xref: /openbmc/linux/fs/exec.c (revision 360823a09426347ea8f232b0b0b5156d0aed0302)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73 
74 #include <trace/events/task.h>
75 #include "internal.h"
76 
77 #include <trace/events/sched.h>
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
__register_binfmt(struct linux_binfmt * fmt,int insert)86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
unregister_binfmt(struct linux_binfmt * fmt)96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
put_binfmt(struct linux_binfmt * fmt)105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
path_noexec(const struct path * path)110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from the file itself.
122  */
SYSCALL_DEFINE1(uselib,const char __user *,library)123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * Check do_open_execat() for an explanation.
147 	 */
148 	error = -EACCES;
149 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
150 	    path_noexec(&file->f_path))
151 		goto exit;
152 
153 	error = -ENOEXEC;
154 
155 	read_lock(&binfmt_lock);
156 	list_for_each_entry(fmt, &formats, lh) {
157 		if (!fmt->load_shlib)
158 			continue;
159 		if (!try_module_get(fmt->module))
160 			continue;
161 		read_unlock(&binfmt_lock);
162 		error = fmt->load_shlib(file);
163 		read_lock(&binfmt_lock);
164 		put_binfmt(fmt);
165 		if (error != -ENOEXEC)
166 			break;
167 	}
168 	read_unlock(&binfmt_lock);
169 exit:
170 	fput(file);
171 out:
172 	return error;
173 }
174 #endif /* #ifdef CONFIG_USELIB */
175 
176 #ifdef CONFIG_MMU
177 /*
178  * The nascent bprm->mm is not visible until exec_mmap() but it can
179  * use a lot of memory, account these pages in current->mm temporary
180  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181  * change the counter back via acct_arg_size(0).
182  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 {
185 	struct mm_struct *mm = current->mm;
186 	long diff = (long)(pages - bprm->vma_pages);
187 
188 	if (!mm || !diff)
189 		return;
190 
191 	bprm->vma_pages = pages;
192 	add_mm_counter(mm, MM_ANONPAGES, diff);
193 }
194 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 		int write)
197 {
198 	struct page *page;
199 	struct vm_area_struct *vma = bprm->vma;
200 	struct mm_struct *mm = bprm->mm;
201 	int ret;
202 
203 	/*
204 	 * Avoid relying on expanding the stack down in GUP (which
205 	 * does not work for STACK_GROWSUP anyway), and just do it
206 	 * by hand ahead of time.
207 	 */
208 	if (write && pos < vma->vm_start) {
209 		mmap_write_lock(mm);
210 		ret = expand_downwards(vma, pos);
211 		if (unlikely(ret < 0)) {
212 			mmap_write_unlock(mm);
213 			return NULL;
214 		}
215 		mmap_write_downgrade(mm);
216 	} else
217 		mmap_read_lock(mm);
218 
219 	/*
220 	 * We are doing an exec().  'current' is the process
221 	 * doing the exec and 'mm' is the new process's mm.
222 	 */
223 	ret = get_user_pages_remote(mm, pos, 1,
224 			write ? FOLL_WRITE : 0,
225 			&page, NULL);
226 	mmap_read_unlock(mm);
227 	if (ret <= 0)
228 		return NULL;
229 
230 	if (write)
231 		acct_arg_size(bprm, vma_pages(vma));
232 
233 	return page;
234 }
235 
put_arg_page(struct page * page)236 static void put_arg_page(struct page *page)
237 {
238 	put_page(page);
239 }
240 
free_arg_pages(struct linux_binprm * bprm)241 static void free_arg_pages(struct linux_binprm *bprm)
242 {
243 }
244 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)245 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
246 		struct page *page)
247 {
248 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 }
250 
__bprm_mm_init(struct linux_binprm * bprm)251 static int __bprm_mm_init(struct linux_binprm *bprm)
252 {
253 	int err;
254 	struct vm_area_struct *vma = NULL;
255 	struct mm_struct *mm = bprm->mm;
256 
257 	bprm->vma = vma = vm_area_alloc(mm);
258 	if (!vma)
259 		return -ENOMEM;
260 	vma_set_anonymous(vma);
261 
262 	if (mmap_write_lock_killable(mm)) {
263 		err = -EINTR;
264 		goto err_free;
265 	}
266 
267 	/*
268 	 * Place the stack at the largest stack address the architecture
269 	 * supports. Later, we'll move this to an appropriate place. We don't
270 	 * use STACK_TOP because that can depend on attributes which aren't
271 	 * configured yet.
272 	 */
273 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
274 	vma->vm_end = STACK_TOP_MAX;
275 	vma->vm_start = vma->vm_end - PAGE_SIZE;
276 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
277 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278 
279 	err = insert_vm_struct(mm, vma);
280 	if (err)
281 		goto err;
282 
283 	mm->stack_vm = mm->total_vm = 1;
284 	mmap_write_unlock(mm);
285 	bprm->p = vma->vm_end - sizeof(void *);
286 	return 0;
287 err:
288 	mmap_write_unlock(mm);
289 err_free:
290 	bprm->vma = NULL;
291 	vm_area_free(vma);
292 	return err;
293 }
294 
valid_arg_len(struct linux_binprm * bprm,long len)295 static bool valid_arg_len(struct linux_binprm *bprm, long len)
296 {
297 	return len <= MAX_ARG_STRLEN;
298 }
299 
300 #else
301 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)302 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
303 {
304 }
305 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)306 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 		int write)
308 {
309 	struct page *page;
310 
311 	page = bprm->page[pos / PAGE_SIZE];
312 	if (!page && write) {
313 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314 		if (!page)
315 			return NULL;
316 		bprm->page[pos / PAGE_SIZE] = page;
317 	}
318 
319 	return page;
320 }
321 
put_arg_page(struct page * page)322 static void put_arg_page(struct page *page)
323 {
324 }
325 
free_arg_page(struct linux_binprm * bprm,int i)326 static void free_arg_page(struct linux_binprm *bprm, int i)
327 {
328 	if (bprm->page[i]) {
329 		__free_page(bprm->page[i]);
330 		bprm->page[i] = NULL;
331 	}
332 }
333 
free_arg_pages(struct linux_binprm * bprm)334 static void free_arg_pages(struct linux_binprm *bprm)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_ARG_PAGES; i++)
339 		free_arg_page(bprm, i);
340 }
341 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)342 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
343 		struct page *page)
344 {
345 }
346 
__bprm_mm_init(struct linux_binprm * bprm)347 static int __bprm_mm_init(struct linux_binprm *bprm)
348 {
349 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
350 	return 0;
351 }
352 
valid_arg_len(struct linux_binprm * bprm,long len)353 static bool valid_arg_len(struct linux_binprm *bprm, long len)
354 {
355 	return len <= bprm->p;
356 }
357 
358 #endif /* CONFIG_MMU */
359 
360 /*
361  * Create a new mm_struct and populate it with a temporary stack
362  * vm_area_struct.  We don't have enough context at this point to set the stack
363  * flags, permissions, and offset, so we use temporary values.  We'll update
364  * them later in setup_arg_pages().
365  */
bprm_mm_init(struct linux_binprm * bprm)366 static int bprm_mm_init(struct linux_binprm *bprm)
367 {
368 	int err;
369 	struct mm_struct *mm = NULL;
370 
371 	bprm->mm = mm = mm_alloc();
372 	err = -ENOMEM;
373 	if (!mm)
374 		goto err;
375 
376 	/* Save current stack limit for all calculations made during exec. */
377 	task_lock(current->group_leader);
378 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
379 	task_unlock(current->group_leader);
380 
381 	err = __bprm_mm_init(bprm);
382 	if (err)
383 		goto err;
384 
385 	return 0;
386 
387 err:
388 	if (mm) {
389 		bprm->mm = NULL;
390 		mmdrop(mm);
391 	}
392 
393 	return err;
394 }
395 
396 struct user_arg_ptr {
397 #ifdef CONFIG_COMPAT
398 	bool is_compat;
399 #endif
400 	union {
401 		const char __user *const __user *native;
402 #ifdef CONFIG_COMPAT
403 		const compat_uptr_t __user *compat;
404 #endif
405 	} ptr;
406 };
407 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)408 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
409 {
410 	const char __user *native;
411 
412 #ifdef CONFIG_COMPAT
413 	if (unlikely(argv.is_compat)) {
414 		compat_uptr_t compat;
415 
416 		if (get_user(compat, argv.ptr.compat + nr))
417 			return ERR_PTR(-EFAULT);
418 
419 		return compat_ptr(compat);
420 	}
421 #endif
422 
423 	if (get_user(native, argv.ptr.native + nr))
424 		return ERR_PTR(-EFAULT);
425 
426 	return native;
427 }
428 
429 /*
430  * count() counts the number of strings in array ARGV.
431  */
count(struct user_arg_ptr argv,int max)432 static int count(struct user_arg_ptr argv, int max)
433 {
434 	int i = 0;
435 
436 	if (argv.ptr.native != NULL) {
437 		for (;;) {
438 			const char __user *p = get_user_arg_ptr(argv, i);
439 
440 			if (!p)
441 				break;
442 
443 			if (IS_ERR(p))
444 				return -EFAULT;
445 
446 			if (i >= max)
447 				return -E2BIG;
448 			++i;
449 
450 			if (fatal_signal_pending(current))
451 				return -ERESTARTNOHAND;
452 			cond_resched();
453 		}
454 	}
455 	return i;
456 }
457 
count_strings_kernel(const char * const * argv)458 static int count_strings_kernel(const char *const *argv)
459 {
460 	int i;
461 
462 	if (!argv)
463 		return 0;
464 
465 	for (i = 0; argv[i]; ++i) {
466 		if (i >= MAX_ARG_STRINGS)
467 			return -E2BIG;
468 		if (fatal_signal_pending(current))
469 			return -ERESTARTNOHAND;
470 		cond_resched();
471 	}
472 	return i;
473 }
474 
bprm_stack_limits(struct linux_binprm * bprm)475 static int bprm_stack_limits(struct linux_binprm *bprm)
476 {
477 	unsigned long limit, ptr_size;
478 
479 	/*
480 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
481 	 * (whichever is smaller) for the argv+env strings.
482 	 * This ensures that:
483 	 *  - the remaining binfmt code will not run out of stack space,
484 	 *  - the program will have a reasonable amount of stack left
485 	 *    to work from.
486 	 */
487 	limit = _STK_LIM / 4 * 3;
488 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
489 	/*
490 	 * We've historically supported up to 32 pages (ARG_MAX)
491 	 * of argument strings even with small stacks
492 	 */
493 	limit = max_t(unsigned long, limit, ARG_MAX);
494 	/*
495 	 * We must account for the size of all the argv and envp pointers to
496 	 * the argv and envp strings, since they will also take up space in
497 	 * the stack. They aren't stored until much later when we can't
498 	 * signal to the parent that the child has run out of stack space.
499 	 * Instead, calculate it here so it's possible to fail gracefully.
500 	 *
501 	 * In the case of argc = 0, make sure there is space for adding a
502 	 * empty string (which will bump argc to 1), to ensure confused
503 	 * userspace programs don't start processing from argv[1], thinking
504 	 * argc can never be 0, to keep them from walking envp by accident.
505 	 * See do_execveat_common().
506 	 */
507 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
508 	if (limit <= ptr_size)
509 		return -E2BIG;
510 	limit -= ptr_size;
511 
512 	bprm->argmin = bprm->p - limit;
513 	return 0;
514 }
515 
516 /*
517  * 'copy_strings()' copies argument/environment strings from the old
518  * processes's memory to the new process's stack.  The call to get_user_pages()
519  * ensures the destination page is created and not swapped out.
520  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)521 static int copy_strings(int argc, struct user_arg_ptr argv,
522 			struct linux_binprm *bprm)
523 {
524 	struct page *kmapped_page = NULL;
525 	char *kaddr = NULL;
526 	unsigned long kpos = 0;
527 	int ret;
528 
529 	while (argc-- > 0) {
530 		const char __user *str;
531 		int len;
532 		unsigned long pos;
533 
534 		ret = -EFAULT;
535 		str = get_user_arg_ptr(argv, argc);
536 		if (IS_ERR(str))
537 			goto out;
538 
539 		len = strnlen_user(str, MAX_ARG_STRLEN);
540 		if (!len)
541 			goto out;
542 
543 		ret = -E2BIG;
544 		if (!valid_arg_len(bprm, len))
545 			goto out;
546 
547 		/* We're going to work our way backwards. */
548 		pos = bprm->p;
549 		str += len;
550 		bprm->p -= len;
551 #ifdef CONFIG_MMU
552 		if (bprm->p < bprm->argmin)
553 			goto out;
554 #endif
555 
556 		while (len > 0) {
557 			int offset, bytes_to_copy;
558 
559 			if (fatal_signal_pending(current)) {
560 				ret = -ERESTARTNOHAND;
561 				goto out;
562 			}
563 			cond_resched();
564 
565 			offset = pos % PAGE_SIZE;
566 			if (offset == 0)
567 				offset = PAGE_SIZE;
568 
569 			bytes_to_copy = offset;
570 			if (bytes_to_copy > len)
571 				bytes_to_copy = len;
572 
573 			offset -= bytes_to_copy;
574 			pos -= bytes_to_copy;
575 			str -= bytes_to_copy;
576 			len -= bytes_to_copy;
577 
578 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579 				struct page *page;
580 
581 				page = get_arg_page(bprm, pos, 1);
582 				if (!page) {
583 					ret = -E2BIG;
584 					goto out;
585 				}
586 
587 				if (kmapped_page) {
588 					flush_dcache_page(kmapped_page);
589 					kunmap_local(kaddr);
590 					put_arg_page(kmapped_page);
591 				}
592 				kmapped_page = page;
593 				kaddr = kmap_local_page(kmapped_page);
594 				kpos = pos & PAGE_MASK;
595 				flush_arg_page(bprm, kpos, kmapped_page);
596 			}
597 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598 				ret = -EFAULT;
599 				goto out;
600 			}
601 		}
602 	}
603 	ret = 0;
604 out:
605 	if (kmapped_page) {
606 		flush_dcache_page(kmapped_page);
607 		kunmap_local(kaddr);
608 		put_arg_page(kmapped_page);
609 	}
610 	return ret;
611 }
612 
613 /*
614  * Copy and argument/environment string from the kernel to the processes stack.
615  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)616 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
617 {
618 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
619 	unsigned long pos = bprm->p;
620 
621 	if (len == 0)
622 		return -EFAULT;
623 	if (!valid_arg_len(bprm, len))
624 		return -E2BIG;
625 
626 	/* We're going to work our way backwards. */
627 	arg += len;
628 	bprm->p -= len;
629 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
630 		return -E2BIG;
631 
632 	while (len > 0) {
633 		unsigned int bytes_to_copy = min_t(unsigned int, len,
634 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
635 		struct page *page;
636 
637 		pos -= bytes_to_copy;
638 		arg -= bytes_to_copy;
639 		len -= bytes_to_copy;
640 
641 		page = get_arg_page(bprm, pos, 1);
642 		if (!page)
643 			return -E2BIG;
644 		flush_arg_page(bprm, pos & PAGE_MASK, page);
645 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
646 		put_arg_page(page);
647 	}
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(copy_string_kernel);
652 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)653 static int copy_strings_kernel(int argc, const char *const *argv,
654 			       struct linux_binprm *bprm)
655 {
656 	while (argc-- > 0) {
657 		int ret = copy_string_kernel(argv[argc], bprm);
658 		if (ret < 0)
659 			return ret;
660 		if (fatal_signal_pending(current))
661 			return -ERESTARTNOHAND;
662 		cond_resched();
663 	}
664 	return 0;
665 }
666 
667 #ifdef CONFIG_MMU
668 
669 /*
670  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
671  * the binfmt code determines where the new stack should reside, we shift it to
672  * its final location.  The process proceeds as follows:
673  *
674  * 1) Use shift to calculate the new vma endpoints.
675  * 2) Extend vma to cover both the old and new ranges.  This ensures the
676  *    arguments passed to subsequent functions are consistent.
677  * 3) Move vma's page tables to the new range.
678  * 4) Free up any cleared pgd range.
679  * 5) Shrink the vma to cover only the new range.
680  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)681 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
682 {
683 	struct mm_struct *mm = vma->vm_mm;
684 	unsigned long old_start = vma->vm_start;
685 	unsigned long old_end = vma->vm_end;
686 	unsigned long length = old_end - old_start;
687 	unsigned long new_start = old_start - shift;
688 	unsigned long new_end = old_end - shift;
689 	VMA_ITERATOR(vmi, mm, new_start);
690 	struct vm_area_struct *next;
691 	struct mmu_gather tlb;
692 
693 	BUG_ON(new_start > new_end);
694 
695 	/*
696 	 * ensure there are no vmas between where we want to go
697 	 * and where we are
698 	 */
699 	if (vma != vma_next(&vmi))
700 		return -EFAULT;
701 
702 	vma_iter_prev_range(&vmi);
703 	/*
704 	 * cover the whole range: [new_start, old_end)
705 	 */
706 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
707 		return -ENOMEM;
708 
709 	/*
710 	 * move the page tables downwards, on failure we rely on
711 	 * process cleanup to remove whatever mess we made.
712 	 */
713 	if (length != move_page_tables(vma, old_start,
714 				       vma, new_start, length, false))
715 		return -ENOMEM;
716 
717 	lru_add_drain();
718 	tlb_gather_mmu(&tlb, mm);
719 	next = vma_next(&vmi);
720 	if (new_end > old_start) {
721 		/*
722 		 * when the old and new regions overlap clear from new_end.
723 		 */
724 		free_pgd_range(&tlb, new_end, old_end, new_end,
725 			next ? next->vm_start : USER_PGTABLES_CEILING);
726 	} else {
727 		/*
728 		 * otherwise, clean from old_start; this is done to not touch
729 		 * the address space in [new_end, old_start) some architectures
730 		 * have constraints on va-space that make this illegal (IA64) -
731 		 * for the others its just a little faster.
732 		 */
733 		free_pgd_range(&tlb, old_start, old_end, new_end,
734 			next ? next->vm_start : USER_PGTABLES_CEILING);
735 	}
736 	tlb_finish_mmu(&tlb);
737 
738 	vma_prev(&vmi);
739 	/* Shrink the vma to just the new range */
740 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
741 }
742 
743 /*
744  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745  * the stack is optionally relocated, and some extra space is added.
746  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)747 int setup_arg_pages(struct linux_binprm *bprm,
748 		    unsigned long stack_top,
749 		    int executable_stack)
750 {
751 	unsigned long ret;
752 	unsigned long stack_shift;
753 	struct mm_struct *mm = current->mm;
754 	struct vm_area_struct *vma = bprm->vma;
755 	struct vm_area_struct *prev = NULL;
756 	unsigned long vm_flags;
757 	unsigned long stack_base;
758 	unsigned long stack_size;
759 	unsigned long stack_expand;
760 	unsigned long rlim_stack;
761 	struct mmu_gather tlb;
762 	struct vma_iterator vmi;
763 
764 #ifdef CONFIG_STACK_GROWSUP
765 	/* Limit stack size */
766 	stack_base = bprm->rlim_stack.rlim_max;
767 
768 	stack_base = calc_max_stack_size(stack_base);
769 
770 	/* Add space for stack randomization. */
771 	if (current->flags & PF_RANDOMIZE)
772 		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773 
774 	/* Make sure we didn't let the argument array grow too large. */
775 	if (vma->vm_end - vma->vm_start > stack_base)
776 		return -ENOMEM;
777 
778 	stack_base = PAGE_ALIGN(stack_top - stack_base);
779 
780 	stack_shift = vma->vm_start - stack_base;
781 	mm->arg_start = bprm->p - stack_shift;
782 	bprm->p = vma->vm_end - stack_shift;
783 #else
784 	stack_top = arch_align_stack(stack_top);
785 	stack_top = PAGE_ALIGN(stack_top);
786 
787 	if (unlikely(stack_top < mmap_min_addr) ||
788 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 		return -ENOMEM;
790 
791 	stack_shift = vma->vm_end - stack_top;
792 
793 	bprm->p -= stack_shift;
794 	mm->arg_start = bprm->p;
795 #endif
796 
797 	if (bprm->loader)
798 		bprm->loader -= stack_shift;
799 	bprm->exec -= stack_shift;
800 
801 	if (mmap_write_lock_killable(mm))
802 		return -EINTR;
803 
804 	vm_flags = VM_STACK_FLAGS;
805 
806 	/*
807 	 * Adjust stack execute permissions; explicitly enable for
808 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809 	 * (arch default) otherwise.
810 	 */
811 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812 		vm_flags |= VM_EXEC;
813 	else if (executable_stack == EXSTACK_DISABLE_X)
814 		vm_flags &= ~VM_EXEC;
815 	vm_flags |= mm->def_flags;
816 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817 
818 	vma_iter_init(&vmi, mm, vma->vm_start);
819 
820 	tlb_gather_mmu(&tlb, mm);
821 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
822 			vm_flags);
823 	tlb_finish_mmu(&tlb);
824 
825 	if (ret)
826 		goto out_unlock;
827 	BUG_ON(prev != vma);
828 
829 	if (unlikely(vm_flags & VM_EXEC)) {
830 		pr_warn_once("process '%pD4' started with executable stack\n",
831 			     bprm->file);
832 	}
833 
834 	/* Move stack pages down in memory. */
835 	if (stack_shift) {
836 		ret = shift_arg_pages(vma, stack_shift);
837 		if (ret)
838 			goto out_unlock;
839 	}
840 
841 	/* mprotect_fixup is overkill to remove the temporary stack flags */
842 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
843 
844 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845 	stack_size = vma->vm_end - vma->vm_start;
846 	/*
847 	 * Align this down to a page boundary as expand_stack
848 	 * will align it up.
849 	 */
850 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851 
852 	stack_expand = min(rlim_stack, stack_size + stack_expand);
853 
854 #ifdef CONFIG_STACK_GROWSUP
855 	stack_base = vma->vm_start + stack_expand;
856 #else
857 	stack_base = vma->vm_end - stack_expand;
858 #endif
859 	current->mm->start_stack = bprm->p;
860 	ret = expand_stack_locked(vma, stack_base);
861 	if (ret)
862 		ret = -EFAULT;
863 
864 out_unlock:
865 	mmap_write_unlock(mm);
866 	return ret;
867 }
868 EXPORT_SYMBOL(setup_arg_pages);
869 
870 #else
871 
872 /*
873  * Transfer the program arguments and environment from the holding pages
874  * onto the stack. The provided stack pointer is adjusted accordingly.
875  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)876 int transfer_args_to_stack(struct linux_binprm *bprm,
877 			   unsigned long *sp_location)
878 {
879 	unsigned long index, stop, sp;
880 	int ret = 0;
881 
882 	stop = bprm->p >> PAGE_SHIFT;
883 	sp = *sp_location;
884 
885 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
886 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
887 		char *src = kmap_local_page(bprm->page[index]) + offset;
888 		sp -= PAGE_SIZE - offset;
889 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
890 			ret = -EFAULT;
891 		kunmap_local(src);
892 		if (ret)
893 			goto out;
894 	}
895 
896 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
897 	*sp_location = sp;
898 
899 out:
900 	return ret;
901 }
902 EXPORT_SYMBOL(transfer_args_to_stack);
903 
904 #endif /* CONFIG_MMU */
905 
do_open_execat(int fd,struct filename * name,int flags)906 static struct file *do_open_execat(int fd, struct filename *name, int flags)
907 {
908 	struct file *file;
909 	int err;
910 	struct open_flags open_exec_flags = {
911 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
912 		.acc_mode = MAY_EXEC,
913 		.intent = LOOKUP_OPEN,
914 		.lookup_flags = LOOKUP_FOLLOW,
915 	};
916 
917 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
918 		return ERR_PTR(-EINVAL);
919 	if (flags & AT_SYMLINK_NOFOLLOW)
920 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
921 	if (flags & AT_EMPTY_PATH)
922 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
923 
924 	file = do_filp_open(fd, name, &open_exec_flags);
925 	if (IS_ERR(file))
926 		return file;
927 
928 	/*
929 	 * In the past the regular type check was here. It moved to may_open() in
930 	 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
931 	 * an invariant that all non-regular files error out before we get here.
932 	 */
933 	err = -EACCES;
934 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
935 	    path_noexec(&file->f_path))
936 		goto exit;
937 
938 	err = deny_write_access(file);
939 	if (err)
940 		goto exit;
941 
942 	return file;
943 
944 exit:
945 	fput(file);
946 	return ERR_PTR(err);
947 }
948 
open_exec(const char * name)949 struct file *open_exec(const char *name)
950 {
951 	struct filename *filename = getname_kernel(name);
952 	struct file *f = ERR_CAST(filename);
953 
954 	if (!IS_ERR(filename)) {
955 		f = do_open_execat(AT_FDCWD, filename, 0);
956 		putname(filename);
957 	}
958 	return f;
959 }
960 EXPORT_SYMBOL(open_exec);
961 
962 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964 {
965 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966 	if (res > 0)
967 		flush_icache_user_range(addr, addr + len);
968 	return res;
969 }
970 EXPORT_SYMBOL(read_code);
971 #endif
972 
973 /*
974  * Maps the mm_struct mm into the current task struct.
975  * On success, this function returns with exec_update_lock
976  * held for writing.
977  */
exec_mmap(struct mm_struct * mm)978 static int exec_mmap(struct mm_struct *mm)
979 {
980 	struct task_struct *tsk;
981 	struct mm_struct *old_mm, *active_mm;
982 	int ret;
983 
984 	/* Notify parent that we're no longer interested in the old VM */
985 	tsk = current;
986 	old_mm = current->mm;
987 	exec_mm_release(tsk, old_mm);
988 	if (old_mm)
989 		sync_mm_rss(old_mm);
990 
991 	ret = down_write_killable(&tsk->signal->exec_update_lock);
992 	if (ret)
993 		return ret;
994 
995 	if (old_mm) {
996 		/*
997 		 * If there is a pending fatal signal perhaps a signal
998 		 * whose default action is to create a coredump get
999 		 * out and die instead of going through with the exec.
1000 		 */
1001 		ret = mmap_read_lock_killable(old_mm);
1002 		if (ret) {
1003 			up_write(&tsk->signal->exec_update_lock);
1004 			return ret;
1005 		}
1006 	}
1007 
1008 	task_lock(tsk);
1009 	membarrier_exec_mmap(mm);
1010 
1011 	local_irq_disable();
1012 	active_mm = tsk->active_mm;
1013 	tsk->active_mm = mm;
1014 	tsk->mm = mm;
1015 	mm_init_cid(mm);
1016 	/*
1017 	 * This prevents preemption while active_mm is being loaded and
1018 	 * it and mm are being updated, which could cause problems for
1019 	 * lazy tlb mm refcounting when these are updated by context
1020 	 * switches. Not all architectures can handle irqs off over
1021 	 * activate_mm yet.
1022 	 */
1023 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024 		local_irq_enable();
1025 	activate_mm(active_mm, mm);
1026 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 		local_irq_enable();
1028 	lru_gen_add_mm(mm);
1029 	task_unlock(tsk);
1030 	lru_gen_use_mm(mm);
1031 	if (old_mm) {
1032 		mmap_read_unlock(old_mm);
1033 		BUG_ON(active_mm != old_mm);
1034 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035 		mm_update_next_owner(old_mm);
1036 		mmput(old_mm);
1037 		return 0;
1038 	}
1039 	mmdrop_lazy_tlb(active_mm);
1040 	return 0;
1041 }
1042 
de_thread(struct task_struct * tsk)1043 static int de_thread(struct task_struct *tsk)
1044 {
1045 	struct signal_struct *sig = tsk->signal;
1046 	struct sighand_struct *oldsighand = tsk->sighand;
1047 	spinlock_t *lock = &oldsighand->siglock;
1048 
1049 	if (thread_group_empty(tsk))
1050 		goto no_thread_group;
1051 
1052 	/*
1053 	 * Kill all other threads in the thread group.
1054 	 */
1055 	spin_lock_irq(lock);
1056 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1057 		/*
1058 		 * Another group action in progress, just
1059 		 * return so that the signal is processed.
1060 		 */
1061 		spin_unlock_irq(lock);
1062 		return -EAGAIN;
1063 	}
1064 
1065 	sig->group_exec_task = tsk;
1066 	sig->notify_count = zap_other_threads(tsk);
1067 	if (!thread_group_leader(tsk))
1068 		sig->notify_count--;
1069 
1070 	while (sig->notify_count) {
1071 		__set_current_state(TASK_KILLABLE);
1072 		spin_unlock_irq(lock);
1073 		schedule();
1074 		if (__fatal_signal_pending(tsk))
1075 			goto killed;
1076 		spin_lock_irq(lock);
1077 	}
1078 	spin_unlock_irq(lock);
1079 
1080 	/*
1081 	 * At this point all other threads have exited, all we have to
1082 	 * do is to wait for the thread group leader to become inactive,
1083 	 * and to assume its PID:
1084 	 */
1085 	if (!thread_group_leader(tsk)) {
1086 		struct task_struct *leader = tsk->group_leader;
1087 
1088 		for (;;) {
1089 			cgroup_threadgroup_change_begin(tsk);
1090 			write_lock_irq(&tasklist_lock);
1091 			/*
1092 			 * Do this under tasklist_lock to ensure that
1093 			 * exit_notify() can't miss ->group_exec_task
1094 			 */
1095 			sig->notify_count = -1;
1096 			if (likely(leader->exit_state))
1097 				break;
1098 			__set_current_state(TASK_KILLABLE);
1099 			write_unlock_irq(&tasklist_lock);
1100 			cgroup_threadgroup_change_end(tsk);
1101 			schedule();
1102 			if (__fatal_signal_pending(tsk))
1103 				goto killed;
1104 		}
1105 
1106 		/*
1107 		 * The only record we have of the real-time age of a
1108 		 * process, regardless of execs it's done, is start_time.
1109 		 * All the past CPU time is accumulated in signal_struct
1110 		 * from sister threads now dead.  But in this non-leader
1111 		 * exec, nothing survives from the original leader thread,
1112 		 * whose birth marks the true age of this process now.
1113 		 * When we take on its identity by switching to its PID, we
1114 		 * also take its birthdate (always earlier than our own).
1115 		 */
1116 		tsk->start_time = leader->start_time;
1117 		tsk->start_boottime = leader->start_boottime;
1118 
1119 		BUG_ON(!same_thread_group(leader, tsk));
1120 		/*
1121 		 * An exec() starts a new thread group with the
1122 		 * TGID of the previous thread group. Rehash the
1123 		 * two threads with a switched PID, and release
1124 		 * the former thread group leader:
1125 		 */
1126 
1127 		/* Become a process group leader with the old leader's pid.
1128 		 * The old leader becomes a thread of the this thread group.
1129 		 */
1130 		exchange_tids(tsk, leader);
1131 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1132 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1133 		transfer_pid(leader, tsk, PIDTYPE_SID);
1134 
1135 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1136 		list_replace_init(&leader->sibling, &tsk->sibling);
1137 
1138 		tsk->group_leader = tsk;
1139 		leader->group_leader = tsk;
1140 
1141 		tsk->exit_signal = SIGCHLD;
1142 		leader->exit_signal = -1;
1143 
1144 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145 		leader->exit_state = EXIT_DEAD;
1146 
1147 		/*
1148 		 * We are going to release_task()->ptrace_unlink() silently,
1149 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150 		 * the tracer won't block again waiting for this thread.
1151 		 */
1152 		if (unlikely(leader->ptrace))
1153 			__wake_up_parent(leader, leader->parent);
1154 		write_unlock_irq(&tasklist_lock);
1155 		cgroup_threadgroup_change_end(tsk);
1156 
1157 		release_task(leader);
1158 	}
1159 
1160 	sig->group_exec_task = NULL;
1161 	sig->notify_count = 0;
1162 
1163 no_thread_group:
1164 	/* we have changed execution domain */
1165 	tsk->exit_signal = SIGCHLD;
1166 
1167 	BUG_ON(!thread_group_leader(tsk));
1168 	return 0;
1169 
1170 killed:
1171 	/* protects against exit_notify() and __exit_signal() */
1172 	read_lock(&tasklist_lock);
1173 	sig->group_exec_task = NULL;
1174 	sig->notify_count = 0;
1175 	read_unlock(&tasklist_lock);
1176 	return -EAGAIN;
1177 }
1178 
1179 
1180 /*
1181  * This function makes sure the current process has its own signal table,
1182  * so that flush_signal_handlers can later reset the handlers without
1183  * disturbing other processes.  (Other processes might share the signal
1184  * table via the CLONE_SIGHAND option to clone().)
1185  */
unshare_sighand(struct task_struct * me)1186 static int unshare_sighand(struct task_struct *me)
1187 {
1188 	struct sighand_struct *oldsighand = me->sighand;
1189 
1190 	if (refcount_read(&oldsighand->count) != 1) {
1191 		struct sighand_struct *newsighand;
1192 		/*
1193 		 * This ->sighand is shared with the CLONE_SIGHAND
1194 		 * but not CLONE_THREAD task, switch to the new one.
1195 		 */
1196 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197 		if (!newsighand)
1198 			return -ENOMEM;
1199 
1200 		refcount_set(&newsighand->count, 1);
1201 
1202 		write_lock_irq(&tasklist_lock);
1203 		spin_lock(&oldsighand->siglock);
1204 		memcpy(newsighand->action, oldsighand->action,
1205 		       sizeof(newsighand->action));
1206 		rcu_assign_pointer(me->sighand, newsighand);
1207 		spin_unlock(&oldsighand->siglock);
1208 		write_unlock_irq(&tasklist_lock);
1209 
1210 		__cleanup_sighand(oldsighand);
1211 	}
1212 	return 0;
1213 }
1214 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1216 {
1217 	task_lock(tsk);
1218 	/* Always NUL terminated and zero-padded */
1219 	strscpy_pad(buf, tsk->comm, buf_size);
1220 	task_unlock(tsk);
1221 	return buf;
1222 }
1223 EXPORT_SYMBOL_GPL(__get_task_comm);
1224 
1225 /*
1226  * These functions flushes out all traces of the currently running executable
1227  * so that a new one can be started
1228  */
1229 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231 {
1232 	task_lock(tsk);
1233 	trace_task_rename(tsk, buf);
1234 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1235 	task_unlock(tsk);
1236 	perf_event_comm(tsk, exec);
1237 }
1238 
1239 /*
1240  * Calling this is the point of no return. None of the failures will be
1241  * seen by userspace since either the process is already taking a fatal
1242  * signal (via de_thread() or coredump), or will have SEGV raised
1243  * (after exec_mmap()) by search_binary_handler (see below).
1244  */
begin_new_exec(struct linux_binprm * bprm)1245 int begin_new_exec(struct linux_binprm * bprm)
1246 {
1247 	struct task_struct *me = current;
1248 	int retval;
1249 
1250 	/* Once we are committed compute the creds */
1251 	retval = bprm_creds_from_file(bprm);
1252 	if (retval)
1253 		return retval;
1254 
1255 	/*
1256 	 * Ensure all future errors are fatal.
1257 	 */
1258 	bprm->point_of_no_return = true;
1259 
1260 	/*
1261 	 * Make this the only thread in the thread group.
1262 	 */
1263 	retval = de_thread(me);
1264 	if (retval)
1265 		goto out;
1266 
1267 	/*
1268 	 * Cancel any io_uring activity across execve
1269 	 */
1270 	io_uring_task_cancel();
1271 
1272 	/* Ensure the files table is not shared. */
1273 	retval = unshare_files();
1274 	if (retval)
1275 		goto out;
1276 
1277 	/*
1278 	 * Must be called _before_ exec_mmap() as bprm->mm is
1279 	 * not visible until then. Doing it here also ensures
1280 	 * we don't race against replace_mm_exe_file().
1281 	 */
1282 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1283 	if (retval)
1284 		goto out;
1285 
1286 	/* If the binary is not readable then enforce mm->dumpable=0 */
1287 	would_dump(bprm, bprm->file);
1288 	if (bprm->have_execfd)
1289 		would_dump(bprm, bprm->executable);
1290 
1291 	/*
1292 	 * Release all of the old mmap stuff
1293 	 */
1294 	acct_arg_size(bprm, 0);
1295 	retval = exec_mmap(bprm->mm);
1296 	if (retval)
1297 		goto out;
1298 
1299 	bprm->mm = NULL;
1300 
1301 	retval = exec_task_namespaces();
1302 	if (retval)
1303 		goto out_unlock;
1304 
1305 #ifdef CONFIG_POSIX_TIMERS
1306 	spin_lock_irq(&me->sighand->siglock);
1307 	posix_cpu_timers_exit(me);
1308 	spin_unlock_irq(&me->sighand->siglock);
1309 	exit_itimers(me);
1310 	flush_itimer_signals();
1311 #endif
1312 
1313 	/*
1314 	 * Make the signal table private.
1315 	 */
1316 	retval = unshare_sighand(me);
1317 	if (retval)
1318 		goto out_unlock;
1319 
1320 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1321 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1322 	flush_thread();
1323 	me->personality &= ~bprm->per_clear;
1324 
1325 	clear_syscall_work_syscall_user_dispatch(me);
1326 
1327 	/*
1328 	 * We have to apply CLOEXEC before we change whether the process is
1329 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1330 	 * trying to access the should-be-closed file descriptors of a process
1331 	 * undergoing exec(2).
1332 	 */
1333 	do_close_on_exec(me->files);
1334 
1335 	if (bprm->secureexec) {
1336 		/* Make sure parent cannot signal privileged process. */
1337 		me->pdeath_signal = 0;
1338 
1339 		/*
1340 		 * For secureexec, reset the stack limit to sane default to
1341 		 * avoid bad behavior from the prior rlimits. This has to
1342 		 * happen before arch_pick_mmap_layout(), which examines
1343 		 * RLIMIT_STACK, but after the point of no return to avoid
1344 		 * needing to clean up the change on failure.
1345 		 */
1346 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1347 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1348 	}
1349 
1350 	me->sas_ss_sp = me->sas_ss_size = 0;
1351 
1352 	/*
1353 	 * Figure out dumpability. Note that this checking only of current
1354 	 * is wrong, but userspace depends on it. This should be testing
1355 	 * bprm->secureexec instead.
1356 	 */
1357 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1358 	    !(uid_eq(current_euid(), current_uid()) &&
1359 	      gid_eq(current_egid(), current_gid())))
1360 		set_dumpable(current->mm, suid_dumpable);
1361 	else
1362 		set_dumpable(current->mm, SUID_DUMP_USER);
1363 
1364 	perf_event_exec();
1365 
1366 	/*
1367 	 * If the original filename was empty, alloc_bprm() made up a path
1368 	 * that will probably not be useful to admins running ps or similar.
1369 	 * Let's fix it up to be something reasonable.
1370 	 */
1371 	if (bprm->comm_from_dentry) {
1372 		/*
1373 		 * Hold RCU lock to keep the name from being freed behind our back.
1374 		 * Use acquire semantics to make sure the terminating NUL from
1375 		 * __d_alloc() is seen.
1376 		 *
1377 		 * Note, we're deliberately sloppy here. We don't need to care about
1378 		 * detecting a concurrent rename and just want a terminated name.
1379 		 */
1380 		rcu_read_lock();
1381 		__set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1382 				true);
1383 		rcu_read_unlock();
1384 	} else {
1385 		__set_task_comm(me, kbasename(bprm->filename), true);
1386 	}
1387 
1388 	/* An exec changes our domain. We are no longer part of the thread
1389 	   group */
1390 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1391 	flush_signal_handlers(me, 0);
1392 
1393 	retval = set_cred_ucounts(bprm->cred);
1394 	if (retval < 0)
1395 		goto out_unlock;
1396 
1397 	/*
1398 	 * install the new credentials for this executable
1399 	 */
1400 	security_bprm_committing_creds(bprm);
1401 
1402 	commit_creds(bprm->cred);
1403 	bprm->cred = NULL;
1404 
1405 	/*
1406 	 * Disable monitoring for regular users
1407 	 * when executing setuid binaries. Must
1408 	 * wait until new credentials are committed
1409 	 * by commit_creds() above
1410 	 */
1411 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1412 		perf_event_exit_task(me);
1413 	/*
1414 	 * cred_guard_mutex must be held at least to this point to prevent
1415 	 * ptrace_attach() from altering our determination of the task's
1416 	 * credentials; any time after this it may be unlocked.
1417 	 */
1418 	security_bprm_committed_creds(bprm);
1419 
1420 	/* Pass the opened binary to the interpreter. */
1421 	if (bprm->have_execfd) {
1422 		retval = get_unused_fd_flags(0);
1423 		if (retval < 0)
1424 			goto out_unlock;
1425 		fd_install(retval, bprm->executable);
1426 		bprm->executable = NULL;
1427 		bprm->execfd = retval;
1428 	}
1429 	return 0;
1430 
1431 out_unlock:
1432 	up_write(&me->signal->exec_update_lock);
1433 	if (!bprm->cred)
1434 		mutex_unlock(&me->signal->cred_guard_mutex);
1435 
1436 out:
1437 	return retval;
1438 }
1439 EXPORT_SYMBOL(begin_new_exec);
1440 
would_dump(struct linux_binprm * bprm,struct file * file)1441 void would_dump(struct linux_binprm *bprm, struct file *file)
1442 {
1443 	struct inode *inode = file_inode(file);
1444 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1445 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1446 		struct user_namespace *old, *user_ns;
1447 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1448 
1449 		/* Ensure mm->user_ns contains the executable */
1450 		user_ns = old = bprm->mm->user_ns;
1451 		while ((user_ns != &init_user_ns) &&
1452 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1453 			user_ns = user_ns->parent;
1454 
1455 		if (old != user_ns) {
1456 			bprm->mm->user_ns = get_user_ns(user_ns);
1457 			put_user_ns(old);
1458 		}
1459 	}
1460 }
1461 EXPORT_SYMBOL(would_dump);
1462 
setup_new_exec(struct linux_binprm * bprm)1463 void setup_new_exec(struct linux_binprm * bprm)
1464 {
1465 	/* Setup things that can depend upon the personality */
1466 	struct task_struct *me = current;
1467 
1468 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1469 
1470 	arch_setup_new_exec();
1471 
1472 	/* Set the new mm task size. We have to do that late because it may
1473 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1474 	 * some architectures like powerpc
1475 	 */
1476 	me->mm->task_size = TASK_SIZE;
1477 	up_write(&me->signal->exec_update_lock);
1478 	mutex_unlock(&me->signal->cred_guard_mutex);
1479 }
1480 EXPORT_SYMBOL(setup_new_exec);
1481 
1482 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1483 void finalize_exec(struct linux_binprm *bprm)
1484 {
1485 	/* Store any stack rlimit changes before starting thread. */
1486 	task_lock(current->group_leader);
1487 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1488 	task_unlock(current->group_leader);
1489 }
1490 EXPORT_SYMBOL(finalize_exec);
1491 
1492 /*
1493  * Prepare credentials and lock ->cred_guard_mutex.
1494  * setup_new_exec() commits the new creds and drops the lock.
1495  * Or, if exec fails before, free_bprm() should release ->cred
1496  * and unlock.
1497  */
prepare_bprm_creds(struct linux_binprm * bprm)1498 static int prepare_bprm_creds(struct linux_binprm *bprm)
1499 {
1500 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1501 		return -ERESTARTNOINTR;
1502 
1503 	bprm->cred = prepare_exec_creds();
1504 	if (likely(bprm->cred))
1505 		return 0;
1506 
1507 	mutex_unlock(&current->signal->cred_guard_mutex);
1508 	return -ENOMEM;
1509 }
1510 
free_bprm(struct linux_binprm * bprm)1511 static void free_bprm(struct linux_binprm *bprm)
1512 {
1513 	if (bprm->mm) {
1514 		acct_arg_size(bprm, 0);
1515 		mmput(bprm->mm);
1516 	}
1517 	free_arg_pages(bprm);
1518 	if (bprm->cred) {
1519 		mutex_unlock(&current->signal->cred_guard_mutex);
1520 		abort_creds(bprm->cred);
1521 	}
1522 	if (bprm->file) {
1523 		allow_write_access(bprm->file);
1524 		fput(bprm->file);
1525 	}
1526 	if (bprm->executable)
1527 		fput(bprm->executable);
1528 	/* If a binfmt changed the interp, free it. */
1529 	if (bprm->interp != bprm->filename)
1530 		kfree(bprm->interp);
1531 	kfree(bprm->fdpath);
1532 	kfree(bprm);
1533 }
1534 
alloc_bprm(int fd,struct filename * filename)1535 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1536 {
1537 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1538 	int retval = -ENOMEM;
1539 	if (!bprm)
1540 		goto out;
1541 
1542 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1543 		bprm->filename = filename->name;
1544 	} else {
1545 		if (filename->name[0] == '\0') {
1546 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1547 			bprm->comm_from_dentry = 1;
1548 		} else {
1549 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1550 						  fd, filename->name);
1551 		}
1552 		if (!bprm->fdpath)
1553 			goto out_free;
1554 
1555 		bprm->filename = bprm->fdpath;
1556 	}
1557 	bprm->interp = bprm->filename;
1558 
1559 	retval = bprm_mm_init(bprm);
1560 	if (retval)
1561 		goto out_free;
1562 	return bprm;
1563 
1564 out_free:
1565 	free_bprm(bprm);
1566 out:
1567 	return ERR_PTR(retval);
1568 }
1569 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1570 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1571 {
1572 	/* If a binfmt changed the interp, free it first. */
1573 	if (bprm->interp != bprm->filename)
1574 		kfree(bprm->interp);
1575 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1576 	if (!bprm->interp)
1577 		return -ENOMEM;
1578 	return 0;
1579 }
1580 EXPORT_SYMBOL(bprm_change_interp);
1581 
1582 /*
1583  * determine how safe it is to execute the proposed program
1584  * - the caller must hold ->cred_guard_mutex to protect against
1585  *   PTRACE_ATTACH or seccomp thread-sync
1586  */
check_unsafe_exec(struct linux_binprm * bprm)1587 static void check_unsafe_exec(struct linux_binprm *bprm)
1588 {
1589 	struct task_struct *p = current, *t;
1590 	unsigned n_fs;
1591 
1592 	if (p->ptrace)
1593 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1594 
1595 	/*
1596 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1597 	 * mess up.
1598 	 */
1599 	if (task_no_new_privs(current))
1600 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1601 
1602 	/*
1603 	 * If another task is sharing our fs, we cannot safely
1604 	 * suid exec because the differently privileged task
1605 	 * will be able to manipulate the current directory, etc.
1606 	 * It would be nice to force an unshare instead...
1607 	 */
1608 	t = p;
1609 	n_fs = 1;
1610 	spin_lock(&p->fs->lock);
1611 	rcu_read_lock();
1612 	while_each_thread(p, t) {
1613 		if (t->fs == p->fs)
1614 			n_fs++;
1615 	}
1616 	rcu_read_unlock();
1617 
1618 	if (p->fs->users > n_fs)
1619 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1620 	else
1621 		p->fs->in_exec = 1;
1622 	spin_unlock(&p->fs->lock);
1623 }
1624 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1625 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1626 {
1627 	/* Handle suid and sgid on files */
1628 	struct mnt_idmap *idmap;
1629 	struct inode *inode = file_inode(file);
1630 	unsigned int mode;
1631 	vfsuid_t vfsuid;
1632 	vfsgid_t vfsgid;
1633 	int err;
1634 
1635 	if (!mnt_may_suid(file->f_path.mnt))
1636 		return;
1637 
1638 	if (task_no_new_privs(current))
1639 		return;
1640 
1641 	mode = READ_ONCE(inode->i_mode);
1642 	if (!(mode & (S_ISUID|S_ISGID)))
1643 		return;
1644 
1645 	idmap = file_mnt_idmap(file);
1646 
1647 	/* Be careful if suid/sgid is set */
1648 	inode_lock(inode);
1649 
1650 	/* Atomically reload and check mode/uid/gid now that lock held. */
1651 	mode = inode->i_mode;
1652 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1653 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1654 	err = inode_permission(idmap, inode, MAY_EXEC);
1655 	inode_unlock(inode);
1656 
1657 	/* Did the exec bit vanish out from under us? Give up. */
1658 	if (err)
1659 		return;
1660 
1661 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1662 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1663 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1664 		return;
1665 
1666 	if (mode & S_ISUID) {
1667 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1668 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1669 	}
1670 
1671 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1672 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1673 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1674 	}
1675 }
1676 
1677 /*
1678  * Compute brpm->cred based upon the final binary.
1679  */
bprm_creds_from_file(struct linux_binprm * bprm)1680 static int bprm_creds_from_file(struct linux_binprm *bprm)
1681 {
1682 	/* Compute creds based on which file? */
1683 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1684 
1685 	bprm_fill_uid(bprm, file);
1686 	return security_bprm_creds_from_file(bprm, file);
1687 }
1688 
1689 /*
1690  * Fill the binprm structure from the inode.
1691  * Read the first BINPRM_BUF_SIZE bytes
1692  *
1693  * This may be called multiple times for binary chains (scripts for example).
1694  */
prepare_binprm(struct linux_binprm * bprm)1695 static int prepare_binprm(struct linux_binprm *bprm)
1696 {
1697 	loff_t pos = 0;
1698 
1699 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1700 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1701 }
1702 
1703 /*
1704  * Arguments are '\0' separated strings found at the location bprm->p
1705  * points to; chop off the first by relocating brpm->p to right after
1706  * the first '\0' encountered.
1707  */
remove_arg_zero(struct linux_binprm * bprm)1708 int remove_arg_zero(struct linux_binprm *bprm)
1709 {
1710 	int ret = 0;
1711 	unsigned long offset;
1712 	char *kaddr;
1713 	struct page *page;
1714 
1715 	if (!bprm->argc)
1716 		return 0;
1717 
1718 	do {
1719 		offset = bprm->p & ~PAGE_MASK;
1720 		page = get_arg_page(bprm, bprm->p, 0);
1721 		if (!page) {
1722 			ret = -EFAULT;
1723 			goto out;
1724 		}
1725 		kaddr = kmap_local_page(page);
1726 
1727 		for (; offset < PAGE_SIZE && kaddr[offset];
1728 				offset++, bprm->p++)
1729 			;
1730 
1731 		kunmap_local(kaddr);
1732 		put_arg_page(page);
1733 	} while (offset == PAGE_SIZE);
1734 
1735 	bprm->p++;
1736 	bprm->argc--;
1737 	ret = 0;
1738 
1739 out:
1740 	return ret;
1741 }
1742 EXPORT_SYMBOL(remove_arg_zero);
1743 
1744 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1745 /*
1746  * cycle the list of binary formats handler, until one recognizes the image
1747  */
search_binary_handler(struct linux_binprm * bprm)1748 static int search_binary_handler(struct linux_binprm *bprm)
1749 {
1750 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1751 	struct linux_binfmt *fmt;
1752 	int retval;
1753 
1754 	retval = prepare_binprm(bprm);
1755 	if (retval < 0)
1756 		return retval;
1757 
1758 	retval = security_bprm_check(bprm);
1759 	if (retval)
1760 		return retval;
1761 
1762 	retval = -ENOENT;
1763  retry:
1764 	read_lock(&binfmt_lock);
1765 	list_for_each_entry(fmt, &formats, lh) {
1766 		if (!try_module_get(fmt->module))
1767 			continue;
1768 		read_unlock(&binfmt_lock);
1769 
1770 		retval = fmt->load_binary(bprm);
1771 
1772 		read_lock(&binfmt_lock);
1773 		put_binfmt(fmt);
1774 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1775 			read_unlock(&binfmt_lock);
1776 			return retval;
1777 		}
1778 	}
1779 	read_unlock(&binfmt_lock);
1780 
1781 	if (need_retry) {
1782 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1783 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1784 			return retval;
1785 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1786 			return retval;
1787 		need_retry = false;
1788 		goto retry;
1789 	}
1790 
1791 	return retval;
1792 }
1793 
1794 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1795 static int exec_binprm(struct linux_binprm *bprm)
1796 {
1797 	pid_t old_pid, old_vpid;
1798 	int ret, depth;
1799 
1800 	/* Need to fetch pid before load_binary changes it */
1801 	old_pid = current->pid;
1802 	rcu_read_lock();
1803 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1804 	rcu_read_unlock();
1805 
1806 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1807 	for (depth = 0;; depth++) {
1808 		struct file *exec;
1809 		if (depth > 5)
1810 			return -ELOOP;
1811 
1812 		ret = search_binary_handler(bprm);
1813 		if (ret < 0)
1814 			return ret;
1815 		if (!bprm->interpreter)
1816 			break;
1817 
1818 		exec = bprm->file;
1819 		bprm->file = bprm->interpreter;
1820 		bprm->interpreter = NULL;
1821 
1822 		allow_write_access(exec);
1823 		if (unlikely(bprm->have_execfd)) {
1824 			if (bprm->executable) {
1825 				fput(exec);
1826 				return -ENOEXEC;
1827 			}
1828 			bprm->executable = exec;
1829 		} else
1830 			fput(exec);
1831 	}
1832 
1833 	audit_bprm(bprm);
1834 	trace_sched_process_exec(current, old_pid, bprm);
1835 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1836 	proc_exec_connector(current);
1837 	return 0;
1838 }
1839 
1840 /*
1841  * sys_execve() executes a new program.
1842  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1843 static int bprm_execve(struct linux_binprm *bprm,
1844 		       int fd, struct filename *filename, int flags)
1845 {
1846 	struct file *file;
1847 	int retval;
1848 
1849 	retval = prepare_bprm_creds(bprm);
1850 	if (retval)
1851 		return retval;
1852 
1853 	/*
1854 	 * Check for unsafe execution states before exec_binprm(), which
1855 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1856 	 * where setuid-ness is evaluated.
1857 	 */
1858 	check_unsafe_exec(bprm);
1859 	current->in_execve = 1;
1860 	sched_mm_cid_before_execve(current);
1861 
1862 	file = do_open_execat(fd, filename, flags);
1863 	retval = PTR_ERR(file);
1864 	if (IS_ERR(file))
1865 		goto out_unmark;
1866 
1867 	sched_exec();
1868 
1869 	bprm->file = file;
1870 	/*
1871 	 * Record that a name derived from an O_CLOEXEC fd will be
1872 	 * inaccessible after exec.  This allows the code in exec to
1873 	 * choose to fail when the executable is not mmaped into the
1874 	 * interpreter and an open file descriptor is not passed to
1875 	 * the interpreter.  This makes for a better user experience
1876 	 * than having the interpreter start and then immediately fail
1877 	 * when it finds the executable is inaccessible.
1878 	 */
1879 	if (bprm->fdpath && get_close_on_exec(fd))
1880 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1881 
1882 	/* Set the unchanging part of bprm->cred */
1883 	retval = security_bprm_creds_for_exec(bprm);
1884 	if (retval)
1885 		goto out;
1886 
1887 	retval = exec_binprm(bprm);
1888 	if (retval < 0)
1889 		goto out;
1890 
1891 	sched_mm_cid_after_execve(current);
1892 	/* execve succeeded */
1893 	current->fs->in_exec = 0;
1894 	current->in_execve = 0;
1895 	rseq_execve(current);
1896 	user_events_execve(current);
1897 	acct_update_integrals(current);
1898 	task_numa_free(current, false);
1899 	return retval;
1900 
1901 out:
1902 	/*
1903 	 * If past the point of no return ensure the code never
1904 	 * returns to the userspace process.  Use an existing fatal
1905 	 * signal if present otherwise terminate the process with
1906 	 * SIGSEGV.
1907 	 */
1908 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1909 		force_fatal_sig(SIGSEGV);
1910 
1911 out_unmark:
1912 	sched_mm_cid_after_execve(current);
1913 	current->fs->in_exec = 0;
1914 	current->in_execve = 0;
1915 
1916 	return retval;
1917 }
1918 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1919 static int do_execveat_common(int fd, struct filename *filename,
1920 			      struct user_arg_ptr argv,
1921 			      struct user_arg_ptr envp,
1922 			      int flags)
1923 {
1924 	struct linux_binprm *bprm;
1925 	int retval;
1926 
1927 	if (IS_ERR(filename))
1928 		return PTR_ERR(filename);
1929 
1930 	/*
1931 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1932 	 * set*uid() to execve() because too many poorly written programs
1933 	 * don't check setuid() return code.  Here we additionally recheck
1934 	 * whether NPROC limit is still exceeded.
1935 	 */
1936 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1937 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1938 		retval = -EAGAIN;
1939 		goto out_ret;
1940 	}
1941 
1942 	/* We're below the limit (still or again), so we don't want to make
1943 	 * further execve() calls fail. */
1944 	current->flags &= ~PF_NPROC_EXCEEDED;
1945 
1946 	bprm = alloc_bprm(fd, filename);
1947 	if (IS_ERR(bprm)) {
1948 		retval = PTR_ERR(bprm);
1949 		goto out_ret;
1950 	}
1951 
1952 	retval = count(argv, MAX_ARG_STRINGS);
1953 	if (retval == 0)
1954 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1955 			     current->comm, bprm->filename);
1956 	if (retval < 0)
1957 		goto out_free;
1958 	bprm->argc = retval;
1959 
1960 	retval = count(envp, MAX_ARG_STRINGS);
1961 	if (retval < 0)
1962 		goto out_free;
1963 	bprm->envc = retval;
1964 
1965 	retval = bprm_stack_limits(bprm);
1966 	if (retval < 0)
1967 		goto out_free;
1968 
1969 	retval = copy_string_kernel(bprm->filename, bprm);
1970 	if (retval < 0)
1971 		goto out_free;
1972 	bprm->exec = bprm->p;
1973 
1974 	retval = copy_strings(bprm->envc, envp, bprm);
1975 	if (retval < 0)
1976 		goto out_free;
1977 
1978 	retval = copy_strings(bprm->argc, argv, bprm);
1979 	if (retval < 0)
1980 		goto out_free;
1981 
1982 	/*
1983 	 * When argv is empty, add an empty string ("") as argv[0] to
1984 	 * ensure confused userspace programs that start processing
1985 	 * from argv[1] won't end up walking envp. See also
1986 	 * bprm_stack_limits().
1987 	 */
1988 	if (bprm->argc == 0) {
1989 		retval = copy_string_kernel("", bprm);
1990 		if (retval < 0)
1991 			goto out_free;
1992 		bprm->argc = 1;
1993 	}
1994 
1995 	retval = bprm_execve(bprm, fd, filename, flags);
1996 out_free:
1997 	free_bprm(bprm);
1998 
1999 out_ret:
2000 	putname(filename);
2001 	return retval;
2002 }
2003 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)2004 int kernel_execve(const char *kernel_filename,
2005 		  const char *const *argv, const char *const *envp)
2006 {
2007 	struct filename *filename;
2008 	struct linux_binprm *bprm;
2009 	int fd = AT_FDCWD;
2010 	int retval;
2011 
2012 	/* It is non-sense for kernel threads to call execve */
2013 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2014 		return -EINVAL;
2015 
2016 	filename = getname_kernel(kernel_filename);
2017 	if (IS_ERR(filename))
2018 		return PTR_ERR(filename);
2019 
2020 	bprm = alloc_bprm(fd, filename);
2021 	if (IS_ERR(bprm)) {
2022 		retval = PTR_ERR(bprm);
2023 		goto out_ret;
2024 	}
2025 
2026 	retval = count_strings_kernel(argv);
2027 	if (WARN_ON_ONCE(retval == 0))
2028 		retval = -EINVAL;
2029 	if (retval < 0)
2030 		goto out_free;
2031 	bprm->argc = retval;
2032 
2033 	retval = count_strings_kernel(envp);
2034 	if (retval < 0)
2035 		goto out_free;
2036 	bprm->envc = retval;
2037 
2038 	retval = bprm_stack_limits(bprm);
2039 	if (retval < 0)
2040 		goto out_free;
2041 
2042 	retval = copy_string_kernel(bprm->filename, bprm);
2043 	if (retval < 0)
2044 		goto out_free;
2045 	bprm->exec = bprm->p;
2046 
2047 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2048 	if (retval < 0)
2049 		goto out_free;
2050 
2051 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2052 	if (retval < 0)
2053 		goto out_free;
2054 
2055 	retval = bprm_execve(bprm, fd, filename, 0);
2056 out_free:
2057 	free_bprm(bprm);
2058 out_ret:
2059 	putname(filename);
2060 	return retval;
2061 }
2062 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2063 static int do_execve(struct filename *filename,
2064 	const char __user *const __user *__argv,
2065 	const char __user *const __user *__envp)
2066 {
2067 	struct user_arg_ptr argv = { .ptr.native = __argv };
2068 	struct user_arg_ptr envp = { .ptr.native = __envp };
2069 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2070 }
2071 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2072 static int do_execveat(int fd, struct filename *filename,
2073 		const char __user *const __user *__argv,
2074 		const char __user *const __user *__envp,
2075 		int flags)
2076 {
2077 	struct user_arg_ptr argv = { .ptr.native = __argv };
2078 	struct user_arg_ptr envp = { .ptr.native = __envp };
2079 
2080 	return do_execveat_common(fd, filename, argv, envp, flags);
2081 }
2082 
2083 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2084 static int compat_do_execve(struct filename *filename,
2085 	const compat_uptr_t __user *__argv,
2086 	const compat_uptr_t __user *__envp)
2087 {
2088 	struct user_arg_ptr argv = {
2089 		.is_compat = true,
2090 		.ptr.compat = __argv,
2091 	};
2092 	struct user_arg_ptr envp = {
2093 		.is_compat = true,
2094 		.ptr.compat = __envp,
2095 	};
2096 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2097 }
2098 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2099 static int compat_do_execveat(int fd, struct filename *filename,
2100 			      const compat_uptr_t __user *__argv,
2101 			      const compat_uptr_t __user *__envp,
2102 			      int flags)
2103 {
2104 	struct user_arg_ptr argv = {
2105 		.is_compat = true,
2106 		.ptr.compat = __argv,
2107 	};
2108 	struct user_arg_ptr envp = {
2109 		.is_compat = true,
2110 		.ptr.compat = __envp,
2111 	};
2112 	return do_execveat_common(fd, filename, argv, envp, flags);
2113 }
2114 #endif
2115 
set_binfmt(struct linux_binfmt * new)2116 void set_binfmt(struct linux_binfmt *new)
2117 {
2118 	struct mm_struct *mm = current->mm;
2119 
2120 	if (mm->binfmt)
2121 		module_put(mm->binfmt->module);
2122 
2123 	mm->binfmt = new;
2124 	if (new)
2125 		__module_get(new->module);
2126 }
2127 EXPORT_SYMBOL(set_binfmt);
2128 
2129 /*
2130  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2131  */
set_dumpable(struct mm_struct * mm,int value)2132 void set_dumpable(struct mm_struct *mm, int value)
2133 {
2134 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2135 		return;
2136 
2137 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2138 }
2139 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2140 SYSCALL_DEFINE3(execve,
2141 		const char __user *, filename,
2142 		const char __user *const __user *, argv,
2143 		const char __user *const __user *, envp)
2144 {
2145 	return do_execve(getname(filename), argv, envp);
2146 }
2147 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2148 SYSCALL_DEFINE5(execveat,
2149 		int, fd, const char __user *, filename,
2150 		const char __user *const __user *, argv,
2151 		const char __user *const __user *, envp,
2152 		int, flags)
2153 {
2154 	return do_execveat(fd,
2155 			   getname_uflags(filename, flags),
2156 			   argv, envp, flags);
2157 }
2158 
2159 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2160 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2161 	const compat_uptr_t __user *, argv,
2162 	const compat_uptr_t __user *, envp)
2163 {
2164 	return compat_do_execve(getname(filename), argv, envp);
2165 }
2166 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2167 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2168 		       const char __user *, filename,
2169 		       const compat_uptr_t __user *, argv,
2170 		       const compat_uptr_t __user *, envp,
2171 		       int,  flags)
2172 {
2173 	return compat_do_execveat(fd,
2174 				  getname_uflags(filename, flags),
2175 				  argv, envp, flags);
2176 }
2177 #endif
2178 
2179 #ifdef CONFIG_SYSCTL
2180 
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2181 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2182 		void *buffer, size_t *lenp, loff_t *ppos)
2183 {
2184 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2185 
2186 	if (!error)
2187 		validate_coredump_safety();
2188 	return error;
2189 }
2190 
2191 static struct ctl_table fs_exec_sysctls[] = {
2192 	{
2193 		.procname	= "suid_dumpable",
2194 		.data		= &suid_dumpable,
2195 		.maxlen		= sizeof(int),
2196 		.mode		= 0644,
2197 		.proc_handler	= proc_dointvec_minmax_coredump,
2198 		.extra1		= SYSCTL_ZERO,
2199 		.extra2		= SYSCTL_TWO,
2200 	},
2201 	{ }
2202 };
2203 
init_fs_exec_sysctls(void)2204 static int __init init_fs_exec_sysctls(void)
2205 {
2206 	register_sysctl_init("fs", fs_exec_sysctls);
2207 	return 0;
2208 }
2209 
2210 fs_initcall(init_fs_exec_sysctls);
2211 #endif /* CONFIG_SYSCTL */
2212