1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
dev_base_seq_inc(struct net * net)202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 while (++net->dev_base_seq == 0)
205 ;
206 }
207
dev_name_hash(struct net * net,const char * name)208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222 {
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227 }
228
rps_lock_irq_disable(struct softnet_data * sd)229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235 }
236
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239 {
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244 }
245
rps_unlock_irq_enable(struct softnet_data * sd)246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252 }
253
netdev_name_node_alloc(struct net_device * dev,const char * name)254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256 {
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266 }
267
268 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278 }
279
netdev_name_node_free(struct netdev_name_node * name_node)280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 kfree(name_node);
283 }
284
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287 {
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290 }
291
netdev_name_node_del(struct netdev_name_node * name_node)292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 hlist_del_rcu(&name_node->hlist);
295 }
296
netdev_name_node_lookup(struct net * net,const char * name)297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299 {
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307 }
308
netdev_name_node_lookup_rcu(struct net * net,const char * name)309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311 {
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319 }
320
netdev_name_in_use(struct net * net,const char * name)321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
netdev_name_node_alt_create(struct net_device * dev,const char * name)327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343 }
344
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350 }
351
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 netdev_name_node_del(name_node);
367 synchronize_rcu();
368 __netdev_name_node_alt_destroy(name_node);
369
370 return 0;
371 }
372
netdev_name_node_alt_flush(struct net_device * dev)373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 struct netdev_name_node *name_node, *tmp;
376
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
list_netdevice(struct net_device * dev)382 static void list_netdevice(struct net_device *dev)
383 {
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
386
387 ASSERT_RTNL();
388
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
395
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
398
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402 dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
407 */
unlist_netdevice(struct net_device * dev,bool lock)408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
412
413 ASSERT_RTNL();
414
415 xa_erase(&net->dev_by_index, dev->ifindex);
416
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
419
420 /* Unlink dev from the device chain */
421 if (lock)
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
426 if (lock)
427 write_unlock(&dev_base_lock);
428
429 dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433 * Our notifier list
434 */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
441 */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
450 */
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
netdev_lock_pos(unsigned short dev_type)488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 int i;
491
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
494 return i;
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
501 {
502 int i;
503
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
507 }
508
netdev_set_addr_lockdep_class(struct net_device * dev)509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 int i;
512
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
517 }
518 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
521 {
522 }
523
netdev_set_addr_lockdep_class(struct net_device * dev)524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530 *
531 * Protocol management and registration routines
532 *
533 *******************************************************************************/
534
535
536 /*
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
539 * here.
540 *
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
549 * --ANK (980803)
550 */
551
ptype_head(const struct packet_type * pt)552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 else
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
564 *
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
568 *
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
572 */
573
dev_add_pack(struct packet_type * pt)574 void dev_add_pack(struct packet_type *pt)
575 {
576 struct list_head *head = ptype_head(pt);
577
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
587 *
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
591 * returns.
592 *
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
596 */
__dev_remove_pack(struct packet_type * pt)597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
601
602 spin_lock(&ptype_lock);
603
604 list_for_each_entry(pt1, head, list) {
605 if (pt == pt1) {
606 list_del_rcu(&pt->list);
607 goto out;
608 }
609 }
610
611 pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
620 *
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
624 * returns.
625 *
626 * This call sleeps to guarantee that no CPU is looking at the packet
627 * type after return.
628 */
dev_remove_pack(struct packet_type * pt)629 void dev_remove_pack(struct packet_type *pt)
630 {
631 __dev_remove_pack(pt);
632
633 synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639 *
640 * Device Interface Subroutines
641 *
642 *******************************************************************************/
643
644 /**
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
647 *
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
650 */
651
dev_get_iflink(const struct net_device * dev)652 int dev_get_iflink(const struct net_device *dev)
653 {
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
656
657 return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
664 * @skb: The packet.
665 *
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
669 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 struct ip_tunnel_info *info;
673
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
675 return -EINVAL;
676
677 info = skb_tunnel_info_unclone(skb);
678 if (!info)
679 return -ENOMEM;
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 return -EINVAL;
682
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
dev_fwd_path(struct net_device_path_stack * stack)687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 int k = stack->num_paths++;
690
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 return NULL;
693
694 return &stack->path[k];
695 }
696
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
699 {
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
702 .dev = dev,
703 };
704 struct net_device_path *path;
705 int ret = 0;
706
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 last_dev = ctx.dev;
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 if (ret < 0)
718 return -1;
719
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
721 return -1;
722 }
723
724 if (!ctx.dev)
725 return ret;
726
727 path = dev_fwd_path(stack);
728 if (!path)
729 return -1;
730 path->type = DEV_PATH_ETHERNET;
731 path->dev = ctx.dev;
732
733 return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
747 */
748
__dev_get_by_name(struct net * net,const char * name)749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 struct netdev_name_node *node_name;
752
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
762 *
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
768 */
769
dev_get_by_name_rcu(struct net * net,const char * name)770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 struct netdev_name_node *node_name;
773
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 dev_hold(dev);
787 rcu_read_unlock();
788 return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
798 *
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
804 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
807 {
808 struct net_device *dev;
809
810 dev = dev_get_by_name(net, name);
811 if (dev)
812 netdev_tracker_alloc(dev, tracker, gfp);
813 return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
821 *
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
826 * or @dev_base_lock.
827 */
828
__dev_get_by_index(struct net * net,int ifindex)829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
846 *
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
851 */
852
dev_get_by_index_rcu(struct net * net,int ifindex)853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
857
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 struct net_device *dev;
870
871 rcu_read_lock();
872 dev = dev_get_by_index_rcu(net, ifindex);
873 dev_hold(dev);
874 rcu_read_unlock();
875 return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
885 *
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
890 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
893 {
894 struct net_device *dev;
895
896 dev = dev_get_by_index(net, ifindex);
897 if (dev)
898 netdev_tracker_alloc(dev, tracker, gfp);
899 return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
dev_get_by_napi_id(unsigned int napi_id)913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 */
netdev_get_name(struct net * net,char * name,int ifindex)934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 struct net_device *dev;
937 int ret;
938
939 down_read(&devnet_rename_sem);
940 rcu_read_lock();
941
942 dev = dev_get_by_index_rcu(net, ifindex);
943 if (!dev) {
944 ret = -ENODEV;
945 goto out;
946 }
947
948 strcpy(name, dev->name);
949
950 ret = 0;
951 out:
952 rcu_read_unlock();
953 up_read(&devnet_rename_sem);
954 return ret;
955 }
956
957 /**
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
968 *
969 */
970
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
973 {
974 struct net_device *dev;
975
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
980
981 return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
dev_getfirstbyhwtype(struct net * net,unsigned short type)985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 struct net_device *dev, *ret = NULL;
988
989 rcu_read_lock();
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
992 dev_hold(dev);
993 ret = dev;
994 break;
995 }
996 rcu_read_unlock();
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1006 *
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1010 */
1011
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1014 {
1015 struct net_device *dev, *ret;
1016
1017 ASSERT_RTNL();
1018
1019 ret = NULL;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1022 ret = dev;
1023 break;
1024 }
1025 }
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1033 *
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1036 * whitespace.
1037 */
dev_valid_name(const char * name)1038 bool dev_valid_name(const char *name)
1039 {
1040 if (*name == '\0')
1041 return false;
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 return false;
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 return false;
1046
1047 while (*name) {
1048 if (*name == '/' || *name == ':' || isspace(*name))
1049 return false;
1050 name++;
1051 }
1052 return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @buf: scratch buffer and result name string
1061 *
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1066 * duplicates.
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1069 */
1070
__dev_alloc_name(struct net * net,const char * name,char * buf)1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 int i = 0;
1074 const char *p;
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1078
1079 if (!dev_valid_name(name))
1080 return -EINVAL;
1081
1082 p = strchr(name, '%');
1083 if (p) {
1084 /*
1085 * Verify the string as this thing may have come from
1086 * the user. There must be either one "%d" and no other "%"
1087 * characters.
1088 */
1089 if (p[1] != 'd' || strchr(p + 2, '%'))
1090 return -EINVAL;
1091
1092 /* Use one page as a bit array of possible slots */
1093 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 if (!inuse)
1095 return -ENOMEM;
1096
1097 for_each_netdev(net, d) {
1098 struct netdev_name_node *name_node;
1099
1100 netdev_for_each_altname(d, name_node) {
1101 if (!sscanf(name_node->name, name, &i))
1102 continue;
1103 if (i < 0 || i >= max_netdevices)
1104 continue;
1105
1106 /* avoid cases where sscanf is not exact inverse of printf */
1107 snprintf(buf, IFNAMSIZ, name, i);
1108 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 __set_bit(i, inuse);
1110 }
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1115
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf, IFNAMSIZ, name, i);
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 __set_bit(i, inuse);
1120 }
1121
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 bitmap_free(inuse);
1124 }
1125
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!netdev_name_in_use(net, buf))
1128 return i;
1129
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1133 */
1134 return -ENFILE;
1135 }
1136
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 const char *want_name, char *out_name)
1139 {
1140 int ret;
1141
1142 if (!dev_valid_name(want_name))
1143 return -EINVAL;
1144
1145 if (strchr(want_name, '%')) {
1146 ret = __dev_alloc_name(net, want_name, out_name);
1147 return ret < 0 ? ret : 0;
1148 } else if (netdev_name_in_use(net, want_name)) {
1149 return -EEXIST;
1150 } else if (out_name != want_name) {
1151 strscpy(out_name, want_name, IFNAMSIZ);
1152 }
1153
1154 return 0;
1155 }
1156
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1157 static int dev_alloc_name_ns(struct net *net,
1158 struct net_device *dev,
1159 const char *name)
1160 {
1161 char buf[IFNAMSIZ];
1162 int ret;
1163
1164 BUG_ON(!net);
1165 ret = __dev_alloc_name(net, name, buf);
1166 if (ret >= 0)
1167 strscpy(dev->name, buf, IFNAMSIZ);
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_alloc_name - allocate a name for a device
1173 * @dev: device
1174 * @name: name format string
1175 *
1176 * Passed a format string - eg "lt%d" it will try and find a suitable
1177 * id. It scans list of devices to build up a free map, then chooses
1178 * the first empty slot. The caller must hold the dev_base or rtnl lock
1179 * while allocating the name and adding the device in order to avoid
1180 * duplicates.
1181 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182 * Returns the number of the unit assigned or a negative errno code.
1183 */
1184
dev_alloc_name(struct net_device * dev,const char * name)1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 const char *name)
1193 {
1194 char buf[IFNAMSIZ];
1195 int ret;
1196
1197 ret = dev_prep_valid_name(net, dev, name, buf);
1198 if (ret >= 0)
1199 strscpy(dev->name, buf, IFNAMSIZ);
1200 return ret;
1201 }
1202
1203 /**
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1207 *
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1210 */
dev_change_name(struct net_device * dev,const char * newname)1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1218
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1221
1222 net = dev_net(dev);
1223
1224 down_write(&devnet_rename_sem);
1225
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1229 }
1230
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233 err = dev_get_valid_name(net, dev, newname);
1234 if (err < 0) {
1235 up_write(&devnet_rename_sem);
1236 return err;
1237 }
1238
1239 if (oldname[0] && !strchr(oldname, '%'))
1240 netdev_info(dev, "renamed from %s%s\n", oldname,
1241 dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243 old_assign_type = dev->name_assign_type;
1244 dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247 ret = device_rename(&dev->dev, dev->name);
1248 if (ret) {
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 dev->name_assign_type = old_assign_type;
1251 up_write(&devnet_rename_sem);
1252 return ret;
1253 }
1254
1255 up_write(&devnet_rename_sem);
1256
1257 netdev_adjacent_rename_links(dev, oldname);
1258
1259 write_lock(&dev_base_lock);
1260 netdev_name_node_del(dev->name_node);
1261 write_unlock(&dev_base_lock);
1262
1263 synchronize_rcu();
1264
1265 write_lock(&dev_base_lock);
1266 netdev_name_node_add(net, dev->name_node);
1267 write_unlock(&dev_base_lock);
1268
1269 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 ret = notifier_to_errno(ret);
1271
1272 if (ret) {
1273 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274 if (err >= 0) {
1275 err = ret;
1276 down_write(&devnet_rename_sem);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 memcpy(oldname, newname, IFNAMSIZ);
1279 dev->name_assign_type = old_assign_type;
1280 old_assign_type = NET_NAME_RENAMED;
1281 goto rollback;
1282 } else {
1283 netdev_err(dev, "name change rollback failed: %d\n",
1284 ret);
1285 }
1286 }
1287
1288 return err;
1289 }
1290
1291 /**
1292 * dev_set_alias - change ifalias of a device
1293 * @dev: device
1294 * @alias: name up to IFALIASZ
1295 * @len: limit of bytes to copy from info
1296 *
1297 * Set ifalias for a device,
1298 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 struct dev_ifalias *new_alias = NULL;
1302
1303 if (len >= IFALIASZ)
1304 return -EINVAL;
1305
1306 if (len) {
1307 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 if (!new_alias)
1309 return -ENOMEM;
1310
1311 memcpy(new_alias->ifalias, alias, len);
1312 new_alias->ifalias[len] = 0;
1313 }
1314
1315 mutex_lock(&ifalias_mutex);
1316 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 mutex_is_locked(&ifalias_mutex));
1318 mutex_unlock(&ifalias_mutex);
1319
1320 if (new_alias)
1321 kfree_rcu(new_alias, rcuhead);
1322
1323 return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328 * dev_get_alias - get ifalias of a device
1329 * @dev: device
1330 * @name: buffer to store name of ifalias
1331 * @len: size of buffer
1332 *
1333 * get ifalias for a device. Caller must make sure dev cannot go
1334 * away, e.g. rcu read lock or own a reference count to device.
1335 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 const struct dev_ifalias *alias;
1339 int ret = 0;
1340
1341 rcu_read_lock();
1342 alias = rcu_dereference(dev->ifalias);
1343 if (alias)
1344 ret = snprintf(name, len, "%s", alias->ifalias);
1345 rcu_read_unlock();
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * netdev_features_change - device changes features
1352 * @dev: device to cause notification
1353 *
1354 * Called to indicate a device has changed features.
1355 */
netdev_features_change(struct net_device * dev)1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363 * netdev_state_change - device changes state
1364 * @dev: device to cause notification
1365 *
1366 * Called to indicate a device has changed state. This function calls
1367 * the notifier chains for netdev_chain and sends a NEWLINK message
1368 * to the routing socket.
1369 */
netdev_state_change(struct net_device * dev)1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 if (dev->flags & IFF_UP) {
1373 struct netdev_notifier_change_info change_info = {
1374 .info.dev = dev,
1375 };
1376
1377 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 &change_info.info);
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385 * __netdev_notify_peers - notify network peers about existence of @dev,
1386 * to be called when rtnl lock is already held.
1387 * @dev: network device
1388 *
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1394 */
__netdev_notify_peers(struct net_device * dev)1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 ASSERT_RTNL();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404 * netdev_notify_peers - notify network peers about existence of @dev
1405 * @dev: network device
1406 *
1407 * Generate traffic such that interested network peers are aware of
1408 * @dev, such as by generating a gratuitous ARP. This may be used when
1409 * a device wants to inform the rest of the network about some sort of
1410 * reconfiguration such as a failover event or virtual machine
1411 * migration.
1412 */
netdev_notify_peers(struct net_device * dev)1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 rtnl_lock();
1416 __netdev_notify_peers(dev);
1417 rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
napi_kthread_create(struct napi_struct * n)1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 int err = 0;
1426
1427 /* Create and wake up the kthread once to put it in
1428 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 * warning and work with loadavg.
1430 */
1431 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 n->dev->name, n->napi_id);
1433 if (IS_ERR(n->thread)) {
1434 err = PTR_ERR(n->thread);
1435 pr_err("kthread_run failed with err %d\n", err);
1436 n->thread = NULL;
1437 }
1438
1439 return err;
1440 }
1441
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 const struct net_device_ops *ops = dev->netdev_ops;
1445 int ret;
1446
1447 ASSERT_RTNL();
1448 dev_addr_check(dev);
1449
1450 if (!netif_device_present(dev)) {
1451 /* may be detached because parent is runtime-suspended */
1452 if (dev->dev.parent)
1453 pm_runtime_resume(dev->dev.parent);
1454 if (!netif_device_present(dev))
1455 return -ENODEV;
1456 }
1457
1458 /* Block netpoll from trying to do any rx path servicing.
1459 * If we don't do this there is a chance ndo_poll_controller
1460 * or ndo_poll may be running while we open the device
1461 */
1462 netpoll_poll_disable(dev);
1463
1464 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 ret = notifier_to_errno(ret);
1466 if (ret)
1467 return ret;
1468
1469 set_bit(__LINK_STATE_START, &dev->state);
1470
1471 if (ops->ndo_validate_addr)
1472 ret = ops->ndo_validate_addr(dev);
1473
1474 if (!ret && ops->ndo_open)
1475 ret = ops->ndo_open(dev);
1476
1477 netpoll_poll_enable(dev);
1478
1479 if (ret)
1480 clear_bit(__LINK_STATE_START, &dev->state);
1481 else {
1482 dev->flags |= IFF_UP;
1483 dev_set_rx_mode(dev);
1484 dev_activate(dev);
1485 add_device_randomness(dev->dev_addr, dev->addr_len);
1486 }
1487
1488 return ret;
1489 }
1490
1491 /**
1492 * dev_open - prepare an interface for use.
1493 * @dev: device to open
1494 * @extack: netlink extended ack
1495 *
1496 * Takes a device from down to up state. The device's private open
1497 * function is invoked and then the multicast lists are loaded. Finally
1498 * the device is moved into the up state and a %NETDEV_UP message is
1499 * sent to the netdev notifier chain.
1500 *
1501 * Calling this function on an active interface is a nop. On a failure
1502 * a negative errno code is returned.
1503 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 int ret;
1507
1508 if (dev->flags & IFF_UP)
1509 return 0;
1510
1511 ret = __dev_open(dev, extack);
1512 if (ret < 0)
1513 return ret;
1514
1515 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
__dev_close_many(struct list_head * head)1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 struct net_device *dev;
1525
1526 ASSERT_RTNL();
1527 might_sleep();
1528
1529 list_for_each_entry(dev, head, close_list) {
1530 /* Temporarily disable netpoll until the interface is down */
1531 netpoll_poll_disable(dev);
1532
1533 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538 * can be even on different cpu. So just clear netif_running().
1539 *
1540 * dev->stop() will invoke napi_disable() on all of it's
1541 * napi_struct instances on this device.
1542 */
1543 smp_mb__after_atomic(); /* Commit netif_running(). */
1544 }
1545
1546 dev_deactivate_many(head);
1547
1548 list_for_each_entry(dev, head, close_list) {
1549 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551 /*
1552 * Call the device specific close. This cannot fail.
1553 * Only if device is UP
1554 *
1555 * We allow it to be called even after a DETACH hot-plug
1556 * event.
1557 */
1558 if (ops->ndo_stop)
1559 ops->ndo_stop(dev);
1560
1561 dev->flags &= ~IFF_UP;
1562 netpoll_poll_enable(dev);
1563 }
1564 }
1565
__dev_close(struct net_device * dev)1566 static void __dev_close(struct net_device *dev)
1567 {
1568 LIST_HEAD(single);
1569
1570 list_add(&dev->close_list, &single);
1571 __dev_close_many(&single);
1572 list_del(&single);
1573 }
1574
dev_close_many(struct list_head * head,bool unlink)1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 struct net_device *dev, *tmp;
1578
1579 /* Remove the devices that don't need to be closed */
1580 list_for_each_entry_safe(dev, tmp, head, close_list)
1581 if (!(dev->flags & IFF_UP))
1582 list_del_init(&dev->close_list);
1583
1584 __dev_close_many(head);
1585
1586 list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 if (unlink)
1590 list_del_init(&dev->close_list);
1591 }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596 * dev_close - shutdown an interface.
1597 * @dev: device to shutdown
1598 *
1599 * This function moves an active device into down state. A
1600 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602 * chain.
1603 */
dev_close(struct net_device * dev)1604 void dev_close(struct net_device *dev)
1605 {
1606 if (dev->flags & IFF_UP) {
1607 LIST_HEAD(single);
1608
1609 list_add(&dev->close_list, &single);
1610 dev_close_many(&single, true);
1611 list_del(&single);
1612 }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618 * dev_disable_lro - disable Large Receive Offload on a device
1619 * @dev: device
1620 *
1621 * Disable Large Receive Offload (LRO) on a net device. Must be
1622 * called under RTNL. This is needed if received packets may be
1623 * forwarded to another interface.
1624 */
dev_disable_lro(struct net_device * dev)1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 struct net_device *lower_dev;
1628 struct list_head *iter;
1629
1630 dev->wanted_features &= ~NETIF_F_LRO;
1631 netdev_update_features(dev);
1632
1633 if (unlikely(dev->features & NETIF_F_LRO))
1634 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636 netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643 * @dev: device
1644 *
1645 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1646 * called under RTNL. This is needed if Generic XDP is installed on
1647 * the device.
1648 */
dev_disable_gro_hw(struct net_device * dev)1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 netdev_update_features(dev);
1653
1654 if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
netdev_cmd_to_name(enum netdev_cmd cmd)1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) \
1661 case NETDEV_##val: \
1662 return "NETDEV_" __stringify(val);
1663 switch (cmd) {
1664 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 N(XDP_FEAT_CHANGE)
1676 }
1677 #undef N
1678 return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 struct net_device *dev)
1684 {
1685 struct netdev_notifier_info info = {
1686 .dev = dev,
1687 };
1688
1689 return nb->notifier_call(nb, val, &info);
1690 }
1691
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 struct net_device *dev)
1694 {
1695 int err;
1696
1697 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 err = notifier_to_errno(err);
1699 if (err)
1700 return err;
1701
1702 if (!(dev->flags & IFF_UP))
1703 return 0;
1704
1705 call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 return 0;
1707 }
1708
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 struct net_device *dev)
1711 {
1712 if (dev->flags & IFF_UP) {
1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 dev);
1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 }
1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 struct net *net)
1722 {
1723 struct net_device *dev;
1724 int err;
1725
1726 for_each_netdev(net, dev) {
1727 err = call_netdevice_register_notifiers(nb, dev);
1728 if (err)
1729 goto rollback;
1730 }
1731 return 0;
1732
1733 rollback:
1734 for_each_netdev_continue_reverse(net, dev)
1735 call_netdevice_unregister_notifiers(nb, dev);
1736 return err;
1737 }
1738
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 struct net *net)
1741 {
1742 struct net_device *dev;
1743
1744 for_each_netdev(net, dev)
1745 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751 * register_netdevice_notifier - register a network notifier block
1752 * @nb: notifier
1753 *
1754 * Register a notifier to be called when network device events occur.
1755 * The notifier passed is linked into the kernel structures and must
1756 * not be reused until it has been unregistered. A negative errno code
1757 * is returned on a failure.
1758 *
1759 * When registered all registration and up events are replayed
1760 * to the new notifier to allow device to have a race free
1761 * view of the network device list.
1762 */
1763
register_netdevice_notifier(struct notifier_block * nb)1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 struct net *net;
1767 int err;
1768
1769 /* Close race with setup_net() and cleanup_net() */
1770 down_write(&pernet_ops_rwsem);
1771 rtnl_lock();
1772 err = raw_notifier_chain_register(&netdev_chain, nb);
1773 if (err)
1774 goto unlock;
1775 if (dev_boot_phase)
1776 goto unlock;
1777 for_each_net(net) {
1778 err = call_netdevice_register_net_notifiers(nb, net);
1779 if (err)
1780 goto rollback;
1781 }
1782
1783 unlock:
1784 rtnl_unlock();
1785 up_write(&pernet_ops_rwsem);
1786 return err;
1787
1788 rollback:
1789 for_each_net_continue_reverse(net)
1790 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792 raw_notifier_chain_unregister(&netdev_chain, nb);
1793 goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798 * unregister_netdevice_notifier - unregister a network notifier block
1799 * @nb: notifier
1800 *
1801 * Unregister a notifier previously registered by
1802 * register_netdevice_notifier(). The notifier is unlinked into the
1803 * kernel structures and may then be reused. A negative errno code
1804 * is returned on a failure.
1805 *
1806 * After unregistering unregister and down device events are synthesized
1807 * for all devices on the device list to the removed notifier to remove
1808 * the need for special case cleanup code.
1809 */
1810
unregister_netdevice_notifier(struct notifier_block * nb)1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 struct net *net;
1814 int err;
1815
1816 /* Close race with setup_net() and cleanup_net() */
1817 down_write(&pernet_ops_rwsem);
1818 rtnl_lock();
1819 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 if (err)
1821 goto unlock;
1822
1823 for_each_net(net)
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827 rtnl_unlock();
1828 up_write(&pernet_ops_rwsem);
1829 return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1833 static int __register_netdevice_notifier_net(struct net *net,
1834 struct notifier_block *nb,
1835 bool ignore_call_fail)
1836 {
1837 int err;
1838
1839 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 if (err)
1841 return err;
1842 if (dev_boot_phase)
1843 return 0;
1844
1845 err = call_netdevice_register_net_notifiers(nb, net);
1846 if (err && !ignore_call_fail)
1847 goto chain_unregister;
1848
1849 return 0;
1850
1851 chain_unregister:
1852 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 return err;
1854 }
1855
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 struct notifier_block *nb)
1858 {
1859 int err;
1860
1861 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 if (err)
1863 return err;
1864
1865 call_netdevice_unregister_net_notifiers(nb, net);
1866 return 0;
1867 }
1868
1869 /**
1870 * register_netdevice_notifier_net - register a per-netns network notifier block
1871 * @net: network namespace
1872 * @nb: notifier
1873 *
1874 * Register a notifier to be called when network device events occur.
1875 * The notifier passed is linked into the kernel structures and must
1876 * not be reused until it has been unregistered. A negative errno code
1877 * is returned on a failure.
1878 *
1879 * When registered all registration and up events are replayed
1880 * to the new notifier to allow device to have a race free
1881 * view of the network device list.
1882 */
1883
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 int err;
1887
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(net, nb, false);
1890 rtnl_unlock();
1891 return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896 * unregister_netdevice_notifier_net - unregister a per-netns
1897 * network notifier block
1898 * @net: network namespace
1899 * @nb: notifier
1900 *
1901 * Unregister a notifier previously registered by
1902 * register_netdevice_notifier_net(). The notifier is unlinked from the
1903 * kernel structures and may then be reused. A negative errno code
1904 * is returned on a failure.
1905 *
1906 * After unregistering unregister and down device events are synthesized
1907 * for all devices on the device list to the removed notifier to remove
1908 * the need for special case cleanup code.
1909 */
1910
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1911 int unregister_netdevice_notifier_net(struct net *net,
1912 struct notifier_block *nb)
1913 {
1914 int err;
1915
1916 rtnl_lock();
1917 err = __unregister_netdevice_notifier_net(net, nb);
1918 rtnl_unlock();
1919 return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 struct net *dst_net,
1925 struct notifier_block *nb)
1926 {
1927 __unregister_netdevice_notifier_net(src_net, nb);
1928 __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 struct notifier_block *nb,
1933 struct netdev_net_notifier *nn)
1934 {
1935 int err;
1936
1937 rtnl_lock();
1938 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 if (!err) {
1940 nn->nb = nb;
1941 list_add(&nn->list, &dev->net_notifier_list);
1942 }
1943 rtnl_unlock();
1944 return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 struct notifier_block *nb,
1950 struct netdev_net_notifier *nn)
1951 {
1952 int err;
1953
1954 rtnl_lock();
1955 list_del(&nn->list);
1956 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 rtnl_unlock();
1958 return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 struct net *net)
1964 {
1965 struct netdev_net_notifier *nn;
1966
1967 list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972 * call_netdevice_notifiers_info - call all network notifier blocks
1973 * @val: value passed unmodified to notifier function
1974 * @info: notifier information data
1975 *
1976 * Call all network notifier blocks. Parameters and return value
1977 * are as for raw_notifier_call_chain().
1978 */
1979
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1980 int call_netdevice_notifiers_info(unsigned long val,
1981 struct netdev_notifier_info *info)
1982 {
1983 struct net *net = dev_net(info->dev);
1984 int ret;
1985
1986 ASSERT_RTNL();
1987
1988 /* Run per-netns notifier block chain first, then run the global one.
1989 * Hopefully, one day, the global one is going to be removed after
1990 * all notifier block registrators get converted to be per-netns.
1991 */
1992 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 if (ret & NOTIFY_STOP_MASK)
1994 return ret;
1995 return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000 * for and rollback on error
2001 * @val_up: value passed unmodified to notifier function
2002 * @val_down: value passed unmodified to the notifier function when
2003 * recovering from an error on @val_up
2004 * @info: notifier information data
2005 *
2006 * Call all per-netns network notifier blocks, but not notifier blocks on
2007 * the global notifier chain. Parameters and return value are as for
2008 * raw_notifier_call_chain_robust().
2009 */
2010
2011 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 unsigned long val_down,
2014 struct netdev_notifier_info *info)
2015 {
2016 struct net *net = dev_net(info->dev);
2017
2018 ASSERT_RTNL();
2019
2020 return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 val_up, val_down, info);
2022 }
2023
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 struct net_device *dev,
2026 struct netlink_ext_ack *extack)
2027 {
2028 struct netdev_notifier_info info = {
2029 .dev = dev,
2030 .extack = extack,
2031 };
2032
2033 return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037 * call_netdevice_notifiers - call all network notifier blocks
2038 * @val: value passed unmodified to notifier function
2039 * @dev: net_device pointer passed unmodified to notifier function
2040 *
2041 * Call all network notifier blocks. Parameters and return value
2042 * are as for raw_notifier_call_chain().
2043 */
2044
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052 * call_netdevice_notifiers_mtu - call all network notifier blocks
2053 * @val: value passed unmodified to notifier function
2054 * @dev: net_device pointer passed unmodified to notifier function
2055 * @arg: additional u32 argument passed to the notifier function
2056 *
2057 * Call all network notifier blocks. Parameters and return value
2058 * are as for raw_notifier_call_chain().
2059 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 struct net_device *dev, u32 arg)
2062 {
2063 struct netdev_notifier_info_ext info = {
2064 .info.dev = dev,
2065 .ext.mtu = arg,
2066 };
2067
2068 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070 return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
net_inc_ingress_queue(void)2076 void net_inc_ingress_queue(void)
2077 {
2078 static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
net_dec_ingress_queue(void)2082 void net_dec_ingress_queue(void)
2083 {
2084 static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
net_inc_egress_queue(void)2092 void net_inc_egress_queue(void)
2093 {
2094 static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
net_dec_egress_queue(void)2098 void net_dec_egress_queue(void)
2099 {
2100 static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 int wanted;
2114
2115 wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 if (wanted > 0)
2117 static_branch_enable(&netstamp_needed_key);
2118 else
2119 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
net_enable_timestamp(void)2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 int wanted = atomic_read(&netstamp_wanted);
2128
2129 while (wanted > 0) {
2130 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 return;
2132 }
2133 atomic_inc(&netstamp_needed_deferred);
2134 schedule_work(&netstamp_work);
2135 #else
2136 static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
net_disable_timestamp(void)2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 int wanted = atomic_read(&netstamp_wanted);
2145
2146 while (wanted > 1) {
2147 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 return;
2149 }
2150 atomic_dec(&netstamp_needed_deferred);
2151 schedule_work(&netstamp_work);
2152 #else
2153 static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
net_timestamp_set(struct sk_buff * skb)2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 skb->tstamp = 0;
2161 skb->mono_delivery_time = 0;
2162 if (static_branch_unlikely(&netstamp_needed_key))
2163 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB) \
2167 if (static_branch_unlikely(&netstamp_needed_key)) { \
2168 if ((COND) && !(SKB)->tstamp) \
2169 (SKB)->tstamp = ktime_get_real(); \
2170 } \
2171
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 bool check_mtu)
2180 {
2181 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183 if (likely(!ret)) {
2184 skb->protocol = eth_type_trans(skb, dev);
2185 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 }
2187
2188 return ret;
2189 }
2190
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198 * dev_forward_skb - loopback an skb to another netif
2199 *
2200 * @dev: destination network device
2201 * @skb: buffer to forward
2202 *
2203 * return values:
2204 * NET_RX_SUCCESS (no congestion)
2205 * NET_RX_DROP (packet was dropped, but freed)
2206 *
2207 * dev_forward_skb can be used for injecting an skb from the
2208 * start_xmit function of one device into the receive queue
2209 * of another device.
2210 *
2211 * The receiving device may be in another namespace, so
2212 * we have to clear all information in the skb that could
2213 * impact namespace isolation.
2214 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2226 static inline int deliver_skb(struct sk_buff *skb,
2227 struct packet_type *pt_prev,
2228 struct net_device *orig_dev)
2229 {
2230 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 return -ENOMEM;
2232 refcount_inc(&skb->users);
2233 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 struct packet_type **pt,
2238 struct net_device *orig_dev,
2239 __be16 type,
2240 struct list_head *ptype_list)
2241 {
2242 struct packet_type *ptype, *pt_prev = *pt;
2243
2244 list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 if (ptype->type != type)
2246 continue;
2247 if (pt_prev)
2248 deliver_skb(skb, pt_prev, orig_dev);
2249 pt_prev = ptype;
2250 }
2251 *pt = pt_prev;
2252 }
2253
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 if (!ptype->af_packet_priv || !skb->sk)
2257 return false;
2258
2259 if (ptype->id_match)
2260 return ptype->id_match(ptype, skb->sk);
2261 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 return true;
2263
2264 return false;
2265 }
2266
2267 /**
2268 * dev_nit_active - return true if any network interface taps are in use
2269 *
2270 * @dev: network device to check for the presence of taps
2271 */
dev_nit_active(struct net_device * dev)2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279 * Support routine. Sends outgoing frames to any network
2280 * taps currently in use.
2281 */
2282
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 struct packet_type *ptype;
2286 struct sk_buff *skb2 = NULL;
2287 struct packet_type *pt_prev = NULL;
2288 struct list_head *ptype_list = &ptype_all;
2289
2290 rcu_read_lock();
2291 again:
2292 list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 if (READ_ONCE(ptype->ignore_outgoing))
2294 continue;
2295
2296 /* Never send packets back to the socket
2297 * they originated from - MvS (miquels@drinkel.ow.org)
2298 */
2299 if (skb_loop_sk(ptype, skb))
2300 continue;
2301
2302 if (pt_prev) {
2303 deliver_skb(skb2, pt_prev, skb->dev);
2304 pt_prev = ptype;
2305 continue;
2306 }
2307
2308 /* need to clone skb, done only once */
2309 skb2 = skb_clone(skb, GFP_ATOMIC);
2310 if (!skb2)
2311 goto out_unlock;
2312
2313 net_timestamp_set(skb2);
2314
2315 /* skb->nh should be correctly
2316 * set by sender, so that the second statement is
2317 * just protection against buggy protocols.
2318 */
2319 skb_reset_mac_header(skb2);
2320
2321 if (skb_network_header(skb2) < skb2->data ||
2322 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 ntohs(skb2->protocol),
2325 dev->name);
2326 skb_reset_network_header(skb2);
2327 }
2328
2329 skb2->transport_header = skb2->network_header;
2330 skb2->pkt_type = PACKET_OUTGOING;
2331 pt_prev = ptype;
2332 }
2333
2334 if (ptype_list == &ptype_all) {
2335 ptype_list = &dev->ptype_all;
2336 goto again;
2337 }
2338 out_unlock:
2339 if (pt_prev) {
2340 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 else
2343 kfree_skb(skb2);
2344 }
2345 rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351 * @dev: Network device
2352 * @txq: number of queues available
2353 *
2354 * If real_num_tx_queues is changed the tc mappings may no longer be
2355 * valid. To resolve this verify the tc mapping remains valid and if
2356 * not NULL the mapping. With no priorities mapping to this
2357 * offset/count pair it will no longer be used. In the worst case TC0
2358 * is invalid nothing can be done so disable priority mappings. If is
2359 * expected that drivers will fix this mapping if they can before
2360 * calling netif_set_real_num_tx_queues.
2361 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 int i;
2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367 /* If TC0 is invalidated disable TC mapping */
2368 if (tc->offset + tc->count > txq) {
2369 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 dev->num_tc = 0;
2371 return;
2372 }
2373
2374 /* Invalidated prio to tc mappings set to TC0 */
2375 for (i = 1; i < TC_BITMASK + 1; i++) {
2376 int q = netdev_get_prio_tc_map(dev, i);
2377
2378 tc = &dev->tc_to_txq[q];
2379 if (tc->offset + tc->count > txq) {
2380 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 i, q);
2382 netdev_set_prio_tc_map(dev, i, 0);
2383 }
2384 }
2385 }
2386
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 if (dev->num_tc) {
2390 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 int i;
2392
2393 /* walk through the TCs and see if it falls into any of them */
2394 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 if ((txq - tc->offset) < tc->count)
2396 return i;
2397 }
2398
2399 /* didn't find it, just return -1 to indicate no match */
2400 return -1;
2401 }
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P) \
2412 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 struct xps_map *map = NULL;
2418 int pos;
2419
2420 map = xmap_dereference(dev_maps->attr_map[tci]);
2421 if (!map)
2422 return false;
2423
2424 for (pos = map->len; pos--;) {
2425 if (map->queues[pos] != index)
2426 continue;
2427
2428 if (map->len > 1) {
2429 map->queues[pos] = map->queues[--map->len];
2430 break;
2431 }
2432
2433 if (old_maps)
2434 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 kfree_rcu(map, rcu);
2437 return false;
2438 }
2439
2440 return true;
2441 }
2442
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 struct xps_dev_maps *dev_maps,
2445 int cpu, u16 offset, u16 count)
2446 {
2447 int num_tc = dev_maps->num_tc;
2448 bool active = false;
2449 int tci;
2450
2451 for (tci = cpu * num_tc; num_tc--; tci++) {
2452 int i, j;
2453
2454 for (i = count, j = offset; i--; j++) {
2455 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 break;
2457 }
2458
2459 active |= i < 0;
2460 }
2461
2462 return active;
2463 }
2464
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2465 static void reset_xps_maps(struct net_device *dev,
2466 struct xps_dev_maps *dev_maps,
2467 enum xps_map_type type)
2468 {
2469 static_key_slow_dec_cpuslocked(&xps_needed);
2470 if (type == XPS_RXQS)
2471 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475 kfree_rcu(dev_maps, rcu);
2476 }
2477
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 u16 offset, u16 count)
2480 {
2481 struct xps_dev_maps *dev_maps;
2482 bool active = false;
2483 int i, j;
2484
2485 dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 if (!dev_maps)
2487 return;
2488
2489 for (j = 0; j < dev_maps->nr_ids; j++)
2490 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 if (!active)
2492 reset_xps_maps(dev, dev_maps, type);
2493
2494 if (type == XPS_CPUS) {
2495 for (i = offset + (count - 1); count--; i--)
2496 netdev_queue_numa_node_write(
2497 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 }
2499 }
2500
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 u16 count)
2503 {
2504 if (!static_key_false(&xps_needed))
2505 return;
2506
2507 cpus_read_lock();
2508 mutex_lock(&xps_map_mutex);
2509
2510 if (static_key_false(&xps_rxqs_needed))
2511 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513 clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515 mutex_unlock(&xps_map_mutex);
2516 cpus_read_unlock();
2517 }
2518
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 u16 index, bool is_rxqs_map)
2526 {
2527 struct xps_map *new_map;
2528 int alloc_len = XPS_MIN_MAP_ALLOC;
2529 int i, pos;
2530
2531 for (pos = 0; map && pos < map->len; pos++) {
2532 if (map->queues[pos] != index)
2533 continue;
2534 return map;
2535 }
2536
2537 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 if (map) {
2539 if (pos < map->alloc_len)
2540 return map;
2541
2542 alloc_len = map->alloc_len * 2;
2543 }
2544
2545 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 * map
2547 */
2548 if (is_rxqs_map)
2549 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 else
2551 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 cpu_to_node(attr_index));
2553 if (!new_map)
2554 return NULL;
2555
2556 for (i = 0; i < pos; i++)
2557 new_map->queues[i] = map->queues[i];
2558 new_map->alloc_len = alloc_len;
2559 new_map->len = pos;
2560
2561 return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 struct xps_dev_maps *new_dev_maps, int index,
2567 int tc, bool skip_tc)
2568 {
2569 int i, tci = index * dev_maps->num_tc;
2570 struct xps_map *map;
2571
2572 /* copy maps belonging to foreign traffic classes */
2573 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 if (i == tc && skip_tc)
2575 continue;
2576
2577 /* fill in the new device map from the old device map */
2578 map = xmap_dereference(dev_maps->attr_map[tci]);
2579 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 u16 index, enum xps_map_type type)
2586 {
2587 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 const unsigned long *online_mask = NULL;
2589 bool active = false, copy = false;
2590 int i, j, tci, numa_node_id = -2;
2591 int maps_sz, num_tc = 1, tc = 0;
2592 struct xps_map *map, *new_map;
2593 unsigned int nr_ids;
2594
2595 WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597 if (dev->num_tc) {
2598 /* Do not allow XPS on subordinate device directly */
2599 num_tc = dev->num_tc;
2600 if (num_tc < 0)
2601 return -EINVAL;
2602
2603 /* If queue belongs to subordinate dev use its map */
2604 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606 tc = netdev_txq_to_tc(dev, index);
2607 if (tc < 0)
2608 return -EINVAL;
2609 }
2610
2611 mutex_lock(&xps_map_mutex);
2612
2613 dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 if (type == XPS_RXQS) {
2615 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 nr_ids = dev->num_rx_queues;
2617 } else {
2618 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 if (num_possible_cpus() > 1)
2620 online_mask = cpumask_bits(cpu_online_mask);
2621 nr_ids = nr_cpu_ids;
2622 }
2623
2624 if (maps_sz < L1_CACHE_BYTES)
2625 maps_sz = L1_CACHE_BYTES;
2626
2627 /* The old dev_maps could be larger or smaller than the one we're
2628 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 * between. We could try to be smart, but let's be safe instead and only
2630 * copy foreign traffic classes if the two map sizes match.
2631 */
2632 if (dev_maps &&
2633 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 copy = true;
2635
2636 /* allocate memory for queue storage */
2637 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 j < nr_ids;) {
2639 if (!new_dev_maps) {
2640 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 if (!new_dev_maps) {
2642 mutex_unlock(&xps_map_mutex);
2643 return -ENOMEM;
2644 }
2645
2646 new_dev_maps->nr_ids = nr_ids;
2647 new_dev_maps->num_tc = num_tc;
2648 }
2649
2650 tci = j * num_tc + tc;
2651 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 if (!map)
2655 goto error;
2656
2657 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 }
2659
2660 if (!new_dev_maps)
2661 goto out_no_new_maps;
2662
2663 if (!dev_maps) {
2664 /* Increment static keys at most once per type */
2665 static_key_slow_inc_cpuslocked(&xps_needed);
2666 if (type == XPS_RXQS)
2667 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 }
2669
2670 for (j = 0; j < nr_ids; j++) {
2671 bool skip_tc = false;
2672
2673 tci = j * num_tc + tc;
2674 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 netif_attr_test_online(j, online_mask, nr_ids)) {
2676 /* add tx-queue to CPU/rx-queue maps */
2677 int pos = 0;
2678
2679 skip_tc = true;
2680
2681 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 while ((pos < map->len) && (map->queues[pos] != index))
2683 pos++;
2684
2685 if (pos == map->len)
2686 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 if (type == XPS_CPUS) {
2689 if (numa_node_id == -2)
2690 numa_node_id = cpu_to_node(j);
2691 else if (numa_node_id != cpu_to_node(j))
2692 numa_node_id = -1;
2693 }
2694 #endif
2695 }
2696
2697 if (copy)
2698 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 skip_tc);
2700 }
2701
2702 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704 /* Cleanup old maps */
2705 if (!dev_maps)
2706 goto out_no_old_maps;
2707
2708 for (j = 0; j < dev_maps->nr_ids; j++) {
2709 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 map = xmap_dereference(dev_maps->attr_map[tci]);
2711 if (!map)
2712 continue;
2713
2714 if (copy) {
2715 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 if (map == new_map)
2717 continue;
2718 }
2719
2720 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 kfree_rcu(map, rcu);
2722 }
2723 }
2724
2725 old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728 dev_maps = new_dev_maps;
2729 active = true;
2730
2731 out_no_new_maps:
2732 if (type == XPS_CPUS)
2733 /* update Tx queue numa node */
2734 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 (numa_node_id >= 0) ?
2736 numa_node_id : NUMA_NO_NODE);
2737
2738 if (!dev_maps)
2739 goto out_no_maps;
2740
2741 /* removes tx-queue from unused CPUs/rx-queues */
2742 for (j = 0; j < dev_maps->nr_ids; j++) {
2743 tci = j * dev_maps->num_tc;
2744
2745 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 if (i == tc &&
2747 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 continue;
2750
2751 active |= remove_xps_queue(dev_maps,
2752 copy ? old_dev_maps : NULL,
2753 tci, index);
2754 }
2755 }
2756
2757 if (old_dev_maps)
2758 kfree_rcu(old_dev_maps, rcu);
2759
2760 /* free map if not active */
2761 if (!active)
2762 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765 mutex_unlock(&xps_map_mutex);
2766
2767 return 0;
2768 error:
2769 /* remove any maps that we added */
2770 for (j = 0; j < nr_ids; j++) {
2771 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 map = copy ?
2774 xmap_dereference(dev_maps->attr_map[tci]) :
2775 NULL;
2776 if (new_map && new_map != map)
2777 kfree(new_map);
2778 }
2779 }
2780
2781 mutex_unlock(&xps_map_mutex);
2782
2783 kfree(new_dev_maps);
2784 return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 u16 index)
2790 {
2791 int ret;
2792
2793 cpus_read_lock();
2794 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 cpus_read_unlock();
2796
2797 return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806 /* Unbind any subordinate channels */
2807 while (txq-- != &dev->_tx[0]) {
2808 if (txq->sb_dev)
2809 netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 }
2811 }
2812
netdev_reset_tc(struct net_device * dev)2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 netdev_unbind_all_sb_channels(dev);
2819
2820 /* Reset TC configuration of device */
2821 dev->num_tc = 0;
2822 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 if (tc >= dev->num_tc)
2830 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833 netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 dev->tc_to_txq[tc].count = count;
2836 dev->tc_to_txq[tc].offset = offset;
2837 return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 if (num_tc > TC_MAX_QUEUE)
2844 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847 netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 netdev_unbind_all_sb_channels(dev);
2850
2851 dev->num_tc = num_tc;
2852 return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 struct net_device *sb_dev)
2858 {
2859 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862 netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867 while (txq-- != &dev->_tx[0]) {
2868 if (txq->sb_dev == sb_dev)
2869 txq->sb_dev = NULL;
2870 }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 struct net_device *sb_dev,
2876 u8 tc, u16 count, u16 offset)
2877 {
2878 /* Make certain the sb_dev and dev are already configured */
2879 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 return -EINVAL;
2881
2882 /* We cannot hand out queues we don't have */
2883 if ((offset + count) > dev->real_num_tx_queues)
2884 return -EINVAL;
2885
2886 /* Record the mapping */
2887 sb_dev->tc_to_txq[tc].count = count;
2888 sb_dev->tc_to_txq[tc].offset = offset;
2889
2890 /* Provide a way for Tx queue to find the tc_to_txq map or
2891 * XPS map for itself.
2892 */
2893 while (count--)
2894 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896 return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
netdev_set_sb_channel(struct net_device * dev,u16 channel)2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 /* Do not use a multiqueue device to represent a subordinate channel */
2903 if (netif_is_multiqueue(dev))
2904 return -ENODEV;
2905
2906 /* We allow channels 1 - 32767 to be used for subordinate channels.
2907 * Channel 0 is meant to be "native" mode and used only to represent
2908 * the main root device. We allow writing 0 to reset the device back
2909 * to normal mode after being used as a subordinate channel.
2910 */
2911 if (channel > S16_MAX)
2912 return -EINVAL;
2913
2914 dev->num_tc = -channel;
2915
2916 return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 bool disabling;
2927 int rc;
2928
2929 disabling = txq < dev->real_num_tx_queues;
2930
2931 if (txq < 1 || txq > dev->num_tx_queues)
2932 return -EINVAL;
2933
2934 if (dev->reg_state == NETREG_REGISTERED ||
2935 dev->reg_state == NETREG_UNREGISTERING) {
2936 ASSERT_RTNL();
2937
2938 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 txq);
2940 if (rc)
2941 return rc;
2942
2943 if (dev->num_tc)
2944 netif_setup_tc(dev, txq);
2945
2946 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948 dev->real_num_tx_queues = txq;
2949
2950 if (disabling) {
2951 synchronize_net();
2952 qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 }
2957 } else {
2958 dev->real_num_tx_queues = txq;
2959 }
2960
2961 return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967 * netif_set_real_num_rx_queues - set actual number of RX queues used
2968 * @dev: Network device
2969 * @rxq: Actual number of RX queues
2970 *
2971 * This must be called either with the rtnl_lock held or before
2972 * registration of the net device. Returns 0 on success, or a
2973 * negative error code. If called before registration, it always
2974 * succeeds.
2975 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 int rc;
2979
2980 if (rxq < 1 || rxq > dev->num_rx_queues)
2981 return -EINVAL;
2982
2983 if (dev->reg_state == NETREG_REGISTERED) {
2984 ASSERT_RTNL();
2985
2986 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 rxq);
2988 if (rc)
2989 return rc;
2990 }
2991
2992 dev->real_num_rx_queues = rxq;
2993 return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999 * netif_set_real_num_queues - set actual number of RX and TX queues used
3000 * @dev: Network device
3001 * @txq: Actual number of TX queues
3002 * @rxq: Actual number of RX queues
3003 *
3004 * Set the real number of both TX and RX queues.
3005 * Does nothing if the number of queues is already correct.
3006 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3007 int netif_set_real_num_queues(struct net_device *dev,
3008 unsigned int txq, unsigned int rxq)
3009 {
3010 unsigned int old_rxq = dev->real_num_rx_queues;
3011 int err;
3012
3013 if (txq < 1 || txq > dev->num_tx_queues ||
3014 rxq < 1 || rxq > dev->num_rx_queues)
3015 return -EINVAL;
3016
3017 /* Start from increases, so the error path only does decreases -
3018 * decreases can't fail.
3019 */
3020 if (rxq > dev->real_num_rx_queues) {
3021 err = netif_set_real_num_rx_queues(dev, rxq);
3022 if (err)
3023 return err;
3024 }
3025 if (txq > dev->real_num_tx_queues) {
3026 err = netif_set_real_num_tx_queues(dev, txq);
3027 if (err)
3028 goto undo_rx;
3029 }
3030 if (rxq < dev->real_num_rx_queues)
3031 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 if (txq < dev->real_num_tx_queues)
3033 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035 return 0;
3036 undo_rx:
3037 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043 * netif_set_tso_max_size() - set the max size of TSO frames supported
3044 * @dev: netdev to update
3045 * @size: max skb->len of a TSO frame
3046 *
3047 * Set the limit on the size of TSO super-frames the device can handle.
3048 * Unless explicitly set the stack will assume the value of
3049 * %GSO_LEGACY_MAX_SIZE.
3050 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 if (size < READ_ONCE(dev->gso_max_size))
3055 netif_set_gso_max_size(dev, size);
3056 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063 * @dev: netdev to update
3064 * @segs: max number of TCP segments
3065 *
3066 * Set the limit on the number of TCP segments the device can generate from
3067 * a single TSO super-frame.
3068 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 dev->tso_max_segs = segs;
3073 if (segs < READ_ONCE(dev->gso_max_segs))
3074 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080 * @to: netdev to update
3081 * @from: netdev from which to copy the limits
3082 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 netif_set_tso_max_size(to, from->tso_max_size);
3086 netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091 * netif_get_num_default_rss_queues - default number of RSS queues
3092 *
3093 * Default value is the number of physical cores if there are only 1 or 2, or
3094 * divided by 2 if there are more.
3095 */
netif_get_num_default_rss_queues(void)3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 cpumask_var_t cpus;
3099 int cpu, count = 0;
3100
3101 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 return 1;
3103
3104 cpumask_copy(cpus, cpu_online_mask);
3105 for_each_cpu(cpu, cpus) {
3106 ++count;
3107 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 }
3109 free_cpumask_var(cpus);
3110
3111 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
__netif_reschedule(struct Qdisc * q)3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 struct softnet_data *sd;
3118 unsigned long flags;
3119
3120 local_irq_save(flags);
3121 sd = this_cpu_ptr(&softnet_data);
3122 q->next_sched = NULL;
3123 *sd->output_queue_tailp = q;
3124 sd->output_queue_tailp = &q->next_sched;
3125 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 local_irq_restore(flags);
3127 }
3128
__netif_schedule(struct Qdisc * q)3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137 enum skb_drop_reason reason;
3138 };
3139
get_kfree_skb_cb(const struct sk_buff * skb)3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
netif_schedule_queue(struct netdev_queue * txq)3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 rcu_read_lock();
3148 if (!netif_xmit_stopped(txq)) {
3149 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151 __netif_schedule(q);
3152 }
3153 rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
netif_tx_wake_queue(struct netdev_queue * dev_queue)3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 struct Qdisc *q;
3161
3162 rcu_read_lock();
3163 q = rcu_dereference(dev_queue->qdisc);
3164 __netif_schedule(q);
3165 rcu_read_unlock();
3166 }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 unsigned long flags;
3173
3174 if (unlikely(!skb))
3175 return;
3176
3177 if (likely(refcount_read(&skb->users) == 1)) {
3178 smp_rmb();
3179 refcount_set(&skb->users, 0);
3180 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 return;
3182 }
3183 get_kfree_skb_cb(skb)->reason = reason;
3184 local_irq_save(flags);
3185 skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 __this_cpu_write(softnet_data.completion_queue, skb);
3187 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 if (in_hardirq() || irqs_disabled())
3195 dev_kfree_skb_irq_reason(skb, reason);
3196 else
3197 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203 * netif_device_detach - mark device as removed
3204 * @dev: network device
3205 *
3206 * Mark device as removed from system and therefore no longer available.
3207 */
netif_device_detach(struct net_device * dev)3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 netif_running(dev)) {
3212 netif_tx_stop_all_queues(dev);
3213 }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218 * netif_device_attach - mark device as attached
3219 * @dev: network device
3220 *
3221 * Mark device as attached from system and restart if needed.
3222 */
netif_device_attach(struct net_device * dev)3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 netif_running(dev)) {
3227 netif_tx_wake_all_queues(dev);
3228 __netdev_watchdog_up(dev);
3229 }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235 * to be used as a distribution range.
3236 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 const struct net_device *sb_dev,
3239 struct sk_buff *skb)
3240 {
3241 u32 hash;
3242 u16 qoffset = 0;
3243 u16 qcount = dev->real_num_tx_queues;
3244
3245 if (dev->num_tc) {
3246 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248 qoffset = sb_dev->tc_to_txq[tc].offset;
3249 qcount = sb_dev->tc_to_txq[tc].count;
3250 if (unlikely(!qcount)) {
3251 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 sb_dev->name, qoffset, tc);
3253 qoffset = 0;
3254 qcount = dev->real_num_tx_queues;
3255 }
3256 }
3257
3258 if (skb_rx_queue_recorded(skb)) {
3259 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 hash = skb_get_rx_queue(skb);
3261 if (hash >= qoffset)
3262 hash -= qoffset;
3263 while (unlikely(hash >= qcount))
3264 hash -= qcount;
3265 return hash + qoffset;
3266 }
3267
3268 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
skb_warn_bad_offload(const struct sk_buff * skb)3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 static const netdev_features_t null_features;
3274 struct net_device *dev = skb->dev;
3275 const char *name = "";
3276
3277 if (!net_ratelimit())
3278 return;
3279
3280 if (dev) {
3281 if (dev->dev.parent)
3282 name = dev_driver_string(dev->dev.parent);
3283 else
3284 name = netdev_name(dev);
3285 }
3286 skb_dump(KERN_WARNING, skb, false);
3287 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 name, dev ? &dev->features : &null_features,
3289 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293 * Invalidate hardware checksum when packet is to be mangled, and
3294 * complete checksum manually on outgoing path.
3295 */
skb_checksum_help(struct sk_buff * skb)3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 __wsum csum;
3299 int ret = 0, offset;
3300
3301 if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 goto out_set_summed;
3303
3304 if (unlikely(skb_is_gso(skb))) {
3305 skb_warn_bad_offload(skb);
3306 return -EINVAL;
3307 }
3308
3309 /* Before computing a checksum, we should make sure no frag could
3310 * be modified by an external entity : checksum could be wrong.
3311 */
3312 if (skb_has_shared_frag(skb)) {
3313 ret = __skb_linearize(skb);
3314 if (ret)
3315 goto out;
3316 }
3317
3318 offset = skb_checksum_start_offset(skb);
3319 ret = -EINVAL;
3320 if (unlikely(offset >= skb_headlen(skb))) {
3321 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 offset, skb_headlen(skb));
3324 goto out;
3325 }
3326 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328 offset += skb->csum_offset;
3329 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 offset + sizeof(__sum16), skb_headlen(skb));
3333 goto out;
3334 }
3335 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 if (ret)
3337 goto out;
3338
3339 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
skb_crc32c_csum_help(struct sk_buff * skb)3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 __le32 crc32c_csum;
3350 int ret = 0, offset, start;
3351
3352 if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 goto out;
3354
3355 if (unlikely(skb_is_gso(skb)))
3356 goto out;
3357
3358 /* Before computing a checksum, we should make sure no frag could
3359 * be modified by an external entity : checksum could be wrong.
3360 */
3361 if (unlikely(skb_has_shared_frag(skb))) {
3362 ret = __skb_linearize(skb);
3363 if (ret)
3364 goto out;
3365 }
3366 start = skb_checksum_start_offset(skb);
3367 offset = start + offsetof(struct sctphdr, checksum);
3368 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 ret = -EINVAL;
3370 goto out;
3371 }
3372
3373 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 if (ret)
3375 goto out;
3376
3377 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 skb->len - start, ~(__u32)0,
3379 crc32c_csum_stub));
3380 *(__le32 *)(skb->data + offset) = crc32c_csum;
3381 skb_reset_csum_not_inet(skb);
3382 out:
3383 return ret;
3384 }
3385
skb_network_protocol(struct sk_buff * skb,int * depth)3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 __be16 type = skb->protocol;
3389
3390 /* Tunnel gso handlers can set protocol to ethernet. */
3391 if (type == htons(ETH_P_TEB)) {
3392 struct ethhdr *eth;
3393
3394 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 return 0;
3396
3397 eth = (struct ethhdr *)skb->data;
3398 type = eth->h_proto;
3399 }
3400
3401 return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 netdev_err(dev, "hw csum failure\n");
3410 skb_dump(KERN_ERR, skb, true);
3411 dump_stack();
3412 }
3413
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 int i;
3426
3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431 if (PageHighMem(skb_frag_page(frag)))
3432 return 1;
3433 }
3434 }
3435 #endif
3436 return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446 {
3447 if (eth_p_mpls(type))
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451 }
3452 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456 {
3457 return features;
3458 }
3459 #endif
3460
harmonize_features(struct sk_buff * skb,netdev_features_t features)3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 netdev_features_t features)
3463 {
3464 __be16 type;
3465
3466 type = skb_network_protocol(skb, NULL);
3467 features = net_mpls_features(skb, features, type);
3468
3469 if (skb->ip_summed != CHECKSUM_NONE &&
3470 !can_checksum_protocol(features, type)) {
3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 }
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
3475
3476 return features;
3477 }
3478
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482 {
3483 return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490 {
3491 return vlan_features_check(skb, features);
3492 }
3493
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497 {
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 return features & ~NETIF_F_GSO_MASK;
3502
3503 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3504 return features & ~NETIF_F_GSO_MASK;
3505
3506 if (!skb_shinfo(skb)->gso_type) {
3507 skb_warn_bad_offload(skb);
3508 return features & ~NETIF_F_GSO_MASK;
3509 }
3510
3511 /* Support for GSO partial features requires software
3512 * intervention before we can actually process the packets
3513 * so we need to strip support for any partial features now
3514 * and we can pull them back in after we have partially
3515 * segmented the frame.
3516 */
3517 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518 features &= ~dev->gso_partial_features;
3519
3520 /* Make sure to clear the IPv4 ID mangling feature if the
3521 * IPv4 header has the potential to be fragmented.
3522 */
3523 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524 struct iphdr *iph = skb->encapsulation ?
3525 inner_ip_hdr(skb) : ip_hdr(skb);
3526
3527 if (!(iph->frag_off & htons(IP_DF)))
3528 features &= ~NETIF_F_TSO_MANGLEID;
3529 }
3530
3531 return features;
3532 }
3533
netif_skb_features(struct sk_buff * skb)3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536 struct net_device *dev = skb->dev;
3537 netdev_features_t features = dev->features;
3538
3539 if (skb_is_gso(skb))
3540 features = gso_features_check(skb, dev, features);
3541
3542 /* If encapsulation offload request, verify we are testing
3543 * hardware encapsulation features instead of standard
3544 * features for the netdev
3545 */
3546 if (skb->encapsulation)
3547 features &= dev->hw_enc_features;
3548
3549 if (skb_vlan_tagged(skb))
3550 features = netdev_intersect_features(features,
3551 dev->vlan_features |
3552 NETIF_F_HW_VLAN_CTAG_TX |
3553 NETIF_F_HW_VLAN_STAG_TX);
3554
3555 if (dev->netdev_ops->ndo_features_check)
3556 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557 features);
3558 else
3559 features &= dflt_features_check(skb, dev, features);
3560
3561 return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566 struct netdev_queue *txq, bool more)
3567 {
3568 unsigned int len;
3569 int rc;
3570
3571 if (dev_nit_active(dev))
3572 dev_queue_xmit_nit(skb, dev);
3573
3574 len = skb->len;
3575 trace_net_dev_start_xmit(skb, dev);
3576 rc = netdev_start_xmit(skb, dev, txq, more);
3577 trace_net_dev_xmit(skb, rc, dev, len);
3578
3579 return rc;
3580 }
3581
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 struct netdev_queue *txq, int *ret)
3584 {
3585 struct sk_buff *skb = first;
3586 int rc = NETDEV_TX_OK;
3587
3588 while (skb) {
3589 struct sk_buff *next = skb->next;
3590
3591 skb_mark_not_on_list(skb);
3592 rc = xmit_one(skb, dev, txq, next != NULL);
3593 if (unlikely(!dev_xmit_complete(rc))) {
3594 skb->next = next;
3595 goto out;
3596 }
3597
3598 skb = next;
3599 if (netif_tx_queue_stopped(txq) && skb) {
3600 rc = NETDEV_TX_BUSY;
3601 break;
3602 }
3603 }
3604
3605 out:
3606 *ret = rc;
3607 return skb;
3608 }
3609
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 netdev_features_t features)
3612 {
3613 if (skb_vlan_tag_present(skb) &&
3614 !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 skb = __vlan_hwaccel_push_inside(skb);
3616 return skb;
3617 }
3618
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 const netdev_features_t features)
3621 {
3622 if (unlikely(skb_csum_is_sctp(skb)))
3623 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 skb_crc32c_csum_help(skb);
3625
3626 if (features & NETIF_F_HW_CSUM)
3627 return 0;
3628
3629 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3631 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3632 !ipv6_has_hopopt_jumbo(skb))
3633 goto sw_checksum;
3634
3635 switch (skb->csum_offset) {
3636 case offsetof(struct tcphdr, check):
3637 case offsetof(struct udphdr, check):
3638 return 0;
3639 }
3640 }
3641
3642 sw_checksum:
3643 return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649 netdev_features_t features;
3650
3651 features = netif_skb_features(skb);
3652 skb = validate_xmit_vlan(skb, features);
3653 if (unlikely(!skb))
3654 goto out_null;
3655
3656 skb = sk_validate_xmit_skb(skb, dev);
3657 if (unlikely(!skb))
3658 goto out_null;
3659
3660 if (netif_needs_gso(skb, features)) {
3661 struct sk_buff *segs;
3662
3663 segs = skb_gso_segment(skb, features);
3664 if (IS_ERR(segs)) {
3665 goto out_kfree_skb;
3666 } else if (segs) {
3667 consume_skb(skb);
3668 skb = segs;
3669 }
3670 } else {
3671 if (skb_needs_linearize(skb, features) &&
3672 __skb_linearize(skb))
3673 goto out_kfree_skb;
3674
3675 /* If packet is not checksummed and device does not
3676 * support checksumming for this protocol, complete
3677 * checksumming here.
3678 */
3679 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680 if (skb->encapsulation)
3681 skb_set_inner_transport_header(skb,
3682 skb_checksum_start_offset(skb));
3683 else
3684 skb_set_transport_header(skb,
3685 skb_checksum_start_offset(skb));
3686 if (skb_csum_hwoffload_help(skb, features))
3687 goto out_kfree_skb;
3688 }
3689 }
3690
3691 skb = validate_xmit_xfrm(skb, features, again);
3692
3693 return skb;
3694
3695 out_kfree_skb:
3696 kfree_skb(skb);
3697 out_null:
3698 dev_core_stats_tx_dropped_inc(dev);
3699 return NULL;
3700 }
3701
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704 struct sk_buff *next, *head = NULL, *tail;
3705
3706 for (; skb != NULL; skb = next) {
3707 next = skb->next;
3708 skb_mark_not_on_list(skb);
3709
3710 /* in case skb wont be segmented, point to itself */
3711 skb->prev = skb;
3712
3713 skb = validate_xmit_skb(skb, dev, again);
3714 if (!skb)
3715 continue;
3716
3717 if (!head)
3718 head = skb;
3719 else
3720 tail->next = skb;
3721 /* If skb was segmented, skb->prev points to
3722 * the last segment. If not, it still contains skb.
3723 */
3724 tail = skb->prev;
3725 }
3726 return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729
qdisc_pkt_len_init(struct sk_buff * skb)3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733
3734 qdisc_skb_cb(skb)->pkt_len = skb->len;
3735
3736 /* To get more precise estimation of bytes sent on wire,
3737 * we add to pkt_len the headers size of all segments
3738 */
3739 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740 u16 gso_segs = shinfo->gso_segs;
3741 unsigned int hdr_len;
3742
3743 /* mac layer + network layer */
3744 hdr_len = skb_transport_offset(skb);
3745
3746 /* + transport layer */
3747 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748 const struct tcphdr *th;
3749 struct tcphdr _tcphdr;
3750
3751 th = skb_header_pointer(skb, hdr_len,
3752 sizeof(_tcphdr), &_tcphdr);
3753 if (likely(th))
3754 hdr_len += __tcp_hdrlen(th);
3755 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3756 struct udphdr _udphdr;
3757
3758 if (skb_header_pointer(skb, hdr_len,
3759 sizeof(_udphdr), &_udphdr))
3760 hdr_len += sizeof(struct udphdr);
3761 }
3762
3763 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3764 int payload = skb->len - hdr_len;
3765
3766 /* Malicious packet. */
3767 if (payload <= 0)
3768 return;
3769 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3770 }
3771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3772 }
3773 }
3774
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3775 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3776 struct sk_buff **to_free,
3777 struct netdev_queue *txq)
3778 {
3779 int rc;
3780
3781 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3782 if (rc == NET_XMIT_SUCCESS)
3783 trace_qdisc_enqueue(q, txq, skb);
3784 return rc;
3785 }
3786
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3787 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3788 struct net_device *dev,
3789 struct netdev_queue *txq)
3790 {
3791 spinlock_t *root_lock = qdisc_lock(q);
3792 struct sk_buff *to_free = NULL;
3793 bool contended;
3794 int rc;
3795
3796 qdisc_calculate_pkt_len(skb, q);
3797
3798 if (q->flags & TCQ_F_NOLOCK) {
3799 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3800 qdisc_run_begin(q)) {
3801 /* Retest nolock_qdisc_is_empty() within the protection
3802 * of q->seqlock to protect from racing with requeuing.
3803 */
3804 if (unlikely(!nolock_qdisc_is_empty(q))) {
3805 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3806 __qdisc_run(q);
3807 qdisc_run_end(q);
3808
3809 goto no_lock_out;
3810 }
3811
3812 qdisc_bstats_cpu_update(q, skb);
3813 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3814 !nolock_qdisc_is_empty(q))
3815 __qdisc_run(q);
3816
3817 qdisc_run_end(q);
3818 return NET_XMIT_SUCCESS;
3819 }
3820
3821 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 qdisc_run(q);
3823
3824 no_lock_out:
3825 if (unlikely(to_free))
3826 kfree_skb_list_reason(to_free,
3827 SKB_DROP_REASON_QDISC_DROP);
3828 return rc;
3829 }
3830
3831 /*
3832 * Heuristic to force contended enqueues to serialize on a
3833 * separate lock before trying to get qdisc main lock.
3834 * This permits qdisc->running owner to get the lock more
3835 * often and dequeue packets faster.
3836 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3837 * and then other tasks will only enqueue packets. The packets will be
3838 * sent after the qdisc owner is scheduled again. To prevent this
3839 * scenario the task always serialize on the lock.
3840 */
3841 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3842 if (unlikely(contended))
3843 spin_lock(&q->busylock);
3844
3845 spin_lock(root_lock);
3846 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3847 __qdisc_drop(skb, &to_free);
3848 rc = NET_XMIT_DROP;
3849 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3850 qdisc_run_begin(q)) {
3851 /*
3852 * This is a work-conserving queue; there are no old skbs
3853 * waiting to be sent out; and the qdisc is not running -
3854 * xmit the skb directly.
3855 */
3856
3857 qdisc_bstats_update(q, skb);
3858
3859 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3860 if (unlikely(contended)) {
3861 spin_unlock(&q->busylock);
3862 contended = false;
3863 }
3864 __qdisc_run(q);
3865 }
3866
3867 qdisc_run_end(q);
3868 rc = NET_XMIT_SUCCESS;
3869 } else {
3870 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3871 if (qdisc_run_begin(q)) {
3872 if (unlikely(contended)) {
3873 spin_unlock(&q->busylock);
3874 contended = false;
3875 }
3876 __qdisc_run(q);
3877 qdisc_run_end(q);
3878 }
3879 }
3880 spin_unlock(root_lock);
3881 if (unlikely(to_free))
3882 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3883 if (unlikely(contended))
3884 spin_unlock(&q->busylock);
3885 return rc;
3886 }
3887
3888 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3889 static void skb_update_prio(struct sk_buff *skb)
3890 {
3891 const struct netprio_map *map;
3892 const struct sock *sk;
3893 unsigned int prioidx;
3894
3895 if (skb->priority)
3896 return;
3897 map = rcu_dereference_bh(skb->dev->priomap);
3898 if (!map)
3899 return;
3900 sk = skb_to_full_sk(skb);
3901 if (!sk)
3902 return;
3903
3904 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3905
3906 if (prioidx < map->priomap_len)
3907 skb->priority = map->priomap[prioidx];
3908 }
3909 #else
3910 #define skb_update_prio(skb)
3911 #endif
3912
3913 /**
3914 * dev_loopback_xmit - loop back @skb
3915 * @net: network namespace this loopback is happening in
3916 * @sk: sk needed to be a netfilter okfn
3917 * @skb: buffer to transmit
3918 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3919 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3920 {
3921 skb_reset_mac_header(skb);
3922 __skb_pull(skb, skb_network_offset(skb));
3923 skb->pkt_type = PACKET_LOOPBACK;
3924 if (skb->ip_summed == CHECKSUM_NONE)
3925 skb->ip_summed = CHECKSUM_UNNECESSARY;
3926 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3927 skb_dst_force(skb);
3928 netif_rx(skb);
3929 return 0;
3930 }
3931 EXPORT_SYMBOL(dev_loopback_xmit);
3932
3933 #ifdef CONFIG_NET_EGRESS
3934 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3935 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3936 {
3937 int qm = skb_get_queue_mapping(skb);
3938
3939 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3940 }
3941
netdev_xmit_txqueue_skipped(void)3942 static bool netdev_xmit_txqueue_skipped(void)
3943 {
3944 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3945 }
3946
netdev_xmit_skip_txqueue(bool skip)3947 void netdev_xmit_skip_txqueue(bool skip)
3948 {
3949 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3950 }
3951 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3952 #endif /* CONFIG_NET_EGRESS */
3953
3954 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb)3955 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3956 {
3957 int ret = TC_ACT_UNSPEC;
3958 #ifdef CONFIG_NET_CLS_ACT
3959 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3960 struct tcf_result res;
3961
3962 if (!miniq)
3963 return ret;
3964
3965 tc_skb_cb(skb)->mru = 0;
3966 tc_skb_cb(skb)->post_ct = false;
3967
3968 mini_qdisc_bstats_cpu_update(miniq, skb);
3969 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3970 /* Only tcf related quirks below. */
3971 switch (ret) {
3972 case TC_ACT_SHOT:
3973 mini_qdisc_qstats_cpu_drop(miniq);
3974 break;
3975 case TC_ACT_OK:
3976 case TC_ACT_RECLASSIFY:
3977 skb->tc_index = TC_H_MIN(res.classid);
3978 break;
3979 }
3980 #endif /* CONFIG_NET_CLS_ACT */
3981 return ret;
3982 }
3983
3984 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3985
tcx_inc(void)3986 void tcx_inc(void)
3987 {
3988 static_branch_inc(&tcx_needed_key);
3989 }
3990
tcx_dec(void)3991 void tcx_dec(void)
3992 {
3993 static_branch_dec(&tcx_needed_key);
3994 }
3995
3996 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)3997 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3998 const bool needs_mac)
3999 {
4000 const struct bpf_mprog_fp *fp;
4001 const struct bpf_prog *prog;
4002 int ret = TCX_NEXT;
4003
4004 if (needs_mac)
4005 __skb_push(skb, skb->mac_len);
4006 bpf_mprog_foreach_prog(entry, fp, prog) {
4007 bpf_compute_data_pointers(skb);
4008 ret = bpf_prog_run(prog, skb);
4009 if (ret != TCX_NEXT)
4010 break;
4011 }
4012 if (needs_mac)
4013 __skb_pull(skb, skb->mac_len);
4014 return tcx_action_code(skb, ret);
4015 }
4016
4017 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4018 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4019 struct net_device *orig_dev, bool *another)
4020 {
4021 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4022 int sch_ret;
4023
4024 if (!entry)
4025 return skb;
4026 if (*pt_prev) {
4027 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4028 *pt_prev = NULL;
4029 }
4030
4031 qdisc_skb_cb(skb)->pkt_len = skb->len;
4032 tcx_set_ingress(skb, true);
4033
4034 if (static_branch_unlikely(&tcx_needed_key)) {
4035 sch_ret = tcx_run(entry, skb, true);
4036 if (sch_ret != TC_ACT_UNSPEC)
4037 goto ingress_verdict;
4038 }
4039 sch_ret = tc_run(tcx_entry(entry), skb);
4040 ingress_verdict:
4041 switch (sch_ret) {
4042 case TC_ACT_REDIRECT:
4043 /* skb_mac_header check was done by BPF, so we can safely
4044 * push the L2 header back before redirecting to another
4045 * netdev.
4046 */
4047 __skb_push(skb, skb->mac_len);
4048 if (skb_do_redirect(skb) == -EAGAIN) {
4049 __skb_pull(skb, skb->mac_len);
4050 *another = true;
4051 break;
4052 }
4053 *ret = NET_RX_SUCCESS;
4054 return NULL;
4055 case TC_ACT_SHOT:
4056 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4057 *ret = NET_RX_DROP;
4058 return NULL;
4059 /* used by tc_run */
4060 case TC_ACT_STOLEN:
4061 case TC_ACT_QUEUED:
4062 case TC_ACT_TRAP:
4063 consume_skb(skb);
4064 fallthrough;
4065 case TC_ACT_CONSUMED:
4066 *ret = NET_RX_SUCCESS;
4067 return NULL;
4068 }
4069
4070 return skb;
4071 }
4072
4073 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4074 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4075 {
4076 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4077 int sch_ret;
4078
4079 if (!entry)
4080 return skb;
4081
4082 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4083 * already set by the caller.
4084 */
4085 if (static_branch_unlikely(&tcx_needed_key)) {
4086 sch_ret = tcx_run(entry, skb, false);
4087 if (sch_ret != TC_ACT_UNSPEC)
4088 goto egress_verdict;
4089 }
4090 sch_ret = tc_run(tcx_entry(entry), skb);
4091 egress_verdict:
4092 switch (sch_ret) {
4093 case TC_ACT_REDIRECT:
4094 /* No need to push/pop skb's mac_header here on egress! */
4095 skb_do_redirect(skb);
4096 *ret = NET_XMIT_SUCCESS;
4097 return NULL;
4098 case TC_ACT_SHOT:
4099 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4100 *ret = NET_XMIT_DROP;
4101 return NULL;
4102 /* used by tc_run */
4103 case TC_ACT_STOLEN:
4104 case TC_ACT_QUEUED:
4105 case TC_ACT_TRAP:
4106 consume_skb(skb);
4107 fallthrough;
4108 case TC_ACT_CONSUMED:
4109 *ret = NET_XMIT_SUCCESS;
4110 return NULL;
4111 }
4112
4113 return skb;
4114 }
4115 #else
4116 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4117 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4118 struct net_device *orig_dev, bool *another)
4119 {
4120 return skb;
4121 }
4122
4123 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4124 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4125 {
4126 return skb;
4127 }
4128 #endif /* CONFIG_NET_XGRESS */
4129
4130 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4131 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4132 struct xps_dev_maps *dev_maps, unsigned int tci)
4133 {
4134 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4135 struct xps_map *map;
4136 int queue_index = -1;
4137
4138 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4139 return queue_index;
4140
4141 tci *= dev_maps->num_tc;
4142 tci += tc;
4143
4144 map = rcu_dereference(dev_maps->attr_map[tci]);
4145 if (map) {
4146 if (map->len == 1)
4147 queue_index = map->queues[0];
4148 else
4149 queue_index = map->queues[reciprocal_scale(
4150 skb_get_hash(skb), map->len)];
4151 if (unlikely(queue_index >= dev->real_num_tx_queues))
4152 queue_index = -1;
4153 }
4154 return queue_index;
4155 }
4156 #endif
4157
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4158 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4159 struct sk_buff *skb)
4160 {
4161 #ifdef CONFIG_XPS
4162 struct xps_dev_maps *dev_maps;
4163 struct sock *sk = skb->sk;
4164 int queue_index = -1;
4165
4166 if (!static_key_false(&xps_needed))
4167 return -1;
4168
4169 rcu_read_lock();
4170 if (!static_key_false(&xps_rxqs_needed))
4171 goto get_cpus_map;
4172
4173 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4174 if (dev_maps) {
4175 int tci = sk_rx_queue_get(sk);
4176
4177 if (tci >= 0)
4178 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4179 tci);
4180 }
4181
4182 get_cpus_map:
4183 if (queue_index < 0) {
4184 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4185 if (dev_maps) {
4186 unsigned int tci = skb->sender_cpu - 1;
4187
4188 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4189 tci);
4190 }
4191 }
4192 rcu_read_unlock();
4193
4194 return queue_index;
4195 #else
4196 return -1;
4197 #endif
4198 }
4199
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4200 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4201 struct net_device *sb_dev)
4202 {
4203 return 0;
4204 }
4205 EXPORT_SYMBOL(dev_pick_tx_zero);
4206
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4207 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4208 struct net_device *sb_dev)
4209 {
4210 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4211 }
4212 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4213
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4214 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4215 struct net_device *sb_dev)
4216 {
4217 struct sock *sk = skb->sk;
4218 int queue_index = sk_tx_queue_get(sk);
4219
4220 sb_dev = sb_dev ? : dev;
4221
4222 if (queue_index < 0 || skb->ooo_okay ||
4223 queue_index >= dev->real_num_tx_queues) {
4224 int new_index = get_xps_queue(dev, sb_dev, skb);
4225
4226 if (new_index < 0)
4227 new_index = skb_tx_hash(dev, sb_dev, skb);
4228
4229 if (queue_index != new_index && sk &&
4230 sk_fullsock(sk) &&
4231 rcu_access_pointer(sk->sk_dst_cache))
4232 sk_tx_queue_set(sk, new_index);
4233
4234 queue_index = new_index;
4235 }
4236
4237 return queue_index;
4238 }
4239 EXPORT_SYMBOL(netdev_pick_tx);
4240
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4241 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4242 struct sk_buff *skb,
4243 struct net_device *sb_dev)
4244 {
4245 int queue_index = 0;
4246
4247 #ifdef CONFIG_XPS
4248 u32 sender_cpu = skb->sender_cpu - 1;
4249
4250 if (sender_cpu >= (u32)NR_CPUS)
4251 skb->sender_cpu = raw_smp_processor_id() + 1;
4252 #endif
4253
4254 if (dev->real_num_tx_queues != 1) {
4255 const struct net_device_ops *ops = dev->netdev_ops;
4256
4257 if (ops->ndo_select_queue)
4258 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4259 else
4260 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4261
4262 queue_index = netdev_cap_txqueue(dev, queue_index);
4263 }
4264
4265 skb_set_queue_mapping(skb, queue_index);
4266 return netdev_get_tx_queue(dev, queue_index);
4267 }
4268
4269 /**
4270 * __dev_queue_xmit() - transmit a buffer
4271 * @skb: buffer to transmit
4272 * @sb_dev: suboordinate device used for L2 forwarding offload
4273 *
4274 * Queue a buffer for transmission to a network device. The caller must
4275 * have set the device and priority and built the buffer before calling
4276 * this function. The function can be called from an interrupt.
4277 *
4278 * When calling this method, interrupts MUST be enabled. This is because
4279 * the BH enable code must have IRQs enabled so that it will not deadlock.
4280 *
4281 * Regardless of the return value, the skb is consumed, so it is currently
4282 * difficult to retry a send to this method. (You can bump the ref count
4283 * before sending to hold a reference for retry if you are careful.)
4284 *
4285 * Return:
4286 * * 0 - buffer successfully transmitted
4287 * * positive qdisc return code - NET_XMIT_DROP etc.
4288 * * negative errno - other errors
4289 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4290 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4291 {
4292 struct net_device *dev = skb->dev;
4293 struct netdev_queue *txq = NULL;
4294 struct Qdisc *q;
4295 int rc = -ENOMEM;
4296 bool again = false;
4297
4298 skb_reset_mac_header(skb);
4299 skb_assert_len(skb);
4300
4301 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4302 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4303
4304 /* Disable soft irqs for various locks below. Also
4305 * stops preemption for RCU.
4306 */
4307 rcu_read_lock_bh();
4308
4309 skb_update_prio(skb);
4310
4311 qdisc_pkt_len_init(skb);
4312 tcx_set_ingress(skb, false);
4313 #ifdef CONFIG_NET_EGRESS
4314 if (static_branch_unlikely(&egress_needed_key)) {
4315 if (nf_hook_egress_active()) {
4316 skb = nf_hook_egress(skb, &rc, dev);
4317 if (!skb)
4318 goto out;
4319 }
4320
4321 netdev_xmit_skip_txqueue(false);
4322
4323 nf_skip_egress(skb, true);
4324 skb = sch_handle_egress(skb, &rc, dev);
4325 if (!skb)
4326 goto out;
4327 nf_skip_egress(skb, false);
4328
4329 if (netdev_xmit_txqueue_skipped())
4330 txq = netdev_tx_queue_mapping(dev, skb);
4331 }
4332 #endif
4333 /* If device/qdisc don't need skb->dst, release it right now while
4334 * its hot in this cpu cache.
4335 */
4336 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4337 skb_dst_drop(skb);
4338 else
4339 skb_dst_force(skb);
4340
4341 if (!txq)
4342 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4343
4344 q = rcu_dereference_bh(txq->qdisc);
4345
4346 trace_net_dev_queue(skb);
4347 if (q->enqueue) {
4348 rc = __dev_xmit_skb(skb, q, dev, txq);
4349 goto out;
4350 }
4351
4352 /* The device has no queue. Common case for software devices:
4353 * loopback, all the sorts of tunnels...
4354
4355 * Really, it is unlikely that netif_tx_lock protection is necessary
4356 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4357 * counters.)
4358 * However, it is possible, that they rely on protection
4359 * made by us here.
4360
4361 * Check this and shot the lock. It is not prone from deadlocks.
4362 *Either shot noqueue qdisc, it is even simpler 8)
4363 */
4364 if (dev->flags & IFF_UP) {
4365 int cpu = smp_processor_id(); /* ok because BHs are off */
4366
4367 /* Other cpus might concurrently change txq->xmit_lock_owner
4368 * to -1 or to their cpu id, but not to our id.
4369 */
4370 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4371 if (dev_xmit_recursion())
4372 goto recursion_alert;
4373
4374 skb = validate_xmit_skb(skb, dev, &again);
4375 if (!skb)
4376 goto out;
4377
4378 HARD_TX_LOCK(dev, txq, cpu);
4379
4380 if (!netif_xmit_stopped(txq)) {
4381 dev_xmit_recursion_inc();
4382 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4383 dev_xmit_recursion_dec();
4384 if (dev_xmit_complete(rc)) {
4385 HARD_TX_UNLOCK(dev, txq);
4386 goto out;
4387 }
4388 }
4389 HARD_TX_UNLOCK(dev, txq);
4390 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4391 dev->name);
4392 } else {
4393 /* Recursion is detected! It is possible,
4394 * unfortunately
4395 */
4396 recursion_alert:
4397 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4398 dev->name);
4399 }
4400 }
4401
4402 rc = -ENETDOWN;
4403 rcu_read_unlock_bh();
4404
4405 dev_core_stats_tx_dropped_inc(dev);
4406 kfree_skb_list(skb);
4407 return rc;
4408 out:
4409 rcu_read_unlock_bh();
4410 return rc;
4411 }
4412 EXPORT_SYMBOL(__dev_queue_xmit);
4413
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4414 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4415 {
4416 struct net_device *dev = skb->dev;
4417 struct sk_buff *orig_skb = skb;
4418 struct netdev_queue *txq;
4419 int ret = NETDEV_TX_BUSY;
4420 bool again = false;
4421
4422 if (unlikely(!netif_running(dev) ||
4423 !netif_carrier_ok(dev)))
4424 goto drop;
4425
4426 skb = validate_xmit_skb_list(skb, dev, &again);
4427 if (skb != orig_skb)
4428 goto drop;
4429
4430 skb_set_queue_mapping(skb, queue_id);
4431 txq = skb_get_tx_queue(dev, skb);
4432
4433 local_bh_disable();
4434
4435 dev_xmit_recursion_inc();
4436 HARD_TX_LOCK(dev, txq, smp_processor_id());
4437 if (!netif_xmit_frozen_or_drv_stopped(txq))
4438 ret = netdev_start_xmit(skb, dev, txq, false);
4439 HARD_TX_UNLOCK(dev, txq);
4440 dev_xmit_recursion_dec();
4441
4442 local_bh_enable();
4443 return ret;
4444 drop:
4445 dev_core_stats_tx_dropped_inc(dev);
4446 kfree_skb_list(skb);
4447 return NET_XMIT_DROP;
4448 }
4449 EXPORT_SYMBOL(__dev_direct_xmit);
4450
4451 /*************************************************************************
4452 * Receiver routines
4453 *************************************************************************/
4454
4455 int netdev_max_backlog __read_mostly = 1000;
4456 EXPORT_SYMBOL(netdev_max_backlog);
4457
4458 int netdev_tstamp_prequeue __read_mostly = 1;
4459 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4460 int netdev_budget __read_mostly = 300;
4461 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4462 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4463 int weight_p __read_mostly = 64; /* old backlog weight */
4464 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4465 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4466 int dev_rx_weight __read_mostly = 64;
4467 int dev_tx_weight __read_mostly = 64;
4468
4469 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4470 static inline void ____napi_schedule(struct softnet_data *sd,
4471 struct napi_struct *napi)
4472 {
4473 struct task_struct *thread;
4474
4475 lockdep_assert_irqs_disabled();
4476
4477 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4478 /* Paired with smp_mb__before_atomic() in
4479 * napi_enable()/dev_set_threaded().
4480 * Use READ_ONCE() to guarantee a complete
4481 * read on napi->thread. Only call
4482 * wake_up_process() when it's not NULL.
4483 */
4484 thread = READ_ONCE(napi->thread);
4485 if (thread) {
4486 /* Avoid doing set_bit() if the thread is in
4487 * INTERRUPTIBLE state, cause napi_thread_wait()
4488 * makes sure to proceed with napi polling
4489 * if the thread is explicitly woken from here.
4490 */
4491 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4492 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4493 wake_up_process(thread);
4494 return;
4495 }
4496 }
4497
4498 list_add_tail(&napi->poll_list, &sd->poll_list);
4499 WRITE_ONCE(napi->list_owner, smp_processor_id());
4500 /* If not called from net_rx_action()
4501 * we have to raise NET_RX_SOFTIRQ.
4502 */
4503 if (!sd->in_net_rx_action)
4504 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4505 }
4506
4507 #ifdef CONFIG_RPS
4508
4509 /* One global table that all flow-based protocols share. */
4510 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4511 EXPORT_SYMBOL(rps_sock_flow_table);
4512 u32 rps_cpu_mask __read_mostly;
4513 EXPORT_SYMBOL(rps_cpu_mask);
4514
4515 struct static_key_false rps_needed __read_mostly;
4516 EXPORT_SYMBOL(rps_needed);
4517 struct static_key_false rfs_needed __read_mostly;
4518 EXPORT_SYMBOL(rfs_needed);
4519
4520 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4521 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4522 struct rps_dev_flow *rflow, u16 next_cpu)
4523 {
4524 if (next_cpu < nr_cpu_ids) {
4525 #ifdef CONFIG_RFS_ACCEL
4526 struct netdev_rx_queue *rxqueue;
4527 struct rps_dev_flow_table *flow_table;
4528 struct rps_dev_flow *old_rflow;
4529 u32 flow_id;
4530 u16 rxq_index;
4531 int rc;
4532
4533 /* Should we steer this flow to a different hardware queue? */
4534 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4535 !(dev->features & NETIF_F_NTUPLE))
4536 goto out;
4537 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4538 if (rxq_index == skb_get_rx_queue(skb))
4539 goto out;
4540
4541 rxqueue = dev->_rx + rxq_index;
4542 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4543 if (!flow_table)
4544 goto out;
4545 flow_id = skb_get_hash(skb) & flow_table->mask;
4546 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4547 rxq_index, flow_id);
4548 if (rc < 0)
4549 goto out;
4550 old_rflow = rflow;
4551 rflow = &flow_table->flows[flow_id];
4552 rflow->filter = rc;
4553 if (old_rflow->filter == rflow->filter)
4554 old_rflow->filter = RPS_NO_FILTER;
4555 out:
4556 #endif
4557 rflow->last_qtail =
4558 per_cpu(softnet_data, next_cpu).input_queue_head;
4559 }
4560
4561 rflow->cpu = next_cpu;
4562 return rflow;
4563 }
4564
4565 /*
4566 * get_rps_cpu is called from netif_receive_skb and returns the target
4567 * CPU from the RPS map of the receiving queue for a given skb.
4568 * rcu_read_lock must be held on entry.
4569 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4570 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4571 struct rps_dev_flow **rflowp)
4572 {
4573 const struct rps_sock_flow_table *sock_flow_table;
4574 struct netdev_rx_queue *rxqueue = dev->_rx;
4575 struct rps_dev_flow_table *flow_table;
4576 struct rps_map *map;
4577 int cpu = -1;
4578 u32 tcpu;
4579 u32 hash;
4580
4581 if (skb_rx_queue_recorded(skb)) {
4582 u16 index = skb_get_rx_queue(skb);
4583
4584 if (unlikely(index >= dev->real_num_rx_queues)) {
4585 WARN_ONCE(dev->real_num_rx_queues > 1,
4586 "%s received packet on queue %u, but number "
4587 "of RX queues is %u\n",
4588 dev->name, index, dev->real_num_rx_queues);
4589 goto done;
4590 }
4591 rxqueue += index;
4592 }
4593
4594 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4595
4596 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4597 map = rcu_dereference(rxqueue->rps_map);
4598 if (!flow_table && !map)
4599 goto done;
4600
4601 skb_reset_network_header(skb);
4602 hash = skb_get_hash(skb);
4603 if (!hash)
4604 goto done;
4605
4606 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4607 if (flow_table && sock_flow_table) {
4608 struct rps_dev_flow *rflow;
4609 u32 next_cpu;
4610 u32 ident;
4611
4612 /* First check into global flow table if there is a match.
4613 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4614 */
4615 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4616 if ((ident ^ hash) & ~rps_cpu_mask)
4617 goto try_rps;
4618
4619 next_cpu = ident & rps_cpu_mask;
4620
4621 /* OK, now we know there is a match,
4622 * we can look at the local (per receive queue) flow table
4623 */
4624 rflow = &flow_table->flows[hash & flow_table->mask];
4625 tcpu = rflow->cpu;
4626
4627 /*
4628 * If the desired CPU (where last recvmsg was done) is
4629 * different from current CPU (one in the rx-queue flow
4630 * table entry), switch if one of the following holds:
4631 * - Current CPU is unset (>= nr_cpu_ids).
4632 * - Current CPU is offline.
4633 * - The current CPU's queue tail has advanced beyond the
4634 * last packet that was enqueued using this table entry.
4635 * This guarantees that all previous packets for the flow
4636 * have been dequeued, thus preserving in order delivery.
4637 */
4638 if (unlikely(tcpu != next_cpu) &&
4639 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4640 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4641 rflow->last_qtail)) >= 0)) {
4642 tcpu = next_cpu;
4643 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4644 }
4645
4646 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4647 *rflowp = rflow;
4648 cpu = tcpu;
4649 goto done;
4650 }
4651 }
4652
4653 try_rps:
4654
4655 if (map) {
4656 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4657 if (cpu_online(tcpu)) {
4658 cpu = tcpu;
4659 goto done;
4660 }
4661 }
4662
4663 done:
4664 return cpu;
4665 }
4666
4667 #ifdef CONFIG_RFS_ACCEL
4668
4669 /**
4670 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4671 * @dev: Device on which the filter was set
4672 * @rxq_index: RX queue index
4673 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4674 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4675 *
4676 * Drivers that implement ndo_rx_flow_steer() should periodically call
4677 * this function for each installed filter and remove the filters for
4678 * which it returns %true.
4679 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4680 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4681 u32 flow_id, u16 filter_id)
4682 {
4683 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4684 struct rps_dev_flow_table *flow_table;
4685 struct rps_dev_flow *rflow;
4686 bool expire = true;
4687 unsigned int cpu;
4688
4689 rcu_read_lock();
4690 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4691 if (flow_table && flow_id <= flow_table->mask) {
4692 rflow = &flow_table->flows[flow_id];
4693 cpu = READ_ONCE(rflow->cpu);
4694 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4695 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4696 rflow->last_qtail) <
4697 (int)(10 * flow_table->mask)))
4698 expire = false;
4699 }
4700 rcu_read_unlock();
4701 return expire;
4702 }
4703 EXPORT_SYMBOL(rps_may_expire_flow);
4704
4705 #endif /* CONFIG_RFS_ACCEL */
4706
4707 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4708 static void rps_trigger_softirq(void *data)
4709 {
4710 struct softnet_data *sd = data;
4711
4712 ____napi_schedule(sd, &sd->backlog);
4713 sd->received_rps++;
4714 }
4715
4716 #endif /* CONFIG_RPS */
4717
4718 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4719 static void trigger_rx_softirq(void *data)
4720 {
4721 struct softnet_data *sd = data;
4722
4723 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4724 smp_store_release(&sd->defer_ipi_scheduled, 0);
4725 }
4726
4727 /*
4728 * After we queued a packet into sd->input_pkt_queue,
4729 * we need to make sure this queue is serviced soon.
4730 *
4731 * - If this is another cpu queue, link it to our rps_ipi_list,
4732 * and make sure we will process rps_ipi_list from net_rx_action().
4733 *
4734 * - If this is our own queue, NAPI schedule our backlog.
4735 * Note that this also raises NET_RX_SOFTIRQ.
4736 */
napi_schedule_rps(struct softnet_data * sd)4737 static void napi_schedule_rps(struct softnet_data *sd)
4738 {
4739 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4740
4741 #ifdef CONFIG_RPS
4742 if (sd != mysd) {
4743 sd->rps_ipi_next = mysd->rps_ipi_list;
4744 mysd->rps_ipi_list = sd;
4745
4746 /* If not called from net_rx_action() or napi_threaded_poll()
4747 * we have to raise NET_RX_SOFTIRQ.
4748 */
4749 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4750 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4751 return;
4752 }
4753 #endif /* CONFIG_RPS */
4754 __napi_schedule_irqoff(&mysd->backlog);
4755 }
4756
4757 #ifdef CONFIG_NET_FLOW_LIMIT
4758 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4759 #endif
4760
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4761 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4762 {
4763 #ifdef CONFIG_NET_FLOW_LIMIT
4764 struct sd_flow_limit *fl;
4765 struct softnet_data *sd;
4766 unsigned int old_flow, new_flow;
4767
4768 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4769 return false;
4770
4771 sd = this_cpu_ptr(&softnet_data);
4772
4773 rcu_read_lock();
4774 fl = rcu_dereference(sd->flow_limit);
4775 if (fl) {
4776 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4777 old_flow = fl->history[fl->history_head];
4778 fl->history[fl->history_head] = new_flow;
4779
4780 fl->history_head++;
4781 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4782
4783 if (likely(fl->buckets[old_flow]))
4784 fl->buckets[old_flow]--;
4785
4786 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4787 fl->count++;
4788 rcu_read_unlock();
4789 return true;
4790 }
4791 }
4792 rcu_read_unlock();
4793 #endif
4794 return false;
4795 }
4796
4797 /*
4798 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4799 * queue (may be a remote CPU queue).
4800 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4801 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4802 unsigned int *qtail)
4803 {
4804 enum skb_drop_reason reason;
4805 struct softnet_data *sd;
4806 unsigned long flags;
4807 unsigned int qlen;
4808
4809 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4810 sd = &per_cpu(softnet_data, cpu);
4811
4812 rps_lock_irqsave(sd, &flags);
4813 if (!netif_running(skb->dev))
4814 goto drop;
4815 qlen = skb_queue_len(&sd->input_pkt_queue);
4816 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4817 if (qlen) {
4818 enqueue:
4819 __skb_queue_tail(&sd->input_pkt_queue, skb);
4820 input_queue_tail_incr_save(sd, qtail);
4821 rps_unlock_irq_restore(sd, &flags);
4822 return NET_RX_SUCCESS;
4823 }
4824
4825 /* Schedule NAPI for backlog device
4826 * We can use non atomic operation since we own the queue lock
4827 */
4828 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4829 napi_schedule_rps(sd);
4830 goto enqueue;
4831 }
4832 reason = SKB_DROP_REASON_CPU_BACKLOG;
4833
4834 drop:
4835 sd->dropped++;
4836 rps_unlock_irq_restore(sd, &flags);
4837
4838 dev_core_stats_rx_dropped_inc(skb->dev);
4839 kfree_skb_reason(skb, reason);
4840 return NET_RX_DROP;
4841 }
4842
netif_get_rxqueue(struct sk_buff * skb)4843 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4844 {
4845 struct net_device *dev = skb->dev;
4846 struct netdev_rx_queue *rxqueue;
4847
4848 rxqueue = dev->_rx;
4849
4850 if (skb_rx_queue_recorded(skb)) {
4851 u16 index = skb_get_rx_queue(skb);
4852
4853 if (unlikely(index >= dev->real_num_rx_queues)) {
4854 WARN_ONCE(dev->real_num_rx_queues > 1,
4855 "%s received packet on queue %u, but number "
4856 "of RX queues is %u\n",
4857 dev->name, index, dev->real_num_rx_queues);
4858
4859 return rxqueue; /* Return first rxqueue */
4860 }
4861 rxqueue += index;
4862 }
4863 return rxqueue;
4864 }
4865
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4866 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4867 struct bpf_prog *xdp_prog)
4868 {
4869 void *orig_data, *orig_data_end, *hard_start;
4870 struct netdev_rx_queue *rxqueue;
4871 bool orig_bcast, orig_host;
4872 u32 mac_len, frame_sz;
4873 __be16 orig_eth_type;
4874 struct ethhdr *eth;
4875 u32 metalen, act;
4876 int off;
4877
4878 /* The XDP program wants to see the packet starting at the MAC
4879 * header.
4880 */
4881 mac_len = skb->data - skb_mac_header(skb);
4882 hard_start = skb->data - skb_headroom(skb);
4883
4884 /* SKB "head" area always have tailroom for skb_shared_info */
4885 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4886 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4887
4888 rxqueue = netif_get_rxqueue(skb);
4889 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4890 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4891 skb_headlen(skb) + mac_len, true);
4892
4893 orig_data_end = xdp->data_end;
4894 orig_data = xdp->data;
4895 eth = (struct ethhdr *)xdp->data;
4896 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4897 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4898 orig_eth_type = eth->h_proto;
4899
4900 act = bpf_prog_run_xdp(xdp_prog, xdp);
4901
4902 /* check if bpf_xdp_adjust_head was used */
4903 off = xdp->data - orig_data;
4904 if (off) {
4905 if (off > 0)
4906 __skb_pull(skb, off);
4907 else if (off < 0)
4908 __skb_push(skb, -off);
4909
4910 skb->mac_header += off;
4911 skb_reset_network_header(skb);
4912 }
4913
4914 /* check if bpf_xdp_adjust_tail was used */
4915 off = xdp->data_end - orig_data_end;
4916 if (off != 0) {
4917 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4918 skb->len += off; /* positive on grow, negative on shrink */
4919 }
4920
4921 /* check if XDP changed eth hdr such SKB needs update */
4922 eth = (struct ethhdr *)xdp->data;
4923 if ((orig_eth_type != eth->h_proto) ||
4924 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4925 skb->dev->dev_addr)) ||
4926 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4927 __skb_push(skb, ETH_HLEN);
4928 skb->pkt_type = PACKET_HOST;
4929 skb->protocol = eth_type_trans(skb, skb->dev);
4930 }
4931
4932 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4933 * before calling us again on redirect path. We do not call do_redirect
4934 * as we leave that up to the caller.
4935 *
4936 * Caller is responsible for managing lifetime of skb (i.e. calling
4937 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4938 */
4939 switch (act) {
4940 case XDP_REDIRECT:
4941 case XDP_TX:
4942 __skb_push(skb, mac_len);
4943 break;
4944 case XDP_PASS:
4945 metalen = xdp->data - xdp->data_meta;
4946 if (metalen)
4947 skb_metadata_set(skb, metalen);
4948 break;
4949 }
4950
4951 return act;
4952 }
4953
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4954 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4955 struct xdp_buff *xdp,
4956 struct bpf_prog *xdp_prog)
4957 {
4958 u32 act = XDP_DROP;
4959
4960 /* Reinjected packets coming from act_mirred or similar should
4961 * not get XDP generic processing.
4962 */
4963 if (skb_is_redirected(skb))
4964 return XDP_PASS;
4965
4966 /* XDP packets must be linear and must have sufficient headroom
4967 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4968 * native XDP provides, thus we need to do it here as well.
4969 */
4970 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4971 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4972 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4973 int troom = skb->tail + skb->data_len - skb->end;
4974
4975 /* In case we have to go down the path and also linearize,
4976 * then lets do the pskb_expand_head() work just once here.
4977 */
4978 if (pskb_expand_head(skb,
4979 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4980 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4981 goto do_drop;
4982 if (skb_linearize(skb))
4983 goto do_drop;
4984 }
4985
4986 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4987 switch (act) {
4988 case XDP_REDIRECT:
4989 case XDP_TX:
4990 case XDP_PASS:
4991 break;
4992 default:
4993 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4994 fallthrough;
4995 case XDP_ABORTED:
4996 trace_xdp_exception(skb->dev, xdp_prog, act);
4997 fallthrough;
4998 case XDP_DROP:
4999 do_drop:
5000 kfree_skb(skb);
5001 break;
5002 }
5003
5004 return act;
5005 }
5006
5007 /* When doing generic XDP we have to bypass the qdisc layer and the
5008 * network taps in order to match in-driver-XDP behavior. This also means
5009 * that XDP packets are able to starve other packets going through a qdisc,
5010 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5011 * queues, so they do not have this starvation issue.
5012 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5013 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5014 {
5015 struct net_device *dev = skb->dev;
5016 struct netdev_queue *txq;
5017 bool free_skb = true;
5018 int cpu, rc;
5019
5020 txq = netdev_core_pick_tx(dev, skb, NULL);
5021 cpu = smp_processor_id();
5022 HARD_TX_LOCK(dev, txq, cpu);
5023 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5024 rc = netdev_start_xmit(skb, dev, txq, 0);
5025 if (dev_xmit_complete(rc))
5026 free_skb = false;
5027 }
5028 HARD_TX_UNLOCK(dev, txq);
5029 if (free_skb) {
5030 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5031 dev_core_stats_tx_dropped_inc(dev);
5032 kfree_skb(skb);
5033 }
5034 }
5035
5036 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5037
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5038 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5039 {
5040 if (xdp_prog) {
5041 struct xdp_buff xdp;
5042 u32 act;
5043 int err;
5044
5045 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5046 if (act != XDP_PASS) {
5047 switch (act) {
5048 case XDP_REDIRECT:
5049 err = xdp_do_generic_redirect(skb->dev, skb,
5050 &xdp, xdp_prog);
5051 if (err)
5052 goto out_redir;
5053 break;
5054 case XDP_TX:
5055 generic_xdp_tx(skb, xdp_prog);
5056 break;
5057 }
5058 return XDP_DROP;
5059 }
5060 }
5061 return XDP_PASS;
5062 out_redir:
5063 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5064 return XDP_DROP;
5065 }
5066 EXPORT_SYMBOL_GPL(do_xdp_generic);
5067
netif_rx_internal(struct sk_buff * skb)5068 static int netif_rx_internal(struct sk_buff *skb)
5069 {
5070 int ret;
5071
5072 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5073
5074 trace_netif_rx(skb);
5075
5076 #ifdef CONFIG_RPS
5077 if (static_branch_unlikely(&rps_needed)) {
5078 struct rps_dev_flow voidflow, *rflow = &voidflow;
5079 int cpu;
5080
5081 rcu_read_lock();
5082
5083 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5084 if (cpu < 0)
5085 cpu = smp_processor_id();
5086
5087 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5088
5089 rcu_read_unlock();
5090 } else
5091 #endif
5092 {
5093 unsigned int qtail;
5094
5095 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5096 }
5097 return ret;
5098 }
5099
5100 /**
5101 * __netif_rx - Slightly optimized version of netif_rx
5102 * @skb: buffer to post
5103 *
5104 * This behaves as netif_rx except that it does not disable bottom halves.
5105 * As a result this function may only be invoked from the interrupt context
5106 * (either hard or soft interrupt).
5107 */
__netif_rx(struct sk_buff * skb)5108 int __netif_rx(struct sk_buff *skb)
5109 {
5110 int ret;
5111
5112 lockdep_assert_once(hardirq_count() | softirq_count());
5113
5114 trace_netif_rx_entry(skb);
5115 ret = netif_rx_internal(skb);
5116 trace_netif_rx_exit(ret);
5117 return ret;
5118 }
5119 EXPORT_SYMBOL(__netif_rx);
5120
5121 /**
5122 * netif_rx - post buffer to the network code
5123 * @skb: buffer to post
5124 *
5125 * This function receives a packet from a device driver and queues it for
5126 * the upper (protocol) levels to process via the backlog NAPI device. It
5127 * always succeeds. The buffer may be dropped during processing for
5128 * congestion control or by the protocol layers.
5129 * The network buffer is passed via the backlog NAPI device. Modern NIC
5130 * driver should use NAPI and GRO.
5131 * This function can used from interrupt and from process context. The
5132 * caller from process context must not disable interrupts before invoking
5133 * this function.
5134 *
5135 * return values:
5136 * NET_RX_SUCCESS (no congestion)
5137 * NET_RX_DROP (packet was dropped)
5138 *
5139 */
netif_rx(struct sk_buff * skb)5140 int netif_rx(struct sk_buff *skb)
5141 {
5142 bool need_bh_off = !(hardirq_count() | softirq_count());
5143 int ret;
5144
5145 if (need_bh_off)
5146 local_bh_disable();
5147 trace_netif_rx_entry(skb);
5148 ret = netif_rx_internal(skb);
5149 trace_netif_rx_exit(ret);
5150 if (need_bh_off)
5151 local_bh_enable();
5152 return ret;
5153 }
5154 EXPORT_SYMBOL(netif_rx);
5155
net_tx_action(struct softirq_action * h)5156 static __latent_entropy void net_tx_action(struct softirq_action *h)
5157 {
5158 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5159
5160 if (sd->completion_queue) {
5161 struct sk_buff *clist;
5162
5163 local_irq_disable();
5164 clist = sd->completion_queue;
5165 sd->completion_queue = NULL;
5166 local_irq_enable();
5167
5168 while (clist) {
5169 struct sk_buff *skb = clist;
5170
5171 clist = clist->next;
5172
5173 WARN_ON(refcount_read(&skb->users));
5174 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5175 trace_consume_skb(skb, net_tx_action);
5176 else
5177 trace_kfree_skb(skb, net_tx_action,
5178 get_kfree_skb_cb(skb)->reason);
5179
5180 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5181 __kfree_skb(skb);
5182 else
5183 __napi_kfree_skb(skb,
5184 get_kfree_skb_cb(skb)->reason);
5185 }
5186 }
5187
5188 if (sd->output_queue) {
5189 struct Qdisc *head;
5190
5191 local_irq_disable();
5192 head = sd->output_queue;
5193 sd->output_queue = NULL;
5194 sd->output_queue_tailp = &sd->output_queue;
5195 local_irq_enable();
5196
5197 rcu_read_lock();
5198
5199 while (head) {
5200 struct Qdisc *q = head;
5201 spinlock_t *root_lock = NULL;
5202
5203 head = head->next_sched;
5204
5205 /* We need to make sure head->next_sched is read
5206 * before clearing __QDISC_STATE_SCHED
5207 */
5208 smp_mb__before_atomic();
5209
5210 if (!(q->flags & TCQ_F_NOLOCK)) {
5211 root_lock = qdisc_lock(q);
5212 spin_lock(root_lock);
5213 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5214 &q->state))) {
5215 /* There is a synchronize_net() between
5216 * STATE_DEACTIVATED flag being set and
5217 * qdisc_reset()/some_qdisc_is_busy() in
5218 * dev_deactivate(), so we can safely bail out
5219 * early here to avoid data race between
5220 * qdisc_deactivate() and some_qdisc_is_busy()
5221 * for lockless qdisc.
5222 */
5223 clear_bit(__QDISC_STATE_SCHED, &q->state);
5224 continue;
5225 }
5226
5227 clear_bit(__QDISC_STATE_SCHED, &q->state);
5228 qdisc_run(q);
5229 if (root_lock)
5230 spin_unlock(root_lock);
5231 }
5232
5233 rcu_read_unlock();
5234 }
5235
5236 xfrm_dev_backlog(sd);
5237 }
5238
5239 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5240 /* This hook is defined here for ATM LANE */
5241 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5242 unsigned char *addr) __read_mostly;
5243 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5244 #endif
5245
5246 /**
5247 * netdev_is_rx_handler_busy - check if receive handler is registered
5248 * @dev: device to check
5249 *
5250 * Check if a receive handler is already registered for a given device.
5251 * Return true if there one.
5252 *
5253 * The caller must hold the rtnl_mutex.
5254 */
netdev_is_rx_handler_busy(struct net_device * dev)5255 bool netdev_is_rx_handler_busy(struct net_device *dev)
5256 {
5257 ASSERT_RTNL();
5258 return dev && rtnl_dereference(dev->rx_handler);
5259 }
5260 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5261
5262 /**
5263 * netdev_rx_handler_register - register receive handler
5264 * @dev: device to register a handler for
5265 * @rx_handler: receive handler to register
5266 * @rx_handler_data: data pointer that is used by rx handler
5267 *
5268 * Register a receive handler for a device. This handler will then be
5269 * called from __netif_receive_skb. A negative errno code is returned
5270 * on a failure.
5271 *
5272 * The caller must hold the rtnl_mutex.
5273 *
5274 * For a general description of rx_handler, see enum rx_handler_result.
5275 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5276 int netdev_rx_handler_register(struct net_device *dev,
5277 rx_handler_func_t *rx_handler,
5278 void *rx_handler_data)
5279 {
5280 if (netdev_is_rx_handler_busy(dev))
5281 return -EBUSY;
5282
5283 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5284 return -EINVAL;
5285
5286 /* Note: rx_handler_data must be set before rx_handler */
5287 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5288 rcu_assign_pointer(dev->rx_handler, rx_handler);
5289
5290 return 0;
5291 }
5292 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5293
5294 /**
5295 * netdev_rx_handler_unregister - unregister receive handler
5296 * @dev: device to unregister a handler from
5297 *
5298 * Unregister a receive handler from a device.
5299 *
5300 * The caller must hold the rtnl_mutex.
5301 */
netdev_rx_handler_unregister(struct net_device * dev)5302 void netdev_rx_handler_unregister(struct net_device *dev)
5303 {
5304
5305 ASSERT_RTNL();
5306 RCU_INIT_POINTER(dev->rx_handler, NULL);
5307 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5308 * section has a guarantee to see a non NULL rx_handler_data
5309 * as well.
5310 */
5311 synchronize_net();
5312 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5313 }
5314 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5315
5316 /*
5317 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5318 * the special handling of PFMEMALLOC skbs.
5319 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5320 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5321 {
5322 switch (skb->protocol) {
5323 case htons(ETH_P_ARP):
5324 case htons(ETH_P_IP):
5325 case htons(ETH_P_IPV6):
5326 case htons(ETH_P_8021Q):
5327 case htons(ETH_P_8021AD):
5328 return true;
5329 default:
5330 return false;
5331 }
5332 }
5333
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5334 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5335 int *ret, struct net_device *orig_dev)
5336 {
5337 if (nf_hook_ingress_active(skb)) {
5338 int ingress_retval;
5339
5340 if (*pt_prev) {
5341 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5342 *pt_prev = NULL;
5343 }
5344
5345 rcu_read_lock();
5346 ingress_retval = nf_hook_ingress(skb);
5347 rcu_read_unlock();
5348 return ingress_retval;
5349 }
5350 return 0;
5351 }
5352
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5353 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5354 struct packet_type **ppt_prev)
5355 {
5356 struct packet_type *ptype, *pt_prev;
5357 rx_handler_func_t *rx_handler;
5358 struct sk_buff *skb = *pskb;
5359 struct net_device *orig_dev;
5360 bool deliver_exact = false;
5361 int ret = NET_RX_DROP;
5362 __be16 type;
5363
5364 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5365
5366 trace_netif_receive_skb(skb);
5367
5368 orig_dev = skb->dev;
5369
5370 skb_reset_network_header(skb);
5371 if (!skb_transport_header_was_set(skb))
5372 skb_reset_transport_header(skb);
5373 skb_reset_mac_len(skb);
5374
5375 pt_prev = NULL;
5376
5377 another_round:
5378 skb->skb_iif = skb->dev->ifindex;
5379
5380 __this_cpu_inc(softnet_data.processed);
5381
5382 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5383 int ret2;
5384
5385 migrate_disable();
5386 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5387 migrate_enable();
5388
5389 if (ret2 != XDP_PASS) {
5390 ret = NET_RX_DROP;
5391 goto out;
5392 }
5393 }
5394
5395 if (eth_type_vlan(skb->protocol)) {
5396 skb = skb_vlan_untag(skb);
5397 if (unlikely(!skb))
5398 goto out;
5399 }
5400
5401 if (skb_skip_tc_classify(skb))
5402 goto skip_classify;
5403
5404 if (pfmemalloc)
5405 goto skip_taps;
5406
5407 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5408 if (pt_prev)
5409 ret = deliver_skb(skb, pt_prev, orig_dev);
5410 pt_prev = ptype;
5411 }
5412
5413 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5414 if (pt_prev)
5415 ret = deliver_skb(skb, pt_prev, orig_dev);
5416 pt_prev = ptype;
5417 }
5418
5419 skip_taps:
5420 #ifdef CONFIG_NET_INGRESS
5421 if (static_branch_unlikely(&ingress_needed_key)) {
5422 bool another = false;
5423
5424 nf_skip_egress(skb, true);
5425 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5426 &another);
5427 if (another)
5428 goto another_round;
5429 if (!skb)
5430 goto out;
5431
5432 nf_skip_egress(skb, false);
5433 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5434 goto out;
5435 }
5436 #endif
5437 skb_reset_redirect(skb);
5438 skip_classify:
5439 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5440 goto drop;
5441
5442 if (skb_vlan_tag_present(skb)) {
5443 if (pt_prev) {
5444 ret = deliver_skb(skb, pt_prev, orig_dev);
5445 pt_prev = NULL;
5446 }
5447 if (vlan_do_receive(&skb))
5448 goto another_round;
5449 else if (unlikely(!skb))
5450 goto out;
5451 }
5452
5453 rx_handler = rcu_dereference(skb->dev->rx_handler);
5454 if (rx_handler) {
5455 if (pt_prev) {
5456 ret = deliver_skb(skb, pt_prev, orig_dev);
5457 pt_prev = NULL;
5458 }
5459 switch (rx_handler(&skb)) {
5460 case RX_HANDLER_CONSUMED:
5461 ret = NET_RX_SUCCESS;
5462 goto out;
5463 case RX_HANDLER_ANOTHER:
5464 goto another_round;
5465 case RX_HANDLER_EXACT:
5466 deliver_exact = true;
5467 break;
5468 case RX_HANDLER_PASS:
5469 break;
5470 default:
5471 BUG();
5472 }
5473 }
5474
5475 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5476 check_vlan_id:
5477 if (skb_vlan_tag_get_id(skb)) {
5478 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5479 * find vlan device.
5480 */
5481 skb->pkt_type = PACKET_OTHERHOST;
5482 } else if (eth_type_vlan(skb->protocol)) {
5483 /* Outer header is 802.1P with vlan 0, inner header is
5484 * 802.1Q or 802.1AD and vlan_do_receive() above could
5485 * not find vlan dev for vlan id 0.
5486 */
5487 __vlan_hwaccel_clear_tag(skb);
5488 skb = skb_vlan_untag(skb);
5489 if (unlikely(!skb))
5490 goto out;
5491 if (vlan_do_receive(&skb))
5492 /* After stripping off 802.1P header with vlan 0
5493 * vlan dev is found for inner header.
5494 */
5495 goto another_round;
5496 else if (unlikely(!skb))
5497 goto out;
5498 else
5499 /* We have stripped outer 802.1P vlan 0 header.
5500 * But could not find vlan dev.
5501 * check again for vlan id to set OTHERHOST.
5502 */
5503 goto check_vlan_id;
5504 }
5505 /* Note: we might in the future use prio bits
5506 * and set skb->priority like in vlan_do_receive()
5507 * For the time being, just ignore Priority Code Point
5508 */
5509 __vlan_hwaccel_clear_tag(skb);
5510 }
5511
5512 type = skb->protocol;
5513
5514 /* deliver only exact match when indicated */
5515 if (likely(!deliver_exact)) {
5516 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5517 &ptype_base[ntohs(type) &
5518 PTYPE_HASH_MASK]);
5519 }
5520
5521 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5522 &orig_dev->ptype_specific);
5523
5524 if (unlikely(skb->dev != orig_dev)) {
5525 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5526 &skb->dev->ptype_specific);
5527 }
5528
5529 if (pt_prev) {
5530 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5531 goto drop;
5532 *ppt_prev = pt_prev;
5533 } else {
5534 drop:
5535 if (!deliver_exact)
5536 dev_core_stats_rx_dropped_inc(skb->dev);
5537 else
5538 dev_core_stats_rx_nohandler_inc(skb->dev);
5539 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5540 /* Jamal, now you will not able to escape explaining
5541 * me how you were going to use this. :-)
5542 */
5543 ret = NET_RX_DROP;
5544 }
5545
5546 out:
5547 /* The invariant here is that if *ppt_prev is not NULL
5548 * then skb should also be non-NULL.
5549 *
5550 * Apparently *ppt_prev assignment above holds this invariant due to
5551 * skb dereferencing near it.
5552 */
5553 *pskb = skb;
5554 return ret;
5555 }
5556
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5557 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5558 {
5559 struct net_device *orig_dev = skb->dev;
5560 struct packet_type *pt_prev = NULL;
5561 int ret;
5562
5563 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5564 if (pt_prev)
5565 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5566 skb->dev, pt_prev, orig_dev);
5567 return ret;
5568 }
5569
5570 /**
5571 * netif_receive_skb_core - special purpose version of netif_receive_skb
5572 * @skb: buffer to process
5573 *
5574 * More direct receive version of netif_receive_skb(). It should
5575 * only be used by callers that have a need to skip RPS and Generic XDP.
5576 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5577 *
5578 * This function may only be called from softirq context and interrupts
5579 * should be enabled.
5580 *
5581 * Return values (usually ignored):
5582 * NET_RX_SUCCESS: no congestion
5583 * NET_RX_DROP: packet was dropped
5584 */
netif_receive_skb_core(struct sk_buff * skb)5585 int netif_receive_skb_core(struct sk_buff *skb)
5586 {
5587 int ret;
5588
5589 rcu_read_lock();
5590 ret = __netif_receive_skb_one_core(skb, false);
5591 rcu_read_unlock();
5592
5593 return ret;
5594 }
5595 EXPORT_SYMBOL(netif_receive_skb_core);
5596
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5597 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5598 struct packet_type *pt_prev,
5599 struct net_device *orig_dev)
5600 {
5601 struct sk_buff *skb, *next;
5602
5603 if (!pt_prev)
5604 return;
5605 if (list_empty(head))
5606 return;
5607 if (pt_prev->list_func != NULL)
5608 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5609 ip_list_rcv, head, pt_prev, orig_dev);
5610 else
5611 list_for_each_entry_safe(skb, next, head, list) {
5612 skb_list_del_init(skb);
5613 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5614 }
5615 }
5616
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5617 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5618 {
5619 /* Fast-path assumptions:
5620 * - There is no RX handler.
5621 * - Only one packet_type matches.
5622 * If either of these fails, we will end up doing some per-packet
5623 * processing in-line, then handling the 'last ptype' for the whole
5624 * sublist. This can't cause out-of-order delivery to any single ptype,
5625 * because the 'last ptype' must be constant across the sublist, and all
5626 * other ptypes are handled per-packet.
5627 */
5628 /* Current (common) ptype of sublist */
5629 struct packet_type *pt_curr = NULL;
5630 /* Current (common) orig_dev of sublist */
5631 struct net_device *od_curr = NULL;
5632 struct list_head sublist;
5633 struct sk_buff *skb, *next;
5634
5635 INIT_LIST_HEAD(&sublist);
5636 list_for_each_entry_safe(skb, next, head, list) {
5637 struct net_device *orig_dev = skb->dev;
5638 struct packet_type *pt_prev = NULL;
5639
5640 skb_list_del_init(skb);
5641 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5642 if (!pt_prev)
5643 continue;
5644 if (pt_curr != pt_prev || od_curr != orig_dev) {
5645 /* dispatch old sublist */
5646 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5647 /* start new sublist */
5648 INIT_LIST_HEAD(&sublist);
5649 pt_curr = pt_prev;
5650 od_curr = orig_dev;
5651 }
5652 list_add_tail(&skb->list, &sublist);
5653 }
5654
5655 /* dispatch final sublist */
5656 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5657 }
5658
__netif_receive_skb(struct sk_buff * skb)5659 static int __netif_receive_skb(struct sk_buff *skb)
5660 {
5661 int ret;
5662
5663 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5664 unsigned int noreclaim_flag;
5665
5666 /*
5667 * PFMEMALLOC skbs are special, they should
5668 * - be delivered to SOCK_MEMALLOC sockets only
5669 * - stay away from userspace
5670 * - have bounded memory usage
5671 *
5672 * Use PF_MEMALLOC as this saves us from propagating the allocation
5673 * context down to all allocation sites.
5674 */
5675 noreclaim_flag = memalloc_noreclaim_save();
5676 ret = __netif_receive_skb_one_core(skb, true);
5677 memalloc_noreclaim_restore(noreclaim_flag);
5678 } else
5679 ret = __netif_receive_skb_one_core(skb, false);
5680
5681 return ret;
5682 }
5683
__netif_receive_skb_list(struct list_head * head)5684 static void __netif_receive_skb_list(struct list_head *head)
5685 {
5686 unsigned long noreclaim_flag = 0;
5687 struct sk_buff *skb, *next;
5688 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5689
5690 list_for_each_entry_safe(skb, next, head, list) {
5691 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5692 struct list_head sublist;
5693
5694 /* Handle the previous sublist */
5695 list_cut_before(&sublist, head, &skb->list);
5696 if (!list_empty(&sublist))
5697 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5698 pfmemalloc = !pfmemalloc;
5699 /* See comments in __netif_receive_skb */
5700 if (pfmemalloc)
5701 noreclaim_flag = memalloc_noreclaim_save();
5702 else
5703 memalloc_noreclaim_restore(noreclaim_flag);
5704 }
5705 }
5706 /* Handle the remaining sublist */
5707 if (!list_empty(head))
5708 __netif_receive_skb_list_core(head, pfmemalloc);
5709 /* Restore pflags */
5710 if (pfmemalloc)
5711 memalloc_noreclaim_restore(noreclaim_flag);
5712 }
5713
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5714 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5715 {
5716 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5717 struct bpf_prog *new = xdp->prog;
5718 int ret = 0;
5719
5720 switch (xdp->command) {
5721 case XDP_SETUP_PROG:
5722 rcu_assign_pointer(dev->xdp_prog, new);
5723 if (old)
5724 bpf_prog_put(old);
5725
5726 if (old && !new) {
5727 static_branch_dec(&generic_xdp_needed_key);
5728 } else if (new && !old) {
5729 static_branch_inc(&generic_xdp_needed_key);
5730 dev_disable_lro(dev);
5731 dev_disable_gro_hw(dev);
5732 }
5733 break;
5734
5735 default:
5736 ret = -EINVAL;
5737 break;
5738 }
5739
5740 return ret;
5741 }
5742
netif_receive_skb_internal(struct sk_buff * skb)5743 static int netif_receive_skb_internal(struct sk_buff *skb)
5744 {
5745 int ret;
5746
5747 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5748
5749 if (skb_defer_rx_timestamp(skb))
5750 return NET_RX_SUCCESS;
5751
5752 rcu_read_lock();
5753 #ifdef CONFIG_RPS
5754 if (static_branch_unlikely(&rps_needed)) {
5755 struct rps_dev_flow voidflow, *rflow = &voidflow;
5756 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5757
5758 if (cpu >= 0) {
5759 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5760 rcu_read_unlock();
5761 return ret;
5762 }
5763 }
5764 #endif
5765 ret = __netif_receive_skb(skb);
5766 rcu_read_unlock();
5767 return ret;
5768 }
5769
netif_receive_skb_list_internal(struct list_head * head)5770 void netif_receive_skb_list_internal(struct list_head *head)
5771 {
5772 struct sk_buff *skb, *next;
5773 struct list_head sublist;
5774
5775 INIT_LIST_HEAD(&sublist);
5776 list_for_each_entry_safe(skb, next, head, list) {
5777 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5778 skb_list_del_init(skb);
5779 if (!skb_defer_rx_timestamp(skb))
5780 list_add_tail(&skb->list, &sublist);
5781 }
5782 list_splice_init(&sublist, head);
5783
5784 rcu_read_lock();
5785 #ifdef CONFIG_RPS
5786 if (static_branch_unlikely(&rps_needed)) {
5787 list_for_each_entry_safe(skb, next, head, list) {
5788 struct rps_dev_flow voidflow, *rflow = &voidflow;
5789 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5790
5791 if (cpu >= 0) {
5792 /* Will be handled, remove from list */
5793 skb_list_del_init(skb);
5794 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5795 }
5796 }
5797 }
5798 #endif
5799 __netif_receive_skb_list(head);
5800 rcu_read_unlock();
5801 }
5802
5803 /**
5804 * netif_receive_skb - process receive buffer from network
5805 * @skb: buffer to process
5806 *
5807 * netif_receive_skb() is the main receive data processing function.
5808 * It always succeeds. The buffer may be dropped during processing
5809 * for congestion control or by the protocol layers.
5810 *
5811 * This function may only be called from softirq context and interrupts
5812 * should be enabled.
5813 *
5814 * Return values (usually ignored):
5815 * NET_RX_SUCCESS: no congestion
5816 * NET_RX_DROP: packet was dropped
5817 */
netif_receive_skb(struct sk_buff * skb)5818 int netif_receive_skb(struct sk_buff *skb)
5819 {
5820 int ret;
5821
5822 trace_netif_receive_skb_entry(skb);
5823
5824 ret = netif_receive_skb_internal(skb);
5825 trace_netif_receive_skb_exit(ret);
5826
5827 return ret;
5828 }
5829 EXPORT_SYMBOL(netif_receive_skb);
5830
5831 /**
5832 * netif_receive_skb_list - process many receive buffers from network
5833 * @head: list of skbs to process.
5834 *
5835 * Since return value of netif_receive_skb() is normally ignored, and
5836 * wouldn't be meaningful for a list, this function returns void.
5837 *
5838 * This function may only be called from softirq context and interrupts
5839 * should be enabled.
5840 */
netif_receive_skb_list(struct list_head * head)5841 void netif_receive_skb_list(struct list_head *head)
5842 {
5843 struct sk_buff *skb;
5844
5845 if (list_empty(head))
5846 return;
5847 if (trace_netif_receive_skb_list_entry_enabled()) {
5848 list_for_each_entry(skb, head, list)
5849 trace_netif_receive_skb_list_entry(skb);
5850 }
5851 netif_receive_skb_list_internal(head);
5852 trace_netif_receive_skb_list_exit(0);
5853 }
5854 EXPORT_SYMBOL(netif_receive_skb_list);
5855
5856 static DEFINE_PER_CPU(struct work_struct, flush_works);
5857
5858 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5859 static void flush_backlog(struct work_struct *work)
5860 {
5861 struct sk_buff *skb, *tmp;
5862 struct softnet_data *sd;
5863
5864 local_bh_disable();
5865 sd = this_cpu_ptr(&softnet_data);
5866
5867 rps_lock_irq_disable(sd);
5868 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5869 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5870 __skb_unlink(skb, &sd->input_pkt_queue);
5871 dev_kfree_skb_irq(skb);
5872 input_queue_head_incr(sd);
5873 }
5874 }
5875 rps_unlock_irq_enable(sd);
5876
5877 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5878 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5879 __skb_unlink(skb, &sd->process_queue);
5880 kfree_skb(skb);
5881 input_queue_head_incr(sd);
5882 }
5883 }
5884 local_bh_enable();
5885 }
5886
flush_required(int cpu)5887 static bool flush_required(int cpu)
5888 {
5889 #if IS_ENABLED(CONFIG_RPS)
5890 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5891 bool do_flush;
5892
5893 rps_lock_irq_disable(sd);
5894
5895 /* as insertion into process_queue happens with the rps lock held,
5896 * process_queue access may race only with dequeue
5897 */
5898 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5899 !skb_queue_empty_lockless(&sd->process_queue);
5900 rps_unlock_irq_enable(sd);
5901
5902 return do_flush;
5903 #endif
5904 /* without RPS we can't safely check input_pkt_queue: during a
5905 * concurrent remote skb_queue_splice() we can detect as empty both
5906 * input_pkt_queue and process_queue even if the latter could end-up
5907 * containing a lot of packets.
5908 */
5909 return true;
5910 }
5911
flush_all_backlogs(void)5912 static void flush_all_backlogs(void)
5913 {
5914 static cpumask_t flush_cpus;
5915 unsigned int cpu;
5916
5917 /* since we are under rtnl lock protection we can use static data
5918 * for the cpumask and avoid allocating on stack the possibly
5919 * large mask
5920 */
5921 ASSERT_RTNL();
5922
5923 cpus_read_lock();
5924
5925 cpumask_clear(&flush_cpus);
5926 for_each_online_cpu(cpu) {
5927 if (flush_required(cpu)) {
5928 queue_work_on(cpu, system_highpri_wq,
5929 per_cpu_ptr(&flush_works, cpu));
5930 cpumask_set_cpu(cpu, &flush_cpus);
5931 }
5932 }
5933
5934 /* we can have in flight packet[s] on the cpus we are not flushing,
5935 * synchronize_net() in unregister_netdevice_many() will take care of
5936 * them
5937 */
5938 for_each_cpu(cpu, &flush_cpus)
5939 flush_work(per_cpu_ptr(&flush_works, cpu));
5940
5941 cpus_read_unlock();
5942 }
5943
net_rps_send_ipi(struct softnet_data * remsd)5944 static void net_rps_send_ipi(struct softnet_data *remsd)
5945 {
5946 #ifdef CONFIG_RPS
5947 while (remsd) {
5948 struct softnet_data *next = remsd->rps_ipi_next;
5949
5950 if (cpu_online(remsd->cpu))
5951 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5952 remsd = next;
5953 }
5954 #endif
5955 }
5956
5957 /*
5958 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5959 * Note: called with local irq disabled, but exits with local irq enabled.
5960 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5961 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5962 {
5963 #ifdef CONFIG_RPS
5964 struct softnet_data *remsd = sd->rps_ipi_list;
5965
5966 if (remsd) {
5967 sd->rps_ipi_list = NULL;
5968
5969 local_irq_enable();
5970
5971 /* Send pending IPI's to kick RPS processing on remote cpus. */
5972 net_rps_send_ipi(remsd);
5973 } else
5974 #endif
5975 local_irq_enable();
5976 }
5977
sd_has_rps_ipi_waiting(struct softnet_data * sd)5978 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5979 {
5980 #ifdef CONFIG_RPS
5981 return sd->rps_ipi_list != NULL;
5982 #else
5983 return false;
5984 #endif
5985 }
5986
process_backlog(struct napi_struct * napi,int quota)5987 static int process_backlog(struct napi_struct *napi, int quota)
5988 {
5989 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5990 bool again = true;
5991 int work = 0;
5992
5993 /* Check if we have pending ipi, its better to send them now,
5994 * not waiting net_rx_action() end.
5995 */
5996 if (sd_has_rps_ipi_waiting(sd)) {
5997 local_irq_disable();
5998 net_rps_action_and_irq_enable(sd);
5999 }
6000
6001 napi->weight = READ_ONCE(dev_rx_weight);
6002 while (again) {
6003 struct sk_buff *skb;
6004
6005 while ((skb = __skb_dequeue(&sd->process_queue))) {
6006 rcu_read_lock();
6007 __netif_receive_skb(skb);
6008 rcu_read_unlock();
6009 input_queue_head_incr(sd);
6010 if (++work >= quota)
6011 return work;
6012
6013 }
6014
6015 rps_lock_irq_disable(sd);
6016 if (skb_queue_empty(&sd->input_pkt_queue)) {
6017 /*
6018 * Inline a custom version of __napi_complete().
6019 * only current cpu owns and manipulates this napi,
6020 * and NAPI_STATE_SCHED is the only possible flag set
6021 * on backlog.
6022 * We can use a plain write instead of clear_bit(),
6023 * and we dont need an smp_mb() memory barrier.
6024 */
6025 napi->state = 0;
6026 again = false;
6027 } else {
6028 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6029 &sd->process_queue);
6030 }
6031 rps_unlock_irq_enable(sd);
6032 }
6033
6034 return work;
6035 }
6036
6037 /**
6038 * __napi_schedule - schedule for receive
6039 * @n: entry to schedule
6040 *
6041 * The entry's receive function will be scheduled to run.
6042 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6043 */
__napi_schedule(struct napi_struct * n)6044 void __napi_schedule(struct napi_struct *n)
6045 {
6046 unsigned long flags;
6047
6048 local_irq_save(flags);
6049 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6050 local_irq_restore(flags);
6051 }
6052 EXPORT_SYMBOL(__napi_schedule);
6053
6054 /**
6055 * napi_schedule_prep - check if napi can be scheduled
6056 * @n: napi context
6057 *
6058 * Test if NAPI routine is already running, and if not mark
6059 * it as running. This is used as a condition variable to
6060 * insure only one NAPI poll instance runs. We also make
6061 * sure there is no pending NAPI disable.
6062 */
napi_schedule_prep(struct napi_struct * n)6063 bool napi_schedule_prep(struct napi_struct *n)
6064 {
6065 unsigned long new, val = READ_ONCE(n->state);
6066
6067 do {
6068 if (unlikely(val & NAPIF_STATE_DISABLE))
6069 return false;
6070 new = val | NAPIF_STATE_SCHED;
6071
6072 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6073 * This was suggested by Alexander Duyck, as compiler
6074 * emits better code than :
6075 * if (val & NAPIF_STATE_SCHED)
6076 * new |= NAPIF_STATE_MISSED;
6077 */
6078 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6079 NAPIF_STATE_MISSED;
6080 } while (!try_cmpxchg(&n->state, &val, new));
6081
6082 return !(val & NAPIF_STATE_SCHED);
6083 }
6084 EXPORT_SYMBOL(napi_schedule_prep);
6085
6086 /**
6087 * __napi_schedule_irqoff - schedule for receive
6088 * @n: entry to schedule
6089 *
6090 * Variant of __napi_schedule() assuming hard irqs are masked.
6091 *
6092 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6093 * because the interrupt disabled assumption might not be true
6094 * due to force-threaded interrupts and spinlock substitution.
6095 */
__napi_schedule_irqoff(struct napi_struct * n)6096 void __napi_schedule_irqoff(struct napi_struct *n)
6097 {
6098 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6099 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6100 else
6101 __napi_schedule(n);
6102 }
6103 EXPORT_SYMBOL(__napi_schedule_irqoff);
6104
napi_complete_done(struct napi_struct * n,int work_done)6105 bool napi_complete_done(struct napi_struct *n, int work_done)
6106 {
6107 unsigned long flags, val, new, timeout = 0;
6108 bool ret = true;
6109
6110 /*
6111 * 1) Don't let napi dequeue from the cpu poll list
6112 * just in case its running on a different cpu.
6113 * 2) If we are busy polling, do nothing here, we have
6114 * the guarantee we will be called later.
6115 */
6116 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6117 NAPIF_STATE_IN_BUSY_POLL)))
6118 return false;
6119
6120 if (work_done) {
6121 if (n->gro_bitmask)
6122 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6123 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6124 }
6125 if (n->defer_hard_irqs_count > 0) {
6126 n->defer_hard_irqs_count--;
6127 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6128 if (timeout)
6129 ret = false;
6130 }
6131 if (n->gro_bitmask) {
6132 /* When the NAPI instance uses a timeout and keeps postponing
6133 * it, we need to bound somehow the time packets are kept in
6134 * the GRO layer
6135 */
6136 napi_gro_flush(n, !!timeout);
6137 }
6138
6139 gro_normal_list(n);
6140
6141 if (unlikely(!list_empty(&n->poll_list))) {
6142 /* If n->poll_list is not empty, we need to mask irqs */
6143 local_irq_save(flags);
6144 list_del_init(&n->poll_list);
6145 local_irq_restore(flags);
6146 }
6147 WRITE_ONCE(n->list_owner, -1);
6148
6149 val = READ_ONCE(n->state);
6150 do {
6151 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6152
6153 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6154 NAPIF_STATE_SCHED_THREADED |
6155 NAPIF_STATE_PREFER_BUSY_POLL);
6156
6157 /* If STATE_MISSED was set, leave STATE_SCHED set,
6158 * because we will call napi->poll() one more time.
6159 * This C code was suggested by Alexander Duyck to help gcc.
6160 */
6161 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6162 NAPIF_STATE_SCHED;
6163 } while (!try_cmpxchg(&n->state, &val, new));
6164
6165 if (unlikely(val & NAPIF_STATE_MISSED)) {
6166 __napi_schedule(n);
6167 return false;
6168 }
6169
6170 if (timeout)
6171 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6172 HRTIMER_MODE_REL_PINNED);
6173 return ret;
6174 }
6175 EXPORT_SYMBOL(napi_complete_done);
6176
6177 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6178 static struct napi_struct *napi_by_id(unsigned int napi_id)
6179 {
6180 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6181 struct napi_struct *napi;
6182
6183 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6184 if (napi->napi_id == napi_id)
6185 return napi;
6186
6187 return NULL;
6188 }
6189
6190 #if defined(CONFIG_NET_RX_BUSY_POLL)
6191
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6192 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6193 {
6194 if (!skip_schedule) {
6195 gro_normal_list(napi);
6196 __napi_schedule(napi);
6197 return;
6198 }
6199
6200 if (napi->gro_bitmask) {
6201 /* flush too old packets
6202 * If HZ < 1000, flush all packets.
6203 */
6204 napi_gro_flush(napi, HZ >= 1000);
6205 }
6206
6207 gro_normal_list(napi);
6208 clear_bit(NAPI_STATE_SCHED, &napi->state);
6209 }
6210
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6211 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6212 u16 budget)
6213 {
6214 bool skip_schedule = false;
6215 unsigned long timeout;
6216 int rc;
6217
6218 /* Busy polling means there is a high chance device driver hard irq
6219 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6220 * set in napi_schedule_prep().
6221 * Since we are about to call napi->poll() once more, we can safely
6222 * clear NAPI_STATE_MISSED.
6223 *
6224 * Note: x86 could use a single "lock and ..." instruction
6225 * to perform these two clear_bit()
6226 */
6227 clear_bit(NAPI_STATE_MISSED, &napi->state);
6228 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6229
6230 local_bh_disable();
6231
6232 if (prefer_busy_poll) {
6233 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6234 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6235 if (napi->defer_hard_irqs_count && timeout) {
6236 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6237 skip_schedule = true;
6238 }
6239 }
6240
6241 /* All we really want here is to re-enable device interrupts.
6242 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6243 */
6244 rc = napi->poll(napi, budget);
6245 /* We can't gro_normal_list() here, because napi->poll() might have
6246 * rearmed the napi (napi_complete_done()) in which case it could
6247 * already be running on another CPU.
6248 */
6249 trace_napi_poll(napi, rc, budget);
6250 netpoll_poll_unlock(have_poll_lock);
6251 if (rc == budget)
6252 __busy_poll_stop(napi, skip_schedule);
6253 local_bh_enable();
6254 }
6255
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6256 void napi_busy_loop(unsigned int napi_id,
6257 bool (*loop_end)(void *, unsigned long),
6258 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6259 {
6260 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6261 int (*napi_poll)(struct napi_struct *napi, int budget);
6262 void *have_poll_lock = NULL;
6263 struct napi_struct *napi;
6264
6265 restart:
6266 napi_poll = NULL;
6267
6268 rcu_read_lock();
6269
6270 napi = napi_by_id(napi_id);
6271 if (!napi)
6272 goto out;
6273
6274 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6275 preempt_disable();
6276 for (;;) {
6277 int work = 0;
6278
6279 local_bh_disable();
6280 if (!napi_poll) {
6281 unsigned long val = READ_ONCE(napi->state);
6282
6283 /* If multiple threads are competing for this napi,
6284 * we avoid dirtying napi->state as much as we can.
6285 */
6286 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6287 NAPIF_STATE_IN_BUSY_POLL)) {
6288 if (prefer_busy_poll)
6289 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6290 goto count;
6291 }
6292 if (cmpxchg(&napi->state, val,
6293 val | NAPIF_STATE_IN_BUSY_POLL |
6294 NAPIF_STATE_SCHED) != val) {
6295 if (prefer_busy_poll)
6296 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6297 goto count;
6298 }
6299 have_poll_lock = netpoll_poll_lock(napi);
6300 napi_poll = napi->poll;
6301 }
6302 work = napi_poll(napi, budget);
6303 trace_napi_poll(napi, work, budget);
6304 gro_normal_list(napi);
6305 count:
6306 if (work > 0)
6307 __NET_ADD_STATS(dev_net(napi->dev),
6308 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6309 local_bh_enable();
6310
6311 if (!loop_end || loop_end(loop_end_arg, start_time))
6312 break;
6313
6314 if (unlikely(need_resched())) {
6315 if (napi_poll)
6316 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6317 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6318 preempt_enable();
6319 rcu_read_unlock();
6320 cond_resched();
6321 if (loop_end(loop_end_arg, start_time))
6322 return;
6323 goto restart;
6324 }
6325 cpu_relax();
6326 }
6327 if (napi_poll)
6328 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6329 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6330 preempt_enable();
6331 out:
6332 rcu_read_unlock();
6333 }
6334 EXPORT_SYMBOL(napi_busy_loop);
6335
6336 #endif /* CONFIG_NET_RX_BUSY_POLL */
6337
napi_hash_add(struct napi_struct * napi)6338 static void napi_hash_add(struct napi_struct *napi)
6339 {
6340 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6341 return;
6342
6343 spin_lock(&napi_hash_lock);
6344
6345 /* 0..NR_CPUS range is reserved for sender_cpu use */
6346 do {
6347 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6348 napi_gen_id = MIN_NAPI_ID;
6349 } while (napi_by_id(napi_gen_id));
6350 napi->napi_id = napi_gen_id;
6351
6352 hlist_add_head_rcu(&napi->napi_hash_node,
6353 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6354
6355 spin_unlock(&napi_hash_lock);
6356 }
6357
6358 /* Warning : caller is responsible to make sure rcu grace period
6359 * is respected before freeing memory containing @napi
6360 */
napi_hash_del(struct napi_struct * napi)6361 static void napi_hash_del(struct napi_struct *napi)
6362 {
6363 spin_lock(&napi_hash_lock);
6364
6365 hlist_del_init_rcu(&napi->napi_hash_node);
6366
6367 spin_unlock(&napi_hash_lock);
6368 }
6369
napi_watchdog(struct hrtimer * timer)6370 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6371 {
6372 struct napi_struct *napi;
6373
6374 napi = container_of(timer, struct napi_struct, timer);
6375
6376 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6377 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6378 */
6379 if (!napi_disable_pending(napi) &&
6380 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6381 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6382 __napi_schedule_irqoff(napi);
6383 }
6384
6385 return HRTIMER_NORESTART;
6386 }
6387
init_gro_hash(struct napi_struct * napi)6388 static void init_gro_hash(struct napi_struct *napi)
6389 {
6390 int i;
6391
6392 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6393 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6394 napi->gro_hash[i].count = 0;
6395 }
6396 napi->gro_bitmask = 0;
6397 }
6398
dev_set_threaded(struct net_device * dev,bool threaded)6399 int dev_set_threaded(struct net_device *dev, bool threaded)
6400 {
6401 struct napi_struct *napi;
6402 int err = 0;
6403
6404 if (dev->threaded == threaded)
6405 return 0;
6406
6407 if (threaded) {
6408 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6409 if (!napi->thread) {
6410 err = napi_kthread_create(napi);
6411 if (err) {
6412 threaded = false;
6413 break;
6414 }
6415 }
6416 }
6417 }
6418
6419 dev->threaded = threaded;
6420
6421 /* Make sure kthread is created before THREADED bit
6422 * is set.
6423 */
6424 smp_mb__before_atomic();
6425
6426 /* Setting/unsetting threaded mode on a napi might not immediately
6427 * take effect, if the current napi instance is actively being
6428 * polled. In this case, the switch between threaded mode and
6429 * softirq mode will happen in the next round of napi_schedule().
6430 * This should not cause hiccups/stalls to the live traffic.
6431 */
6432 list_for_each_entry(napi, &dev->napi_list, dev_list)
6433 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6434
6435 return err;
6436 }
6437 EXPORT_SYMBOL(dev_set_threaded);
6438
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6439 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6440 int (*poll)(struct napi_struct *, int), int weight)
6441 {
6442 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6443 return;
6444
6445 INIT_LIST_HEAD(&napi->poll_list);
6446 INIT_HLIST_NODE(&napi->napi_hash_node);
6447 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6448 napi->timer.function = napi_watchdog;
6449 init_gro_hash(napi);
6450 napi->skb = NULL;
6451 INIT_LIST_HEAD(&napi->rx_list);
6452 napi->rx_count = 0;
6453 napi->poll = poll;
6454 if (weight > NAPI_POLL_WEIGHT)
6455 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6456 weight);
6457 napi->weight = weight;
6458 napi->dev = dev;
6459 #ifdef CONFIG_NETPOLL
6460 napi->poll_owner = -1;
6461 #endif
6462 napi->list_owner = -1;
6463 set_bit(NAPI_STATE_SCHED, &napi->state);
6464 set_bit(NAPI_STATE_NPSVC, &napi->state);
6465 list_add_rcu(&napi->dev_list, &dev->napi_list);
6466 napi_hash_add(napi);
6467 napi_get_frags_check(napi);
6468 /* Create kthread for this napi if dev->threaded is set.
6469 * Clear dev->threaded if kthread creation failed so that
6470 * threaded mode will not be enabled in napi_enable().
6471 */
6472 if (dev->threaded && napi_kthread_create(napi))
6473 dev->threaded = 0;
6474 }
6475 EXPORT_SYMBOL(netif_napi_add_weight);
6476
napi_disable(struct napi_struct * n)6477 void napi_disable(struct napi_struct *n)
6478 {
6479 unsigned long val, new;
6480
6481 might_sleep();
6482 set_bit(NAPI_STATE_DISABLE, &n->state);
6483
6484 val = READ_ONCE(n->state);
6485 do {
6486 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6487 usleep_range(20, 200);
6488 val = READ_ONCE(n->state);
6489 }
6490
6491 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6492 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6493 } while (!try_cmpxchg(&n->state, &val, new));
6494
6495 hrtimer_cancel(&n->timer);
6496
6497 clear_bit(NAPI_STATE_DISABLE, &n->state);
6498 }
6499 EXPORT_SYMBOL(napi_disable);
6500
6501 /**
6502 * napi_enable - enable NAPI scheduling
6503 * @n: NAPI context
6504 *
6505 * Resume NAPI from being scheduled on this context.
6506 * Must be paired with napi_disable.
6507 */
napi_enable(struct napi_struct * n)6508 void napi_enable(struct napi_struct *n)
6509 {
6510 unsigned long new, val = READ_ONCE(n->state);
6511
6512 do {
6513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6514
6515 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6516 if (n->dev->threaded && n->thread)
6517 new |= NAPIF_STATE_THREADED;
6518 } while (!try_cmpxchg(&n->state, &val, new));
6519 }
6520 EXPORT_SYMBOL(napi_enable);
6521
flush_gro_hash(struct napi_struct * napi)6522 static void flush_gro_hash(struct napi_struct *napi)
6523 {
6524 int i;
6525
6526 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6527 struct sk_buff *skb, *n;
6528
6529 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6530 kfree_skb(skb);
6531 napi->gro_hash[i].count = 0;
6532 }
6533 }
6534
6535 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6536 void __netif_napi_del(struct napi_struct *napi)
6537 {
6538 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6539 return;
6540
6541 napi_hash_del(napi);
6542 list_del_rcu(&napi->dev_list);
6543 napi_free_frags(napi);
6544
6545 flush_gro_hash(napi);
6546 napi->gro_bitmask = 0;
6547
6548 if (napi->thread) {
6549 kthread_stop(napi->thread);
6550 napi->thread = NULL;
6551 }
6552 }
6553 EXPORT_SYMBOL(__netif_napi_del);
6554
__napi_poll(struct napi_struct * n,bool * repoll)6555 static int __napi_poll(struct napi_struct *n, bool *repoll)
6556 {
6557 int work, weight;
6558
6559 weight = n->weight;
6560
6561 /* This NAPI_STATE_SCHED test is for avoiding a race
6562 * with netpoll's poll_napi(). Only the entity which
6563 * obtains the lock and sees NAPI_STATE_SCHED set will
6564 * actually make the ->poll() call. Therefore we avoid
6565 * accidentally calling ->poll() when NAPI is not scheduled.
6566 */
6567 work = 0;
6568 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6569 work = n->poll(n, weight);
6570 trace_napi_poll(n, work, weight);
6571 }
6572
6573 if (unlikely(work > weight))
6574 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6575 n->poll, work, weight);
6576
6577 if (likely(work < weight))
6578 return work;
6579
6580 /* Drivers must not modify the NAPI state if they
6581 * consume the entire weight. In such cases this code
6582 * still "owns" the NAPI instance and therefore can
6583 * move the instance around on the list at-will.
6584 */
6585 if (unlikely(napi_disable_pending(n))) {
6586 napi_complete(n);
6587 return work;
6588 }
6589
6590 /* The NAPI context has more processing work, but busy-polling
6591 * is preferred. Exit early.
6592 */
6593 if (napi_prefer_busy_poll(n)) {
6594 if (napi_complete_done(n, work)) {
6595 /* If timeout is not set, we need to make sure
6596 * that the NAPI is re-scheduled.
6597 */
6598 napi_schedule(n);
6599 }
6600 return work;
6601 }
6602
6603 if (n->gro_bitmask) {
6604 /* flush too old packets
6605 * If HZ < 1000, flush all packets.
6606 */
6607 napi_gro_flush(n, HZ >= 1000);
6608 }
6609
6610 gro_normal_list(n);
6611
6612 /* Some drivers may have called napi_schedule
6613 * prior to exhausting their budget.
6614 */
6615 if (unlikely(!list_empty(&n->poll_list))) {
6616 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6617 n->dev ? n->dev->name : "backlog");
6618 return work;
6619 }
6620
6621 *repoll = true;
6622
6623 return work;
6624 }
6625
napi_poll(struct napi_struct * n,struct list_head * repoll)6626 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6627 {
6628 bool do_repoll = false;
6629 void *have;
6630 int work;
6631
6632 list_del_init(&n->poll_list);
6633
6634 have = netpoll_poll_lock(n);
6635
6636 work = __napi_poll(n, &do_repoll);
6637
6638 if (do_repoll)
6639 list_add_tail(&n->poll_list, repoll);
6640
6641 netpoll_poll_unlock(have);
6642
6643 return work;
6644 }
6645
napi_thread_wait(struct napi_struct * napi)6646 static int napi_thread_wait(struct napi_struct *napi)
6647 {
6648 bool woken = false;
6649
6650 set_current_state(TASK_INTERRUPTIBLE);
6651
6652 while (!kthread_should_stop()) {
6653 /* Testing SCHED_THREADED bit here to make sure the current
6654 * kthread owns this napi and could poll on this napi.
6655 * Testing SCHED bit is not enough because SCHED bit might be
6656 * set by some other busy poll thread or by napi_disable().
6657 */
6658 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6659 WARN_ON(!list_empty(&napi->poll_list));
6660 __set_current_state(TASK_RUNNING);
6661 return 0;
6662 }
6663
6664 schedule();
6665 /* woken being true indicates this thread owns this napi. */
6666 woken = true;
6667 set_current_state(TASK_INTERRUPTIBLE);
6668 }
6669 __set_current_state(TASK_RUNNING);
6670
6671 return -1;
6672 }
6673
skb_defer_free_flush(struct softnet_data * sd)6674 static void skb_defer_free_flush(struct softnet_data *sd)
6675 {
6676 struct sk_buff *skb, *next;
6677
6678 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6679 if (!READ_ONCE(sd->defer_list))
6680 return;
6681
6682 spin_lock(&sd->defer_lock);
6683 skb = sd->defer_list;
6684 sd->defer_list = NULL;
6685 sd->defer_count = 0;
6686 spin_unlock(&sd->defer_lock);
6687
6688 while (skb != NULL) {
6689 next = skb->next;
6690 napi_consume_skb(skb, 1);
6691 skb = next;
6692 }
6693 }
6694
napi_threaded_poll(void * data)6695 static int napi_threaded_poll(void *data)
6696 {
6697 struct napi_struct *napi = data;
6698 struct softnet_data *sd;
6699 void *have;
6700
6701 while (!napi_thread_wait(napi)) {
6702 unsigned long last_qs = jiffies;
6703
6704 for (;;) {
6705 bool repoll = false;
6706
6707 local_bh_disable();
6708 sd = this_cpu_ptr(&softnet_data);
6709 sd->in_napi_threaded_poll = true;
6710
6711 have = netpoll_poll_lock(napi);
6712 __napi_poll(napi, &repoll);
6713 netpoll_poll_unlock(have);
6714
6715 sd->in_napi_threaded_poll = false;
6716 barrier();
6717
6718 if (sd_has_rps_ipi_waiting(sd)) {
6719 local_irq_disable();
6720 net_rps_action_and_irq_enable(sd);
6721 }
6722 skb_defer_free_flush(sd);
6723 local_bh_enable();
6724
6725 if (!repoll)
6726 break;
6727
6728 rcu_softirq_qs_periodic(last_qs);
6729 cond_resched();
6730 }
6731 }
6732 return 0;
6733 }
6734
net_rx_action(struct softirq_action * h)6735 static __latent_entropy void net_rx_action(struct softirq_action *h)
6736 {
6737 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738 unsigned long time_limit = jiffies +
6739 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6740 int budget = READ_ONCE(netdev_budget);
6741 LIST_HEAD(list);
6742 LIST_HEAD(repoll);
6743
6744 start:
6745 sd->in_net_rx_action = true;
6746 local_irq_disable();
6747 list_splice_init(&sd->poll_list, &list);
6748 local_irq_enable();
6749
6750 for (;;) {
6751 struct napi_struct *n;
6752
6753 skb_defer_free_flush(sd);
6754
6755 if (list_empty(&list)) {
6756 if (list_empty(&repoll)) {
6757 sd->in_net_rx_action = false;
6758 barrier();
6759 /* We need to check if ____napi_schedule()
6760 * had refilled poll_list while
6761 * sd->in_net_rx_action was true.
6762 */
6763 if (!list_empty(&sd->poll_list))
6764 goto start;
6765 if (!sd_has_rps_ipi_waiting(sd))
6766 goto end;
6767 }
6768 break;
6769 }
6770
6771 n = list_first_entry(&list, struct napi_struct, poll_list);
6772 budget -= napi_poll(n, &repoll);
6773
6774 /* If softirq window is exhausted then punt.
6775 * Allow this to run for 2 jiffies since which will allow
6776 * an average latency of 1.5/HZ.
6777 */
6778 if (unlikely(budget <= 0 ||
6779 time_after_eq(jiffies, time_limit))) {
6780 sd->time_squeeze++;
6781 break;
6782 }
6783 }
6784
6785 local_irq_disable();
6786
6787 list_splice_tail_init(&sd->poll_list, &list);
6788 list_splice_tail(&repoll, &list);
6789 list_splice(&list, &sd->poll_list);
6790 if (!list_empty(&sd->poll_list))
6791 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6792 else
6793 sd->in_net_rx_action = false;
6794
6795 net_rps_action_and_irq_enable(sd);
6796 end:;
6797 }
6798
6799 struct netdev_adjacent {
6800 struct net_device *dev;
6801 netdevice_tracker dev_tracker;
6802
6803 /* upper master flag, there can only be one master device per list */
6804 bool master;
6805
6806 /* lookup ignore flag */
6807 bool ignore;
6808
6809 /* counter for the number of times this device was added to us */
6810 u16 ref_nr;
6811
6812 /* private field for the users */
6813 void *private;
6814
6815 struct list_head list;
6816 struct rcu_head rcu;
6817 };
6818
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6819 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6820 struct list_head *adj_list)
6821 {
6822 struct netdev_adjacent *adj;
6823
6824 list_for_each_entry(adj, adj_list, list) {
6825 if (adj->dev == adj_dev)
6826 return adj;
6827 }
6828 return NULL;
6829 }
6830
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6831 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6832 struct netdev_nested_priv *priv)
6833 {
6834 struct net_device *dev = (struct net_device *)priv->data;
6835
6836 return upper_dev == dev;
6837 }
6838
6839 /**
6840 * netdev_has_upper_dev - Check if device is linked to an upper device
6841 * @dev: device
6842 * @upper_dev: upper device to check
6843 *
6844 * Find out if a device is linked to specified upper device and return true
6845 * in case it is. Note that this checks only immediate upper device,
6846 * not through a complete stack of devices. The caller must hold the RTNL lock.
6847 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6848 bool netdev_has_upper_dev(struct net_device *dev,
6849 struct net_device *upper_dev)
6850 {
6851 struct netdev_nested_priv priv = {
6852 .data = (void *)upper_dev,
6853 };
6854
6855 ASSERT_RTNL();
6856
6857 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6858 &priv);
6859 }
6860 EXPORT_SYMBOL(netdev_has_upper_dev);
6861
6862 /**
6863 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6864 * @dev: device
6865 * @upper_dev: upper device to check
6866 *
6867 * Find out if a device is linked to specified upper device and return true
6868 * in case it is. Note that this checks the entire upper device chain.
6869 * The caller must hold rcu lock.
6870 */
6871
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6872 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6873 struct net_device *upper_dev)
6874 {
6875 struct netdev_nested_priv priv = {
6876 .data = (void *)upper_dev,
6877 };
6878
6879 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6880 &priv);
6881 }
6882 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6883
6884 /**
6885 * netdev_has_any_upper_dev - Check if device is linked to some device
6886 * @dev: device
6887 *
6888 * Find out if a device is linked to an upper device and return true in case
6889 * it is. The caller must hold the RTNL lock.
6890 */
netdev_has_any_upper_dev(struct net_device * dev)6891 bool netdev_has_any_upper_dev(struct net_device *dev)
6892 {
6893 ASSERT_RTNL();
6894
6895 return !list_empty(&dev->adj_list.upper);
6896 }
6897 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6898
6899 /**
6900 * netdev_master_upper_dev_get - Get master upper device
6901 * @dev: device
6902 *
6903 * Find a master upper device and return pointer to it or NULL in case
6904 * it's not there. The caller must hold the RTNL lock.
6905 */
netdev_master_upper_dev_get(struct net_device * dev)6906 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6907 {
6908 struct netdev_adjacent *upper;
6909
6910 ASSERT_RTNL();
6911
6912 if (list_empty(&dev->adj_list.upper))
6913 return NULL;
6914
6915 upper = list_first_entry(&dev->adj_list.upper,
6916 struct netdev_adjacent, list);
6917 if (likely(upper->master))
6918 return upper->dev;
6919 return NULL;
6920 }
6921 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6922
__netdev_master_upper_dev_get(struct net_device * dev)6923 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6924 {
6925 struct netdev_adjacent *upper;
6926
6927 ASSERT_RTNL();
6928
6929 if (list_empty(&dev->adj_list.upper))
6930 return NULL;
6931
6932 upper = list_first_entry(&dev->adj_list.upper,
6933 struct netdev_adjacent, list);
6934 if (likely(upper->master) && !upper->ignore)
6935 return upper->dev;
6936 return NULL;
6937 }
6938
6939 /**
6940 * netdev_has_any_lower_dev - Check if device is linked to some device
6941 * @dev: device
6942 *
6943 * Find out if a device is linked to a lower device and return true in case
6944 * it is. The caller must hold the RTNL lock.
6945 */
netdev_has_any_lower_dev(struct net_device * dev)6946 static bool netdev_has_any_lower_dev(struct net_device *dev)
6947 {
6948 ASSERT_RTNL();
6949
6950 return !list_empty(&dev->adj_list.lower);
6951 }
6952
netdev_adjacent_get_private(struct list_head * adj_list)6953 void *netdev_adjacent_get_private(struct list_head *adj_list)
6954 {
6955 struct netdev_adjacent *adj;
6956
6957 adj = list_entry(adj_list, struct netdev_adjacent, list);
6958
6959 return adj->private;
6960 }
6961 EXPORT_SYMBOL(netdev_adjacent_get_private);
6962
6963 /**
6964 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6965 * @dev: device
6966 * @iter: list_head ** of the current position
6967 *
6968 * Gets the next device from the dev's upper list, starting from iter
6969 * position. The caller must hold RCU read lock.
6970 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6971 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6972 struct list_head **iter)
6973 {
6974 struct netdev_adjacent *upper;
6975
6976 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6977
6978 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6979
6980 if (&upper->list == &dev->adj_list.upper)
6981 return NULL;
6982
6983 *iter = &upper->list;
6984
6985 return upper->dev;
6986 }
6987 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6988
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6989 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6990 struct list_head **iter,
6991 bool *ignore)
6992 {
6993 struct netdev_adjacent *upper;
6994
6995 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6996
6997 if (&upper->list == &dev->adj_list.upper)
6998 return NULL;
6999
7000 *iter = &upper->list;
7001 *ignore = upper->ignore;
7002
7003 return upper->dev;
7004 }
7005
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7006 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7007 struct list_head **iter)
7008 {
7009 struct netdev_adjacent *upper;
7010
7011 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7012
7013 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7014
7015 if (&upper->list == &dev->adj_list.upper)
7016 return NULL;
7017
7018 *iter = &upper->list;
7019
7020 return upper->dev;
7021 }
7022
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7023 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7024 int (*fn)(struct net_device *dev,
7025 struct netdev_nested_priv *priv),
7026 struct netdev_nested_priv *priv)
7027 {
7028 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7029 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7030 int ret, cur = 0;
7031 bool ignore;
7032
7033 now = dev;
7034 iter = &dev->adj_list.upper;
7035
7036 while (1) {
7037 if (now != dev) {
7038 ret = fn(now, priv);
7039 if (ret)
7040 return ret;
7041 }
7042
7043 next = NULL;
7044 while (1) {
7045 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7046 if (!udev)
7047 break;
7048 if (ignore)
7049 continue;
7050
7051 next = udev;
7052 niter = &udev->adj_list.upper;
7053 dev_stack[cur] = now;
7054 iter_stack[cur++] = iter;
7055 break;
7056 }
7057
7058 if (!next) {
7059 if (!cur)
7060 return 0;
7061 next = dev_stack[--cur];
7062 niter = iter_stack[cur];
7063 }
7064
7065 now = next;
7066 iter = niter;
7067 }
7068
7069 return 0;
7070 }
7071
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7072 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7073 int (*fn)(struct net_device *dev,
7074 struct netdev_nested_priv *priv),
7075 struct netdev_nested_priv *priv)
7076 {
7077 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7078 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7079 int ret, cur = 0;
7080
7081 now = dev;
7082 iter = &dev->adj_list.upper;
7083
7084 while (1) {
7085 if (now != dev) {
7086 ret = fn(now, priv);
7087 if (ret)
7088 return ret;
7089 }
7090
7091 next = NULL;
7092 while (1) {
7093 udev = netdev_next_upper_dev_rcu(now, &iter);
7094 if (!udev)
7095 break;
7096
7097 next = udev;
7098 niter = &udev->adj_list.upper;
7099 dev_stack[cur] = now;
7100 iter_stack[cur++] = iter;
7101 break;
7102 }
7103
7104 if (!next) {
7105 if (!cur)
7106 return 0;
7107 next = dev_stack[--cur];
7108 niter = iter_stack[cur];
7109 }
7110
7111 now = next;
7112 iter = niter;
7113 }
7114
7115 return 0;
7116 }
7117 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7118
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7119 static bool __netdev_has_upper_dev(struct net_device *dev,
7120 struct net_device *upper_dev)
7121 {
7122 struct netdev_nested_priv priv = {
7123 .flags = 0,
7124 .data = (void *)upper_dev,
7125 };
7126
7127 ASSERT_RTNL();
7128
7129 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7130 &priv);
7131 }
7132
7133 /**
7134 * netdev_lower_get_next_private - Get the next ->private from the
7135 * lower neighbour list
7136 * @dev: device
7137 * @iter: list_head ** of the current position
7138 *
7139 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7140 * list, starting from iter position. The caller must hold either hold the
7141 * RTNL lock or its own locking that guarantees that the neighbour lower
7142 * list will remain unchanged.
7143 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7144 void *netdev_lower_get_next_private(struct net_device *dev,
7145 struct list_head **iter)
7146 {
7147 struct netdev_adjacent *lower;
7148
7149 lower = list_entry(*iter, struct netdev_adjacent, list);
7150
7151 if (&lower->list == &dev->adj_list.lower)
7152 return NULL;
7153
7154 *iter = lower->list.next;
7155
7156 return lower->private;
7157 }
7158 EXPORT_SYMBOL(netdev_lower_get_next_private);
7159
7160 /**
7161 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7162 * lower neighbour list, RCU
7163 * variant
7164 * @dev: device
7165 * @iter: list_head ** of the current position
7166 *
7167 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7168 * list, starting from iter position. The caller must hold RCU read lock.
7169 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7170 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7171 struct list_head **iter)
7172 {
7173 struct netdev_adjacent *lower;
7174
7175 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7176
7177 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7178
7179 if (&lower->list == &dev->adj_list.lower)
7180 return NULL;
7181
7182 *iter = &lower->list;
7183
7184 return lower->private;
7185 }
7186 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7187
7188 /**
7189 * netdev_lower_get_next - Get the next device from the lower neighbour
7190 * list
7191 * @dev: device
7192 * @iter: list_head ** of the current position
7193 *
7194 * Gets the next netdev_adjacent from the dev's lower neighbour
7195 * list, starting from iter position. The caller must hold RTNL lock or
7196 * its own locking that guarantees that the neighbour lower
7197 * list will remain unchanged.
7198 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7199 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7200 {
7201 struct netdev_adjacent *lower;
7202
7203 lower = list_entry(*iter, struct netdev_adjacent, list);
7204
7205 if (&lower->list == &dev->adj_list.lower)
7206 return NULL;
7207
7208 *iter = lower->list.next;
7209
7210 return lower->dev;
7211 }
7212 EXPORT_SYMBOL(netdev_lower_get_next);
7213
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7214 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7215 struct list_head **iter)
7216 {
7217 struct netdev_adjacent *lower;
7218
7219 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7220
7221 if (&lower->list == &dev->adj_list.lower)
7222 return NULL;
7223
7224 *iter = &lower->list;
7225
7226 return lower->dev;
7227 }
7228
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7229 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7230 struct list_head **iter,
7231 bool *ignore)
7232 {
7233 struct netdev_adjacent *lower;
7234
7235 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7236
7237 if (&lower->list == &dev->adj_list.lower)
7238 return NULL;
7239
7240 *iter = &lower->list;
7241 *ignore = lower->ignore;
7242
7243 return lower->dev;
7244 }
7245
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7246 int netdev_walk_all_lower_dev(struct net_device *dev,
7247 int (*fn)(struct net_device *dev,
7248 struct netdev_nested_priv *priv),
7249 struct netdev_nested_priv *priv)
7250 {
7251 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7252 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7253 int ret, cur = 0;
7254
7255 now = dev;
7256 iter = &dev->adj_list.lower;
7257
7258 while (1) {
7259 if (now != dev) {
7260 ret = fn(now, priv);
7261 if (ret)
7262 return ret;
7263 }
7264
7265 next = NULL;
7266 while (1) {
7267 ldev = netdev_next_lower_dev(now, &iter);
7268 if (!ldev)
7269 break;
7270
7271 next = ldev;
7272 niter = &ldev->adj_list.lower;
7273 dev_stack[cur] = now;
7274 iter_stack[cur++] = iter;
7275 break;
7276 }
7277
7278 if (!next) {
7279 if (!cur)
7280 return 0;
7281 next = dev_stack[--cur];
7282 niter = iter_stack[cur];
7283 }
7284
7285 now = next;
7286 iter = niter;
7287 }
7288
7289 return 0;
7290 }
7291 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7292
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7293 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7294 int (*fn)(struct net_device *dev,
7295 struct netdev_nested_priv *priv),
7296 struct netdev_nested_priv *priv)
7297 {
7298 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7299 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7300 int ret, cur = 0;
7301 bool ignore;
7302
7303 now = dev;
7304 iter = &dev->adj_list.lower;
7305
7306 while (1) {
7307 if (now != dev) {
7308 ret = fn(now, priv);
7309 if (ret)
7310 return ret;
7311 }
7312
7313 next = NULL;
7314 while (1) {
7315 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7316 if (!ldev)
7317 break;
7318 if (ignore)
7319 continue;
7320
7321 next = ldev;
7322 niter = &ldev->adj_list.lower;
7323 dev_stack[cur] = now;
7324 iter_stack[cur++] = iter;
7325 break;
7326 }
7327
7328 if (!next) {
7329 if (!cur)
7330 return 0;
7331 next = dev_stack[--cur];
7332 niter = iter_stack[cur];
7333 }
7334
7335 now = next;
7336 iter = niter;
7337 }
7338
7339 return 0;
7340 }
7341
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7342 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7343 struct list_head **iter)
7344 {
7345 struct netdev_adjacent *lower;
7346
7347 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7348 if (&lower->list == &dev->adj_list.lower)
7349 return NULL;
7350
7351 *iter = &lower->list;
7352
7353 return lower->dev;
7354 }
7355 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7356
__netdev_upper_depth(struct net_device * dev)7357 static u8 __netdev_upper_depth(struct net_device *dev)
7358 {
7359 struct net_device *udev;
7360 struct list_head *iter;
7361 u8 max_depth = 0;
7362 bool ignore;
7363
7364 for (iter = &dev->adj_list.upper,
7365 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7366 udev;
7367 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7368 if (ignore)
7369 continue;
7370 if (max_depth < udev->upper_level)
7371 max_depth = udev->upper_level;
7372 }
7373
7374 return max_depth;
7375 }
7376
__netdev_lower_depth(struct net_device * dev)7377 static u8 __netdev_lower_depth(struct net_device *dev)
7378 {
7379 struct net_device *ldev;
7380 struct list_head *iter;
7381 u8 max_depth = 0;
7382 bool ignore;
7383
7384 for (iter = &dev->adj_list.lower,
7385 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7386 ldev;
7387 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7388 if (ignore)
7389 continue;
7390 if (max_depth < ldev->lower_level)
7391 max_depth = ldev->lower_level;
7392 }
7393
7394 return max_depth;
7395 }
7396
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7397 static int __netdev_update_upper_level(struct net_device *dev,
7398 struct netdev_nested_priv *__unused)
7399 {
7400 dev->upper_level = __netdev_upper_depth(dev) + 1;
7401 return 0;
7402 }
7403
7404 #ifdef CONFIG_LOCKDEP
7405 static LIST_HEAD(net_unlink_list);
7406
net_unlink_todo(struct net_device * dev)7407 static void net_unlink_todo(struct net_device *dev)
7408 {
7409 if (list_empty(&dev->unlink_list))
7410 list_add_tail(&dev->unlink_list, &net_unlink_list);
7411 }
7412 #endif
7413
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7414 static int __netdev_update_lower_level(struct net_device *dev,
7415 struct netdev_nested_priv *priv)
7416 {
7417 dev->lower_level = __netdev_lower_depth(dev) + 1;
7418
7419 #ifdef CONFIG_LOCKDEP
7420 if (!priv)
7421 return 0;
7422
7423 if (priv->flags & NESTED_SYNC_IMM)
7424 dev->nested_level = dev->lower_level - 1;
7425 if (priv->flags & NESTED_SYNC_TODO)
7426 net_unlink_todo(dev);
7427 #endif
7428 return 0;
7429 }
7430
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7431 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7432 int (*fn)(struct net_device *dev,
7433 struct netdev_nested_priv *priv),
7434 struct netdev_nested_priv *priv)
7435 {
7436 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7437 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7438 int ret, cur = 0;
7439
7440 now = dev;
7441 iter = &dev->adj_list.lower;
7442
7443 while (1) {
7444 if (now != dev) {
7445 ret = fn(now, priv);
7446 if (ret)
7447 return ret;
7448 }
7449
7450 next = NULL;
7451 while (1) {
7452 ldev = netdev_next_lower_dev_rcu(now, &iter);
7453 if (!ldev)
7454 break;
7455
7456 next = ldev;
7457 niter = &ldev->adj_list.lower;
7458 dev_stack[cur] = now;
7459 iter_stack[cur++] = iter;
7460 break;
7461 }
7462
7463 if (!next) {
7464 if (!cur)
7465 return 0;
7466 next = dev_stack[--cur];
7467 niter = iter_stack[cur];
7468 }
7469
7470 now = next;
7471 iter = niter;
7472 }
7473
7474 return 0;
7475 }
7476 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7477
7478 /**
7479 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7480 * lower neighbour list, RCU
7481 * variant
7482 * @dev: device
7483 *
7484 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7485 * list. The caller must hold RCU read lock.
7486 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7487 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7488 {
7489 struct netdev_adjacent *lower;
7490
7491 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7492 struct netdev_adjacent, list);
7493 if (lower)
7494 return lower->private;
7495 return NULL;
7496 }
7497 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7498
7499 /**
7500 * netdev_master_upper_dev_get_rcu - Get master upper device
7501 * @dev: device
7502 *
7503 * Find a master upper device and return pointer to it or NULL in case
7504 * it's not there. The caller must hold the RCU read lock.
7505 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7506 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7507 {
7508 struct netdev_adjacent *upper;
7509
7510 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7511 struct netdev_adjacent, list);
7512 if (upper && likely(upper->master))
7513 return upper->dev;
7514 return NULL;
7515 }
7516 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7517
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7518 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7519 struct net_device *adj_dev,
7520 struct list_head *dev_list)
7521 {
7522 char linkname[IFNAMSIZ+7];
7523
7524 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7525 "upper_%s" : "lower_%s", adj_dev->name);
7526 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7527 linkname);
7528 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7529 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7530 char *name,
7531 struct list_head *dev_list)
7532 {
7533 char linkname[IFNAMSIZ+7];
7534
7535 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7536 "upper_%s" : "lower_%s", name);
7537 sysfs_remove_link(&(dev->dev.kobj), linkname);
7538 }
7539
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7540 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7541 struct net_device *adj_dev,
7542 struct list_head *dev_list)
7543 {
7544 return (dev_list == &dev->adj_list.upper ||
7545 dev_list == &dev->adj_list.lower) &&
7546 net_eq(dev_net(dev), dev_net(adj_dev));
7547 }
7548
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7549 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7550 struct net_device *adj_dev,
7551 struct list_head *dev_list,
7552 void *private, bool master)
7553 {
7554 struct netdev_adjacent *adj;
7555 int ret;
7556
7557 adj = __netdev_find_adj(adj_dev, dev_list);
7558
7559 if (adj) {
7560 adj->ref_nr += 1;
7561 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7562 dev->name, adj_dev->name, adj->ref_nr);
7563
7564 return 0;
7565 }
7566
7567 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7568 if (!adj)
7569 return -ENOMEM;
7570
7571 adj->dev = adj_dev;
7572 adj->master = master;
7573 adj->ref_nr = 1;
7574 adj->private = private;
7575 adj->ignore = false;
7576 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7577
7578 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7579 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7580
7581 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7582 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7583 if (ret)
7584 goto free_adj;
7585 }
7586
7587 /* Ensure that master link is always the first item in list. */
7588 if (master) {
7589 ret = sysfs_create_link(&(dev->dev.kobj),
7590 &(adj_dev->dev.kobj), "master");
7591 if (ret)
7592 goto remove_symlinks;
7593
7594 list_add_rcu(&adj->list, dev_list);
7595 } else {
7596 list_add_tail_rcu(&adj->list, dev_list);
7597 }
7598
7599 return 0;
7600
7601 remove_symlinks:
7602 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7603 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7604 free_adj:
7605 netdev_put(adj_dev, &adj->dev_tracker);
7606 kfree(adj);
7607
7608 return ret;
7609 }
7610
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7611 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7612 struct net_device *adj_dev,
7613 u16 ref_nr,
7614 struct list_head *dev_list)
7615 {
7616 struct netdev_adjacent *adj;
7617
7618 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7619 dev->name, adj_dev->name, ref_nr);
7620
7621 adj = __netdev_find_adj(adj_dev, dev_list);
7622
7623 if (!adj) {
7624 pr_err("Adjacency does not exist for device %s from %s\n",
7625 dev->name, adj_dev->name);
7626 WARN_ON(1);
7627 return;
7628 }
7629
7630 if (adj->ref_nr > ref_nr) {
7631 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7632 dev->name, adj_dev->name, ref_nr,
7633 adj->ref_nr - ref_nr);
7634 adj->ref_nr -= ref_nr;
7635 return;
7636 }
7637
7638 if (adj->master)
7639 sysfs_remove_link(&(dev->dev.kobj), "master");
7640
7641 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7642 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7643
7644 list_del_rcu(&adj->list);
7645 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7646 adj_dev->name, dev->name, adj_dev->name);
7647 netdev_put(adj_dev, &adj->dev_tracker);
7648 kfree_rcu(adj, rcu);
7649 }
7650
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7651 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7652 struct net_device *upper_dev,
7653 struct list_head *up_list,
7654 struct list_head *down_list,
7655 void *private, bool master)
7656 {
7657 int ret;
7658
7659 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7660 private, master);
7661 if (ret)
7662 return ret;
7663
7664 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7665 private, false);
7666 if (ret) {
7667 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7668 return ret;
7669 }
7670
7671 return 0;
7672 }
7673
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7674 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7675 struct net_device *upper_dev,
7676 u16 ref_nr,
7677 struct list_head *up_list,
7678 struct list_head *down_list)
7679 {
7680 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7681 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7682 }
7683
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7684 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7685 struct net_device *upper_dev,
7686 void *private, bool master)
7687 {
7688 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7689 &dev->adj_list.upper,
7690 &upper_dev->adj_list.lower,
7691 private, master);
7692 }
7693
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7694 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7695 struct net_device *upper_dev)
7696 {
7697 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7698 &dev->adj_list.upper,
7699 &upper_dev->adj_list.lower);
7700 }
7701
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7702 static int __netdev_upper_dev_link(struct net_device *dev,
7703 struct net_device *upper_dev, bool master,
7704 void *upper_priv, void *upper_info,
7705 struct netdev_nested_priv *priv,
7706 struct netlink_ext_ack *extack)
7707 {
7708 struct netdev_notifier_changeupper_info changeupper_info = {
7709 .info = {
7710 .dev = dev,
7711 .extack = extack,
7712 },
7713 .upper_dev = upper_dev,
7714 .master = master,
7715 .linking = true,
7716 .upper_info = upper_info,
7717 };
7718 struct net_device *master_dev;
7719 int ret = 0;
7720
7721 ASSERT_RTNL();
7722
7723 if (dev == upper_dev)
7724 return -EBUSY;
7725
7726 /* To prevent loops, check if dev is not upper device to upper_dev. */
7727 if (__netdev_has_upper_dev(upper_dev, dev))
7728 return -EBUSY;
7729
7730 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7731 return -EMLINK;
7732
7733 if (!master) {
7734 if (__netdev_has_upper_dev(dev, upper_dev))
7735 return -EEXIST;
7736 } else {
7737 master_dev = __netdev_master_upper_dev_get(dev);
7738 if (master_dev)
7739 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7740 }
7741
7742 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7743 &changeupper_info.info);
7744 ret = notifier_to_errno(ret);
7745 if (ret)
7746 return ret;
7747
7748 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7749 master);
7750 if (ret)
7751 return ret;
7752
7753 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7754 &changeupper_info.info);
7755 ret = notifier_to_errno(ret);
7756 if (ret)
7757 goto rollback;
7758
7759 __netdev_update_upper_level(dev, NULL);
7760 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7761
7762 __netdev_update_lower_level(upper_dev, priv);
7763 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7764 priv);
7765
7766 return 0;
7767
7768 rollback:
7769 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7770
7771 return ret;
7772 }
7773
7774 /**
7775 * netdev_upper_dev_link - Add a link to the upper device
7776 * @dev: device
7777 * @upper_dev: new upper device
7778 * @extack: netlink extended ack
7779 *
7780 * Adds a link to device which is upper to this one. The caller must hold
7781 * the RTNL lock. On a failure a negative errno code is returned.
7782 * On success the reference counts are adjusted and the function
7783 * returns zero.
7784 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7785 int netdev_upper_dev_link(struct net_device *dev,
7786 struct net_device *upper_dev,
7787 struct netlink_ext_ack *extack)
7788 {
7789 struct netdev_nested_priv priv = {
7790 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7791 .data = NULL,
7792 };
7793
7794 return __netdev_upper_dev_link(dev, upper_dev, false,
7795 NULL, NULL, &priv, extack);
7796 }
7797 EXPORT_SYMBOL(netdev_upper_dev_link);
7798
7799 /**
7800 * netdev_master_upper_dev_link - Add a master link to the upper device
7801 * @dev: device
7802 * @upper_dev: new upper device
7803 * @upper_priv: upper device private
7804 * @upper_info: upper info to be passed down via notifier
7805 * @extack: netlink extended ack
7806 *
7807 * Adds a link to device which is upper to this one. In this case, only
7808 * one master upper device can be linked, although other non-master devices
7809 * might be linked as well. The caller must hold the RTNL lock.
7810 * On a failure a negative errno code is returned. On success the reference
7811 * counts are adjusted and the function returns zero.
7812 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7813 int netdev_master_upper_dev_link(struct net_device *dev,
7814 struct net_device *upper_dev,
7815 void *upper_priv, void *upper_info,
7816 struct netlink_ext_ack *extack)
7817 {
7818 struct netdev_nested_priv priv = {
7819 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7820 .data = NULL,
7821 };
7822
7823 return __netdev_upper_dev_link(dev, upper_dev, true,
7824 upper_priv, upper_info, &priv, extack);
7825 }
7826 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7827
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7828 static void __netdev_upper_dev_unlink(struct net_device *dev,
7829 struct net_device *upper_dev,
7830 struct netdev_nested_priv *priv)
7831 {
7832 struct netdev_notifier_changeupper_info changeupper_info = {
7833 .info = {
7834 .dev = dev,
7835 },
7836 .upper_dev = upper_dev,
7837 .linking = false,
7838 };
7839
7840 ASSERT_RTNL();
7841
7842 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7843
7844 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7845 &changeupper_info.info);
7846
7847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7848
7849 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7850 &changeupper_info.info);
7851
7852 __netdev_update_upper_level(dev, NULL);
7853 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7854
7855 __netdev_update_lower_level(upper_dev, priv);
7856 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7857 priv);
7858 }
7859
7860 /**
7861 * netdev_upper_dev_unlink - Removes a link to upper device
7862 * @dev: device
7863 * @upper_dev: new upper device
7864 *
7865 * Removes a link to device which is upper to this one. The caller must hold
7866 * the RTNL lock.
7867 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7868 void netdev_upper_dev_unlink(struct net_device *dev,
7869 struct net_device *upper_dev)
7870 {
7871 struct netdev_nested_priv priv = {
7872 .flags = NESTED_SYNC_TODO,
7873 .data = NULL,
7874 };
7875
7876 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7877 }
7878 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7879
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7880 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7881 struct net_device *lower_dev,
7882 bool val)
7883 {
7884 struct netdev_adjacent *adj;
7885
7886 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7887 if (adj)
7888 adj->ignore = val;
7889
7890 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7891 if (adj)
7892 adj->ignore = val;
7893 }
7894
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7895 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7896 struct net_device *lower_dev)
7897 {
7898 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7899 }
7900
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7901 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7902 struct net_device *lower_dev)
7903 {
7904 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7905 }
7906
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7907 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7908 struct net_device *new_dev,
7909 struct net_device *dev,
7910 struct netlink_ext_ack *extack)
7911 {
7912 struct netdev_nested_priv priv = {
7913 .flags = 0,
7914 .data = NULL,
7915 };
7916 int err;
7917
7918 if (!new_dev)
7919 return 0;
7920
7921 if (old_dev && new_dev != old_dev)
7922 netdev_adjacent_dev_disable(dev, old_dev);
7923 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7924 extack);
7925 if (err) {
7926 if (old_dev && new_dev != old_dev)
7927 netdev_adjacent_dev_enable(dev, old_dev);
7928 return err;
7929 }
7930
7931 return 0;
7932 }
7933 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7934
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7935 void netdev_adjacent_change_commit(struct net_device *old_dev,
7936 struct net_device *new_dev,
7937 struct net_device *dev)
7938 {
7939 struct netdev_nested_priv priv = {
7940 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7941 .data = NULL,
7942 };
7943
7944 if (!new_dev || !old_dev)
7945 return;
7946
7947 if (new_dev == old_dev)
7948 return;
7949
7950 netdev_adjacent_dev_enable(dev, old_dev);
7951 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7952 }
7953 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7954
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7955 void netdev_adjacent_change_abort(struct net_device *old_dev,
7956 struct net_device *new_dev,
7957 struct net_device *dev)
7958 {
7959 struct netdev_nested_priv priv = {
7960 .flags = 0,
7961 .data = NULL,
7962 };
7963
7964 if (!new_dev)
7965 return;
7966
7967 if (old_dev && new_dev != old_dev)
7968 netdev_adjacent_dev_enable(dev, old_dev);
7969
7970 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7971 }
7972 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7973
7974 /**
7975 * netdev_bonding_info_change - Dispatch event about slave change
7976 * @dev: device
7977 * @bonding_info: info to dispatch
7978 *
7979 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7980 * The caller must hold the RTNL lock.
7981 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7982 void netdev_bonding_info_change(struct net_device *dev,
7983 struct netdev_bonding_info *bonding_info)
7984 {
7985 struct netdev_notifier_bonding_info info = {
7986 .info.dev = dev,
7987 };
7988
7989 memcpy(&info.bonding_info, bonding_info,
7990 sizeof(struct netdev_bonding_info));
7991 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7992 &info.info);
7993 }
7994 EXPORT_SYMBOL(netdev_bonding_info_change);
7995
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)7996 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7997 struct netlink_ext_ack *extack)
7998 {
7999 struct netdev_notifier_offload_xstats_info info = {
8000 .info.dev = dev,
8001 .info.extack = extack,
8002 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8003 };
8004 int err;
8005 int rc;
8006
8007 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8008 GFP_KERNEL);
8009 if (!dev->offload_xstats_l3)
8010 return -ENOMEM;
8011
8012 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8013 NETDEV_OFFLOAD_XSTATS_DISABLE,
8014 &info.info);
8015 err = notifier_to_errno(rc);
8016 if (err)
8017 goto free_stats;
8018
8019 return 0;
8020
8021 free_stats:
8022 kfree(dev->offload_xstats_l3);
8023 dev->offload_xstats_l3 = NULL;
8024 return err;
8025 }
8026
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8027 int netdev_offload_xstats_enable(struct net_device *dev,
8028 enum netdev_offload_xstats_type type,
8029 struct netlink_ext_ack *extack)
8030 {
8031 ASSERT_RTNL();
8032
8033 if (netdev_offload_xstats_enabled(dev, type))
8034 return -EALREADY;
8035
8036 switch (type) {
8037 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8038 return netdev_offload_xstats_enable_l3(dev, extack);
8039 }
8040
8041 WARN_ON(1);
8042 return -EINVAL;
8043 }
8044 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8045
netdev_offload_xstats_disable_l3(struct net_device * dev)8046 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8047 {
8048 struct netdev_notifier_offload_xstats_info info = {
8049 .info.dev = dev,
8050 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8051 };
8052
8053 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8054 &info.info);
8055 kfree(dev->offload_xstats_l3);
8056 dev->offload_xstats_l3 = NULL;
8057 }
8058
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8059 int netdev_offload_xstats_disable(struct net_device *dev,
8060 enum netdev_offload_xstats_type type)
8061 {
8062 ASSERT_RTNL();
8063
8064 if (!netdev_offload_xstats_enabled(dev, type))
8065 return -EALREADY;
8066
8067 switch (type) {
8068 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8069 netdev_offload_xstats_disable_l3(dev);
8070 return 0;
8071 }
8072
8073 WARN_ON(1);
8074 return -EINVAL;
8075 }
8076 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8077
netdev_offload_xstats_disable_all(struct net_device * dev)8078 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8079 {
8080 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8081 }
8082
8083 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8084 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8085 enum netdev_offload_xstats_type type)
8086 {
8087 switch (type) {
8088 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8089 return dev->offload_xstats_l3;
8090 }
8091
8092 WARN_ON(1);
8093 return NULL;
8094 }
8095
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8096 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8097 enum netdev_offload_xstats_type type)
8098 {
8099 ASSERT_RTNL();
8100
8101 return netdev_offload_xstats_get_ptr(dev, type);
8102 }
8103 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8104
8105 struct netdev_notifier_offload_xstats_ru {
8106 bool used;
8107 };
8108
8109 struct netdev_notifier_offload_xstats_rd {
8110 struct rtnl_hw_stats64 stats;
8111 bool used;
8112 };
8113
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8114 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8115 const struct rtnl_hw_stats64 *src)
8116 {
8117 dest->rx_packets += src->rx_packets;
8118 dest->tx_packets += src->tx_packets;
8119 dest->rx_bytes += src->rx_bytes;
8120 dest->tx_bytes += src->tx_bytes;
8121 dest->rx_errors += src->rx_errors;
8122 dest->tx_errors += src->tx_errors;
8123 dest->rx_dropped += src->rx_dropped;
8124 dest->tx_dropped += src->tx_dropped;
8125 dest->multicast += src->multicast;
8126 }
8127
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8128 static int netdev_offload_xstats_get_used(struct net_device *dev,
8129 enum netdev_offload_xstats_type type,
8130 bool *p_used,
8131 struct netlink_ext_ack *extack)
8132 {
8133 struct netdev_notifier_offload_xstats_ru report_used = {};
8134 struct netdev_notifier_offload_xstats_info info = {
8135 .info.dev = dev,
8136 .info.extack = extack,
8137 .type = type,
8138 .report_used = &report_used,
8139 };
8140 int rc;
8141
8142 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8143 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8144 &info.info);
8145 *p_used = report_used.used;
8146 return notifier_to_errno(rc);
8147 }
8148
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8149 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8150 enum netdev_offload_xstats_type type,
8151 struct rtnl_hw_stats64 *p_stats,
8152 bool *p_used,
8153 struct netlink_ext_ack *extack)
8154 {
8155 struct netdev_notifier_offload_xstats_rd report_delta = {};
8156 struct netdev_notifier_offload_xstats_info info = {
8157 .info.dev = dev,
8158 .info.extack = extack,
8159 .type = type,
8160 .report_delta = &report_delta,
8161 };
8162 struct rtnl_hw_stats64 *stats;
8163 int rc;
8164
8165 stats = netdev_offload_xstats_get_ptr(dev, type);
8166 if (WARN_ON(!stats))
8167 return -EINVAL;
8168
8169 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8170 &info.info);
8171
8172 /* Cache whatever we got, even if there was an error, otherwise the
8173 * successful stats retrievals would get lost.
8174 */
8175 netdev_hw_stats64_add(stats, &report_delta.stats);
8176
8177 if (p_stats)
8178 *p_stats = *stats;
8179 *p_used = report_delta.used;
8180
8181 return notifier_to_errno(rc);
8182 }
8183
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8184 int netdev_offload_xstats_get(struct net_device *dev,
8185 enum netdev_offload_xstats_type type,
8186 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8187 struct netlink_ext_ack *extack)
8188 {
8189 ASSERT_RTNL();
8190
8191 if (p_stats)
8192 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8193 p_used, extack);
8194 else
8195 return netdev_offload_xstats_get_used(dev, type, p_used,
8196 extack);
8197 }
8198 EXPORT_SYMBOL(netdev_offload_xstats_get);
8199
8200 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8201 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8202 const struct rtnl_hw_stats64 *stats)
8203 {
8204 report_delta->used = true;
8205 netdev_hw_stats64_add(&report_delta->stats, stats);
8206 }
8207 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8208
8209 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8210 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8211 {
8212 report_used->used = true;
8213 }
8214 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8215
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8216 void netdev_offload_xstats_push_delta(struct net_device *dev,
8217 enum netdev_offload_xstats_type type,
8218 const struct rtnl_hw_stats64 *p_stats)
8219 {
8220 struct rtnl_hw_stats64 *stats;
8221
8222 ASSERT_RTNL();
8223
8224 stats = netdev_offload_xstats_get_ptr(dev, type);
8225 if (WARN_ON(!stats))
8226 return;
8227
8228 netdev_hw_stats64_add(stats, p_stats);
8229 }
8230 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8231
8232 /**
8233 * netdev_get_xmit_slave - Get the xmit slave of master device
8234 * @dev: device
8235 * @skb: The packet
8236 * @all_slaves: assume all the slaves are active
8237 *
8238 * The reference counters are not incremented so the caller must be
8239 * careful with locks. The caller must hold RCU lock.
8240 * %NULL is returned if no slave is found.
8241 */
8242
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8243 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8244 struct sk_buff *skb,
8245 bool all_slaves)
8246 {
8247 const struct net_device_ops *ops = dev->netdev_ops;
8248
8249 if (!ops->ndo_get_xmit_slave)
8250 return NULL;
8251 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8252 }
8253 EXPORT_SYMBOL(netdev_get_xmit_slave);
8254
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8255 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8256 struct sock *sk)
8257 {
8258 const struct net_device_ops *ops = dev->netdev_ops;
8259
8260 if (!ops->ndo_sk_get_lower_dev)
8261 return NULL;
8262 return ops->ndo_sk_get_lower_dev(dev, sk);
8263 }
8264
8265 /**
8266 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8267 * @dev: device
8268 * @sk: the socket
8269 *
8270 * %NULL is returned if no lower device is found.
8271 */
8272
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8273 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8274 struct sock *sk)
8275 {
8276 struct net_device *lower;
8277
8278 lower = netdev_sk_get_lower_dev(dev, sk);
8279 while (lower) {
8280 dev = lower;
8281 lower = netdev_sk_get_lower_dev(dev, sk);
8282 }
8283
8284 return dev;
8285 }
8286 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8287
netdev_adjacent_add_links(struct net_device * dev)8288 static void netdev_adjacent_add_links(struct net_device *dev)
8289 {
8290 struct netdev_adjacent *iter;
8291
8292 struct net *net = dev_net(dev);
8293
8294 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8295 if (!net_eq(net, dev_net(iter->dev)))
8296 continue;
8297 netdev_adjacent_sysfs_add(iter->dev, dev,
8298 &iter->dev->adj_list.lower);
8299 netdev_adjacent_sysfs_add(dev, iter->dev,
8300 &dev->adj_list.upper);
8301 }
8302
8303 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8304 if (!net_eq(net, dev_net(iter->dev)))
8305 continue;
8306 netdev_adjacent_sysfs_add(iter->dev, dev,
8307 &iter->dev->adj_list.upper);
8308 netdev_adjacent_sysfs_add(dev, iter->dev,
8309 &dev->adj_list.lower);
8310 }
8311 }
8312
netdev_adjacent_del_links(struct net_device * dev)8313 static void netdev_adjacent_del_links(struct net_device *dev)
8314 {
8315 struct netdev_adjacent *iter;
8316
8317 struct net *net = dev_net(dev);
8318
8319 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8320 if (!net_eq(net, dev_net(iter->dev)))
8321 continue;
8322 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8323 &iter->dev->adj_list.lower);
8324 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8325 &dev->adj_list.upper);
8326 }
8327
8328 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8329 if (!net_eq(net, dev_net(iter->dev)))
8330 continue;
8331 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8332 &iter->dev->adj_list.upper);
8333 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8334 &dev->adj_list.lower);
8335 }
8336 }
8337
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8338 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8339 {
8340 struct netdev_adjacent *iter;
8341
8342 struct net *net = dev_net(dev);
8343
8344 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8345 if (!net_eq(net, dev_net(iter->dev)))
8346 continue;
8347 netdev_adjacent_sysfs_del(iter->dev, oldname,
8348 &iter->dev->adj_list.lower);
8349 netdev_adjacent_sysfs_add(iter->dev, dev,
8350 &iter->dev->adj_list.lower);
8351 }
8352
8353 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8354 if (!net_eq(net, dev_net(iter->dev)))
8355 continue;
8356 netdev_adjacent_sysfs_del(iter->dev, oldname,
8357 &iter->dev->adj_list.upper);
8358 netdev_adjacent_sysfs_add(iter->dev, dev,
8359 &iter->dev->adj_list.upper);
8360 }
8361 }
8362
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8363 void *netdev_lower_dev_get_private(struct net_device *dev,
8364 struct net_device *lower_dev)
8365 {
8366 struct netdev_adjacent *lower;
8367
8368 if (!lower_dev)
8369 return NULL;
8370 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8371 if (!lower)
8372 return NULL;
8373
8374 return lower->private;
8375 }
8376 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8377
8378
8379 /**
8380 * netdev_lower_state_changed - Dispatch event about lower device state change
8381 * @lower_dev: device
8382 * @lower_state_info: state to dispatch
8383 *
8384 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8385 * The caller must hold the RTNL lock.
8386 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8387 void netdev_lower_state_changed(struct net_device *lower_dev,
8388 void *lower_state_info)
8389 {
8390 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8391 .info.dev = lower_dev,
8392 };
8393
8394 ASSERT_RTNL();
8395 changelowerstate_info.lower_state_info = lower_state_info;
8396 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8397 &changelowerstate_info.info);
8398 }
8399 EXPORT_SYMBOL(netdev_lower_state_changed);
8400
dev_change_rx_flags(struct net_device * dev,int flags)8401 static void dev_change_rx_flags(struct net_device *dev, int flags)
8402 {
8403 const struct net_device_ops *ops = dev->netdev_ops;
8404
8405 if (ops->ndo_change_rx_flags)
8406 ops->ndo_change_rx_flags(dev, flags);
8407 }
8408
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8409 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8410 {
8411 unsigned int old_flags = dev->flags;
8412 kuid_t uid;
8413 kgid_t gid;
8414
8415 ASSERT_RTNL();
8416
8417 dev->flags |= IFF_PROMISC;
8418 dev->promiscuity += inc;
8419 if (dev->promiscuity == 0) {
8420 /*
8421 * Avoid overflow.
8422 * If inc causes overflow, untouch promisc and return error.
8423 */
8424 if (inc < 0)
8425 dev->flags &= ~IFF_PROMISC;
8426 else {
8427 dev->promiscuity -= inc;
8428 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8429 return -EOVERFLOW;
8430 }
8431 }
8432 if (dev->flags != old_flags) {
8433 netdev_info(dev, "%s promiscuous mode\n",
8434 dev->flags & IFF_PROMISC ? "entered" : "left");
8435 if (audit_enabled) {
8436 current_uid_gid(&uid, &gid);
8437 audit_log(audit_context(), GFP_ATOMIC,
8438 AUDIT_ANOM_PROMISCUOUS,
8439 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8440 dev->name, (dev->flags & IFF_PROMISC),
8441 (old_flags & IFF_PROMISC),
8442 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8443 from_kuid(&init_user_ns, uid),
8444 from_kgid(&init_user_ns, gid),
8445 audit_get_sessionid(current));
8446 }
8447
8448 dev_change_rx_flags(dev, IFF_PROMISC);
8449 }
8450 if (notify)
8451 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8452 return 0;
8453 }
8454
8455 /**
8456 * dev_set_promiscuity - update promiscuity count on a device
8457 * @dev: device
8458 * @inc: modifier
8459 *
8460 * Add or remove promiscuity from a device. While the count in the device
8461 * remains above zero the interface remains promiscuous. Once it hits zero
8462 * the device reverts back to normal filtering operation. A negative inc
8463 * value is used to drop promiscuity on the device.
8464 * Return 0 if successful or a negative errno code on error.
8465 */
dev_set_promiscuity(struct net_device * dev,int inc)8466 int dev_set_promiscuity(struct net_device *dev, int inc)
8467 {
8468 unsigned int old_flags = dev->flags;
8469 int err;
8470
8471 err = __dev_set_promiscuity(dev, inc, true);
8472 if (err < 0)
8473 return err;
8474 if (dev->flags != old_flags)
8475 dev_set_rx_mode(dev);
8476 return err;
8477 }
8478 EXPORT_SYMBOL(dev_set_promiscuity);
8479
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8480 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8481 {
8482 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8483
8484 ASSERT_RTNL();
8485
8486 dev->flags |= IFF_ALLMULTI;
8487 dev->allmulti += inc;
8488 if (dev->allmulti == 0) {
8489 /*
8490 * Avoid overflow.
8491 * If inc causes overflow, untouch allmulti and return error.
8492 */
8493 if (inc < 0)
8494 dev->flags &= ~IFF_ALLMULTI;
8495 else {
8496 dev->allmulti -= inc;
8497 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8498 return -EOVERFLOW;
8499 }
8500 }
8501 if (dev->flags ^ old_flags) {
8502 netdev_info(dev, "%s allmulticast mode\n",
8503 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8504 dev_change_rx_flags(dev, IFF_ALLMULTI);
8505 dev_set_rx_mode(dev);
8506 if (notify)
8507 __dev_notify_flags(dev, old_flags,
8508 dev->gflags ^ old_gflags, 0, NULL);
8509 }
8510 return 0;
8511 }
8512
8513 /**
8514 * dev_set_allmulti - update allmulti count on a device
8515 * @dev: device
8516 * @inc: modifier
8517 *
8518 * Add or remove reception of all multicast frames to a device. While the
8519 * count in the device remains above zero the interface remains listening
8520 * to all interfaces. Once it hits zero the device reverts back to normal
8521 * filtering operation. A negative @inc value is used to drop the counter
8522 * when releasing a resource needing all multicasts.
8523 * Return 0 if successful or a negative errno code on error.
8524 */
8525
dev_set_allmulti(struct net_device * dev,int inc)8526 int dev_set_allmulti(struct net_device *dev, int inc)
8527 {
8528 return __dev_set_allmulti(dev, inc, true);
8529 }
8530 EXPORT_SYMBOL(dev_set_allmulti);
8531
8532 /*
8533 * Upload unicast and multicast address lists to device and
8534 * configure RX filtering. When the device doesn't support unicast
8535 * filtering it is put in promiscuous mode while unicast addresses
8536 * are present.
8537 */
__dev_set_rx_mode(struct net_device * dev)8538 void __dev_set_rx_mode(struct net_device *dev)
8539 {
8540 const struct net_device_ops *ops = dev->netdev_ops;
8541
8542 /* dev_open will call this function so the list will stay sane. */
8543 if (!(dev->flags&IFF_UP))
8544 return;
8545
8546 if (!netif_device_present(dev))
8547 return;
8548
8549 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8550 /* Unicast addresses changes may only happen under the rtnl,
8551 * therefore calling __dev_set_promiscuity here is safe.
8552 */
8553 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8554 __dev_set_promiscuity(dev, 1, false);
8555 dev->uc_promisc = true;
8556 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8557 __dev_set_promiscuity(dev, -1, false);
8558 dev->uc_promisc = false;
8559 }
8560 }
8561
8562 if (ops->ndo_set_rx_mode)
8563 ops->ndo_set_rx_mode(dev);
8564 }
8565
dev_set_rx_mode(struct net_device * dev)8566 void dev_set_rx_mode(struct net_device *dev)
8567 {
8568 netif_addr_lock_bh(dev);
8569 __dev_set_rx_mode(dev);
8570 netif_addr_unlock_bh(dev);
8571 }
8572
8573 /**
8574 * dev_get_flags - get flags reported to userspace
8575 * @dev: device
8576 *
8577 * Get the combination of flag bits exported through APIs to userspace.
8578 */
dev_get_flags(const struct net_device * dev)8579 unsigned int dev_get_flags(const struct net_device *dev)
8580 {
8581 unsigned int flags;
8582
8583 flags = (dev->flags & ~(IFF_PROMISC |
8584 IFF_ALLMULTI |
8585 IFF_RUNNING |
8586 IFF_LOWER_UP |
8587 IFF_DORMANT)) |
8588 (dev->gflags & (IFF_PROMISC |
8589 IFF_ALLMULTI));
8590
8591 if (netif_running(dev)) {
8592 if (netif_oper_up(dev))
8593 flags |= IFF_RUNNING;
8594 if (netif_carrier_ok(dev))
8595 flags |= IFF_LOWER_UP;
8596 if (netif_dormant(dev))
8597 flags |= IFF_DORMANT;
8598 }
8599
8600 return flags;
8601 }
8602 EXPORT_SYMBOL(dev_get_flags);
8603
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8604 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8605 struct netlink_ext_ack *extack)
8606 {
8607 unsigned int old_flags = dev->flags;
8608 int ret;
8609
8610 ASSERT_RTNL();
8611
8612 /*
8613 * Set the flags on our device.
8614 */
8615
8616 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8617 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8618 IFF_AUTOMEDIA)) |
8619 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8620 IFF_ALLMULTI));
8621
8622 /*
8623 * Load in the correct multicast list now the flags have changed.
8624 */
8625
8626 if ((old_flags ^ flags) & IFF_MULTICAST)
8627 dev_change_rx_flags(dev, IFF_MULTICAST);
8628
8629 dev_set_rx_mode(dev);
8630
8631 /*
8632 * Have we downed the interface. We handle IFF_UP ourselves
8633 * according to user attempts to set it, rather than blindly
8634 * setting it.
8635 */
8636
8637 ret = 0;
8638 if ((old_flags ^ flags) & IFF_UP) {
8639 if (old_flags & IFF_UP)
8640 __dev_close(dev);
8641 else
8642 ret = __dev_open(dev, extack);
8643 }
8644
8645 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8646 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8647 unsigned int old_flags = dev->flags;
8648
8649 dev->gflags ^= IFF_PROMISC;
8650
8651 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8652 if (dev->flags != old_flags)
8653 dev_set_rx_mode(dev);
8654 }
8655
8656 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8657 * is important. Some (broken) drivers set IFF_PROMISC, when
8658 * IFF_ALLMULTI is requested not asking us and not reporting.
8659 */
8660 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8661 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8662
8663 dev->gflags ^= IFF_ALLMULTI;
8664 __dev_set_allmulti(dev, inc, false);
8665 }
8666
8667 return ret;
8668 }
8669
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8670 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8671 unsigned int gchanges, u32 portid,
8672 const struct nlmsghdr *nlh)
8673 {
8674 unsigned int changes = dev->flags ^ old_flags;
8675
8676 if (gchanges)
8677 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8678
8679 if (changes & IFF_UP) {
8680 if (dev->flags & IFF_UP)
8681 call_netdevice_notifiers(NETDEV_UP, dev);
8682 else
8683 call_netdevice_notifiers(NETDEV_DOWN, dev);
8684 }
8685
8686 if (dev->flags & IFF_UP &&
8687 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8688 struct netdev_notifier_change_info change_info = {
8689 .info = {
8690 .dev = dev,
8691 },
8692 .flags_changed = changes,
8693 };
8694
8695 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8696 }
8697 }
8698
8699 /**
8700 * dev_change_flags - change device settings
8701 * @dev: device
8702 * @flags: device state flags
8703 * @extack: netlink extended ack
8704 *
8705 * Change settings on device based state flags. The flags are
8706 * in the userspace exported format.
8707 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8708 int dev_change_flags(struct net_device *dev, unsigned int flags,
8709 struct netlink_ext_ack *extack)
8710 {
8711 int ret;
8712 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8713
8714 ret = __dev_change_flags(dev, flags, extack);
8715 if (ret < 0)
8716 return ret;
8717
8718 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8719 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8720 return ret;
8721 }
8722 EXPORT_SYMBOL(dev_change_flags);
8723
__dev_set_mtu(struct net_device * dev,int new_mtu)8724 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8725 {
8726 const struct net_device_ops *ops = dev->netdev_ops;
8727
8728 if (ops->ndo_change_mtu)
8729 return ops->ndo_change_mtu(dev, new_mtu);
8730
8731 /* Pairs with all the lockless reads of dev->mtu in the stack */
8732 WRITE_ONCE(dev->mtu, new_mtu);
8733 return 0;
8734 }
8735 EXPORT_SYMBOL(__dev_set_mtu);
8736
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8737 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8738 struct netlink_ext_ack *extack)
8739 {
8740 /* MTU must be positive, and in range */
8741 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8742 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8743 return -EINVAL;
8744 }
8745
8746 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8747 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8748 return -EINVAL;
8749 }
8750 return 0;
8751 }
8752
8753 /**
8754 * dev_set_mtu_ext - Change maximum transfer unit
8755 * @dev: device
8756 * @new_mtu: new transfer unit
8757 * @extack: netlink extended ack
8758 *
8759 * Change the maximum transfer size of the network device.
8760 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8761 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8762 struct netlink_ext_ack *extack)
8763 {
8764 int err, orig_mtu;
8765
8766 if (new_mtu == dev->mtu)
8767 return 0;
8768
8769 err = dev_validate_mtu(dev, new_mtu, extack);
8770 if (err)
8771 return err;
8772
8773 if (!netif_device_present(dev))
8774 return -ENODEV;
8775
8776 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8777 err = notifier_to_errno(err);
8778 if (err)
8779 return err;
8780
8781 orig_mtu = dev->mtu;
8782 err = __dev_set_mtu(dev, new_mtu);
8783
8784 if (!err) {
8785 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8786 orig_mtu);
8787 err = notifier_to_errno(err);
8788 if (err) {
8789 /* setting mtu back and notifying everyone again,
8790 * so that they have a chance to revert changes.
8791 */
8792 __dev_set_mtu(dev, orig_mtu);
8793 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8794 new_mtu);
8795 }
8796 }
8797 return err;
8798 }
8799
dev_set_mtu(struct net_device * dev,int new_mtu)8800 int dev_set_mtu(struct net_device *dev, int new_mtu)
8801 {
8802 struct netlink_ext_ack extack;
8803 int err;
8804
8805 memset(&extack, 0, sizeof(extack));
8806 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8807 if (err && extack._msg)
8808 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8809 return err;
8810 }
8811 EXPORT_SYMBOL(dev_set_mtu);
8812
8813 /**
8814 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8815 * @dev: device
8816 * @new_len: new tx queue length
8817 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8818 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8819 {
8820 unsigned int orig_len = dev->tx_queue_len;
8821 int res;
8822
8823 if (new_len != (unsigned int)new_len)
8824 return -ERANGE;
8825
8826 if (new_len != orig_len) {
8827 dev->tx_queue_len = new_len;
8828 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8829 res = notifier_to_errno(res);
8830 if (res)
8831 goto err_rollback;
8832 res = dev_qdisc_change_tx_queue_len(dev);
8833 if (res)
8834 goto err_rollback;
8835 }
8836
8837 return 0;
8838
8839 err_rollback:
8840 netdev_err(dev, "refused to change device tx_queue_len\n");
8841 dev->tx_queue_len = orig_len;
8842 return res;
8843 }
8844
8845 /**
8846 * dev_set_group - Change group this device belongs to
8847 * @dev: device
8848 * @new_group: group this device should belong to
8849 */
dev_set_group(struct net_device * dev,int new_group)8850 void dev_set_group(struct net_device *dev, int new_group)
8851 {
8852 dev->group = new_group;
8853 }
8854
8855 /**
8856 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8857 * @dev: device
8858 * @addr: new address
8859 * @extack: netlink extended ack
8860 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8861 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8862 struct netlink_ext_ack *extack)
8863 {
8864 struct netdev_notifier_pre_changeaddr_info info = {
8865 .info.dev = dev,
8866 .info.extack = extack,
8867 .dev_addr = addr,
8868 };
8869 int rc;
8870
8871 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8872 return notifier_to_errno(rc);
8873 }
8874 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8875
8876 /**
8877 * dev_set_mac_address - Change Media Access Control Address
8878 * @dev: device
8879 * @sa: new address
8880 * @extack: netlink extended ack
8881 *
8882 * Change the hardware (MAC) address of the device
8883 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8884 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8885 struct netlink_ext_ack *extack)
8886 {
8887 const struct net_device_ops *ops = dev->netdev_ops;
8888 int err;
8889
8890 if (!ops->ndo_set_mac_address)
8891 return -EOPNOTSUPP;
8892 if (sa->sa_family != dev->type)
8893 return -EINVAL;
8894 if (!netif_device_present(dev))
8895 return -ENODEV;
8896 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8897 if (err)
8898 return err;
8899 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8900 err = ops->ndo_set_mac_address(dev, sa);
8901 if (err)
8902 return err;
8903 }
8904 dev->addr_assign_type = NET_ADDR_SET;
8905 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8906 add_device_randomness(dev->dev_addr, dev->addr_len);
8907 return 0;
8908 }
8909 EXPORT_SYMBOL(dev_set_mac_address);
8910
8911 static DECLARE_RWSEM(dev_addr_sem);
8912
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8913 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8914 struct netlink_ext_ack *extack)
8915 {
8916 int ret;
8917
8918 down_write(&dev_addr_sem);
8919 ret = dev_set_mac_address(dev, sa, extack);
8920 up_write(&dev_addr_sem);
8921 return ret;
8922 }
8923 EXPORT_SYMBOL(dev_set_mac_address_user);
8924
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8925 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8926 {
8927 size_t size = sizeof(sa->sa_data_min);
8928 struct net_device *dev;
8929 int ret = 0;
8930
8931 down_read(&dev_addr_sem);
8932 rcu_read_lock();
8933
8934 dev = dev_get_by_name_rcu(net, dev_name);
8935 if (!dev) {
8936 ret = -ENODEV;
8937 goto unlock;
8938 }
8939 if (!dev->addr_len)
8940 memset(sa->sa_data, 0, size);
8941 else
8942 memcpy(sa->sa_data, dev->dev_addr,
8943 min_t(size_t, size, dev->addr_len));
8944 sa->sa_family = dev->type;
8945
8946 unlock:
8947 rcu_read_unlock();
8948 up_read(&dev_addr_sem);
8949 return ret;
8950 }
8951 EXPORT_SYMBOL(dev_get_mac_address);
8952
8953 /**
8954 * dev_change_carrier - Change device carrier
8955 * @dev: device
8956 * @new_carrier: new value
8957 *
8958 * Change device carrier
8959 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8960 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8961 {
8962 const struct net_device_ops *ops = dev->netdev_ops;
8963
8964 if (!ops->ndo_change_carrier)
8965 return -EOPNOTSUPP;
8966 if (!netif_device_present(dev))
8967 return -ENODEV;
8968 return ops->ndo_change_carrier(dev, new_carrier);
8969 }
8970
8971 /**
8972 * dev_get_phys_port_id - Get device physical port ID
8973 * @dev: device
8974 * @ppid: port ID
8975 *
8976 * Get device physical port ID
8977 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8978 int dev_get_phys_port_id(struct net_device *dev,
8979 struct netdev_phys_item_id *ppid)
8980 {
8981 const struct net_device_ops *ops = dev->netdev_ops;
8982
8983 if (!ops->ndo_get_phys_port_id)
8984 return -EOPNOTSUPP;
8985 return ops->ndo_get_phys_port_id(dev, ppid);
8986 }
8987
8988 /**
8989 * dev_get_phys_port_name - Get device physical port name
8990 * @dev: device
8991 * @name: port name
8992 * @len: limit of bytes to copy to name
8993 *
8994 * Get device physical port name
8995 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8996 int dev_get_phys_port_name(struct net_device *dev,
8997 char *name, size_t len)
8998 {
8999 const struct net_device_ops *ops = dev->netdev_ops;
9000 int err;
9001
9002 if (ops->ndo_get_phys_port_name) {
9003 err = ops->ndo_get_phys_port_name(dev, name, len);
9004 if (err != -EOPNOTSUPP)
9005 return err;
9006 }
9007 return devlink_compat_phys_port_name_get(dev, name, len);
9008 }
9009
9010 /**
9011 * dev_get_port_parent_id - Get the device's port parent identifier
9012 * @dev: network device
9013 * @ppid: pointer to a storage for the port's parent identifier
9014 * @recurse: allow/disallow recursion to lower devices
9015 *
9016 * Get the devices's port parent identifier
9017 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9018 int dev_get_port_parent_id(struct net_device *dev,
9019 struct netdev_phys_item_id *ppid,
9020 bool recurse)
9021 {
9022 const struct net_device_ops *ops = dev->netdev_ops;
9023 struct netdev_phys_item_id first = { };
9024 struct net_device *lower_dev;
9025 struct list_head *iter;
9026 int err;
9027
9028 if (ops->ndo_get_port_parent_id) {
9029 err = ops->ndo_get_port_parent_id(dev, ppid);
9030 if (err != -EOPNOTSUPP)
9031 return err;
9032 }
9033
9034 err = devlink_compat_switch_id_get(dev, ppid);
9035 if (!recurse || err != -EOPNOTSUPP)
9036 return err;
9037
9038 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9039 err = dev_get_port_parent_id(lower_dev, ppid, true);
9040 if (err)
9041 break;
9042 if (!first.id_len)
9043 first = *ppid;
9044 else if (memcmp(&first, ppid, sizeof(*ppid)))
9045 return -EOPNOTSUPP;
9046 }
9047
9048 return err;
9049 }
9050 EXPORT_SYMBOL(dev_get_port_parent_id);
9051
9052 /**
9053 * netdev_port_same_parent_id - Indicate if two network devices have
9054 * the same port parent identifier
9055 * @a: first network device
9056 * @b: second network device
9057 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9058 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9059 {
9060 struct netdev_phys_item_id a_id = { };
9061 struct netdev_phys_item_id b_id = { };
9062
9063 if (dev_get_port_parent_id(a, &a_id, true) ||
9064 dev_get_port_parent_id(b, &b_id, true))
9065 return false;
9066
9067 return netdev_phys_item_id_same(&a_id, &b_id);
9068 }
9069 EXPORT_SYMBOL(netdev_port_same_parent_id);
9070
9071 /**
9072 * dev_change_proto_down - set carrier according to proto_down.
9073 *
9074 * @dev: device
9075 * @proto_down: new value
9076 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9077 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9078 {
9079 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9080 return -EOPNOTSUPP;
9081 if (!netif_device_present(dev))
9082 return -ENODEV;
9083 if (proto_down)
9084 netif_carrier_off(dev);
9085 else
9086 netif_carrier_on(dev);
9087 dev->proto_down = proto_down;
9088 return 0;
9089 }
9090
9091 /**
9092 * dev_change_proto_down_reason - proto down reason
9093 *
9094 * @dev: device
9095 * @mask: proto down mask
9096 * @value: proto down value
9097 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9098 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9099 u32 value)
9100 {
9101 int b;
9102
9103 if (!mask) {
9104 dev->proto_down_reason = value;
9105 } else {
9106 for_each_set_bit(b, &mask, 32) {
9107 if (value & (1 << b))
9108 dev->proto_down_reason |= BIT(b);
9109 else
9110 dev->proto_down_reason &= ~BIT(b);
9111 }
9112 }
9113 }
9114
9115 struct bpf_xdp_link {
9116 struct bpf_link link;
9117 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9118 int flags;
9119 };
9120
dev_xdp_mode(struct net_device * dev,u32 flags)9121 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9122 {
9123 if (flags & XDP_FLAGS_HW_MODE)
9124 return XDP_MODE_HW;
9125 if (flags & XDP_FLAGS_DRV_MODE)
9126 return XDP_MODE_DRV;
9127 if (flags & XDP_FLAGS_SKB_MODE)
9128 return XDP_MODE_SKB;
9129 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9130 }
9131
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9132 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9133 {
9134 switch (mode) {
9135 case XDP_MODE_SKB:
9136 return generic_xdp_install;
9137 case XDP_MODE_DRV:
9138 case XDP_MODE_HW:
9139 return dev->netdev_ops->ndo_bpf;
9140 default:
9141 return NULL;
9142 }
9143 }
9144
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9145 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9146 enum bpf_xdp_mode mode)
9147 {
9148 return dev->xdp_state[mode].link;
9149 }
9150
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9151 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9152 enum bpf_xdp_mode mode)
9153 {
9154 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9155
9156 if (link)
9157 return link->link.prog;
9158 return dev->xdp_state[mode].prog;
9159 }
9160
dev_xdp_prog_count(struct net_device * dev)9161 u8 dev_xdp_prog_count(struct net_device *dev)
9162 {
9163 u8 count = 0;
9164 int i;
9165
9166 for (i = 0; i < __MAX_XDP_MODE; i++)
9167 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9168 count++;
9169 return count;
9170 }
9171 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9172
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9173 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9174 {
9175 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9176
9177 return prog ? prog->aux->id : 0;
9178 }
9179
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9180 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9181 struct bpf_xdp_link *link)
9182 {
9183 dev->xdp_state[mode].link = link;
9184 dev->xdp_state[mode].prog = NULL;
9185 }
9186
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9187 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9188 struct bpf_prog *prog)
9189 {
9190 dev->xdp_state[mode].link = NULL;
9191 dev->xdp_state[mode].prog = prog;
9192 }
9193
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9194 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9195 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9196 u32 flags, struct bpf_prog *prog)
9197 {
9198 struct netdev_bpf xdp;
9199 int err;
9200
9201 memset(&xdp, 0, sizeof(xdp));
9202 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9203 xdp.extack = extack;
9204 xdp.flags = flags;
9205 xdp.prog = prog;
9206
9207 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9208 * "moved" into driver), so they don't increment it on their own, but
9209 * they do decrement refcnt when program is detached or replaced.
9210 * Given net_device also owns link/prog, we need to bump refcnt here
9211 * to prevent drivers from underflowing it.
9212 */
9213 if (prog)
9214 bpf_prog_inc(prog);
9215 err = bpf_op(dev, &xdp);
9216 if (err) {
9217 if (prog)
9218 bpf_prog_put(prog);
9219 return err;
9220 }
9221
9222 if (mode != XDP_MODE_HW)
9223 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9224
9225 return 0;
9226 }
9227
dev_xdp_uninstall(struct net_device * dev)9228 static void dev_xdp_uninstall(struct net_device *dev)
9229 {
9230 struct bpf_xdp_link *link;
9231 struct bpf_prog *prog;
9232 enum bpf_xdp_mode mode;
9233 bpf_op_t bpf_op;
9234
9235 ASSERT_RTNL();
9236
9237 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9238 prog = dev_xdp_prog(dev, mode);
9239 if (!prog)
9240 continue;
9241
9242 bpf_op = dev_xdp_bpf_op(dev, mode);
9243 if (!bpf_op)
9244 continue;
9245
9246 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9247
9248 /* auto-detach link from net device */
9249 link = dev_xdp_link(dev, mode);
9250 if (link)
9251 link->dev = NULL;
9252 else
9253 bpf_prog_put(prog);
9254
9255 dev_xdp_set_link(dev, mode, NULL);
9256 }
9257 }
9258
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9259 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9260 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9261 struct bpf_prog *old_prog, u32 flags)
9262 {
9263 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9264 struct bpf_prog *cur_prog;
9265 struct net_device *upper;
9266 struct list_head *iter;
9267 enum bpf_xdp_mode mode;
9268 bpf_op_t bpf_op;
9269 int err;
9270
9271 ASSERT_RTNL();
9272
9273 /* either link or prog attachment, never both */
9274 if (link && (new_prog || old_prog))
9275 return -EINVAL;
9276 /* link supports only XDP mode flags */
9277 if (link && (flags & ~XDP_FLAGS_MODES)) {
9278 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9279 return -EINVAL;
9280 }
9281 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9282 if (num_modes > 1) {
9283 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9284 return -EINVAL;
9285 }
9286 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9287 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9288 NL_SET_ERR_MSG(extack,
9289 "More than one program loaded, unset mode is ambiguous");
9290 return -EINVAL;
9291 }
9292 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9293 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9294 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9295 return -EINVAL;
9296 }
9297
9298 mode = dev_xdp_mode(dev, flags);
9299 /* can't replace attached link */
9300 if (dev_xdp_link(dev, mode)) {
9301 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9302 return -EBUSY;
9303 }
9304
9305 /* don't allow if an upper device already has a program */
9306 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9307 if (dev_xdp_prog_count(upper) > 0) {
9308 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9309 return -EEXIST;
9310 }
9311 }
9312
9313 cur_prog = dev_xdp_prog(dev, mode);
9314 /* can't replace attached prog with link */
9315 if (link && cur_prog) {
9316 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9317 return -EBUSY;
9318 }
9319 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9320 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9321 return -EEXIST;
9322 }
9323
9324 /* put effective new program into new_prog */
9325 if (link)
9326 new_prog = link->link.prog;
9327
9328 if (new_prog) {
9329 bool offload = mode == XDP_MODE_HW;
9330 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9331 ? XDP_MODE_DRV : XDP_MODE_SKB;
9332
9333 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9334 NL_SET_ERR_MSG(extack, "XDP program already attached");
9335 return -EBUSY;
9336 }
9337 if (!offload && dev_xdp_prog(dev, other_mode)) {
9338 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9339 return -EEXIST;
9340 }
9341 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9342 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9343 return -EINVAL;
9344 }
9345 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9346 NL_SET_ERR_MSG(extack, "Program bound to different device");
9347 return -EINVAL;
9348 }
9349 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9350 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9351 return -EINVAL;
9352 }
9353 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9354 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9355 return -EINVAL;
9356 }
9357 }
9358
9359 /* don't call drivers if the effective program didn't change */
9360 if (new_prog != cur_prog) {
9361 bpf_op = dev_xdp_bpf_op(dev, mode);
9362 if (!bpf_op) {
9363 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9364 return -EOPNOTSUPP;
9365 }
9366
9367 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9368 if (err)
9369 return err;
9370 }
9371
9372 if (link)
9373 dev_xdp_set_link(dev, mode, link);
9374 else
9375 dev_xdp_set_prog(dev, mode, new_prog);
9376 if (cur_prog)
9377 bpf_prog_put(cur_prog);
9378
9379 return 0;
9380 }
9381
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9382 static int dev_xdp_attach_link(struct net_device *dev,
9383 struct netlink_ext_ack *extack,
9384 struct bpf_xdp_link *link)
9385 {
9386 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9387 }
9388
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9389 static int dev_xdp_detach_link(struct net_device *dev,
9390 struct netlink_ext_ack *extack,
9391 struct bpf_xdp_link *link)
9392 {
9393 enum bpf_xdp_mode mode;
9394 bpf_op_t bpf_op;
9395
9396 ASSERT_RTNL();
9397
9398 mode = dev_xdp_mode(dev, link->flags);
9399 if (dev_xdp_link(dev, mode) != link)
9400 return -EINVAL;
9401
9402 bpf_op = dev_xdp_bpf_op(dev, mode);
9403 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9404 dev_xdp_set_link(dev, mode, NULL);
9405 return 0;
9406 }
9407
bpf_xdp_link_release(struct bpf_link * link)9408 static void bpf_xdp_link_release(struct bpf_link *link)
9409 {
9410 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9411
9412 rtnl_lock();
9413
9414 /* if racing with net_device's tear down, xdp_link->dev might be
9415 * already NULL, in which case link was already auto-detached
9416 */
9417 if (xdp_link->dev) {
9418 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9419 xdp_link->dev = NULL;
9420 }
9421
9422 rtnl_unlock();
9423 }
9424
bpf_xdp_link_detach(struct bpf_link * link)9425 static int bpf_xdp_link_detach(struct bpf_link *link)
9426 {
9427 bpf_xdp_link_release(link);
9428 return 0;
9429 }
9430
bpf_xdp_link_dealloc(struct bpf_link * link)9431 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9432 {
9433 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9434
9435 kfree(xdp_link);
9436 }
9437
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9438 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9439 struct seq_file *seq)
9440 {
9441 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9442 u32 ifindex = 0;
9443
9444 rtnl_lock();
9445 if (xdp_link->dev)
9446 ifindex = xdp_link->dev->ifindex;
9447 rtnl_unlock();
9448
9449 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9450 }
9451
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9452 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9453 struct bpf_link_info *info)
9454 {
9455 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9456 u32 ifindex = 0;
9457
9458 rtnl_lock();
9459 if (xdp_link->dev)
9460 ifindex = xdp_link->dev->ifindex;
9461 rtnl_unlock();
9462
9463 info->xdp.ifindex = ifindex;
9464 return 0;
9465 }
9466
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9467 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9468 struct bpf_prog *old_prog)
9469 {
9470 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9471 enum bpf_xdp_mode mode;
9472 bpf_op_t bpf_op;
9473 int err = 0;
9474
9475 rtnl_lock();
9476
9477 /* link might have been auto-released already, so fail */
9478 if (!xdp_link->dev) {
9479 err = -ENOLINK;
9480 goto out_unlock;
9481 }
9482
9483 if (old_prog && link->prog != old_prog) {
9484 err = -EPERM;
9485 goto out_unlock;
9486 }
9487 old_prog = link->prog;
9488 if (old_prog->type != new_prog->type ||
9489 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9490 err = -EINVAL;
9491 goto out_unlock;
9492 }
9493
9494 if (old_prog == new_prog) {
9495 /* no-op, don't disturb drivers */
9496 bpf_prog_put(new_prog);
9497 goto out_unlock;
9498 }
9499
9500 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9501 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9502 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9503 xdp_link->flags, new_prog);
9504 if (err)
9505 goto out_unlock;
9506
9507 old_prog = xchg(&link->prog, new_prog);
9508 bpf_prog_put(old_prog);
9509
9510 out_unlock:
9511 rtnl_unlock();
9512 return err;
9513 }
9514
9515 static const struct bpf_link_ops bpf_xdp_link_lops = {
9516 .release = bpf_xdp_link_release,
9517 .dealloc = bpf_xdp_link_dealloc,
9518 .detach = bpf_xdp_link_detach,
9519 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9520 .fill_link_info = bpf_xdp_link_fill_link_info,
9521 .update_prog = bpf_xdp_link_update,
9522 };
9523
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9524 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9525 {
9526 struct net *net = current->nsproxy->net_ns;
9527 struct bpf_link_primer link_primer;
9528 struct netlink_ext_ack extack = {};
9529 struct bpf_xdp_link *link;
9530 struct net_device *dev;
9531 int err, fd;
9532
9533 rtnl_lock();
9534 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9535 if (!dev) {
9536 rtnl_unlock();
9537 return -EINVAL;
9538 }
9539
9540 link = kzalloc(sizeof(*link), GFP_USER);
9541 if (!link) {
9542 err = -ENOMEM;
9543 goto unlock;
9544 }
9545
9546 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9547 link->dev = dev;
9548 link->flags = attr->link_create.flags;
9549
9550 err = bpf_link_prime(&link->link, &link_primer);
9551 if (err) {
9552 kfree(link);
9553 goto unlock;
9554 }
9555
9556 err = dev_xdp_attach_link(dev, &extack, link);
9557 rtnl_unlock();
9558
9559 if (err) {
9560 link->dev = NULL;
9561 bpf_link_cleanup(&link_primer);
9562 trace_bpf_xdp_link_attach_failed(extack._msg);
9563 goto out_put_dev;
9564 }
9565
9566 fd = bpf_link_settle(&link_primer);
9567 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9568 dev_put(dev);
9569 return fd;
9570
9571 unlock:
9572 rtnl_unlock();
9573
9574 out_put_dev:
9575 dev_put(dev);
9576 return err;
9577 }
9578
9579 /**
9580 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9581 * @dev: device
9582 * @extack: netlink extended ack
9583 * @fd: new program fd or negative value to clear
9584 * @expected_fd: old program fd that userspace expects to replace or clear
9585 * @flags: xdp-related flags
9586 *
9587 * Set or clear a bpf program for a device
9588 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9589 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9590 int fd, int expected_fd, u32 flags)
9591 {
9592 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9593 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9594 int err;
9595
9596 ASSERT_RTNL();
9597
9598 if (fd >= 0) {
9599 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9600 mode != XDP_MODE_SKB);
9601 if (IS_ERR(new_prog))
9602 return PTR_ERR(new_prog);
9603 }
9604
9605 if (expected_fd >= 0) {
9606 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9607 mode != XDP_MODE_SKB);
9608 if (IS_ERR(old_prog)) {
9609 err = PTR_ERR(old_prog);
9610 old_prog = NULL;
9611 goto err_out;
9612 }
9613 }
9614
9615 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9616
9617 err_out:
9618 if (err && new_prog)
9619 bpf_prog_put(new_prog);
9620 if (old_prog)
9621 bpf_prog_put(old_prog);
9622 return err;
9623 }
9624
9625 /**
9626 * dev_index_reserve() - allocate an ifindex in a namespace
9627 * @net: the applicable net namespace
9628 * @ifindex: requested ifindex, pass %0 to get one allocated
9629 *
9630 * Allocate a ifindex for a new device. Caller must either use the ifindex
9631 * to store the device (via list_netdevice()) or call dev_index_release()
9632 * to give the index up.
9633 *
9634 * Return: a suitable unique value for a new device interface number or -errno.
9635 */
dev_index_reserve(struct net * net,u32 ifindex)9636 static int dev_index_reserve(struct net *net, u32 ifindex)
9637 {
9638 int err;
9639
9640 if (ifindex > INT_MAX) {
9641 DEBUG_NET_WARN_ON_ONCE(1);
9642 return -EINVAL;
9643 }
9644
9645 if (!ifindex)
9646 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9647 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9648 else
9649 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9650 if (err < 0)
9651 return err;
9652
9653 return ifindex;
9654 }
9655
dev_index_release(struct net * net,int ifindex)9656 static void dev_index_release(struct net *net, int ifindex)
9657 {
9658 /* Expect only unused indexes, unlist_netdevice() removes the used */
9659 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9660 }
9661
9662 /* Delayed registration/unregisteration */
9663 LIST_HEAD(net_todo_list);
9664 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9665
net_set_todo(struct net_device * dev)9666 static void net_set_todo(struct net_device *dev)
9667 {
9668 list_add_tail(&dev->todo_list, &net_todo_list);
9669 atomic_inc(&dev_net(dev)->dev_unreg_count);
9670 }
9671
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9672 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9673 struct net_device *upper, netdev_features_t features)
9674 {
9675 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9676 netdev_features_t feature;
9677 int feature_bit;
9678
9679 for_each_netdev_feature(upper_disables, feature_bit) {
9680 feature = __NETIF_F_BIT(feature_bit);
9681 if (!(upper->wanted_features & feature)
9682 && (features & feature)) {
9683 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9684 &feature, upper->name);
9685 features &= ~feature;
9686 }
9687 }
9688
9689 return features;
9690 }
9691
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9692 static void netdev_sync_lower_features(struct net_device *upper,
9693 struct net_device *lower, netdev_features_t features)
9694 {
9695 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9696 netdev_features_t feature;
9697 int feature_bit;
9698
9699 for_each_netdev_feature(upper_disables, feature_bit) {
9700 feature = __NETIF_F_BIT(feature_bit);
9701 if (!(features & feature) && (lower->features & feature)) {
9702 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9703 &feature, lower->name);
9704 lower->wanted_features &= ~feature;
9705 __netdev_update_features(lower);
9706
9707 if (unlikely(lower->features & feature))
9708 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9709 &feature, lower->name);
9710 else
9711 netdev_features_change(lower);
9712 }
9713 }
9714 }
9715
netdev_fix_features(struct net_device * dev,netdev_features_t features)9716 static netdev_features_t netdev_fix_features(struct net_device *dev,
9717 netdev_features_t features)
9718 {
9719 /* Fix illegal checksum combinations */
9720 if ((features & NETIF_F_HW_CSUM) &&
9721 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9722 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9723 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9724 }
9725
9726 /* TSO requires that SG is present as well. */
9727 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9728 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9729 features &= ~NETIF_F_ALL_TSO;
9730 }
9731
9732 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9733 !(features & NETIF_F_IP_CSUM)) {
9734 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9735 features &= ~NETIF_F_TSO;
9736 features &= ~NETIF_F_TSO_ECN;
9737 }
9738
9739 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9740 !(features & NETIF_F_IPV6_CSUM)) {
9741 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9742 features &= ~NETIF_F_TSO6;
9743 }
9744
9745 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9746 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9747 features &= ~NETIF_F_TSO_MANGLEID;
9748
9749 /* TSO ECN requires that TSO is present as well. */
9750 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9751 features &= ~NETIF_F_TSO_ECN;
9752
9753 /* Software GSO depends on SG. */
9754 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9755 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9756 features &= ~NETIF_F_GSO;
9757 }
9758
9759 /* GSO partial features require GSO partial be set */
9760 if ((features & dev->gso_partial_features) &&
9761 !(features & NETIF_F_GSO_PARTIAL)) {
9762 netdev_dbg(dev,
9763 "Dropping partially supported GSO features since no GSO partial.\n");
9764 features &= ~dev->gso_partial_features;
9765 }
9766
9767 if (!(features & NETIF_F_RXCSUM)) {
9768 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9769 * successfully merged by hardware must also have the
9770 * checksum verified by hardware. If the user does not
9771 * want to enable RXCSUM, logically, we should disable GRO_HW.
9772 */
9773 if (features & NETIF_F_GRO_HW) {
9774 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9775 features &= ~NETIF_F_GRO_HW;
9776 }
9777 }
9778
9779 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9780 if (features & NETIF_F_RXFCS) {
9781 if (features & NETIF_F_LRO) {
9782 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9783 features &= ~NETIF_F_LRO;
9784 }
9785
9786 if (features & NETIF_F_GRO_HW) {
9787 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9788 features &= ~NETIF_F_GRO_HW;
9789 }
9790 }
9791
9792 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9793 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9794 features &= ~NETIF_F_LRO;
9795 }
9796
9797 if (features & NETIF_F_HW_TLS_TX) {
9798 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9799 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9800 bool hw_csum = features & NETIF_F_HW_CSUM;
9801
9802 if (!ip_csum && !hw_csum) {
9803 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9804 features &= ~NETIF_F_HW_TLS_TX;
9805 }
9806 }
9807
9808 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9809 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9810 features &= ~NETIF_F_HW_TLS_RX;
9811 }
9812
9813 return features;
9814 }
9815
__netdev_update_features(struct net_device * dev)9816 int __netdev_update_features(struct net_device *dev)
9817 {
9818 struct net_device *upper, *lower;
9819 netdev_features_t features;
9820 struct list_head *iter;
9821 int err = -1;
9822
9823 ASSERT_RTNL();
9824
9825 features = netdev_get_wanted_features(dev);
9826
9827 if (dev->netdev_ops->ndo_fix_features)
9828 features = dev->netdev_ops->ndo_fix_features(dev, features);
9829
9830 /* driver might be less strict about feature dependencies */
9831 features = netdev_fix_features(dev, features);
9832
9833 /* some features can't be enabled if they're off on an upper device */
9834 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9835 features = netdev_sync_upper_features(dev, upper, features);
9836
9837 if (dev->features == features)
9838 goto sync_lower;
9839
9840 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9841 &dev->features, &features);
9842
9843 if (dev->netdev_ops->ndo_set_features)
9844 err = dev->netdev_ops->ndo_set_features(dev, features);
9845 else
9846 err = 0;
9847
9848 if (unlikely(err < 0)) {
9849 netdev_err(dev,
9850 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9851 err, &features, &dev->features);
9852 /* return non-0 since some features might have changed and
9853 * it's better to fire a spurious notification than miss it
9854 */
9855 return -1;
9856 }
9857
9858 sync_lower:
9859 /* some features must be disabled on lower devices when disabled
9860 * on an upper device (think: bonding master or bridge)
9861 */
9862 netdev_for_each_lower_dev(dev, lower, iter)
9863 netdev_sync_lower_features(dev, lower, features);
9864
9865 if (!err) {
9866 netdev_features_t diff = features ^ dev->features;
9867
9868 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9869 /* udp_tunnel_{get,drop}_rx_info both need
9870 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9871 * device, or they won't do anything.
9872 * Thus we need to update dev->features
9873 * *before* calling udp_tunnel_get_rx_info,
9874 * but *after* calling udp_tunnel_drop_rx_info.
9875 */
9876 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9877 dev->features = features;
9878 udp_tunnel_get_rx_info(dev);
9879 } else {
9880 udp_tunnel_drop_rx_info(dev);
9881 }
9882 }
9883
9884 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9885 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9886 dev->features = features;
9887 err |= vlan_get_rx_ctag_filter_info(dev);
9888 } else {
9889 vlan_drop_rx_ctag_filter_info(dev);
9890 }
9891 }
9892
9893 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9894 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9895 dev->features = features;
9896 err |= vlan_get_rx_stag_filter_info(dev);
9897 } else {
9898 vlan_drop_rx_stag_filter_info(dev);
9899 }
9900 }
9901
9902 dev->features = features;
9903 }
9904
9905 return err < 0 ? 0 : 1;
9906 }
9907
9908 /**
9909 * netdev_update_features - recalculate device features
9910 * @dev: the device to check
9911 *
9912 * Recalculate dev->features set and send notifications if it
9913 * has changed. Should be called after driver or hardware dependent
9914 * conditions might have changed that influence the features.
9915 */
netdev_update_features(struct net_device * dev)9916 void netdev_update_features(struct net_device *dev)
9917 {
9918 if (__netdev_update_features(dev))
9919 netdev_features_change(dev);
9920 }
9921 EXPORT_SYMBOL(netdev_update_features);
9922
9923 /**
9924 * netdev_change_features - recalculate device features
9925 * @dev: the device to check
9926 *
9927 * Recalculate dev->features set and send notifications even
9928 * if they have not changed. Should be called instead of
9929 * netdev_update_features() if also dev->vlan_features might
9930 * have changed to allow the changes to be propagated to stacked
9931 * VLAN devices.
9932 */
netdev_change_features(struct net_device * dev)9933 void netdev_change_features(struct net_device *dev)
9934 {
9935 __netdev_update_features(dev);
9936 netdev_features_change(dev);
9937 }
9938 EXPORT_SYMBOL(netdev_change_features);
9939
9940 /**
9941 * netif_stacked_transfer_operstate - transfer operstate
9942 * @rootdev: the root or lower level device to transfer state from
9943 * @dev: the device to transfer operstate to
9944 *
9945 * Transfer operational state from root to device. This is normally
9946 * called when a stacking relationship exists between the root
9947 * device and the device(a leaf device).
9948 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9949 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9950 struct net_device *dev)
9951 {
9952 if (rootdev->operstate == IF_OPER_DORMANT)
9953 netif_dormant_on(dev);
9954 else
9955 netif_dormant_off(dev);
9956
9957 if (rootdev->operstate == IF_OPER_TESTING)
9958 netif_testing_on(dev);
9959 else
9960 netif_testing_off(dev);
9961
9962 if (netif_carrier_ok(rootdev))
9963 netif_carrier_on(dev);
9964 else
9965 netif_carrier_off(dev);
9966 }
9967 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9968
netif_alloc_rx_queues(struct net_device * dev)9969 static int netif_alloc_rx_queues(struct net_device *dev)
9970 {
9971 unsigned int i, count = dev->num_rx_queues;
9972 struct netdev_rx_queue *rx;
9973 size_t sz = count * sizeof(*rx);
9974 int err = 0;
9975
9976 BUG_ON(count < 1);
9977
9978 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9979 if (!rx)
9980 return -ENOMEM;
9981
9982 dev->_rx = rx;
9983
9984 for (i = 0; i < count; i++) {
9985 rx[i].dev = dev;
9986
9987 /* XDP RX-queue setup */
9988 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9989 if (err < 0)
9990 goto err_rxq_info;
9991 }
9992 return 0;
9993
9994 err_rxq_info:
9995 /* Rollback successful reg's and free other resources */
9996 while (i--)
9997 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9998 kvfree(dev->_rx);
9999 dev->_rx = NULL;
10000 return err;
10001 }
10002
netif_free_rx_queues(struct net_device * dev)10003 static void netif_free_rx_queues(struct net_device *dev)
10004 {
10005 unsigned int i, count = dev->num_rx_queues;
10006
10007 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10008 if (!dev->_rx)
10009 return;
10010
10011 for (i = 0; i < count; i++)
10012 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10013
10014 kvfree(dev->_rx);
10015 }
10016
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10017 static void netdev_init_one_queue(struct net_device *dev,
10018 struct netdev_queue *queue, void *_unused)
10019 {
10020 /* Initialize queue lock */
10021 spin_lock_init(&queue->_xmit_lock);
10022 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10023 queue->xmit_lock_owner = -1;
10024 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10025 queue->dev = dev;
10026 #ifdef CONFIG_BQL
10027 dql_init(&queue->dql, HZ);
10028 #endif
10029 }
10030
netif_free_tx_queues(struct net_device * dev)10031 static void netif_free_tx_queues(struct net_device *dev)
10032 {
10033 kvfree(dev->_tx);
10034 }
10035
netif_alloc_netdev_queues(struct net_device * dev)10036 static int netif_alloc_netdev_queues(struct net_device *dev)
10037 {
10038 unsigned int count = dev->num_tx_queues;
10039 struct netdev_queue *tx;
10040 size_t sz = count * sizeof(*tx);
10041
10042 if (count < 1 || count > 0xffff)
10043 return -EINVAL;
10044
10045 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10046 if (!tx)
10047 return -ENOMEM;
10048
10049 dev->_tx = tx;
10050
10051 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10052 spin_lock_init(&dev->tx_global_lock);
10053
10054 return 0;
10055 }
10056
netif_tx_stop_all_queues(struct net_device * dev)10057 void netif_tx_stop_all_queues(struct net_device *dev)
10058 {
10059 unsigned int i;
10060
10061 for (i = 0; i < dev->num_tx_queues; i++) {
10062 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10063
10064 netif_tx_stop_queue(txq);
10065 }
10066 }
10067 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10068
netdev_do_alloc_pcpu_stats(struct net_device * dev)10069 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10070 {
10071 void __percpu *v;
10072
10073 /* Drivers implementing ndo_get_peer_dev must support tstat
10074 * accounting, so that skb_do_redirect() can bump the dev's
10075 * RX stats upon network namespace switch.
10076 */
10077 if (dev->netdev_ops->ndo_get_peer_dev &&
10078 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10079 return -EOPNOTSUPP;
10080
10081 switch (dev->pcpu_stat_type) {
10082 case NETDEV_PCPU_STAT_NONE:
10083 return 0;
10084 case NETDEV_PCPU_STAT_LSTATS:
10085 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10086 break;
10087 case NETDEV_PCPU_STAT_TSTATS:
10088 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10089 break;
10090 case NETDEV_PCPU_STAT_DSTATS:
10091 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10092 break;
10093 default:
10094 return -EINVAL;
10095 }
10096
10097 return v ? 0 : -ENOMEM;
10098 }
10099
netdev_do_free_pcpu_stats(struct net_device * dev)10100 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10101 {
10102 switch (dev->pcpu_stat_type) {
10103 case NETDEV_PCPU_STAT_NONE:
10104 return;
10105 case NETDEV_PCPU_STAT_LSTATS:
10106 free_percpu(dev->lstats);
10107 break;
10108 case NETDEV_PCPU_STAT_TSTATS:
10109 free_percpu(dev->tstats);
10110 break;
10111 case NETDEV_PCPU_STAT_DSTATS:
10112 free_percpu(dev->dstats);
10113 break;
10114 }
10115 }
10116
10117 /**
10118 * register_netdevice() - register a network device
10119 * @dev: device to register
10120 *
10121 * Take a prepared network device structure and make it externally accessible.
10122 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10123 * Callers must hold the rtnl lock - you may want register_netdev()
10124 * instead of this.
10125 */
register_netdevice(struct net_device * dev)10126 int register_netdevice(struct net_device *dev)
10127 {
10128 int ret;
10129 struct net *net = dev_net(dev);
10130
10131 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10132 NETDEV_FEATURE_COUNT);
10133 BUG_ON(dev_boot_phase);
10134 ASSERT_RTNL();
10135
10136 might_sleep();
10137
10138 /* When net_device's are persistent, this will be fatal. */
10139 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10140 BUG_ON(!net);
10141
10142 ret = ethtool_check_ops(dev->ethtool_ops);
10143 if (ret)
10144 return ret;
10145
10146 spin_lock_init(&dev->addr_list_lock);
10147 netdev_set_addr_lockdep_class(dev);
10148
10149 ret = dev_get_valid_name(net, dev, dev->name);
10150 if (ret < 0)
10151 goto out;
10152
10153 ret = -ENOMEM;
10154 dev->name_node = netdev_name_node_head_alloc(dev);
10155 if (!dev->name_node)
10156 goto out;
10157
10158 /* Init, if this function is available */
10159 if (dev->netdev_ops->ndo_init) {
10160 ret = dev->netdev_ops->ndo_init(dev);
10161 if (ret) {
10162 if (ret > 0)
10163 ret = -EIO;
10164 goto err_free_name;
10165 }
10166 }
10167
10168 if (((dev->hw_features | dev->features) &
10169 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10170 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10171 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10172 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10173 ret = -EINVAL;
10174 goto err_uninit;
10175 }
10176
10177 ret = netdev_do_alloc_pcpu_stats(dev);
10178 if (ret)
10179 goto err_uninit;
10180
10181 ret = dev_index_reserve(net, dev->ifindex);
10182 if (ret < 0)
10183 goto err_free_pcpu;
10184 dev->ifindex = ret;
10185
10186 /* Transfer changeable features to wanted_features and enable
10187 * software offloads (GSO and GRO).
10188 */
10189 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10190 dev->features |= NETIF_F_SOFT_FEATURES;
10191
10192 if (dev->udp_tunnel_nic_info) {
10193 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10194 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10195 }
10196
10197 dev->wanted_features = dev->features & dev->hw_features;
10198
10199 if (!(dev->flags & IFF_LOOPBACK))
10200 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10201
10202 /* If IPv4 TCP segmentation offload is supported we should also
10203 * allow the device to enable segmenting the frame with the option
10204 * of ignoring a static IP ID value. This doesn't enable the
10205 * feature itself but allows the user to enable it later.
10206 */
10207 if (dev->hw_features & NETIF_F_TSO)
10208 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10209 if (dev->vlan_features & NETIF_F_TSO)
10210 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10211 if (dev->mpls_features & NETIF_F_TSO)
10212 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10213 if (dev->hw_enc_features & NETIF_F_TSO)
10214 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10215
10216 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10217 */
10218 dev->vlan_features |= NETIF_F_HIGHDMA;
10219
10220 /* Make NETIF_F_SG inheritable to tunnel devices.
10221 */
10222 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10223
10224 /* Make NETIF_F_SG inheritable to MPLS.
10225 */
10226 dev->mpls_features |= NETIF_F_SG;
10227
10228 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10229 ret = notifier_to_errno(ret);
10230 if (ret)
10231 goto err_ifindex_release;
10232
10233 ret = netdev_register_kobject(dev);
10234 write_lock(&dev_base_lock);
10235 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10236 write_unlock(&dev_base_lock);
10237 if (ret)
10238 goto err_uninit_notify;
10239
10240 __netdev_update_features(dev);
10241
10242 /*
10243 * Default initial state at registry is that the
10244 * device is present.
10245 */
10246
10247 set_bit(__LINK_STATE_PRESENT, &dev->state);
10248
10249 linkwatch_init_dev(dev);
10250
10251 dev_init_scheduler(dev);
10252
10253 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10254 list_netdevice(dev);
10255
10256 add_device_randomness(dev->dev_addr, dev->addr_len);
10257
10258 /* If the device has permanent device address, driver should
10259 * set dev_addr and also addr_assign_type should be set to
10260 * NET_ADDR_PERM (default value).
10261 */
10262 if (dev->addr_assign_type == NET_ADDR_PERM)
10263 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10264
10265 /* Notify protocols, that a new device appeared. */
10266 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10267 ret = notifier_to_errno(ret);
10268 if (ret) {
10269 /* Expect explicit free_netdev() on failure */
10270 dev->needs_free_netdev = false;
10271 unregister_netdevice_queue(dev, NULL);
10272 goto out;
10273 }
10274 /*
10275 * Prevent userspace races by waiting until the network
10276 * device is fully setup before sending notifications.
10277 */
10278 if (!dev->rtnl_link_ops ||
10279 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10280 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10281
10282 out:
10283 return ret;
10284
10285 err_uninit_notify:
10286 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10287 err_ifindex_release:
10288 dev_index_release(net, dev->ifindex);
10289 err_free_pcpu:
10290 netdev_do_free_pcpu_stats(dev);
10291 err_uninit:
10292 if (dev->netdev_ops->ndo_uninit)
10293 dev->netdev_ops->ndo_uninit(dev);
10294 if (dev->priv_destructor)
10295 dev->priv_destructor(dev);
10296 err_free_name:
10297 netdev_name_node_free(dev->name_node);
10298 goto out;
10299 }
10300 EXPORT_SYMBOL(register_netdevice);
10301
10302 /**
10303 * init_dummy_netdev - init a dummy network device for NAPI
10304 * @dev: device to init
10305 *
10306 * This takes a network device structure and initialize the minimum
10307 * amount of fields so it can be used to schedule NAPI polls without
10308 * registering a full blown interface. This is to be used by drivers
10309 * that need to tie several hardware interfaces to a single NAPI
10310 * poll scheduler due to HW limitations.
10311 */
init_dummy_netdev(struct net_device * dev)10312 int init_dummy_netdev(struct net_device *dev)
10313 {
10314 /* Clear everything. Note we don't initialize spinlocks
10315 * are they aren't supposed to be taken by any of the
10316 * NAPI code and this dummy netdev is supposed to be
10317 * only ever used for NAPI polls
10318 */
10319 memset(dev, 0, sizeof(struct net_device));
10320
10321 /* make sure we BUG if trying to hit standard
10322 * register/unregister code path
10323 */
10324 dev->reg_state = NETREG_DUMMY;
10325
10326 /* NAPI wants this */
10327 INIT_LIST_HEAD(&dev->napi_list);
10328
10329 /* a dummy interface is started by default */
10330 set_bit(__LINK_STATE_PRESENT, &dev->state);
10331 set_bit(__LINK_STATE_START, &dev->state);
10332
10333 /* napi_busy_loop stats accounting wants this */
10334 dev_net_set(dev, &init_net);
10335
10336 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10337 * because users of this 'device' dont need to change
10338 * its refcount.
10339 */
10340
10341 return 0;
10342 }
10343 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10344
10345
10346 /**
10347 * register_netdev - register a network device
10348 * @dev: device to register
10349 *
10350 * Take a completed network device structure and add it to the kernel
10351 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10352 * chain. 0 is returned on success. A negative errno code is returned
10353 * on a failure to set up the device, or if the name is a duplicate.
10354 *
10355 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10356 * and expands the device name if you passed a format string to
10357 * alloc_netdev.
10358 */
register_netdev(struct net_device * dev)10359 int register_netdev(struct net_device *dev)
10360 {
10361 int err;
10362
10363 if (rtnl_lock_killable())
10364 return -EINTR;
10365 err = register_netdevice(dev);
10366 rtnl_unlock();
10367 return err;
10368 }
10369 EXPORT_SYMBOL(register_netdev);
10370
netdev_refcnt_read(const struct net_device * dev)10371 int netdev_refcnt_read(const struct net_device *dev)
10372 {
10373 #ifdef CONFIG_PCPU_DEV_REFCNT
10374 int i, refcnt = 0;
10375
10376 for_each_possible_cpu(i)
10377 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10378 return refcnt;
10379 #else
10380 return refcount_read(&dev->dev_refcnt);
10381 #endif
10382 }
10383 EXPORT_SYMBOL(netdev_refcnt_read);
10384
10385 int netdev_unregister_timeout_secs __read_mostly = 10;
10386
10387 #define WAIT_REFS_MIN_MSECS 1
10388 #define WAIT_REFS_MAX_MSECS 250
10389 /**
10390 * netdev_wait_allrefs_any - wait until all references are gone.
10391 * @list: list of net_devices to wait on
10392 *
10393 * This is called when unregistering network devices.
10394 *
10395 * Any protocol or device that holds a reference should register
10396 * for netdevice notification, and cleanup and put back the
10397 * reference if they receive an UNREGISTER event.
10398 * We can get stuck here if buggy protocols don't correctly
10399 * call dev_put.
10400 */
netdev_wait_allrefs_any(struct list_head * list)10401 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10402 {
10403 unsigned long rebroadcast_time, warning_time;
10404 struct net_device *dev;
10405 int wait = 0;
10406
10407 rebroadcast_time = warning_time = jiffies;
10408
10409 list_for_each_entry(dev, list, todo_list)
10410 if (netdev_refcnt_read(dev) == 1)
10411 return dev;
10412
10413 while (true) {
10414 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10415 rtnl_lock();
10416
10417 /* Rebroadcast unregister notification */
10418 list_for_each_entry(dev, list, todo_list)
10419 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10420
10421 __rtnl_unlock();
10422 rcu_barrier();
10423 rtnl_lock();
10424
10425 list_for_each_entry(dev, list, todo_list)
10426 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10427 &dev->state)) {
10428 /* We must not have linkwatch events
10429 * pending on unregister. If this
10430 * happens, we simply run the queue
10431 * unscheduled, resulting in a noop
10432 * for this device.
10433 */
10434 linkwatch_run_queue();
10435 break;
10436 }
10437
10438 __rtnl_unlock();
10439
10440 rebroadcast_time = jiffies;
10441 }
10442
10443 rcu_barrier();
10444
10445 if (!wait) {
10446 wait = WAIT_REFS_MIN_MSECS;
10447 } else {
10448 msleep(wait);
10449 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10450 }
10451
10452 list_for_each_entry(dev, list, todo_list)
10453 if (netdev_refcnt_read(dev) == 1)
10454 return dev;
10455
10456 if (time_after(jiffies, warning_time +
10457 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10458 list_for_each_entry(dev, list, todo_list) {
10459 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10460 dev->name, netdev_refcnt_read(dev));
10461 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10462 }
10463
10464 warning_time = jiffies;
10465 }
10466 }
10467 }
10468
10469 /* The sequence is:
10470 *
10471 * rtnl_lock();
10472 * ...
10473 * register_netdevice(x1);
10474 * register_netdevice(x2);
10475 * ...
10476 * unregister_netdevice(y1);
10477 * unregister_netdevice(y2);
10478 * ...
10479 * rtnl_unlock();
10480 * free_netdev(y1);
10481 * free_netdev(y2);
10482 *
10483 * We are invoked by rtnl_unlock().
10484 * This allows us to deal with problems:
10485 * 1) We can delete sysfs objects which invoke hotplug
10486 * without deadlocking with linkwatch via keventd.
10487 * 2) Since we run with the RTNL semaphore not held, we can sleep
10488 * safely in order to wait for the netdev refcnt to drop to zero.
10489 *
10490 * We must not return until all unregister events added during
10491 * the interval the lock was held have been completed.
10492 */
netdev_run_todo(void)10493 void netdev_run_todo(void)
10494 {
10495 struct net_device *dev, *tmp;
10496 struct list_head list;
10497 #ifdef CONFIG_LOCKDEP
10498 struct list_head unlink_list;
10499
10500 list_replace_init(&net_unlink_list, &unlink_list);
10501
10502 while (!list_empty(&unlink_list)) {
10503 struct net_device *dev = list_first_entry(&unlink_list,
10504 struct net_device,
10505 unlink_list);
10506 list_del_init(&dev->unlink_list);
10507 dev->nested_level = dev->lower_level - 1;
10508 }
10509 #endif
10510
10511 /* Snapshot list, allow later requests */
10512 list_replace_init(&net_todo_list, &list);
10513
10514 __rtnl_unlock();
10515
10516 /* Wait for rcu callbacks to finish before next phase */
10517 if (!list_empty(&list))
10518 rcu_barrier();
10519
10520 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10521 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10522 netdev_WARN(dev, "run_todo but not unregistering\n");
10523 list_del(&dev->todo_list);
10524 continue;
10525 }
10526
10527 write_lock(&dev_base_lock);
10528 dev->reg_state = NETREG_UNREGISTERED;
10529 write_unlock(&dev_base_lock);
10530 linkwatch_forget_dev(dev);
10531 }
10532
10533 while (!list_empty(&list)) {
10534 dev = netdev_wait_allrefs_any(&list);
10535 list_del(&dev->todo_list);
10536
10537 /* paranoia */
10538 BUG_ON(netdev_refcnt_read(dev) != 1);
10539 BUG_ON(!list_empty(&dev->ptype_all));
10540 BUG_ON(!list_empty(&dev->ptype_specific));
10541 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10542 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10543
10544 netdev_do_free_pcpu_stats(dev);
10545 if (dev->priv_destructor)
10546 dev->priv_destructor(dev);
10547 if (dev->needs_free_netdev)
10548 free_netdev(dev);
10549
10550 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10551 wake_up(&netdev_unregistering_wq);
10552
10553 /* Free network device */
10554 kobject_put(&dev->dev.kobj);
10555 }
10556 }
10557
10558 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10559 * all the same fields in the same order as net_device_stats, with only
10560 * the type differing, but rtnl_link_stats64 may have additional fields
10561 * at the end for newer counters.
10562 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10563 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10564 const struct net_device_stats *netdev_stats)
10565 {
10566 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10567 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10568 u64 *dst = (u64 *)stats64;
10569
10570 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10571 for (i = 0; i < n; i++)
10572 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10573 /* zero out counters that only exist in rtnl_link_stats64 */
10574 memset((char *)stats64 + n * sizeof(u64), 0,
10575 sizeof(*stats64) - n * sizeof(u64));
10576 }
10577 EXPORT_SYMBOL(netdev_stats_to_stats64);
10578
netdev_core_stats_alloc(struct net_device * dev)10579 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10580 {
10581 struct net_device_core_stats __percpu *p;
10582
10583 p = alloc_percpu_gfp(struct net_device_core_stats,
10584 GFP_ATOMIC | __GFP_NOWARN);
10585
10586 if (p && cmpxchg(&dev->core_stats, NULL, p))
10587 free_percpu(p);
10588
10589 /* This READ_ONCE() pairs with the cmpxchg() above */
10590 return READ_ONCE(dev->core_stats);
10591 }
10592 EXPORT_SYMBOL(netdev_core_stats_alloc);
10593
10594 /**
10595 * dev_get_stats - get network device statistics
10596 * @dev: device to get statistics from
10597 * @storage: place to store stats
10598 *
10599 * Get network statistics from device. Return @storage.
10600 * The device driver may provide its own method by setting
10601 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10602 * otherwise the internal statistics structure is used.
10603 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10605 struct rtnl_link_stats64 *storage)
10606 {
10607 const struct net_device_ops *ops = dev->netdev_ops;
10608 const struct net_device_core_stats __percpu *p;
10609
10610 if (ops->ndo_get_stats64) {
10611 memset(storage, 0, sizeof(*storage));
10612 ops->ndo_get_stats64(dev, storage);
10613 } else if (ops->ndo_get_stats) {
10614 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10615 } else {
10616 netdev_stats_to_stats64(storage, &dev->stats);
10617 }
10618
10619 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10620 p = READ_ONCE(dev->core_stats);
10621 if (p) {
10622 const struct net_device_core_stats *core_stats;
10623 int i;
10624
10625 for_each_possible_cpu(i) {
10626 core_stats = per_cpu_ptr(p, i);
10627 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10628 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10629 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10630 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10631 }
10632 }
10633 return storage;
10634 }
10635 EXPORT_SYMBOL(dev_get_stats);
10636
10637 /**
10638 * dev_fetch_sw_netstats - get per-cpu network device statistics
10639 * @s: place to store stats
10640 * @netstats: per-cpu network stats to read from
10641 *
10642 * Read per-cpu network statistics and populate the related fields in @s.
10643 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10644 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10645 const struct pcpu_sw_netstats __percpu *netstats)
10646 {
10647 int cpu;
10648
10649 for_each_possible_cpu(cpu) {
10650 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10651 const struct pcpu_sw_netstats *stats;
10652 unsigned int start;
10653
10654 stats = per_cpu_ptr(netstats, cpu);
10655 do {
10656 start = u64_stats_fetch_begin(&stats->syncp);
10657 rx_packets = u64_stats_read(&stats->rx_packets);
10658 rx_bytes = u64_stats_read(&stats->rx_bytes);
10659 tx_packets = u64_stats_read(&stats->tx_packets);
10660 tx_bytes = u64_stats_read(&stats->tx_bytes);
10661 } while (u64_stats_fetch_retry(&stats->syncp, start));
10662
10663 s->rx_packets += rx_packets;
10664 s->rx_bytes += rx_bytes;
10665 s->tx_packets += tx_packets;
10666 s->tx_bytes += tx_bytes;
10667 }
10668 }
10669 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10670
10671 /**
10672 * dev_get_tstats64 - ndo_get_stats64 implementation
10673 * @dev: device to get statistics from
10674 * @s: place to store stats
10675 *
10676 * Populate @s from dev->stats and dev->tstats. Can be used as
10677 * ndo_get_stats64() callback.
10678 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10679 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10680 {
10681 netdev_stats_to_stats64(s, &dev->stats);
10682 dev_fetch_sw_netstats(s, dev->tstats);
10683 }
10684 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10685
dev_ingress_queue_create(struct net_device * dev)10686 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10687 {
10688 struct netdev_queue *queue = dev_ingress_queue(dev);
10689
10690 #ifdef CONFIG_NET_CLS_ACT
10691 if (queue)
10692 return queue;
10693 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10694 if (!queue)
10695 return NULL;
10696 netdev_init_one_queue(dev, queue, NULL);
10697 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10698 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10699 rcu_assign_pointer(dev->ingress_queue, queue);
10700 #endif
10701 return queue;
10702 }
10703
10704 static const struct ethtool_ops default_ethtool_ops;
10705
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10706 void netdev_set_default_ethtool_ops(struct net_device *dev,
10707 const struct ethtool_ops *ops)
10708 {
10709 if (dev->ethtool_ops == &default_ethtool_ops)
10710 dev->ethtool_ops = ops;
10711 }
10712 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10713
10714 /**
10715 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10716 * @dev: netdev to enable the IRQ coalescing on
10717 *
10718 * Sets a conservative default for SW IRQ coalescing. Users can use
10719 * sysfs attributes to override the default values.
10720 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)10721 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10722 {
10723 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10724
10725 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10726 dev->gro_flush_timeout = 20000;
10727 dev->napi_defer_hard_irqs = 1;
10728 }
10729 }
10730 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10731
netdev_freemem(struct net_device * dev)10732 void netdev_freemem(struct net_device *dev)
10733 {
10734 char *addr = (char *)dev - dev->padded;
10735
10736 kvfree(addr);
10737 }
10738
10739 /**
10740 * alloc_netdev_mqs - allocate network device
10741 * @sizeof_priv: size of private data to allocate space for
10742 * @name: device name format string
10743 * @name_assign_type: origin of device name
10744 * @setup: callback to initialize device
10745 * @txqs: the number of TX subqueues to allocate
10746 * @rxqs: the number of RX subqueues to allocate
10747 *
10748 * Allocates a struct net_device with private data area for driver use
10749 * and performs basic initialization. Also allocates subqueue structs
10750 * for each queue on the device.
10751 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10752 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10753 unsigned char name_assign_type,
10754 void (*setup)(struct net_device *),
10755 unsigned int txqs, unsigned int rxqs)
10756 {
10757 struct net_device *dev;
10758 unsigned int alloc_size;
10759 struct net_device *p;
10760
10761 BUG_ON(strlen(name) >= sizeof(dev->name));
10762
10763 if (txqs < 1) {
10764 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10765 return NULL;
10766 }
10767
10768 if (rxqs < 1) {
10769 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10770 return NULL;
10771 }
10772
10773 alloc_size = sizeof(struct net_device);
10774 if (sizeof_priv) {
10775 /* ensure 32-byte alignment of private area */
10776 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10777 alloc_size += sizeof_priv;
10778 }
10779 /* ensure 32-byte alignment of whole construct */
10780 alloc_size += NETDEV_ALIGN - 1;
10781
10782 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10783 if (!p)
10784 return NULL;
10785
10786 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10787 dev->padded = (char *)dev - (char *)p;
10788
10789 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10790 #ifdef CONFIG_PCPU_DEV_REFCNT
10791 dev->pcpu_refcnt = alloc_percpu(int);
10792 if (!dev->pcpu_refcnt)
10793 goto free_dev;
10794 __dev_hold(dev);
10795 #else
10796 refcount_set(&dev->dev_refcnt, 1);
10797 #endif
10798
10799 if (dev_addr_init(dev))
10800 goto free_pcpu;
10801
10802 dev_mc_init(dev);
10803 dev_uc_init(dev);
10804
10805 dev_net_set(dev, &init_net);
10806
10807 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10808 dev->xdp_zc_max_segs = 1;
10809 dev->gso_max_segs = GSO_MAX_SEGS;
10810 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10811 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10812 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10813 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10814 dev->tso_max_segs = TSO_MAX_SEGS;
10815 dev->upper_level = 1;
10816 dev->lower_level = 1;
10817 #ifdef CONFIG_LOCKDEP
10818 dev->nested_level = 0;
10819 INIT_LIST_HEAD(&dev->unlink_list);
10820 #endif
10821
10822 INIT_LIST_HEAD(&dev->napi_list);
10823 INIT_LIST_HEAD(&dev->unreg_list);
10824 INIT_LIST_HEAD(&dev->close_list);
10825 INIT_LIST_HEAD(&dev->link_watch_list);
10826 INIT_LIST_HEAD(&dev->adj_list.upper);
10827 INIT_LIST_HEAD(&dev->adj_list.lower);
10828 INIT_LIST_HEAD(&dev->ptype_all);
10829 INIT_LIST_HEAD(&dev->ptype_specific);
10830 INIT_LIST_HEAD(&dev->net_notifier_list);
10831 #ifdef CONFIG_NET_SCHED
10832 hash_init(dev->qdisc_hash);
10833 #endif
10834 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10835 setup(dev);
10836
10837 if (!dev->tx_queue_len) {
10838 dev->priv_flags |= IFF_NO_QUEUE;
10839 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10840 }
10841
10842 dev->num_tx_queues = txqs;
10843 dev->real_num_tx_queues = txqs;
10844 if (netif_alloc_netdev_queues(dev))
10845 goto free_all;
10846
10847 dev->num_rx_queues = rxqs;
10848 dev->real_num_rx_queues = rxqs;
10849 if (netif_alloc_rx_queues(dev))
10850 goto free_all;
10851
10852 strcpy(dev->name, name);
10853 dev->name_assign_type = name_assign_type;
10854 dev->group = INIT_NETDEV_GROUP;
10855 if (!dev->ethtool_ops)
10856 dev->ethtool_ops = &default_ethtool_ops;
10857
10858 nf_hook_netdev_init(dev);
10859
10860 return dev;
10861
10862 free_all:
10863 free_netdev(dev);
10864 return NULL;
10865
10866 free_pcpu:
10867 #ifdef CONFIG_PCPU_DEV_REFCNT
10868 free_percpu(dev->pcpu_refcnt);
10869 free_dev:
10870 #endif
10871 netdev_freemem(dev);
10872 return NULL;
10873 }
10874 EXPORT_SYMBOL(alloc_netdev_mqs);
10875
10876 /**
10877 * free_netdev - free network device
10878 * @dev: device
10879 *
10880 * This function does the last stage of destroying an allocated device
10881 * interface. The reference to the device object is released. If this
10882 * is the last reference then it will be freed.Must be called in process
10883 * context.
10884 */
free_netdev(struct net_device * dev)10885 void free_netdev(struct net_device *dev)
10886 {
10887 struct napi_struct *p, *n;
10888
10889 might_sleep();
10890
10891 /* When called immediately after register_netdevice() failed the unwind
10892 * handling may still be dismantling the device. Handle that case by
10893 * deferring the free.
10894 */
10895 if (dev->reg_state == NETREG_UNREGISTERING) {
10896 ASSERT_RTNL();
10897 dev->needs_free_netdev = true;
10898 return;
10899 }
10900
10901 netif_free_tx_queues(dev);
10902 netif_free_rx_queues(dev);
10903
10904 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10905
10906 /* Flush device addresses */
10907 dev_addr_flush(dev);
10908
10909 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10910 netif_napi_del(p);
10911
10912 ref_tracker_dir_exit(&dev->refcnt_tracker);
10913 #ifdef CONFIG_PCPU_DEV_REFCNT
10914 free_percpu(dev->pcpu_refcnt);
10915 dev->pcpu_refcnt = NULL;
10916 #endif
10917 free_percpu(dev->core_stats);
10918 dev->core_stats = NULL;
10919 free_percpu(dev->xdp_bulkq);
10920 dev->xdp_bulkq = NULL;
10921
10922 /* Compatibility with error handling in drivers */
10923 if (dev->reg_state == NETREG_UNINITIALIZED) {
10924 netdev_freemem(dev);
10925 return;
10926 }
10927
10928 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10929 dev->reg_state = NETREG_RELEASED;
10930
10931 /* will free via device release */
10932 put_device(&dev->dev);
10933 }
10934 EXPORT_SYMBOL(free_netdev);
10935
10936 /**
10937 * synchronize_net - Synchronize with packet receive processing
10938 *
10939 * Wait for packets currently being received to be done.
10940 * Does not block later packets from starting.
10941 */
synchronize_net(void)10942 void synchronize_net(void)
10943 {
10944 might_sleep();
10945 if (rtnl_is_locked())
10946 synchronize_rcu_expedited();
10947 else
10948 synchronize_rcu();
10949 }
10950 EXPORT_SYMBOL(synchronize_net);
10951
10952 /**
10953 * unregister_netdevice_queue - remove device from the kernel
10954 * @dev: device
10955 * @head: list
10956 *
10957 * This function shuts down a device interface and removes it
10958 * from the kernel tables.
10959 * If head not NULL, device is queued to be unregistered later.
10960 *
10961 * Callers must hold the rtnl semaphore. You may want
10962 * unregister_netdev() instead of this.
10963 */
10964
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10965 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10966 {
10967 ASSERT_RTNL();
10968
10969 if (head) {
10970 list_move_tail(&dev->unreg_list, head);
10971 } else {
10972 LIST_HEAD(single);
10973
10974 list_add(&dev->unreg_list, &single);
10975 unregister_netdevice_many(&single);
10976 }
10977 }
10978 EXPORT_SYMBOL(unregister_netdevice_queue);
10979
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)10980 void unregister_netdevice_many_notify(struct list_head *head,
10981 u32 portid, const struct nlmsghdr *nlh)
10982 {
10983 struct net_device *dev, *tmp;
10984 LIST_HEAD(close_head);
10985
10986 BUG_ON(dev_boot_phase);
10987 ASSERT_RTNL();
10988
10989 if (list_empty(head))
10990 return;
10991
10992 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10993 /* Some devices call without registering
10994 * for initialization unwind. Remove those
10995 * devices and proceed with the remaining.
10996 */
10997 if (dev->reg_state == NETREG_UNINITIALIZED) {
10998 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10999 dev->name, dev);
11000
11001 WARN_ON(1);
11002 list_del(&dev->unreg_list);
11003 continue;
11004 }
11005 dev->dismantle = true;
11006 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11007 }
11008
11009 /* If device is running, close it first. */
11010 list_for_each_entry(dev, head, unreg_list)
11011 list_add_tail(&dev->close_list, &close_head);
11012 dev_close_many(&close_head, true);
11013
11014 list_for_each_entry(dev, head, unreg_list) {
11015 /* And unlink it from device chain. */
11016 write_lock(&dev_base_lock);
11017 unlist_netdevice(dev, false);
11018 dev->reg_state = NETREG_UNREGISTERING;
11019 write_unlock(&dev_base_lock);
11020 }
11021 flush_all_backlogs();
11022
11023 synchronize_net();
11024
11025 list_for_each_entry(dev, head, unreg_list) {
11026 struct sk_buff *skb = NULL;
11027
11028 /* Shutdown queueing discipline. */
11029 dev_shutdown(dev);
11030 dev_tcx_uninstall(dev);
11031 dev_xdp_uninstall(dev);
11032 bpf_dev_bound_netdev_unregister(dev);
11033
11034 netdev_offload_xstats_disable_all(dev);
11035
11036 /* Notify protocols, that we are about to destroy
11037 * this device. They should clean all the things.
11038 */
11039 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11040
11041 if (!dev->rtnl_link_ops ||
11042 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11043 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11044 GFP_KERNEL, NULL, 0,
11045 portid, nlh);
11046
11047 /*
11048 * Flush the unicast and multicast chains
11049 */
11050 dev_uc_flush(dev);
11051 dev_mc_flush(dev);
11052
11053 netdev_name_node_alt_flush(dev);
11054 netdev_name_node_free(dev->name_node);
11055
11056 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11057
11058 if (dev->netdev_ops->ndo_uninit)
11059 dev->netdev_ops->ndo_uninit(dev);
11060
11061 if (skb)
11062 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11063
11064 /* Notifier chain MUST detach us all upper devices. */
11065 WARN_ON(netdev_has_any_upper_dev(dev));
11066 WARN_ON(netdev_has_any_lower_dev(dev));
11067
11068 /* Remove entries from kobject tree */
11069 netdev_unregister_kobject(dev);
11070 #ifdef CONFIG_XPS
11071 /* Remove XPS queueing entries */
11072 netif_reset_xps_queues_gt(dev, 0);
11073 #endif
11074 }
11075
11076 synchronize_net();
11077
11078 list_for_each_entry(dev, head, unreg_list) {
11079 netdev_put(dev, &dev->dev_registered_tracker);
11080 net_set_todo(dev);
11081 }
11082
11083 list_del(head);
11084 }
11085
11086 /**
11087 * unregister_netdevice_many - unregister many devices
11088 * @head: list of devices
11089 *
11090 * Note: As most callers use a stack allocated list_head,
11091 * we force a list_del() to make sure stack wont be corrupted later.
11092 */
unregister_netdevice_many(struct list_head * head)11093 void unregister_netdevice_many(struct list_head *head)
11094 {
11095 unregister_netdevice_many_notify(head, 0, NULL);
11096 }
11097 EXPORT_SYMBOL(unregister_netdevice_many);
11098
11099 /**
11100 * unregister_netdev - remove device from the kernel
11101 * @dev: device
11102 *
11103 * This function shuts down a device interface and removes it
11104 * from the kernel tables.
11105 *
11106 * This is just a wrapper for unregister_netdevice that takes
11107 * the rtnl semaphore. In general you want to use this and not
11108 * unregister_netdevice.
11109 */
unregister_netdev(struct net_device * dev)11110 void unregister_netdev(struct net_device *dev)
11111 {
11112 rtnl_lock();
11113 unregister_netdevice(dev);
11114 rtnl_unlock();
11115 }
11116 EXPORT_SYMBOL(unregister_netdev);
11117
11118 /**
11119 * __dev_change_net_namespace - move device to different nethost namespace
11120 * @dev: device
11121 * @net: network namespace
11122 * @pat: If not NULL name pattern to try if the current device name
11123 * is already taken in the destination network namespace.
11124 * @new_ifindex: If not zero, specifies device index in the target
11125 * namespace.
11126 *
11127 * This function shuts down a device interface and moves it
11128 * to a new network namespace. On success 0 is returned, on
11129 * a failure a netagive errno code is returned.
11130 *
11131 * Callers must hold the rtnl semaphore.
11132 */
11133
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11134 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11135 const char *pat, int new_ifindex)
11136 {
11137 struct netdev_name_node *name_node;
11138 struct net *net_old = dev_net(dev);
11139 char new_name[IFNAMSIZ] = {};
11140 int err, new_nsid;
11141
11142 ASSERT_RTNL();
11143
11144 /* Don't allow namespace local devices to be moved. */
11145 err = -EINVAL;
11146 if (dev->features & NETIF_F_NETNS_LOCAL)
11147 goto out;
11148
11149 /* Ensure the device has been registrered */
11150 if (dev->reg_state != NETREG_REGISTERED)
11151 goto out;
11152
11153 /* Get out if there is nothing todo */
11154 err = 0;
11155 if (net_eq(net_old, net))
11156 goto out;
11157
11158 /* Pick the destination device name, and ensure
11159 * we can use it in the destination network namespace.
11160 */
11161 err = -EEXIST;
11162 if (netdev_name_in_use(net, dev->name)) {
11163 /* We get here if we can't use the current device name */
11164 if (!pat)
11165 goto out;
11166 err = dev_prep_valid_name(net, dev, pat, new_name);
11167 if (err < 0)
11168 goto out;
11169 }
11170 /* Check that none of the altnames conflicts. */
11171 err = -EEXIST;
11172 netdev_for_each_altname(dev, name_node)
11173 if (netdev_name_in_use(net, name_node->name))
11174 goto out;
11175
11176 /* Check that new_ifindex isn't used yet. */
11177 if (new_ifindex) {
11178 err = dev_index_reserve(net, new_ifindex);
11179 if (err < 0)
11180 goto out;
11181 } else {
11182 /* If there is an ifindex conflict assign a new one */
11183 err = dev_index_reserve(net, dev->ifindex);
11184 if (err == -EBUSY)
11185 err = dev_index_reserve(net, 0);
11186 if (err < 0)
11187 goto out;
11188 new_ifindex = err;
11189 }
11190
11191 /*
11192 * And now a mini version of register_netdevice unregister_netdevice.
11193 */
11194
11195 /* If device is running close it first. */
11196 dev_close(dev);
11197
11198 /* And unlink it from device chain */
11199 unlist_netdevice(dev, true);
11200
11201 synchronize_net();
11202
11203 /* Shutdown queueing discipline. */
11204 dev_shutdown(dev);
11205
11206 /* Notify protocols, that we are about to destroy
11207 * this device. They should clean all the things.
11208 *
11209 * Note that dev->reg_state stays at NETREG_REGISTERED.
11210 * This is wanted because this way 8021q and macvlan know
11211 * the device is just moving and can keep their slaves up.
11212 */
11213 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11214 rcu_barrier();
11215
11216 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11217
11218 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11219 new_ifindex);
11220
11221 /*
11222 * Flush the unicast and multicast chains
11223 */
11224 dev_uc_flush(dev);
11225 dev_mc_flush(dev);
11226
11227 /* Send a netdev-removed uevent to the old namespace */
11228 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11229 netdev_adjacent_del_links(dev);
11230
11231 /* Move per-net netdevice notifiers that are following the netdevice */
11232 move_netdevice_notifiers_dev_net(dev, net);
11233
11234 /* Actually switch the network namespace */
11235 dev_net_set(dev, net);
11236 dev->ifindex = new_ifindex;
11237
11238 /* Send a netdev-add uevent to the new namespace */
11239 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11240 netdev_adjacent_add_links(dev);
11241
11242 if (new_name[0]) /* Rename the netdev to prepared name */
11243 strscpy(dev->name, new_name, IFNAMSIZ);
11244
11245 /* Fixup kobjects */
11246 err = device_rename(&dev->dev, dev->name);
11247 WARN_ON(err);
11248
11249 /* Adapt owner in case owning user namespace of target network
11250 * namespace is different from the original one.
11251 */
11252 err = netdev_change_owner(dev, net_old, net);
11253 WARN_ON(err);
11254
11255 /* Add the device back in the hashes */
11256 list_netdevice(dev);
11257
11258 /* Notify protocols, that a new device appeared. */
11259 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11260
11261 /*
11262 * Prevent userspace races by waiting until the network
11263 * device is fully setup before sending notifications.
11264 */
11265 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11266
11267 synchronize_net();
11268 err = 0;
11269 out:
11270 return err;
11271 }
11272 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11273
dev_cpu_dead(unsigned int oldcpu)11274 static int dev_cpu_dead(unsigned int oldcpu)
11275 {
11276 struct sk_buff **list_skb;
11277 struct sk_buff *skb;
11278 unsigned int cpu;
11279 struct softnet_data *sd, *oldsd, *remsd = NULL;
11280
11281 local_irq_disable();
11282 cpu = smp_processor_id();
11283 sd = &per_cpu(softnet_data, cpu);
11284 oldsd = &per_cpu(softnet_data, oldcpu);
11285
11286 /* Find end of our completion_queue. */
11287 list_skb = &sd->completion_queue;
11288 while (*list_skb)
11289 list_skb = &(*list_skb)->next;
11290 /* Append completion queue from offline CPU. */
11291 *list_skb = oldsd->completion_queue;
11292 oldsd->completion_queue = NULL;
11293
11294 /* Append output queue from offline CPU. */
11295 if (oldsd->output_queue) {
11296 *sd->output_queue_tailp = oldsd->output_queue;
11297 sd->output_queue_tailp = oldsd->output_queue_tailp;
11298 oldsd->output_queue = NULL;
11299 oldsd->output_queue_tailp = &oldsd->output_queue;
11300 }
11301 /* Append NAPI poll list from offline CPU, with one exception :
11302 * process_backlog() must be called by cpu owning percpu backlog.
11303 * We properly handle process_queue & input_pkt_queue later.
11304 */
11305 while (!list_empty(&oldsd->poll_list)) {
11306 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11307 struct napi_struct,
11308 poll_list);
11309
11310 list_del_init(&napi->poll_list);
11311 if (napi->poll == process_backlog)
11312 napi->state = 0;
11313 else
11314 ____napi_schedule(sd, napi);
11315 }
11316
11317 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11318 local_irq_enable();
11319
11320 #ifdef CONFIG_RPS
11321 remsd = oldsd->rps_ipi_list;
11322 oldsd->rps_ipi_list = NULL;
11323 #endif
11324 /* send out pending IPI's on offline CPU */
11325 net_rps_send_ipi(remsd);
11326
11327 /* Process offline CPU's input_pkt_queue */
11328 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11329 netif_rx(skb);
11330 input_queue_head_incr(oldsd);
11331 }
11332 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11333 netif_rx(skb);
11334 input_queue_head_incr(oldsd);
11335 }
11336
11337 return 0;
11338 }
11339
11340 /**
11341 * netdev_increment_features - increment feature set by one
11342 * @all: current feature set
11343 * @one: new feature set
11344 * @mask: mask feature set
11345 *
11346 * Computes a new feature set after adding a device with feature set
11347 * @one to the master device with current feature set @all. Will not
11348 * enable anything that is off in @mask. Returns the new feature set.
11349 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11350 netdev_features_t netdev_increment_features(netdev_features_t all,
11351 netdev_features_t one, netdev_features_t mask)
11352 {
11353 if (mask & NETIF_F_HW_CSUM)
11354 mask |= NETIF_F_CSUM_MASK;
11355 mask |= NETIF_F_VLAN_CHALLENGED;
11356
11357 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11358 all &= one | ~NETIF_F_ALL_FOR_ALL;
11359
11360 /* If one device supports hw checksumming, set for all. */
11361 if (all & NETIF_F_HW_CSUM)
11362 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11363
11364 return all;
11365 }
11366 EXPORT_SYMBOL(netdev_increment_features);
11367
netdev_create_hash(void)11368 static struct hlist_head * __net_init netdev_create_hash(void)
11369 {
11370 int i;
11371 struct hlist_head *hash;
11372
11373 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11374 if (hash != NULL)
11375 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11376 INIT_HLIST_HEAD(&hash[i]);
11377
11378 return hash;
11379 }
11380
11381 /* Initialize per network namespace state */
netdev_init(struct net * net)11382 static int __net_init netdev_init(struct net *net)
11383 {
11384 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11385 8 * sizeof_field(struct napi_struct, gro_bitmask));
11386
11387 INIT_LIST_HEAD(&net->dev_base_head);
11388
11389 net->dev_name_head = netdev_create_hash();
11390 if (net->dev_name_head == NULL)
11391 goto err_name;
11392
11393 net->dev_index_head = netdev_create_hash();
11394 if (net->dev_index_head == NULL)
11395 goto err_idx;
11396
11397 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11398
11399 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11400
11401 return 0;
11402
11403 err_idx:
11404 kfree(net->dev_name_head);
11405 err_name:
11406 return -ENOMEM;
11407 }
11408
11409 /**
11410 * netdev_drivername - network driver for the device
11411 * @dev: network device
11412 *
11413 * Determine network driver for device.
11414 */
netdev_drivername(const struct net_device * dev)11415 const char *netdev_drivername(const struct net_device *dev)
11416 {
11417 const struct device_driver *driver;
11418 const struct device *parent;
11419 const char *empty = "";
11420
11421 parent = dev->dev.parent;
11422 if (!parent)
11423 return empty;
11424
11425 driver = parent->driver;
11426 if (driver && driver->name)
11427 return driver->name;
11428 return empty;
11429 }
11430
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11431 static void __netdev_printk(const char *level, const struct net_device *dev,
11432 struct va_format *vaf)
11433 {
11434 if (dev && dev->dev.parent) {
11435 dev_printk_emit(level[1] - '0',
11436 dev->dev.parent,
11437 "%s %s %s%s: %pV",
11438 dev_driver_string(dev->dev.parent),
11439 dev_name(dev->dev.parent),
11440 netdev_name(dev), netdev_reg_state(dev),
11441 vaf);
11442 } else if (dev) {
11443 printk("%s%s%s: %pV",
11444 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11445 } else {
11446 printk("%s(NULL net_device): %pV", level, vaf);
11447 }
11448 }
11449
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11450 void netdev_printk(const char *level, const struct net_device *dev,
11451 const char *format, ...)
11452 {
11453 struct va_format vaf;
11454 va_list args;
11455
11456 va_start(args, format);
11457
11458 vaf.fmt = format;
11459 vaf.va = &args;
11460
11461 __netdev_printk(level, dev, &vaf);
11462
11463 va_end(args);
11464 }
11465 EXPORT_SYMBOL(netdev_printk);
11466
11467 #define define_netdev_printk_level(func, level) \
11468 void func(const struct net_device *dev, const char *fmt, ...) \
11469 { \
11470 struct va_format vaf; \
11471 va_list args; \
11472 \
11473 va_start(args, fmt); \
11474 \
11475 vaf.fmt = fmt; \
11476 vaf.va = &args; \
11477 \
11478 __netdev_printk(level, dev, &vaf); \
11479 \
11480 va_end(args); \
11481 } \
11482 EXPORT_SYMBOL(func);
11483
11484 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11485 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11486 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11487 define_netdev_printk_level(netdev_err, KERN_ERR);
11488 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11489 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11490 define_netdev_printk_level(netdev_info, KERN_INFO);
11491
netdev_exit(struct net * net)11492 static void __net_exit netdev_exit(struct net *net)
11493 {
11494 kfree(net->dev_name_head);
11495 kfree(net->dev_index_head);
11496 xa_destroy(&net->dev_by_index);
11497 if (net != &init_net)
11498 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11499 }
11500
11501 static struct pernet_operations __net_initdata netdev_net_ops = {
11502 .init = netdev_init,
11503 .exit = netdev_exit,
11504 };
11505
default_device_exit_net(struct net * net)11506 static void __net_exit default_device_exit_net(struct net *net)
11507 {
11508 struct netdev_name_node *name_node, *tmp;
11509 struct net_device *dev, *aux;
11510 /*
11511 * Push all migratable network devices back to the
11512 * initial network namespace
11513 */
11514 ASSERT_RTNL();
11515 for_each_netdev_safe(net, dev, aux) {
11516 int err;
11517 char fb_name[IFNAMSIZ];
11518
11519 /* Ignore unmoveable devices (i.e. loopback) */
11520 if (dev->features & NETIF_F_NETNS_LOCAL)
11521 continue;
11522
11523 /* Leave virtual devices for the generic cleanup */
11524 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11525 continue;
11526
11527 /* Push remaining network devices to init_net */
11528 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11529 if (netdev_name_in_use(&init_net, fb_name))
11530 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11531
11532 netdev_for_each_altname_safe(dev, name_node, tmp)
11533 if (netdev_name_in_use(&init_net, name_node->name)) {
11534 netdev_name_node_del(name_node);
11535 synchronize_rcu();
11536 __netdev_name_node_alt_destroy(name_node);
11537 }
11538
11539 err = dev_change_net_namespace(dev, &init_net, fb_name);
11540 if (err) {
11541 pr_emerg("%s: failed to move %s to init_net: %d\n",
11542 __func__, dev->name, err);
11543 BUG();
11544 }
11545 }
11546 }
11547
default_device_exit_batch(struct list_head * net_list)11548 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11549 {
11550 /* At exit all network devices most be removed from a network
11551 * namespace. Do this in the reverse order of registration.
11552 * Do this across as many network namespaces as possible to
11553 * improve batching efficiency.
11554 */
11555 struct net_device *dev;
11556 struct net *net;
11557 LIST_HEAD(dev_kill_list);
11558
11559 rtnl_lock();
11560 list_for_each_entry(net, net_list, exit_list) {
11561 default_device_exit_net(net);
11562 cond_resched();
11563 }
11564
11565 list_for_each_entry(net, net_list, exit_list) {
11566 for_each_netdev_reverse(net, dev) {
11567 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11568 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11569 else
11570 unregister_netdevice_queue(dev, &dev_kill_list);
11571 }
11572 }
11573 unregister_netdevice_many(&dev_kill_list);
11574 rtnl_unlock();
11575 }
11576
11577 static struct pernet_operations __net_initdata default_device_ops = {
11578 .exit_batch = default_device_exit_batch,
11579 };
11580
11581 /*
11582 * Initialize the DEV module. At boot time this walks the device list and
11583 * unhooks any devices that fail to initialise (normally hardware not
11584 * present) and leaves us with a valid list of present and active devices.
11585 *
11586 */
11587
11588 /*
11589 * This is called single threaded during boot, so no need
11590 * to take the rtnl semaphore.
11591 */
net_dev_init(void)11592 static int __init net_dev_init(void)
11593 {
11594 int i, rc = -ENOMEM;
11595
11596 BUG_ON(!dev_boot_phase);
11597
11598 if (dev_proc_init())
11599 goto out;
11600
11601 if (netdev_kobject_init())
11602 goto out;
11603
11604 INIT_LIST_HEAD(&ptype_all);
11605 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11606 INIT_LIST_HEAD(&ptype_base[i]);
11607
11608 if (register_pernet_subsys(&netdev_net_ops))
11609 goto out;
11610
11611 /*
11612 * Initialise the packet receive queues.
11613 */
11614
11615 for_each_possible_cpu(i) {
11616 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11617 struct softnet_data *sd = &per_cpu(softnet_data, i);
11618
11619 INIT_WORK(flush, flush_backlog);
11620
11621 skb_queue_head_init(&sd->input_pkt_queue);
11622 skb_queue_head_init(&sd->process_queue);
11623 #ifdef CONFIG_XFRM_OFFLOAD
11624 skb_queue_head_init(&sd->xfrm_backlog);
11625 #endif
11626 INIT_LIST_HEAD(&sd->poll_list);
11627 sd->output_queue_tailp = &sd->output_queue;
11628 #ifdef CONFIG_RPS
11629 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11630 sd->cpu = i;
11631 #endif
11632 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11633 spin_lock_init(&sd->defer_lock);
11634
11635 init_gro_hash(&sd->backlog);
11636 sd->backlog.poll = process_backlog;
11637 sd->backlog.weight = weight_p;
11638 }
11639
11640 dev_boot_phase = 0;
11641
11642 /* The loopback device is special if any other network devices
11643 * is present in a network namespace the loopback device must
11644 * be present. Since we now dynamically allocate and free the
11645 * loopback device ensure this invariant is maintained by
11646 * keeping the loopback device as the first device on the
11647 * list of network devices. Ensuring the loopback devices
11648 * is the first device that appears and the last network device
11649 * that disappears.
11650 */
11651 if (register_pernet_device(&loopback_net_ops))
11652 goto out;
11653
11654 if (register_pernet_device(&default_device_ops))
11655 goto out;
11656
11657 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11658 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11659
11660 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11661 NULL, dev_cpu_dead);
11662 WARN_ON(rc < 0);
11663 rc = 0;
11664 out:
11665 return rc;
11666 }
11667
11668 subsys_initcall(net_dev_init);
11669