317 		BUG();
4318 	}
4319 }
4320 
4321 /*
4322  * Make space in the node before inserting one or more items.
4323  *
4324  * @trans:	transaction handle
4325  * @root:	root we are inserting items to
4326  * @path:	points to the leaf/slot where we are going to insert new items
4327  * @batch:      information about the batch of items to insert
4328  *
4329  * Main purpose is to save stack depth by doing the bulk of the work in a
4330  * function that doesn't call btrfs_search_slot
4331  */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4332 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4333 				   struct btrfs_root *root, struct btrfs_path *path,
4334 				   const struct btrfs_item_batch *batch)
4335 {
4336 	struct btrfs_fs_info *fs_info = root->fs_info;
4337 	int i;
4338 	u32 nritems;
4339 	unsigned int data_end;
4340 	struct btrfs_disk_key disk_key;
4341 	struct extent_buffer *leaf;
4342 	int slot;
4343 	struct btrfs_map_token token;
4344 	u32 total_size;
4345 
4346 	/*
4347 	 * Before anything else, update keys in the parent and other ancestors
4348 	 * if needed, then release the write locks on them, so that other tasks
4349 	 * can use them while we modify the leaf.
4350 	 */
4351 	if (path->slots[0] == 0) {
4352 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4353 		fixup_low_keys(trans, path, &disk_key, 1);
4354 	}
4355 	btrfs_unlock_up_safe(path, 1);
4356 
4357 	leaf = path->nodes[0];
4358 	slot = path->slots[0];
4359 
4360 	nritems = btrfs_header_nritems(leaf);
4361 	data_end = leaf_data_end(leaf);
4362 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4363 
4364 	if (btrfs_leaf_free_space(leaf) < total_size) {
4365 		btrfs_print_leaf(leaf);
4366 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4367 			   total_size, btrfs_leaf_free_space(leaf));
4368 		BUG();
4369 	}
4370 
4371 	btrfs_init_map_token(&token, leaf);
4372 	if (slot != nritems) {
4373 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4374 
4375 		if (old_data < data_end) {
4376 			btrfs_print_leaf(leaf);
4377 			btrfs_crit(fs_info,
4378 		"item at slot %d with data offset %u beyond data end of leaf %u",
4379 				   slot, old_data, data_end);
4380 			BUG();
4381 		}
4382 		/*
4383 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4384 		 */
4385 		/* first correct the data pointers */
4386 		for (i = slot; i < nritems; i++) {
4387 			u32 ioff;
4388 
4389 			ioff = btrfs_token_item_offset(&token, i);
4390 			btrfs_set_token_item_offset(&token, i,
4391 						       ioff - batch->total_data_size);
4392 		}
4393 		/* shift the items */
4394 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4395 
4396 		/* shift the data */
4397 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4398 				  data_end, old_data - data_end);
4399 		data_end = old_data;
4400 	}
4401 
4402 	/* setup the item for the new data */
4403 	for (i = 0; i < batch->nr; i++) {
4404 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4405 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4406 		data_end -= batch->data_sizes[i];
4407 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4408 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4409 	}
4410 
4411 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4412 	btrfs_mark_buffer_dirty(trans, leaf);
4413 
4414 	if (btrfs_leaf_free_space(leaf) < 0) {
4415 		btrfs_print_leaf(leaf);
4416 		BUG();
4417 	}
4418 }
4419 
4420 /*
4421  * Insert a new item into a leaf.
4422  *
4423  * @trans:     Transaction handle.
4424  * @root:      The root of the btree.
4425  * @path:      A path pointing to the target leaf and slot.
4426  * @key:       The key of the new item.
4427  * @data_size: The size of the data associated with the new key.
4428  */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4429 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4430 				 struct btrfs_root *root,
4431 				 struct btrfs_path *path,
4432 				 const struct btrfs_key *key,
4433 				 u32 data_size)
4434 {
4435 	struct btrfs_item_batch batch;
4436 
4437 	batch.keys = key;
4438 	batch.data_sizes = &data_size;
4439 	batch.total_data_size = data_size;
4440 	batch.nr = 1;
4441 
4442 	setup_items_for_insert(trans, root, path, &batch);
4443 }
4444 
4445 /*
4446  * Given a key and some data, insert items into the tree.
4447  * This does all the path init required, making room in the tree if needed.
4448  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4449 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4450 			    struct btrfs_root *root,
4451 			    struct btrfs_path *path,
4452 			    const struct btrfs_item_batch *batch)
4453 {
4454 	int ret = 0;
4455 	int slot;
4456 	u32 total_size;
4457 
4458 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4459 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4460 	if (ret == 0)
4461 		return -EEXIST;
4462 	if (ret < 0)
4463 		return ret;
4464 
4465 	slot = path->slots[0];
4466 	BUG_ON(slot < 0);
4467 
4468 	setup_items_for_insert(trans, root, path, batch);
4469 	return 0;
4470 }
4471 
4472 /*
4473  * Given a key and some data, insert an item into the tree.
4474  * This does all the path init required, making room in the tree if needed.
4475  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4476 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4477 		      const struct btrfs_key *cpu_key, void *data,
4478 		      u32 data_size)
4479 {
4480 	int ret = 0;
4481 	struct btrfs_path *path;
4482 	struct extent_buffer *leaf;
4483 	unsigned long ptr;
4484 
4485 	path = btrfs_alloc_path();
4486 	if (!path)
4487 		return -ENOMEM;
4488 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4489 	if (!ret) {
4490 		leaf = path->nodes[0];
4491 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4492 		write_extent_buffer(leaf, data, ptr, data_size);
4493 		btrfs_mark_buffer_dirty(trans, leaf);
4494 	}
4495 	btrfs_free_path(path);
4496 	return ret;
4497 }
4498 
4499 /*
4500  * This function duplicates an item, giving 'new_key' to the new item.
4501  * It guarantees both items live in the same tree leaf and the new item is
4502  * contiguous with the original item.
4503  *
4504  * This allows us to split a file extent in place, keeping a lock on the leaf
4505  * the entire time.
4506  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4507 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4508 			 struct btrfs_root *root,
4509 			 struct btrfs_path *path,
4510 			 const struct btrfs_key *new_key)
4511 {
4512 	struct extent_buffer *leaf;
4513 	int ret;
4514 	u32 item_size;
4515 
4516 	leaf = path->nodes[0];
4517 	item_size = btrfs_item_size(leaf, path->slots[0]);
4518 	ret = setup_leaf_for_split(trans, root, path,
4519 				   item_size + sizeof(struct btrfs_item));
4520 	if (ret)
4521 		return ret;
4522 
4523 	path->slots[0]++;
4524 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4525 	leaf = path->nodes[0];
4526 	memcpy_extent_buffer(leaf,
4527 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4528 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4529 			     item_size);
4530 	return 0;
4531 }
4532 
4533 /*
4534  * delete the pointer from a given node.
4535  *
4536  * the tree should have been previously balanced so the deletion does not
4537  * empty a node.
4538  *
4539  * This is exported for use inside btrfs-progs, don't un-export it.
4540  */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4541 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4542 		  struct btrfs_path *path, int level, int slot)
4543 {
4544 	struct extent_buffer *parent = path->nodes[level];
4545 	u32 nritems;
4546 	int ret;
4547 
4548 	nritems = btrfs_header_nritems(parent);
4549 	if (slot != nritems - 1) {
4550 		if (level) {
4551 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4552 					slot + 1, nritems - slot - 1);
4553 			if (ret < 0) {
4554 				btrfs_abort_transaction(trans, ret);
4555 				return ret;
4556 			}
4557 		}
4558 		memmove_extent_buffer(parent,
4559 			      btrfs_node_key_ptr_offset(parent, slot),
4560 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4561 			      sizeof(struct btrfs_key_ptr) *
4562 			      (nritems - slot - 1));
4563 	} else if (level) {
4564 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4565 						    BTRFS_MOD_LOG_KEY_REMOVE);
4566 		if (ret < 0) {
4567 			btrfs_abort_transaction(trans, ret);
4568 			return ret;
4569 		}
4570 	}
4571 
4572 	nritems--;
4573 	btrfs_set_header_nritems(parent, nritems);
4574 	if (nritems == 0 && parent == root->node) {
4575 		BUG_ON(btrfs_header_level(root->node) != 1);
4576 		/* just turn the root into a leaf and break */
4577 		btrfs_set_header_level(root->node, 0);
4578 	} else if (slot == 0) {
4579 		struct btrfs_disk_key disk_key;
4580 
4581 		btrfs_node_key(parent, &disk_key, 0);
4582 		fixup_low_keys(trans, path, &disk_key, level + 1);
4583 	}
4584 	btrfs_mark_buffer_dirty(trans, parent);
4585 	return 0;
4586 }
4587 
4588 /*
4589  * a helper function to delete the leaf pointed to by path->slots[1] and
4590  * path->nodes[1].
4591  *
4592  * This deletes the pointer in path->nodes[1] and frees the leaf
4593  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4594  *
4595  * The path must have already been setup for deleting the leaf, including
4596  * all the proper balancing.  path->nodes[1] must be locked.
4597  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4598 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4599 				   struct btrfs_root *root,
4600 				   struct btrfs_path *path,
4601 				   struct extent_buffer *leaf)
4602 {
4603 	int ret;
4604 
4605 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4606 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4607 	if (ret < 0)
4608 		return ret;
4609 
4610 	/*
4611 	 * btrfs_free_extent is expensive, we want to make sure we
4612 	 * aren't holding any locks when we call it
4613 	 */
4614 	btrfs_unlock_up_safe(path, 0);
4615 
4616 	root_sub_used(root, leaf->len);
4617 
4618 	atomic_inc(&leaf->refs);
4619 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4620 	free_extent_buffer_stale(leaf);
4621 	if (ret < 0)
4622 		btrfs_abort_transaction(trans, ret);
4623 
4624 	return ret;
4625 }
4626 /*
4627  * delete the item at the leaf level in path.  If that empties
4628  * the leaf, remove it from the tree
4629  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4630 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4631 		    struct btrfs_path *path, int slot, int nr)
4632 {
4633 	struct btrfs_fs_info *fs_info = root->fs_info;
4634 	struct extent_buffer *leaf;
4635 	int ret = 0;
4636 	int wret;
4637 	u32 nritems;
4638 
4639 	leaf = path->nodes[0];
4640 	nritems = btrfs_header_nritems(leaf);
4641 
4642 	if (slot + nr != nritems) {
4643 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4644 		const int data_end = leaf_data_end(leaf);
4645 		struct btrfs_map_token token;
4646 		u32 dsize = 0;
4647 		int i;
4648 
4649 		for (i = 0; i < nr; i++)
4650 			dsize += btrfs_item_size(leaf, slot + i);
4651 
4652 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4653 				  last_off - data_end);
4654 
4655 		btrfs_init_map_token(&token, leaf);
4656 		for (i = slot + nr; i < nritems; i++) {
4657 			u32 ioff;
4658 
4659 			ioff = btrfs_token_item_offset(&token, i);
4660 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4661 		}
4662 
4663 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4664 	}
4665 	btrfs_set_header_nritems(leaf, nritems - nr);
4666 	nritems -= nr;
4667 
4668 	/* delete the leaf if we've emptied it */
4669 	if (nritems == 0) {
4670 		if (leaf == root->node) {
4671 			btrfs_set_header_level(leaf, 0);
4672 		} else {
4673 			btrfs_clear_buffer_dirty(trans, leaf);
4674 			ret = btrfs_del_leaf(trans, root, path, leaf);
4675 			if (ret < 0)
4676 				return ret;
4677 		}
4678 	} else {
4679 		int used = leaf_space_used(leaf, 0, nritems);
4680 		if (slot == 0) {
4681 			struct btrfs_disk_key disk_key;
4682 
4683 			btrfs_item_key(leaf, &disk_key, 0);
4684 			fixup_low_keys(trans, path, &disk_key, 1);
4685 		}
4686 
4687 		/*
4688 		 * Try to delete the leaf if it is mostly empty. We do this by
4689 		 * trying to move all its items into its left and right neighbours.
4690 		 * If we can't move all the items, then we don't delete it - it's
4691 		 * not ideal, but future insertions might fill the leaf with more
4692 		 * items, or items from other leaves might be moved later into our
4693 		 * leaf due to deletions on those leaves.
4694 		 */
4695 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4696 			u32 min_push_space;
4697 
4698 			/* push_leaf_left fixes the path.
4699 			 * make sure the path still points to our leaf
4700 			 * for possible call to btrfs_del_ptr below
4701 			 */
4702 			slot = path->slots[1];
4703 			atomic_inc(&leaf->refs);
4704 			/*
4705 			 * We want to be able to at least push one item to the
4706 			 * left neighbour leaf, and that's the first item.
4707 			 */
4708 			min_push_space = sizeof(struct btrfs_item) +
4709 				btrfs_item_size(leaf, 0);
4710 			wret = push_leaf_left(trans, root, path, 0,
4711 					      min_push_space, 1, (u32)-1);
4712 			if (wret < 0 && wret != -ENOSPC)
4713 				ret = wret;
4714 
4715 			if (path->nodes[0] == leaf &&
4716 			    btrfs_header_nritems(leaf)) {
4717 				/*
4718 				 * If we were not able to push all items from our
4719 				 * leaf to its left neighbour, then attempt to
4720 				 * either push all the remaining items to the
4721 				 * right neighbour or none. There's no advantage
4722 				 * in pushing only some items, instead of all, as
4723 				 * it's pointless to end up with a leaf having
4724 				 * too few items while the neighbours can be full
4725 				 * or nearly full.
4726 				 */
4727 				nritems = btrfs_header_nritems(leaf);
4728 				min_push_space = leaf_space_used(leaf, 0, nritems);
4729 				wret = push_leaf_right(trans, root, path, 0,
4730 						       min_push_space, 1, 0);
4731 				if (wret < 0 && wret != -ENOSPC)
4732 					ret = wret;
4733 			}
4734 
4735 			if (btrfs_header_nritems(leaf) == 0) {
4736 				path->slots[1] = slot;
4737 				ret = btrfs_del_leaf(trans, root, path, leaf);
4738 				if (ret < 0)
4739 					return ret;
4740 				free_extent_buffer(leaf);
4741 				ret = 0;
4742 			} else {
4743 				/* if we're still in the path, make sure
4744 				 * we're dirty.  Otherwise, one of the
4745 				 * push_leaf functions must have already
4746 				 * dirtied this buffer
4747 				 */
4748 				if (path->nodes[0] == leaf)
4749 					btrfs_mark_buffer_dirty(trans, leaf);
4750 				free_extent_buffer(leaf);
4751 			}
4752 		} else {
4753 			btrfs_mark_buffer_dirty(trans, leaf);
4754 		}
4755 	}
4756 	return ret;
4757 }
4758 
4759 /*
4760  * A helper function to walk down the tree starting at min_key, and looking
4761  * for nodes or leaves that are have a minimum transaction id.
4762  * This is used by the btree defrag code, and tree logging
4763  *
4764  * This does not cow, but it does stuff the starting key it finds back
4765  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4766  * key and get a writable path.
4767  *
4768  * This honors path->lowest_level to prevent descent past a given level
4769  * of the tree.
4770  *
4771  * min_trans indicates the oldest transaction that you are interested
4772  * in walking through.  Any nodes or leaves older than min_trans are
4773  * skipped over (without reading them).
4774  *
4775  * returns zero if something useful was found, < 0 on error and 1 if there
4776  * was nothing in the tree that matched the search criteria.
4777  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4778 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4779 			 struct btrfs_path *path,
4780 			 u64 min_trans)
4781 {
4782 	struct extent_buffer *cur;
4783 	struct btrfs_key found_key;
4784 	int slot;
4785 	int sret;
4786 	u32 nritems;
4787 	int level;
4788 	int ret = 1;
4789 	int keep_locks = path->keep_locks;
4790 
4791 	ASSERT(!path->nowait);
4792 	path->keep_locks = 1;
4793 again:
4794 	cur = btrfs_read_lock_root_node(root);
4795 	level = btrfs_header_level(cur);
4796 	WARN_ON(path->nodes[level]);
4797 	path->nodes[level] = cur;
4798 	path->locks[level] = BTRFS_READ_LOCK;
4799 
4800 	if (btrfs_header_generation(cur) < min_trans) {
4801 		ret = 1;
4802 		goto out;
4803 	}
4804 	while (1) {
4805 		nritems = btrfs_header_nritems(cur);
4806 		level = btrfs_header_level(cur);
4807 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4808 		if (sret < 0) {
4809 			ret = sret;
4810 			goto out;
4811 		}
4812 
4813 		/* at the lowest level, we're done, setup the path and exit */
4814 		if (level == path->lowest_level) {
4815 			if (slot >= nritems)
4816 				goto find_next_key;
4817 			ret = 0;
4818 			path->slots[level] = slot;
4819 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4820 			goto out;
4821 		}
4822 		if (sret && slot > 0)
4823 			slot--;
4824 		/*
4825 		 * check this node pointer against the min_trans parameters.
4826 		 * If it is too old, skip to the next one.
4827 		 */
4828 		while (slot < nritems) {
4829 			u64 gen;
4830 
4831 			gen = btrfs_node_ptr_generation(cur, slot);
4832 			if (gen < min_trans) {
4833 				slot++;
4834 				continue;
4835 			}
4836 			break;
4837 		}
4838 find_next_key:
4839 		/*
4840 		 * we didn't find a candidate key in this node, walk forward
4841 		 * and find another one
4842 		 */
4843 		if (slot >= nritems) {
4844 			path->slots[level] = slot;
4845 			sret = btrfs_find_next_key(root, path, min_key, level,
4846 						  min_trans);
4847 			if (sret == 0) {
4848 				btrfs_release_path(path);
4849 				goto again;
4850 			} else {
4851 				goto out;
4852 			}
4853 		}
4854 		/* save our key for returning back */
4855 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4856 		path->slots[level] = slot;
4857 		if (level == path->lowest_level) {
4858 			ret = 0;
4859 			goto out;
4860 		}
4861 		cur = btrfs_read_node_slot(cur, slot);
4862 		if (IS_ERR(cur)) {
4863 			ret = PTR_ERR(cur);
4864 			goto out;
4865 		}
4866 
4867 		btrfs_tree_read_lock(cur);
4868 
4869 		path->locks[level - 1] = BTRFS_READ_LOCK;
4870 		path->nodes[level - 1] = cur;
4871 		unlock_up(path, level, 1, 0, NULL);
4872 	}
4873 out:
4874 	path->keep_locks = keep_locks;
4875 	if (ret == 0) {
4876 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4877 		memcpy(min_key, &found_key, sizeof(found_key));
4878 	}
4879 	return ret;
4880 }
4881 
4882 /*
4883  * this is similar to btrfs_next_leaf, but does not try to preserve
4884  * and fixup the path.  It looks for and returns the next key in the
4885  * tree based on the current path and the min_trans parameters.
4886  *
4887  * 0 is returned if another key is found, < 0 if there are any errors
4888  * and 1 is returned if there are no higher keys in the tree
4889  *
4890  * path->keep_locks should be set to 1 on the search made before
4891  * calling this function.
4892  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4893 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4894 			struct btrfs_key *key, int level, u64 min_trans)
4895 {
4896 	int slot;
4897 	struct extent_buffer *c;
4898 
4899 	WARN_ON(!path->keep_locks && !path->skip_locking);
4900 	while (level < BTRFS_MAX_LEVEL) {
4901 		if (!path->nodes[level])
4902 			return 1;
4903 
4904 		slot = path->slots[level] + 1;
4905 		c = path->nodes[level];
4906 next:
4907 		if (slot >= btrfs_header_nritems(c)) {
4908 			int ret;
4909 			int orig_lowest;
4910 			struct btrfs_key cur_key;
4911 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4912 			    !path->nodes[level + 1])
4913 				return 1;
4914 
4915 			if (path->locks[level + 1] || path->skip_locking) {
4916 				level++;
4917 				continue;
4918 			}
4919 
4920 			slot = btrfs_header_nritems(c) - 1;
4921 			if (level == 0)
4922 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4923 			else
4924 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4925 
4926 			orig_lowest = path->lowest_level;
4927 			btrfs_release_path(path);
4928 			path->lowest_level = level;
4929 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4930 						0, 0);
4931 			path->lowest_level = orig_lowest;
4932 			if (ret < 0)
4933 				return ret;
4934 
4935 			c = path->nodes[level];
4936 			slot = path->slots[level];
4937 			if (ret == 0)
4938 				slot++;
4939 			goto next;
4940 		}
4941 
4942 		if (level == 0)
4943 			btrfs_item_key_to_cpu(c, key, slot);
4944 		else {
4945 			u64 gen = btrfs_node_ptr_generation(c, slot);
4946 
4947 			if (gen < min_trans) {
4948 				slot++;
4949 				goto next;
4950 			}
4951 			btrfs_node_key_to_cpu(c, key, slot);
4952 		}
4953 		return 0;
4954 	}
4955 	return 1;
4956 }
4957 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4958 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4959 			u64 time_seq)
4960 {
4961 	int slot;
4962 	int level;
4963 	struct extent_buffer *c;
4964 	struct extent_buffer *next;
4965 	struct btrfs_fs_info *fs_info = root->fs_info;
4966 	struct btrfs_key key;
4967 	bool need_commit_sem = false;
4968 	u32 nritems;
4969 	int ret;
4970 	int i;
4971 
4972 	/*
4973 	 * The nowait semantics are used only for write paths, where we don't
4974 	 * use the tree mod log and sequence numbers.
4975 	 */
4976 	if (time_seq)
4977 		ASSERT(!path->nowait);
4978 
4979 	nritems = btrfs_header_nritems(path->nodes[0]);
4980 	if (nritems == 0)
4981 		return 1;
4982 
4983 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4984 again:
4985 	level = 1;
4986 	next = NULL;
4987 	btrfs_release_path(path);
4988 
4989 	path->keep_locks = 1;
4990 
4991 	if (time_seq) {
4992 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4993 	} else {
4994 		if (path->need_commit_sem) {
4995 			path->need_commit_sem = 0;
4996 			need_commit_sem = true;
4997 			if (path->nowait) {
4998 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4999 					ret = -EAGAIN;
5000 					goto done;
5001 				}
5002 			} else {
5003 				down_read(&fs_info->commit_root_sem);
5004 			}
5005 		}
5006 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5007 	}
5008 	path->keep_locks = 0;
5009 
5010 	if (ret < 0)
5011 		goto done;
5012 
5013 	nritems = btrfs_header_nritems(path->nodes[0]);
5014 	/*
5015 	 * by releasing the path above we dropped all our locks.  A balance
5016 	 * could have added more items next to the key that used to be
5017 	 * at the very end of the block.  So, check again here and
5018 	 * advance the path if there are now more items available.
5019 	 */
5020 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5021 		if (ret == 0)
5022 			path->slots[0]++;
5023 		ret = 0;
5024 		goto done;
5025 	}
5026 	/*
5027 	 * So the above check misses one case:
5028 	 * - after releasing the path above, someone has removed the item that
5029 	 *   used to be at the very end of the block, and balance between leafs
5030 	 *   gets another one with bigger key.offset to replace it.
5031 	 *
5032 	 * This one should be returned as well, or we can get leaf corruption
5033 	 * later(esp. in __btrfs_drop_extents()).
5034 	 *
5035 	 * And a bit more explanation about this check,
5036 	 * with ret > 0, the key isn't found, the path points to the slot
5037 	 * where it should be inserted, so the path->slots[0] item must be the
5038 	 * bigger one.
5039 	 */
5040 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5041 		ret = 0;
5042 		goto done;
5043 	}
5044 
5045 	while (level < BTRFS_MAX_LEVEL) {
5046 		if (!path->nodes[level]) {
5047 			ret = 1;
5048 			goto done;
5049 		}
5050 
5051 		slot = path->slots[level] + 1;
5052 		c = path->nodes[level];
5053 		if (slot >= btrfs_header_nritems(c)) {
5054 			level++;
5055 			if (level == BTRFS_MAX_LEVEL) {
5056 				ret = 1;
5057 				goto done;
5058 			}
5059 			continue;
5060 		}
5061 
5062 
5063 		/*
5064 		 * Our current level is where we're going to start from, and to
5065 		 * make sure lockdep doesn't complain we need to drop our locks
5066 		 * and nodes from 0 to our current level.
5067 		 */
5068 		for (i = 0; i < level; i++) {
5069 			if (path->locks[level]) {
5070 				btrfs_tree_read_unlock(path->nodes[i]);
5071 				path->locks[i] = 0;
5072 			}
5073 			free_extent_buffer(path->nodes[i]);
5074 			path->nodes[i] = NULL;
5075 		}
5076 
5077 		next = c;
5078 		ret = read_block_for_search(root, path, &next, level,
5079 					    slot, &key);
5080 		if (ret == -EAGAIN && !path->nowait)
5081 			goto again;
5082 
5083 		if (ret < 0) {
5084 			btrfs_release_path(path);
5085 			goto done;
5086 		}
5087 
5088 		if (!path->skip_locking) {
5089 			ret = btrfs_try_tree_read_lock(next);
5090 			if (!ret && path->nowait) {
5091 				ret = -EAGAIN;
5092 				goto done;
5093 			}
5094 			if (!ret && time_seq) {
5095 				/*
5096 				 * If we don't get the lock, we may be racing
5097 				 * with push_leaf_left, holding that lock while
5098 				 * itself waiting for the leaf we've currently
5099 				 * locked. To solve this situation, we give up
5100 				 * on our lock and cycle.
5101 				 */
5102 				free_extent_buffer(next);
5103 				btrfs_release_path(path);
5104 				cond_resched();
5105 				goto again;
5106 			}
5107 			if (!ret)
5108 				btrfs_tree_read_lock(next);
5109 		}
5110 		break;
5111 	}
5112 	path->slots[level] = slot;
5113 	while (1) {
5114 		level--;
5115 		path->nodes[level] = next;
5116 		path->slots[level] = 0;
5117 		if (!path->skip_locking)
5118 			path->locks[level] = BTRFS_READ_LOCK;
5119 		if (!level)
5120 			break;
5121 
5122 		ret = read_block_for_search(root, path, &next, level,
5123 					    0, &key);
5124 		if (ret == -EAGAIN && !path->nowait)
5125 			goto again;
5126 
5127 		if (ret < 0) {
5128 			btrfs_release_path(path);
5129 			goto done;
5130 		}
5131 
5132 		if (!path->skip_locking) {
5133 			if (path->nowait) {
5134 				if (!btrfs_try_tree_read_lock(next)) {
5135 					ret = -EAGAIN;
5136 					goto done;
5137 				}
5138 			} else {
5139 				btrfs_tree_read_lock(next);
5140 			}
5141 		}
5142 	}
5143 	ret = 0;
5144 done:
5145 	unlock_up(path, 0, 1, 0, NULL);
5146 	if (need_commit_sem) {
5147 		int ret2;
5148 
5149 		path->need_commit_sem = 1;
5150 		ret2 = finish_need_commit_sem_search(path);
5151 		up_read(&fs_info->commit_root_sem);
5152 		if (ret2)
5153 			ret = ret2;
5154 	}
5155 
5156 	return ret;
5157 }
5158 
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5159 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5160 {
5161 	path->slots[0]++;
5162 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5163 		return btrfs_next_old_leaf(root, path, time_seq);
5164 	return 0;
5165 }
5166 
5167 /*
5168  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5169  * searching until it gets past min_objectid or finds an item of 'type'
5170  *
5171  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5172  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5173 int btrfs_previous_item(struct btrfs_root *root,
5174 			struct btrfs_path *path, u64 min_objectid,
5175 			int type)
5176 {
5177 	struct btrfs_key found_key;
5178 	struct extent_buffer *leaf;
5179 	u32 nritems;
5180 	int ret;
5181 
5182 	while (1) {
5183 		if (path->slots[0] == 0) {
5184 			ret = btrfs_prev_leaf(root, path);
5185 			if (ret != 0)
5186 				return ret;
5187 		} else {
5188 			path->slots[0]--;
5189 		}
5190 		leaf = path->nodes[0];
5191 		nritems = btrfs_header_nritems(leaf);
5192 		if (nritems == 0)
5193 			return 1;
5194 		if (path->slots[0] == nritems)
5195 			path->slots[0]--;
5196 
5197 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5198 		if (found_key.objectid < min_objectid)
5199 			break;
5200 		if (found_key.type == type)
5201 			return 0;
5202 		if (found_key.objectid == min_objectid &&
5203 		    found_key.type < type)
5204 			break;
5205 	}
5206 	return 1;
5207 }
5208 
5209 /*
5210  * search in extent tree to find a previous Metadata/Data extent item with
5211  * min objecitd.
5212  *
5213  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5214  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5215 int btrfs_previous_extent_item(struct btrfs_root *root,
5216 			struct btrfs_path *path, u64 min_objectid)
5217 {
5218 	struct btrfs_key found_key;
5219 	struct extent_buffer *leaf;
5220 	u32 nritems;
5221 	int ret;
5222 
5223 	while (1) {
5224 		if (path->slots[0] == 0) {
5225 			ret = btrfs_prev_leaf(root, path);
5226 			if (ret != 0)
5227 				return ret;
5228 		} else {
5229 			path->slots[0]--;
5230 		}
5231 		leaf = path->nodes[0];
5232 		nritems = btrfs_header_nritems(leaf);
5233 		if (nritems == 0)
5234 			return 1;
5235 		if (path->slots[0] == nritems)
5236 			path->slots[0]--;
5237 
5238 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5239 		if (found_key.objectid < min_objectid)
5240 			break;
5241 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5242 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5243 			return 0;
5244 		if (found_key.objectid == min_objectid &&
5245 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5246 			break;
5247 	}
5248 	return 1;
5249 }
5250 
btrfs_ctree_init(void)5251 int __init btrfs_ctree_init(void)
5252 {
5253 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5254 			sizeof(struct btrfs_path), 0,
5255 			SLAB_MEM_SPREAD, NULL);
5256 	if (!btrfs_path_cachep)
5257 		return -ENOMEM;
5258 	return 0;
5259 }
5260 
btrfs_ctree_exit(void)5261 void __cold btrfs_ctree_exit(void)
5262 {
5263 	kmem_cache_destroy(btrfs_path_cachep);
5264 }
5265