xref: /openbmc/linux/net/core/dev.c (revision 9144f784f852f9a125cabe9927b986d909bfa439)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
dev_base_seq_inc(struct net * net)202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
dev_name_hash(struct net * net,const char * name)208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
rps_lock_irq_disable(struct softnet_data * sd)229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
rps_unlock_irq_enable(struct softnet_data * sd)246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
netdev_name_node_alloc(struct net_device * dev,const char * name)254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
netdev_name_node_free(struct netdev_name_node * name_node)280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
netdev_name_node_del(struct netdev_name_node * name_node)292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
netdev_name_node_lookup(struct net * net,const char * name)297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
netdev_name_node_lookup_rcu(struct net * net,const char * name)309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
netdev_name_in_use(struct net * net,const char * name)321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
netdev_name_node_alt_create(struct net_device * dev,const char * name)327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
netdev_name_node_alt_flush(struct net_device * dev)373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
list_netdevice(struct net_device * dev)382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
unlist_netdevice(struct net_device * dev,bool lock)408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
netdev_lock_pos(unsigned short dev_type)488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
netdev_set_addr_lockdep_class(struct net_device * dev)509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
netdev_set_addr_lockdep_class(struct net_device * dev)524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
ptype_head(const struct packet_type * pt)552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
dev_add_pack(struct packet_type * pt)574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
__dev_remove_pack(struct packet_type * pt)597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
dev_remove_pack(struct packet_type * pt)629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
dev_get_iflink(const struct net_device * dev)652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
dev_fwd_path(struct net_device_path_stack * stack)687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
__dev_get_by_name(struct net * net,const char * name)749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
dev_get_by_name_rcu(struct net * net,const char * name)770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
__dev_get_by_index(struct net * net,int ifindex)829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
dev_get_by_index_rcu(struct net * net,int ifindex)853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
dev_get_by_napi_id(unsigned int napi_id)913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
netdev_get_name(struct net * net,char * name,int ifindex)934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
dev_getfirstbyhwtype(struct net * net,unsigned short type)985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
dev_valid_name(const char * name)1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@buf:  scratch buffer and result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
__dev_alloc_name(struct net * net,const char * name,char * buf)1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 
1079 	if (!dev_valid_name(name))
1080 		return -EINVAL;
1081 
1082 	p = strchr(name, '%');
1083 	if (p) {
1084 		/*
1085 		 * Verify the string as this thing may have come from
1086 		 * the user.  There must be either one "%d" and no other "%"
1087 		 * characters.
1088 		 */
1089 		if (p[1] != 'd' || strchr(p + 2, '%'))
1090 			return -EINVAL;
1091 
1092 		/* Use one page as a bit array of possible slots */
1093 		inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 		if (!inuse)
1095 			return -ENOMEM;
1096 
1097 		for_each_netdev(net, d) {
1098 			struct netdev_name_node *name_node;
1099 
1100 			netdev_for_each_altname(d, name_node) {
1101 				if (!sscanf(name_node->name, name, &i))
1102 					continue;
1103 				if (i < 0 || i >= max_netdevices)
1104 					continue;
1105 
1106 				/*  avoid cases where sscanf is not exact inverse of printf */
1107 				snprintf(buf, IFNAMSIZ, name, i);
1108 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 					__set_bit(i, inuse);
1110 			}
1111 			if (!sscanf(d->name, name, &i))
1112 				continue;
1113 			if (i < 0 || i >= max_netdevices)
1114 				continue;
1115 
1116 			/*  avoid cases where sscanf is not exact inverse of printf */
1117 			snprintf(buf, IFNAMSIZ, name, i);
1118 			if (!strncmp(buf, d->name, IFNAMSIZ))
1119 				__set_bit(i, inuse);
1120 		}
1121 
1122 		i = find_first_zero_bit(inuse, max_netdevices);
1123 		bitmap_free(inuse);
1124 	}
1125 
1126 	snprintf(buf, IFNAMSIZ, name, i);
1127 	if (!netdev_name_in_use(net, buf))
1128 		return i;
1129 
1130 	/* It is possible to run out of possible slots
1131 	 * when the name is long and there isn't enough space left
1132 	 * for the digits, or if all bits are used.
1133 	 */
1134 	return -ENFILE;
1135 }
1136 
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 			       const char *want_name, char *out_name)
1139 {
1140 	int ret;
1141 
1142 	if (!dev_valid_name(want_name))
1143 		return -EINVAL;
1144 
1145 	if (strchr(want_name, '%')) {
1146 		ret = __dev_alloc_name(net, want_name, out_name);
1147 		return ret < 0 ? ret : 0;
1148 	} else if (netdev_name_in_use(net, want_name)) {
1149 		return -EEXIST;
1150 	} else if (out_name != want_name) {
1151 		strscpy(out_name, want_name, IFNAMSIZ);
1152 	}
1153 
1154 	return 0;
1155 }
1156 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1157 static int dev_alloc_name_ns(struct net *net,
1158 			     struct net_device *dev,
1159 			     const char *name)
1160 {
1161 	char buf[IFNAMSIZ];
1162 	int ret;
1163 
1164 	BUG_ON(!net);
1165 	ret = __dev_alloc_name(net, name, buf);
1166 	if (ret >= 0)
1167 		strscpy(dev->name, buf, IFNAMSIZ);
1168 	return ret;
1169 }
1170 
1171 /**
1172  *	dev_alloc_name - allocate a name for a device
1173  *	@dev: device
1174  *	@name: name format string
1175  *
1176  *	Passed a format string - eg "lt%d" it will try and find a suitable
1177  *	id. It scans list of devices to build up a free map, then chooses
1178  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1179  *	while allocating the name and adding the device in order to avoid
1180  *	duplicates.
1181  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182  *	Returns the number of the unit assigned or a negative errno code.
1183  */
1184 
dev_alloc_name(struct net_device * dev,const char * name)1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 			      const char *name)
1193 {
1194 	char buf[IFNAMSIZ];
1195 	int ret;
1196 
1197 	ret = dev_prep_valid_name(net, dev, name, buf);
1198 	if (ret >= 0)
1199 		strscpy(dev->name, buf, IFNAMSIZ);
1200 	return ret;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
dev_change_name(struct net_device * dev,const char * newname)1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	err = dev_get_valid_name(net, dev, newname);
1234 	if (err < 0) {
1235 		up_write(&devnet_rename_sem);
1236 		return err;
1237 	}
1238 
1239 	if (oldname[0] && !strchr(oldname, '%'))
1240 		netdev_info(dev, "renamed from %s%s\n", oldname,
1241 			    dev->flags & IFF_UP ? " (while UP)" : "");
1242 
1243 	old_assign_type = dev->name_assign_type;
1244 	dev->name_assign_type = NET_NAME_RENAMED;
1245 
1246 rollback:
1247 	ret = device_rename(&dev->dev, dev->name);
1248 	if (ret) {
1249 		memcpy(dev->name, oldname, IFNAMSIZ);
1250 		dev->name_assign_type = old_assign_type;
1251 		up_write(&devnet_rename_sem);
1252 		return ret;
1253 	}
1254 
1255 	up_write(&devnet_rename_sem);
1256 
1257 	netdev_adjacent_rename_links(dev, oldname);
1258 
1259 	write_lock(&dev_base_lock);
1260 	netdev_name_node_del(dev->name_node);
1261 	write_unlock(&dev_base_lock);
1262 
1263 	synchronize_rcu();
1264 
1265 	write_lock(&dev_base_lock);
1266 	netdev_name_node_add(net, dev->name_node);
1267 	write_unlock(&dev_base_lock);
1268 
1269 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 	ret = notifier_to_errno(ret);
1271 
1272 	if (ret) {
1273 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1274 		if (err >= 0) {
1275 			err = ret;
1276 			down_write(&devnet_rename_sem);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			memcpy(oldname, newname, IFNAMSIZ);
1279 			dev->name_assign_type = old_assign_type;
1280 			old_assign_type = NET_NAME_RENAMED;
1281 			goto rollback;
1282 		} else {
1283 			netdev_err(dev, "name change rollback failed: %d\n",
1284 				   ret);
1285 		}
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  *	dev_set_alias - change ifalias of a device
1293  *	@dev: device
1294  *	@alias: name up to IFALIASZ
1295  *	@len: limit of bytes to copy from info
1296  *
1297  *	Set ifalias for a device,
1298  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 	struct dev_ifalias *new_alias = NULL;
1302 
1303 	if (len >= IFALIASZ)
1304 		return -EINVAL;
1305 
1306 	if (len) {
1307 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 		if (!new_alias)
1309 			return -ENOMEM;
1310 
1311 		memcpy(new_alias->ifalias, alias, len);
1312 		new_alias->ifalias[len] = 0;
1313 	}
1314 
1315 	mutex_lock(&ifalias_mutex);
1316 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 					mutex_is_locked(&ifalias_mutex));
1318 	mutex_unlock(&ifalias_mutex);
1319 
1320 	if (new_alias)
1321 		kfree_rcu(new_alias, rcuhead);
1322 
1323 	return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326 
1327 /**
1328  *	dev_get_alias - get ifalias of a device
1329  *	@dev: device
1330  *	@name: buffer to store name of ifalias
1331  *	@len: size of buffer
1332  *
1333  *	get ifalias for a device.  Caller must make sure dev cannot go
1334  *	away,  e.g. rcu read lock or own a reference count to device.
1335  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 	const struct dev_ifalias *alias;
1339 	int ret = 0;
1340 
1341 	rcu_read_lock();
1342 	alias = rcu_dereference(dev->ifalias);
1343 	if (alias)
1344 		ret = snprintf(name, len, "%s", alias->ifalias);
1345 	rcu_read_unlock();
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	netdev_features_change - device changes features
1352  *	@dev: device to cause notification
1353  *
1354  *	Called to indicate a device has changed features.
1355  */
netdev_features_change(struct net_device * dev)1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361 
1362 /**
1363  *	netdev_state_change - device changes state
1364  *	@dev: device to cause notification
1365  *
1366  *	Called to indicate a device has changed state. This function calls
1367  *	the notifier chains for netdev_chain and sends a NEWLINK message
1368  *	to the routing socket.
1369  */
netdev_state_change(struct net_device * dev)1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 	if (dev->flags & IFF_UP) {
1373 		struct netdev_notifier_change_info change_info = {
1374 			.info.dev = dev,
1375 		};
1376 
1377 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 					      &change_info.info);
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 	}
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383 
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
__netdev_notify_peers(struct net_device * dev)1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 	ASSERT_RTNL();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402 
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
netdev_notify_peers(struct net_device * dev)1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 	rtnl_lock();
1416 	__netdev_notify_peers(dev);
1417 	rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420 
1421 static int napi_threaded_poll(void *data);
1422 
napi_kthread_create(struct napi_struct * n)1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 	int err = 0;
1426 
1427 	/* Create and wake up the kthread once to put it in
1428 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 	 * warning and work with loadavg.
1430 	 */
1431 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 				n->dev->name, n->napi_id);
1433 	if (IS_ERR(n->thread)) {
1434 		err = PTR_ERR(n->thread);
1435 		pr_err("kthread_run failed with err %d\n", err);
1436 		n->thread = NULL;
1437 	}
1438 
1439 	return err;
1440 }
1441 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 	const struct net_device_ops *ops = dev->netdev_ops;
1445 	int ret;
1446 
1447 	ASSERT_RTNL();
1448 	dev_addr_check(dev);
1449 
1450 	if (!netif_device_present(dev)) {
1451 		/* may be detached because parent is runtime-suspended */
1452 		if (dev->dev.parent)
1453 			pm_runtime_resume(dev->dev.parent);
1454 		if (!netif_device_present(dev))
1455 			return -ENODEV;
1456 	}
1457 
1458 	/* Block netpoll from trying to do any rx path servicing.
1459 	 * If we don't do this there is a chance ndo_poll_controller
1460 	 * or ndo_poll may be running while we open the device
1461 	 */
1462 	netpoll_poll_disable(dev);
1463 
1464 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 	ret = notifier_to_errno(ret);
1466 	if (ret)
1467 		return ret;
1468 
1469 	set_bit(__LINK_STATE_START, &dev->state);
1470 
1471 	if (ops->ndo_validate_addr)
1472 		ret = ops->ndo_validate_addr(dev);
1473 
1474 	if (!ret && ops->ndo_open)
1475 		ret = ops->ndo_open(dev);
1476 
1477 	netpoll_poll_enable(dev);
1478 
1479 	if (ret)
1480 		clear_bit(__LINK_STATE_START, &dev->state);
1481 	else {
1482 		dev->flags |= IFF_UP;
1483 		dev_set_rx_mode(dev);
1484 		dev_activate(dev);
1485 		add_device_randomness(dev->dev_addr, dev->addr_len);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	dev_open	- prepare an interface for use.
1493  *	@dev: device to open
1494  *	@extack: netlink extended ack
1495  *
1496  *	Takes a device from down to up state. The device's private open
1497  *	function is invoked and then the multicast lists are loaded. Finally
1498  *	the device is moved into the up state and a %NETDEV_UP message is
1499  *	sent to the netdev notifier chain.
1500  *
1501  *	Calling this function on an active interface is a nop. On a failure
1502  *	a negative errno code is returned.
1503  */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 	int ret;
1507 
1508 	if (dev->flags & IFF_UP)
1509 		return 0;
1510 
1511 	ret = __dev_open(dev, extack);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 	call_netdevice_notifiers(NETDEV_UP, dev);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521 
__dev_close_many(struct list_head * head)1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 	struct net_device *dev;
1525 
1526 	ASSERT_RTNL();
1527 	might_sleep();
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		/* Temporarily disable netpoll until the interface is down */
1531 		netpoll_poll_disable(dev);
1532 
1533 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534 
1535 		clear_bit(__LINK_STATE_START, &dev->state);
1536 
1537 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1538 		 * can be even on different cpu. So just clear netif_running().
1539 		 *
1540 		 * dev->stop() will invoke napi_disable() on all of it's
1541 		 * napi_struct instances on this device.
1542 		 */
1543 		smp_mb__after_atomic(); /* Commit netif_running(). */
1544 	}
1545 
1546 	dev_deactivate_many(head);
1547 
1548 	list_for_each_entry(dev, head, close_list) {
1549 		const struct net_device_ops *ops = dev->netdev_ops;
1550 
1551 		/*
1552 		 *	Call the device specific close. This cannot fail.
1553 		 *	Only if device is UP
1554 		 *
1555 		 *	We allow it to be called even after a DETACH hot-plug
1556 		 *	event.
1557 		 */
1558 		if (ops->ndo_stop)
1559 			ops->ndo_stop(dev);
1560 
1561 		dev->flags &= ~IFF_UP;
1562 		netpoll_poll_enable(dev);
1563 	}
1564 }
1565 
__dev_close(struct net_device * dev)1566 static void __dev_close(struct net_device *dev)
1567 {
1568 	LIST_HEAD(single);
1569 
1570 	list_add(&dev->close_list, &single);
1571 	__dev_close_many(&single);
1572 	list_del(&single);
1573 }
1574 
dev_close_many(struct list_head * head,bool unlink)1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 	struct net_device *dev, *tmp;
1578 
1579 	/* Remove the devices that don't need to be closed */
1580 	list_for_each_entry_safe(dev, tmp, head, close_list)
1581 		if (!(dev->flags & IFF_UP))
1582 			list_del_init(&dev->close_list);
1583 
1584 	__dev_close_many(head);
1585 
1586 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 		if (unlink)
1590 			list_del_init(&dev->close_list);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594 
1595 /**
1596  *	dev_close - shutdown an interface.
1597  *	@dev: device to shutdown
1598  *
1599  *	This function moves an active device into down state. A
1600  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *	chain.
1603  */
dev_close(struct net_device * dev)1604 void dev_close(struct net_device *dev)
1605 {
1606 	if (dev->flags & IFF_UP) {
1607 		LIST_HEAD(single);
1608 
1609 		list_add(&dev->close_list, &single);
1610 		dev_close_many(&single, true);
1611 		list_del(&single);
1612 	}
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615 
1616 
1617 /**
1618  *	dev_disable_lro - disable Large Receive Offload on a device
1619  *	@dev: device
1620  *
1621  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *	called under RTNL.  This is needed if received packets may be
1623  *	forwarded to another interface.
1624  */
dev_disable_lro(struct net_device * dev)1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 	struct net_device *lower_dev;
1628 	struct list_head *iter;
1629 
1630 	dev->wanted_features &= ~NETIF_F_LRO;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_LRO))
1634 		netdev_WARN(dev, "failed to disable LRO!\n");
1635 
1636 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 		dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640 
1641 /**
1642  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *	@dev: device
1644  *
1645  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *	called under RTNL.  This is needed if Generic XDP is installed on
1647  *	the device.
1648  */
dev_disable_gro_hw(struct net_device * dev)1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 	netdev_update_features(dev);
1653 
1654 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657 
netdev_cmd_to_name(enum netdev_cmd cmd)1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) 						\
1661 	case NETDEV_##val:				\
1662 		return "NETDEV_" __stringify(val);
1663 	switch (cmd) {
1664 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 	N(XDP_FEAT_CHANGE)
1676 	}
1677 #undef N
1678 	return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 				   struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info = {
1686 		.dev = dev,
1687 	};
1688 
1689 	return nb->notifier_call(nb, val, &info);
1690 }
1691 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 					     struct net_device *dev)
1694 {
1695 	int err;
1696 
1697 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 	err = notifier_to_errno(err);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return 0;
1704 
1705 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 	return 0;
1707 }
1708 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 						struct net_device *dev)
1711 {
1712 	if (dev->flags & IFF_UP) {
1713 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 					dev);
1715 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 	}
1717 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 						 struct net *net)
1722 {
1723 	struct net_device *dev;
1724 	int err;
1725 
1726 	for_each_netdev(net, dev) {
1727 		err = call_netdevice_register_notifiers(nb, dev);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 	return 0;
1732 
1733 rollback:
1734 	for_each_netdev_continue_reverse(net, dev)
1735 		call_netdevice_unregister_notifiers(nb, dev);
1736 	return err;
1737 }
1738 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 						    struct net *net)
1741 {
1742 	struct net_device *dev;
1743 
1744 	for_each_netdev(net, dev)
1745 		call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747 
1748 static int dev_boot_phase = 1;
1749 
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763 
register_netdevice_notifier(struct notifier_block * nb)1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_register(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 	if (dev_boot_phase)
1776 		goto unlock;
1777 	for_each_net(net) {
1778 		err = call_netdevice_register_net_notifiers(nb, net);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 
1783 unlock:
1784 	rtnl_unlock();
1785 	up_write(&pernet_ops_rwsem);
1786 	return err;
1787 
1788 rollback:
1789 	for_each_net_continue_reverse(net)
1790 		call_netdevice_unregister_net_notifiers(nb, net);
1791 
1792 	raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796 
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810 
unregister_netdevice_notifier(struct notifier_block * nb)1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 	struct net *net;
1814 	int err;
1815 
1816 	/* Close race with setup_net() and cleanup_net() */
1817 	down_write(&pernet_ops_rwsem);
1818 	rtnl_lock();
1819 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	if (err)
1821 		goto unlock;
1822 
1823 	for_each_net(net)
1824 		call_netdevice_unregister_net_notifiers(nb, net);
1825 
1826 unlock:
1827 	rtnl_unlock();
1828 	up_write(&pernet_ops_rwsem);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1833 static int __register_netdevice_notifier_net(struct net *net,
1834 					     struct notifier_block *nb,
1835 					     bool ignore_call_fail)
1836 {
1837 	int err;
1838 
1839 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 	if (err)
1841 		return err;
1842 	if (dev_boot_phase)
1843 		return 0;
1844 
1845 	err = call_netdevice_register_net_notifiers(nb, net);
1846 	if (err && !ignore_call_fail)
1847 		goto chain_unregister;
1848 
1849 	return 0;
1850 
1851 chain_unregister:
1852 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 	return err;
1854 }
1855 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 					       struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 	if (err)
1863 		return err;
1864 
1865 	call_netdevice_unregister_net_notifiers(nb, net);
1866 	return 0;
1867 }
1868 
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(net, nb, false);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894 
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1911 int unregister_netdevice_notifier_net(struct net *net,
1912 				      struct notifier_block *nb)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __unregister_netdevice_notifier_net(net, nb);
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 					  struct net *dst_net,
1925 					  struct notifier_block *nb)
1926 {
1927 	__unregister_netdevice_notifier_net(src_net, nb);
1928 	__register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 					struct notifier_block *nb,
1933 					struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 	if (!err) {
1940 		nn->nb = nb;
1941 		list_add(&nn->list, &dev->net_notifier_list);
1942 	}
1943 	rtnl_unlock();
1944 	return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 					  struct notifier_block *nb,
1950 					  struct netdev_net_notifier *nn)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	list_del(&nn->list);
1956 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 	rtnl_unlock();
1958 	return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 					     struct net *net)
1964 {
1965 	struct netdev_net_notifier *nn;
1966 
1967 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info - call all network notifier blocks
1973  *	@val: value passed unmodified to notifier function
1974  *	@info: notifier information data
1975  *
1976  *	Call all network notifier blocks.  Parameters and return value
1977  *	are as for raw_notifier_call_chain().
1978  */
1979 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1980 int call_netdevice_notifiers_info(unsigned long val,
1981 				  struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 	int ret;
1985 
1986 	ASSERT_RTNL();
1987 
1988 	/* Run per-netns notifier block chain first, then run the global one.
1989 	 * Hopefully, one day, the global one is going to be removed after
1990 	 * all notifier block registrators get converted to be per-netns.
1991 	 */
1992 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 	if (ret & NOTIFY_STOP_MASK)
1994 		return ret;
1995 	return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *	                                       for and rollback on error
2001  *	@val_up: value passed unmodified to notifier function
2002  *	@val_down: value passed unmodified to the notifier function when
2003  *	           recovering from an error on @val_up
2004  *	@info: notifier information data
2005  *
2006  *	Call all per-netns network notifier blocks, but not notifier blocks on
2007  *	the global notifier chain. Parameters and return value are as for
2008  *	raw_notifier_call_chain_robust().
2009  */
2010 
2011 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 				     unsigned long val_down,
2014 				     struct netdev_notifier_info *info)
2015 {
2016 	struct net *net = dev_net(info->dev);
2017 
2018 	ASSERT_RTNL();
2019 
2020 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 					      val_up, val_down, info);
2022 }
2023 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 					   struct net_device *dev,
2026 					   struct netlink_ext_ack *extack)
2027 {
2028 	struct netdev_notifier_info info = {
2029 		.dev = dev,
2030 		.extack = extack,
2031 	};
2032 
2033 	return call_netdevice_notifiers_info(val, &info);
2034 }
2035 
2036 /**
2037  *	call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *	Call all network notifier blocks.  Parameters and return value
2042  *	are as for raw_notifier_call_chain().
2043  */
2044 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 	return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050 
2051 /**
2052  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *	@val: value passed unmodified to notifier function
2054  *	@dev: net_device pointer passed unmodified to notifier function
2055  *	@arg: additional u32 argument passed to the notifier function
2056  *
2057  *	Call all network notifier blocks.  Parameters and return value
2058  *	are as for raw_notifier_call_chain().
2059  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 					struct net_device *dev, u32 arg)
2062 {
2063 	struct netdev_notifier_info_ext info = {
2064 		.info.dev = dev,
2065 		.ext.mtu = arg,
2066 	};
2067 
2068 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069 
2070 	return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072 
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075 
net_inc_ingress_queue(void)2076 void net_inc_ingress_queue(void)
2077 {
2078 	static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081 
net_dec_ingress_queue(void)2082 void net_dec_ingress_queue(void)
2083 {
2084 	static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088 
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091 
net_inc_egress_queue(void)2092 void net_inc_egress_queue(void)
2093 {
2094 	static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097 
net_dec_egress_queue(void)2098 void net_dec_egress_queue(void)
2099 {
2100 	static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104 
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 	int wanted;
2114 
2115 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 	if (wanted > 0)
2117 		static_branch_enable(&netstamp_needed_key);
2118 	else
2119 		static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123 
net_enable_timestamp(void)2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted = atomic_read(&netstamp_wanted);
2128 
2129 	while (wanted > 0) {
2130 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 			return;
2132 	}
2133 	atomic_inc(&netstamp_needed_deferred);
2134 	schedule_work(&netstamp_work);
2135 #else
2136 	static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140 
net_disable_timestamp(void)2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 	int wanted = atomic_read(&netstamp_wanted);
2145 
2146 	while (wanted > 1) {
2147 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 			return;
2149 	}
2150 	atomic_dec(&netstamp_needed_deferred);
2151 	schedule_work(&netstamp_work);
2152 #else
2153 	static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157 
net_timestamp_set(struct sk_buff * skb)2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 	skb->tstamp = 0;
2161 	skb->mono_delivery_time = 0;
2162 	if (static_branch_unlikely(&netstamp_needed_key))
2163 		skb->tstamp = ktime_get_real();
2164 }
2165 
2166 #define net_timestamp_check(COND, SKB)				\
2167 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2168 		if ((COND) && !(SKB)->tstamp)			\
2169 			(SKB)->tstamp = ktime_get_real();	\
2170 	}							\
2171 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 	return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 			      bool check_mtu)
2180 {
2181 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182 
2183 	if (likely(!ret)) {
2184 		skb->protocol = eth_type_trans(skb, dev);
2185 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 	return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196 
2197 /**
2198  * dev_forward_skb - loopback an skb to another netif
2199  *
2200  * @dev: destination network device
2201  * @skb: buffer to forward
2202  *
2203  * return values:
2204  *	NET_RX_SUCCESS	(no congestion)
2205  *	NET_RX_DROP     (packet was dropped, but freed)
2206  *
2207  * dev_forward_skb can be used for injecting an skb from the
2208  * start_xmit function of one device into the receive queue
2209  * of another device.
2210  *
2211  * The receiving device may be in another namespace, so
2212  * we have to clear all information in the skb that could
2213  * impact namespace isolation.
2214  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2226 static inline int deliver_skb(struct sk_buff *skb,
2227 			      struct packet_type *pt_prev,
2228 			      struct net_device *orig_dev)
2229 {
2230 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 		return -ENOMEM;
2232 	refcount_inc(&skb->users);
2233 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 					  struct packet_type **pt,
2238 					  struct net_device *orig_dev,
2239 					  __be16 type,
2240 					  struct list_head *ptype_list)
2241 {
2242 	struct packet_type *ptype, *pt_prev = *pt;
2243 
2244 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 		if (ptype->type != type)
2246 			continue;
2247 		if (pt_prev)
2248 			deliver_skb(skb, pt_prev, orig_dev);
2249 		pt_prev = ptype;
2250 	}
2251 	*pt = pt_prev;
2252 }
2253 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 	if (!ptype->af_packet_priv || !skb->sk)
2257 		return false;
2258 
2259 	if (ptype->id_match)
2260 		return ptype->id_match(ptype, skb->sk);
2261 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 		return true;
2263 
2264 	return false;
2265 }
2266 
2267 /**
2268  * dev_nit_active - return true if any network interface taps are in use
2269  *
2270  * @dev: network device to check for the presence of taps
2271  */
dev_nit_active(struct net_device * dev)2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277 
2278 /*
2279  *	Support routine. Sends outgoing frames to any network
2280  *	taps currently in use.
2281  */
2282 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 	struct packet_type *ptype;
2286 	struct sk_buff *skb2 = NULL;
2287 	struct packet_type *pt_prev = NULL;
2288 	struct list_head *ptype_list = &ptype_all;
2289 
2290 	rcu_read_lock();
2291 again:
2292 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 		if (READ_ONCE(ptype->ignore_outgoing))
2294 			continue;
2295 
2296 		/* Never send packets back to the socket
2297 		 * they originated from - MvS (miquels@drinkel.ow.org)
2298 		 */
2299 		if (skb_loop_sk(ptype, skb))
2300 			continue;
2301 
2302 		if (pt_prev) {
2303 			deliver_skb(skb2, pt_prev, skb->dev);
2304 			pt_prev = ptype;
2305 			continue;
2306 		}
2307 
2308 		/* need to clone skb, done only once */
2309 		skb2 = skb_clone(skb, GFP_ATOMIC);
2310 		if (!skb2)
2311 			goto out_unlock;
2312 
2313 		net_timestamp_set(skb2);
2314 
2315 		/* skb->nh should be correctly
2316 		 * set by sender, so that the second statement is
2317 		 * just protection against buggy protocols.
2318 		 */
2319 		skb_reset_mac_header(skb2);
2320 
2321 		if (skb_network_header(skb2) < skb2->data ||
2322 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 					     ntohs(skb2->protocol),
2325 					     dev->name);
2326 			skb_reset_network_header(skb2);
2327 		}
2328 
2329 		skb2->transport_header = skb2->network_header;
2330 		skb2->pkt_type = PACKET_OUTGOING;
2331 		pt_prev = ptype;
2332 	}
2333 
2334 	if (ptype_list == &ptype_all) {
2335 		ptype_list = &dev->ptype_all;
2336 		goto again;
2337 	}
2338 out_unlock:
2339 	if (pt_prev) {
2340 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 		else
2343 			kfree_skb(skb2);
2344 	}
2345 	rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348 
2349 /**
2350  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351  * @dev: Network device
2352  * @txq: number of queues available
2353  *
2354  * If real_num_tx_queues is changed the tc mappings may no longer be
2355  * valid. To resolve this verify the tc mapping remains valid and if
2356  * not NULL the mapping. With no priorities mapping to this
2357  * offset/count pair it will no longer be used. In the worst case TC0
2358  * is invalid nothing can be done so disable priority mappings. If is
2359  * expected that drivers will fix this mapping if they can before
2360  * calling netif_set_real_num_tx_queues.
2361  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 	int i;
2365 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 
2367 	/* If TC0 is invalidated disable TC mapping */
2368 	if (tc->offset + tc->count > txq) {
2369 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 		dev->num_tc = 0;
2371 		return;
2372 	}
2373 
2374 	/* Invalidated prio to tc mappings set to TC0 */
2375 	for (i = 1; i < TC_BITMASK + 1; i++) {
2376 		int q = netdev_get_prio_tc_map(dev, i);
2377 
2378 		tc = &dev->tc_to_txq[q];
2379 		if (tc->offset + tc->count > txq) {
2380 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 				    i, q);
2382 			netdev_set_prio_tc_map(dev, i, 0);
2383 		}
2384 	}
2385 }
2386 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 	if (dev->num_tc) {
2390 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 		int i;
2392 
2393 		/* walk through the TCs and see if it falls into any of them */
2394 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 			if ((txq - tc->offset) < tc->count)
2396 				return i;
2397 		}
2398 
2399 		/* didn't find it, just return -1 to indicate no match */
2400 		return -1;
2401 	}
2402 
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406 
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P)		\
2412 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 	struct xps_map *map = NULL;
2418 	int pos;
2419 
2420 	map = xmap_dereference(dev_maps->attr_map[tci]);
2421 	if (!map)
2422 		return false;
2423 
2424 	for (pos = map->len; pos--;) {
2425 		if (map->queues[pos] != index)
2426 			continue;
2427 
2428 		if (map->len > 1) {
2429 			map->queues[pos] = map->queues[--map->len];
2430 			break;
2431 		}
2432 
2433 		if (old_maps)
2434 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 		kfree_rcu(map, rcu);
2437 		return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 				 struct xps_dev_maps *dev_maps,
2445 				 int cpu, u16 offset, u16 count)
2446 {
2447 	int num_tc = dev_maps->num_tc;
2448 	bool active = false;
2449 	int tci;
2450 
2451 	for (tci = cpu * num_tc; num_tc--; tci++) {
2452 		int i, j;
2453 
2454 		for (i = count, j = offset; i--; j++) {
2455 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 				break;
2457 		}
2458 
2459 		active |= i < 0;
2460 	}
2461 
2462 	return active;
2463 }
2464 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2465 static void reset_xps_maps(struct net_device *dev,
2466 			   struct xps_dev_maps *dev_maps,
2467 			   enum xps_map_type type)
2468 {
2469 	static_key_slow_dec_cpuslocked(&xps_needed);
2470 	if (type == XPS_RXQS)
2471 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472 
2473 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474 
2475 	kfree_rcu(dev_maps, rcu);
2476 }
2477 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 			   u16 offset, u16 count)
2480 {
2481 	struct xps_dev_maps *dev_maps;
2482 	bool active = false;
2483 	int i, j;
2484 
2485 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 	if (!dev_maps)
2487 		return;
2488 
2489 	for (j = 0; j < dev_maps->nr_ids; j++)
2490 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 	if (!active)
2492 		reset_xps_maps(dev, dev_maps, type);
2493 
2494 	if (type == XPS_CPUS) {
2495 		for (i = offset + (count - 1); count--; i--)
2496 			netdev_queue_numa_node_write(
2497 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 	}
2499 }
2500 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 				   u16 count)
2503 {
2504 	if (!static_key_false(&xps_needed))
2505 		return;
2506 
2507 	cpus_read_lock();
2508 	mutex_lock(&xps_map_mutex);
2509 
2510 	if (static_key_false(&xps_rxqs_needed))
2511 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2512 
2513 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2514 
2515 	mutex_unlock(&xps_map_mutex);
2516 	cpus_read_unlock();
2517 }
2518 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 				      u16 index, bool is_rxqs_map)
2526 {
2527 	struct xps_map *new_map;
2528 	int alloc_len = XPS_MIN_MAP_ALLOC;
2529 	int i, pos;
2530 
2531 	for (pos = 0; map && pos < map->len; pos++) {
2532 		if (map->queues[pos] != index)
2533 			continue;
2534 		return map;
2535 	}
2536 
2537 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 	if (map) {
2539 		if (pos < map->alloc_len)
2540 			return map;
2541 
2542 		alloc_len = map->alloc_len * 2;
2543 	}
2544 
2545 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 	 *  map
2547 	 */
2548 	if (is_rxqs_map)
2549 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 	else
2551 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 				       cpu_to_node(attr_index));
2553 	if (!new_map)
2554 		return NULL;
2555 
2556 	for (i = 0; i < pos; i++)
2557 		new_map->queues[i] = map->queues[i];
2558 	new_map->alloc_len = alloc_len;
2559 	new_map->len = pos;
2560 
2561 	return new_map;
2562 }
2563 
2564 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 			      struct xps_dev_maps *new_dev_maps, int index,
2567 			      int tc, bool skip_tc)
2568 {
2569 	int i, tci = index * dev_maps->num_tc;
2570 	struct xps_map *map;
2571 
2572 	/* copy maps belonging to foreign traffic classes */
2573 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 		if (i == tc && skip_tc)
2575 			continue;
2576 
2577 		/* fill in the new device map from the old device map */
2578 		map = xmap_dereference(dev_maps->attr_map[tci]);
2579 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 	}
2581 }
2582 
2583 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 			  u16 index, enum xps_map_type type)
2586 {
2587 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 	const unsigned long *online_mask = NULL;
2589 	bool active = false, copy = false;
2590 	int i, j, tci, numa_node_id = -2;
2591 	int maps_sz, num_tc = 1, tc = 0;
2592 	struct xps_map *map, *new_map;
2593 	unsigned int nr_ids;
2594 
2595 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2596 
2597 	if (dev->num_tc) {
2598 		/* Do not allow XPS on subordinate device directly */
2599 		num_tc = dev->num_tc;
2600 		if (num_tc < 0)
2601 			return -EINVAL;
2602 
2603 		/* If queue belongs to subordinate dev use its map */
2604 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605 
2606 		tc = netdev_txq_to_tc(dev, index);
2607 		if (tc < 0)
2608 			return -EINVAL;
2609 	}
2610 
2611 	mutex_lock(&xps_map_mutex);
2612 
2613 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 	if (type == XPS_RXQS) {
2615 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 		nr_ids = dev->num_rx_queues;
2617 	} else {
2618 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 		if (num_possible_cpus() > 1)
2620 			online_mask = cpumask_bits(cpu_online_mask);
2621 		nr_ids = nr_cpu_ids;
2622 	}
2623 
2624 	if (maps_sz < L1_CACHE_BYTES)
2625 		maps_sz = L1_CACHE_BYTES;
2626 
2627 	/* The old dev_maps could be larger or smaller than the one we're
2628 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 	 * between. We could try to be smart, but let's be safe instead and only
2630 	 * copy foreign traffic classes if the two map sizes match.
2631 	 */
2632 	if (dev_maps &&
2633 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 		copy = true;
2635 
2636 	/* allocate memory for queue storage */
2637 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 	     j < nr_ids;) {
2639 		if (!new_dev_maps) {
2640 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 			if (!new_dev_maps) {
2642 				mutex_unlock(&xps_map_mutex);
2643 				return -ENOMEM;
2644 			}
2645 
2646 			new_dev_maps->nr_ids = nr_ids;
2647 			new_dev_maps->num_tc = num_tc;
2648 		}
2649 
2650 		tci = j * num_tc + tc;
2651 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652 
2653 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 		if (!map)
2655 			goto error;
2656 
2657 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 	}
2659 
2660 	if (!new_dev_maps)
2661 		goto out_no_new_maps;
2662 
2663 	if (!dev_maps) {
2664 		/* Increment static keys at most once per type */
2665 		static_key_slow_inc_cpuslocked(&xps_needed);
2666 		if (type == XPS_RXQS)
2667 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 	}
2669 
2670 	for (j = 0; j < nr_ids; j++) {
2671 		bool skip_tc = false;
2672 
2673 		tci = j * num_tc + tc;
2674 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2676 			/* add tx-queue to CPU/rx-queue maps */
2677 			int pos = 0;
2678 
2679 			skip_tc = true;
2680 
2681 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 			while ((pos < map->len) && (map->queues[pos] != index))
2683 				pos++;
2684 
2685 			if (pos == map->len)
2686 				map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 			if (type == XPS_CPUS) {
2689 				if (numa_node_id == -2)
2690 					numa_node_id = cpu_to_node(j);
2691 				else if (numa_node_id != cpu_to_node(j))
2692 					numa_node_id = -1;
2693 			}
2694 #endif
2695 		}
2696 
2697 		if (copy)
2698 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 					  skip_tc);
2700 	}
2701 
2702 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703 
2704 	/* Cleanup old maps */
2705 	if (!dev_maps)
2706 		goto out_no_old_maps;
2707 
2708 	for (j = 0; j < dev_maps->nr_ids; j++) {
2709 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 			map = xmap_dereference(dev_maps->attr_map[tci]);
2711 			if (!map)
2712 				continue;
2713 
2714 			if (copy) {
2715 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 				if (map == new_map)
2717 					continue;
2718 			}
2719 
2720 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 			kfree_rcu(map, rcu);
2722 		}
2723 	}
2724 
2725 	old_dev_maps = dev_maps;
2726 
2727 out_no_old_maps:
2728 	dev_maps = new_dev_maps;
2729 	active = true;
2730 
2731 out_no_new_maps:
2732 	if (type == XPS_CPUS)
2733 		/* update Tx queue numa node */
2734 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 					     (numa_node_id >= 0) ?
2736 					     numa_node_id : NUMA_NO_NODE);
2737 
2738 	if (!dev_maps)
2739 		goto out_no_maps;
2740 
2741 	/* removes tx-queue from unused CPUs/rx-queues */
2742 	for (j = 0; j < dev_maps->nr_ids; j++) {
2743 		tci = j * dev_maps->num_tc;
2744 
2745 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 			if (i == tc &&
2747 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 				continue;
2750 
2751 			active |= remove_xps_queue(dev_maps,
2752 						   copy ? old_dev_maps : NULL,
2753 						   tci, index);
2754 		}
2755 	}
2756 
2757 	if (old_dev_maps)
2758 		kfree_rcu(old_dev_maps, rcu);
2759 
2760 	/* free map if not active */
2761 	if (!active)
2762 		reset_xps_maps(dev, dev_maps, type);
2763 
2764 out_no_maps:
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	return 0;
2768 error:
2769 	/* remove any maps that we added */
2770 	for (j = 0; j < nr_ids; j++) {
2771 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 			map = copy ?
2774 			      xmap_dereference(dev_maps->attr_map[tci]) :
2775 			      NULL;
2776 			if (new_map && new_map != map)
2777 				kfree(new_map);
2778 		}
2779 	}
2780 
2781 	mutex_unlock(&xps_map_mutex);
2782 
2783 	kfree(new_dev_maps);
2784 	return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 			u16 index)
2790 {
2791 	int ret;
2792 
2793 	cpus_read_lock();
2794 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 	cpus_read_unlock();
2796 
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800 
2801 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805 
2806 	/* Unbind any subordinate channels */
2807 	while (txq-- != &dev->_tx[0]) {
2808 		if (txq->sb_dev)
2809 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 	}
2811 }
2812 
netdev_reset_tc(struct net_device * dev)2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 	netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 	netdev_unbind_all_sb_channels(dev);
2819 
2820 	/* Reset TC configuration of device */
2821 	dev->num_tc = 0;
2822 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 	if (tc >= dev->num_tc)
2830 		return -EINVAL;
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 	dev->tc_to_txq[tc].count = count;
2836 	dev->tc_to_txq[tc].offset = offset;
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 	if (num_tc > TC_MAX_QUEUE)
2844 		return -EINVAL;
2845 
2846 #ifdef CONFIG_XPS
2847 	netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 	netdev_unbind_all_sb_channels(dev);
2850 
2851 	dev->num_tc = num_tc;
2852 	return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 			      struct net_device *sb_dev)
2858 {
2859 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860 
2861 #ifdef CONFIG_XPS
2862 	netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866 
2867 	while (txq-- != &dev->_tx[0]) {
2868 		if (txq->sb_dev == sb_dev)
2869 			txq->sb_dev = NULL;
2870 	}
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 				 struct net_device *sb_dev,
2876 				 u8 tc, u16 count, u16 offset)
2877 {
2878 	/* Make certain the sb_dev and dev are already configured */
2879 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 		return -EINVAL;
2881 
2882 	/* We cannot hand out queues we don't have */
2883 	if ((offset + count) > dev->real_num_tx_queues)
2884 		return -EINVAL;
2885 
2886 	/* Record the mapping */
2887 	sb_dev->tc_to_txq[tc].count = count;
2888 	sb_dev->tc_to_txq[tc].offset = offset;
2889 
2890 	/* Provide a way for Tx queue to find the tc_to_txq map or
2891 	 * XPS map for itself.
2892 	 */
2893 	while (count--)
2894 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895 
2896 	return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899 
netdev_set_sb_channel(struct net_device * dev,u16 channel)2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 	/* Do not use a multiqueue device to represent a subordinate channel */
2903 	if (netif_is_multiqueue(dev))
2904 		return -ENODEV;
2905 
2906 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2907 	 * Channel 0 is meant to be "native" mode and used only to represent
2908 	 * the main root device. We allow writing 0 to reset the device back
2909 	 * to normal mode after being used as a subordinate channel.
2910 	 */
2911 	if (channel > S16_MAX)
2912 		return -EINVAL;
2913 
2914 	dev->num_tc = -channel;
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919 
2920 /*
2921  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 	bool disabling;
2927 	int rc;
2928 
2929 	disabling = txq < dev->real_num_tx_queues;
2930 
2931 	if (txq < 1 || txq > dev->num_tx_queues)
2932 		return -EINVAL;
2933 
2934 	if (dev->reg_state == NETREG_REGISTERED ||
2935 	    dev->reg_state == NETREG_UNREGISTERING) {
2936 		ASSERT_RTNL();
2937 
2938 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 						  txq);
2940 		if (rc)
2941 			return rc;
2942 
2943 		if (dev->num_tc)
2944 			netif_setup_tc(dev, txq);
2945 
2946 		dev_qdisc_change_real_num_tx(dev, txq);
2947 
2948 		dev->real_num_tx_queues = txq;
2949 
2950 		if (disabling) {
2951 			synchronize_net();
2952 			qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 			netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 		}
2957 	} else {
2958 		dev->real_num_tx_queues = txq;
2959 	}
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964 
2965 #ifdef CONFIG_SYSFS
2966 /**
2967  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2968  *	@dev: Network device
2969  *	@rxq: Actual number of RX queues
2970  *
2971  *	This must be called either with the rtnl_lock held or before
2972  *	registration of the net device.  Returns 0 on success, or a
2973  *	negative error code.  If called before registration, it always
2974  *	succeeds.
2975  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 	int rc;
2979 
2980 	if (rxq < 1 || rxq > dev->num_rx_queues)
2981 		return -EINVAL;
2982 
2983 	if (dev->reg_state == NETREG_REGISTERED) {
2984 		ASSERT_RTNL();
2985 
2986 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 						  rxq);
2988 		if (rc)
2989 			return rc;
2990 	}
2991 
2992 	dev->real_num_rx_queues = rxq;
2993 	return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997 
2998 /**
2999  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3000  *	@dev: Network device
3001  *	@txq: Actual number of TX queues
3002  *	@rxq: Actual number of RX queues
3003  *
3004  *	Set the real number of both TX and RX queues.
3005  *	Does nothing if the number of queues is already correct.
3006  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3007 int netif_set_real_num_queues(struct net_device *dev,
3008 			      unsigned int txq, unsigned int rxq)
3009 {
3010 	unsigned int old_rxq = dev->real_num_rx_queues;
3011 	int err;
3012 
3013 	if (txq < 1 || txq > dev->num_tx_queues ||
3014 	    rxq < 1 || rxq > dev->num_rx_queues)
3015 		return -EINVAL;
3016 
3017 	/* Start from increases, so the error path only does decreases -
3018 	 * decreases can't fail.
3019 	 */
3020 	if (rxq > dev->real_num_rx_queues) {
3021 		err = netif_set_real_num_rx_queues(dev, rxq);
3022 		if (err)
3023 			return err;
3024 	}
3025 	if (txq > dev->real_num_tx_queues) {
3026 		err = netif_set_real_num_tx_queues(dev, txq);
3027 		if (err)
3028 			goto undo_rx;
3029 	}
3030 	if (rxq < dev->real_num_rx_queues)
3031 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 	if (txq < dev->real_num_tx_queues)
3033 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034 
3035 	return 0;
3036 undo_rx:
3037 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 	return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041 
3042 /**
3043  * netif_set_tso_max_size() - set the max size of TSO frames supported
3044  * @dev:	netdev to update
3045  * @size:	max skb->len of a TSO frame
3046  *
3047  * Set the limit on the size of TSO super-frames the device can handle.
3048  * Unless explicitly set the stack will assume the value of
3049  * %GSO_LEGACY_MAX_SIZE.
3050  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 	if (size < READ_ONCE(dev->gso_max_size))
3055 		netif_set_gso_max_size(dev, size);
3056 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 		netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060 
3061 /**
3062  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063  * @dev:	netdev to update
3064  * @segs:	max number of TCP segments
3065  *
3066  * Set the limit on the number of TCP segments the device can generate from
3067  * a single TSO super-frame.
3068  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 	dev->tso_max_segs = segs;
3073 	if (segs < READ_ONCE(dev->gso_max_segs))
3074 		netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077 
3078 /**
3079  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080  * @to:		netdev to update
3081  * @from:	netdev from which to copy the limits
3082  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 	netif_set_tso_max_size(to, from->tso_max_size);
3086 	netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089 
3090 /**
3091  * netif_get_num_default_rss_queues - default number of RSS queues
3092  *
3093  * Default value is the number of physical cores if there are only 1 or 2, or
3094  * divided by 2 if there are more.
3095  */
netif_get_num_default_rss_queues(void)3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 	cpumask_var_t cpus;
3099 	int cpu, count = 0;
3100 
3101 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 		return 1;
3103 
3104 	cpumask_copy(cpus, cpu_online_mask);
3105 	for_each_cpu(cpu, cpus) {
3106 		++count;
3107 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 	}
3109 	free_cpumask_var(cpus);
3110 
3111 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114 
__netif_reschedule(struct Qdisc * q)3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 	struct softnet_data *sd;
3118 	unsigned long flags;
3119 
3120 	local_irq_save(flags);
3121 	sd = this_cpu_ptr(&softnet_data);
3122 	q->next_sched = NULL;
3123 	*sd->output_queue_tailp = q;
3124 	sd->output_queue_tailp = &q->next_sched;
3125 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 	local_irq_restore(flags);
3127 }
3128 
__netif_schedule(struct Qdisc * q)3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 		__netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135 
3136 struct dev_kfree_skb_cb {
3137 	enum skb_drop_reason reason;
3138 };
3139 
get_kfree_skb_cb(const struct sk_buff * skb)3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 	return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144 
netif_schedule_queue(struct netdev_queue * txq)3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 	rcu_read_lock();
3148 	if (!netif_xmit_stopped(txq)) {
3149 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3150 
3151 		__netif_schedule(q);
3152 	}
3153 	rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 		struct Qdisc *q;
3161 
3162 		rcu_read_lock();
3163 		q = rcu_dereference(dev_queue->qdisc);
3164 		__netif_schedule(q);
3165 		rcu_read_unlock();
3166 	}
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 	unsigned long flags;
3173 
3174 	if (unlikely(!skb))
3175 		return;
3176 
3177 	if (likely(refcount_read(&skb->users) == 1)) {
3178 		smp_rmb();
3179 		refcount_set(&skb->users, 0);
3180 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 		return;
3182 	}
3183 	get_kfree_skb_cb(skb)->reason = reason;
3184 	local_irq_save(flags);
3185 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 	__this_cpu_write(softnet_data.completion_queue, skb);
3187 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 	local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 	if (in_hardirq() || irqs_disabled())
3195 		dev_kfree_skb_irq_reason(skb, reason);
3196 	else
3197 		kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200 
3201 
3202 /**
3203  * netif_device_detach - mark device as removed
3204  * @dev: network device
3205  *
3206  * Mark device as removed from system and therefore no longer available.
3207  */
netif_device_detach(struct net_device * dev)3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 	    netif_running(dev)) {
3212 		netif_tx_stop_all_queues(dev);
3213 	}
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216 
3217 /**
3218  * netif_device_attach - mark device as attached
3219  * @dev: network device
3220  *
3221  * Mark device as attached from system and restart if needed.
3222  */
netif_device_attach(struct net_device * dev)3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 	    netif_running(dev)) {
3227 		netif_tx_wake_all_queues(dev);
3228 		__netdev_watchdog_up(dev);
3229 	}
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232 
3233 /*
3234  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235  * to be used as a distribution range.
3236  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 		       const struct net_device *sb_dev,
3239 		       struct sk_buff *skb)
3240 {
3241 	u32 hash;
3242 	u16 qoffset = 0;
3243 	u16 qcount = dev->real_num_tx_queues;
3244 
3245 	if (dev->num_tc) {
3246 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247 
3248 		qoffset = sb_dev->tc_to_txq[tc].offset;
3249 		qcount = sb_dev->tc_to_txq[tc].count;
3250 		if (unlikely(!qcount)) {
3251 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 					     sb_dev->name, qoffset, tc);
3253 			qoffset = 0;
3254 			qcount = dev->real_num_tx_queues;
3255 		}
3256 	}
3257 
3258 	if (skb_rx_queue_recorded(skb)) {
3259 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 		hash = skb_get_rx_queue(skb);
3261 		if (hash >= qoffset)
3262 			hash -= qoffset;
3263 		while (unlikely(hash >= qcount))
3264 			hash -= qcount;
3265 		return hash + qoffset;
3266 	}
3267 
3268 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270 
skb_warn_bad_offload(const struct sk_buff * skb)3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 	static const netdev_features_t null_features;
3274 	struct net_device *dev = skb->dev;
3275 	const char *name = "";
3276 
3277 	if (!net_ratelimit())
3278 		return;
3279 
3280 	if (dev) {
3281 		if (dev->dev.parent)
3282 			name = dev_driver_string(dev->dev.parent);
3283 		else
3284 			name = netdev_name(dev);
3285 	}
3286 	skb_dump(KERN_WARNING, skb, false);
3287 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 	     name, dev ? &dev->features : &null_features,
3289 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291 
3292 /*
3293  * Invalidate hardware checksum when packet is to be mangled, and
3294  * complete checksum manually on outgoing path.
3295  */
skb_checksum_help(struct sk_buff * skb)3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 	__wsum csum;
3299 	int ret = 0, offset;
3300 
3301 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 		goto out_set_summed;
3303 
3304 	if (unlikely(skb_is_gso(skb))) {
3305 		skb_warn_bad_offload(skb);
3306 		return -EINVAL;
3307 	}
3308 
3309 	/* Before computing a checksum, we should make sure no frag could
3310 	 * be modified by an external entity : checksum could be wrong.
3311 	 */
3312 	if (skb_has_shared_frag(skb)) {
3313 		ret = __skb_linearize(skb);
3314 		if (ret)
3315 			goto out;
3316 	}
3317 
3318 	offset = skb_checksum_start_offset(skb);
3319 	ret = -EINVAL;
3320 	if (unlikely(offset >= skb_headlen(skb))) {
3321 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 			  offset, skb_headlen(skb));
3324 		goto out;
3325 	}
3326 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327 
3328 	offset += skb->csum_offset;
3329 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 			  offset + sizeof(__sum16), skb_headlen(skb));
3333 		goto out;
3334 	}
3335 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 	if (ret)
3337 		goto out;
3338 
3339 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 	skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 	return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346 
skb_crc32c_csum_help(struct sk_buff * skb)3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 	__le32 crc32c_csum;
3350 	int ret = 0, offset, start;
3351 
3352 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 		goto out;
3354 
3355 	if (unlikely(skb_is_gso(skb)))
3356 		goto out;
3357 
3358 	/* Before computing a checksum, we should make sure no frag could
3359 	 * be modified by an external entity : checksum could be wrong.
3360 	 */
3361 	if (unlikely(skb_has_shared_frag(skb))) {
3362 		ret = __skb_linearize(skb);
3363 		if (ret)
3364 			goto out;
3365 	}
3366 	start = skb_checksum_start_offset(skb);
3367 	offset = start + offsetof(struct sctphdr, checksum);
3368 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 		ret = -EINVAL;
3370 		goto out;
3371 	}
3372 
3373 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 	if (ret)
3375 		goto out;
3376 
3377 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 						  skb->len - start, ~(__u32)0,
3379 						  crc32c_csum_stub));
3380 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3381 	skb_reset_csum_not_inet(skb);
3382 out:
3383 	return ret;
3384 }
3385 
skb_network_protocol(struct sk_buff * skb,int * depth)3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 	__be16 type = skb->protocol;
3389 
3390 	/* Tunnel gso handlers can set protocol to ethernet. */
3391 	if (type == htons(ETH_P_TEB)) {
3392 		struct ethhdr *eth;
3393 
3394 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 			return 0;
3396 
3397 		eth = (struct ethhdr *)skb->data;
3398 		type = eth->h_proto;
3399 	}
3400 
3401 	return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403 
3404 
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 	netdev_err(dev, "hw csum failure\n");
3410 	skb_dump(KERN_ERR, skb, true);
3411 	dump_stack();
3412 }
3413 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420 
3421 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 	int i;
3426 
3427 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430 
3431 			if (PageHighMem(skb_frag_page(frag)))
3432 				return 1;
3433 		}
3434 	}
3435 #endif
3436 	return 0;
3437 }
3438 
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440  * instead of standard features for the netdev.
3441  */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 					   netdev_features_t features,
3445 					   __be16 type)
3446 {
3447 	if (eth_p_mpls(type))
3448 		features &= skb->dev->mpls_features;
3449 
3450 	return features;
3451 }
3452 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	return features;
3458 }
3459 #endif
3460 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 	netdev_features_t features)
3463 {
3464 	__be16 type;
3465 
3466 	type = skb_network_protocol(skb, NULL);
3467 	features = net_mpls_features(skb, features, type);
3468 
3469 	if (skb->ip_summed != CHECKSUM_NONE &&
3470 	    !can_checksum_protocol(features, type)) {
3471 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 	}
3473 	if (illegal_highdma(skb->dev, skb))
3474 		features &= ~NETIF_F_SG;
3475 
3476 	return features;
3477 }
3478 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 					  struct net_device *dev,
3481 					  netdev_features_t features)
3482 {
3483 	return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 					     struct net_device *dev,
3489 					     netdev_features_t features)
3490 {
3491 	return vlan_features_check(skb, features);
3492 }
3493 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 					    struct net_device *dev,
3496 					    netdev_features_t features)
3497 {
3498 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499 
3500 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 		return features & ~NETIF_F_GSO_MASK;
3502 
3503 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3504 		return features & ~NETIF_F_GSO_MASK;
3505 
3506 	if (!skb_shinfo(skb)->gso_type) {
3507 		skb_warn_bad_offload(skb);
3508 		return features & ~NETIF_F_GSO_MASK;
3509 	}
3510 
3511 	/* Support for GSO partial features requires software
3512 	 * intervention before we can actually process the packets
3513 	 * so we need to strip support for any partial features now
3514 	 * and we can pull them back in after we have partially
3515 	 * segmented the frame.
3516 	 */
3517 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518 		features &= ~dev->gso_partial_features;
3519 
3520 	/* Make sure to clear the IPv4 ID mangling feature if the
3521 	 * IPv4 header has the potential to be fragmented.
3522 	 */
3523 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524 		struct iphdr *iph = skb->encapsulation ?
3525 				    inner_ip_hdr(skb) : ip_hdr(skb);
3526 
3527 		if (!(iph->frag_off & htons(IP_DF)))
3528 			features &= ~NETIF_F_TSO_MANGLEID;
3529 	}
3530 
3531 	return features;
3532 }
3533 
netif_skb_features(struct sk_buff * skb)3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536 	struct net_device *dev = skb->dev;
3537 	netdev_features_t features = dev->features;
3538 
3539 	if (skb_is_gso(skb))
3540 		features = gso_features_check(skb, dev, features);
3541 
3542 	/* If encapsulation offload request, verify we are testing
3543 	 * hardware encapsulation features instead of standard
3544 	 * features for the netdev
3545 	 */
3546 	if (skb->encapsulation)
3547 		features &= dev->hw_enc_features;
3548 
3549 	if (skb_vlan_tagged(skb))
3550 		features = netdev_intersect_features(features,
3551 						     dev->vlan_features |
3552 						     NETIF_F_HW_VLAN_CTAG_TX |
3553 						     NETIF_F_HW_VLAN_STAG_TX);
3554 
3555 	if (dev->netdev_ops->ndo_features_check)
3556 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557 								features);
3558 	else
3559 		features &= dflt_features_check(skb, dev, features);
3560 
3561 	return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566 		    struct netdev_queue *txq, bool more)
3567 {
3568 	unsigned int len;
3569 	int rc;
3570 
3571 	if (dev_nit_active(dev))
3572 		dev_queue_xmit_nit(skb, dev);
3573 
3574 	len = skb->len;
3575 	trace_net_dev_start_xmit(skb, dev);
3576 	rc = netdev_start_xmit(skb, dev, txq, more);
3577 	trace_net_dev_xmit(skb, rc, dev, len);
3578 
3579 	return rc;
3580 }
3581 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 				    struct netdev_queue *txq, int *ret)
3584 {
3585 	struct sk_buff *skb = first;
3586 	int rc = NETDEV_TX_OK;
3587 
3588 	while (skb) {
3589 		struct sk_buff *next = skb->next;
3590 
3591 		skb_mark_not_on_list(skb);
3592 		rc = xmit_one(skb, dev, txq, next != NULL);
3593 		if (unlikely(!dev_xmit_complete(rc))) {
3594 			skb->next = next;
3595 			goto out;
3596 		}
3597 
3598 		skb = next;
3599 		if (netif_tx_queue_stopped(txq) && skb) {
3600 			rc = NETDEV_TX_BUSY;
3601 			break;
3602 		}
3603 	}
3604 
3605 out:
3606 	*ret = rc;
3607 	return skb;
3608 }
3609 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 					  netdev_features_t features)
3612 {
3613 	if (skb_vlan_tag_present(skb) &&
3614 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 		skb = __vlan_hwaccel_push_inside(skb);
3616 	return skb;
3617 }
3618 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 			    const netdev_features_t features)
3621 {
3622 	if (unlikely(skb_csum_is_sctp(skb)))
3623 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 			skb_crc32c_csum_help(skb);
3625 
3626 	if (features & NETIF_F_HW_CSUM)
3627 		return 0;
3628 
3629 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3631 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3632 		    !ipv6_has_hopopt_jumbo(skb))
3633 			goto sw_checksum;
3634 
3635 		switch (skb->csum_offset) {
3636 		case offsetof(struct tcphdr, check):
3637 		case offsetof(struct udphdr, check):
3638 			return 0;
3639 		}
3640 	}
3641 
3642 sw_checksum:
3643 	return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649 	netdev_features_t features;
3650 
3651 	features = netif_skb_features(skb);
3652 	skb = validate_xmit_vlan(skb, features);
3653 	if (unlikely(!skb))
3654 		goto out_null;
3655 
3656 	skb = sk_validate_xmit_skb(skb, dev);
3657 	if (unlikely(!skb))
3658 		goto out_null;
3659 
3660 	if (netif_needs_gso(skb, features)) {
3661 		struct sk_buff *segs;
3662 
3663 		segs = skb_gso_segment(skb, features);
3664 		if (IS_ERR(segs)) {
3665 			goto out_kfree_skb;
3666 		} else if (segs) {
3667 			consume_skb(skb);
3668 			skb = segs;
3669 		}
3670 	} else {
3671 		if (skb_needs_linearize(skb, features) &&
3672 		    __skb_linearize(skb))
3673 			goto out_kfree_skb;
3674 
3675 		/* If packet is not checksummed and device does not
3676 		 * support checksumming for this protocol, complete
3677 		 * checksumming here.
3678 		 */
3679 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680 			if (skb->encapsulation)
3681 				skb_set_inner_transport_header(skb,
3682 							       skb_checksum_start_offset(skb));
3683 			else
3684 				skb_set_transport_header(skb,
3685 							 skb_checksum_start_offset(skb));
3686 			if (skb_csum_hwoffload_help(skb, features))
3687 				goto out_kfree_skb;
3688 		}
3689 	}
3690 
3691 	skb = validate_xmit_xfrm(skb, features, again);
3692 
3693 	return skb;
3694 
3695 out_kfree_skb:
3696 	kfree_skb(skb);
3697 out_null:
3698 	dev_core_stats_tx_dropped_inc(dev);
3699 	return NULL;
3700 }
3701 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704 	struct sk_buff *next, *head = NULL, *tail;
3705 
3706 	for (; skb != NULL; skb = next) {
3707 		next = skb->next;
3708 		skb_mark_not_on_list(skb);
3709 
3710 		/* in case skb wont be segmented, point to itself */
3711 		skb->prev = skb;
3712 
3713 		skb = validate_xmit_skb(skb, dev, again);
3714 		if (!skb)
3715 			continue;
3716 
3717 		if (!head)
3718 			head = skb;
3719 		else
3720 			tail->next = skb;
3721 		/* If skb was segmented, skb->prev points to
3722 		 * the last segment. If not, it still contains skb.
3723 		 */
3724 		tail = skb->prev;
3725 	}
3726 	return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729 
qdisc_pkt_len_init(struct sk_buff * skb)3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733 
3734 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3735 
3736 	/* To get more precise estimation of bytes sent on wire,
3737 	 * we add to pkt_len the headers size of all segments
3738 	 */
3739 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740 		u16 gso_segs = shinfo->gso_segs;
3741 		unsigned int hdr_len;
3742 
3743 		/* mac layer + network layer */
3744 		hdr_len = skb_transport_offset(skb);
3745 
3746 		/* + transport layer */
3747 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748 			const struct tcphdr *th;
3749 			struct tcphdr _tcphdr;
3750 
3751 			th = skb_header_pointer(skb, hdr_len,
3752 						sizeof(_tcphdr), &_tcphdr);
3753 			if (likely(th))
3754 				hdr_len += __tcp_hdrlen(th);
3755 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3756 			struct udphdr _udphdr;
3757 
3758 			if (skb_header_pointer(skb, hdr_len,
3759 					       sizeof(_udphdr), &_udphdr))
3760 				hdr_len += sizeof(struct udphdr);
3761 		}
3762 
3763 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3764 			int payload = skb->len - hdr_len;
3765 
3766 			/* Malicious packet. */
3767 			if (payload <= 0)
3768 				return;
3769 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3770 		}
3771 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3772 	}
3773 }
3774 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3775 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3776 			     struct sk_buff **to_free,
3777 			     struct netdev_queue *txq)
3778 {
3779 	int rc;
3780 
3781 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3782 	if (rc == NET_XMIT_SUCCESS)
3783 		trace_qdisc_enqueue(q, txq, skb);
3784 	return rc;
3785 }
3786 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3787 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3788 				 struct net_device *dev,
3789 				 struct netdev_queue *txq)
3790 {
3791 	spinlock_t *root_lock = qdisc_lock(q);
3792 	struct sk_buff *to_free = NULL;
3793 	bool contended;
3794 	int rc;
3795 
3796 	qdisc_calculate_pkt_len(skb, q);
3797 
3798 	if (q->flags & TCQ_F_NOLOCK) {
3799 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3800 		    qdisc_run_begin(q)) {
3801 			/* Retest nolock_qdisc_is_empty() within the protection
3802 			 * of q->seqlock to protect from racing with requeuing.
3803 			 */
3804 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3805 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3806 				__qdisc_run(q);
3807 				qdisc_run_end(q);
3808 
3809 				goto no_lock_out;
3810 			}
3811 
3812 			qdisc_bstats_cpu_update(q, skb);
3813 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3814 			    !nolock_qdisc_is_empty(q))
3815 				__qdisc_run(q);
3816 
3817 			qdisc_run_end(q);
3818 			return NET_XMIT_SUCCESS;
3819 		}
3820 
3821 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 		qdisc_run(q);
3823 
3824 no_lock_out:
3825 		if (unlikely(to_free))
3826 			kfree_skb_list_reason(to_free,
3827 					      SKB_DROP_REASON_QDISC_DROP);
3828 		return rc;
3829 	}
3830 
3831 	/*
3832 	 * Heuristic to force contended enqueues to serialize on a
3833 	 * separate lock before trying to get qdisc main lock.
3834 	 * This permits qdisc->running owner to get the lock more
3835 	 * often and dequeue packets faster.
3836 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3837 	 * and then other tasks will only enqueue packets. The packets will be
3838 	 * sent after the qdisc owner is scheduled again. To prevent this
3839 	 * scenario the task always serialize on the lock.
3840 	 */
3841 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3842 	if (unlikely(contended))
3843 		spin_lock(&q->busylock);
3844 
3845 	spin_lock(root_lock);
3846 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3847 		__qdisc_drop(skb, &to_free);
3848 		rc = NET_XMIT_DROP;
3849 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3850 		   qdisc_run_begin(q)) {
3851 		/*
3852 		 * This is a work-conserving queue; there are no old skbs
3853 		 * waiting to be sent out; and the qdisc is not running -
3854 		 * xmit the skb directly.
3855 		 */
3856 
3857 		qdisc_bstats_update(q, skb);
3858 
3859 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3860 			if (unlikely(contended)) {
3861 				spin_unlock(&q->busylock);
3862 				contended = false;
3863 			}
3864 			__qdisc_run(q);
3865 		}
3866 
3867 		qdisc_run_end(q);
3868 		rc = NET_XMIT_SUCCESS;
3869 	} else {
3870 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3871 		if (qdisc_run_begin(q)) {
3872 			if (unlikely(contended)) {
3873 				spin_unlock(&q->busylock);
3874 				contended = false;
3875 			}
3876 			__qdisc_run(q);
3877 			qdisc_run_end(q);
3878 		}
3879 	}
3880 	spin_unlock(root_lock);
3881 	if (unlikely(to_free))
3882 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3883 	if (unlikely(contended))
3884 		spin_unlock(&q->busylock);
3885 	return rc;
3886 }
3887 
3888 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3889 static void skb_update_prio(struct sk_buff *skb)
3890 {
3891 	const struct netprio_map *map;
3892 	const struct sock *sk;
3893 	unsigned int prioidx;
3894 
3895 	if (skb->priority)
3896 		return;
3897 	map = rcu_dereference_bh(skb->dev->priomap);
3898 	if (!map)
3899 		return;
3900 	sk = skb_to_full_sk(skb);
3901 	if (!sk)
3902 		return;
3903 
3904 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3905 
3906 	if (prioidx < map->priomap_len)
3907 		skb->priority = map->priomap[prioidx];
3908 }
3909 #else
3910 #define skb_update_prio(skb)
3911 #endif
3912 
3913 /**
3914  *	dev_loopback_xmit - loop back @skb
3915  *	@net: network namespace this loopback is happening in
3916  *	@sk:  sk needed to be a netfilter okfn
3917  *	@skb: buffer to transmit
3918  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3919 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3920 {
3921 	skb_reset_mac_header(skb);
3922 	__skb_pull(skb, skb_network_offset(skb));
3923 	skb->pkt_type = PACKET_LOOPBACK;
3924 	if (skb->ip_summed == CHECKSUM_NONE)
3925 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3926 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3927 	skb_dst_force(skb);
3928 	netif_rx(skb);
3929 	return 0;
3930 }
3931 EXPORT_SYMBOL(dev_loopback_xmit);
3932 
3933 #ifdef CONFIG_NET_EGRESS
3934 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3935 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3936 {
3937 	int qm = skb_get_queue_mapping(skb);
3938 
3939 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3940 }
3941 
netdev_xmit_txqueue_skipped(void)3942 static bool netdev_xmit_txqueue_skipped(void)
3943 {
3944 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3945 }
3946 
netdev_xmit_skip_txqueue(bool skip)3947 void netdev_xmit_skip_txqueue(bool skip)
3948 {
3949 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3950 }
3951 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3952 #endif /* CONFIG_NET_EGRESS */
3953 
3954 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb)3955 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3956 {
3957 	int ret = TC_ACT_UNSPEC;
3958 #ifdef CONFIG_NET_CLS_ACT
3959 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3960 	struct tcf_result res;
3961 
3962 	if (!miniq)
3963 		return ret;
3964 
3965 	tc_skb_cb(skb)->mru = 0;
3966 	tc_skb_cb(skb)->post_ct = false;
3967 
3968 	mini_qdisc_bstats_cpu_update(miniq, skb);
3969 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3970 	/* Only tcf related quirks below. */
3971 	switch (ret) {
3972 	case TC_ACT_SHOT:
3973 		mini_qdisc_qstats_cpu_drop(miniq);
3974 		break;
3975 	case TC_ACT_OK:
3976 	case TC_ACT_RECLASSIFY:
3977 		skb->tc_index = TC_H_MIN(res.classid);
3978 		break;
3979 	}
3980 #endif /* CONFIG_NET_CLS_ACT */
3981 	return ret;
3982 }
3983 
3984 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3985 
tcx_inc(void)3986 void tcx_inc(void)
3987 {
3988 	static_branch_inc(&tcx_needed_key);
3989 }
3990 
tcx_dec(void)3991 void tcx_dec(void)
3992 {
3993 	static_branch_dec(&tcx_needed_key);
3994 }
3995 
3996 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)3997 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3998 	const bool needs_mac)
3999 {
4000 	const struct bpf_mprog_fp *fp;
4001 	const struct bpf_prog *prog;
4002 	int ret = TCX_NEXT;
4003 
4004 	if (needs_mac)
4005 		__skb_push(skb, skb->mac_len);
4006 	bpf_mprog_foreach_prog(entry, fp, prog) {
4007 		bpf_compute_data_pointers(skb);
4008 		ret = bpf_prog_run(prog, skb);
4009 		if (ret != TCX_NEXT)
4010 			break;
4011 	}
4012 	if (needs_mac)
4013 		__skb_pull(skb, skb->mac_len);
4014 	return tcx_action_code(skb, ret);
4015 }
4016 
4017 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4018 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4019 		   struct net_device *orig_dev, bool *another)
4020 {
4021 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4022 	int sch_ret;
4023 
4024 	if (!entry)
4025 		return skb;
4026 	if (*pt_prev) {
4027 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4028 		*pt_prev = NULL;
4029 	}
4030 
4031 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4032 	tcx_set_ingress(skb, true);
4033 
4034 	if (static_branch_unlikely(&tcx_needed_key)) {
4035 		sch_ret = tcx_run(entry, skb, true);
4036 		if (sch_ret != TC_ACT_UNSPEC)
4037 			goto ingress_verdict;
4038 	}
4039 	sch_ret = tc_run(tcx_entry(entry), skb);
4040 ingress_verdict:
4041 	switch (sch_ret) {
4042 	case TC_ACT_REDIRECT:
4043 		/* skb_mac_header check was done by BPF, so we can safely
4044 		 * push the L2 header back before redirecting to another
4045 		 * netdev.
4046 		 */
4047 		__skb_push(skb, skb->mac_len);
4048 		if (skb_do_redirect(skb) == -EAGAIN) {
4049 			__skb_pull(skb, skb->mac_len);
4050 			*another = true;
4051 			break;
4052 		}
4053 		*ret = NET_RX_SUCCESS;
4054 		return NULL;
4055 	case TC_ACT_SHOT:
4056 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4057 		*ret = NET_RX_DROP;
4058 		return NULL;
4059 	/* used by tc_run */
4060 	case TC_ACT_STOLEN:
4061 	case TC_ACT_QUEUED:
4062 	case TC_ACT_TRAP:
4063 		consume_skb(skb);
4064 		fallthrough;
4065 	case TC_ACT_CONSUMED:
4066 		*ret = NET_RX_SUCCESS;
4067 		return NULL;
4068 	}
4069 
4070 	return skb;
4071 }
4072 
4073 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4074 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4075 {
4076 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4077 	int sch_ret;
4078 
4079 	if (!entry)
4080 		return skb;
4081 
4082 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4083 	 * already set by the caller.
4084 	 */
4085 	if (static_branch_unlikely(&tcx_needed_key)) {
4086 		sch_ret = tcx_run(entry, skb, false);
4087 		if (sch_ret != TC_ACT_UNSPEC)
4088 			goto egress_verdict;
4089 	}
4090 	sch_ret = tc_run(tcx_entry(entry), skb);
4091 egress_verdict:
4092 	switch (sch_ret) {
4093 	case TC_ACT_REDIRECT:
4094 		/* No need to push/pop skb's mac_header here on egress! */
4095 		skb_do_redirect(skb);
4096 		*ret = NET_XMIT_SUCCESS;
4097 		return NULL;
4098 	case TC_ACT_SHOT:
4099 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4100 		*ret = NET_XMIT_DROP;
4101 		return NULL;
4102 	/* used by tc_run */
4103 	case TC_ACT_STOLEN:
4104 	case TC_ACT_QUEUED:
4105 	case TC_ACT_TRAP:
4106 		consume_skb(skb);
4107 		fallthrough;
4108 	case TC_ACT_CONSUMED:
4109 		*ret = NET_XMIT_SUCCESS;
4110 		return NULL;
4111 	}
4112 
4113 	return skb;
4114 }
4115 #else
4116 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4117 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4118 		   struct net_device *orig_dev, bool *another)
4119 {
4120 	return skb;
4121 }
4122 
4123 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4124 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4125 {
4126 	return skb;
4127 }
4128 #endif /* CONFIG_NET_XGRESS */
4129 
4130 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4131 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4132 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4133 {
4134 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4135 	struct xps_map *map;
4136 	int queue_index = -1;
4137 
4138 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4139 		return queue_index;
4140 
4141 	tci *= dev_maps->num_tc;
4142 	tci += tc;
4143 
4144 	map = rcu_dereference(dev_maps->attr_map[tci]);
4145 	if (map) {
4146 		if (map->len == 1)
4147 			queue_index = map->queues[0];
4148 		else
4149 			queue_index = map->queues[reciprocal_scale(
4150 						skb_get_hash(skb), map->len)];
4151 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4152 			queue_index = -1;
4153 	}
4154 	return queue_index;
4155 }
4156 #endif
4157 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4158 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4159 			 struct sk_buff *skb)
4160 {
4161 #ifdef CONFIG_XPS
4162 	struct xps_dev_maps *dev_maps;
4163 	struct sock *sk = skb->sk;
4164 	int queue_index = -1;
4165 
4166 	if (!static_key_false(&xps_needed))
4167 		return -1;
4168 
4169 	rcu_read_lock();
4170 	if (!static_key_false(&xps_rxqs_needed))
4171 		goto get_cpus_map;
4172 
4173 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4174 	if (dev_maps) {
4175 		int tci = sk_rx_queue_get(sk);
4176 
4177 		if (tci >= 0)
4178 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4179 							  tci);
4180 	}
4181 
4182 get_cpus_map:
4183 	if (queue_index < 0) {
4184 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4185 		if (dev_maps) {
4186 			unsigned int tci = skb->sender_cpu - 1;
4187 
4188 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4189 							  tci);
4190 		}
4191 	}
4192 	rcu_read_unlock();
4193 
4194 	return queue_index;
4195 #else
4196 	return -1;
4197 #endif
4198 }
4199 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4200 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4201 		     struct net_device *sb_dev)
4202 {
4203 	return 0;
4204 }
4205 EXPORT_SYMBOL(dev_pick_tx_zero);
4206 
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4207 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4208 		       struct net_device *sb_dev)
4209 {
4210 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4211 }
4212 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4213 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4214 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4215 		     struct net_device *sb_dev)
4216 {
4217 	struct sock *sk = skb->sk;
4218 	int queue_index = sk_tx_queue_get(sk);
4219 
4220 	sb_dev = sb_dev ? : dev;
4221 
4222 	if (queue_index < 0 || skb->ooo_okay ||
4223 	    queue_index >= dev->real_num_tx_queues) {
4224 		int new_index = get_xps_queue(dev, sb_dev, skb);
4225 
4226 		if (new_index < 0)
4227 			new_index = skb_tx_hash(dev, sb_dev, skb);
4228 
4229 		if (queue_index != new_index && sk &&
4230 		    sk_fullsock(sk) &&
4231 		    rcu_access_pointer(sk->sk_dst_cache))
4232 			sk_tx_queue_set(sk, new_index);
4233 
4234 		queue_index = new_index;
4235 	}
4236 
4237 	return queue_index;
4238 }
4239 EXPORT_SYMBOL(netdev_pick_tx);
4240 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4241 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4242 					 struct sk_buff *skb,
4243 					 struct net_device *sb_dev)
4244 {
4245 	int queue_index = 0;
4246 
4247 #ifdef CONFIG_XPS
4248 	u32 sender_cpu = skb->sender_cpu - 1;
4249 
4250 	if (sender_cpu >= (u32)NR_CPUS)
4251 		skb->sender_cpu = raw_smp_processor_id() + 1;
4252 #endif
4253 
4254 	if (dev->real_num_tx_queues != 1) {
4255 		const struct net_device_ops *ops = dev->netdev_ops;
4256 
4257 		if (ops->ndo_select_queue)
4258 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4259 		else
4260 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4261 
4262 		queue_index = netdev_cap_txqueue(dev, queue_index);
4263 	}
4264 
4265 	skb_set_queue_mapping(skb, queue_index);
4266 	return netdev_get_tx_queue(dev, queue_index);
4267 }
4268 
4269 /**
4270  * __dev_queue_xmit() - transmit a buffer
4271  * @skb:	buffer to transmit
4272  * @sb_dev:	suboordinate device used for L2 forwarding offload
4273  *
4274  * Queue a buffer for transmission to a network device. The caller must
4275  * have set the device and priority and built the buffer before calling
4276  * this function. The function can be called from an interrupt.
4277  *
4278  * When calling this method, interrupts MUST be enabled. This is because
4279  * the BH enable code must have IRQs enabled so that it will not deadlock.
4280  *
4281  * Regardless of the return value, the skb is consumed, so it is currently
4282  * difficult to retry a send to this method. (You can bump the ref count
4283  * before sending to hold a reference for retry if you are careful.)
4284  *
4285  * Return:
4286  * * 0				- buffer successfully transmitted
4287  * * positive qdisc return code	- NET_XMIT_DROP etc.
4288  * * negative errno		- other errors
4289  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4290 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4291 {
4292 	struct net_device *dev = skb->dev;
4293 	struct netdev_queue *txq = NULL;
4294 	struct Qdisc *q;
4295 	int rc = -ENOMEM;
4296 	bool again = false;
4297 
4298 	skb_reset_mac_header(skb);
4299 	skb_assert_len(skb);
4300 
4301 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4302 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4303 
4304 	/* Disable soft irqs for various locks below. Also
4305 	 * stops preemption for RCU.
4306 	 */
4307 	rcu_read_lock_bh();
4308 
4309 	skb_update_prio(skb);
4310 
4311 	qdisc_pkt_len_init(skb);
4312 	tcx_set_ingress(skb, false);
4313 #ifdef CONFIG_NET_EGRESS
4314 	if (static_branch_unlikely(&egress_needed_key)) {
4315 		if (nf_hook_egress_active()) {
4316 			skb = nf_hook_egress(skb, &rc, dev);
4317 			if (!skb)
4318 				goto out;
4319 		}
4320 
4321 		netdev_xmit_skip_txqueue(false);
4322 
4323 		nf_skip_egress(skb, true);
4324 		skb = sch_handle_egress(skb, &rc, dev);
4325 		if (!skb)
4326 			goto out;
4327 		nf_skip_egress(skb, false);
4328 
4329 		if (netdev_xmit_txqueue_skipped())
4330 			txq = netdev_tx_queue_mapping(dev, skb);
4331 	}
4332 #endif
4333 	/* If device/qdisc don't need skb->dst, release it right now while
4334 	 * its hot in this cpu cache.
4335 	 */
4336 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4337 		skb_dst_drop(skb);
4338 	else
4339 		skb_dst_force(skb);
4340 
4341 	if (!txq)
4342 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4343 
4344 	q = rcu_dereference_bh(txq->qdisc);
4345 
4346 	trace_net_dev_queue(skb);
4347 	if (q->enqueue) {
4348 		rc = __dev_xmit_skb(skb, q, dev, txq);
4349 		goto out;
4350 	}
4351 
4352 	/* The device has no queue. Common case for software devices:
4353 	 * loopback, all the sorts of tunnels...
4354 
4355 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4356 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4357 	 * counters.)
4358 	 * However, it is possible, that they rely on protection
4359 	 * made by us here.
4360 
4361 	 * Check this and shot the lock. It is not prone from deadlocks.
4362 	 *Either shot noqueue qdisc, it is even simpler 8)
4363 	 */
4364 	if (dev->flags & IFF_UP) {
4365 		int cpu = smp_processor_id(); /* ok because BHs are off */
4366 
4367 		/* Other cpus might concurrently change txq->xmit_lock_owner
4368 		 * to -1 or to their cpu id, but not to our id.
4369 		 */
4370 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4371 			if (dev_xmit_recursion())
4372 				goto recursion_alert;
4373 
4374 			skb = validate_xmit_skb(skb, dev, &again);
4375 			if (!skb)
4376 				goto out;
4377 
4378 			HARD_TX_LOCK(dev, txq, cpu);
4379 
4380 			if (!netif_xmit_stopped(txq)) {
4381 				dev_xmit_recursion_inc();
4382 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4383 				dev_xmit_recursion_dec();
4384 				if (dev_xmit_complete(rc)) {
4385 					HARD_TX_UNLOCK(dev, txq);
4386 					goto out;
4387 				}
4388 			}
4389 			HARD_TX_UNLOCK(dev, txq);
4390 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4391 					     dev->name);
4392 		} else {
4393 			/* Recursion is detected! It is possible,
4394 			 * unfortunately
4395 			 */
4396 recursion_alert:
4397 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4398 					     dev->name);
4399 		}
4400 	}
4401 
4402 	rc = -ENETDOWN;
4403 	rcu_read_unlock_bh();
4404 
4405 	dev_core_stats_tx_dropped_inc(dev);
4406 	kfree_skb_list(skb);
4407 	return rc;
4408 out:
4409 	rcu_read_unlock_bh();
4410 	return rc;
4411 }
4412 EXPORT_SYMBOL(__dev_queue_xmit);
4413 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4414 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4415 {
4416 	struct net_device *dev = skb->dev;
4417 	struct sk_buff *orig_skb = skb;
4418 	struct netdev_queue *txq;
4419 	int ret = NETDEV_TX_BUSY;
4420 	bool again = false;
4421 
4422 	if (unlikely(!netif_running(dev) ||
4423 		     !netif_carrier_ok(dev)))
4424 		goto drop;
4425 
4426 	skb = validate_xmit_skb_list(skb, dev, &again);
4427 	if (skb != orig_skb)
4428 		goto drop;
4429 
4430 	skb_set_queue_mapping(skb, queue_id);
4431 	txq = skb_get_tx_queue(dev, skb);
4432 
4433 	local_bh_disable();
4434 
4435 	dev_xmit_recursion_inc();
4436 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4437 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4438 		ret = netdev_start_xmit(skb, dev, txq, false);
4439 	HARD_TX_UNLOCK(dev, txq);
4440 	dev_xmit_recursion_dec();
4441 
4442 	local_bh_enable();
4443 	return ret;
4444 drop:
4445 	dev_core_stats_tx_dropped_inc(dev);
4446 	kfree_skb_list(skb);
4447 	return NET_XMIT_DROP;
4448 }
4449 EXPORT_SYMBOL(__dev_direct_xmit);
4450 
4451 /*************************************************************************
4452  *			Receiver routines
4453  *************************************************************************/
4454 
4455 int netdev_max_backlog __read_mostly = 1000;
4456 EXPORT_SYMBOL(netdev_max_backlog);
4457 
4458 int netdev_tstamp_prequeue __read_mostly = 1;
4459 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4460 int netdev_budget __read_mostly = 300;
4461 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4462 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4463 int weight_p __read_mostly = 64;           /* old backlog weight */
4464 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4465 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4466 int dev_rx_weight __read_mostly = 64;
4467 int dev_tx_weight __read_mostly = 64;
4468 
4469 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4470 static inline void ____napi_schedule(struct softnet_data *sd,
4471 				     struct napi_struct *napi)
4472 {
4473 	struct task_struct *thread;
4474 
4475 	lockdep_assert_irqs_disabled();
4476 
4477 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4478 		/* Paired with smp_mb__before_atomic() in
4479 		 * napi_enable()/dev_set_threaded().
4480 		 * Use READ_ONCE() to guarantee a complete
4481 		 * read on napi->thread. Only call
4482 		 * wake_up_process() when it's not NULL.
4483 		 */
4484 		thread = READ_ONCE(napi->thread);
4485 		if (thread) {
4486 			/* Avoid doing set_bit() if the thread is in
4487 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4488 			 * makes sure to proceed with napi polling
4489 			 * if the thread is explicitly woken from here.
4490 			 */
4491 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4492 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4493 			wake_up_process(thread);
4494 			return;
4495 		}
4496 	}
4497 
4498 	list_add_tail(&napi->poll_list, &sd->poll_list);
4499 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4500 	/* If not called from net_rx_action()
4501 	 * we have to raise NET_RX_SOFTIRQ.
4502 	 */
4503 	if (!sd->in_net_rx_action)
4504 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4505 }
4506 
4507 #ifdef CONFIG_RPS
4508 
4509 /* One global table that all flow-based protocols share. */
4510 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4511 EXPORT_SYMBOL(rps_sock_flow_table);
4512 u32 rps_cpu_mask __read_mostly;
4513 EXPORT_SYMBOL(rps_cpu_mask);
4514 
4515 struct static_key_false rps_needed __read_mostly;
4516 EXPORT_SYMBOL(rps_needed);
4517 struct static_key_false rfs_needed __read_mostly;
4518 EXPORT_SYMBOL(rfs_needed);
4519 
4520 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4521 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4522 	    struct rps_dev_flow *rflow, u16 next_cpu)
4523 {
4524 	if (next_cpu < nr_cpu_ids) {
4525 #ifdef CONFIG_RFS_ACCEL
4526 		struct netdev_rx_queue *rxqueue;
4527 		struct rps_dev_flow_table *flow_table;
4528 		struct rps_dev_flow *old_rflow;
4529 		u32 flow_id;
4530 		u16 rxq_index;
4531 		int rc;
4532 
4533 		/* Should we steer this flow to a different hardware queue? */
4534 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4535 		    !(dev->features & NETIF_F_NTUPLE))
4536 			goto out;
4537 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4538 		if (rxq_index == skb_get_rx_queue(skb))
4539 			goto out;
4540 
4541 		rxqueue = dev->_rx + rxq_index;
4542 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4543 		if (!flow_table)
4544 			goto out;
4545 		flow_id = skb_get_hash(skb) & flow_table->mask;
4546 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4547 							rxq_index, flow_id);
4548 		if (rc < 0)
4549 			goto out;
4550 		old_rflow = rflow;
4551 		rflow = &flow_table->flows[flow_id];
4552 		rflow->filter = rc;
4553 		if (old_rflow->filter == rflow->filter)
4554 			old_rflow->filter = RPS_NO_FILTER;
4555 	out:
4556 #endif
4557 		rflow->last_qtail =
4558 			per_cpu(softnet_data, next_cpu).input_queue_head;
4559 	}
4560 
4561 	rflow->cpu = next_cpu;
4562 	return rflow;
4563 }
4564 
4565 /*
4566  * get_rps_cpu is called from netif_receive_skb and returns the target
4567  * CPU from the RPS map of the receiving queue for a given skb.
4568  * rcu_read_lock must be held on entry.
4569  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4570 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4571 		       struct rps_dev_flow **rflowp)
4572 {
4573 	const struct rps_sock_flow_table *sock_flow_table;
4574 	struct netdev_rx_queue *rxqueue = dev->_rx;
4575 	struct rps_dev_flow_table *flow_table;
4576 	struct rps_map *map;
4577 	int cpu = -1;
4578 	u32 tcpu;
4579 	u32 hash;
4580 
4581 	if (skb_rx_queue_recorded(skb)) {
4582 		u16 index = skb_get_rx_queue(skb);
4583 
4584 		if (unlikely(index >= dev->real_num_rx_queues)) {
4585 			WARN_ONCE(dev->real_num_rx_queues > 1,
4586 				  "%s received packet on queue %u, but number "
4587 				  "of RX queues is %u\n",
4588 				  dev->name, index, dev->real_num_rx_queues);
4589 			goto done;
4590 		}
4591 		rxqueue += index;
4592 	}
4593 
4594 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4595 
4596 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4597 	map = rcu_dereference(rxqueue->rps_map);
4598 	if (!flow_table && !map)
4599 		goto done;
4600 
4601 	skb_reset_network_header(skb);
4602 	hash = skb_get_hash(skb);
4603 	if (!hash)
4604 		goto done;
4605 
4606 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4607 	if (flow_table && sock_flow_table) {
4608 		struct rps_dev_flow *rflow;
4609 		u32 next_cpu;
4610 		u32 ident;
4611 
4612 		/* First check into global flow table if there is a match.
4613 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4614 		 */
4615 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4616 		if ((ident ^ hash) & ~rps_cpu_mask)
4617 			goto try_rps;
4618 
4619 		next_cpu = ident & rps_cpu_mask;
4620 
4621 		/* OK, now we know there is a match,
4622 		 * we can look at the local (per receive queue) flow table
4623 		 */
4624 		rflow = &flow_table->flows[hash & flow_table->mask];
4625 		tcpu = rflow->cpu;
4626 
4627 		/*
4628 		 * If the desired CPU (where last recvmsg was done) is
4629 		 * different from current CPU (one in the rx-queue flow
4630 		 * table entry), switch if one of the following holds:
4631 		 *   - Current CPU is unset (>= nr_cpu_ids).
4632 		 *   - Current CPU is offline.
4633 		 *   - The current CPU's queue tail has advanced beyond the
4634 		 *     last packet that was enqueued using this table entry.
4635 		 *     This guarantees that all previous packets for the flow
4636 		 *     have been dequeued, thus preserving in order delivery.
4637 		 */
4638 		if (unlikely(tcpu != next_cpu) &&
4639 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4640 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4641 		      rflow->last_qtail)) >= 0)) {
4642 			tcpu = next_cpu;
4643 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4644 		}
4645 
4646 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4647 			*rflowp = rflow;
4648 			cpu = tcpu;
4649 			goto done;
4650 		}
4651 	}
4652 
4653 try_rps:
4654 
4655 	if (map) {
4656 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4657 		if (cpu_online(tcpu)) {
4658 			cpu = tcpu;
4659 			goto done;
4660 		}
4661 	}
4662 
4663 done:
4664 	return cpu;
4665 }
4666 
4667 #ifdef CONFIG_RFS_ACCEL
4668 
4669 /**
4670  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4671  * @dev: Device on which the filter was set
4672  * @rxq_index: RX queue index
4673  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4674  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4675  *
4676  * Drivers that implement ndo_rx_flow_steer() should periodically call
4677  * this function for each installed filter and remove the filters for
4678  * which it returns %true.
4679  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4680 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4681 			 u32 flow_id, u16 filter_id)
4682 {
4683 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4684 	struct rps_dev_flow_table *flow_table;
4685 	struct rps_dev_flow *rflow;
4686 	bool expire = true;
4687 	unsigned int cpu;
4688 
4689 	rcu_read_lock();
4690 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4691 	if (flow_table && flow_id <= flow_table->mask) {
4692 		rflow = &flow_table->flows[flow_id];
4693 		cpu = READ_ONCE(rflow->cpu);
4694 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4695 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4696 			   rflow->last_qtail) <
4697 		     (int)(10 * flow_table->mask)))
4698 			expire = false;
4699 	}
4700 	rcu_read_unlock();
4701 	return expire;
4702 }
4703 EXPORT_SYMBOL(rps_may_expire_flow);
4704 
4705 #endif /* CONFIG_RFS_ACCEL */
4706 
4707 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4708 static void rps_trigger_softirq(void *data)
4709 {
4710 	struct softnet_data *sd = data;
4711 
4712 	____napi_schedule(sd, &sd->backlog);
4713 	sd->received_rps++;
4714 }
4715 
4716 #endif /* CONFIG_RPS */
4717 
4718 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4719 static void trigger_rx_softirq(void *data)
4720 {
4721 	struct softnet_data *sd = data;
4722 
4723 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4724 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4725 }
4726 
4727 /*
4728  * After we queued a packet into sd->input_pkt_queue,
4729  * we need to make sure this queue is serviced soon.
4730  *
4731  * - If this is another cpu queue, link it to our rps_ipi_list,
4732  *   and make sure we will process rps_ipi_list from net_rx_action().
4733  *
4734  * - If this is our own queue, NAPI schedule our backlog.
4735  *   Note that this also raises NET_RX_SOFTIRQ.
4736  */
napi_schedule_rps(struct softnet_data * sd)4737 static void napi_schedule_rps(struct softnet_data *sd)
4738 {
4739 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4740 
4741 #ifdef CONFIG_RPS
4742 	if (sd != mysd) {
4743 		sd->rps_ipi_next = mysd->rps_ipi_list;
4744 		mysd->rps_ipi_list = sd;
4745 
4746 		/* If not called from net_rx_action() or napi_threaded_poll()
4747 		 * we have to raise NET_RX_SOFTIRQ.
4748 		 */
4749 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4750 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4751 		return;
4752 	}
4753 #endif /* CONFIG_RPS */
4754 	__napi_schedule_irqoff(&mysd->backlog);
4755 }
4756 
4757 #ifdef CONFIG_NET_FLOW_LIMIT
4758 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4759 #endif
4760 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4761 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4762 {
4763 #ifdef CONFIG_NET_FLOW_LIMIT
4764 	struct sd_flow_limit *fl;
4765 	struct softnet_data *sd;
4766 	unsigned int old_flow, new_flow;
4767 
4768 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4769 		return false;
4770 
4771 	sd = this_cpu_ptr(&softnet_data);
4772 
4773 	rcu_read_lock();
4774 	fl = rcu_dereference(sd->flow_limit);
4775 	if (fl) {
4776 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4777 		old_flow = fl->history[fl->history_head];
4778 		fl->history[fl->history_head] = new_flow;
4779 
4780 		fl->history_head++;
4781 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4782 
4783 		if (likely(fl->buckets[old_flow]))
4784 			fl->buckets[old_flow]--;
4785 
4786 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4787 			fl->count++;
4788 			rcu_read_unlock();
4789 			return true;
4790 		}
4791 	}
4792 	rcu_read_unlock();
4793 #endif
4794 	return false;
4795 }
4796 
4797 /*
4798  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4799  * queue (may be a remote CPU queue).
4800  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4801 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4802 			      unsigned int *qtail)
4803 {
4804 	enum skb_drop_reason reason;
4805 	struct softnet_data *sd;
4806 	unsigned long flags;
4807 	unsigned int qlen;
4808 
4809 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4810 	sd = &per_cpu(softnet_data, cpu);
4811 
4812 	rps_lock_irqsave(sd, &flags);
4813 	if (!netif_running(skb->dev))
4814 		goto drop;
4815 	qlen = skb_queue_len(&sd->input_pkt_queue);
4816 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4817 		if (qlen) {
4818 enqueue:
4819 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4820 			input_queue_tail_incr_save(sd, qtail);
4821 			rps_unlock_irq_restore(sd, &flags);
4822 			return NET_RX_SUCCESS;
4823 		}
4824 
4825 		/* Schedule NAPI for backlog device
4826 		 * We can use non atomic operation since we own the queue lock
4827 		 */
4828 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4829 			napi_schedule_rps(sd);
4830 		goto enqueue;
4831 	}
4832 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4833 
4834 drop:
4835 	sd->dropped++;
4836 	rps_unlock_irq_restore(sd, &flags);
4837 
4838 	dev_core_stats_rx_dropped_inc(skb->dev);
4839 	kfree_skb_reason(skb, reason);
4840 	return NET_RX_DROP;
4841 }
4842 
netif_get_rxqueue(struct sk_buff * skb)4843 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4844 {
4845 	struct net_device *dev = skb->dev;
4846 	struct netdev_rx_queue *rxqueue;
4847 
4848 	rxqueue = dev->_rx;
4849 
4850 	if (skb_rx_queue_recorded(skb)) {
4851 		u16 index = skb_get_rx_queue(skb);
4852 
4853 		if (unlikely(index >= dev->real_num_rx_queues)) {
4854 			WARN_ONCE(dev->real_num_rx_queues > 1,
4855 				  "%s received packet on queue %u, but number "
4856 				  "of RX queues is %u\n",
4857 				  dev->name, index, dev->real_num_rx_queues);
4858 
4859 			return rxqueue; /* Return first rxqueue */
4860 		}
4861 		rxqueue += index;
4862 	}
4863 	return rxqueue;
4864 }
4865 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4866 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4867 			     struct bpf_prog *xdp_prog)
4868 {
4869 	void *orig_data, *orig_data_end, *hard_start;
4870 	struct netdev_rx_queue *rxqueue;
4871 	bool orig_bcast, orig_host;
4872 	u32 mac_len, frame_sz;
4873 	__be16 orig_eth_type;
4874 	struct ethhdr *eth;
4875 	u32 metalen, act;
4876 	int off;
4877 
4878 	/* The XDP program wants to see the packet starting at the MAC
4879 	 * header.
4880 	 */
4881 	mac_len = skb->data - skb_mac_header(skb);
4882 	hard_start = skb->data - skb_headroom(skb);
4883 
4884 	/* SKB "head" area always have tailroom for skb_shared_info */
4885 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4886 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4887 
4888 	rxqueue = netif_get_rxqueue(skb);
4889 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4890 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4891 			 skb_headlen(skb) + mac_len, true);
4892 
4893 	orig_data_end = xdp->data_end;
4894 	orig_data = xdp->data;
4895 	eth = (struct ethhdr *)xdp->data;
4896 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4897 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4898 	orig_eth_type = eth->h_proto;
4899 
4900 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4901 
4902 	/* check if bpf_xdp_adjust_head was used */
4903 	off = xdp->data - orig_data;
4904 	if (off) {
4905 		if (off > 0)
4906 			__skb_pull(skb, off);
4907 		else if (off < 0)
4908 			__skb_push(skb, -off);
4909 
4910 		skb->mac_header += off;
4911 		skb_reset_network_header(skb);
4912 	}
4913 
4914 	/* check if bpf_xdp_adjust_tail was used */
4915 	off = xdp->data_end - orig_data_end;
4916 	if (off != 0) {
4917 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4918 		skb->len += off; /* positive on grow, negative on shrink */
4919 	}
4920 
4921 	/* check if XDP changed eth hdr such SKB needs update */
4922 	eth = (struct ethhdr *)xdp->data;
4923 	if ((orig_eth_type != eth->h_proto) ||
4924 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4925 						  skb->dev->dev_addr)) ||
4926 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4927 		__skb_push(skb, ETH_HLEN);
4928 		skb->pkt_type = PACKET_HOST;
4929 		skb->protocol = eth_type_trans(skb, skb->dev);
4930 	}
4931 
4932 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4933 	 * before calling us again on redirect path. We do not call do_redirect
4934 	 * as we leave that up to the caller.
4935 	 *
4936 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4937 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4938 	 */
4939 	switch (act) {
4940 	case XDP_REDIRECT:
4941 	case XDP_TX:
4942 		__skb_push(skb, mac_len);
4943 		break;
4944 	case XDP_PASS:
4945 		metalen = xdp->data - xdp->data_meta;
4946 		if (metalen)
4947 			skb_metadata_set(skb, metalen);
4948 		break;
4949 	}
4950 
4951 	return act;
4952 }
4953 
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4954 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4955 				     struct xdp_buff *xdp,
4956 				     struct bpf_prog *xdp_prog)
4957 {
4958 	u32 act = XDP_DROP;
4959 
4960 	/* Reinjected packets coming from act_mirred or similar should
4961 	 * not get XDP generic processing.
4962 	 */
4963 	if (skb_is_redirected(skb))
4964 		return XDP_PASS;
4965 
4966 	/* XDP packets must be linear and must have sufficient headroom
4967 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4968 	 * native XDP provides, thus we need to do it here as well.
4969 	 */
4970 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4971 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4972 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4973 		int troom = skb->tail + skb->data_len - skb->end;
4974 
4975 		/* In case we have to go down the path and also linearize,
4976 		 * then lets do the pskb_expand_head() work just once here.
4977 		 */
4978 		if (pskb_expand_head(skb,
4979 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4980 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4981 			goto do_drop;
4982 		if (skb_linearize(skb))
4983 			goto do_drop;
4984 	}
4985 
4986 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4987 	switch (act) {
4988 	case XDP_REDIRECT:
4989 	case XDP_TX:
4990 	case XDP_PASS:
4991 		break;
4992 	default:
4993 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4994 		fallthrough;
4995 	case XDP_ABORTED:
4996 		trace_xdp_exception(skb->dev, xdp_prog, act);
4997 		fallthrough;
4998 	case XDP_DROP:
4999 	do_drop:
5000 		kfree_skb(skb);
5001 		break;
5002 	}
5003 
5004 	return act;
5005 }
5006 
5007 /* When doing generic XDP we have to bypass the qdisc layer and the
5008  * network taps in order to match in-driver-XDP behavior. This also means
5009  * that XDP packets are able to starve other packets going through a qdisc,
5010  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5011  * queues, so they do not have this starvation issue.
5012  */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5013 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5014 {
5015 	struct net_device *dev = skb->dev;
5016 	struct netdev_queue *txq;
5017 	bool free_skb = true;
5018 	int cpu, rc;
5019 
5020 	txq = netdev_core_pick_tx(dev, skb, NULL);
5021 	cpu = smp_processor_id();
5022 	HARD_TX_LOCK(dev, txq, cpu);
5023 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5024 		rc = netdev_start_xmit(skb, dev, txq, 0);
5025 		if (dev_xmit_complete(rc))
5026 			free_skb = false;
5027 	}
5028 	HARD_TX_UNLOCK(dev, txq);
5029 	if (free_skb) {
5030 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5031 		dev_core_stats_tx_dropped_inc(dev);
5032 		kfree_skb(skb);
5033 	}
5034 }
5035 
5036 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5037 
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5038 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5039 {
5040 	if (xdp_prog) {
5041 		struct xdp_buff xdp;
5042 		u32 act;
5043 		int err;
5044 
5045 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5046 		if (act != XDP_PASS) {
5047 			switch (act) {
5048 			case XDP_REDIRECT:
5049 				err = xdp_do_generic_redirect(skb->dev, skb,
5050 							      &xdp, xdp_prog);
5051 				if (err)
5052 					goto out_redir;
5053 				break;
5054 			case XDP_TX:
5055 				generic_xdp_tx(skb, xdp_prog);
5056 				break;
5057 			}
5058 			return XDP_DROP;
5059 		}
5060 	}
5061 	return XDP_PASS;
5062 out_redir:
5063 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5064 	return XDP_DROP;
5065 }
5066 EXPORT_SYMBOL_GPL(do_xdp_generic);
5067 
netif_rx_internal(struct sk_buff * skb)5068 static int netif_rx_internal(struct sk_buff *skb)
5069 {
5070 	int ret;
5071 
5072 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5073 
5074 	trace_netif_rx(skb);
5075 
5076 #ifdef CONFIG_RPS
5077 	if (static_branch_unlikely(&rps_needed)) {
5078 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5079 		int cpu;
5080 
5081 		rcu_read_lock();
5082 
5083 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5084 		if (cpu < 0)
5085 			cpu = smp_processor_id();
5086 
5087 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5088 
5089 		rcu_read_unlock();
5090 	} else
5091 #endif
5092 	{
5093 		unsigned int qtail;
5094 
5095 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5096 	}
5097 	return ret;
5098 }
5099 
5100 /**
5101  *	__netif_rx	-	Slightly optimized version of netif_rx
5102  *	@skb: buffer to post
5103  *
5104  *	This behaves as netif_rx except that it does not disable bottom halves.
5105  *	As a result this function may only be invoked from the interrupt context
5106  *	(either hard or soft interrupt).
5107  */
__netif_rx(struct sk_buff * skb)5108 int __netif_rx(struct sk_buff *skb)
5109 {
5110 	int ret;
5111 
5112 	lockdep_assert_once(hardirq_count() | softirq_count());
5113 
5114 	trace_netif_rx_entry(skb);
5115 	ret = netif_rx_internal(skb);
5116 	trace_netif_rx_exit(ret);
5117 	return ret;
5118 }
5119 EXPORT_SYMBOL(__netif_rx);
5120 
5121 /**
5122  *	netif_rx	-	post buffer to the network code
5123  *	@skb: buffer to post
5124  *
5125  *	This function receives a packet from a device driver and queues it for
5126  *	the upper (protocol) levels to process via the backlog NAPI device. It
5127  *	always succeeds. The buffer may be dropped during processing for
5128  *	congestion control or by the protocol layers.
5129  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5130  *	driver should use NAPI and GRO.
5131  *	This function can used from interrupt and from process context. The
5132  *	caller from process context must not disable interrupts before invoking
5133  *	this function.
5134  *
5135  *	return values:
5136  *	NET_RX_SUCCESS	(no congestion)
5137  *	NET_RX_DROP     (packet was dropped)
5138  *
5139  */
netif_rx(struct sk_buff * skb)5140 int netif_rx(struct sk_buff *skb)
5141 {
5142 	bool need_bh_off = !(hardirq_count() | softirq_count());
5143 	int ret;
5144 
5145 	if (need_bh_off)
5146 		local_bh_disable();
5147 	trace_netif_rx_entry(skb);
5148 	ret = netif_rx_internal(skb);
5149 	trace_netif_rx_exit(ret);
5150 	if (need_bh_off)
5151 		local_bh_enable();
5152 	return ret;
5153 }
5154 EXPORT_SYMBOL(netif_rx);
5155 
net_tx_action(struct softirq_action * h)5156 static __latent_entropy void net_tx_action(struct softirq_action *h)
5157 {
5158 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5159 
5160 	if (sd->completion_queue) {
5161 		struct sk_buff *clist;
5162 
5163 		local_irq_disable();
5164 		clist = sd->completion_queue;
5165 		sd->completion_queue = NULL;
5166 		local_irq_enable();
5167 
5168 		while (clist) {
5169 			struct sk_buff *skb = clist;
5170 
5171 			clist = clist->next;
5172 
5173 			WARN_ON(refcount_read(&skb->users));
5174 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5175 				trace_consume_skb(skb, net_tx_action);
5176 			else
5177 				trace_kfree_skb(skb, net_tx_action,
5178 						get_kfree_skb_cb(skb)->reason);
5179 
5180 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5181 				__kfree_skb(skb);
5182 			else
5183 				__napi_kfree_skb(skb,
5184 						 get_kfree_skb_cb(skb)->reason);
5185 		}
5186 	}
5187 
5188 	if (sd->output_queue) {
5189 		struct Qdisc *head;
5190 
5191 		local_irq_disable();
5192 		head = sd->output_queue;
5193 		sd->output_queue = NULL;
5194 		sd->output_queue_tailp = &sd->output_queue;
5195 		local_irq_enable();
5196 
5197 		rcu_read_lock();
5198 
5199 		while (head) {
5200 			struct Qdisc *q = head;
5201 			spinlock_t *root_lock = NULL;
5202 
5203 			head = head->next_sched;
5204 
5205 			/* We need to make sure head->next_sched is read
5206 			 * before clearing __QDISC_STATE_SCHED
5207 			 */
5208 			smp_mb__before_atomic();
5209 
5210 			if (!(q->flags & TCQ_F_NOLOCK)) {
5211 				root_lock = qdisc_lock(q);
5212 				spin_lock(root_lock);
5213 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5214 						     &q->state))) {
5215 				/* There is a synchronize_net() between
5216 				 * STATE_DEACTIVATED flag being set and
5217 				 * qdisc_reset()/some_qdisc_is_busy() in
5218 				 * dev_deactivate(), so we can safely bail out
5219 				 * early here to avoid data race between
5220 				 * qdisc_deactivate() and some_qdisc_is_busy()
5221 				 * for lockless qdisc.
5222 				 */
5223 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5224 				continue;
5225 			}
5226 
5227 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5228 			qdisc_run(q);
5229 			if (root_lock)
5230 				spin_unlock(root_lock);
5231 		}
5232 
5233 		rcu_read_unlock();
5234 	}
5235 
5236 	xfrm_dev_backlog(sd);
5237 }
5238 
5239 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5240 /* This hook is defined here for ATM LANE */
5241 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5242 			     unsigned char *addr) __read_mostly;
5243 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5244 #endif
5245 
5246 /**
5247  *	netdev_is_rx_handler_busy - check if receive handler is registered
5248  *	@dev: device to check
5249  *
5250  *	Check if a receive handler is already registered for a given device.
5251  *	Return true if there one.
5252  *
5253  *	The caller must hold the rtnl_mutex.
5254  */
netdev_is_rx_handler_busy(struct net_device * dev)5255 bool netdev_is_rx_handler_busy(struct net_device *dev)
5256 {
5257 	ASSERT_RTNL();
5258 	return dev && rtnl_dereference(dev->rx_handler);
5259 }
5260 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5261 
5262 /**
5263  *	netdev_rx_handler_register - register receive handler
5264  *	@dev: device to register a handler for
5265  *	@rx_handler: receive handler to register
5266  *	@rx_handler_data: data pointer that is used by rx handler
5267  *
5268  *	Register a receive handler for a device. This handler will then be
5269  *	called from __netif_receive_skb. A negative errno code is returned
5270  *	on a failure.
5271  *
5272  *	The caller must hold the rtnl_mutex.
5273  *
5274  *	For a general description of rx_handler, see enum rx_handler_result.
5275  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5276 int netdev_rx_handler_register(struct net_device *dev,
5277 			       rx_handler_func_t *rx_handler,
5278 			       void *rx_handler_data)
5279 {
5280 	if (netdev_is_rx_handler_busy(dev))
5281 		return -EBUSY;
5282 
5283 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5284 		return -EINVAL;
5285 
5286 	/* Note: rx_handler_data must be set before rx_handler */
5287 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5288 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5289 
5290 	return 0;
5291 }
5292 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5293 
5294 /**
5295  *	netdev_rx_handler_unregister - unregister receive handler
5296  *	@dev: device to unregister a handler from
5297  *
5298  *	Unregister a receive handler from a device.
5299  *
5300  *	The caller must hold the rtnl_mutex.
5301  */
netdev_rx_handler_unregister(struct net_device * dev)5302 void netdev_rx_handler_unregister(struct net_device *dev)
5303 {
5304 
5305 	ASSERT_RTNL();
5306 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5307 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5308 	 * section has a guarantee to see a non NULL rx_handler_data
5309 	 * as well.
5310 	 */
5311 	synchronize_net();
5312 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5313 }
5314 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5315 
5316 /*
5317  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5318  * the special handling of PFMEMALLOC skbs.
5319  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5320 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5321 {
5322 	switch (skb->protocol) {
5323 	case htons(ETH_P_ARP):
5324 	case htons(ETH_P_IP):
5325 	case htons(ETH_P_IPV6):
5326 	case htons(ETH_P_8021Q):
5327 	case htons(ETH_P_8021AD):
5328 		return true;
5329 	default:
5330 		return false;
5331 	}
5332 }
5333 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5334 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5335 			     int *ret, struct net_device *orig_dev)
5336 {
5337 	if (nf_hook_ingress_active(skb)) {
5338 		int ingress_retval;
5339 
5340 		if (*pt_prev) {
5341 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5342 			*pt_prev = NULL;
5343 		}
5344 
5345 		rcu_read_lock();
5346 		ingress_retval = nf_hook_ingress(skb);
5347 		rcu_read_unlock();
5348 		return ingress_retval;
5349 	}
5350 	return 0;
5351 }
5352 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5353 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5354 				    struct packet_type **ppt_prev)
5355 {
5356 	struct packet_type *ptype, *pt_prev;
5357 	rx_handler_func_t *rx_handler;
5358 	struct sk_buff *skb = *pskb;
5359 	struct net_device *orig_dev;
5360 	bool deliver_exact = false;
5361 	int ret = NET_RX_DROP;
5362 	__be16 type;
5363 
5364 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5365 
5366 	trace_netif_receive_skb(skb);
5367 
5368 	orig_dev = skb->dev;
5369 
5370 	skb_reset_network_header(skb);
5371 	if (!skb_transport_header_was_set(skb))
5372 		skb_reset_transport_header(skb);
5373 	skb_reset_mac_len(skb);
5374 
5375 	pt_prev = NULL;
5376 
5377 another_round:
5378 	skb->skb_iif = skb->dev->ifindex;
5379 
5380 	__this_cpu_inc(softnet_data.processed);
5381 
5382 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5383 		int ret2;
5384 
5385 		migrate_disable();
5386 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5387 		migrate_enable();
5388 
5389 		if (ret2 != XDP_PASS) {
5390 			ret = NET_RX_DROP;
5391 			goto out;
5392 		}
5393 	}
5394 
5395 	if (eth_type_vlan(skb->protocol)) {
5396 		skb = skb_vlan_untag(skb);
5397 		if (unlikely(!skb))
5398 			goto out;
5399 	}
5400 
5401 	if (skb_skip_tc_classify(skb))
5402 		goto skip_classify;
5403 
5404 	if (pfmemalloc)
5405 		goto skip_taps;
5406 
5407 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5408 		if (pt_prev)
5409 			ret = deliver_skb(skb, pt_prev, orig_dev);
5410 		pt_prev = ptype;
5411 	}
5412 
5413 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5414 		if (pt_prev)
5415 			ret = deliver_skb(skb, pt_prev, orig_dev);
5416 		pt_prev = ptype;
5417 	}
5418 
5419 skip_taps:
5420 #ifdef CONFIG_NET_INGRESS
5421 	if (static_branch_unlikely(&ingress_needed_key)) {
5422 		bool another = false;
5423 
5424 		nf_skip_egress(skb, true);
5425 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5426 					 &another);
5427 		if (another)
5428 			goto another_round;
5429 		if (!skb)
5430 			goto out;
5431 
5432 		nf_skip_egress(skb, false);
5433 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5434 			goto out;
5435 	}
5436 #endif
5437 	skb_reset_redirect(skb);
5438 skip_classify:
5439 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5440 		goto drop;
5441 
5442 	if (skb_vlan_tag_present(skb)) {
5443 		if (pt_prev) {
5444 			ret = deliver_skb(skb, pt_prev, orig_dev);
5445 			pt_prev = NULL;
5446 		}
5447 		if (vlan_do_receive(&skb))
5448 			goto another_round;
5449 		else if (unlikely(!skb))
5450 			goto out;
5451 	}
5452 
5453 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5454 	if (rx_handler) {
5455 		if (pt_prev) {
5456 			ret = deliver_skb(skb, pt_prev, orig_dev);
5457 			pt_prev = NULL;
5458 		}
5459 		switch (rx_handler(&skb)) {
5460 		case RX_HANDLER_CONSUMED:
5461 			ret = NET_RX_SUCCESS;
5462 			goto out;
5463 		case RX_HANDLER_ANOTHER:
5464 			goto another_round;
5465 		case RX_HANDLER_EXACT:
5466 			deliver_exact = true;
5467 			break;
5468 		case RX_HANDLER_PASS:
5469 			break;
5470 		default:
5471 			BUG();
5472 		}
5473 	}
5474 
5475 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5476 check_vlan_id:
5477 		if (skb_vlan_tag_get_id(skb)) {
5478 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5479 			 * find vlan device.
5480 			 */
5481 			skb->pkt_type = PACKET_OTHERHOST;
5482 		} else if (eth_type_vlan(skb->protocol)) {
5483 			/* Outer header is 802.1P with vlan 0, inner header is
5484 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5485 			 * not find vlan dev for vlan id 0.
5486 			 */
5487 			__vlan_hwaccel_clear_tag(skb);
5488 			skb = skb_vlan_untag(skb);
5489 			if (unlikely(!skb))
5490 				goto out;
5491 			if (vlan_do_receive(&skb))
5492 				/* After stripping off 802.1P header with vlan 0
5493 				 * vlan dev is found for inner header.
5494 				 */
5495 				goto another_round;
5496 			else if (unlikely(!skb))
5497 				goto out;
5498 			else
5499 				/* We have stripped outer 802.1P vlan 0 header.
5500 				 * But could not find vlan dev.
5501 				 * check again for vlan id to set OTHERHOST.
5502 				 */
5503 				goto check_vlan_id;
5504 		}
5505 		/* Note: we might in the future use prio bits
5506 		 * and set skb->priority like in vlan_do_receive()
5507 		 * For the time being, just ignore Priority Code Point
5508 		 */
5509 		__vlan_hwaccel_clear_tag(skb);
5510 	}
5511 
5512 	type = skb->protocol;
5513 
5514 	/* deliver only exact match when indicated */
5515 	if (likely(!deliver_exact)) {
5516 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5517 				       &ptype_base[ntohs(type) &
5518 						   PTYPE_HASH_MASK]);
5519 	}
5520 
5521 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5522 			       &orig_dev->ptype_specific);
5523 
5524 	if (unlikely(skb->dev != orig_dev)) {
5525 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5526 				       &skb->dev->ptype_specific);
5527 	}
5528 
5529 	if (pt_prev) {
5530 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5531 			goto drop;
5532 		*ppt_prev = pt_prev;
5533 	} else {
5534 drop:
5535 		if (!deliver_exact)
5536 			dev_core_stats_rx_dropped_inc(skb->dev);
5537 		else
5538 			dev_core_stats_rx_nohandler_inc(skb->dev);
5539 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5540 		/* Jamal, now you will not able to escape explaining
5541 		 * me how you were going to use this. :-)
5542 		 */
5543 		ret = NET_RX_DROP;
5544 	}
5545 
5546 out:
5547 	/* The invariant here is that if *ppt_prev is not NULL
5548 	 * then skb should also be non-NULL.
5549 	 *
5550 	 * Apparently *ppt_prev assignment above holds this invariant due to
5551 	 * skb dereferencing near it.
5552 	 */
5553 	*pskb = skb;
5554 	return ret;
5555 }
5556 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5557 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5558 {
5559 	struct net_device *orig_dev = skb->dev;
5560 	struct packet_type *pt_prev = NULL;
5561 	int ret;
5562 
5563 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5564 	if (pt_prev)
5565 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5566 					 skb->dev, pt_prev, orig_dev);
5567 	return ret;
5568 }
5569 
5570 /**
5571  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5572  *	@skb: buffer to process
5573  *
5574  *	More direct receive version of netif_receive_skb().  It should
5575  *	only be used by callers that have a need to skip RPS and Generic XDP.
5576  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5577  *
5578  *	This function may only be called from softirq context and interrupts
5579  *	should be enabled.
5580  *
5581  *	Return values (usually ignored):
5582  *	NET_RX_SUCCESS: no congestion
5583  *	NET_RX_DROP: packet was dropped
5584  */
netif_receive_skb_core(struct sk_buff * skb)5585 int netif_receive_skb_core(struct sk_buff *skb)
5586 {
5587 	int ret;
5588 
5589 	rcu_read_lock();
5590 	ret = __netif_receive_skb_one_core(skb, false);
5591 	rcu_read_unlock();
5592 
5593 	return ret;
5594 }
5595 EXPORT_SYMBOL(netif_receive_skb_core);
5596 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5597 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5598 						  struct packet_type *pt_prev,
5599 						  struct net_device *orig_dev)
5600 {
5601 	struct sk_buff *skb, *next;
5602 
5603 	if (!pt_prev)
5604 		return;
5605 	if (list_empty(head))
5606 		return;
5607 	if (pt_prev->list_func != NULL)
5608 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5609 				   ip_list_rcv, head, pt_prev, orig_dev);
5610 	else
5611 		list_for_each_entry_safe(skb, next, head, list) {
5612 			skb_list_del_init(skb);
5613 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5614 		}
5615 }
5616 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5617 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5618 {
5619 	/* Fast-path assumptions:
5620 	 * - There is no RX handler.
5621 	 * - Only one packet_type matches.
5622 	 * If either of these fails, we will end up doing some per-packet
5623 	 * processing in-line, then handling the 'last ptype' for the whole
5624 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5625 	 * because the 'last ptype' must be constant across the sublist, and all
5626 	 * other ptypes are handled per-packet.
5627 	 */
5628 	/* Current (common) ptype of sublist */
5629 	struct packet_type *pt_curr = NULL;
5630 	/* Current (common) orig_dev of sublist */
5631 	struct net_device *od_curr = NULL;
5632 	struct list_head sublist;
5633 	struct sk_buff *skb, *next;
5634 
5635 	INIT_LIST_HEAD(&sublist);
5636 	list_for_each_entry_safe(skb, next, head, list) {
5637 		struct net_device *orig_dev = skb->dev;
5638 		struct packet_type *pt_prev = NULL;
5639 
5640 		skb_list_del_init(skb);
5641 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5642 		if (!pt_prev)
5643 			continue;
5644 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5645 			/* dispatch old sublist */
5646 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5647 			/* start new sublist */
5648 			INIT_LIST_HEAD(&sublist);
5649 			pt_curr = pt_prev;
5650 			od_curr = orig_dev;
5651 		}
5652 		list_add_tail(&skb->list, &sublist);
5653 	}
5654 
5655 	/* dispatch final sublist */
5656 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5657 }
5658 
__netif_receive_skb(struct sk_buff * skb)5659 static int __netif_receive_skb(struct sk_buff *skb)
5660 {
5661 	int ret;
5662 
5663 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5664 		unsigned int noreclaim_flag;
5665 
5666 		/*
5667 		 * PFMEMALLOC skbs are special, they should
5668 		 * - be delivered to SOCK_MEMALLOC sockets only
5669 		 * - stay away from userspace
5670 		 * - have bounded memory usage
5671 		 *
5672 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5673 		 * context down to all allocation sites.
5674 		 */
5675 		noreclaim_flag = memalloc_noreclaim_save();
5676 		ret = __netif_receive_skb_one_core(skb, true);
5677 		memalloc_noreclaim_restore(noreclaim_flag);
5678 	} else
5679 		ret = __netif_receive_skb_one_core(skb, false);
5680 
5681 	return ret;
5682 }
5683 
__netif_receive_skb_list(struct list_head * head)5684 static void __netif_receive_skb_list(struct list_head *head)
5685 {
5686 	unsigned long noreclaim_flag = 0;
5687 	struct sk_buff *skb, *next;
5688 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5689 
5690 	list_for_each_entry_safe(skb, next, head, list) {
5691 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5692 			struct list_head sublist;
5693 
5694 			/* Handle the previous sublist */
5695 			list_cut_before(&sublist, head, &skb->list);
5696 			if (!list_empty(&sublist))
5697 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5698 			pfmemalloc = !pfmemalloc;
5699 			/* See comments in __netif_receive_skb */
5700 			if (pfmemalloc)
5701 				noreclaim_flag = memalloc_noreclaim_save();
5702 			else
5703 				memalloc_noreclaim_restore(noreclaim_flag);
5704 		}
5705 	}
5706 	/* Handle the remaining sublist */
5707 	if (!list_empty(head))
5708 		__netif_receive_skb_list_core(head, pfmemalloc);
5709 	/* Restore pflags */
5710 	if (pfmemalloc)
5711 		memalloc_noreclaim_restore(noreclaim_flag);
5712 }
5713 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5714 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5715 {
5716 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5717 	struct bpf_prog *new = xdp->prog;
5718 	int ret = 0;
5719 
5720 	switch (xdp->command) {
5721 	case XDP_SETUP_PROG:
5722 		rcu_assign_pointer(dev->xdp_prog, new);
5723 		if (old)
5724 			bpf_prog_put(old);
5725 
5726 		if (old && !new) {
5727 			static_branch_dec(&generic_xdp_needed_key);
5728 		} else if (new && !old) {
5729 			static_branch_inc(&generic_xdp_needed_key);
5730 			dev_disable_lro(dev);
5731 			dev_disable_gro_hw(dev);
5732 		}
5733 		break;
5734 
5735 	default:
5736 		ret = -EINVAL;
5737 		break;
5738 	}
5739 
5740 	return ret;
5741 }
5742 
netif_receive_skb_internal(struct sk_buff * skb)5743 static int netif_receive_skb_internal(struct sk_buff *skb)
5744 {
5745 	int ret;
5746 
5747 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5748 
5749 	if (skb_defer_rx_timestamp(skb))
5750 		return NET_RX_SUCCESS;
5751 
5752 	rcu_read_lock();
5753 #ifdef CONFIG_RPS
5754 	if (static_branch_unlikely(&rps_needed)) {
5755 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5756 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5757 
5758 		if (cpu >= 0) {
5759 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5760 			rcu_read_unlock();
5761 			return ret;
5762 		}
5763 	}
5764 #endif
5765 	ret = __netif_receive_skb(skb);
5766 	rcu_read_unlock();
5767 	return ret;
5768 }
5769 
netif_receive_skb_list_internal(struct list_head * head)5770 void netif_receive_skb_list_internal(struct list_head *head)
5771 {
5772 	struct sk_buff *skb, *next;
5773 	struct list_head sublist;
5774 
5775 	INIT_LIST_HEAD(&sublist);
5776 	list_for_each_entry_safe(skb, next, head, list) {
5777 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5778 		skb_list_del_init(skb);
5779 		if (!skb_defer_rx_timestamp(skb))
5780 			list_add_tail(&skb->list, &sublist);
5781 	}
5782 	list_splice_init(&sublist, head);
5783 
5784 	rcu_read_lock();
5785 #ifdef CONFIG_RPS
5786 	if (static_branch_unlikely(&rps_needed)) {
5787 		list_for_each_entry_safe(skb, next, head, list) {
5788 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5789 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5790 
5791 			if (cpu >= 0) {
5792 				/* Will be handled, remove from list */
5793 				skb_list_del_init(skb);
5794 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5795 			}
5796 		}
5797 	}
5798 #endif
5799 	__netif_receive_skb_list(head);
5800 	rcu_read_unlock();
5801 }
5802 
5803 /**
5804  *	netif_receive_skb - process receive buffer from network
5805  *	@skb: buffer to process
5806  *
5807  *	netif_receive_skb() is the main receive data processing function.
5808  *	It always succeeds. The buffer may be dropped during processing
5809  *	for congestion control or by the protocol layers.
5810  *
5811  *	This function may only be called from softirq context and interrupts
5812  *	should be enabled.
5813  *
5814  *	Return values (usually ignored):
5815  *	NET_RX_SUCCESS: no congestion
5816  *	NET_RX_DROP: packet was dropped
5817  */
netif_receive_skb(struct sk_buff * skb)5818 int netif_receive_skb(struct sk_buff *skb)
5819 {
5820 	int ret;
5821 
5822 	trace_netif_receive_skb_entry(skb);
5823 
5824 	ret = netif_receive_skb_internal(skb);
5825 	trace_netif_receive_skb_exit(ret);
5826 
5827 	return ret;
5828 }
5829 EXPORT_SYMBOL(netif_receive_skb);
5830 
5831 /**
5832  *	netif_receive_skb_list - process many receive buffers from network
5833  *	@head: list of skbs to process.
5834  *
5835  *	Since return value of netif_receive_skb() is normally ignored, and
5836  *	wouldn't be meaningful for a list, this function returns void.
5837  *
5838  *	This function may only be called from softirq context and interrupts
5839  *	should be enabled.
5840  */
netif_receive_skb_list(struct list_head * head)5841 void netif_receive_skb_list(struct list_head *head)
5842 {
5843 	struct sk_buff *skb;
5844 
5845 	if (list_empty(head))
5846 		return;
5847 	if (trace_netif_receive_skb_list_entry_enabled()) {
5848 		list_for_each_entry(skb, head, list)
5849 			trace_netif_receive_skb_list_entry(skb);
5850 	}
5851 	netif_receive_skb_list_internal(head);
5852 	trace_netif_receive_skb_list_exit(0);
5853 }
5854 EXPORT_SYMBOL(netif_receive_skb_list);
5855 
5856 static DEFINE_PER_CPU(struct work_struct, flush_works);
5857 
5858 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5859 static void flush_backlog(struct work_struct *work)
5860 {
5861 	struct sk_buff *skb, *tmp;
5862 	struct softnet_data *sd;
5863 
5864 	local_bh_disable();
5865 	sd = this_cpu_ptr(&softnet_data);
5866 
5867 	rps_lock_irq_disable(sd);
5868 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5869 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5870 			__skb_unlink(skb, &sd->input_pkt_queue);
5871 			dev_kfree_skb_irq(skb);
5872 			input_queue_head_incr(sd);
5873 		}
5874 	}
5875 	rps_unlock_irq_enable(sd);
5876 
5877 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5878 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5879 			__skb_unlink(skb, &sd->process_queue);
5880 			kfree_skb(skb);
5881 			input_queue_head_incr(sd);
5882 		}
5883 	}
5884 	local_bh_enable();
5885 }
5886 
flush_required(int cpu)5887 static bool flush_required(int cpu)
5888 {
5889 #if IS_ENABLED(CONFIG_RPS)
5890 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5891 	bool do_flush;
5892 
5893 	rps_lock_irq_disable(sd);
5894 
5895 	/* as insertion into process_queue happens with the rps lock held,
5896 	 * process_queue access may race only with dequeue
5897 	 */
5898 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5899 		   !skb_queue_empty_lockless(&sd->process_queue);
5900 	rps_unlock_irq_enable(sd);
5901 
5902 	return do_flush;
5903 #endif
5904 	/* without RPS we can't safely check input_pkt_queue: during a
5905 	 * concurrent remote skb_queue_splice() we can detect as empty both
5906 	 * input_pkt_queue and process_queue even if the latter could end-up
5907 	 * containing a lot of packets.
5908 	 */
5909 	return true;
5910 }
5911 
flush_all_backlogs(void)5912 static void flush_all_backlogs(void)
5913 {
5914 	static cpumask_t flush_cpus;
5915 	unsigned int cpu;
5916 
5917 	/* since we are under rtnl lock protection we can use static data
5918 	 * for the cpumask and avoid allocating on stack the possibly
5919 	 * large mask
5920 	 */
5921 	ASSERT_RTNL();
5922 
5923 	cpus_read_lock();
5924 
5925 	cpumask_clear(&flush_cpus);
5926 	for_each_online_cpu(cpu) {
5927 		if (flush_required(cpu)) {
5928 			queue_work_on(cpu, system_highpri_wq,
5929 				      per_cpu_ptr(&flush_works, cpu));
5930 			cpumask_set_cpu(cpu, &flush_cpus);
5931 		}
5932 	}
5933 
5934 	/* we can have in flight packet[s] on the cpus we are not flushing,
5935 	 * synchronize_net() in unregister_netdevice_many() will take care of
5936 	 * them
5937 	 */
5938 	for_each_cpu(cpu, &flush_cpus)
5939 		flush_work(per_cpu_ptr(&flush_works, cpu));
5940 
5941 	cpus_read_unlock();
5942 }
5943 
net_rps_send_ipi(struct softnet_data * remsd)5944 static void net_rps_send_ipi(struct softnet_data *remsd)
5945 {
5946 #ifdef CONFIG_RPS
5947 	while (remsd) {
5948 		struct softnet_data *next = remsd->rps_ipi_next;
5949 
5950 		if (cpu_online(remsd->cpu))
5951 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5952 		remsd = next;
5953 	}
5954 #endif
5955 }
5956 
5957 /*
5958  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5959  * Note: called with local irq disabled, but exits with local irq enabled.
5960  */
net_rps_action_and_irq_enable(struct softnet_data * sd)5961 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5962 {
5963 #ifdef CONFIG_RPS
5964 	struct softnet_data *remsd = sd->rps_ipi_list;
5965 
5966 	if (remsd) {
5967 		sd->rps_ipi_list = NULL;
5968 
5969 		local_irq_enable();
5970 
5971 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5972 		net_rps_send_ipi(remsd);
5973 	} else
5974 #endif
5975 		local_irq_enable();
5976 }
5977 
sd_has_rps_ipi_waiting(struct softnet_data * sd)5978 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5979 {
5980 #ifdef CONFIG_RPS
5981 	return sd->rps_ipi_list != NULL;
5982 #else
5983 	return false;
5984 #endif
5985 }
5986 
process_backlog(struct napi_struct * napi,int quota)5987 static int process_backlog(struct napi_struct *napi, int quota)
5988 {
5989 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5990 	bool again = true;
5991 	int work = 0;
5992 
5993 	/* Check if we have pending ipi, its better to send them now,
5994 	 * not waiting net_rx_action() end.
5995 	 */
5996 	if (sd_has_rps_ipi_waiting(sd)) {
5997 		local_irq_disable();
5998 		net_rps_action_and_irq_enable(sd);
5999 	}
6000 
6001 	napi->weight = READ_ONCE(dev_rx_weight);
6002 	while (again) {
6003 		struct sk_buff *skb;
6004 
6005 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6006 			rcu_read_lock();
6007 			__netif_receive_skb(skb);
6008 			rcu_read_unlock();
6009 			input_queue_head_incr(sd);
6010 			if (++work >= quota)
6011 				return work;
6012 
6013 		}
6014 
6015 		rps_lock_irq_disable(sd);
6016 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6017 			/*
6018 			 * Inline a custom version of __napi_complete().
6019 			 * only current cpu owns and manipulates this napi,
6020 			 * and NAPI_STATE_SCHED is the only possible flag set
6021 			 * on backlog.
6022 			 * We can use a plain write instead of clear_bit(),
6023 			 * and we dont need an smp_mb() memory barrier.
6024 			 */
6025 			napi->state = 0;
6026 			again = false;
6027 		} else {
6028 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6029 						   &sd->process_queue);
6030 		}
6031 		rps_unlock_irq_enable(sd);
6032 	}
6033 
6034 	return work;
6035 }
6036 
6037 /**
6038  * __napi_schedule - schedule for receive
6039  * @n: entry to schedule
6040  *
6041  * The entry's receive function will be scheduled to run.
6042  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6043  */
__napi_schedule(struct napi_struct * n)6044 void __napi_schedule(struct napi_struct *n)
6045 {
6046 	unsigned long flags;
6047 
6048 	local_irq_save(flags);
6049 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6050 	local_irq_restore(flags);
6051 }
6052 EXPORT_SYMBOL(__napi_schedule);
6053 
6054 /**
6055  *	napi_schedule_prep - check if napi can be scheduled
6056  *	@n: napi context
6057  *
6058  * Test if NAPI routine is already running, and if not mark
6059  * it as running.  This is used as a condition variable to
6060  * insure only one NAPI poll instance runs.  We also make
6061  * sure there is no pending NAPI disable.
6062  */
napi_schedule_prep(struct napi_struct * n)6063 bool napi_schedule_prep(struct napi_struct *n)
6064 {
6065 	unsigned long new, val = READ_ONCE(n->state);
6066 
6067 	do {
6068 		if (unlikely(val & NAPIF_STATE_DISABLE))
6069 			return false;
6070 		new = val | NAPIF_STATE_SCHED;
6071 
6072 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6073 		 * This was suggested by Alexander Duyck, as compiler
6074 		 * emits better code than :
6075 		 * if (val & NAPIF_STATE_SCHED)
6076 		 *     new |= NAPIF_STATE_MISSED;
6077 		 */
6078 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6079 						   NAPIF_STATE_MISSED;
6080 	} while (!try_cmpxchg(&n->state, &val, new));
6081 
6082 	return !(val & NAPIF_STATE_SCHED);
6083 }
6084 EXPORT_SYMBOL(napi_schedule_prep);
6085 
6086 /**
6087  * __napi_schedule_irqoff - schedule for receive
6088  * @n: entry to schedule
6089  *
6090  * Variant of __napi_schedule() assuming hard irqs are masked.
6091  *
6092  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6093  * because the interrupt disabled assumption might not be true
6094  * due to force-threaded interrupts and spinlock substitution.
6095  */
__napi_schedule_irqoff(struct napi_struct * n)6096 void __napi_schedule_irqoff(struct napi_struct *n)
6097 {
6098 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6099 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6100 	else
6101 		__napi_schedule(n);
6102 }
6103 EXPORT_SYMBOL(__napi_schedule_irqoff);
6104 
napi_complete_done(struct napi_struct * n,int work_done)6105 bool napi_complete_done(struct napi_struct *n, int work_done)
6106 {
6107 	unsigned long flags, val, new, timeout = 0;
6108 	bool ret = true;
6109 
6110 	/*
6111 	 * 1) Don't let napi dequeue from the cpu poll list
6112 	 *    just in case its running on a different cpu.
6113 	 * 2) If we are busy polling, do nothing here, we have
6114 	 *    the guarantee we will be called later.
6115 	 */
6116 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6117 				 NAPIF_STATE_IN_BUSY_POLL)))
6118 		return false;
6119 
6120 	if (work_done) {
6121 		if (n->gro_bitmask)
6122 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6123 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6124 	}
6125 	if (n->defer_hard_irqs_count > 0) {
6126 		n->defer_hard_irqs_count--;
6127 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6128 		if (timeout)
6129 			ret = false;
6130 	}
6131 	if (n->gro_bitmask) {
6132 		/* When the NAPI instance uses a timeout and keeps postponing
6133 		 * it, we need to bound somehow the time packets are kept in
6134 		 * the GRO layer
6135 		 */
6136 		napi_gro_flush(n, !!timeout);
6137 	}
6138 
6139 	gro_normal_list(n);
6140 
6141 	if (unlikely(!list_empty(&n->poll_list))) {
6142 		/* If n->poll_list is not empty, we need to mask irqs */
6143 		local_irq_save(flags);
6144 		list_del_init(&n->poll_list);
6145 		local_irq_restore(flags);
6146 	}
6147 	WRITE_ONCE(n->list_owner, -1);
6148 
6149 	val = READ_ONCE(n->state);
6150 	do {
6151 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6152 
6153 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6154 			      NAPIF_STATE_SCHED_THREADED |
6155 			      NAPIF_STATE_PREFER_BUSY_POLL);
6156 
6157 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6158 		 * because we will call napi->poll() one more time.
6159 		 * This C code was suggested by Alexander Duyck to help gcc.
6160 		 */
6161 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6162 						    NAPIF_STATE_SCHED;
6163 	} while (!try_cmpxchg(&n->state, &val, new));
6164 
6165 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6166 		__napi_schedule(n);
6167 		return false;
6168 	}
6169 
6170 	if (timeout)
6171 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6172 			      HRTIMER_MODE_REL_PINNED);
6173 	return ret;
6174 }
6175 EXPORT_SYMBOL(napi_complete_done);
6176 
6177 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6178 static struct napi_struct *napi_by_id(unsigned int napi_id)
6179 {
6180 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6181 	struct napi_struct *napi;
6182 
6183 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6184 		if (napi->napi_id == napi_id)
6185 			return napi;
6186 
6187 	return NULL;
6188 }
6189 
6190 #if defined(CONFIG_NET_RX_BUSY_POLL)
6191 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6192 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6193 {
6194 	if (!skip_schedule) {
6195 		gro_normal_list(napi);
6196 		__napi_schedule(napi);
6197 		return;
6198 	}
6199 
6200 	if (napi->gro_bitmask) {
6201 		/* flush too old packets
6202 		 * If HZ < 1000, flush all packets.
6203 		 */
6204 		napi_gro_flush(napi, HZ >= 1000);
6205 	}
6206 
6207 	gro_normal_list(napi);
6208 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6209 }
6210 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6211 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6212 			   u16 budget)
6213 {
6214 	bool skip_schedule = false;
6215 	unsigned long timeout;
6216 	int rc;
6217 
6218 	/* Busy polling means there is a high chance device driver hard irq
6219 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6220 	 * set in napi_schedule_prep().
6221 	 * Since we are about to call napi->poll() once more, we can safely
6222 	 * clear NAPI_STATE_MISSED.
6223 	 *
6224 	 * Note: x86 could use a single "lock and ..." instruction
6225 	 * to perform these two clear_bit()
6226 	 */
6227 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6228 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6229 
6230 	local_bh_disable();
6231 
6232 	if (prefer_busy_poll) {
6233 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6234 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6235 		if (napi->defer_hard_irqs_count && timeout) {
6236 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6237 			skip_schedule = true;
6238 		}
6239 	}
6240 
6241 	/* All we really want here is to re-enable device interrupts.
6242 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6243 	 */
6244 	rc = napi->poll(napi, budget);
6245 	/* We can't gro_normal_list() here, because napi->poll() might have
6246 	 * rearmed the napi (napi_complete_done()) in which case it could
6247 	 * already be running on another CPU.
6248 	 */
6249 	trace_napi_poll(napi, rc, budget);
6250 	netpoll_poll_unlock(have_poll_lock);
6251 	if (rc == budget)
6252 		__busy_poll_stop(napi, skip_schedule);
6253 	local_bh_enable();
6254 }
6255 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6256 void napi_busy_loop(unsigned int napi_id,
6257 		    bool (*loop_end)(void *, unsigned long),
6258 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6259 {
6260 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6261 	int (*napi_poll)(struct napi_struct *napi, int budget);
6262 	void *have_poll_lock = NULL;
6263 	struct napi_struct *napi;
6264 
6265 restart:
6266 	napi_poll = NULL;
6267 
6268 	rcu_read_lock();
6269 
6270 	napi = napi_by_id(napi_id);
6271 	if (!napi)
6272 		goto out;
6273 
6274 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6275 		preempt_disable();
6276 	for (;;) {
6277 		int work = 0;
6278 
6279 		local_bh_disable();
6280 		if (!napi_poll) {
6281 			unsigned long val = READ_ONCE(napi->state);
6282 
6283 			/* If multiple threads are competing for this napi,
6284 			 * we avoid dirtying napi->state as much as we can.
6285 			 */
6286 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6287 				   NAPIF_STATE_IN_BUSY_POLL)) {
6288 				if (prefer_busy_poll)
6289 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6290 				goto count;
6291 			}
6292 			if (cmpxchg(&napi->state, val,
6293 				    val | NAPIF_STATE_IN_BUSY_POLL |
6294 					  NAPIF_STATE_SCHED) != val) {
6295 				if (prefer_busy_poll)
6296 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6297 				goto count;
6298 			}
6299 			have_poll_lock = netpoll_poll_lock(napi);
6300 			napi_poll = napi->poll;
6301 		}
6302 		work = napi_poll(napi, budget);
6303 		trace_napi_poll(napi, work, budget);
6304 		gro_normal_list(napi);
6305 count:
6306 		if (work > 0)
6307 			__NET_ADD_STATS(dev_net(napi->dev),
6308 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6309 		local_bh_enable();
6310 
6311 		if (!loop_end || loop_end(loop_end_arg, start_time))
6312 			break;
6313 
6314 		if (unlikely(need_resched())) {
6315 			if (napi_poll)
6316 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6317 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6318 				preempt_enable();
6319 			rcu_read_unlock();
6320 			cond_resched();
6321 			if (loop_end(loop_end_arg, start_time))
6322 				return;
6323 			goto restart;
6324 		}
6325 		cpu_relax();
6326 	}
6327 	if (napi_poll)
6328 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6329 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6330 		preempt_enable();
6331 out:
6332 	rcu_read_unlock();
6333 }
6334 EXPORT_SYMBOL(napi_busy_loop);
6335 
6336 #endif /* CONFIG_NET_RX_BUSY_POLL */
6337 
napi_hash_add(struct napi_struct * napi)6338 static void napi_hash_add(struct napi_struct *napi)
6339 {
6340 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6341 		return;
6342 
6343 	spin_lock(&napi_hash_lock);
6344 
6345 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6346 	do {
6347 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6348 			napi_gen_id = MIN_NAPI_ID;
6349 	} while (napi_by_id(napi_gen_id));
6350 	napi->napi_id = napi_gen_id;
6351 
6352 	hlist_add_head_rcu(&napi->napi_hash_node,
6353 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6354 
6355 	spin_unlock(&napi_hash_lock);
6356 }
6357 
6358 /* Warning : caller is responsible to make sure rcu grace period
6359  * is respected before freeing memory containing @napi
6360  */
napi_hash_del(struct napi_struct * napi)6361 static void napi_hash_del(struct napi_struct *napi)
6362 {
6363 	spin_lock(&napi_hash_lock);
6364 
6365 	hlist_del_init_rcu(&napi->napi_hash_node);
6366 
6367 	spin_unlock(&napi_hash_lock);
6368 }
6369 
napi_watchdog(struct hrtimer * timer)6370 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6371 {
6372 	struct napi_struct *napi;
6373 
6374 	napi = container_of(timer, struct napi_struct, timer);
6375 
6376 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6377 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6378 	 */
6379 	if (!napi_disable_pending(napi) &&
6380 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6381 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6382 		__napi_schedule_irqoff(napi);
6383 	}
6384 
6385 	return HRTIMER_NORESTART;
6386 }
6387 
init_gro_hash(struct napi_struct * napi)6388 static void init_gro_hash(struct napi_struct *napi)
6389 {
6390 	int i;
6391 
6392 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6393 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6394 		napi->gro_hash[i].count = 0;
6395 	}
6396 	napi->gro_bitmask = 0;
6397 }
6398 
dev_set_threaded(struct net_device * dev,bool threaded)6399 int dev_set_threaded(struct net_device *dev, bool threaded)
6400 {
6401 	struct napi_struct *napi;
6402 	int err = 0;
6403 
6404 	if (dev->threaded == threaded)
6405 		return 0;
6406 
6407 	if (threaded) {
6408 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6409 			if (!napi->thread) {
6410 				err = napi_kthread_create(napi);
6411 				if (err) {
6412 					threaded = false;
6413 					break;
6414 				}
6415 			}
6416 		}
6417 	}
6418 
6419 	dev->threaded = threaded;
6420 
6421 	/* Make sure kthread is created before THREADED bit
6422 	 * is set.
6423 	 */
6424 	smp_mb__before_atomic();
6425 
6426 	/* Setting/unsetting threaded mode on a napi might not immediately
6427 	 * take effect, if the current napi instance is actively being
6428 	 * polled. In this case, the switch between threaded mode and
6429 	 * softirq mode will happen in the next round of napi_schedule().
6430 	 * This should not cause hiccups/stalls to the live traffic.
6431 	 */
6432 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6433 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6434 
6435 	return err;
6436 }
6437 EXPORT_SYMBOL(dev_set_threaded);
6438 
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6439 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6440 			   int (*poll)(struct napi_struct *, int), int weight)
6441 {
6442 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6443 		return;
6444 
6445 	INIT_LIST_HEAD(&napi->poll_list);
6446 	INIT_HLIST_NODE(&napi->napi_hash_node);
6447 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6448 	napi->timer.function = napi_watchdog;
6449 	init_gro_hash(napi);
6450 	napi->skb = NULL;
6451 	INIT_LIST_HEAD(&napi->rx_list);
6452 	napi->rx_count = 0;
6453 	napi->poll = poll;
6454 	if (weight > NAPI_POLL_WEIGHT)
6455 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6456 				weight);
6457 	napi->weight = weight;
6458 	napi->dev = dev;
6459 #ifdef CONFIG_NETPOLL
6460 	napi->poll_owner = -1;
6461 #endif
6462 	napi->list_owner = -1;
6463 	set_bit(NAPI_STATE_SCHED, &napi->state);
6464 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6465 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6466 	napi_hash_add(napi);
6467 	napi_get_frags_check(napi);
6468 	/* Create kthread for this napi if dev->threaded is set.
6469 	 * Clear dev->threaded if kthread creation failed so that
6470 	 * threaded mode will not be enabled in napi_enable().
6471 	 */
6472 	if (dev->threaded && napi_kthread_create(napi))
6473 		dev->threaded = 0;
6474 }
6475 EXPORT_SYMBOL(netif_napi_add_weight);
6476 
napi_disable(struct napi_struct * n)6477 void napi_disable(struct napi_struct *n)
6478 {
6479 	unsigned long val, new;
6480 
6481 	might_sleep();
6482 	set_bit(NAPI_STATE_DISABLE, &n->state);
6483 
6484 	val = READ_ONCE(n->state);
6485 	do {
6486 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6487 			usleep_range(20, 200);
6488 			val = READ_ONCE(n->state);
6489 		}
6490 
6491 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6492 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6493 	} while (!try_cmpxchg(&n->state, &val, new));
6494 
6495 	hrtimer_cancel(&n->timer);
6496 
6497 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6498 }
6499 EXPORT_SYMBOL(napi_disable);
6500 
6501 /**
6502  *	napi_enable - enable NAPI scheduling
6503  *	@n: NAPI context
6504  *
6505  * Resume NAPI from being scheduled on this context.
6506  * Must be paired with napi_disable.
6507  */
napi_enable(struct napi_struct * n)6508 void napi_enable(struct napi_struct *n)
6509 {
6510 	unsigned long new, val = READ_ONCE(n->state);
6511 
6512 	do {
6513 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6514 
6515 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6516 		if (n->dev->threaded && n->thread)
6517 			new |= NAPIF_STATE_THREADED;
6518 	} while (!try_cmpxchg(&n->state, &val, new));
6519 }
6520 EXPORT_SYMBOL(napi_enable);
6521 
flush_gro_hash(struct napi_struct * napi)6522 static void flush_gro_hash(struct napi_struct *napi)
6523 {
6524 	int i;
6525 
6526 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6527 		struct sk_buff *skb, *n;
6528 
6529 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6530 			kfree_skb(skb);
6531 		napi->gro_hash[i].count = 0;
6532 	}
6533 }
6534 
6535 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6536 void __netif_napi_del(struct napi_struct *napi)
6537 {
6538 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6539 		return;
6540 
6541 	napi_hash_del(napi);
6542 	list_del_rcu(&napi->dev_list);
6543 	napi_free_frags(napi);
6544 
6545 	flush_gro_hash(napi);
6546 	napi->gro_bitmask = 0;
6547 
6548 	if (napi->thread) {
6549 		kthread_stop(napi->thread);
6550 		napi->thread = NULL;
6551 	}
6552 }
6553 EXPORT_SYMBOL(__netif_napi_del);
6554 
__napi_poll(struct napi_struct * n,bool * repoll)6555 static int __napi_poll(struct napi_struct *n, bool *repoll)
6556 {
6557 	int work, weight;
6558 
6559 	weight = n->weight;
6560 
6561 	/* This NAPI_STATE_SCHED test is for avoiding a race
6562 	 * with netpoll's poll_napi().  Only the entity which
6563 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6564 	 * actually make the ->poll() call.  Therefore we avoid
6565 	 * accidentally calling ->poll() when NAPI is not scheduled.
6566 	 */
6567 	work = 0;
6568 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6569 		work = n->poll(n, weight);
6570 		trace_napi_poll(n, work, weight);
6571 	}
6572 
6573 	if (unlikely(work > weight))
6574 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6575 				n->poll, work, weight);
6576 
6577 	if (likely(work < weight))
6578 		return work;
6579 
6580 	/* Drivers must not modify the NAPI state if they
6581 	 * consume the entire weight.  In such cases this code
6582 	 * still "owns" the NAPI instance and therefore can
6583 	 * move the instance around on the list at-will.
6584 	 */
6585 	if (unlikely(napi_disable_pending(n))) {
6586 		napi_complete(n);
6587 		return work;
6588 	}
6589 
6590 	/* The NAPI context has more processing work, but busy-polling
6591 	 * is preferred. Exit early.
6592 	 */
6593 	if (napi_prefer_busy_poll(n)) {
6594 		if (napi_complete_done(n, work)) {
6595 			/* If timeout is not set, we need to make sure
6596 			 * that the NAPI is re-scheduled.
6597 			 */
6598 			napi_schedule(n);
6599 		}
6600 		return work;
6601 	}
6602 
6603 	if (n->gro_bitmask) {
6604 		/* flush too old packets
6605 		 * If HZ < 1000, flush all packets.
6606 		 */
6607 		napi_gro_flush(n, HZ >= 1000);
6608 	}
6609 
6610 	gro_normal_list(n);
6611 
6612 	/* Some drivers may have called napi_schedule
6613 	 * prior to exhausting their budget.
6614 	 */
6615 	if (unlikely(!list_empty(&n->poll_list))) {
6616 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6617 			     n->dev ? n->dev->name : "backlog");
6618 		return work;
6619 	}
6620 
6621 	*repoll = true;
6622 
6623 	return work;
6624 }
6625 
napi_poll(struct napi_struct * n,struct list_head * repoll)6626 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6627 {
6628 	bool do_repoll = false;
6629 	void *have;
6630 	int work;
6631 
6632 	list_del_init(&n->poll_list);
6633 
6634 	have = netpoll_poll_lock(n);
6635 
6636 	work = __napi_poll(n, &do_repoll);
6637 
6638 	if (do_repoll)
6639 		list_add_tail(&n->poll_list, repoll);
6640 
6641 	netpoll_poll_unlock(have);
6642 
6643 	return work;
6644 }
6645 
napi_thread_wait(struct napi_struct * napi)6646 static int napi_thread_wait(struct napi_struct *napi)
6647 {
6648 	bool woken = false;
6649 
6650 	set_current_state(TASK_INTERRUPTIBLE);
6651 
6652 	while (!kthread_should_stop()) {
6653 		/* Testing SCHED_THREADED bit here to make sure the current
6654 		 * kthread owns this napi and could poll on this napi.
6655 		 * Testing SCHED bit is not enough because SCHED bit might be
6656 		 * set by some other busy poll thread or by napi_disable().
6657 		 */
6658 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6659 			WARN_ON(!list_empty(&napi->poll_list));
6660 			__set_current_state(TASK_RUNNING);
6661 			return 0;
6662 		}
6663 
6664 		schedule();
6665 		/* woken being true indicates this thread owns this napi. */
6666 		woken = true;
6667 		set_current_state(TASK_INTERRUPTIBLE);
6668 	}
6669 	__set_current_state(TASK_RUNNING);
6670 
6671 	return -1;
6672 }
6673 
skb_defer_free_flush(struct softnet_data * sd)6674 static void skb_defer_free_flush(struct softnet_data *sd)
6675 {
6676 	struct sk_buff *skb, *next;
6677 
6678 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6679 	if (!READ_ONCE(sd->defer_list))
6680 		return;
6681 
6682 	spin_lock(&sd->defer_lock);
6683 	skb = sd->defer_list;
6684 	sd->defer_list = NULL;
6685 	sd->defer_count = 0;
6686 	spin_unlock(&sd->defer_lock);
6687 
6688 	while (skb != NULL) {
6689 		next = skb->next;
6690 		napi_consume_skb(skb, 1);
6691 		skb = next;
6692 	}
6693 }
6694 
napi_threaded_poll(void * data)6695 static int napi_threaded_poll(void *data)
6696 {
6697 	struct napi_struct *napi = data;
6698 	struct softnet_data *sd;
6699 	void *have;
6700 
6701 	while (!napi_thread_wait(napi)) {
6702 		unsigned long last_qs = jiffies;
6703 
6704 		for (;;) {
6705 			bool repoll = false;
6706 
6707 			local_bh_disable();
6708 			sd = this_cpu_ptr(&softnet_data);
6709 			sd->in_napi_threaded_poll = true;
6710 
6711 			have = netpoll_poll_lock(napi);
6712 			__napi_poll(napi, &repoll);
6713 			netpoll_poll_unlock(have);
6714 
6715 			sd->in_napi_threaded_poll = false;
6716 			barrier();
6717 
6718 			if (sd_has_rps_ipi_waiting(sd)) {
6719 				local_irq_disable();
6720 				net_rps_action_and_irq_enable(sd);
6721 			}
6722 			skb_defer_free_flush(sd);
6723 			local_bh_enable();
6724 
6725 			if (!repoll)
6726 				break;
6727 
6728 			rcu_softirq_qs_periodic(last_qs);
6729 			cond_resched();
6730 		}
6731 	}
6732 	return 0;
6733 }
6734 
net_rx_action(struct softirq_action * h)6735 static __latent_entropy void net_rx_action(struct softirq_action *h)
6736 {
6737 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6738 	unsigned long time_limit = jiffies +
6739 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6740 	int budget = READ_ONCE(netdev_budget);
6741 	LIST_HEAD(list);
6742 	LIST_HEAD(repoll);
6743 
6744 start:
6745 	sd->in_net_rx_action = true;
6746 	local_irq_disable();
6747 	list_splice_init(&sd->poll_list, &list);
6748 	local_irq_enable();
6749 
6750 	for (;;) {
6751 		struct napi_struct *n;
6752 
6753 		skb_defer_free_flush(sd);
6754 
6755 		if (list_empty(&list)) {
6756 			if (list_empty(&repoll)) {
6757 				sd->in_net_rx_action = false;
6758 				barrier();
6759 				/* We need to check if ____napi_schedule()
6760 				 * had refilled poll_list while
6761 				 * sd->in_net_rx_action was true.
6762 				 */
6763 				if (!list_empty(&sd->poll_list))
6764 					goto start;
6765 				if (!sd_has_rps_ipi_waiting(sd))
6766 					goto end;
6767 			}
6768 			break;
6769 		}
6770 
6771 		n = list_first_entry(&list, struct napi_struct, poll_list);
6772 		budget -= napi_poll(n, &repoll);
6773 
6774 		/* If softirq window is exhausted then punt.
6775 		 * Allow this to run for 2 jiffies since which will allow
6776 		 * an average latency of 1.5/HZ.
6777 		 */
6778 		if (unlikely(budget <= 0 ||
6779 			     time_after_eq(jiffies, time_limit))) {
6780 			sd->time_squeeze++;
6781 			break;
6782 		}
6783 	}
6784 
6785 	local_irq_disable();
6786 
6787 	list_splice_tail_init(&sd->poll_list, &list);
6788 	list_splice_tail(&repoll, &list);
6789 	list_splice(&list, &sd->poll_list);
6790 	if (!list_empty(&sd->poll_list))
6791 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6792 	else
6793 		sd->in_net_rx_action = false;
6794 
6795 	net_rps_action_and_irq_enable(sd);
6796 end:;
6797 }
6798 
6799 struct netdev_adjacent {
6800 	struct net_device *dev;
6801 	netdevice_tracker dev_tracker;
6802 
6803 	/* upper master flag, there can only be one master device per list */
6804 	bool master;
6805 
6806 	/* lookup ignore flag */
6807 	bool ignore;
6808 
6809 	/* counter for the number of times this device was added to us */
6810 	u16 ref_nr;
6811 
6812 	/* private field for the users */
6813 	void *private;
6814 
6815 	struct list_head list;
6816 	struct rcu_head rcu;
6817 };
6818 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6819 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6820 						 struct list_head *adj_list)
6821 {
6822 	struct netdev_adjacent *adj;
6823 
6824 	list_for_each_entry(adj, adj_list, list) {
6825 		if (adj->dev == adj_dev)
6826 			return adj;
6827 	}
6828 	return NULL;
6829 }
6830 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6831 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6832 				    struct netdev_nested_priv *priv)
6833 {
6834 	struct net_device *dev = (struct net_device *)priv->data;
6835 
6836 	return upper_dev == dev;
6837 }
6838 
6839 /**
6840  * netdev_has_upper_dev - Check if device is linked to an upper device
6841  * @dev: device
6842  * @upper_dev: upper device to check
6843  *
6844  * Find out if a device is linked to specified upper device and return true
6845  * in case it is. Note that this checks only immediate upper device,
6846  * not through a complete stack of devices. The caller must hold the RTNL lock.
6847  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6848 bool netdev_has_upper_dev(struct net_device *dev,
6849 			  struct net_device *upper_dev)
6850 {
6851 	struct netdev_nested_priv priv = {
6852 		.data = (void *)upper_dev,
6853 	};
6854 
6855 	ASSERT_RTNL();
6856 
6857 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6858 					     &priv);
6859 }
6860 EXPORT_SYMBOL(netdev_has_upper_dev);
6861 
6862 /**
6863  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6864  * @dev: device
6865  * @upper_dev: upper device to check
6866  *
6867  * Find out if a device is linked to specified upper device and return true
6868  * in case it is. Note that this checks the entire upper device chain.
6869  * The caller must hold rcu lock.
6870  */
6871 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6872 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6873 				  struct net_device *upper_dev)
6874 {
6875 	struct netdev_nested_priv priv = {
6876 		.data = (void *)upper_dev,
6877 	};
6878 
6879 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6880 					       &priv);
6881 }
6882 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6883 
6884 /**
6885  * netdev_has_any_upper_dev - Check if device is linked to some device
6886  * @dev: device
6887  *
6888  * Find out if a device is linked to an upper device and return true in case
6889  * it is. The caller must hold the RTNL lock.
6890  */
netdev_has_any_upper_dev(struct net_device * dev)6891 bool netdev_has_any_upper_dev(struct net_device *dev)
6892 {
6893 	ASSERT_RTNL();
6894 
6895 	return !list_empty(&dev->adj_list.upper);
6896 }
6897 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6898 
6899 /**
6900  * netdev_master_upper_dev_get - Get master upper device
6901  * @dev: device
6902  *
6903  * Find a master upper device and return pointer to it or NULL in case
6904  * it's not there. The caller must hold the RTNL lock.
6905  */
netdev_master_upper_dev_get(struct net_device * dev)6906 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6907 {
6908 	struct netdev_adjacent *upper;
6909 
6910 	ASSERT_RTNL();
6911 
6912 	if (list_empty(&dev->adj_list.upper))
6913 		return NULL;
6914 
6915 	upper = list_first_entry(&dev->adj_list.upper,
6916 				 struct netdev_adjacent, list);
6917 	if (likely(upper->master))
6918 		return upper->dev;
6919 	return NULL;
6920 }
6921 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6922 
__netdev_master_upper_dev_get(struct net_device * dev)6923 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6924 {
6925 	struct netdev_adjacent *upper;
6926 
6927 	ASSERT_RTNL();
6928 
6929 	if (list_empty(&dev->adj_list.upper))
6930 		return NULL;
6931 
6932 	upper = list_first_entry(&dev->adj_list.upper,
6933 				 struct netdev_adjacent, list);
6934 	if (likely(upper->master) && !upper->ignore)
6935 		return upper->dev;
6936 	return NULL;
6937 }
6938 
6939 /**
6940  * netdev_has_any_lower_dev - Check if device is linked to some device
6941  * @dev: device
6942  *
6943  * Find out if a device is linked to a lower device and return true in case
6944  * it is. The caller must hold the RTNL lock.
6945  */
netdev_has_any_lower_dev(struct net_device * dev)6946 static bool netdev_has_any_lower_dev(struct net_device *dev)
6947 {
6948 	ASSERT_RTNL();
6949 
6950 	return !list_empty(&dev->adj_list.lower);
6951 }
6952 
netdev_adjacent_get_private(struct list_head * adj_list)6953 void *netdev_adjacent_get_private(struct list_head *adj_list)
6954 {
6955 	struct netdev_adjacent *adj;
6956 
6957 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6958 
6959 	return adj->private;
6960 }
6961 EXPORT_SYMBOL(netdev_adjacent_get_private);
6962 
6963 /**
6964  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6965  * @dev: device
6966  * @iter: list_head ** of the current position
6967  *
6968  * Gets the next device from the dev's upper list, starting from iter
6969  * position. The caller must hold RCU read lock.
6970  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6971 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6972 						 struct list_head **iter)
6973 {
6974 	struct netdev_adjacent *upper;
6975 
6976 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6977 
6978 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6979 
6980 	if (&upper->list == &dev->adj_list.upper)
6981 		return NULL;
6982 
6983 	*iter = &upper->list;
6984 
6985 	return upper->dev;
6986 }
6987 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6988 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6989 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6990 						  struct list_head **iter,
6991 						  bool *ignore)
6992 {
6993 	struct netdev_adjacent *upper;
6994 
6995 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6996 
6997 	if (&upper->list == &dev->adj_list.upper)
6998 		return NULL;
6999 
7000 	*iter = &upper->list;
7001 	*ignore = upper->ignore;
7002 
7003 	return upper->dev;
7004 }
7005 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7006 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7007 						    struct list_head **iter)
7008 {
7009 	struct netdev_adjacent *upper;
7010 
7011 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7012 
7013 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7014 
7015 	if (&upper->list == &dev->adj_list.upper)
7016 		return NULL;
7017 
7018 	*iter = &upper->list;
7019 
7020 	return upper->dev;
7021 }
7022 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7023 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7024 				       int (*fn)(struct net_device *dev,
7025 					 struct netdev_nested_priv *priv),
7026 				       struct netdev_nested_priv *priv)
7027 {
7028 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7029 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7030 	int ret, cur = 0;
7031 	bool ignore;
7032 
7033 	now = dev;
7034 	iter = &dev->adj_list.upper;
7035 
7036 	while (1) {
7037 		if (now != dev) {
7038 			ret = fn(now, priv);
7039 			if (ret)
7040 				return ret;
7041 		}
7042 
7043 		next = NULL;
7044 		while (1) {
7045 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7046 			if (!udev)
7047 				break;
7048 			if (ignore)
7049 				continue;
7050 
7051 			next = udev;
7052 			niter = &udev->adj_list.upper;
7053 			dev_stack[cur] = now;
7054 			iter_stack[cur++] = iter;
7055 			break;
7056 		}
7057 
7058 		if (!next) {
7059 			if (!cur)
7060 				return 0;
7061 			next = dev_stack[--cur];
7062 			niter = iter_stack[cur];
7063 		}
7064 
7065 		now = next;
7066 		iter = niter;
7067 	}
7068 
7069 	return 0;
7070 }
7071 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7072 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7073 				  int (*fn)(struct net_device *dev,
7074 					    struct netdev_nested_priv *priv),
7075 				  struct netdev_nested_priv *priv)
7076 {
7077 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7078 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7079 	int ret, cur = 0;
7080 
7081 	now = dev;
7082 	iter = &dev->adj_list.upper;
7083 
7084 	while (1) {
7085 		if (now != dev) {
7086 			ret = fn(now, priv);
7087 			if (ret)
7088 				return ret;
7089 		}
7090 
7091 		next = NULL;
7092 		while (1) {
7093 			udev = netdev_next_upper_dev_rcu(now, &iter);
7094 			if (!udev)
7095 				break;
7096 
7097 			next = udev;
7098 			niter = &udev->adj_list.upper;
7099 			dev_stack[cur] = now;
7100 			iter_stack[cur++] = iter;
7101 			break;
7102 		}
7103 
7104 		if (!next) {
7105 			if (!cur)
7106 				return 0;
7107 			next = dev_stack[--cur];
7108 			niter = iter_stack[cur];
7109 		}
7110 
7111 		now = next;
7112 		iter = niter;
7113 	}
7114 
7115 	return 0;
7116 }
7117 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7118 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7119 static bool __netdev_has_upper_dev(struct net_device *dev,
7120 				   struct net_device *upper_dev)
7121 {
7122 	struct netdev_nested_priv priv = {
7123 		.flags = 0,
7124 		.data = (void *)upper_dev,
7125 	};
7126 
7127 	ASSERT_RTNL();
7128 
7129 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7130 					   &priv);
7131 }
7132 
7133 /**
7134  * netdev_lower_get_next_private - Get the next ->private from the
7135  *				   lower neighbour list
7136  * @dev: device
7137  * @iter: list_head ** of the current position
7138  *
7139  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7140  * list, starting from iter position. The caller must hold either hold the
7141  * RTNL lock or its own locking that guarantees that the neighbour lower
7142  * list will remain unchanged.
7143  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7144 void *netdev_lower_get_next_private(struct net_device *dev,
7145 				    struct list_head **iter)
7146 {
7147 	struct netdev_adjacent *lower;
7148 
7149 	lower = list_entry(*iter, struct netdev_adjacent, list);
7150 
7151 	if (&lower->list == &dev->adj_list.lower)
7152 		return NULL;
7153 
7154 	*iter = lower->list.next;
7155 
7156 	return lower->private;
7157 }
7158 EXPORT_SYMBOL(netdev_lower_get_next_private);
7159 
7160 /**
7161  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7162  *				       lower neighbour list, RCU
7163  *				       variant
7164  * @dev: device
7165  * @iter: list_head ** of the current position
7166  *
7167  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7168  * list, starting from iter position. The caller must hold RCU read lock.
7169  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7170 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7171 					struct list_head **iter)
7172 {
7173 	struct netdev_adjacent *lower;
7174 
7175 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7176 
7177 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7178 
7179 	if (&lower->list == &dev->adj_list.lower)
7180 		return NULL;
7181 
7182 	*iter = &lower->list;
7183 
7184 	return lower->private;
7185 }
7186 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7187 
7188 /**
7189  * netdev_lower_get_next - Get the next device from the lower neighbour
7190  *                         list
7191  * @dev: device
7192  * @iter: list_head ** of the current position
7193  *
7194  * Gets the next netdev_adjacent from the dev's lower neighbour
7195  * list, starting from iter position. The caller must hold RTNL lock or
7196  * its own locking that guarantees that the neighbour lower
7197  * list will remain unchanged.
7198  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7199 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7200 {
7201 	struct netdev_adjacent *lower;
7202 
7203 	lower = list_entry(*iter, struct netdev_adjacent, list);
7204 
7205 	if (&lower->list == &dev->adj_list.lower)
7206 		return NULL;
7207 
7208 	*iter = lower->list.next;
7209 
7210 	return lower->dev;
7211 }
7212 EXPORT_SYMBOL(netdev_lower_get_next);
7213 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7214 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7215 						struct list_head **iter)
7216 {
7217 	struct netdev_adjacent *lower;
7218 
7219 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7220 
7221 	if (&lower->list == &dev->adj_list.lower)
7222 		return NULL;
7223 
7224 	*iter = &lower->list;
7225 
7226 	return lower->dev;
7227 }
7228 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7229 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7230 						  struct list_head **iter,
7231 						  bool *ignore)
7232 {
7233 	struct netdev_adjacent *lower;
7234 
7235 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7236 
7237 	if (&lower->list == &dev->adj_list.lower)
7238 		return NULL;
7239 
7240 	*iter = &lower->list;
7241 	*ignore = lower->ignore;
7242 
7243 	return lower->dev;
7244 }
7245 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7246 int netdev_walk_all_lower_dev(struct net_device *dev,
7247 			      int (*fn)(struct net_device *dev,
7248 					struct netdev_nested_priv *priv),
7249 			      struct netdev_nested_priv *priv)
7250 {
7251 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7252 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7253 	int ret, cur = 0;
7254 
7255 	now = dev;
7256 	iter = &dev->adj_list.lower;
7257 
7258 	while (1) {
7259 		if (now != dev) {
7260 			ret = fn(now, priv);
7261 			if (ret)
7262 				return ret;
7263 		}
7264 
7265 		next = NULL;
7266 		while (1) {
7267 			ldev = netdev_next_lower_dev(now, &iter);
7268 			if (!ldev)
7269 				break;
7270 
7271 			next = ldev;
7272 			niter = &ldev->adj_list.lower;
7273 			dev_stack[cur] = now;
7274 			iter_stack[cur++] = iter;
7275 			break;
7276 		}
7277 
7278 		if (!next) {
7279 			if (!cur)
7280 				return 0;
7281 			next = dev_stack[--cur];
7282 			niter = iter_stack[cur];
7283 		}
7284 
7285 		now = next;
7286 		iter = niter;
7287 	}
7288 
7289 	return 0;
7290 }
7291 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7292 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7293 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7294 				       int (*fn)(struct net_device *dev,
7295 					 struct netdev_nested_priv *priv),
7296 				       struct netdev_nested_priv *priv)
7297 {
7298 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7299 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7300 	int ret, cur = 0;
7301 	bool ignore;
7302 
7303 	now = dev;
7304 	iter = &dev->adj_list.lower;
7305 
7306 	while (1) {
7307 		if (now != dev) {
7308 			ret = fn(now, priv);
7309 			if (ret)
7310 				return ret;
7311 		}
7312 
7313 		next = NULL;
7314 		while (1) {
7315 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7316 			if (!ldev)
7317 				break;
7318 			if (ignore)
7319 				continue;
7320 
7321 			next = ldev;
7322 			niter = &ldev->adj_list.lower;
7323 			dev_stack[cur] = now;
7324 			iter_stack[cur++] = iter;
7325 			break;
7326 		}
7327 
7328 		if (!next) {
7329 			if (!cur)
7330 				return 0;
7331 			next = dev_stack[--cur];
7332 			niter = iter_stack[cur];
7333 		}
7334 
7335 		now = next;
7336 		iter = niter;
7337 	}
7338 
7339 	return 0;
7340 }
7341 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7342 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7343 					     struct list_head **iter)
7344 {
7345 	struct netdev_adjacent *lower;
7346 
7347 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7348 	if (&lower->list == &dev->adj_list.lower)
7349 		return NULL;
7350 
7351 	*iter = &lower->list;
7352 
7353 	return lower->dev;
7354 }
7355 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7356 
__netdev_upper_depth(struct net_device * dev)7357 static u8 __netdev_upper_depth(struct net_device *dev)
7358 {
7359 	struct net_device *udev;
7360 	struct list_head *iter;
7361 	u8 max_depth = 0;
7362 	bool ignore;
7363 
7364 	for (iter = &dev->adj_list.upper,
7365 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7366 	     udev;
7367 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7368 		if (ignore)
7369 			continue;
7370 		if (max_depth < udev->upper_level)
7371 			max_depth = udev->upper_level;
7372 	}
7373 
7374 	return max_depth;
7375 }
7376 
__netdev_lower_depth(struct net_device * dev)7377 static u8 __netdev_lower_depth(struct net_device *dev)
7378 {
7379 	struct net_device *ldev;
7380 	struct list_head *iter;
7381 	u8 max_depth = 0;
7382 	bool ignore;
7383 
7384 	for (iter = &dev->adj_list.lower,
7385 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7386 	     ldev;
7387 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7388 		if (ignore)
7389 			continue;
7390 		if (max_depth < ldev->lower_level)
7391 			max_depth = ldev->lower_level;
7392 	}
7393 
7394 	return max_depth;
7395 }
7396 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7397 static int __netdev_update_upper_level(struct net_device *dev,
7398 				       struct netdev_nested_priv *__unused)
7399 {
7400 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7401 	return 0;
7402 }
7403 
7404 #ifdef CONFIG_LOCKDEP
7405 static LIST_HEAD(net_unlink_list);
7406 
net_unlink_todo(struct net_device * dev)7407 static void net_unlink_todo(struct net_device *dev)
7408 {
7409 	if (list_empty(&dev->unlink_list))
7410 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7411 }
7412 #endif
7413 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7414 static int __netdev_update_lower_level(struct net_device *dev,
7415 				       struct netdev_nested_priv *priv)
7416 {
7417 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7418 
7419 #ifdef CONFIG_LOCKDEP
7420 	if (!priv)
7421 		return 0;
7422 
7423 	if (priv->flags & NESTED_SYNC_IMM)
7424 		dev->nested_level = dev->lower_level - 1;
7425 	if (priv->flags & NESTED_SYNC_TODO)
7426 		net_unlink_todo(dev);
7427 #endif
7428 	return 0;
7429 }
7430 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7431 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7432 				  int (*fn)(struct net_device *dev,
7433 					    struct netdev_nested_priv *priv),
7434 				  struct netdev_nested_priv *priv)
7435 {
7436 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7437 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7438 	int ret, cur = 0;
7439 
7440 	now = dev;
7441 	iter = &dev->adj_list.lower;
7442 
7443 	while (1) {
7444 		if (now != dev) {
7445 			ret = fn(now, priv);
7446 			if (ret)
7447 				return ret;
7448 		}
7449 
7450 		next = NULL;
7451 		while (1) {
7452 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7453 			if (!ldev)
7454 				break;
7455 
7456 			next = ldev;
7457 			niter = &ldev->adj_list.lower;
7458 			dev_stack[cur] = now;
7459 			iter_stack[cur++] = iter;
7460 			break;
7461 		}
7462 
7463 		if (!next) {
7464 			if (!cur)
7465 				return 0;
7466 			next = dev_stack[--cur];
7467 			niter = iter_stack[cur];
7468 		}
7469 
7470 		now = next;
7471 		iter = niter;
7472 	}
7473 
7474 	return 0;
7475 }
7476 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7477 
7478 /**
7479  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7480  *				       lower neighbour list, RCU
7481  *				       variant
7482  * @dev: device
7483  *
7484  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7485  * list. The caller must hold RCU read lock.
7486  */
netdev_lower_get_first_private_rcu(struct net_device * dev)7487 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7488 {
7489 	struct netdev_adjacent *lower;
7490 
7491 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7492 			struct netdev_adjacent, list);
7493 	if (lower)
7494 		return lower->private;
7495 	return NULL;
7496 }
7497 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7498 
7499 /**
7500  * netdev_master_upper_dev_get_rcu - Get master upper device
7501  * @dev: device
7502  *
7503  * Find a master upper device and return pointer to it or NULL in case
7504  * it's not there. The caller must hold the RCU read lock.
7505  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7506 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7507 {
7508 	struct netdev_adjacent *upper;
7509 
7510 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7511 				       struct netdev_adjacent, list);
7512 	if (upper && likely(upper->master))
7513 		return upper->dev;
7514 	return NULL;
7515 }
7516 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7517 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7518 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7519 			      struct net_device *adj_dev,
7520 			      struct list_head *dev_list)
7521 {
7522 	char linkname[IFNAMSIZ+7];
7523 
7524 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7525 		"upper_%s" : "lower_%s", adj_dev->name);
7526 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7527 				 linkname);
7528 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7529 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7530 			       char *name,
7531 			       struct list_head *dev_list)
7532 {
7533 	char linkname[IFNAMSIZ+7];
7534 
7535 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7536 		"upper_%s" : "lower_%s", name);
7537 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7538 }
7539 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7540 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7541 						 struct net_device *adj_dev,
7542 						 struct list_head *dev_list)
7543 {
7544 	return (dev_list == &dev->adj_list.upper ||
7545 		dev_list == &dev->adj_list.lower) &&
7546 		net_eq(dev_net(dev), dev_net(adj_dev));
7547 }
7548 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7549 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7550 					struct net_device *adj_dev,
7551 					struct list_head *dev_list,
7552 					void *private, bool master)
7553 {
7554 	struct netdev_adjacent *adj;
7555 	int ret;
7556 
7557 	adj = __netdev_find_adj(adj_dev, dev_list);
7558 
7559 	if (adj) {
7560 		adj->ref_nr += 1;
7561 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7562 			 dev->name, adj_dev->name, adj->ref_nr);
7563 
7564 		return 0;
7565 	}
7566 
7567 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7568 	if (!adj)
7569 		return -ENOMEM;
7570 
7571 	adj->dev = adj_dev;
7572 	adj->master = master;
7573 	adj->ref_nr = 1;
7574 	adj->private = private;
7575 	adj->ignore = false;
7576 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7577 
7578 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7579 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7580 
7581 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7582 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7583 		if (ret)
7584 			goto free_adj;
7585 	}
7586 
7587 	/* Ensure that master link is always the first item in list. */
7588 	if (master) {
7589 		ret = sysfs_create_link(&(dev->dev.kobj),
7590 					&(adj_dev->dev.kobj), "master");
7591 		if (ret)
7592 			goto remove_symlinks;
7593 
7594 		list_add_rcu(&adj->list, dev_list);
7595 	} else {
7596 		list_add_tail_rcu(&adj->list, dev_list);
7597 	}
7598 
7599 	return 0;
7600 
7601 remove_symlinks:
7602 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7603 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7604 free_adj:
7605 	netdev_put(adj_dev, &adj->dev_tracker);
7606 	kfree(adj);
7607 
7608 	return ret;
7609 }
7610 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7611 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7612 					 struct net_device *adj_dev,
7613 					 u16 ref_nr,
7614 					 struct list_head *dev_list)
7615 {
7616 	struct netdev_adjacent *adj;
7617 
7618 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7619 		 dev->name, adj_dev->name, ref_nr);
7620 
7621 	adj = __netdev_find_adj(adj_dev, dev_list);
7622 
7623 	if (!adj) {
7624 		pr_err("Adjacency does not exist for device %s from %s\n",
7625 		       dev->name, adj_dev->name);
7626 		WARN_ON(1);
7627 		return;
7628 	}
7629 
7630 	if (adj->ref_nr > ref_nr) {
7631 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7632 			 dev->name, adj_dev->name, ref_nr,
7633 			 adj->ref_nr - ref_nr);
7634 		adj->ref_nr -= ref_nr;
7635 		return;
7636 	}
7637 
7638 	if (adj->master)
7639 		sysfs_remove_link(&(dev->dev.kobj), "master");
7640 
7641 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7642 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7643 
7644 	list_del_rcu(&adj->list);
7645 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7646 		 adj_dev->name, dev->name, adj_dev->name);
7647 	netdev_put(adj_dev, &adj->dev_tracker);
7648 	kfree_rcu(adj, rcu);
7649 }
7650 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7651 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7652 					    struct net_device *upper_dev,
7653 					    struct list_head *up_list,
7654 					    struct list_head *down_list,
7655 					    void *private, bool master)
7656 {
7657 	int ret;
7658 
7659 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7660 					   private, master);
7661 	if (ret)
7662 		return ret;
7663 
7664 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7665 					   private, false);
7666 	if (ret) {
7667 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7668 		return ret;
7669 	}
7670 
7671 	return 0;
7672 }
7673 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7674 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7675 					       struct net_device *upper_dev,
7676 					       u16 ref_nr,
7677 					       struct list_head *up_list,
7678 					       struct list_head *down_list)
7679 {
7680 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7681 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7682 }
7683 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7684 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7685 						struct net_device *upper_dev,
7686 						void *private, bool master)
7687 {
7688 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7689 						&dev->adj_list.upper,
7690 						&upper_dev->adj_list.lower,
7691 						private, master);
7692 }
7693 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7694 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7695 						   struct net_device *upper_dev)
7696 {
7697 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7698 					   &dev->adj_list.upper,
7699 					   &upper_dev->adj_list.lower);
7700 }
7701 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7702 static int __netdev_upper_dev_link(struct net_device *dev,
7703 				   struct net_device *upper_dev, bool master,
7704 				   void *upper_priv, void *upper_info,
7705 				   struct netdev_nested_priv *priv,
7706 				   struct netlink_ext_ack *extack)
7707 {
7708 	struct netdev_notifier_changeupper_info changeupper_info = {
7709 		.info = {
7710 			.dev = dev,
7711 			.extack = extack,
7712 		},
7713 		.upper_dev = upper_dev,
7714 		.master = master,
7715 		.linking = true,
7716 		.upper_info = upper_info,
7717 	};
7718 	struct net_device *master_dev;
7719 	int ret = 0;
7720 
7721 	ASSERT_RTNL();
7722 
7723 	if (dev == upper_dev)
7724 		return -EBUSY;
7725 
7726 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7727 	if (__netdev_has_upper_dev(upper_dev, dev))
7728 		return -EBUSY;
7729 
7730 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7731 		return -EMLINK;
7732 
7733 	if (!master) {
7734 		if (__netdev_has_upper_dev(dev, upper_dev))
7735 			return -EEXIST;
7736 	} else {
7737 		master_dev = __netdev_master_upper_dev_get(dev);
7738 		if (master_dev)
7739 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7740 	}
7741 
7742 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7743 					    &changeupper_info.info);
7744 	ret = notifier_to_errno(ret);
7745 	if (ret)
7746 		return ret;
7747 
7748 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7749 						   master);
7750 	if (ret)
7751 		return ret;
7752 
7753 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7754 					    &changeupper_info.info);
7755 	ret = notifier_to_errno(ret);
7756 	if (ret)
7757 		goto rollback;
7758 
7759 	__netdev_update_upper_level(dev, NULL);
7760 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7761 
7762 	__netdev_update_lower_level(upper_dev, priv);
7763 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7764 				    priv);
7765 
7766 	return 0;
7767 
7768 rollback:
7769 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7770 
7771 	return ret;
7772 }
7773 
7774 /**
7775  * netdev_upper_dev_link - Add a link to the upper device
7776  * @dev: device
7777  * @upper_dev: new upper device
7778  * @extack: netlink extended ack
7779  *
7780  * Adds a link to device which is upper to this one. The caller must hold
7781  * the RTNL lock. On a failure a negative errno code is returned.
7782  * On success the reference counts are adjusted and the function
7783  * returns zero.
7784  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7785 int netdev_upper_dev_link(struct net_device *dev,
7786 			  struct net_device *upper_dev,
7787 			  struct netlink_ext_ack *extack)
7788 {
7789 	struct netdev_nested_priv priv = {
7790 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7791 		.data = NULL,
7792 	};
7793 
7794 	return __netdev_upper_dev_link(dev, upper_dev, false,
7795 				       NULL, NULL, &priv, extack);
7796 }
7797 EXPORT_SYMBOL(netdev_upper_dev_link);
7798 
7799 /**
7800  * netdev_master_upper_dev_link - Add a master link to the upper device
7801  * @dev: device
7802  * @upper_dev: new upper device
7803  * @upper_priv: upper device private
7804  * @upper_info: upper info to be passed down via notifier
7805  * @extack: netlink extended ack
7806  *
7807  * Adds a link to device which is upper to this one. In this case, only
7808  * one master upper device can be linked, although other non-master devices
7809  * might be linked as well. The caller must hold the RTNL lock.
7810  * On a failure a negative errno code is returned. On success the reference
7811  * counts are adjusted and the function returns zero.
7812  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7813 int netdev_master_upper_dev_link(struct net_device *dev,
7814 				 struct net_device *upper_dev,
7815 				 void *upper_priv, void *upper_info,
7816 				 struct netlink_ext_ack *extack)
7817 {
7818 	struct netdev_nested_priv priv = {
7819 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7820 		.data = NULL,
7821 	};
7822 
7823 	return __netdev_upper_dev_link(dev, upper_dev, true,
7824 				       upper_priv, upper_info, &priv, extack);
7825 }
7826 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7827 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7828 static void __netdev_upper_dev_unlink(struct net_device *dev,
7829 				      struct net_device *upper_dev,
7830 				      struct netdev_nested_priv *priv)
7831 {
7832 	struct netdev_notifier_changeupper_info changeupper_info = {
7833 		.info = {
7834 			.dev = dev,
7835 		},
7836 		.upper_dev = upper_dev,
7837 		.linking = false,
7838 	};
7839 
7840 	ASSERT_RTNL();
7841 
7842 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7843 
7844 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7845 				      &changeupper_info.info);
7846 
7847 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7848 
7849 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7850 				      &changeupper_info.info);
7851 
7852 	__netdev_update_upper_level(dev, NULL);
7853 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7854 
7855 	__netdev_update_lower_level(upper_dev, priv);
7856 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7857 				    priv);
7858 }
7859 
7860 /**
7861  * netdev_upper_dev_unlink - Removes a link to upper device
7862  * @dev: device
7863  * @upper_dev: new upper device
7864  *
7865  * Removes a link to device which is upper to this one. The caller must hold
7866  * the RTNL lock.
7867  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7868 void netdev_upper_dev_unlink(struct net_device *dev,
7869 			     struct net_device *upper_dev)
7870 {
7871 	struct netdev_nested_priv priv = {
7872 		.flags = NESTED_SYNC_TODO,
7873 		.data = NULL,
7874 	};
7875 
7876 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7877 }
7878 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7879 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7880 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7881 				      struct net_device *lower_dev,
7882 				      bool val)
7883 {
7884 	struct netdev_adjacent *adj;
7885 
7886 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7887 	if (adj)
7888 		adj->ignore = val;
7889 
7890 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7891 	if (adj)
7892 		adj->ignore = val;
7893 }
7894 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7895 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7896 					struct net_device *lower_dev)
7897 {
7898 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7899 }
7900 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7901 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7902 				       struct net_device *lower_dev)
7903 {
7904 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7905 }
7906 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7907 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7908 				   struct net_device *new_dev,
7909 				   struct net_device *dev,
7910 				   struct netlink_ext_ack *extack)
7911 {
7912 	struct netdev_nested_priv priv = {
7913 		.flags = 0,
7914 		.data = NULL,
7915 	};
7916 	int err;
7917 
7918 	if (!new_dev)
7919 		return 0;
7920 
7921 	if (old_dev && new_dev != old_dev)
7922 		netdev_adjacent_dev_disable(dev, old_dev);
7923 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7924 				      extack);
7925 	if (err) {
7926 		if (old_dev && new_dev != old_dev)
7927 			netdev_adjacent_dev_enable(dev, old_dev);
7928 		return err;
7929 	}
7930 
7931 	return 0;
7932 }
7933 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7934 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7935 void netdev_adjacent_change_commit(struct net_device *old_dev,
7936 				   struct net_device *new_dev,
7937 				   struct net_device *dev)
7938 {
7939 	struct netdev_nested_priv priv = {
7940 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7941 		.data = NULL,
7942 	};
7943 
7944 	if (!new_dev || !old_dev)
7945 		return;
7946 
7947 	if (new_dev == old_dev)
7948 		return;
7949 
7950 	netdev_adjacent_dev_enable(dev, old_dev);
7951 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7952 }
7953 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7954 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7955 void netdev_adjacent_change_abort(struct net_device *old_dev,
7956 				  struct net_device *new_dev,
7957 				  struct net_device *dev)
7958 {
7959 	struct netdev_nested_priv priv = {
7960 		.flags = 0,
7961 		.data = NULL,
7962 	};
7963 
7964 	if (!new_dev)
7965 		return;
7966 
7967 	if (old_dev && new_dev != old_dev)
7968 		netdev_adjacent_dev_enable(dev, old_dev);
7969 
7970 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7971 }
7972 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7973 
7974 /**
7975  * netdev_bonding_info_change - Dispatch event about slave change
7976  * @dev: device
7977  * @bonding_info: info to dispatch
7978  *
7979  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7980  * The caller must hold the RTNL lock.
7981  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7982 void netdev_bonding_info_change(struct net_device *dev,
7983 				struct netdev_bonding_info *bonding_info)
7984 {
7985 	struct netdev_notifier_bonding_info info = {
7986 		.info.dev = dev,
7987 	};
7988 
7989 	memcpy(&info.bonding_info, bonding_info,
7990 	       sizeof(struct netdev_bonding_info));
7991 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7992 				      &info.info);
7993 }
7994 EXPORT_SYMBOL(netdev_bonding_info_change);
7995 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)7996 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7997 					   struct netlink_ext_ack *extack)
7998 {
7999 	struct netdev_notifier_offload_xstats_info info = {
8000 		.info.dev = dev,
8001 		.info.extack = extack,
8002 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8003 	};
8004 	int err;
8005 	int rc;
8006 
8007 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8008 					 GFP_KERNEL);
8009 	if (!dev->offload_xstats_l3)
8010 		return -ENOMEM;
8011 
8012 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8013 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8014 						  &info.info);
8015 	err = notifier_to_errno(rc);
8016 	if (err)
8017 		goto free_stats;
8018 
8019 	return 0;
8020 
8021 free_stats:
8022 	kfree(dev->offload_xstats_l3);
8023 	dev->offload_xstats_l3 = NULL;
8024 	return err;
8025 }
8026 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8027 int netdev_offload_xstats_enable(struct net_device *dev,
8028 				 enum netdev_offload_xstats_type type,
8029 				 struct netlink_ext_ack *extack)
8030 {
8031 	ASSERT_RTNL();
8032 
8033 	if (netdev_offload_xstats_enabled(dev, type))
8034 		return -EALREADY;
8035 
8036 	switch (type) {
8037 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8038 		return netdev_offload_xstats_enable_l3(dev, extack);
8039 	}
8040 
8041 	WARN_ON(1);
8042 	return -EINVAL;
8043 }
8044 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8045 
netdev_offload_xstats_disable_l3(struct net_device * dev)8046 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8047 {
8048 	struct netdev_notifier_offload_xstats_info info = {
8049 		.info.dev = dev,
8050 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8051 	};
8052 
8053 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8054 				      &info.info);
8055 	kfree(dev->offload_xstats_l3);
8056 	dev->offload_xstats_l3 = NULL;
8057 }
8058 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8059 int netdev_offload_xstats_disable(struct net_device *dev,
8060 				  enum netdev_offload_xstats_type type)
8061 {
8062 	ASSERT_RTNL();
8063 
8064 	if (!netdev_offload_xstats_enabled(dev, type))
8065 		return -EALREADY;
8066 
8067 	switch (type) {
8068 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8069 		netdev_offload_xstats_disable_l3(dev);
8070 		return 0;
8071 	}
8072 
8073 	WARN_ON(1);
8074 	return -EINVAL;
8075 }
8076 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8077 
netdev_offload_xstats_disable_all(struct net_device * dev)8078 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8079 {
8080 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8081 }
8082 
8083 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8084 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8085 			      enum netdev_offload_xstats_type type)
8086 {
8087 	switch (type) {
8088 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8089 		return dev->offload_xstats_l3;
8090 	}
8091 
8092 	WARN_ON(1);
8093 	return NULL;
8094 }
8095 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8096 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8097 				   enum netdev_offload_xstats_type type)
8098 {
8099 	ASSERT_RTNL();
8100 
8101 	return netdev_offload_xstats_get_ptr(dev, type);
8102 }
8103 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8104 
8105 struct netdev_notifier_offload_xstats_ru {
8106 	bool used;
8107 };
8108 
8109 struct netdev_notifier_offload_xstats_rd {
8110 	struct rtnl_hw_stats64 stats;
8111 	bool used;
8112 };
8113 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8114 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8115 				  const struct rtnl_hw_stats64 *src)
8116 {
8117 	dest->rx_packets	  += src->rx_packets;
8118 	dest->tx_packets	  += src->tx_packets;
8119 	dest->rx_bytes		  += src->rx_bytes;
8120 	dest->tx_bytes		  += src->tx_bytes;
8121 	dest->rx_errors		  += src->rx_errors;
8122 	dest->tx_errors		  += src->tx_errors;
8123 	dest->rx_dropped	  += src->rx_dropped;
8124 	dest->tx_dropped	  += src->tx_dropped;
8125 	dest->multicast		  += src->multicast;
8126 }
8127 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8128 static int netdev_offload_xstats_get_used(struct net_device *dev,
8129 					  enum netdev_offload_xstats_type type,
8130 					  bool *p_used,
8131 					  struct netlink_ext_ack *extack)
8132 {
8133 	struct netdev_notifier_offload_xstats_ru report_used = {};
8134 	struct netdev_notifier_offload_xstats_info info = {
8135 		.info.dev = dev,
8136 		.info.extack = extack,
8137 		.type = type,
8138 		.report_used = &report_used,
8139 	};
8140 	int rc;
8141 
8142 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8143 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8144 					   &info.info);
8145 	*p_used = report_used.used;
8146 	return notifier_to_errno(rc);
8147 }
8148 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8149 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8150 					   enum netdev_offload_xstats_type type,
8151 					   struct rtnl_hw_stats64 *p_stats,
8152 					   bool *p_used,
8153 					   struct netlink_ext_ack *extack)
8154 {
8155 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8156 	struct netdev_notifier_offload_xstats_info info = {
8157 		.info.dev = dev,
8158 		.info.extack = extack,
8159 		.type = type,
8160 		.report_delta = &report_delta,
8161 	};
8162 	struct rtnl_hw_stats64 *stats;
8163 	int rc;
8164 
8165 	stats = netdev_offload_xstats_get_ptr(dev, type);
8166 	if (WARN_ON(!stats))
8167 		return -EINVAL;
8168 
8169 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8170 					   &info.info);
8171 
8172 	/* Cache whatever we got, even if there was an error, otherwise the
8173 	 * successful stats retrievals would get lost.
8174 	 */
8175 	netdev_hw_stats64_add(stats, &report_delta.stats);
8176 
8177 	if (p_stats)
8178 		*p_stats = *stats;
8179 	*p_used = report_delta.used;
8180 
8181 	return notifier_to_errno(rc);
8182 }
8183 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8184 int netdev_offload_xstats_get(struct net_device *dev,
8185 			      enum netdev_offload_xstats_type type,
8186 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8187 			      struct netlink_ext_ack *extack)
8188 {
8189 	ASSERT_RTNL();
8190 
8191 	if (p_stats)
8192 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8193 						       p_used, extack);
8194 	else
8195 		return netdev_offload_xstats_get_used(dev, type, p_used,
8196 						      extack);
8197 }
8198 EXPORT_SYMBOL(netdev_offload_xstats_get);
8199 
8200 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8201 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8202 				   const struct rtnl_hw_stats64 *stats)
8203 {
8204 	report_delta->used = true;
8205 	netdev_hw_stats64_add(&report_delta->stats, stats);
8206 }
8207 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8208 
8209 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8210 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8211 {
8212 	report_used->used = true;
8213 }
8214 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8215 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8216 void netdev_offload_xstats_push_delta(struct net_device *dev,
8217 				      enum netdev_offload_xstats_type type,
8218 				      const struct rtnl_hw_stats64 *p_stats)
8219 {
8220 	struct rtnl_hw_stats64 *stats;
8221 
8222 	ASSERT_RTNL();
8223 
8224 	stats = netdev_offload_xstats_get_ptr(dev, type);
8225 	if (WARN_ON(!stats))
8226 		return;
8227 
8228 	netdev_hw_stats64_add(stats, p_stats);
8229 }
8230 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8231 
8232 /**
8233  * netdev_get_xmit_slave - Get the xmit slave of master device
8234  * @dev: device
8235  * @skb: The packet
8236  * @all_slaves: assume all the slaves are active
8237  *
8238  * The reference counters are not incremented so the caller must be
8239  * careful with locks. The caller must hold RCU lock.
8240  * %NULL is returned if no slave is found.
8241  */
8242 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8243 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8244 					 struct sk_buff *skb,
8245 					 bool all_slaves)
8246 {
8247 	const struct net_device_ops *ops = dev->netdev_ops;
8248 
8249 	if (!ops->ndo_get_xmit_slave)
8250 		return NULL;
8251 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8252 }
8253 EXPORT_SYMBOL(netdev_get_xmit_slave);
8254 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8255 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8256 						  struct sock *sk)
8257 {
8258 	const struct net_device_ops *ops = dev->netdev_ops;
8259 
8260 	if (!ops->ndo_sk_get_lower_dev)
8261 		return NULL;
8262 	return ops->ndo_sk_get_lower_dev(dev, sk);
8263 }
8264 
8265 /**
8266  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8267  * @dev: device
8268  * @sk: the socket
8269  *
8270  * %NULL is returned if no lower device is found.
8271  */
8272 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8273 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8274 					    struct sock *sk)
8275 {
8276 	struct net_device *lower;
8277 
8278 	lower = netdev_sk_get_lower_dev(dev, sk);
8279 	while (lower) {
8280 		dev = lower;
8281 		lower = netdev_sk_get_lower_dev(dev, sk);
8282 	}
8283 
8284 	return dev;
8285 }
8286 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8287 
netdev_adjacent_add_links(struct net_device * dev)8288 static void netdev_adjacent_add_links(struct net_device *dev)
8289 {
8290 	struct netdev_adjacent *iter;
8291 
8292 	struct net *net = dev_net(dev);
8293 
8294 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8295 		if (!net_eq(net, dev_net(iter->dev)))
8296 			continue;
8297 		netdev_adjacent_sysfs_add(iter->dev, dev,
8298 					  &iter->dev->adj_list.lower);
8299 		netdev_adjacent_sysfs_add(dev, iter->dev,
8300 					  &dev->adj_list.upper);
8301 	}
8302 
8303 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8304 		if (!net_eq(net, dev_net(iter->dev)))
8305 			continue;
8306 		netdev_adjacent_sysfs_add(iter->dev, dev,
8307 					  &iter->dev->adj_list.upper);
8308 		netdev_adjacent_sysfs_add(dev, iter->dev,
8309 					  &dev->adj_list.lower);
8310 	}
8311 }
8312 
netdev_adjacent_del_links(struct net_device * dev)8313 static void netdev_adjacent_del_links(struct net_device *dev)
8314 {
8315 	struct netdev_adjacent *iter;
8316 
8317 	struct net *net = dev_net(dev);
8318 
8319 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8320 		if (!net_eq(net, dev_net(iter->dev)))
8321 			continue;
8322 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8323 					  &iter->dev->adj_list.lower);
8324 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8325 					  &dev->adj_list.upper);
8326 	}
8327 
8328 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8329 		if (!net_eq(net, dev_net(iter->dev)))
8330 			continue;
8331 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8332 					  &iter->dev->adj_list.upper);
8333 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8334 					  &dev->adj_list.lower);
8335 	}
8336 }
8337 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8338 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8339 {
8340 	struct netdev_adjacent *iter;
8341 
8342 	struct net *net = dev_net(dev);
8343 
8344 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8345 		if (!net_eq(net, dev_net(iter->dev)))
8346 			continue;
8347 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8348 					  &iter->dev->adj_list.lower);
8349 		netdev_adjacent_sysfs_add(iter->dev, dev,
8350 					  &iter->dev->adj_list.lower);
8351 	}
8352 
8353 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8354 		if (!net_eq(net, dev_net(iter->dev)))
8355 			continue;
8356 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8357 					  &iter->dev->adj_list.upper);
8358 		netdev_adjacent_sysfs_add(iter->dev, dev,
8359 					  &iter->dev->adj_list.upper);
8360 	}
8361 }
8362 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8363 void *netdev_lower_dev_get_private(struct net_device *dev,
8364 				   struct net_device *lower_dev)
8365 {
8366 	struct netdev_adjacent *lower;
8367 
8368 	if (!lower_dev)
8369 		return NULL;
8370 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8371 	if (!lower)
8372 		return NULL;
8373 
8374 	return lower->private;
8375 }
8376 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8377 
8378 
8379 /**
8380  * netdev_lower_state_changed - Dispatch event about lower device state change
8381  * @lower_dev: device
8382  * @lower_state_info: state to dispatch
8383  *
8384  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8385  * The caller must hold the RTNL lock.
8386  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8387 void netdev_lower_state_changed(struct net_device *lower_dev,
8388 				void *lower_state_info)
8389 {
8390 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8391 		.info.dev = lower_dev,
8392 	};
8393 
8394 	ASSERT_RTNL();
8395 	changelowerstate_info.lower_state_info = lower_state_info;
8396 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8397 				      &changelowerstate_info.info);
8398 }
8399 EXPORT_SYMBOL(netdev_lower_state_changed);
8400 
dev_change_rx_flags(struct net_device * dev,int flags)8401 static void dev_change_rx_flags(struct net_device *dev, int flags)
8402 {
8403 	const struct net_device_ops *ops = dev->netdev_ops;
8404 
8405 	if (ops->ndo_change_rx_flags)
8406 		ops->ndo_change_rx_flags(dev, flags);
8407 }
8408 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8409 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8410 {
8411 	unsigned int old_flags = dev->flags;
8412 	kuid_t uid;
8413 	kgid_t gid;
8414 
8415 	ASSERT_RTNL();
8416 
8417 	dev->flags |= IFF_PROMISC;
8418 	dev->promiscuity += inc;
8419 	if (dev->promiscuity == 0) {
8420 		/*
8421 		 * Avoid overflow.
8422 		 * If inc causes overflow, untouch promisc and return error.
8423 		 */
8424 		if (inc < 0)
8425 			dev->flags &= ~IFF_PROMISC;
8426 		else {
8427 			dev->promiscuity -= inc;
8428 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8429 			return -EOVERFLOW;
8430 		}
8431 	}
8432 	if (dev->flags != old_flags) {
8433 		netdev_info(dev, "%s promiscuous mode\n",
8434 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8435 		if (audit_enabled) {
8436 			current_uid_gid(&uid, &gid);
8437 			audit_log(audit_context(), GFP_ATOMIC,
8438 				  AUDIT_ANOM_PROMISCUOUS,
8439 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8440 				  dev->name, (dev->flags & IFF_PROMISC),
8441 				  (old_flags & IFF_PROMISC),
8442 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8443 				  from_kuid(&init_user_ns, uid),
8444 				  from_kgid(&init_user_ns, gid),
8445 				  audit_get_sessionid(current));
8446 		}
8447 
8448 		dev_change_rx_flags(dev, IFF_PROMISC);
8449 	}
8450 	if (notify)
8451 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8452 	return 0;
8453 }
8454 
8455 /**
8456  *	dev_set_promiscuity	- update promiscuity count on a device
8457  *	@dev: device
8458  *	@inc: modifier
8459  *
8460  *	Add or remove promiscuity from a device. While the count in the device
8461  *	remains above zero the interface remains promiscuous. Once it hits zero
8462  *	the device reverts back to normal filtering operation. A negative inc
8463  *	value is used to drop promiscuity on the device.
8464  *	Return 0 if successful or a negative errno code on error.
8465  */
dev_set_promiscuity(struct net_device * dev,int inc)8466 int dev_set_promiscuity(struct net_device *dev, int inc)
8467 {
8468 	unsigned int old_flags = dev->flags;
8469 	int err;
8470 
8471 	err = __dev_set_promiscuity(dev, inc, true);
8472 	if (err < 0)
8473 		return err;
8474 	if (dev->flags != old_flags)
8475 		dev_set_rx_mode(dev);
8476 	return err;
8477 }
8478 EXPORT_SYMBOL(dev_set_promiscuity);
8479 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8480 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8481 {
8482 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8483 
8484 	ASSERT_RTNL();
8485 
8486 	dev->flags |= IFF_ALLMULTI;
8487 	dev->allmulti += inc;
8488 	if (dev->allmulti == 0) {
8489 		/*
8490 		 * Avoid overflow.
8491 		 * If inc causes overflow, untouch allmulti and return error.
8492 		 */
8493 		if (inc < 0)
8494 			dev->flags &= ~IFF_ALLMULTI;
8495 		else {
8496 			dev->allmulti -= inc;
8497 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8498 			return -EOVERFLOW;
8499 		}
8500 	}
8501 	if (dev->flags ^ old_flags) {
8502 		netdev_info(dev, "%s allmulticast mode\n",
8503 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8504 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8505 		dev_set_rx_mode(dev);
8506 		if (notify)
8507 			__dev_notify_flags(dev, old_flags,
8508 					   dev->gflags ^ old_gflags, 0, NULL);
8509 	}
8510 	return 0;
8511 }
8512 
8513 /**
8514  *	dev_set_allmulti	- update allmulti count on a device
8515  *	@dev: device
8516  *	@inc: modifier
8517  *
8518  *	Add or remove reception of all multicast frames to a device. While the
8519  *	count in the device remains above zero the interface remains listening
8520  *	to all interfaces. Once it hits zero the device reverts back to normal
8521  *	filtering operation. A negative @inc value is used to drop the counter
8522  *	when releasing a resource needing all multicasts.
8523  *	Return 0 if successful or a negative errno code on error.
8524  */
8525 
dev_set_allmulti(struct net_device * dev,int inc)8526 int dev_set_allmulti(struct net_device *dev, int inc)
8527 {
8528 	return __dev_set_allmulti(dev, inc, true);
8529 }
8530 EXPORT_SYMBOL(dev_set_allmulti);
8531 
8532 /*
8533  *	Upload unicast and multicast address lists to device and
8534  *	configure RX filtering. When the device doesn't support unicast
8535  *	filtering it is put in promiscuous mode while unicast addresses
8536  *	are present.
8537  */
__dev_set_rx_mode(struct net_device * dev)8538 void __dev_set_rx_mode(struct net_device *dev)
8539 {
8540 	const struct net_device_ops *ops = dev->netdev_ops;
8541 
8542 	/* dev_open will call this function so the list will stay sane. */
8543 	if (!(dev->flags&IFF_UP))
8544 		return;
8545 
8546 	if (!netif_device_present(dev))
8547 		return;
8548 
8549 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8550 		/* Unicast addresses changes may only happen under the rtnl,
8551 		 * therefore calling __dev_set_promiscuity here is safe.
8552 		 */
8553 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8554 			__dev_set_promiscuity(dev, 1, false);
8555 			dev->uc_promisc = true;
8556 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8557 			__dev_set_promiscuity(dev, -1, false);
8558 			dev->uc_promisc = false;
8559 		}
8560 	}
8561 
8562 	if (ops->ndo_set_rx_mode)
8563 		ops->ndo_set_rx_mode(dev);
8564 }
8565 
dev_set_rx_mode(struct net_device * dev)8566 void dev_set_rx_mode(struct net_device *dev)
8567 {
8568 	netif_addr_lock_bh(dev);
8569 	__dev_set_rx_mode(dev);
8570 	netif_addr_unlock_bh(dev);
8571 }
8572 
8573 /**
8574  *	dev_get_flags - get flags reported to userspace
8575  *	@dev: device
8576  *
8577  *	Get the combination of flag bits exported through APIs to userspace.
8578  */
dev_get_flags(const struct net_device * dev)8579 unsigned int dev_get_flags(const struct net_device *dev)
8580 {
8581 	unsigned int flags;
8582 
8583 	flags = (dev->flags & ~(IFF_PROMISC |
8584 				IFF_ALLMULTI |
8585 				IFF_RUNNING |
8586 				IFF_LOWER_UP |
8587 				IFF_DORMANT)) |
8588 		(dev->gflags & (IFF_PROMISC |
8589 				IFF_ALLMULTI));
8590 
8591 	if (netif_running(dev)) {
8592 		if (netif_oper_up(dev))
8593 			flags |= IFF_RUNNING;
8594 		if (netif_carrier_ok(dev))
8595 			flags |= IFF_LOWER_UP;
8596 		if (netif_dormant(dev))
8597 			flags |= IFF_DORMANT;
8598 	}
8599 
8600 	return flags;
8601 }
8602 EXPORT_SYMBOL(dev_get_flags);
8603 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8604 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8605 		       struct netlink_ext_ack *extack)
8606 {
8607 	unsigned int old_flags = dev->flags;
8608 	int ret;
8609 
8610 	ASSERT_RTNL();
8611 
8612 	/*
8613 	 *	Set the flags on our device.
8614 	 */
8615 
8616 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8617 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8618 			       IFF_AUTOMEDIA)) |
8619 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8620 				    IFF_ALLMULTI));
8621 
8622 	/*
8623 	 *	Load in the correct multicast list now the flags have changed.
8624 	 */
8625 
8626 	if ((old_flags ^ flags) & IFF_MULTICAST)
8627 		dev_change_rx_flags(dev, IFF_MULTICAST);
8628 
8629 	dev_set_rx_mode(dev);
8630 
8631 	/*
8632 	 *	Have we downed the interface. We handle IFF_UP ourselves
8633 	 *	according to user attempts to set it, rather than blindly
8634 	 *	setting it.
8635 	 */
8636 
8637 	ret = 0;
8638 	if ((old_flags ^ flags) & IFF_UP) {
8639 		if (old_flags & IFF_UP)
8640 			__dev_close(dev);
8641 		else
8642 			ret = __dev_open(dev, extack);
8643 	}
8644 
8645 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8646 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8647 		unsigned int old_flags = dev->flags;
8648 
8649 		dev->gflags ^= IFF_PROMISC;
8650 
8651 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8652 			if (dev->flags != old_flags)
8653 				dev_set_rx_mode(dev);
8654 	}
8655 
8656 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8657 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8658 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8659 	 */
8660 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8661 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8662 
8663 		dev->gflags ^= IFF_ALLMULTI;
8664 		__dev_set_allmulti(dev, inc, false);
8665 	}
8666 
8667 	return ret;
8668 }
8669 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8670 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8671 			unsigned int gchanges, u32 portid,
8672 			const struct nlmsghdr *nlh)
8673 {
8674 	unsigned int changes = dev->flags ^ old_flags;
8675 
8676 	if (gchanges)
8677 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8678 
8679 	if (changes & IFF_UP) {
8680 		if (dev->flags & IFF_UP)
8681 			call_netdevice_notifiers(NETDEV_UP, dev);
8682 		else
8683 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8684 	}
8685 
8686 	if (dev->flags & IFF_UP &&
8687 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8688 		struct netdev_notifier_change_info change_info = {
8689 			.info = {
8690 				.dev = dev,
8691 			},
8692 			.flags_changed = changes,
8693 		};
8694 
8695 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8696 	}
8697 }
8698 
8699 /**
8700  *	dev_change_flags - change device settings
8701  *	@dev: device
8702  *	@flags: device state flags
8703  *	@extack: netlink extended ack
8704  *
8705  *	Change settings on device based state flags. The flags are
8706  *	in the userspace exported format.
8707  */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8708 int dev_change_flags(struct net_device *dev, unsigned int flags,
8709 		     struct netlink_ext_ack *extack)
8710 {
8711 	int ret;
8712 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8713 
8714 	ret = __dev_change_flags(dev, flags, extack);
8715 	if (ret < 0)
8716 		return ret;
8717 
8718 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8719 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8720 	return ret;
8721 }
8722 EXPORT_SYMBOL(dev_change_flags);
8723 
__dev_set_mtu(struct net_device * dev,int new_mtu)8724 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8725 {
8726 	const struct net_device_ops *ops = dev->netdev_ops;
8727 
8728 	if (ops->ndo_change_mtu)
8729 		return ops->ndo_change_mtu(dev, new_mtu);
8730 
8731 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8732 	WRITE_ONCE(dev->mtu, new_mtu);
8733 	return 0;
8734 }
8735 EXPORT_SYMBOL(__dev_set_mtu);
8736 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8737 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8738 		     struct netlink_ext_ack *extack)
8739 {
8740 	/* MTU must be positive, and in range */
8741 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8742 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8743 		return -EINVAL;
8744 	}
8745 
8746 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8747 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8748 		return -EINVAL;
8749 	}
8750 	return 0;
8751 }
8752 
8753 /**
8754  *	dev_set_mtu_ext - Change maximum transfer unit
8755  *	@dev: device
8756  *	@new_mtu: new transfer unit
8757  *	@extack: netlink extended ack
8758  *
8759  *	Change the maximum transfer size of the network device.
8760  */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8761 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8762 		    struct netlink_ext_ack *extack)
8763 {
8764 	int err, orig_mtu;
8765 
8766 	if (new_mtu == dev->mtu)
8767 		return 0;
8768 
8769 	err = dev_validate_mtu(dev, new_mtu, extack);
8770 	if (err)
8771 		return err;
8772 
8773 	if (!netif_device_present(dev))
8774 		return -ENODEV;
8775 
8776 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8777 	err = notifier_to_errno(err);
8778 	if (err)
8779 		return err;
8780 
8781 	orig_mtu = dev->mtu;
8782 	err = __dev_set_mtu(dev, new_mtu);
8783 
8784 	if (!err) {
8785 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8786 						   orig_mtu);
8787 		err = notifier_to_errno(err);
8788 		if (err) {
8789 			/* setting mtu back and notifying everyone again,
8790 			 * so that they have a chance to revert changes.
8791 			 */
8792 			__dev_set_mtu(dev, orig_mtu);
8793 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8794 						     new_mtu);
8795 		}
8796 	}
8797 	return err;
8798 }
8799 
dev_set_mtu(struct net_device * dev,int new_mtu)8800 int dev_set_mtu(struct net_device *dev, int new_mtu)
8801 {
8802 	struct netlink_ext_ack extack;
8803 	int err;
8804 
8805 	memset(&extack, 0, sizeof(extack));
8806 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8807 	if (err && extack._msg)
8808 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8809 	return err;
8810 }
8811 EXPORT_SYMBOL(dev_set_mtu);
8812 
8813 /**
8814  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8815  *	@dev: device
8816  *	@new_len: new tx queue length
8817  */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8818 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8819 {
8820 	unsigned int orig_len = dev->tx_queue_len;
8821 	int res;
8822 
8823 	if (new_len != (unsigned int)new_len)
8824 		return -ERANGE;
8825 
8826 	if (new_len != orig_len) {
8827 		dev->tx_queue_len = new_len;
8828 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8829 		res = notifier_to_errno(res);
8830 		if (res)
8831 			goto err_rollback;
8832 		res = dev_qdisc_change_tx_queue_len(dev);
8833 		if (res)
8834 			goto err_rollback;
8835 	}
8836 
8837 	return 0;
8838 
8839 err_rollback:
8840 	netdev_err(dev, "refused to change device tx_queue_len\n");
8841 	dev->tx_queue_len = orig_len;
8842 	return res;
8843 }
8844 
8845 /**
8846  *	dev_set_group - Change group this device belongs to
8847  *	@dev: device
8848  *	@new_group: group this device should belong to
8849  */
dev_set_group(struct net_device * dev,int new_group)8850 void dev_set_group(struct net_device *dev, int new_group)
8851 {
8852 	dev->group = new_group;
8853 }
8854 
8855 /**
8856  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8857  *	@dev: device
8858  *	@addr: new address
8859  *	@extack: netlink extended ack
8860  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8861 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8862 			      struct netlink_ext_ack *extack)
8863 {
8864 	struct netdev_notifier_pre_changeaddr_info info = {
8865 		.info.dev = dev,
8866 		.info.extack = extack,
8867 		.dev_addr = addr,
8868 	};
8869 	int rc;
8870 
8871 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8872 	return notifier_to_errno(rc);
8873 }
8874 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8875 
8876 /**
8877  *	dev_set_mac_address - Change Media Access Control Address
8878  *	@dev: device
8879  *	@sa: new address
8880  *	@extack: netlink extended ack
8881  *
8882  *	Change the hardware (MAC) address of the device
8883  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8884 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8885 			struct netlink_ext_ack *extack)
8886 {
8887 	const struct net_device_ops *ops = dev->netdev_ops;
8888 	int err;
8889 
8890 	if (!ops->ndo_set_mac_address)
8891 		return -EOPNOTSUPP;
8892 	if (sa->sa_family != dev->type)
8893 		return -EINVAL;
8894 	if (!netif_device_present(dev))
8895 		return -ENODEV;
8896 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8897 	if (err)
8898 		return err;
8899 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8900 		err = ops->ndo_set_mac_address(dev, sa);
8901 		if (err)
8902 			return err;
8903 	}
8904 	dev->addr_assign_type = NET_ADDR_SET;
8905 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8906 	add_device_randomness(dev->dev_addr, dev->addr_len);
8907 	return 0;
8908 }
8909 EXPORT_SYMBOL(dev_set_mac_address);
8910 
8911 static DECLARE_RWSEM(dev_addr_sem);
8912 
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8913 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8914 			     struct netlink_ext_ack *extack)
8915 {
8916 	int ret;
8917 
8918 	down_write(&dev_addr_sem);
8919 	ret = dev_set_mac_address(dev, sa, extack);
8920 	up_write(&dev_addr_sem);
8921 	return ret;
8922 }
8923 EXPORT_SYMBOL(dev_set_mac_address_user);
8924 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8925 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8926 {
8927 	size_t size = sizeof(sa->sa_data_min);
8928 	struct net_device *dev;
8929 	int ret = 0;
8930 
8931 	down_read(&dev_addr_sem);
8932 	rcu_read_lock();
8933 
8934 	dev = dev_get_by_name_rcu(net, dev_name);
8935 	if (!dev) {
8936 		ret = -ENODEV;
8937 		goto unlock;
8938 	}
8939 	if (!dev->addr_len)
8940 		memset(sa->sa_data, 0, size);
8941 	else
8942 		memcpy(sa->sa_data, dev->dev_addr,
8943 		       min_t(size_t, size, dev->addr_len));
8944 	sa->sa_family = dev->type;
8945 
8946 unlock:
8947 	rcu_read_unlock();
8948 	up_read(&dev_addr_sem);
8949 	return ret;
8950 }
8951 EXPORT_SYMBOL(dev_get_mac_address);
8952 
8953 /**
8954  *	dev_change_carrier - Change device carrier
8955  *	@dev: device
8956  *	@new_carrier: new value
8957  *
8958  *	Change device carrier
8959  */
dev_change_carrier(struct net_device * dev,bool new_carrier)8960 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8961 {
8962 	const struct net_device_ops *ops = dev->netdev_ops;
8963 
8964 	if (!ops->ndo_change_carrier)
8965 		return -EOPNOTSUPP;
8966 	if (!netif_device_present(dev))
8967 		return -ENODEV;
8968 	return ops->ndo_change_carrier(dev, new_carrier);
8969 }
8970 
8971 /**
8972  *	dev_get_phys_port_id - Get device physical port ID
8973  *	@dev: device
8974  *	@ppid: port ID
8975  *
8976  *	Get device physical port ID
8977  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8978 int dev_get_phys_port_id(struct net_device *dev,
8979 			 struct netdev_phys_item_id *ppid)
8980 {
8981 	const struct net_device_ops *ops = dev->netdev_ops;
8982 
8983 	if (!ops->ndo_get_phys_port_id)
8984 		return -EOPNOTSUPP;
8985 	return ops->ndo_get_phys_port_id(dev, ppid);
8986 }
8987 
8988 /**
8989  *	dev_get_phys_port_name - Get device physical port name
8990  *	@dev: device
8991  *	@name: port name
8992  *	@len: limit of bytes to copy to name
8993  *
8994  *	Get device physical port name
8995  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8996 int dev_get_phys_port_name(struct net_device *dev,
8997 			   char *name, size_t len)
8998 {
8999 	const struct net_device_ops *ops = dev->netdev_ops;
9000 	int err;
9001 
9002 	if (ops->ndo_get_phys_port_name) {
9003 		err = ops->ndo_get_phys_port_name(dev, name, len);
9004 		if (err != -EOPNOTSUPP)
9005 			return err;
9006 	}
9007 	return devlink_compat_phys_port_name_get(dev, name, len);
9008 }
9009 
9010 /**
9011  *	dev_get_port_parent_id - Get the device's port parent identifier
9012  *	@dev: network device
9013  *	@ppid: pointer to a storage for the port's parent identifier
9014  *	@recurse: allow/disallow recursion to lower devices
9015  *
9016  *	Get the devices's port parent identifier
9017  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9018 int dev_get_port_parent_id(struct net_device *dev,
9019 			   struct netdev_phys_item_id *ppid,
9020 			   bool recurse)
9021 {
9022 	const struct net_device_ops *ops = dev->netdev_ops;
9023 	struct netdev_phys_item_id first = { };
9024 	struct net_device *lower_dev;
9025 	struct list_head *iter;
9026 	int err;
9027 
9028 	if (ops->ndo_get_port_parent_id) {
9029 		err = ops->ndo_get_port_parent_id(dev, ppid);
9030 		if (err != -EOPNOTSUPP)
9031 			return err;
9032 	}
9033 
9034 	err = devlink_compat_switch_id_get(dev, ppid);
9035 	if (!recurse || err != -EOPNOTSUPP)
9036 		return err;
9037 
9038 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9039 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9040 		if (err)
9041 			break;
9042 		if (!first.id_len)
9043 			first = *ppid;
9044 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9045 			return -EOPNOTSUPP;
9046 	}
9047 
9048 	return err;
9049 }
9050 EXPORT_SYMBOL(dev_get_port_parent_id);
9051 
9052 /**
9053  *	netdev_port_same_parent_id - Indicate if two network devices have
9054  *	the same port parent identifier
9055  *	@a: first network device
9056  *	@b: second network device
9057  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9058 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9059 {
9060 	struct netdev_phys_item_id a_id = { };
9061 	struct netdev_phys_item_id b_id = { };
9062 
9063 	if (dev_get_port_parent_id(a, &a_id, true) ||
9064 	    dev_get_port_parent_id(b, &b_id, true))
9065 		return false;
9066 
9067 	return netdev_phys_item_id_same(&a_id, &b_id);
9068 }
9069 EXPORT_SYMBOL(netdev_port_same_parent_id);
9070 
9071 /**
9072  *	dev_change_proto_down - set carrier according to proto_down.
9073  *
9074  *	@dev: device
9075  *	@proto_down: new value
9076  */
dev_change_proto_down(struct net_device * dev,bool proto_down)9077 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9078 {
9079 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9080 		return -EOPNOTSUPP;
9081 	if (!netif_device_present(dev))
9082 		return -ENODEV;
9083 	if (proto_down)
9084 		netif_carrier_off(dev);
9085 	else
9086 		netif_carrier_on(dev);
9087 	dev->proto_down = proto_down;
9088 	return 0;
9089 }
9090 
9091 /**
9092  *	dev_change_proto_down_reason - proto down reason
9093  *
9094  *	@dev: device
9095  *	@mask: proto down mask
9096  *	@value: proto down value
9097  */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9098 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9099 				  u32 value)
9100 {
9101 	int b;
9102 
9103 	if (!mask) {
9104 		dev->proto_down_reason = value;
9105 	} else {
9106 		for_each_set_bit(b, &mask, 32) {
9107 			if (value & (1 << b))
9108 				dev->proto_down_reason |= BIT(b);
9109 			else
9110 				dev->proto_down_reason &= ~BIT(b);
9111 		}
9112 	}
9113 }
9114 
9115 struct bpf_xdp_link {
9116 	struct bpf_link link;
9117 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9118 	int flags;
9119 };
9120 
dev_xdp_mode(struct net_device * dev,u32 flags)9121 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9122 {
9123 	if (flags & XDP_FLAGS_HW_MODE)
9124 		return XDP_MODE_HW;
9125 	if (flags & XDP_FLAGS_DRV_MODE)
9126 		return XDP_MODE_DRV;
9127 	if (flags & XDP_FLAGS_SKB_MODE)
9128 		return XDP_MODE_SKB;
9129 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9130 }
9131 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9132 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9133 {
9134 	switch (mode) {
9135 	case XDP_MODE_SKB:
9136 		return generic_xdp_install;
9137 	case XDP_MODE_DRV:
9138 	case XDP_MODE_HW:
9139 		return dev->netdev_ops->ndo_bpf;
9140 	default:
9141 		return NULL;
9142 	}
9143 }
9144 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9145 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9146 					 enum bpf_xdp_mode mode)
9147 {
9148 	return dev->xdp_state[mode].link;
9149 }
9150 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9151 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9152 				     enum bpf_xdp_mode mode)
9153 {
9154 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9155 
9156 	if (link)
9157 		return link->link.prog;
9158 	return dev->xdp_state[mode].prog;
9159 }
9160 
dev_xdp_prog_count(struct net_device * dev)9161 u8 dev_xdp_prog_count(struct net_device *dev)
9162 {
9163 	u8 count = 0;
9164 	int i;
9165 
9166 	for (i = 0; i < __MAX_XDP_MODE; i++)
9167 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9168 			count++;
9169 	return count;
9170 }
9171 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9172 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9173 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9174 {
9175 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9176 
9177 	return prog ? prog->aux->id : 0;
9178 }
9179 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9180 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9181 			     struct bpf_xdp_link *link)
9182 {
9183 	dev->xdp_state[mode].link = link;
9184 	dev->xdp_state[mode].prog = NULL;
9185 }
9186 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9187 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9188 			     struct bpf_prog *prog)
9189 {
9190 	dev->xdp_state[mode].link = NULL;
9191 	dev->xdp_state[mode].prog = prog;
9192 }
9193 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9194 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9195 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9196 			   u32 flags, struct bpf_prog *prog)
9197 {
9198 	struct netdev_bpf xdp;
9199 	int err;
9200 
9201 	memset(&xdp, 0, sizeof(xdp));
9202 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9203 	xdp.extack = extack;
9204 	xdp.flags = flags;
9205 	xdp.prog = prog;
9206 
9207 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9208 	 * "moved" into driver), so they don't increment it on their own, but
9209 	 * they do decrement refcnt when program is detached or replaced.
9210 	 * Given net_device also owns link/prog, we need to bump refcnt here
9211 	 * to prevent drivers from underflowing it.
9212 	 */
9213 	if (prog)
9214 		bpf_prog_inc(prog);
9215 	err = bpf_op(dev, &xdp);
9216 	if (err) {
9217 		if (prog)
9218 			bpf_prog_put(prog);
9219 		return err;
9220 	}
9221 
9222 	if (mode != XDP_MODE_HW)
9223 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9224 
9225 	return 0;
9226 }
9227 
dev_xdp_uninstall(struct net_device * dev)9228 static void dev_xdp_uninstall(struct net_device *dev)
9229 {
9230 	struct bpf_xdp_link *link;
9231 	struct bpf_prog *prog;
9232 	enum bpf_xdp_mode mode;
9233 	bpf_op_t bpf_op;
9234 
9235 	ASSERT_RTNL();
9236 
9237 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9238 		prog = dev_xdp_prog(dev, mode);
9239 		if (!prog)
9240 			continue;
9241 
9242 		bpf_op = dev_xdp_bpf_op(dev, mode);
9243 		if (!bpf_op)
9244 			continue;
9245 
9246 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9247 
9248 		/* auto-detach link from net device */
9249 		link = dev_xdp_link(dev, mode);
9250 		if (link)
9251 			link->dev = NULL;
9252 		else
9253 			bpf_prog_put(prog);
9254 
9255 		dev_xdp_set_link(dev, mode, NULL);
9256 	}
9257 }
9258 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9259 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9260 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9261 			  struct bpf_prog *old_prog, u32 flags)
9262 {
9263 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9264 	struct bpf_prog *cur_prog;
9265 	struct net_device *upper;
9266 	struct list_head *iter;
9267 	enum bpf_xdp_mode mode;
9268 	bpf_op_t bpf_op;
9269 	int err;
9270 
9271 	ASSERT_RTNL();
9272 
9273 	/* either link or prog attachment, never both */
9274 	if (link && (new_prog || old_prog))
9275 		return -EINVAL;
9276 	/* link supports only XDP mode flags */
9277 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9278 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9279 		return -EINVAL;
9280 	}
9281 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9282 	if (num_modes > 1) {
9283 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9284 		return -EINVAL;
9285 	}
9286 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9287 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9288 		NL_SET_ERR_MSG(extack,
9289 			       "More than one program loaded, unset mode is ambiguous");
9290 		return -EINVAL;
9291 	}
9292 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9293 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9294 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9295 		return -EINVAL;
9296 	}
9297 
9298 	mode = dev_xdp_mode(dev, flags);
9299 	/* can't replace attached link */
9300 	if (dev_xdp_link(dev, mode)) {
9301 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9302 		return -EBUSY;
9303 	}
9304 
9305 	/* don't allow if an upper device already has a program */
9306 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9307 		if (dev_xdp_prog_count(upper) > 0) {
9308 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9309 			return -EEXIST;
9310 		}
9311 	}
9312 
9313 	cur_prog = dev_xdp_prog(dev, mode);
9314 	/* can't replace attached prog with link */
9315 	if (link && cur_prog) {
9316 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9317 		return -EBUSY;
9318 	}
9319 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9320 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9321 		return -EEXIST;
9322 	}
9323 
9324 	/* put effective new program into new_prog */
9325 	if (link)
9326 		new_prog = link->link.prog;
9327 
9328 	if (new_prog) {
9329 		bool offload = mode == XDP_MODE_HW;
9330 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9331 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9332 
9333 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9334 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9335 			return -EBUSY;
9336 		}
9337 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9338 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9339 			return -EEXIST;
9340 		}
9341 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9342 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9343 			return -EINVAL;
9344 		}
9345 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9346 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9347 			return -EINVAL;
9348 		}
9349 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9350 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9351 			return -EINVAL;
9352 		}
9353 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9354 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9355 			return -EINVAL;
9356 		}
9357 	}
9358 
9359 	/* don't call drivers if the effective program didn't change */
9360 	if (new_prog != cur_prog) {
9361 		bpf_op = dev_xdp_bpf_op(dev, mode);
9362 		if (!bpf_op) {
9363 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9364 			return -EOPNOTSUPP;
9365 		}
9366 
9367 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9368 		if (err)
9369 			return err;
9370 	}
9371 
9372 	if (link)
9373 		dev_xdp_set_link(dev, mode, link);
9374 	else
9375 		dev_xdp_set_prog(dev, mode, new_prog);
9376 	if (cur_prog)
9377 		bpf_prog_put(cur_prog);
9378 
9379 	return 0;
9380 }
9381 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9382 static int dev_xdp_attach_link(struct net_device *dev,
9383 			       struct netlink_ext_ack *extack,
9384 			       struct bpf_xdp_link *link)
9385 {
9386 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9387 }
9388 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9389 static int dev_xdp_detach_link(struct net_device *dev,
9390 			       struct netlink_ext_ack *extack,
9391 			       struct bpf_xdp_link *link)
9392 {
9393 	enum bpf_xdp_mode mode;
9394 	bpf_op_t bpf_op;
9395 
9396 	ASSERT_RTNL();
9397 
9398 	mode = dev_xdp_mode(dev, link->flags);
9399 	if (dev_xdp_link(dev, mode) != link)
9400 		return -EINVAL;
9401 
9402 	bpf_op = dev_xdp_bpf_op(dev, mode);
9403 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9404 	dev_xdp_set_link(dev, mode, NULL);
9405 	return 0;
9406 }
9407 
bpf_xdp_link_release(struct bpf_link * link)9408 static void bpf_xdp_link_release(struct bpf_link *link)
9409 {
9410 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9411 
9412 	rtnl_lock();
9413 
9414 	/* if racing with net_device's tear down, xdp_link->dev might be
9415 	 * already NULL, in which case link was already auto-detached
9416 	 */
9417 	if (xdp_link->dev) {
9418 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9419 		xdp_link->dev = NULL;
9420 	}
9421 
9422 	rtnl_unlock();
9423 }
9424 
bpf_xdp_link_detach(struct bpf_link * link)9425 static int bpf_xdp_link_detach(struct bpf_link *link)
9426 {
9427 	bpf_xdp_link_release(link);
9428 	return 0;
9429 }
9430 
bpf_xdp_link_dealloc(struct bpf_link * link)9431 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9432 {
9433 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9434 
9435 	kfree(xdp_link);
9436 }
9437 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9438 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9439 				     struct seq_file *seq)
9440 {
9441 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9442 	u32 ifindex = 0;
9443 
9444 	rtnl_lock();
9445 	if (xdp_link->dev)
9446 		ifindex = xdp_link->dev->ifindex;
9447 	rtnl_unlock();
9448 
9449 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9450 }
9451 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9452 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9453 				       struct bpf_link_info *info)
9454 {
9455 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9456 	u32 ifindex = 0;
9457 
9458 	rtnl_lock();
9459 	if (xdp_link->dev)
9460 		ifindex = xdp_link->dev->ifindex;
9461 	rtnl_unlock();
9462 
9463 	info->xdp.ifindex = ifindex;
9464 	return 0;
9465 }
9466 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9467 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9468 			       struct bpf_prog *old_prog)
9469 {
9470 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9471 	enum bpf_xdp_mode mode;
9472 	bpf_op_t bpf_op;
9473 	int err = 0;
9474 
9475 	rtnl_lock();
9476 
9477 	/* link might have been auto-released already, so fail */
9478 	if (!xdp_link->dev) {
9479 		err = -ENOLINK;
9480 		goto out_unlock;
9481 	}
9482 
9483 	if (old_prog && link->prog != old_prog) {
9484 		err = -EPERM;
9485 		goto out_unlock;
9486 	}
9487 	old_prog = link->prog;
9488 	if (old_prog->type != new_prog->type ||
9489 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9490 		err = -EINVAL;
9491 		goto out_unlock;
9492 	}
9493 
9494 	if (old_prog == new_prog) {
9495 		/* no-op, don't disturb drivers */
9496 		bpf_prog_put(new_prog);
9497 		goto out_unlock;
9498 	}
9499 
9500 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9501 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9502 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9503 			      xdp_link->flags, new_prog);
9504 	if (err)
9505 		goto out_unlock;
9506 
9507 	old_prog = xchg(&link->prog, new_prog);
9508 	bpf_prog_put(old_prog);
9509 
9510 out_unlock:
9511 	rtnl_unlock();
9512 	return err;
9513 }
9514 
9515 static const struct bpf_link_ops bpf_xdp_link_lops = {
9516 	.release = bpf_xdp_link_release,
9517 	.dealloc = bpf_xdp_link_dealloc,
9518 	.detach = bpf_xdp_link_detach,
9519 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9520 	.fill_link_info = bpf_xdp_link_fill_link_info,
9521 	.update_prog = bpf_xdp_link_update,
9522 };
9523 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9524 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9525 {
9526 	struct net *net = current->nsproxy->net_ns;
9527 	struct bpf_link_primer link_primer;
9528 	struct netlink_ext_ack extack = {};
9529 	struct bpf_xdp_link *link;
9530 	struct net_device *dev;
9531 	int err, fd;
9532 
9533 	rtnl_lock();
9534 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9535 	if (!dev) {
9536 		rtnl_unlock();
9537 		return -EINVAL;
9538 	}
9539 
9540 	link = kzalloc(sizeof(*link), GFP_USER);
9541 	if (!link) {
9542 		err = -ENOMEM;
9543 		goto unlock;
9544 	}
9545 
9546 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9547 	link->dev = dev;
9548 	link->flags = attr->link_create.flags;
9549 
9550 	err = bpf_link_prime(&link->link, &link_primer);
9551 	if (err) {
9552 		kfree(link);
9553 		goto unlock;
9554 	}
9555 
9556 	err = dev_xdp_attach_link(dev, &extack, link);
9557 	rtnl_unlock();
9558 
9559 	if (err) {
9560 		link->dev = NULL;
9561 		bpf_link_cleanup(&link_primer);
9562 		trace_bpf_xdp_link_attach_failed(extack._msg);
9563 		goto out_put_dev;
9564 	}
9565 
9566 	fd = bpf_link_settle(&link_primer);
9567 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9568 	dev_put(dev);
9569 	return fd;
9570 
9571 unlock:
9572 	rtnl_unlock();
9573 
9574 out_put_dev:
9575 	dev_put(dev);
9576 	return err;
9577 }
9578 
9579 /**
9580  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9581  *	@dev: device
9582  *	@extack: netlink extended ack
9583  *	@fd: new program fd or negative value to clear
9584  *	@expected_fd: old program fd that userspace expects to replace or clear
9585  *	@flags: xdp-related flags
9586  *
9587  *	Set or clear a bpf program for a device
9588  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9589 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9590 		      int fd, int expected_fd, u32 flags)
9591 {
9592 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9593 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9594 	int err;
9595 
9596 	ASSERT_RTNL();
9597 
9598 	if (fd >= 0) {
9599 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9600 						 mode != XDP_MODE_SKB);
9601 		if (IS_ERR(new_prog))
9602 			return PTR_ERR(new_prog);
9603 	}
9604 
9605 	if (expected_fd >= 0) {
9606 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9607 						 mode != XDP_MODE_SKB);
9608 		if (IS_ERR(old_prog)) {
9609 			err = PTR_ERR(old_prog);
9610 			old_prog = NULL;
9611 			goto err_out;
9612 		}
9613 	}
9614 
9615 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9616 
9617 err_out:
9618 	if (err && new_prog)
9619 		bpf_prog_put(new_prog);
9620 	if (old_prog)
9621 		bpf_prog_put(old_prog);
9622 	return err;
9623 }
9624 
9625 /**
9626  * dev_index_reserve() - allocate an ifindex in a namespace
9627  * @net: the applicable net namespace
9628  * @ifindex: requested ifindex, pass %0 to get one allocated
9629  *
9630  * Allocate a ifindex for a new device. Caller must either use the ifindex
9631  * to store the device (via list_netdevice()) or call dev_index_release()
9632  * to give the index up.
9633  *
9634  * Return: a suitable unique value for a new device interface number or -errno.
9635  */
dev_index_reserve(struct net * net,u32 ifindex)9636 static int dev_index_reserve(struct net *net, u32 ifindex)
9637 {
9638 	int err;
9639 
9640 	if (ifindex > INT_MAX) {
9641 		DEBUG_NET_WARN_ON_ONCE(1);
9642 		return -EINVAL;
9643 	}
9644 
9645 	if (!ifindex)
9646 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9647 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9648 	else
9649 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9650 	if (err < 0)
9651 		return err;
9652 
9653 	return ifindex;
9654 }
9655 
dev_index_release(struct net * net,int ifindex)9656 static void dev_index_release(struct net *net, int ifindex)
9657 {
9658 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9659 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9660 }
9661 
9662 /* Delayed registration/unregisteration */
9663 LIST_HEAD(net_todo_list);
9664 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9665 
net_set_todo(struct net_device * dev)9666 static void net_set_todo(struct net_device *dev)
9667 {
9668 	list_add_tail(&dev->todo_list, &net_todo_list);
9669 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9670 }
9671 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9672 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9673 	struct net_device *upper, netdev_features_t features)
9674 {
9675 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9676 	netdev_features_t feature;
9677 	int feature_bit;
9678 
9679 	for_each_netdev_feature(upper_disables, feature_bit) {
9680 		feature = __NETIF_F_BIT(feature_bit);
9681 		if (!(upper->wanted_features & feature)
9682 		    && (features & feature)) {
9683 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9684 				   &feature, upper->name);
9685 			features &= ~feature;
9686 		}
9687 	}
9688 
9689 	return features;
9690 }
9691 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9692 static void netdev_sync_lower_features(struct net_device *upper,
9693 	struct net_device *lower, netdev_features_t features)
9694 {
9695 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9696 	netdev_features_t feature;
9697 	int feature_bit;
9698 
9699 	for_each_netdev_feature(upper_disables, feature_bit) {
9700 		feature = __NETIF_F_BIT(feature_bit);
9701 		if (!(features & feature) && (lower->features & feature)) {
9702 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9703 				   &feature, lower->name);
9704 			lower->wanted_features &= ~feature;
9705 			__netdev_update_features(lower);
9706 
9707 			if (unlikely(lower->features & feature))
9708 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9709 					    &feature, lower->name);
9710 			else
9711 				netdev_features_change(lower);
9712 		}
9713 	}
9714 }
9715 
netdev_fix_features(struct net_device * dev,netdev_features_t features)9716 static netdev_features_t netdev_fix_features(struct net_device *dev,
9717 	netdev_features_t features)
9718 {
9719 	/* Fix illegal checksum combinations */
9720 	if ((features & NETIF_F_HW_CSUM) &&
9721 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9722 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9723 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9724 	}
9725 
9726 	/* TSO requires that SG is present as well. */
9727 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9728 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9729 		features &= ~NETIF_F_ALL_TSO;
9730 	}
9731 
9732 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9733 					!(features & NETIF_F_IP_CSUM)) {
9734 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9735 		features &= ~NETIF_F_TSO;
9736 		features &= ~NETIF_F_TSO_ECN;
9737 	}
9738 
9739 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9740 					 !(features & NETIF_F_IPV6_CSUM)) {
9741 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9742 		features &= ~NETIF_F_TSO6;
9743 	}
9744 
9745 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9746 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9747 		features &= ~NETIF_F_TSO_MANGLEID;
9748 
9749 	/* TSO ECN requires that TSO is present as well. */
9750 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9751 		features &= ~NETIF_F_TSO_ECN;
9752 
9753 	/* Software GSO depends on SG. */
9754 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9755 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9756 		features &= ~NETIF_F_GSO;
9757 	}
9758 
9759 	/* GSO partial features require GSO partial be set */
9760 	if ((features & dev->gso_partial_features) &&
9761 	    !(features & NETIF_F_GSO_PARTIAL)) {
9762 		netdev_dbg(dev,
9763 			   "Dropping partially supported GSO features since no GSO partial.\n");
9764 		features &= ~dev->gso_partial_features;
9765 	}
9766 
9767 	if (!(features & NETIF_F_RXCSUM)) {
9768 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9769 		 * successfully merged by hardware must also have the
9770 		 * checksum verified by hardware.  If the user does not
9771 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9772 		 */
9773 		if (features & NETIF_F_GRO_HW) {
9774 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9775 			features &= ~NETIF_F_GRO_HW;
9776 		}
9777 	}
9778 
9779 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9780 	if (features & NETIF_F_RXFCS) {
9781 		if (features & NETIF_F_LRO) {
9782 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9783 			features &= ~NETIF_F_LRO;
9784 		}
9785 
9786 		if (features & NETIF_F_GRO_HW) {
9787 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9788 			features &= ~NETIF_F_GRO_HW;
9789 		}
9790 	}
9791 
9792 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9793 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9794 		features &= ~NETIF_F_LRO;
9795 	}
9796 
9797 	if (features & NETIF_F_HW_TLS_TX) {
9798 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9799 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9800 		bool hw_csum = features & NETIF_F_HW_CSUM;
9801 
9802 		if (!ip_csum && !hw_csum) {
9803 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9804 			features &= ~NETIF_F_HW_TLS_TX;
9805 		}
9806 	}
9807 
9808 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9809 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9810 		features &= ~NETIF_F_HW_TLS_RX;
9811 	}
9812 
9813 	return features;
9814 }
9815 
__netdev_update_features(struct net_device * dev)9816 int __netdev_update_features(struct net_device *dev)
9817 {
9818 	struct net_device *upper, *lower;
9819 	netdev_features_t features;
9820 	struct list_head *iter;
9821 	int err = -1;
9822 
9823 	ASSERT_RTNL();
9824 
9825 	features = netdev_get_wanted_features(dev);
9826 
9827 	if (dev->netdev_ops->ndo_fix_features)
9828 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9829 
9830 	/* driver might be less strict about feature dependencies */
9831 	features = netdev_fix_features(dev, features);
9832 
9833 	/* some features can't be enabled if they're off on an upper device */
9834 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9835 		features = netdev_sync_upper_features(dev, upper, features);
9836 
9837 	if (dev->features == features)
9838 		goto sync_lower;
9839 
9840 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9841 		&dev->features, &features);
9842 
9843 	if (dev->netdev_ops->ndo_set_features)
9844 		err = dev->netdev_ops->ndo_set_features(dev, features);
9845 	else
9846 		err = 0;
9847 
9848 	if (unlikely(err < 0)) {
9849 		netdev_err(dev,
9850 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9851 			err, &features, &dev->features);
9852 		/* return non-0 since some features might have changed and
9853 		 * it's better to fire a spurious notification than miss it
9854 		 */
9855 		return -1;
9856 	}
9857 
9858 sync_lower:
9859 	/* some features must be disabled on lower devices when disabled
9860 	 * on an upper device (think: bonding master or bridge)
9861 	 */
9862 	netdev_for_each_lower_dev(dev, lower, iter)
9863 		netdev_sync_lower_features(dev, lower, features);
9864 
9865 	if (!err) {
9866 		netdev_features_t diff = features ^ dev->features;
9867 
9868 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9869 			/* udp_tunnel_{get,drop}_rx_info both need
9870 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9871 			 * device, or they won't do anything.
9872 			 * Thus we need to update dev->features
9873 			 * *before* calling udp_tunnel_get_rx_info,
9874 			 * but *after* calling udp_tunnel_drop_rx_info.
9875 			 */
9876 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9877 				dev->features = features;
9878 				udp_tunnel_get_rx_info(dev);
9879 			} else {
9880 				udp_tunnel_drop_rx_info(dev);
9881 			}
9882 		}
9883 
9884 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9885 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9886 				dev->features = features;
9887 				err |= vlan_get_rx_ctag_filter_info(dev);
9888 			} else {
9889 				vlan_drop_rx_ctag_filter_info(dev);
9890 			}
9891 		}
9892 
9893 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9894 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9895 				dev->features = features;
9896 				err |= vlan_get_rx_stag_filter_info(dev);
9897 			} else {
9898 				vlan_drop_rx_stag_filter_info(dev);
9899 			}
9900 		}
9901 
9902 		dev->features = features;
9903 	}
9904 
9905 	return err < 0 ? 0 : 1;
9906 }
9907 
9908 /**
9909  *	netdev_update_features - recalculate device features
9910  *	@dev: the device to check
9911  *
9912  *	Recalculate dev->features set and send notifications if it
9913  *	has changed. Should be called after driver or hardware dependent
9914  *	conditions might have changed that influence the features.
9915  */
netdev_update_features(struct net_device * dev)9916 void netdev_update_features(struct net_device *dev)
9917 {
9918 	if (__netdev_update_features(dev))
9919 		netdev_features_change(dev);
9920 }
9921 EXPORT_SYMBOL(netdev_update_features);
9922 
9923 /**
9924  *	netdev_change_features - recalculate device features
9925  *	@dev: the device to check
9926  *
9927  *	Recalculate dev->features set and send notifications even
9928  *	if they have not changed. Should be called instead of
9929  *	netdev_update_features() if also dev->vlan_features might
9930  *	have changed to allow the changes to be propagated to stacked
9931  *	VLAN devices.
9932  */
netdev_change_features(struct net_device * dev)9933 void netdev_change_features(struct net_device *dev)
9934 {
9935 	__netdev_update_features(dev);
9936 	netdev_features_change(dev);
9937 }
9938 EXPORT_SYMBOL(netdev_change_features);
9939 
9940 /**
9941  *	netif_stacked_transfer_operstate -	transfer operstate
9942  *	@rootdev: the root or lower level device to transfer state from
9943  *	@dev: the device to transfer operstate to
9944  *
9945  *	Transfer operational state from root to device. This is normally
9946  *	called when a stacking relationship exists between the root
9947  *	device and the device(a leaf device).
9948  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9949 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9950 					struct net_device *dev)
9951 {
9952 	if (rootdev->operstate == IF_OPER_DORMANT)
9953 		netif_dormant_on(dev);
9954 	else
9955 		netif_dormant_off(dev);
9956 
9957 	if (rootdev->operstate == IF_OPER_TESTING)
9958 		netif_testing_on(dev);
9959 	else
9960 		netif_testing_off(dev);
9961 
9962 	if (netif_carrier_ok(rootdev))
9963 		netif_carrier_on(dev);
9964 	else
9965 		netif_carrier_off(dev);
9966 }
9967 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9968 
netif_alloc_rx_queues(struct net_device * dev)9969 static int netif_alloc_rx_queues(struct net_device *dev)
9970 {
9971 	unsigned int i, count = dev->num_rx_queues;
9972 	struct netdev_rx_queue *rx;
9973 	size_t sz = count * sizeof(*rx);
9974 	int err = 0;
9975 
9976 	BUG_ON(count < 1);
9977 
9978 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9979 	if (!rx)
9980 		return -ENOMEM;
9981 
9982 	dev->_rx = rx;
9983 
9984 	for (i = 0; i < count; i++) {
9985 		rx[i].dev = dev;
9986 
9987 		/* XDP RX-queue setup */
9988 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9989 		if (err < 0)
9990 			goto err_rxq_info;
9991 	}
9992 	return 0;
9993 
9994 err_rxq_info:
9995 	/* Rollback successful reg's and free other resources */
9996 	while (i--)
9997 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9998 	kvfree(dev->_rx);
9999 	dev->_rx = NULL;
10000 	return err;
10001 }
10002 
netif_free_rx_queues(struct net_device * dev)10003 static void netif_free_rx_queues(struct net_device *dev)
10004 {
10005 	unsigned int i, count = dev->num_rx_queues;
10006 
10007 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10008 	if (!dev->_rx)
10009 		return;
10010 
10011 	for (i = 0; i < count; i++)
10012 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10013 
10014 	kvfree(dev->_rx);
10015 }
10016 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10017 static void netdev_init_one_queue(struct net_device *dev,
10018 				  struct netdev_queue *queue, void *_unused)
10019 {
10020 	/* Initialize queue lock */
10021 	spin_lock_init(&queue->_xmit_lock);
10022 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10023 	queue->xmit_lock_owner = -1;
10024 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10025 	queue->dev = dev;
10026 #ifdef CONFIG_BQL
10027 	dql_init(&queue->dql, HZ);
10028 #endif
10029 }
10030 
netif_free_tx_queues(struct net_device * dev)10031 static void netif_free_tx_queues(struct net_device *dev)
10032 {
10033 	kvfree(dev->_tx);
10034 }
10035 
netif_alloc_netdev_queues(struct net_device * dev)10036 static int netif_alloc_netdev_queues(struct net_device *dev)
10037 {
10038 	unsigned int count = dev->num_tx_queues;
10039 	struct netdev_queue *tx;
10040 	size_t sz = count * sizeof(*tx);
10041 
10042 	if (count < 1 || count > 0xffff)
10043 		return -EINVAL;
10044 
10045 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10046 	if (!tx)
10047 		return -ENOMEM;
10048 
10049 	dev->_tx = tx;
10050 
10051 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10052 	spin_lock_init(&dev->tx_global_lock);
10053 
10054 	return 0;
10055 }
10056 
netif_tx_stop_all_queues(struct net_device * dev)10057 void netif_tx_stop_all_queues(struct net_device *dev)
10058 {
10059 	unsigned int i;
10060 
10061 	for (i = 0; i < dev->num_tx_queues; i++) {
10062 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10063 
10064 		netif_tx_stop_queue(txq);
10065 	}
10066 }
10067 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10068 
netdev_do_alloc_pcpu_stats(struct net_device * dev)10069 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10070 {
10071 	void __percpu *v;
10072 
10073 	/* Drivers implementing ndo_get_peer_dev must support tstat
10074 	 * accounting, so that skb_do_redirect() can bump the dev's
10075 	 * RX stats upon network namespace switch.
10076 	 */
10077 	if (dev->netdev_ops->ndo_get_peer_dev &&
10078 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10079 		return -EOPNOTSUPP;
10080 
10081 	switch (dev->pcpu_stat_type) {
10082 	case NETDEV_PCPU_STAT_NONE:
10083 		return 0;
10084 	case NETDEV_PCPU_STAT_LSTATS:
10085 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10086 		break;
10087 	case NETDEV_PCPU_STAT_TSTATS:
10088 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10089 		break;
10090 	case NETDEV_PCPU_STAT_DSTATS:
10091 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10092 		break;
10093 	default:
10094 		return -EINVAL;
10095 	}
10096 
10097 	return v ? 0 : -ENOMEM;
10098 }
10099 
netdev_do_free_pcpu_stats(struct net_device * dev)10100 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10101 {
10102 	switch (dev->pcpu_stat_type) {
10103 	case NETDEV_PCPU_STAT_NONE:
10104 		return;
10105 	case NETDEV_PCPU_STAT_LSTATS:
10106 		free_percpu(dev->lstats);
10107 		break;
10108 	case NETDEV_PCPU_STAT_TSTATS:
10109 		free_percpu(dev->tstats);
10110 		break;
10111 	case NETDEV_PCPU_STAT_DSTATS:
10112 		free_percpu(dev->dstats);
10113 		break;
10114 	}
10115 }
10116 
10117 /**
10118  * register_netdevice() - register a network device
10119  * @dev: device to register
10120  *
10121  * Take a prepared network device structure and make it externally accessible.
10122  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10123  * Callers must hold the rtnl lock - you may want register_netdev()
10124  * instead of this.
10125  */
register_netdevice(struct net_device * dev)10126 int register_netdevice(struct net_device *dev)
10127 {
10128 	int ret;
10129 	struct net *net = dev_net(dev);
10130 
10131 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10132 		     NETDEV_FEATURE_COUNT);
10133 	BUG_ON(dev_boot_phase);
10134 	ASSERT_RTNL();
10135 
10136 	might_sleep();
10137 
10138 	/* When net_device's are persistent, this will be fatal. */
10139 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10140 	BUG_ON(!net);
10141 
10142 	ret = ethtool_check_ops(dev->ethtool_ops);
10143 	if (ret)
10144 		return ret;
10145 
10146 	spin_lock_init(&dev->addr_list_lock);
10147 	netdev_set_addr_lockdep_class(dev);
10148 
10149 	ret = dev_get_valid_name(net, dev, dev->name);
10150 	if (ret < 0)
10151 		goto out;
10152 
10153 	ret = -ENOMEM;
10154 	dev->name_node = netdev_name_node_head_alloc(dev);
10155 	if (!dev->name_node)
10156 		goto out;
10157 
10158 	/* Init, if this function is available */
10159 	if (dev->netdev_ops->ndo_init) {
10160 		ret = dev->netdev_ops->ndo_init(dev);
10161 		if (ret) {
10162 			if (ret > 0)
10163 				ret = -EIO;
10164 			goto err_free_name;
10165 		}
10166 	}
10167 
10168 	if (((dev->hw_features | dev->features) &
10169 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10170 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10171 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10172 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10173 		ret = -EINVAL;
10174 		goto err_uninit;
10175 	}
10176 
10177 	ret = netdev_do_alloc_pcpu_stats(dev);
10178 	if (ret)
10179 		goto err_uninit;
10180 
10181 	ret = dev_index_reserve(net, dev->ifindex);
10182 	if (ret < 0)
10183 		goto err_free_pcpu;
10184 	dev->ifindex = ret;
10185 
10186 	/* Transfer changeable features to wanted_features and enable
10187 	 * software offloads (GSO and GRO).
10188 	 */
10189 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10190 	dev->features |= NETIF_F_SOFT_FEATURES;
10191 
10192 	if (dev->udp_tunnel_nic_info) {
10193 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10194 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10195 	}
10196 
10197 	dev->wanted_features = dev->features & dev->hw_features;
10198 
10199 	if (!(dev->flags & IFF_LOOPBACK))
10200 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10201 
10202 	/* If IPv4 TCP segmentation offload is supported we should also
10203 	 * allow the device to enable segmenting the frame with the option
10204 	 * of ignoring a static IP ID value.  This doesn't enable the
10205 	 * feature itself but allows the user to enable it later.
10206 	 */
10207 	if (dev->hw_features & NETIF_F_TSO)
10208 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10209 	if (dev->vlan_features & NETIF_F_TSO)
10210 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10211 	if (dev->mpls_features & NETIF_F_TSO)
10212 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10213 	if (dev->hw_enc_features & NETIF_F_TSO)
10214 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10215 
10216 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10217 	 */
10218 	dev->vlan_features |= NETIF_F_HIGHDMA;
10219 
10220 	/* Make NETIF_F_SG inheritable to tunnel devices.
10221 	 */
10222 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10223 
10224 	/* Make NETIF_F_SG inheritable to MPLS.
10225 	 */
10226 	dev->mpls_features |= NETIF_F_SG;
10227 
10228 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10229 	ret = notifier_to_errno(ret);
10230 	if (ret)
10231 		goto err_ifindex_release;
10232 
10233 	ret = netdev_register_kobject(dev);
10234 	write_lock(&dev_base_lock);
10235 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10236 	write_unlock(&dev_base_lock);
10237 	if (ret)
10238 		goto err_uninit_notify;
10239 
10240 	__netdev_update_features(dev);
10241 
10242 	/*
10243 	 *	Default initial state at registry is that the
10244 	 *	device is present.
10245 	 */
10246 
10247 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10248 
10249 	linkwatch_init_dev(dev);
10250 
10251 	dev_init_scheduler(dev);
10252 
10253 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10254 	list_netdevice(dev);
10255 
10256 	add_device_randomness(dev->dev_addr, dev->addr_len);
10257 
10258 	/* If the device has permanent device address, driver should
10259 	 * set dev_addr and also addr_assign_type should be set to
10260 	 * NET_ADDR_PERM (default value).
10261 	 */
10262 	if (dev->addr_assign_type == NET_ADDR_PERM)
10263 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10264 
10265 	/* Notify protocols, that a new device appeared. */
10266 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10267 	ret = notifier_to_errno(ret);
10268 	if (ret) {
10269 		/* Expect explicit free_netdev() on failure */
10270 		dev->needs_free_netdev = false;
10271 		unregister_netdevice_queue(dev, NULL);
10272 		goto out;
10273 	}
10274 	/*
10275 	 *	Prevent userspace races by waiting until the network
10276 	 *	device is fully setup before sending notifications.
10277 	 */
10278 	if (!dev->rtnl_link_ops ||
10279 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10280 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10281 
10282 out:
10283 	return ret;
10284 
10285 err_uninit_notify:
10286 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10287 err_ifindex_release:
10288 	dev_index_release(net, dev->ifindex);
10289 err_free_pcpu:
10290 	netdev_do_free_pcpu_stats(dev);
10291 err_uninit:
10292 	if (dev->netdev_ops->ndo_uninit)
10293 		dev->netdev_ops->ndo_uninit(dev);
10294 	if (dev->priv_destructor)
10295 		dev->priv_destructor(dev);
10296 err_free_name:
10297 	netdev_name_node_free(dev->name_node);
10298 	goto out;
10299 }
10300 EXPORT_SYMBOL(register_netdevice);
10301 
10302 /**
10303  *	init_dummy_netdev	- init a dummy network device for NAPI
10304  *	@dev: device to init
10305  *
10306  *	This takes a network device structure and initialize the minimum
10307  *	amount of fields so it can be used to schedule NAPI polls without
10308  *	registering a full blown interface. This is to be used by drivers
10309  *	that need to tie several hardware interfaces to a single NAPI
10310  *	poll scheduler due to HW limitations.
10311  */
init_dummy_netdev(struct net_device * dev)10312 int init_dummy_netdev(struct net_device *dev)
10313 {
10314 	/* Clear everything. Note we don't initialize spinlocks
10315 	 * are they aren't supposed to be taken by any of the
10316 	 * NAPI code and this dummy netdev is supposed to be
10317 	 * only ever used for NAPI polls
10318 	 */
10319 	memset(dev, 0, sizeof(struct net_device));
10320 
10321 	/* make sure we BUG if trying to hit standard
10322 	 * register/unregister code path
10323 	 */
10324 	dev->reg_state = NETREG_DUMMY;
10325 
10326 	/* NAPI wants this */
10327 	INIT_LIST_HEAD(&dev->napi_list);
10328 
10329 	/* a dummy interface is started by default */
10330 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10331 	set_bit(__LINK_STATE_START, &dev->state);
10332 
10333 	/* napi_busy_loop stats accounting wants this */
10334 	dev_net_set(dev, &init_net);
10335 
10336 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10337 	 * because users of this 'device' dont need to change
10338 	 * its refcount.
10339 	 */
10340 
10341 	return 0;
10342 }
10343 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10344 
10345 
10346 /**
10347  *	register_netdev	- register a network device
10348  *	@dev: device to register
10349  *
10350  *	Take a completed network device structure and add it to the kernel
10351  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10352  *	chain. 0 is returned on success. A negative errno code is returned
10353  *	on a failure to set up the device, or if the name is a duplicate.
10354  *
10355  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10356  *	and expands the device name if you passed a format string to
10357  *	alloc_netdev.
10358  */
register_netdev(struct net_device * dev)10359 int register_netdev(struct net_device *dev)
10360 {
10361 	int err;
10362 
10363 	if (rtnl_lock_killable())
10364 		return -EINTR;
10365 	err = register_netdevice(dev);
10366 	rtnl_unlock();
10367 	return err;
10368 }
10369 EXPORT_SYMBOL(register_netdev);
10370 
netdev_refcnt_read(const struct net_device * dev)10371 int netdev_refcnt_read(const struct net_device *dev)
10372 {
10373 #ifdef CONFIG_PCPU_DEV_REFCNT
10374 	int i, refcnt = 0;
10375 
10376 	for_each_possible_cpu(i)
10377 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10378 	return refcnt;
10379 #else
10380 	return refcount_read(&dev->dev_refcnt);
10381 #endif
10382 }
10383 EXPORT_SYMBOL(netdev_refcnt_read);
10384 
10385 int netdev_unregister_timeout_secs __read_mostly = 10;
10386 
10387 #define WAIT_REFS_MIN_MSECS 1
10388 #define WAIT_REFS_MAX_MSECS 250
10389 /**
10390  * netdev_wait_allrefs_any - wait until all references are gone.
10391  * @list: list of net_devices to wait on
10392  *
10393  * This is called when unregistering network devices.
10394  *
10395  * Any protocol or device that holds a reference should register
10396  * for netdevice notification, and cleanup and put back the
10397  * reference if they receive an UNREGISTER event.
10398  * We can get stuck here if buggy protocols don't correctly
10399  * call dev_put.
10400  */
netdev_wait_allrefs_any(struct list_head * list)10401 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10402 {
10403 	unsigned long rebroadcast_time, warning_time;
10404 	struct net_device *dev;
10405 	int wait = 0;
10406 
10407 	rebroadcast_time = warning_time = jiffies;
10408 
10409 	list_for_each_entry(dev, list, todo_list)
10410 		if (netdev_refcnt_read(dev) == 1)
10411 			return dev;
10412 
10413 	while (true) {
10414 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10415 			rtnl_lock();
10416 
10417 			/* Rebroadcast unregister notification */
10418 			list_for_each_entry(dev, list, todo_list)
10419 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10420 
10421 			__rtnl_unlock();
10422 			rcu_barrier();
10423 			rtnl_lock();
10424 
10425 			list_for_each_entry(dev, list, todo_list)
10426 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10427 					     &dev->state)) {
10428 					/* We must not have linkwatch events
10429 					 * pending on unregister. If this
10430 					 * happens, we simply run the queue
10431 					 * unscheduled, resulting in a noop
10432 					 * for this device.
10433 					 */
10434 					linkwatch_run_queue();
10435 					break;
10436 				}
10437 
10438 			__rtnl_unlock();
10439 
10440 			rebroadcast_time = jiffies;
10441 		}
10442 
10443 		rcu_barrier();
10444 
10445 		if (!wait) {
10446 			wait = WAIT_REFS_MIN_MSECS;
10447 		} else {
10448 			msleep(wait);
10449 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10450 		}
10451 
10452 		list_for_each_entry(dev, list, todo_list)
10453 			if (netdev_refcnt_read(dev) == 1)
10454 				return dev;
10455 
10456 		if (time_after(jiffies, warning_time +
10457 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10458 			list_for_each_entry(dev, list, todo_list) {
10459 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10460 					 dev->name, netdev_refcnt_read(dev));
10461 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10462 			}
10463 
10464 			warning_time = jiffies;
10465 		}
10466 	}
10467 }
10468 
10469 /* The sequence is:
10470  *
10471  *	rtnl_lock();
10472  *	...
10473  *	register_netdevice(x1);
10474  *	register_netdevice(x2);
10475  *	...
10476  *	unregister_netdevice(y1);
10477  *	unregister_netdevice(y2);
10478  *      ...
10479  *	rtnl_unlock();
10480  *	free_netdev(y1);
10481  *	free_netdev(y2);
10482  *
10483  * We are invoked by rtnl_unlock().
10484  * This allows us to deal with problems:
10485  * 1) We can delete sysfs objects which invoke hotplug
10486  *    without deadlocking with linkwatch via keventd.
10487  * 2) Since we run with the RTNL semaphore not held, we can sleep
10488  *    safely in order to wait for the netdev refcnt to drop to zero.
10489  *
10490  * We must not return until all unregister events added during
10491  * the interval the lock was held have been completed.
10492  */
netdev_run_todo(void)10493 void netdev_run_todo(void)
10494 {
10495 	struct net_device *dev, *tmp;
10496 	struct list_head list;
10497 #ifdef CONFIG_LOCKDEP
10498 	struct list_head unlink_list;
10499 
10500 	list_replace_init(&net_unlink_list, &unlink_list);
10501 
10502 	while (!list_empty(&unlink_list)) {
10503 		struct net_device *dev = list_first_entry(&unlink_list,
10504 							  struct net_device,
10505 							  unlink_list);
10506 		list_del_init(&dev->unlink_list);
10507 		dev->nested_level = dev->lower_level - 1;
10508 	}
10509 #endif
10510 
10511 	/* Snapshot list, allow later requests */
10512 	list_replace_init(&net_todo_list, &list);
10513 
10514 	__rtnl_unlock();
10515 
10516 	/* Wait for rcu callbacks to finish before next phase */
10517 	if (!list_empty(&list))
10518 		rcu_barrier();
10519 
10520 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10521 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10522 			netdev_WARN(dev, "run_todo but not unregistering\n");
10523 			list_del(&dev->todo_list);
10524 			continue;
10525 		}
10526 
10527 		write_lock(&dev_base_lock);
10528 		dev->reg_state = NETREG_UNREGISTERED;
10529 		write_unlock(&dev_base_lock);
10530 		linkwatch_forget_dev(dev);
10531 	}
10532 
10533 	while (!list_empty(&list)) {
10534 		dev = netdev_wait_allrefs_any(&list);
10535 		list_del(&dev->todo_list);
10536 
10537 		/* paranoia */
10538 		BUG_ON(netdev_refcnt_read(dev) != 1);
10539 		BUG_ON(!list_empty(&dev->ptype_all));
10540 		BUG_ON(!list_empty(&dev->ptype_specific));
10541 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10542 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10543 
10544 		netdev_do_free_pcpu_stats(dev);
10545 		if (dev->priv_destructor)
10546 			dev->priv_destructor(dev);
10547 		if (dev->needs_free_netdev)
10548 			free_netdev(dev);
10549 
10550 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10551 			wake_up(&netdev_unregistering_wq);
10552 
10553 		/* Free network device */
10554 		kobject_put(&dev->dev.kobj);
10555 	}
10556 }
10557 
10558 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10559  * all the same fields in the same order as net_device_stats, with only
10560  * the type differing, but rtnl_link_stats64 may have additional fields
10561  * at the end for newer counters.
10562  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10563 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10564 			     const struct net_device_stats *netdev_stats)
10565 {
10566 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10567 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10568 	u64 *dst = (u64 *)stats64;
10569 
10570 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10571 	for (i = 0; i < n; i++)
10572 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10573 	/* zero out counters that only exist in rtnl_link_stats64 */
10574 	memset((char *)stats64 + n * sizeof(u64), 0,
10575 	       sizeof(*stats64) - n * sizeof(u64));
10576 }
10577 EXPORT_SYMBOL(netdev_stats_to_stats64);
10578 
netdev_core_stats_alloc(struct net_device * dev)10579 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10580 {
10581 	struct net_device_core_stats __percpu *p;
10582 
10583 	p = alloc_percpu_gfp(struct net_device_core_stats,
10584 			     GFP_ATOMIC | __GFP_NOWARN);
10585 
10586 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10587 		free_percpu(p);
10588 
10589 	/* This READ_ONCE() pairs with the cmpxchg() above */
10590 	return READ_ONCE(dev->core_stats);
10591 }
10592 EXPORT_SYMBOL(netdev_core_stats_alloc);
10593 
10594 /**
10595  *	dev_get_stats	- get network device statistics
10596  *	@dev: device to get statistics from
10597  *	@storage: place to store stats
10598  *
10599  *	Get network statistics from device. Return @storage.
10600  *	The device driver may provide its own method by setting
10601  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10602  *	otherwise the internal statistics structure is used.
10603  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10604 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10605 					struct rtnl_link_stats64 *storage)
10606 {
10607 	const struct net_device_ops *ops = dev->netdev_ops;
10608 	const struct net_device_core_stats __percpu *p;
10609 
10610 	if (ops->ndo_get_stats64) {
10611 		memset(storage, 0, sizeof(*storage));
10612 		ops->ndo_get_stats64(dev, storage);
10613 	} else if (ops->ndo_get_stats) {
10614 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10615 	} else {
10616 		netdev_stats_to_stats64(storage, &dev->stats);
10617 	}
10618 
10619 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10620 	p = READ_ONCE(dev->core_stats);
10621 	if (p) {
10622 		const struct net_device_core_stats *core_stats;
10623 		int i;
10624 
10625 		for_each_possible_cpu(i) {
10626 			core_stats = per_cpu_ptr(p, i);
10627 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10628 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10629 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10630 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10631 		}
10632 	}
10633 	return storage;
10634 }
10635 EXPORT_SYMBOL(dev_get_stats);
10636 
10637 /**
10638  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10639  *	@s: place to store stats
10640  *	@netstats: per-cpu network stats to read from
10641  *
10642  *	Read per-cpu network statistics and populate the related fields in @s.
10643  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10644 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10645 			   const struct pcpu_sw_netstats __percpu *netstats)
10646 {
10647 	int cpu;
10648 
10649 	for_each_possible_cpu(cpu) {
10650 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10651 		const struct pcpu_sw_netstats *stats;
10652 		unsigned int start;
10653 
10654 		stats = per_cpu_ptr(netstats, cpu);
10655 		do {
10656 			start = u64_stats_fetch_begin(&stats->syncp);
10657 			rx_packets = u64_stats_read(&stats->rx_packets);
10658 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10659 			tx_packets = u64_stats_read(&stats->tx_packets);
10660 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10661 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10662 
10663 		s->rx_packets += rx_packets;
10664 		s->rx_bytes   += rx_bytes;
10665 		s->tx_packets += tx_packets;
10666 		s->tx_bytes   += tx_bytes;
10667 	}
10668 }
10669 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10670 
10671 /**
10672  *	dev_get_tstats64 - ndo_get_stats64 implementation
10673  *	@dev: device to get statistics from
10674  *	@s: place to store stats
10675  *
10676  *	Populate @s from dev->stats and dev->tstats. Can be used as
10677  *	ndo_get_stats64() callback.
10678  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10679 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10680 {
10681 	netdev_stats_to_stats64(s, &dev->stats);
10682 	dev_fetch_sw_netstats(s, dev->tstats);
10683 }
10684 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10685 
dev_ingress_queue_create(struct net_device * dev)10686 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10687 {
10688 	struct netdev_queue *queue = dev_ingress_queue(dev);
10689 
10690 #ifdef CONFIG_NET_CLS_ACT
10691 	if (queue)
10692 		return queue;
10693 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10694 	if (!queue)
10695 		return NULL;
10696 	netdev_init_one_queue(dev, queue, NULL);
10697 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10698 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10699 	rcu_assign_pointer(dev->ingress_queue, queue);
10700 #endif
10701 	return queue;
10702 }
10703 
10704 static const struct ethtool_ops default_ethtool_ops;
10705 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10706 void netdev_set_default_ethtool_ops(struct net_device *dev,
10707 				    const struct ethtool_ops *ops)
10708 {
10709 	if (dev->ethtool_ops == &default_ethtool_ops)
10710 		dev->ethtool_ops = ops;
10711 }
10712 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10713 
10714 /**
10715  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10716  * @dev: netdev to enable the IRQ coalescing on
10717  *
10718  * Sets a conservative default for SW IRQ coalescing. Users can use
10719  * sysfs attributes to override the default values.
10720  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)10721 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10722 {
10723 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10724 
10725 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10726 		dev->gro_flush_timeout = 20000;
10727 		dev->napi_defer_hard_irqs = 1;
10728 	}
10729 }
10730 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10731 
netdev_freemem(struct net_device * dev)10732 void netdev_freemem(struct net_device *dev)
10733 {
10734 	char *addr = (char *)dev - dev->padded;
10735 
10736 	kvfree(addr);
10737 }
10738 
10739 /**
10740  * alloc_netdev_mqs - allocate network device
10741  * @sizeof_priv: size of private data to allocate space for
10742  * @name: device name format string
10743  * @name_assign_type: origin of device name
10744  * @setup: callback to initialize device
10745  * @txqs: the number of TX subqueues to allocate
10746  * @rxqs: the number of RX subqueues to allocate
10747  *
10748  * Allocates a struct net_device with private data area for driver use
10749  * and performs basic initialization.  Also allocates subqueue structs
10750  * for each queue on the device.
10751  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10752 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10753 		unsigned char name_assign_type,
10754 		void (*setup)(struct net_device *),
10755 		unsigned int txqs, unsigned int rxqs)
10756 {
10757 	struct net_device *dev;
10758 	unsigned int alloc_size;
10759 	struct net_device *p;
10760 
10761 	BUG_ON(strlen(name) >= sizeof(dev->name));
10762 
10763 	if (txqs < 1) {
10764 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10765 		return NULL;
10766 	}
10767 
10768 	if (rxqs < 1) {
10769 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10770 		return NULL;
10771 	}
10772 
10773 	alloc_size = sizeof(struct net_device);
10774 	if (sizeof_priv) {
10775 		/* ensure 32-byte alignment of private area */
10776 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10777 		alloc_size += sizeof_priv;
10778 	}
10779 	/* ensure 32-byte alignment of whole construct */
10780 	alloc_size += NETDEV_ALIGN - 1;
10781 
10782 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10783 	if (!p)
10784 		return NULL;
10785 
10786 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10787 	dev->padded = (char *)dev - (char *)p;
10788 
10789 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10790 #ifdef CONFIG_PCPU_DEV_REFCNT
10791 	dev->pcpu_refcnt = alloc_percpu(int);
10792 	if (!dev->pcpu_refcnt)
10793 		goto free_dev;
10794 	__dev_hold(dev);
10795 #else
10796 	refcount_set(&dev->dev_refcnt, 1);
10797 #endif
10798 
10799 	if (dev_addr_init(dev))
10800 		goto free_pcpu;
10801 
10802 	dev_mc_init(dev);
10803 	dev_uc_init(dev);
10804 
10805 	dev_net_set(dev, &init_net);
10806 
10807 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10808 	dev->xdp_zc_max_segs = 1;
10809 	dev->gso_max_segs = GSO_MAX_SEGS;
10810 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10811 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10812 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10813 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10814 	dev->tso_max_segs = TSO_MAX_SEGS;
10815 	dev->upper_level = 1;
10816 	dev->lower_level = 1;
10817 #ifdef CONFIG_LOCKDEP
10818 	dev->nested_level = 0;
10819 	INIT_LIST_HEAD(&dev->unlink_list);
10820 #endif
10821 
10822 	INIT_LIST_HEAD(&dev->napi_list);
10823 	INIT_LIST_HEAD(&dev->unreg_list);
10824 	INIT_LIST_HEAD(&dev->close_list);
10825 	INIT_LIST_HEAD(&dev->link_watch_list);
10826 	INIT_LIST_HEAD(&dev->adj_list.upper);
10827 	INIT_LIST_HEAD(&dev->adj_list.lower);
10828 	INIT_LIST_HEAD(&dev->ptype_all);
10829 	INIT_LIST_HEAD(&dev->ptype_specific);
10830 	INIT_LIST_HEAD(&dev->net_notifier_list);
10831 #ifdef CONFIG_NET_SCHED
10832 	hash_init(dev->qdisc_hash);
10833 #endif
10834 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10835 	setup(dev);
10836 
10837 	if (!dev->tx_queue_len) {
10838 		dev->priv_flags |= IFF_NO_QUEUE;
10839 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10840 	}
10841 
10842 	dev->num_tx_queues = txqs;
10843 	dev->real_num_tx_queues = txqs;
10844 	if (netif_alloc_netdev_queues(dev))
10845 		goto free_all;
10846 
10847 	dev->num_rx_queues = rxqs;
10848 	dev->real_num_rx_queues = rxqs;
10849 	if (netif_alloc_rx_queues(dev))
10850 		goto free_all;
10851 
10852 	strcpy(dev->name, name);
10853 	dev->name_assign_type = name_assign_type;
10854 	dev->group = INIT_NETDEV_GROUP;
10855 	if (!dev->ethtool_ops)
10856 		dev->ethtool_ops = &default_ethtool_ops;
10857 
10858 	nf_hook_netdev_init(dev);
10859 
10860 	return dev;
10861 
10862 free_all:
10863 	free_netdev(dev);
10864 	return NULL;
10865 
10866 free_pcpu:
10867 #ifdef CONFIG_PCPU_DEV_REFCNT
10868 	free_percpu(dev->pcpu_refcnt);
10869 free_dev:
10870 #endif
10871 	netdev_freemem(dev);
10872 	return NULL;
10873 }
10874 EXPORT_SYMBOL(alloc_netdev_mqs);
10875 
10876 /**
10877  * free_netdev - free network device
10878  * @dev: device
10879  *
10880  * This function does the last stage of destroying an allocated device
10881  * interface. The reference to the device object is released. If this
10882  * is the last reference then it will be freed.Must be called in process
10883  * context.
10884  */
free_netdev(struct net_device * dev)10885 void free_netdev(struct net_device *dev)
10886 {
10887 	struct napi_struct *p, *n;
10888 
10889 	might_sleep();
10890 
10891 	/* When called immediately after register_netdevice() failed the unwind
10892 	 * handling may still be dismantling the device. Handle that case by
10893 	 * deferring the free.
10894 	 */
10895 	if (dev->reg_state == NETREG_UNREGISTERING) {
10896 		ASSERT_RTNL();
10897 		dev->needs_free_netdev = true;
10898 		return;
10899 	}
10900 
10901 	netif_free_tx_queues(dev);
10902 	netif_free_rx_queues(dev);
10903 
10904 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10905 
10906 	/* Flush device addresses */
10907 	dev_addr_flush(dev);
10908 
10909 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10910 		netif_napi_del(p);
10911 
10912 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10913 #ifdef CONFIG_PCPU_DEV_REFCNT
10914 	free_percpu(dev->pcpu_refcnt);
10915 	dev->pcpu_refcnt = NULL;
10916 #endif
10917 	free_percpu(dev->core_stats);
10918 	dev->core_stats = NULL;
10919 	free_percpu(dev->xdp_bulkq);
10920 	dev->xdp_bulkq = NULL;
10921 
10922 	/*  Compatibility with error handling in drivers */
10923 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10924 		netdev_freemem(dev);
10925 		return;
10926 	}
10927 
10928 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10929 	dev->reg_state = NETREG_RELEASED;
10930 
10931 	/* will free via device release */
10932 	put_device(&dev->dev);
10933 }
10934 EXPORT_SYMBOL(free_netdev);
10935 
10936 /**
10937  *	synchronize_net -  Synchronize with packet receive processing
10938  *
10939  *	Wait for packets currently being received to be done.
10940  *	Does not block later packets from starting.
10941  */
synchronize_net(void)10942 void synchronize_net(void)
10943 {
10944 	might_sleep();
10945 	if (rtnl_is_locked())
10946 		synchronize_rcu_expedited();
10947 	else
10948 		synchronize_rcu();
10949 }
10950 EXPORT_SYMBOL(synchronize_net);
10951 
10952 /**
10953  *	unregister_netdevice_queue - remove device from the kernel
10954  *	@dev: device
10955  *	@head: list
10956  *
10957  *	This function shuts down a device interface and removes it
10958  *	from the kernel tables.
10959  *	If head not NULL, device is queued to be unregistered later.
10960  *
10961  *	Callers must hold the rtnl semaphore.  You may want
10962  *	unregister_netdev() instead of this.
10963  */
10964 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10965 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10966 {
10967 	ASSERT_RTNL();
10968 
10969 	if (head) {
10970 		list_move_tail(&dev->unreg_list, head);
10971 	} else {
10972 		LIST_HEAD(single);
10973 
10974 		list_add(&dev->unreg_list, &single);
10975 		unregister_netdevice_many(&single);
10976 	}
10977 }
10978 EXPORT_SYMBOL(unregister_netdevice_queue);
10979 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)10980 void unregister_netdevice_many_notify(struct list_head *head,
10981 				      u32 portid, const struct nlmsghdr *nlh)
10982 {
10983 	struct net_device *dev, *tmp;
10984 	LIST_HEAD(close_head);
10985 
10986 	BUG_ON(dev_boot_phase);
10987 	ASSERT_RTNL();
10988 
10989 	if (list_empty(head))
10990 		return;
10991 
10992 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10993 		/* Some devices call without registering
10994 		 * for initialization unwind. Remove those
10995 		 * devices and proceed with the remaining.
10996 		 */
10997 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10998 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10999 				 dev->name, dev);
11000 
11001 			WARN_ON(1);
11002 			list_del(&dev->unreg_list);
11003 			continue;
11004 		}
11005 		dev->dismantle = true;
11006 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11007 	}
11008 
11009 	/* If device is running, close it first. */
11010 	list_for_each_entry(dev, head, unreg_list)
11011 		list_add_tail(&dev->close_list, &close_head);
11012 	dev_close_many(&close_head, true);
11013 
11014 	list_for_each_entry(dev, head, unreg_list) {
11015 		/* And unlink it from device chain. */
11016 		write_lock(&dev_base_lock);
11017 		unlist_netdevice(dev, false);
11018 		dev->reg_state = NETREG_UNREGISTERING;
11019 		write_unlock(&dev_base_lock);
11020 	}
11021 	flush_all_backlogs();
11022 
11023 	synchronize_net();
11024 
11025 	list_for_each_entry(dev, head, unreg_list) {
11026 		struct sk_buff *skb = NULL;
11027 
11028 		/* Shutdown queueing discipline. */
11029 		dev_shutdown(dev);
11030 		dev_tcx_uninstall(dev);
11031 		dev_xdp_uninstall(dev);
11032 		bpf_dev_bound_netdev_unregister(dev);
11033 
11034 		netdev_offload_xstats_disable_all(dev);
11035 
11036 		/* Notify protocols, that we are about to destroy
11037 		 * this device. They should clean all the things.
11038 		 */
11039 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11040 
11041 		if (!dev->rtnl_link_ops ||
11042 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11043 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11044 						     GFP_KERNEL, NULL, 0,
11045 						     portid, nlh);
11046 
11047 		/*
11048 		 *	Flush the unicast and multicast chains
11049 		 */
11050 		dev_uc_flush(dev);
11051 		dev_mc_flush(dev);
11052 
11053 		netdev_name_node_alt_flush(dev);
11054 		netdev_name_node_free(dev->name_node);
11055 
11056 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11057 
11058 		if (dev->netdev_ops->ndo_uninit)
11059 			dev->netdev_ops->ndo_uninit(dev);
11060 
11061 		if (skb)
11062 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11063 
11064 		/* Notifier chain MUST detach us all upper devices. */
11065 		WARN_ON(netdev_has_any_upper_dev(dev));
11066 		WARN_ON(netdev_has_any_lower_dev(dev));
11067 
11068 		/* Remove entries from kobject tree */
11069 		netdev_unregister_kobject(dev);
11070 #ifdef CONFIG_XPS
11071 		/* Remove XPS queueing entries */
11072 		netif_reset_xps_queues_gt(dev, 0);
11073 #endif
11074 	}
11075 
11076 	synchronize_net();
11077 
11078 	list_for_each_entry(dev, head, unreg_list) {
11079 		netdev_put(dev, &dev->dev_registered_tracker);
11080 		net_set_todo(dev);
11081 	}
11082 
11083 	list_del(head);
11084 }
11085 
11086 /**
11087  *	unregister_netdevice_many - unregister many devices
11088  *	@head: list of devices
11089  *
11090  *  Note: As most callers use a stack allocated list_head,
11091  *  we force a list_del() to make sure stack wont be corrupted later.
11092  */
unregister_netdevice_many(struct list_head * head)11093 void unregister_netdevice_many(struct list_head *head)
11094 {
11095 	unregister_netdevice_many_notify(head, 0, NULL);
11096 }
11097 EXPORT_SYMBOL(unregister_netdevice_many);
11098 
11099 /**
11100  *	unregister_netdev - remove device from the kernel
11101  *	@dev: device
11102  *
11103  *	This function shuts down a device interface and removes it
11104  *	from the kernel tables.
11105  *
11106  *	This is just a wrapper for unregister_netdevice that takes
11107  *	the rtnl semaphore.  In general you want to use this and not
11108  *	unregister_netdevice.
11109  */
unregister_netdev(struct net_device * dev)11110 void unregister_netdev(struct net_device *dev)
11111 {
11112 	rtnl_lock();
11113 	unregister_netdevice(dev);
11114 	rtnl_unlock();
11115 }
11116 EXPORT_SYMBOL(unregister_netdev);
11117 
11118 /**
11119  *	__dev_change_net_namespace - move device to different nethost namespace
11120  *	@dev: device
11121  *	@net: network namespace
11122  *	@pat: If not NULL name pattern to try if the current device name
11123  *	      is already taken in the destination network namespace.
11124  *	@new_ifindex: If not zero, specifies device index in the target
11125  *	              namespace.
11126  *
11127  *	This function shuts down a device interface and moves it
11128  *	to a new network namespace. On success 0 is returned, on
11129  *	a failure a netagive errno code is returned.
11130  *
11131  *	Callers must hold the rtnl semaphore.
11132  */
11133 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11134 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11135 			       const char *pat, int new_ifindex)
11136 {
11137 	struct netdev_name_node *name_node;
11138 	struct net *net_old = dev_net(dev);
11139 	char new_name[IFNAMSIZ] = {};
11140 	int err, new_nsid;
11141 
11142 	ASSERT_RTNL();
11143 
11144 	/* Don't allow namespace local devices to be moved. */
11145 	err = -EINVAL;
11146 	if (dev->features & NETIF_F_NETNS_LOCAL)
11147 		goto out;
11148 
11149 	/* Ensure the device has been registrered */
11150 	if (dev->reg_state != NETREG_REGISTERED)
11151 		goto out;
11152 
11153 	/* Get out if there is nothing todo */
11154 	err = 0;
11155 	if (net_eq(net_old, net))
11156 		goto out;
11157 
11158 	/* Pick the destination device name, and ensure
11159 	 * we can use it in the destination network namespace.
11160 	 */
11161 	err = -EEXIST;
11162 	if (netdev_name_in_use(net, dev->name)) {
11163 		/* We get here if we can't use the current device name */
11164 		if (!pat)
11165 			goto out;
11166 		err = dev_prep_valid_name(net, dev, pat, new_name);
11167 		if (err < 0)
11168 			goto out;
11169 	}
11170 	/* Check that none of the altnames conflicts. */
11171 	err = -EEXIST;
11172 	netdev_for_each_altname(dev, name_node)
11173 		if (netdev_name_in_use(net, name_node->name))
11174 			goto out;
11175 
11176 	/* Check that new_ifindex isn't used yet. */
11177 	if (new_ifindex) {
11178 		err = dev_index_reserve(net, new_ifindex);
11179 		if (err < 0)
11180 			goto out;
11181 	} else {
11182 		/* If there is an ifindex conflict assign a new one */
11183 		err = dev_index_reserve(net, dev->ifindex);
11184 		if (err == -EBUSY)
11185 			err = dev_index_reserve(net, 0);
11186 		if (err < 0)
11187 			goto out;
11188 		new_ifindex = err;
11189 	}
11190 
11191 	/*
11192 	 * And now a mini version of register_netdevice unregister_netdevice.
11193 	 */
11194 
11195 	/* If device is running close it first. */
11196 	dev_close(dev);
11197 
11198 	/* And unlink it from device chain */
11199 	unlist_netdevice(dev, true);
11200 
11201 	synchronize_net();
11202 
11203 	/* Shutdown queueing discipline. */
11204 	dev_shutdown(dev);
11205 
11206 	/* Notify protocols, that we are about to destroy
11207 	 * this device. They should clean all the things.
11208 	 *
11209 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11210 	 * This is wanted because this way 8021q and macvlan know
11211 	 * the device is just moving and can keep their slaves up.
11212 	 */
11213 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11214 	rcu_barrier();
11215 
11216 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11217 
11218 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11219 			    new_ifindex);
11220 
11221 	/*
11222 	 *	Flush the unicast and multicast chains
11223 	 */
11224 	dev_uc_flush(dev);
11225 	dev_mc_flush(dev);
11226 
11227 	/* Send a netdev-removed uevent to the old namespace */
11228 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11229 	netdev_adjacent_del_links(dev);
11230 
11231 	/* Move per-net netdevice notifiers that are following the netdevice */
11232 	move_netdevice_notifiers_dev_net(dev, net);
11233 
11234 	/* Actually switch the network namespace */
11235 	dev_net_set(dev, net);
11236 	dev->ifindex = new_ifindex;
11237 
11238 	/* Send a netdev-add uevent to the new namespace */
11239 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11240 	netdev_adjacent_add_links(dev);
11241 
11242 	if (new_name[0]) /* Rename the netdev to prepared name */
11243 		strscpy(dev->name, new_name, IFNAMSIZ);
11244 
11245 	/* Fixup kobjects */
11246 	err = device_rename(&dev->dev, dev->name);
11247 	WARN_ON(err);
11248 
11249 	/* Adapt owner in case owning user namespace of target network
11250 	 * namespace is different from the original one.
11251 	 */
11252 	err = netdev_change_owner(dev, net_old, net);
11253 	WARN_ON(err);
11254 
11255 	/* Add the device back in the hashes */
11256 	list_netdevice(dev);
11257 
11258 	/* Notify protocols, that a new device appeared. */
11259 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11260 
11261 	/*
11262 	 *	Prevent userspace races by waiting until the network
11263 	 *	device is fully setup before sending notifications.
11264 	 */
11265 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11266 
11267 	synchronize_net();
11268 	err = 0;
11269 out:
11270 	return err;
11271 }
11272 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11273 
dev_cpu_dead(unsigned int oldcpu)11274 static int dev_cpu_dead(unsigned int oldcpu)
11275 {
11276 	struct sk_buff **list_skb;
11277 	struct sk_buff *skb;
11278 	unsigned int cpu;
11279 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11280 
11281 	local_irq_disable();
11282 	cpu = smp_processor_id();
11283 	sd = &per_cpu(softnet_data, cpu);
11284 	oldsd = &per_cpu(softnet_data, oldcpu);
11285 
11286 	/* Find end of our completion_queue. */
11287 	list_skb = &sd->completion_queue;
11288 	while (*list_skb)
11289 		list_skb = &(*list_skb)->next;
11290 	/* Append completion queue from offline CPU. */
11291 	*list_skb = oldsd->completion_queue;
11292 	oldsd->completion_queue = NULL;
11293 
11294 	/* Append output queue from offline CPU. */
11295 	if (oldsd->output_queue) {
11296 		*sd->output_queue_tailp = oldsd->output_queue;
11297 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11298 		oldsd->output_queue = NULL;
11299 		oldsd->output_queue_tailp = &oldsd->output_queue;
11300 	}
11301 	/* Append NAPI poll list from offline CPU, with one exception :
11302 	 * process_backlog() must be called by cpu owning percpu backlog.
11303 	 * We properly handle process_queue & input_pkt_queue later.
11304 	 */
11305 	while (!list_empty(&oldsd->poll_list)) {
11306 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11307 							    struct napi_struct,
11308 							    poll_list);
11309 
11310 		list_del_init(&napi->poll_list);
11311 		if (napi->poll == process_backlog)
11312 			napi->state = 0;
11313 		else
11314 			____napi_schedule(sd, napi);
11315 	}
11316 
11317 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11318 	local_irq_enable();
11319 
11320 #ifdef CONFIG_RPS
11321 	remsd = oldsd->rps_ipi_list;
11322 	oldsd->rps_ipi_list = NULL;
11323 #endif
11324 	/* send out pending IPI's on offline CPU */
11325 	net_rps_send_ipi(remsd);
11326 
11327 	/* Process offline CPU's input_pkt_queue */
11328 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11329 		netif_rx(skb);
11330 		input_queue_head_incr(oldsd);
11331 	}
11332 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11333 		netif_rx(skb);
11334 		input_queue_head_incr(oldsd);
11335 	}
11336 
11337 	return 0;
11338 }
11339 
11340 /**
11341  *	netdev_increment_features - increment feature set by one
11342  *	@all: current feature set
11343  *	@one: new feature set
11344  *	@mask: mask feature set
11345  *
11346  *	Computes a new feature set after adding a device with feature set
11347  *	@one to the master device with current feature set @all.  Will not
11348  *	enable anything that is off in @mask. Returns the new feature set.
11349  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11350 netdev_features_t netdev_increment_features(netdev_features_t all,
11351 	netdev_features_t one, netdev_features_t mask)
11352 {
11353 	if (mask & NETIF_F_HW_CSUM)
11354 		mask |= NETIF_F_CSUM_MASK;
11355 	mask |= NETIF_F_VLAN_CHALLENGED;
11356 
11357 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11358 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11359 
11360 	/* If one device supports hw checksumming, set for all. */
11361 	if (all & NETIF_F_HW_CSUM)
11362 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11363 
11364 	return all;
11365 }
11366 EXPORT_SYMBOL(netdev_increment_features);
11367 
netdev_create_hash(void)11368 static struct hlist_head * __net_init netdev_create_hash(void)
11369 {
11370 	int i;
11371 	struct hlist_head *hash;
11372 
11373 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11374 	if (hash != NULL)
11375 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11376 			INIT_HLIST_HEAD(&hash[i]);
11377 
11378 	return hash;
11379 }
11380 
11381 /* Initialize per network namespace state */
netdev_init(struct net * net)11382 static int __net_init netdev_init(struct net *net)
11383 {
11384 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11385 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11386 
11387 	INIT_LIST_HEAD(&net->dev_base_head);
11388 
11389 	net->dev_name_head = netdev_create_hash();
11390 	if (net->dev_name_head == NULL)
11391 		goto err_name;
11392 
11393 	net->dev_index_head = netdev_create_hash();
11394 	if (net->dev_index_head == NULL)
11395 		goto err_idx;
11396 
11397 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11398 
11399 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11400 
11401 	return 0;
11402 
11403 err_idx:
11404 	kfree(net->dev_name_head);
11405 err_name:
11406 	return -ENOMEM;
11407 }
11408 
11409 /**
11410  *	netdev_drivername - network driver for the device
11411  *	@dev: network device
11412  *
11413  *	Determine network driver for device.
11414  */
netdev_drivername(const struct net_device * dev)11415 const char *netdev_drivername(const struct net_device *dev)
11416 {
11417 	const struct device_driver *driver;
11418 	const struct device *parent;
11419 	const char *empty = "";
11420 
11421 	parent = dev->dev.parent;
11422 	if (!parent)
11423 		return empty;
11424 
11425 	driver = parent->driver;
11426 	if (driver && driver->name)
11427 		return driver->name;
11428 	return empty;
11429 }
11430 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11431 static void __netdev_printk(const char *level, const struct net_device *dev,
11432 			    struct va_format *vaf)
11433 {
11434 	if (dev && dev->dev.parent) {
11435 		dev_printk_emit(level[1] - '0',
11436 				dev->dev.parent,
11437 				"%s %s %s%s: %pV",
11438 				dev_driver_string(dev->dev.parent),
11439 				dev_name(dev->dev.parent),
11440 				netdev_name(dev), netdev_reg_state(dev),
11441 				vaf);
11442 	} else if (dev) {
11443 		printk("%s%s%s: %pV",
11444 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11445 	} else {
11446 		printk("%s(NULL net_device): %pV", level, vaf);
11447 	}
11448 }
11449 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11450 void netdev_printk(const char *level, const struct net_device *dev,
11451 		   const char *format, ...)
11452 {
11453 	struct va_format vaf;
11454 	va_list args;
11455 
11456 	va_start(args, format);
11457 
11458 	vaf.fmt = format;
11459 	vaf.va = &args;
11460 
11461 	__netdev_printk(level, dev, &vaf);
11462 
11463 	va_end(args);
11464 }
11465 EXPORT_SYMBOL(netdev_printk);
11466 
11467 #define define_netdev_printk_level(func, level)			\
11468 void func(const struct net_device *dev, const char *fmt, ...)	\
11469 {								\
11470 	struct va_format vaf;					\
11471 	va_list args;						\
11472 								\
11473 	va_start(args, fmt);					\
11474 								\
11475 	vaf.fmt = fmt;						\
11476 	vaf.va = &args;						\
11477 								\
11478 	__netdev_printk(level, dev, &vaf);			\
11479 								\
11480 	va_end(args);						\
11481 }								\
11482 EXPORT_SYMBOL(func);
11483 
11484 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11485 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11486 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11487 define_netdev_printk_level(netdev_err, KERN_ERR);
11488 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11489 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11490 define_netdev_printk_level(netdev_info, KERN_INFO);
11491 
netdev_exit(struct net * net)11492 static void __net_exit netdev_exit(struct net *net)
11493 {
11494 	kfree(net->dev_name_head);
11495 	kfree(net->dev_index_head);
11496 	xa_destroy(&net->dev_by_index);
11497 	if (net != &init_net)
11498 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11499 }
11500 
11501 static struct pernet_operations __net_initdata netdev_net_ops = {
11502 	.init = netdev_init,
11503 	.exit = netdev_exit,
11504 };
11505 
default_device_exit_net(struct net * net)11506 static void __net_exit default_device_exit_net(struct net *net)
11507 {
11508 	struct netdev_name_node *name_node, *tmp;
11509 	struct net_device *dev, *aux;
11510 	/*
11511 	 * Push all migratable network devices back to the
11512 	 * initial network namespace
11513 	 */
11514 	ASSERT_RTNL();
11515 	for_each_netdev_safe(net, dev, aux) {
11516 		int err;
11517 		char fb_name[IFNAMSIZ];
11518 
11519 		/* Ignore unmoveable devices (i.e. loopback) */
11520 		if (dev->features & NETIF_F_NETNS_LOCAL)
11521 			continue;
11522 
11523 		/* Leave virtual devices for the generic cleanup */
11524 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11525 			continue;
11526 
11527 		/* Push remaining network devices to init_net */
11528 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11529 		if (netdev_name_in_use(&init_net, fb_name))
11530 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11531 
11532 		netdev_for_each_altname_safe(dev, name_node, tmp)
11533 			if (netdev_name_in_use(&init_net, name_node->name)) {
11534 				netdev_name_node_del(name_node);
11535 				synchronize_rcu();
11536 				__netdev_name_node_alt_destroy(name_node);
11537 			}
11538 
11539 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11540 		if (err) {
11541 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11542 				 __func__, dev->name, err);
11543 			BUG();
11544 		}
11545 	}
11546 }
11547 
default_device_exit_batch(struct list_head * net_list)11548 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11549 {
11550 	/* At exit all network devices most be removed from a network
11551 	 * namespace.  Do this in the reverse order of registration.
11552 	 * Do this across as many network namespaces as possible to
11553 	 * improve batching efficiency.
11554 	 */
11555 	struct net_device *dev;
11556 	struct net *net;
11557 	LIST_HEAD(dev_kill_list);
11558 
11559 	rtnl_lock();
11560 	list_for_each_entry(net, net_list, exit_list) {
11561 		default_device_exit_net(net);
11562 		cond_resched();
11563 	}
11564 
11565 	list_for_each_entry(net, net_list, exit_list) {
11566 		for_each_netdev_reverse(net, dev) {
11567 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11568 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11569 			else
11570 				unregister_netdevice_queue(dev, &dev_kill_list);
11571 		}
11572 	}
11573 	unregister_netdevice_many(&dev_kill_list);
11574 	rtnl_unlock();
11575 }
11576 
11577 static struct pernet_operations __net_initdata default_device_ops = {
11578 	.exit_batch = default_device_exit_batch,
11579 };
11580 
11581 /*
11582  *	Initialize the DEV module. At boot time this walks the device list and
11583  *	unhooks any devices that fail to initialise (normally hardware not
11584  *	present) and leaves us with a valid list of present and active devices.
11585  *
11586  */
11587 
11588 /*
11589  *       This is called single threaded during boot, so no need
11590  *       to take the rtnl semaphore.
11591  */
net_dev_init(void)11592 static int __init net_dev_init(void)
11593 {
11594 	int i, rc = -ENOMEM;
11595 
11596 	BUG_ON(!dev_boot_phase);
11597 
11598 	if (dev_proc_init())
11599 		goto out;
11600 
11601 	if (netdev_kobject_init())
11602 		goto out;
11603 
11604 	INIT_LIST_HEAD(&ptype_all);
11605 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11606 		INIT_LIST_HEAD(&ptype_base[i]);
11607 
11608 	if (register_pernet_subsys(&netdev_net_ops))
11609 		goto out;
11610 
11611 	/*
11612 	 *	Initialise the packet receive queues.
11613 	 */
11614 
11615 	for_each_possible_cpu(i) {
11616 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11617 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11618 
11619 		INIT_WORK(flush, flush_backlog);
11620 
11621 		skb_queue_head_init(&sd->input_pkt_queue);
11622 		skb_queue_head_init(&sd->process_queue);
11623 #ifdef CONFIG_XFRM_OFFLOAD
11624 		skb_queue_head_init(&sd->xfrm_backlog);
11625 #endif
11626 		INIT_LIST_HEAD(&sd->poll_list);
11627 		sd->output_queue_tailp = &sd->output_queue;
11628 #ifdef CONFIG_RPS
11629 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11630 		sd->cpu = i;
11631 #endif
11632 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11633 		spin_lock_init(&sd->defer_lock);
11634 
11635 		init_gro_hash(&sd->backlog);
11636 		sd->backlog.poll = process_backlog;
11637 		sd->backlog.weight = weight_p;
11638 	}
11639 
11640 	dev_boot_phase = 0;
11641 
11642 	/* The loopback device is special if any other network devices
11643 	 * is present in a network namespace the loopback device must
11644 	 * be present. Since we now dynamically allocate and free the
11645 	 * loopback device ensure this invariant is maintained by
11646 	 * keeping the loopback device as the first device on the
11647 	 * list of network devices.  Ensuring the loopback devices
11648 	 * is the first device that appears and the last network device
11649 	 * that disappears.
11650 	 */
11651 	if (register_pernet_device(&loopback_net_ops))
11652 		goto out;
11653 
11654 	if (register_pernet_device(&default_device_ops))
11655 		goto out;
11656 
11657 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11658 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11659 
11660 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11661 				       NULL, dev_cpu_dead);
11662 	WARN_ON(rc < 0);
11663 	rc = 0;
11664 out:
11665 	return rc;
11666 }
11667 
11668 subsys_initcall(net_dev_init);
11669