1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Mediatek MT7530 DSA Switch driver
4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5 */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24
25 #include "mt7530.h"
26
pcs_to_mt753x_pcs(struct phylink_pcs * pcs)27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 MIB_DESC(1, 0x00, "TxDrop"),
35 MIB_DESC(1, 0x04, "TxCrcErr"),
36 MIB_DESC(1, 0x08, "TxUnicast"),
37 MIB_DESC(1, 0x0c, "TxMulticast"),
38 MIB_DESC(1, 0x10, "TxBroadcast"),
39 MIB_DESC(1, 0x14, "TxCollision"),
40 MIB_DESC(1, 0x18, "TxSingleCollision"),
41 MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 MIB_DESC(1, 0x20, "TxDeferred"),
43 MIB_DESC(1, 0x24, "TxLateCollision"),
44 MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 MIB_DESC(1, 0x2c, "TxPause"),
46 MIB_DESC(1, 0x30, "TxPktSz64"),
47 MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 MIB_DESC(2, 0x48, "TxBytes"),
53 MIB_DESC(1, 0x60, "RxDrop"),
54 MIB_DESC(1, 0x64, "RxFiltering"),
55 MIB_DESC(1, 0x68, "RxUnicast"),
56 MIB_DESC(1, 0x6c, "RxMulticast"),
57 MIB_DESC(1, 0x70, "RxBroadcast"),
58 MIB_DESC(1, 0x74, "RxAlignErr"),
59 MIB_DESC(1, 0x78, "RxCrcErr"),
60 MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 MIB_DESC(1, 0x80, "RxFragErr"),
62 MIB_DESC(1, 0x84, "RxOverSzErr"),
63 MIB_DESC(1, 0x88, "RxJabberErr"),
64 MIB_DESC(1, 0x8c, "RxPause"),
65 MIB_DESC(1, 0x90, "RxPktSz64"),
66 MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 MIB_DESC(2, 0xa8, "RxBytes"),
72 MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76
77 /* Since phy_device has not yet been created and
78 * phy_{read,write}_mmd_indirect is not available, we provide our own
79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80 * to complete this function.
81 */
82 static int
core_read_mmd_indirect(struct mt7530_priv * priv,int prtad,int devad)83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 struct mii_bus *bus = priv->bus;
86 int value, ret;
87
88 /* Write the desired MMD Devad */
89 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 if (ret < 0)
91 goto err;
92
93 /* Write the desired MMD register address */
94 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 if (ret < 0)
96 goto err;
97
98 /* Select the Function : DATA with no post increment */
99 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 if (ret < 0)
101 goto err;
102
103 /* Read the content of the MMD's selected register */
104 value = bus->read(bus, 0, MII_MMD_DATA);
105
106 return value;
107 err:
108 dev_err(&bus->dev, "failed to read mmd register\n");
109
110 return ret;
111 }
112
113 static int
core_write_mmd_indirect(struct mt7530_priv * priv,int prtad,int devad,u32 data)114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 int devad, u32 data)
116 {
117 struct mii_bus *bus = priv->bus;
118 int ret;
119
120 /* Write the desired MMD Devad */
121 ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 if (ret < 0)
123 goto err;
124
125 /* Write the desired MMD register address */
126 ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 if (ret < 0)
128 goto err;
129
130 /* Select the Function : DATA with no post increment */
131 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 if (ret < 0)
133 goto err;
134
135 /* Write the data into MMD's selected register */
136 ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 if (ret < 0)
139 dev_err(&bus->dev,
140 "failed to write mmd register\n");
141 return ret;
142 }
143
144 static void
mt7530_mutex_lock(struct mt7530_priv * priv)145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 if (priv->bus)
148 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150
151 static void
mt7530_mutex_unlock(struct mt7530_priv * priv)152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 if (priv->bus)
155 mutex_unlock(&priv->bus->mdio_lock);
156 }
157
158 static void
core_write(struct mt7530_priv * priv,u32 reg,u32 val)159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 mt7530_mutex_lock(priv);
162
163 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164
165 mt7530_mutex_unlock(priv);
166 }
167
168 static void
core_rmw(struct mt7530_priv * priv,u32 reg,u32 mask,u32 set)169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 u32 val;
172
173 mt7530_mutex_lock(priv);
174
175 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 val &= ~mask;
177 val |= set;
178 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179
180 mt7530_mutex_unlock(priv);
181 }
182
183 static void
core_set(struct mt7530_priv * priv,u32 reg,u32 val)184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 core_rmw(priv, reg, 0, val);
187 }
188
189 static void
core_clear(struct mt7530_priv * priv,u32 reg,u32 val)190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 core_rmw(priv, reg, val, 0);
193 }
194
195 static int
mt7530_mii_write(struct mt7530_priv * priv,u32 reg,u32 val)196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 int ret;
199
200 ret = regmap_write(priv->regmap, reg, val);
201
202 if (ret < 0)
203 dev_err(priv->dev,
204 "failed to write mt7530 register\n");
205
206 return ret;
207 }
208
209 static u32
mt7530_mii_read(struct mt7530_priv * priv,u32 reg)210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 int ret;
213 u32 val;
214
215 ret = regmap_read(priv->regmap, reg, &val);
216 if (ret) {
217 WARN_ON_ONCE(1);
218 dev_err(priv->dev,
219 "failed to read mt7530 register\n");
220 return 0;
221 }
222
223 return val;
224 }
225
226 static void
mt7530_write(struct mt7530_priv * priv,u32 reg,u32 val)227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 mt7530_mutex_lock(priv);
230
231 mt7530_mii_write(priv, reg, val);
232
233 mt7530_mutex_unlock(priv);
234 }
235
236 static u32
_mt7530_unlocked_read(struct mt7530_dummy_poll * p)237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 return mt7530_mii_read(p->priv, p->reg);
240 }
241
242 static u32
_mt7530_read(struct mt7530_dummy_poll * p)243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 u32 val;
246
247 mt7530_mutex_lock(p->priv);
248
249 val = mt7530_mii_read(p->priv, p->reg);
250
251 mt7530_mutex_unlock(p->priv);
252
253 return val;
254 }
255
256 static u32
mt7530_read(struct mt7530_priv * priv,u32 reg)257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 struct mt7530_dummy_poll p;
260
261 INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 return _mt7530_read(&p);
263 }
264
265 static void
mt7530_rmw(struct mt7530_priv * priv,u32 reg,u32 mask,u32 set)266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 u32 mask, u32 set)
268 {
269 mt7530_mutex_lock(priv);
270
271 regmap_update_bits(priv->regmap, reg, mask, set);
272
273 mt7530_mutex_unlock(priv);
274 }
275
276 static void
mt7530_set(struct mt7530_priv * priv,u32 reg,u32 val)277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 mt7530_rmw(priv, reg, val, val);
280 }
281
282 static void
mt7530_clear(struct mt7530_priv * priv,u32 reg,u32 val)283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 mt7530_rmw(priv, reg, val, 0);
286 }
287
288 static int
mt7530_fdb_cmd(struct mt7530_priv * priv,enum mt7530_fdb_cmd cmd,u32 * rsp)289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 u32 val;
292 int ret;
293 struct mt7530_dummy_poll p;
294
295 /* Set the command operating upon the MAC address entries */
296 val = ATC_BUSY | ATC_MAT(0) | cmd;
297 mt7530_write(priv, MT7530_ATC, val);
298
299 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 ret = readx_poll_timeout(_mt7530_read, &p, val,
301 !(val & ATC_BUSY), 20, 20000);
302 if (ret < 0) {
303 dev_err(priv->dev, "reset timeout\n");
304 return ret;
305 }
306
307 /* Additional sanity for read command if the specified
308 * entry is invalid
309 */
310 val = mt7530_read(priv, MT7530_ATC);
311 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 return -EINVAL;
313
314 if (rsp)
315 *rsp = val;
316
317 return 0;
318 }
319
320 static void
mt7530_fdb_read(struct mt7530_priv * priv,struct mt7530_fdb * fdb)321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 u32 reg[3];
324 int i;
325
326 /* Read from ARL table into an array */
327 for (i = 0; i < 3; i++) {
328 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329
330 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 __func__, __LINE__, i, reg[i]);
332 }
333
334 fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345
346 static void
mt7530_fdb_write(struct mt7530_priv * priv,u16 vid,u8 port_mask,const u8 * mac,u8 aging,u8 type)347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 u8 port_mask, const u8 *mac,
349 u8 aging, u8 type)
350 {
351 u32 reg[3] = { 0 };
352 int i;
353
354 reg[1] |= vid & CVID_MASK;
355 reg[1] |= ATA2_IVL;
356 reg[1] |= ATA2_FID(FID_BRIDGED);
357 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 /* STATIC_ENT indicate that entry is static wouldn't
360 * be aged out and STATIC_EMP specified as erasing an
361 * entry
362 */
363 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 reg[1] |= mac[5] << MAC_BYTE_5;
365 reg[1] |= mac[4] << MAC_BYTE_4;
366 reg[0] |= mac[3] << MAC_BYTE_3;
367 reg[0] |= mac[2] << MAC_BYTE_2;
368 reg[0] |= mac[1] << MAC_BYTE_1;
369 reg[0] |= mac[0] << MAC_BYTE_0;
370
371 /* Write array into the ARL table */
372 for (i = 0; i < 3; i++)
373 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375
376 /* Set up switch core clock for MT7530 */
mt7530_pll_setup(struct mt7530_priv * priv)377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 /* Disable core clock */
380 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381
382 /* Disable PLL */
383 core_write(priv, CORE_GSWPLL_GRP1, 0);
384
385 /* Set core clock into 500Mhz */
386 core_write(priv, CORE_GSWPLL_GRP2,
387 RG_GSWPLL_POSDIV_500M(1) |
388 RG_GSWPLL_FBKDIV_500M(25));
389
390 /* Enable PLL */
391 core_write(priv, CORE_GSWPLL_GRP1,
392 RG_GSWPLL_EN_PRE |
393 RG_GSWPLL_POSDIV_200M(2) |
394 RG_GSWPLL_FBKDIV_200M(32));
395
396 udelay(20);
397
398 /* Enable core clock */
399 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403 * otherwise don't care.
404 */
405 static struct dsa_port *
mt753x_preferred_default_local_cpu_port(struct dsa_switch * ds)406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409
410 if (dsa_port_is_cpu(cpu_dp))
411 return cpu_dp;
412
413 return NULL;
414 }
415
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
mt7530_pad_clk_setup(struct dsa_switch * ds,phy_interface_t interface)418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 struct mt7530_priv *priv = ds->priv;
421 u32 ncpo1, ssc_delta, trgint, xtal;
422
423 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424
425 if (xtal == HWTRAP_XTAL_20MHZ) {
426 dev_err(priv->dev,
427 "%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 __func__);
429 return -EINVAL;
430 }
431
432 switch (interface) {
433 case PHY_INTERFACE_MODE_RGMII:
434 trgint = 0;
435 break;
436 case PHY_INTERFACE_MODE_TRGMII:
437 trgint = 1;
438 if (xtal == HWTRAP_XTAL_25MHZ)
439 ssc_delta = 0x57;
440 else
441 ssc_delta = 0x87;
442 if (priv->id == ID_MT7621) {
443 /* PLL frequency: 125MHz: 1.0GBit */
444 if (xtal == HWTRAP_XTAL_40MHZ)
445 ncpo1 = 0x0640;
446 if (xtal == HWTRAP_XTAL_25MHZ)
447 ncpo1 = 0x0a00;
448 } else { /* PLL frequency: 250MHz: 2.0Gbit */
449 if (xtal == HWTRAP_XTAL_40MHZ)
450 ncpo1 = 0x0c80;
451 if (xtal == HWTRAP_XTAL_25MHZ)
452 ncpo1 = 0x1400;
453 }
454 break;
455 default:
456 dev_err(priv->dev, "xMII interface %d not supported\n",
457 interface);
458 return -EINVAL;
459 }
460
461 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 P6_INTF_MODE(trgint));
463
464 if (trgint) {
465 /* Disable the MT7530 TRGMII clocks */
466 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467
468 /* Setup the MT7530 TRGMII Tx Clock */
469 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 core_write(priv, CORE_PLL_GROUP4,
474 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 RG_SYSPLL_BIAS_LPF_EN);
476 core_write(priv, CORE_PLL_GROUP2,
477 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 RG_SYSPLL_POSDIV(1));
479 core_write(priv, CORE_PLL_GROUP7,
480 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482
483 /* Enable the MT7530 TRGMII clocks */
484 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 }
486
487 return 0;
488 }
489
mt7531_dual_sgmii_supported(struct mt7530_priv * priv)490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 u32 val;
493
494 val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495
496 return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498
499 static int
mt7531_pad_setup(struct dsa_switch * ds,phy_interface_t interface)500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 return 0;
503 }
504
505 static void
mt7531_pll_setup(struct mt7530_priv * priv)506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 u32 top_sig;
509 u32 hwstrap;
510 u32 xtal;
511 u32 val;
512
513 if (mt7531_dual_sgmii_supported(priv))
514 return;
515
516 val = mt7530_read(priv, MT7531_CREV);
517 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 if ((val & CHIP_REV_M) > 0)
520 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 HWTRAP_XTAL_FSEL_25MHZ;
522 else
523 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524
525 /* Step 1 : Disable MT7531 COREPLL */
526 val = mt7530_read(priv, MT7531_PLLGP_EN);
527 val &= ~EN_COREPLL;
528 mt7530_write(priv, MT7531_PLLGP_EN, val);
529
530 /* Step 2: switch to XTAL output */
531 val = mt7530_read(priv, MT7531_PLLGP_EN);
532 val |= SW_CLKSW;
533 mt7530_write(priv, MT7531_PLLGP_EN, val);
534
535 val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 val &= ~RG_COREPLL_EN;
537 mt7530_write(priv, MT7531_PLLGP_CR0, val);
538
539 /* Step 3: disable PLLGP and enable program PLLGP */
540 val = mt7530_read(priv, MT7531_PLLGP_EN);
541 val |= SW_PLLGP;
542 mt7530_write(priv, MT7531_PLLGP_EN, val);
543
544 /* Step 4: program COREPLL output frequency to 500MHz */
545 val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 val &= ~RG_COREPLL_POSDIV_M;
547 val |= 2 << RG_COREPLL_POSDIV_S;
548 mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 usleep_range(25, 35);
550
551 switch (xtal) {
552 case HWTRAP_XTAL_FSEL_25MHZ:
553 val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 val &= ~RG_COREPLL_SDM_PCW_M;
555 val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 break;
558 case HWTRAP_XTAL_FSEL_40MHZ:
559 val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 val &= ~RG_COREPLL_SDM_PCW_M;
561 val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 break;
564 }
565
566 /* Set feedback divide ratio update signal to high */
567 val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 val |= RG_COREPLL_SDM_PCW_CHG;
569 mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 /* Wait for at least 16 XTAL clocks */
571 usleep_range(10, 20);
572
573 /* Step 5: set feedback divide ratio update signal to low */
574 val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 val &= ~RG_COREPLL_SDM_PCW_CHG;
576 mt7530_write(priv, MT7531_PLLGP_CR0, val);
577
578 /* Enable 325M clock for SGMII */
579 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580
581 /* Enable 250SSC clock for RGMII */
582 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583
584 /* Step 6: Enable MT7531 PLL */
585 val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 val |= RG_COREPLL_EN;
587 mt7530_write(priv, MT7531_PLLGP_CR0, val);
588
589 val = mt7530_read(priv, MT7531_PLLGP_EN);
590 val |= EN_COREPLL;
591 mt7530_write(priv, MT7531_PLLGP_EN, val);
592 usleep_range(25, 35);
593 }
594
595 static void
mt7530_mib_reset(struct dsa_switch * ds)596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 struct mt7530_priv *priv = ds->priv;
599
600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603
mt7530_phy_read_c22(struct mt7530_priv * priv,int port,int regnum)604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608
mt7530_phy_write_c22(struct mt7530_priv * priv,int port,int regnum,u16 val)609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 u16 val)
611 {
612 return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614
mt7530_phy_read_c45(struct mt7530_priv * priv,int port,int devad,int regnum)615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 int devad, int regnum)
617 {
618 return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620
mt7530_phy_write_c45(struct mt7530_priv * priv,int port,int devad,int regnum,u16 val)621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 int regnum, u16 val)
623 {
624 return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626
627 static int
mt7531_ind_c45_phy_read(struct mt7530_priv * priv,int port,int devad,int regnum)628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 int regnum)
630 {
631 struct mt7530_dummy_poll p;
632 u32 reg, val;
633 int ret;
634
635 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636
637 mt7530_mutex_lock(priv);
638
639 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 if (ret < 0) {
642 dev_err(priv->dev, "poll timeout\n");
643 goto out;
644 }
645
646 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649
650 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 if (ret < 0) {
653 dev_err(priv->dev, "poll timeout\n");
654 goto out;
655 }
656
657 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 MT7531_MDIO_DEV_ADDR(devad);
659 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660
661 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 if (ret < 0) {
664 dev_err(priv->dev, "poll timeout\n");
665 goto out;
666 }
667
668 ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 mt7530_mutex_unlock(priv);
671
672 return ret;
673 }
674
675 static int
mt7531_ind_c45_phy_write(struct mt7530_priv * priv,int port,int devad,int regnum,u16 data)676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 int regnum, u16 data)
678 {
679 struct mt7530_dummy_poll p;
680 u32 val, reg;
681 int ret;
682
683 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684
685 mt7530_mutex_lock(priv);
686
687 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 if (ret < 0) {
690 dev_err(priv->dev, "poll timeout\n");
691 goto out;
692 }
693
694 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697
698 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 if (ret < 0) {
701 dev_err(priv->dev, "poll timeout\n");
702 goto out;
703 }
704
705 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 MT7531_MDIO_DEV_ADDR(devad) | data;
707 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708
709 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 if (ret < 0) {
712 dev_err(priv->dev, "poll timeout\n");
713 goto out;
714 }
715
716 out:
717 mt7530_mutex_unlock(priv);
718
719 return ret;
720 }
721
722 static int
mt7531_ind_c22_phy_read(struct mt7530_priv * priv,int port,int regnum)723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 struct mt7530_dummy_poll p;
726 int ret;
727 u32 val;
728
729 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730
731 mt7530_mutex_lock(priv);
732
733 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 if (ret < 0) {
736 dev_err(priv->dev, "poll timeout\n");
737 goto out;
738 }
739
740 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 MT7531_MDIO_REG_ADDR(regnum);
742
743 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744
745 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 if (ret < 0) {
748 dev_err(priv->dev, "poll timeout\n");
749 goto out;
750 }
751
752 ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 mt7530_mutex_unlock(priv);
755
756 return ret;
757 }
758
759 static int
mt7531_ind_c22_phy_write(struct mt7530_priv * priv,int port,int regnum,u16 data)760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 u16 data)
762 {
763 struct mt7530_dummy_poll p;
764 int ret;
765 u32 reg;
766
767 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768
769 mt7530_mutex_lock(priv);
770
771 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 if (ret < 0) {
774 dev_err(priv->dev, "poll timeout\n");
775 goto out;
776 }
777
778 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 MT7531_MDIO_REG_ADDR(regnum) | data;
780
781 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782
783 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 if (ret < 0) {
786 dev_err(priv->dev, "poll timeout\n");
787 goto out;
788 }
789
790 out:
791 mt7530_mutex_unlock(priv);
792
793 return ret;
794 }
795
796 static int
mt753x_phy_read_c22(struct mii_bus * bus,int port,int regnum)797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 struct mt7530_priv *priv = bus->priv;
800
801 return priv->info->phy_read_c22(priv, port, regnum);
802 }
803
804 static int
mt753x_phy_read_c45(struct mii_bus * bus,int port,int devad,int regnum)805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 struct mt7530_priv *priv = bus->priv;
808
809 return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811
812 static int
mt753x_phy_write_c22(struct mii_bus * bus,int port,int regnum,u16 val)813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 struct mt7530_priv *priv = bus->priv;
816
817 return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819
820 static int
mt753x_phy_write_c45(struct mii_bus * bus,int port,int devad,int regnum,u16 val)821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 u16 val)
823 {
824 struct mt7530_priv *priv = bus->priv;
825
826 return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828
829 static void
mt7530_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 uint8_t *data)
832 {
833 int i;
834
835 if (stringset != ETH_SS_STATS)
836 return;
837
838 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 ETH_GSTRING_LEN);
841 }
842
843 static void
mt7530_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 uint64_t *data)
846 {
847 struct mt7530_priv *priv = ds->priv;
848 const struct mt7530_mib_desc *mib;
849 u32 reg, i;
850 u64 hi;
851
852 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 mib = &mt7530_mib[i];
854 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855
856 data[i] = mt7530_read(priv, reg);
857 if (mib->size == 2) {
858 hi = mt7530_read(priv, reg + 4);
859 data[i] |= hi << 32;
860 }
861 }
862 }
863
864 static int
mt7530_get_sset_count(struct dsa_switch * ds,int port,int sset)865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 if (sset != ETH_SS_STATS)
868 return 0;
869
870 return ARRAY_SIZE(mt7530_mib);
871 }
872
873 static int
mt7530_set_ageing_time(struct dsa_switch * ds,unsigned int msecs)874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 struct mt7530_priv *priv = ds->priv;
877 unsigned int secs = msecs / 1000;
878 unsigned int tmp_age_count;
879 unsigned int error = -1;
880 unsigned int age_count;
881 unsigned int age_unit;
882
883 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 return -ERANGE;
886
887 /* iterate through all possible age_count to find the closest pair */
888 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890
891 if (tmp_age_unit <= AGE_UNIT_MAX) {
892 unsigned int tmp_error = secs -
893 (tmp_age_count + 1) * (tmp_age_unit + 1);
894
895 /* found a closer pair */
896 if (error > tmp_error) {
897 error = tmp_error;
898 age_count = tmp_age_count;
899 age_unit = tmp_age_unit;
900 }
901
902 /* found the exact match, so break the loop */
903 if (!error)
904 break;
905 }
906 }
907
908 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909
910 return 0;
911 }
912
p5_intf_modes(unsigned int p5_interface)913 static const char *p5_intf_modes(unsigned int p5_interface)
914 {
915 switch (p5_interface) {
916 case P5_DISABLED:
917 return "DISABLED";
918 case P5_INTF_SEL_PHY_P0:
919 return "PHY P0";
920 case P5_INTF_SEL_PHY_P4:
921 return "PHY P4";
922 case P5_INTF_SEL_GMAC5:
923 return "GMAC5";
924 case P5_INTF_SEL_GMAC5_SGMII:
925 return "GMAC5_SGMII";
926 default:
927 return "unknown";
928 }
929 }
930
mt7530_setup_port5(struct dsa_switch * ds,phy_interface_t interface)931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 struct mt7530_priv *priv = ds->priv;
934 u8 tx_delay = 0;
935 int val;
936
937 mutex_lock(&priv->reg_mutex);
938
939 val = mt7530_read(priv, MT7530_MHWTRAP);
940
941 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943
944 switch (priv->p5_intf_sel) {
945 case P5_INTF_SEL_PHY_P0:
946 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 val |= MHWTRAP_PHY0_SEL;
948 fallthrough;
949 case P5_INTF_SEL_PHY_P4:
950 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952
953 /* Setup the MAC by default for the cpu port */
954 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 break;
956 case P5_INTF_SEL_GMAC5:
957 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 val &= ~MHWTRAP_P5_DIS;
959 break;
960 case P5_DISABLED:
961 interface = PHY_INTERFACE_MODE_NA;
962 break;
963 default:
964 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 priv->p5_intf_sel);
966 goto unlock_exit;
967 }
968
969 /* Setup RGMII settings */
970 if (phy_interface_mode_is_rgmii(interface)) {
971 val |= MHWTRAP_P5_RGMII_MODE;
972
973 /* P5 RGMII RX Clock Control: delay setting for 1000M */
974 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975
976 /* Don't set delay in DSA mode */
977 if (!dsa_is_dsa_port(priv->ds, 5) &&
978 (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 interface == PHY_INTERFACE_MODE_RGMII_ID))
980 tx_delay = 4; /* n * 0.5 ns */
981
982 /* P5 RGMII TX Clock Control: delay x */
983 mt7530_write(priv, MT7530_P5RGMIITXCR,
984 CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985
986 /* reduce P5 RGMII Tx driving, 8mA */
987 mt7530_write(priv, MT7530_IO_DRV_CR,
988 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 }
990
991 mt7530_write(priv, MT7530_MHWTRAP, val);
992
993 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995
996 priv->p5_interface = interface;
997
998 unlock_exit:
999 mutex_unlock(&priv->reg_mutex);
1000 }
1001
1002 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
1003 * of the Open Systems Interconnection basic reference model (OSI/RM) are
1004 * described; the medium access control (MAC) and logical link control (LLC)
1005 * sublayers. The MAC sublayer is the one facing the physical layer.
1006 *
1007 * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
1008 * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
1009 * of the Bridge, at least two Ports, and higher layer entities with at least a
1010 * Spanning Tree Protocol Entity included.
1011 *
1012 * Each Bridge Port also functions as an end station and shall provide the MAC
1013 * Service to an LLC Entity. Each instance of the MAC Service is provided to a
1014 * distinct LLC Entity that supports protocol identification, multiplexing, and
1015 * demultiplexing, for protocol data unit (PDU) transmission and reception by
1016 * one or more higher layer entities.
1017 *
1018 * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
1019 * Entity associated with each Bridge Port is modeled as being directly
1020 * connected to the attached Local Area Network (LAN).
1021 *
1022 * On the switch with CPU port architecture, CPU port functions as Management
1023 * Port, and the Management Port functionality is provided by software which
1024 * functions as an end station. Software is connected to an IEEE 802 LAN that is
1025 * wholly contained within the system that incorporates the Bridge. Software
1026 * provides access to the LLC Entity associated with each Bridge Port by the
1027 * value of the source port field on the special tag on the frame received by
1028 * software.
1029 *
1030 * We call frames that carry control information to determine the active
1031 * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
1032 * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
1033 * Protocol Data Units (MVRPDUs), and frames from other link constrained
1034 * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
1035 * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
1036 * forwarded by a Bridge. Permanently configured entries in the filtering
1037 * database (FDB) ensure that such frames are discarded by the Forwarding
1038 * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
1039 *
1040 * Each of the reserved MAC addresses specified in Table 8-1
1041 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
1042 * permanently configured in the FDB in C-VLAN components and ERs.
1043 *
1044 * Each of the reserved MAC addresses specified in Table 8-2
1045 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
1046 * configured in the FDB in S-VLAN components.
1047 *
1048 * Each of the reserved MAC addresses specified in Table 8-3
1049 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1050 * TPMR components.
1051 *
1052 * The FDB entries for reserved MAC addresses shall specify filtering for all
1053 * Bridge Ports and all VIDs. Management shall not provide the capability to
1054 * modify or remove entries for reserved MAC addresses.
1055 *
1056 * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1057 * propagation of PDUs within a Bridged Network, as follows:
1058 *
1059 * The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1060 * conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1061 * component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1062 * PDUs transmitted using this destination address, or any other addresses
1063 * that appear in Table 8-1, Table 8-2, and Table 8-3
1064 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1065 * therefore travel no further than those stations that can be reached via a
1066 * single individual LAN from the originating station.
1067 *
1068 * The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1069 * address that no conformant S-VLAN component, C-VLAN component, or MAC
1070 * Bridge can forward; however, this address is relayed by a TPMR component.
1071 * PDUs using this destination address, or any of the other addresses that
1072 * appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1073 * (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1074 * any TPMRs but will propagate no further than the nearest S-VLAN component,
1075 * C-VLAN component, or MAC Bridge.
1076 *
1077 * The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1078 * that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1079 * relayed by TPMR components and S-VLAN components. PDUs using this
1080 * destination address, or any of the other addresses that appear in Table 8-1
1081 * but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1082 * will be relayed by TPMR components and S-VLAN components but will propagate
1083 * no further than the nearest C-VLAN component or MAC Bridge.
1084 *
1085 * Because the LLC Entity associated with each Bridge Port is provided via CPU
1086 * port, we must not filter these frames but forward them to CPU port.
1087 *
1088 * In a Bridge, the transmission Port is majorly decided by ingress and egress
1089 * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1090 * For link-local frames, only CPU port should be designated as destination port
1091 * in the FDB, and the other functions of the Forwarding Process must not
1092 * interfere with the decision of the transmission Port. We call this process
1093 * trapping frames to CPU port.
1094 *
1095 * Therefore, on the switch with CPU port architecture, link-local frames must
1096 * be trapped to CPU port, and certain link-local frames received by a Port of a
1097 * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1098 * from it.
1099 *
1100 * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1101 * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1102 * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1103 * doesn't count) of this architecture will either function as a standard MAC
1104 * Bridge or a standard VLAN Bridge.
1105 *
1106 * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1107 * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1108 * we don't need to relay PDUs using the destination addresses specified on the
1109 * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1110 * section where they must be relayed by TPMR components.
1111 *
1112 * One option to trap link-local frames to CPU port is to add static FDB entries
1113 * with CPU port designated as destination port. However, because that
1114 * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1115 * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1116 * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1117 * entries. This switch intellectual property can only hold a maximum of 2048
1118 * entries. Using this option, there also isn't a mechanism to prevent
1119 * link-local frames from being discarded when the spanning tree Port State of
1120 * the reception Port is discarding.
1121 *
1122 * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1123 * registers. Whilst this applies to every VID, it doesn't contain all of the
1124 * reserved MAC addresses without affecting the remaining Standard Group MAC
1125 * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1126 * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1127 * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1128 * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1129 * The latter option provides better but not complete conformance.
1130 *
1131 * This switch intellectual property also does not provide a mechanism to trap
1132 * link-local frames with specific destination addresses to CPU port by Bridge,
1133 * to conform to the filtering rules for the distinct Bridge components.
1134 *
1135 * Therefore, regardless of the type of the Bridge component, link-local frames
1136 * with these destination addresses will be trapped to CPU port:
1137 *
1138 * 01-80-C2-00-00-[00,01,02,03,0E]
1139 *
1140 * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1141 *
1142 * Link-local frames with these destination addresses won't be trapped to CPU
1143 * port which won't conform to IEEE Std 802.1Q-2022:
1144 *
1145 * 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1146 *
1147 * In a Bridge comprising an S-VLAN component:
1148 *
1149 * Link-local frames with these destination addresses will be trapped to CPU
1150 * port which won't conform to IEEE Std 802.1Q-2022:
1151 *
1152 * 01-80-C2-00-00-00
1153 *
1154 * Link-local frames with these destination addresses won't be trapped to CPU
1155 * port which won't conform to IEEE Std 802.1Q-2022:
1156 *
1157 * 01-80-C2-00-00-[04,05,06,07,08,09,0A]
1158 *
1159 * To trap link-local frames to CPU port as conformant as this switch
1160 * intellectual property can allow, link-local frames are made to be regarded as
1161 * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1162 * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1163 * State function of the Forwarding Process.
1164 *
1165 * The only remaining interference is the ingress rules. When the reception Port
1166 * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1167 * There doesn't seem to be a mechanism on the switch intellectual property to
1168 * have link-local frames bypass this function of the Forwarding Process.
1169 */
1170 static void
mt753x_trap_frames(struct mt7530_priv * priv)1171 mt753x_trap_frames(struct mt7530_priv *priv)
1172 {
1173 /* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1174 * VLAN-untagged.
1175 */
1176 mt7530_rmw(priv, MT753X_BPC,
1177 MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1178 MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1179 MT753X_BPDU_PORT_FW_MASK,
1180 MT753X_PAE_BPDU_FR |
1181 MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1182 MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1183 MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1184 MT753X_BPDU_CPU_ONLY);
1185
1186 /* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1187 * them VLAN-untagged.
1188 */
1189 mt7530_rmw(priv, MT753X_RGAC1,
1190 MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1191 MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1192 MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1193 MT753X_R02_BPDU_FR |
1194 MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1195 MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1196 MT753X_R01_BPDU_FR |
1197 MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1198 MT753X_BPDU_CPU_ONLY);
1199
1200 /* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1201 * them VLAN-untagged.
1202 */
1203 mt7530_rmw(priv, MT753X_RGAC2,
1204 MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1205 MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1206 MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1207 MT753X_R0E_BPDU_FR |
1208 MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1209 MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1210 MT753X_R03_BPDU_FR |
1211 MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1212 MT753X_BPDU_CPU_ONLY);
1213 }
1214
1215 static int
mt753x_cpu_port_enable(struct dsa_switch * ds,int port)1216 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1217 {
1218 struct mt7530_priv *priv = ds->priv;
1219 int ret;
1220
1221 /* Setup max capability of CPU port at first */
1222 if (priv->info->cpu_port_config) {
1223 ret = priv->info->cpu_port_config(ds, port);
1224 if (ret)
1225 return ret;
1226 }
1227
1228 /* Enable Mediatek header mode on the cpu port */
1229 mt7530_write(priv, MT7530_PVC_P(port),
1230 PORT_SPEC_TAG);
1231
1232 /* Enable flooding on the CPU port */
1233 mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1234 UNU_FFP(BIT(port)));
1235
1236 /* Set CPU port number */
1237 if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1238 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1239
1240 /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1241 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1242 * is affine to the inbound user port.
1243 */
1244 if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1245 mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1246
1247 /* CPU port gets connected to all user ports of
1248 * the switch.
1249 */
1250 mt7530_write(priv, MT7530_PCR_P(port),
1251 PCR_MATRIX(dsa_user_ports(priv->ds)));
1252
1253 /* Set to fallback mode for independent VLAN learning */
1254 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1255 MT7530_PORT_FALLBACK_MODE);
1256
1257 return 0;
1258 }
1259
1260 static int
mt7530_port_enable(struct dsa_switch * ds,int port,struct phy_device * phy)1261 mt7530_port_enable(struct dsa_switch *ds, int port,
1262 struct phy_device *phy)
1263 {
1264 struct dsa_port *dp = dsa_to_port(ds, port);
1265 struct mt7530_priv *priv = ds->priv;
1266
1267 mutex_lock(&priv->reg_mutex);
1268
1269 /* Allow the user port gets connected to the cpu port and also
1270 * restore the port matrix if the port is the member of a certain
1271 * bridge.
1272 */
1273 if (dsa_port_is_user(dp)) {
1274 struct dsa_port *cpu_dp = dp->cpu_dp;
1275
1276 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1277 }
1278 priv->ports[port].enable = true;
1279 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1280 priv->ports[port].pm);
1281 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1282
1283 mutex_unlock(&priv->reg_mutex);
1284
1285 return 0;
1286 }
1287
1288 static void
mt7530_port_disable(struct dsa_switch * ds,int port)1289 mt7530_port_disable(struct dsa_switch *ds, int port)
1290 {
1291 struct mt7530_priv *priv = ds->priv;
1292
1293 mutex_lock(&priv->reg_mutex);
1294
1295 /* Clear up all port matrix which could be restored in the next
1296 * enablement for the port.
1297 */
1298 priv->ports[port].enable = false;
1299 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1300 PCR_MATRIX_CLR);
1301 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1302
1303 mutex_unlock(&priv->reg_mutex);
1304 }
1305
1306 static int
mt7530_port_change_mtu(struct dsa_switch * ds,int port,int new_mtu)1307 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1308 {
1309 struct mt7530_priv *priv = ds->priv;
1310 int length;
1311 u32 val;
1312
1313 /* When a new MTU is set, DSA always set the CPU port's MTU to the
1314 * largest MTU of the slave ports. Because the switch only has a global
1315 * RX length register, only allowing CPU port here is enough.
1316 */
1317 if (!dsa_is_cpu_port(ds, port))
1318 return 0;
1319
1320 mt7530_mutex_lock(priv);
1321
1322 val = mt7530_mii_read(priv, MT7530_GMACCR);
1323 val &= ~MAX_RX_PKT_LEN_MASK;
1324
1325 /* RX length also includes Ethernet header, MTK tag, and FCS length */
1326 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1327 if (length <= 1522) {
1328 val |= MAX_RX_PKT_LEN_1522;
1329 } else if (length <= 1536) {
1330 val |= MAX_RX_PKT_LEN_1536;
1331 } else if (length <= 1552) {
1332 val |= MAX_RX_PKT_LEN_1552;
1333 } else {
1334 val &= ~MAX_RX_JUMBO_MASK;
1335 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1336 val |= MAX_RX_PKT_LEN_JUMBO;
1337 }
1338
1339 mt7530_mii_write(priv, MT7530_GMACCR, val);
1340
1341 mt7530_mutex_unlock(priv);
1342
1343 return 0;
1344 }
1345
1346 static int
mt7530_port_max_mtu(struct dsa_switch * ds,int port)1347 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1348 {
1349 return MT7530_MAX_MTU;
1350 }
1351
1352 static void
mt7530_stp_state_set(struct dsa_switch * ds,int port,u8 state)1353 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1354 {
1355 struct mt7530_priv *priv = ds->priv;
1356 u32 stp_state;
1357
1358 switch (state) {
1359 case BR_STATE_DISABLED:
1360 stp_state = MT7530_STP_DISABLED;
1361 break;
1362 case BR_STATE_BLOCKING:
1363 stp_state = MT7530_STP_BLOCKING;
1364 break;
1365 case BR_STATE_LISTENING:
1366 stp_state = MT7530_STP_LISTENING;
1367 break;
1368 case BR_STATE_LEARNING:
1369 stp_state = MT7530_STP_LEARNING;
1370 break;
1371 case BR_STATE_FORWARDING:
1372 default:
1373 stp_state = MT7530_STP_FORWARDING;
1374 break;
1375 }
1376
1377 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1378 FID_PST(FID_BRIDGED, stp_state));
1379 }
1380
1381 static int
mt7530_port_pre_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)1382 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1383 struct switchdev_brport_flags flags,
1384 struct netlink_ext_ack *extack)
1385 {
1386 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1387 BR_BCAST_FLOOD))
1388 return -EINVAL;
1389
1390 return 0;
1391 }
1392
1393 static int
mt7530_port_bridge_flags(struct dsa_switch * ds,int port,struct switchdev_brport_flags flags,struct netlink_ext_ack * extack)1394 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1395 struct switchdev_brport_flags flags,
1396 struct netlink_ext_ack *extack)
1397 {
1398 struct mt7530_priv *priv = ds->priv;
1399
1400 if (flags.mask & BR_LEARNING)
1401 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1402 flags.val & BR_LEARNING ? 0 : SA_DIS);
1403
1404 if (flags.mask & BR_FLOOD)
1405 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1406 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1407
1408 if (flags.mask & BR_MCAST_FLOOD)
1409 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1410 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1411
1412 if (flags.mask & BR_BCAST_FLOOD)
1413 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1414 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1415
1416 return 0;
1417 }
1418
1419 static int
mt7530_port_bridge_join(struct dsa_switch * ds,int port,struct dsa_bridge bridge,bool * tx_fwd_offload,struct netlink_ext_ack * extack)1420 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1421 struct dsa_bridge bridge, bool *tx_fwd_offload,
1422 struct netlink_ext_ack *extack)
1423 {
1424 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1425 struct dsa_port *cpu_dp = dp->cpu_dp;
1426 u32 port_bitmap = BIT(cpu_dp->index);
1427 struct mt7530_priv *priv = ds->priv;
1428
1429 mutex_lock(&priv->reg_mutex);
1430
1431 dsa_switch_for_each_user_port(other_dp, ds) {
1432 int other_port = other_dp->index;
1433
1434 if (dp == other_dp)
1435 continue;
1436
1437 /* Add this port to the port matrix of the other ports in the
1438 * same bridge. If the port is disabled, port matrix is kept
1439 * and not being setup until the port becomes enabled.
1440 */
1441 if (!dsa_port_offloads_bridge(other_dp, &bridge))
1442 continue;
1443
1444 if (priv->ports[other_port].enable)
1445 mt7530_set(priv, MT7530_PCR_P(other_port),
1446 PCR_MATRIX(BIT(port)));
1447 priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1448
1449 port_bitmap |= BIT(other_port);
1450 }
1451
1452 /* Add the all other ports to this port matrix. */
1453 if (priv->ports[port].enable)
1454 mt7530_rmw(priv, MT7530_PCR_P(port),
1455 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1456 priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1457
1458 /* Set to fallback mode for independent VLAN learning */
1459 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1460 MT7530_PORT_FALLBACK_MODE);
1461
1462 mutex_unlock(&priv->reg_mutex);
1463
1464 return 0;
1465 }
1466
1467 static void
mt7530_port_set_vlan_unaware(struct dsa_switch * ds,int port)1468 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1469 {
1470 struct mt7530_priv *priv = ds->priv;
1471 bool all_user_ports_removed = true;
1472 int i;
1473
1474 /* This is called after .port_bridge_leave when leaving a VLAN-aware
1475 * bridge. Don't set standalone ports to fallback mode.
1476 */
1477 if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1478 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1479 MT7530_PORT_FALLBACK_MODE);
1480
1481 mt7530_rmw(priv, MT7530_PVC_P(port),
1482 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1483 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1484 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1485 MT7530_VLAN_ACC_ALL);
1486
1487 /* Set PVID to 0 */
1488 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1489 G0_PORT_VID_DEF);
1490
1491 for (i = 0; i < MT7530_NUM_PORTS; i++) {
1492 if (dsa_is_user_port(ds, i) &&
1493 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1494 all_user_ports_removed = false;
1495 break;
1496 }
1497 }
1498
1499 /* CPU port also does the same thing until all user ports belonging to
1500 * the CPU port get out of VLAN filtering mode.
1501 */
1502 if (all_user_ports_removed) {
1503 struct dsa_port *dp = dsa_to_port(ds, port);
1504 struct dsa_port *cpu_dp = dp->cpu_dp;
1505
1506 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1507 PCR_MATRIX(dsa_user_ports(priv->ds)));
1508 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1509 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1510 }
1511 }
1512
1513 static void
mt7530_port_set_vlan_aware(struct dsa_switch * ds,int port)1514 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1515 {
1516 struct mt7530_priv *priv = ds->priv;
1517
1518 /* Trapped into security mode allows packet forwarding through VLAN
1519 * table lookup.
1520 */
1521 if (dsa_is_user_port(ds, port)) {
1522 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1523 MT7530_PORT_SECURITY_MODE);
1524 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1525 G0_PORT_VID(priv->ports[port].pvid));
1526
1527 /* Only accept tagged frames if PVID is not set */
1528 if (!priv->ports[port].pvid)
1529 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1530 MT7530_VLAN_ACC_TAGGED);
1531
1532 /* Set the port as a user port which is to be able to recognize
1533 * VID from incoming packets before fetching entry within the
1534 * VLAN table.
1535 */
1536 mt7530_rmw(priv, MT7530_PVC_P(port),
1537 VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1538 VLAN_ATTR(MT7530_VLAN_USER) |
1539 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1540 } else {
1541 /* Also set CPU ports to the "user" VLAN port attribute, to
1542 * allow VLAN classification, but keep the EG_TAG attribute as
1543 * "consistent" (i.o.w. don't change its value) for packets
1544 * received by the switch from the CPU, so that tagged packets
1545 * are forwarded to user ports as tagged, and untagged as
1546 * untagged.
1547 */
1548 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1549 VLAN_ATTR(MT7530_VLAN_USER));
1550 }
1551 }
1552
1553 static void
mt7530_port_bridge_leave(struct dsa_switch * ds,int port,struct dsa_bridge bridge)1554 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1555 struct dsa_bridge bridge)
1556 {
1557 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1558 struct dsa_port *cpu_dp = dp->cpu_dp;
1559 struct mt7530_priv *priv = ds->priv;
1560
1561 mutex_lock(&priv->reg_mutex);
1562
1563 dsa_switch_for_each_user_port(other_dp, ds) {
1564 int other_port = other_dp->index;
1565
1566 if (dp == other_dp)
1567 continue;
1568
1569 /* Remove this port from the port matrix of the other ports
1570 * in the same bridge. If the port is disabled, port matrix
1571 * is kept and not being setup until the port becomes enabled.
1572 */
1573 if (!dsa_port_offloads_bridge(other_dp, &bridge))
1574 continue;
1575
1576 if (priv->ports[other_port].enable)
1577 mt7530_clear(priv, MT7530_PCR_P(other_port),
1578 PCR_MATRIX(BIT(port)));
1579 priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1580 }
1581
1582 /* Set the cpu port to be the only one in the port matrix of
1583 * this port.
1584 */
1585 if (priv->ports[port].enable)
1586 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1587 PCR_MATRIX(BIT(cpu_dp->index)));
1588 priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1589
1590 /* When a port is removed from the bridge, the port would be set up
1591 * back to the default as is at initial boot which is a VLAN-unaware
1592 * port.
1593 */
1594 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1595 MT7530_PORT_MATRIX_MODE);
1596
1597 mutex_unlock(&priv->reg_mutex);
1598 }
1599
1600 static int
mt7530_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1601 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1602 const unsigned char *addr, u16 vid,
1603 struct dsa_db db)
1604 {
1605 struct mt7530_priv *priv = ds->priv;
1606 int ret;
1607 u8 port_mask = BIT(port);
1608
1609 mutex_lock(&priv->reg_mutex);
1610 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1611 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1612 mutex_unlock(&priv->reg_mutex);
1613
1614 return ret;
1615 }
1616
1617 static int
mt7530_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1618 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1619 const unsigned char *addr, u16 vid,
1620 struct dsa_db db)
1621 {
1622 struct mt7530_priv *priv = ds->priv;
1623 int ret;
1624 u8 port_mask = BIT(port);
1625
1626 mutex_lock(&priv->reg_mutex);
1627 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1628 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1629 mutex_unlock(&priv->reg_mutex);
1630
1631 return ret;
1632 }
1633
1634 static int
mt7530_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1635 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1636 dsa_fdb_dump_cb_t *cb, void *data)
1637 {
1638 struct mt7530_priv *priv = ds->priv;
1639 struct mt7530_fdb _fdb = { 0 };
1640 int cnt = MT7530_NUM_FDB_RECORDS;
1641 int ret = 0;
1642 u32 rsp = 0;
1643
1644 mutex_lock(&priv->reg_mutex);
1645
1646 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1647 if (ret < 0)
1648 goto err;
1649
1650 do {
1651 if (rsp & ATC_SRCH_HIT) {
1652 mt7530_fdb_read(priv, &_fdb);
1653 if (_fdb.port_mask & BIT(port)) {
1654 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1655 data);
1656 if (ret < 0)
1657 break;
1658 }
1659 }
1660 } while (--cnt &&
1661 !(rsp & ATC_SRCH_END) &&
1662 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1663 err:
1664 mutex_unlock(&priv->reg_mutex);
1665
1666 return 0;
1667 }
1668
1669 static int
mt7530_port_mdb_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1670 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1671 const struct switchdev_obj_port_mdb *mdb,
1672 struct dsa_db db)
1673 {
1674 struct mt7530_priv *priv = ds->priv;
1675 const u8 *addr = mdb->addr;
1676 u16 vid = mdb->vid;
1677 u8 port_mask = 0;
1678 int ret;
1679
1680 mutex_lock(&priv->reg_mutex);
1681
1682 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1683 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1684 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1685 & PORT_MAP_MASK;
1686
1687 port_mask |= BIT(port);
1688 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1689 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1690
1691 mutex_unlock(&priv->reg_mutex);
1692
1693 return ret;
1694 }
1695
1696 static int
mt7530_port_mdb_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1697 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1698 const struct switchdev_obj_port_mdb *mdb,
1699 struct dsa_db db)
1700 {
1701 struct mt7530_priv *priv = ds->priv;
1702 const u8 *addr = mdb->addr;
1703 u16 vid = mdb->vid;
1704 u8 port_mask = 0;
1705 int ret;
1706
1707 mutex_lock(&priv->reg_mutex);
1708
1709 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1710 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1711 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1712 & PORT_MAP_MASK;
1713
1714 port_mask &= ~BIT(port);
1715 mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1716 port_mask ? STATIC_ENT : STATIC_EMP);
1717 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1718
1719 mutex_unlock(&priv->reg_mutex);
1720
1721 return ret;
1722 }
1723
1724 static int
mt7530_vlan_cmd(struct mt7530_priv * priv,enum mt7530_vlan_cmd cmd,u16 vid)1725 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1726 {
1727 struct mt7530_dummy_poll p;
1728 u32 val;
1729 int ret;
1730
1731 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1732 mt7530_write(priv, MT7530_VTCR, val);
1733
1734 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1735 ret = readx_poll_timeout(_mt7530_read, &p, val,
1736 !(val & VTCR_BUSY), 20, 20000);
1737 if (ret < 0) {
1738 dev_err(priv->dev, "poll timeout\n");
1739 return ret;
1740 }
1741
1742 val = mt7530_read(priv, MT7530_VTCR);
1743 if (val & VTCR_INVALID) {
1744 dev_err(priv->dev, "read VTCR invalid\n");
1745 return -EINVAL;
1746 }
1747
1748 return 0;
1749 }
1750
1751 static int
mt7530_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)1752 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1753 struct netlink_ext_ack *extack)
1754 {
1755 struct dsa_port *dp = dsa_to_port(ds, port);
1756 struct dsa_port *cpu_dp = dp->cpu_dp;
1757
1758 if (vlan_filtering) {
1759 /* The port is being kept as VLAN-unaware port when bridge is
1760 * set up with vlan_filtering not being set, Otherwise, the
1761 * port and the corresponding CPU port is required the setup
1762 * for becoming a VLAN-aware port.
1763 */
1764 mt7530_port_set_vlan_aware(ds, port);
1765 mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1766 } else {
1767 mt7530_port_set_vlan_unaware(ds, port);
1768 }
1769
1770 return 0;
1771 }
1772
1773 static void
mt7530_hw_vlan_add(struct mt7530_priv * priv,struct mt7530_hw_vlan_entry * entry)1774 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1775 struct mt7530_hw_vlan_entry *entry)
1776 {
1777 struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1778 u8 new_members;
1779 u32 val;
1780
1781 new_members = entry->old_members | BIT(entry->port);
1782
1783 /* Validate the entry with independent learning, create egress tag per
1784 * VLAN and joining the port as one of the port members.
1785 */
1786 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1787 VLAN_VALID;
1788 mt7530_write(priv, MT7530_VAWD1, val);
1789
1790 /* Decide whether adding tag or not for those outgoing packets from the
1791 * port inside the VLAN.
1792 * CPU port is always taken as a tagged port for serving more than one
1793 * VLANs across and also being applied with egress type stack mode for
1794 * that VLAN tags would be appended after hardware special tag used as
1795 * DSA tag.
1796 */
1797 if (dsa_port_is_cpu(dp))
1798 val = MT7530_VLAN_EGRESS_STACK;
1799 else if (entry->untagged)
1800 val = MT7530_VLAN_EGRESS_UNTAG;
1801 else
1802 val = MT7530_VLAN_EGRESS_TAG;
1803 mt7530_rmw(priv, MT7530_VAWD2,
1804 ETAG_CTRL_P_MASK(entry->port),
1805 ETAG_CTRL_P(entry->port, val));
1806 }
1807
1808 static void
mt7530_hw_vlan_del(struct mt7530_priv * priv,struct mt7530_hw_vlan_entry * entry)1809 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1810 struct mt7530_hw_vlan_entry *entry)
1811 {
1812 u8 new_members;
1813 u32 val;
1814
1815 new_members = entry->old_members & ~BIT(entry->port);
1816
1817 val = mt7530_read(priv, MT7530_VAWD1);
1818 if (!(val & VLAN_VALID)) {
1819 dev_err(priv->dev,
1820 "Cannot be deleted due to invalid entry\n");
1821 return;
1822 }
1823
1824 if (new_members) {
1825 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1826 VLAN_VALID;
1827 mt7530_write(priv, MT7530_VAWD1, val);
1828 } else {
1829 mt7530_write(priv, MT7530_VAWD1, 0);
1830 mt7530_write(priv, MT7530_VAWD2, 0);
1831 }
1832 }
1833
1834 static void
mt7530_hw_vlan_update(struct mt7530_priv * priv,u16 vid,struct mt7530_hw_vlan_entry * entry,mt7530_vlan_op vlan_op)1835 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1836 struct mt7530_hw_vlan_entry *entry,
1837 mt7530_vlan_op vlan_op)
1838 {
1839 u32 val;
1840
1841 /* Fetch entry */
1842 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1843
1844 val = mt7530_read(priv, MT7530_VAWD1);
1845
1846 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1847
1848 /* Manipulate entry */
1849 vlan_op(priv, entry);
1850
1851 /* Flush result to hardware */
1852 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1853 }
1854
1855 static int
mt7530_setup_vlan0(struct mt7530_priv * priv)1856 mt7530_setup_vlan0(struct mt7530_priv *priv)
1857 {
1858 u32 val;
1859
1860 /* Validate the entry with independent learning, keep the original
1861 * ingress tag attribute.
1862 */
1863 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1864 VLAN_VALID;
1865 mt7530_write(priv, MT7530_VAWD1, val);
1866
1867 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1868 }
1869
1870 static int
mt7530_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1871 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1872 const struct switchdev_obj_port_vlan *vlan,
1873 struct netlink_ext_ack *extack)
1874 {
1875 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1876 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1877 struct mt7530_hw_vlan_entry new_entry;
1878 struct mt7530_priv *priv = ds->priv;
1879
1880 mutex_lock(&priv->reg_mutex);
1881
1882 mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1883 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1884
1885 if (pvid) {
1886 priv->ports[port].pvid = vlan->vid;
1887
1888 /* Accept all frames if PVID is set */
1889 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1890 MT7530_VLAN_ACC_ALL);
1891
1892 /* Only configure PVID if VLAN filtering is enabled */
1893 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1894 mt7530_rmw(priv, MT7530_PPBV1_P(port),
1895 G0_PORT_VID_MASK,
1896 G0_PORT_VID(vlan->vid));
1897 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1898 /* This VLAN is overwritten without PVID, so unset it */
1899 priv->ports[port].pvid = G0_PORT_VID_DEF;
1900
1901 /* Only accept tagged frames if the port is VLAN-aware */
1902 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1903 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1904 MT7530_VLAN_ACC_TAGGED);
1905
1906 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1907 G0_PORT_VID_DEF);
1908 }
1909
1910 mutex_unlock(&priv->reg_mutex);
1911
1912 return 0;
1913 }
1914
1915 static int
mt7530_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1916 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1917 const struct switchdev_obj_port_vlan *vlan)
1918 {
1919 struct mt7530_hw_vlan_entry target_entry;
1920 struct mt7530_priv *priv = ds->priv;
1921
1922 mutex_lock(&priv->reg_mutex);
1923
1924 mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1925 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1926 mt7530_hw_vlan_del);
1927
1928 /* PVID is being restored to the default whenever the PVID port
1929 * is being removed from the VLAN.
1930 */
1931 if (priv->ports[port].pvid == vlan->vid) {
1932 priv->ports[port].pvid = G0_PORT_VID_DEF;
1933
1934 /* Only accept tagged frames if the port is VLAN-aware */
1935 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1936 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1937 MT7530_VLAN_ACC_TAGGED);
1938
1939 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1940 G0_PORT_VID_DEF);
1941 }
1942
1943
1944 mutex_unlock(&priv->reg_mutex);
1945
1946 return 0;
1947 }
1948
mt753x_mirror_port_get(unsigned int id,u32 val)1949 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1950 {
1951 return (id == ID_MT7531 || id == ID_MT7988) ?
1952 MT7531_MIRROR_PORT_GET(val) :
1953 MIRROR_PORT(val);
1954 }
1955
mt753x_mirror_port_set(unsigned int id,u32 val)1956 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1957 {
1958 return (id == ID_MT7531 || id == ID_MT7988) ?
1959 MT7531_MIRROR_PORT_SET(val) :
1960 MIRROR_PORT(val);
1961 }
1962
mt753x_port_mirror_add(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1963 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1964 struct dsa_mall_mirror_tc_entry *mirror,
1965 bool ingress, struct netlink_ext_ack *extack)
1966 {
1967 struct mt7530_priv *priv = ds->priv;
1968 int monitor_port;
1969 u32 val;
1970
1971 /* Check for existent entry */
1972 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1973 return -EEXIST;
1974
1975 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1976
1977 /* MT7530 only supports one monitor port */
1978 monitor_port = mt753x_mirror_port_get(priv->id, val);
1979 if (val & MT753X_MIRROR_EN(priv->id) &&
1980 monitor_port != mirror->to_local_port)
1981 return -EEXIST;
1982
1983 val |= MT753X_MIRROR_EN(priv->id);
1984 val &= ~MT753X_MIRROR_MASK(priv->id);
1985 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1986 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1987
1988 val = mt7530_read(priv, MT7530_PCR_P(port));
1989 if (ingress) {
1990 val |= PORT_RX_MIR;
1991 priv->mirror_rx |= BIT(port);
1992 } else {
1993 val |= PORT_TX_MIR;
1994 priv->mirror_tx |= BIT(port);
1995 }
1996 mt7530_write(priv, MT7530_PCR_P(port), val);
1997
1998 return 0;
1999 }
2000
mt753x_port_mirror_del(struct dsa_switch * ds,int port,struct dsa_mall_mirror_tc_entry * mirror)2001 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
2002 struct dsa_mall_mirror_tc_entry *mirror)
2003 {
2004 struct mt7530_priv *priv = ds->priv;
2005 u32 val;
2006
2007 val = mt7530_read(priv, MT7530_PCR_P(port));
2008 if (mirror->ingress) {
2009 val &= ~PORT_RX_MIR;
2010 priv->mirror_rx &= ~BIT(port);
2011 } else {
2012 val &= ~PORT_TX_MIR;
2013 priv->mirror_tx &= ~BIT(port);
2014 }
2015 mt7530_write(priv, MT7530_PCR_P(port), val);
2016
2017 if (!priv->mirror_rx && !priv->mirror_tx) {
2018 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
2019 val &= ~MT753X_MIRROR_EN(priv->id);
2020 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
2021 }
2022 }
2023
2024 static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)2025 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
2026 enum dsa_tag_protocol mp)
2027 {
2028 return DSA_TAG_PROTO_MTK;
2029 }
2030
2031 #ifdef CONFIG_GPIOLIB
2032 static inline u32
mt7530_gpio_to_bit(unsigned int offset)2033 mt7530_gpio_to_bit(unsigned int offset)
2034 {
2035 /* Map GPIO offset to register bit
2036 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2
2037 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5
2038 * [10: 8] port 2 LED 0..2 as GPIO 6..8
2039 * [14:12] port 3 LED 0..2 as GPIO 9..11
2040 * [18:16] port 4 LED 0..2 as GPIO 12..14
2041 */
2042 return BIT(offset + offset / 3);
2043 }
2044
2045 static int
mt7530_gpio_get(struct gpio_chip * gc,unsigned int offset)2046 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
2047 {
2048 struct mt7530_priv *priv = gpiochip_get_data(gc);
2049 u32 bit = mt7530_gpio_to_bit(offset);
2050
2051 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
2052 }
2053
2054 static void
mt7530_gpio_set(struct gpio_chip * gc,unsigned int offset,int value)2055 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
2056 {
2057 struct mt7530_priv *priv = gpiochip_get_data(gc);
2058 u32 bit = mt7530_gpio_to_bit(offset);
2059
2060 if (value)
2061 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2062 else
2063 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2064 }
2065
2066 static int
mt7530_gpio_get_direction(struct gpio_chip * gc,unsigned int offset)2067 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2068 {
2069 struct mt7530_priv *priv = gpiochip_get_data(gc);
2070 u32 bit = mt7530_gpio_to_bit(offset);
2071
2072 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2073 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2074 }
2075
2076 static int
mt7530_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)2077 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2078 {
2079 struct mt7530_priv *priv = gpiochip_get_data(gc);
2080 u32 bit = mt7530_gpio_to_bit(offset);
2081
2082 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2083 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2084
2085 return 0;
2086 }
2087
2088 static int
mt7530_gpio_direction_output(struct gpio_chip * gc,unsigned int offset,int value)2089 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2090 {
2091 struct mt7530_priv *priv = gpiochip_get_data(gc);
2092 u32 bit = mt7530_gpio_to_bit(offset);
2093
2094 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2095
2096 if (value)
2097 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2098 else
2099 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2100
2101 mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2102
2103 return 0;
2104 }
2105
2106 static int
mt7530_setup_gpio(struct mt7530_priv * priv)2107 mt7530_setup_gpio(struct mt7530_priv *priv)
2108 {
2109 struct device *dev = priv->dev;
2110 struct gpio_chip *gc;
2111
2112 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2113 if (!gc)
2114 return -ENOMEM;
2115
2116 mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2117 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2118 mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2119
2120 gc->label = "mt7530";
2121 gc->parent = dev;
2122 gc->owner = THIS_MODULE;
2123 gc->get_direction = mt7530_gpio_get_direction;
2124 gc->direction_input = mt7530_gpio_direction_input;
2125 gc->direction_output = mt7530_gpio_direction_output;
2126 gc->get = mt7530_gpio_get;
2127 gc->set = mt7530_gpio_set;
2128 gc->base = -1;
2129 gc->ngpio = 15;
2130 gc->can_sleep = true;
2131
2132 return devm_gpiochip_add_data(dev, gc, priv);
2133 }
2134 #endif /* CONFIG_GPIOLIB */
2135
2136 static irqreturn_t
mt7530_irq_thread_fn(int irq,void * dev_id)2137 mt7530_irq_thread_fn(int irq, void *dev_id)
2138 {
2139 struct mt7530_priv *priv = dev_id;
2140 bool handled = false;
2141 u32 val;
2142 int p;
2143
2144 mt7530_mutex_lock(priv);
2145 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2146 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2147 mt7530_mutex_unlock(priv);
2148
2149 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2150 if (BIT(p) & val) {
2151 unsigned int irq;
2152
2153 irq = irq_find_mapping(priv->irq_domain, p);
2154 handle_nested_irq(irq);
2155 handled = true;
2156 }
2157 }
2158
2159 return IRQ_RETVAL(handled);
2160 }
2161
2162 static void
mt7530_irq_mask(struct irq_data * d)2163 mt7530_irq_mask(struct irq_data *d)
2164 {
2165 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2166
2167 priv->irq_enable &= ~BIT(d->hwirq);
2168 }
2169
2170 static void
mt7530_irq_unmask(struct irq_data * d)2171 mt7530_irq_unmask(struct irq_data *d)
2172 {
2173 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2174
2175 priv->irq_enable |= BIT(d->hwirq);
2176 }
2177
2178 static void
mt7530_irq_bus_lock(struct irq_data * d)2179 mt7530_irq_bus_lock(struct irq_data *d)
2180 {
2181 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2182
2183 mt7530_mutex_lock(priv);
2184 }
2185
2186 static void
mt7530_irq_bus_sync_unlock(struct irq_data * d)2187 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2188 {
2189 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2190
2191 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2192 mt7530_mutex_unlock(priv);
2193 }
2194
2195 static struct irq_chip mt7530_irq_chip = {
2196 .name = KBUILD_MODNAME,
2197 .irq_mask = mt7530_irq_mask,
2198 .irq_unmask = mt7530_irq_unmask,
2199 .irq_bus_lock = mt7530_irq_bus_lock,
2200 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2201 };
2202
2203 static int
mt7530_irq_map(struct irq_domain * domain,unsigned int irq,irq_hw_number_t hwirq)2204 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2205 irq_hw_number_t hwirq)
2206 {
2207 irq_set_chip_data(irq, domain->host_data);
2208 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2209 irq_set_nested_thread(irq, true);
2210 irq_set_noprobe(irq);
2211
2212 return 0;
2213 }
2214
2215 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2216 .map = mt7530_irq_map,
2217 .xlate = irq_domain_xlate_onecell,
2218 };
2219
2220 static void
mt7988_irq_mask(struct irq_data * d)2221 mt7988_irq_mask(struct irq_data *d)
2222 {
2223 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2224
2225 priv->irq_enable &= ~BIT(d->hwirq);
2226 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2227 }
2228
2229 static void
mt7988_irq_unmask(struct irq_data * d)2230 mt7988_irq_unmask(struct irq_data *d)
2231 {
2232 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2233
2234 priv->irq_enable |= BIT(d->hwirq);
2235 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2236 }
2237
2238 static struct irq_chip mt7988_irq_chip = {
2239 .name = KBUILD_MODNAME,
2240 .irq_mask = mt7988_irq_mask,
2241 .irq_unmask = mt7988_irq_unmask,
2242 };
2243
2244 static int
mt7988_irq_map(struct irq_domain * domain,unsigned int irq,irq_hw_number_t hwirq)2245 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2246 irq_hw_number_t hwirq)
2247 {
2248 irq_set_chip_data(irq, domain->host_data);
2249 irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2250 irq_set_nested_thread(irq, true);
2251 irq_set_noprobe(irq);
2252
2253 return 0;
2254 }
2255
2256 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2257 .map = mt7988_irq_map,
2258 .xlate = irq_domain_xlate_onecell,
2259 };
2260
2261 static void
mt7530_setup_mdio_irq(struct mt7530_priv * priv)2262 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2263 {
2264 struct dsa_switch *ds = priv->ds;
2265 int p;
2266
2267 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2268 if (BIT(p) & ds->phys_mii_mask) {
2269 unsigned int irq;
2270
2271 irq = irq_create_mapping(priv->irq_domain, p);
2272 ds->slave_mii_bus->irq[p] = irq;
2273 }
2274 }
2275 }
2276
2277 static int
mt7530_setup_irq(struct mt7530_priv * priv)2278 mt7530_setup_irq(struct mt7530_priv *priv)
2279 {
2280 struct device *dev = priv->dev;
2281 struct device_node *np = dev->of_node;
2282 int ret;
2283
2284 if (!of_property_read_bool(np, "interrupt-controller")) {
2285 dev_info(dev, "no interrupt support\n");
2286 return 0;
2287 }
2288
2289 priv->irq = of_irq_get(np, 0);
2290 if (priv->irq <= 0) {
2291 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2292 return priv->irq ? : -EINVAL;
2293 }
2294
2295 if (priv->id == ID_MT7988)
2296 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2297 &mt7988_irq_domain_ops,
2298 priv);
2299 else
2300 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2301 &mt7530_irq_domain_ops,
2302 priv);
2303
2304 if (!priv->irq_domain) {
2305 dev_err(dev, "failed to create IRQ domain\n");
2306 return -ENOMEM;
2307 }
2308
2309 /* This register must be set for MT7530 to properly fire interrupts */
2310 if (priv->id != ID_MT7531)
2311 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2312
2313 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2314 IRQF_ONESHOT, KBUILD_MODNAME, priv);
2315 if (ret) {
2316 irq_domain_remove(priv->irq_domain);
2317 dev_err(dev, "failed to request IRQ: %d\n", ret);
2318 return ret;
2319 }
2320
2321 return 0;
2322 }
2323
2324 static void
mt7530_free_mdio_irq(struct mt7530_priv * priv)2325 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2326 {
2327 int p;
2328
2329 for (p = 0; p < MT7530_NUM_PHYS; p++) {
2330 if (BIT(p) & priv->ds->phys_mii_mask) {
2331 unsigned int irq;
2332
2333 irq = irq_find_mapping(priv->irq_domain, p);
2334 irq_dispose_mapping(irq);
2335 }
2336 }
2337 }
2338
2339 static void
mt7530_free_irq_common(struct mt7530_priv * priv)2340 mt7530_free_irq_common(struct mt7530_priv *priv)
2341 {
2342 free_irq(priv->irq, priv);
2343 irq_domain_remove(priv->irq_domain);
2344 }
2345
2346 static void
mt7530_free_irq(struct mt7530_priv * priv)2347 mt7530_free_irq(struct mt7530_priv *priv)
2348 {
2349 mt7530_free_mdio_irq(priv);
2350 mt7530_free_irq_common(priv);
2351 }
2352
2353 static int
mt7530_setup_mdio(struct mt7530_priv * priv)2354 mt7530_setup_mdio(struct mt7530_priv *priv)
2355 {
2356 struct dsa_switch *ds = priv->ds;
2357 struct device *dev = priv->dev;
2358 struct mii_bus *bus;
2359 static int idx;
2360 int ret;
2361
2362 bus = devm_mdiobus_alloc(dev);
2363 if (!bus)
2364 return -ENOMEM;
2365
2366 ds->slave_mii_bus = bus;
2367 bus->priv = priv;
2368 bus->name = KBUILD_MODNAME "-mii";
2369 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2370 bus->read = mt753x_phy_read_c22;
2371 bus->write = mt753x_phy_write_c22;
2372 bus->read_c45 = mt753x_phy_read_c45;
2373 bus->write_c45 = mt753x_phy_write_c45;
2374 bus->parent = dev;
2375 bus->phy_mask = ~ds->phys_mii_mask;
2376
2377 if (priv->irq)
2378 mt7530_setup_mdio_irq(priv);
2379
2380 ret = devm_mdiobus_register(dev, bus);
2381 if (ret) {
2382 dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2383 if (priv->irq)
2384 mt7530_free_mdio_irq(priv);
2385 }
2386
2387 return ret;
2388 }
2389
2390 static int
mt7530_setup(struct dsa_switch * ds)2391 mt7530_setup(struct dsa_switch *ds)
2392 {
2393 struct mt7530_priv *priv = ds->priv;
2394 struct device_node *dn = NULL;
2395 struct device_node *phy_node;
2396 struct device_node *mac_np;
2397 struct mt7530_dummy_poll p;
2398 phy_interface_t interface;
2399 struct dsa_port *cpu_dp;
2400 u32 id, val;
2401 int ret, i;
2402
2403 /* The parent node of master netdev which holds the common system
2404 * controller also is the container for two GMACs nodes representing
2405 * as two netdev instances.
2406 */
2407 dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2408 dn = cpu_dp->master->dev.of_node->parent;
2409 /* It doesn't matter which CPU port is found first,
2410 * their masters should share the same parent OF node
2411 */
2412 break;
2413 }
2414
2415 if (!dn) {
2416 dev_err(ds->dev, "parent OF node of DSA master not found");
2417 return -EINVAL;
2418 }
2419
2420 ds->assisted_learning_on_cpu_port = true;
2421 ds->mtu_enforcement_ingress = true;
2422
2423 if (priv->id == ID_MT7530) {
2424 regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2425 ret = regulator_enable(priv->core_pwr);
2426 if (ret < 0) {
2427 dev_err(priv->dev,
2428 "Failed to enable core power: %d\n", ret);
2429 return ret;
2430 }
2431
2432 regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2433 ret = regulator_enable(priv->io_pwr);
2434 if (ret < 0) {
2435 dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2436 ret);
2437 return ret;
2438 }
2439 }
2440
2441 /* Reset whole chip through gpio pin or memory-mapped registers for
2442 * different type of hardware
2443 */
2444 if (priv->mcm) {
2445 reset_control_assert(priv->rstc);
2446 usleep_range(5000, 5100);
2447 reset_control_deassert(priv->rstc);
2448 } else {
2449 gpiod_set_value_cansleep(priv->reset, 0);
2450 usleep_range(5000, 5100);
2451 gpiod_set_value_cansleep(priv->reset, 1);
2452 }
2453
2454 /* Waiting for MT7530 got to stable */
2455 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2456 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2457 20, 1000000);
2458 if (ret < 0) {
2459 dev_err(priv->dev, "reset timeout\n");
2460 return ret;
2461 }
2462
2463 id = mt7530_read(priv, MT7530_CREV);
2464 id >>= CHIP_NAME_SHIFT;
2465 if (id != MT7530_ID) {
2466 dev_err(priv->dev, "chip %x can't be supported\n", id);
2467 return -ENODEV;
2468 }
2469
2470 /* Reset the switch through internal reset */
2471 mt7530_write(priv, MT7530_SYS_CTRL,
2472 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2473 SYS_CTRL_REG_RST);
2474
2475 /* Lower Tx driving for TRGMII path */
2476 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2477 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2478 TD_DM_DRVP(8) | TD_DM_DRVN(8));
2479
2480 for (i = 0; i < NUM_TRGMII_CTRL; i++)
2481 mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2482 RD_TAP_MASK, RD_TAP(16));
2483
2484 /* Enable port 6 */
2485 val = mt7530_read(priv, MT7530_MHWTRAP);
2486 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2487 val |= MHWTRAP_MANUAL;
2488 mt7530_write(priv, MT7530_MHWTRAP, val);
2489
2490 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2491
2492 if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2493 mt7530_pll_setup(priv);
2494
2495 mt753x_trap_frames(priv);
2496
2497 /* Enable and reset MIB counters */
2498 mt7530_mib_reset(ds);
2499
2500 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2501 /* Disable forwarding by default on all ports */
2502 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2503 PCR_MATRIX_CLR);
2504
2505 /* Disable learning by default on all ports */
2506 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2507
2508 if (dsa_is_cpu_port(ds, i)) {
2509 ret = mt753x_cpu_port_enable(ds, i);
2510 if (ret)
2511 return ret;
2512 } else {
2513 mt7530_port_disable(ds, i);
2514
2515 /* Set default PVID to 0 on all user ports */
2516 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2517 G0_PORT_VID_DEF);
2518 }
2519 /* Enable consistent egress tag */
2520 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2521 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2522 }
2523
2524 /* Allow mirroring frames received on the local port (monitor port). */
2525 mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2526
2527 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2528 ret = mt7530_setup_vlan0(priv);
2529 if (ret)
2530 return ret;
2531
2532 /* Setup port 5 */
2533 priv->p5_intf_sel = P5_DISABLED;
2534 interface = PHY_INTERFACE_MODE_NA;
2535
2536 if (!dsa_is_unused_port(ds, 5)) {
2537 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2538 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2539 if (ret && ret != -ENODEV)
2540 return ret;
2541 } else {
2542 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2543 for_each_child_of_node(dn, mac_np) {
2544 if (!of_device_is_compatible(mac_np,
2545 "mediatek,eth-mac"))
2546 continue;
2547
2548 ret = of_property_read_u32(mac_np, "reg", &id);
2549 if (ret < 0 || id != 1)
2550 continue;
2551
2552 phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2553 if (!phy_node)
2554 continue;
2555
2556 if (phy_node->parent == priv->dev->of_node->parent) {
2557 ret = of_get_phy_mode(mac_np, &interface);
2558 if (ret && ret != -ENODEV) {
2559 of_node_put(mac_np);
2560 of_node_put(phy_node);
2561 return ret;
2562 }
2563 id = of_mdio_parse_addr(ds->dev, phy_node);
2564 if (id == 0)
2565 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2566 if (id == 4)
2567 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2568 }
2569 of_node_put(mac_np);
2570 of_node_put(phy_node);
2571 break;
2572 }
2573 }
2574
2575 #ifdef CONFIG_GPIOLIB
2576 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2577 ret = mt7530_setup_gpio(priv);
2578 if (ret)
2579 return ret;
2580 }
2581 #endif /* CONFIG_GPIOLIB */
2582
2583 mt7530_setup_port5(ds, interface);
2584
2585 /* Flush the FDB table */
2586 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2587 if (ret < 0)
2588 return ret;
2589
2590 return 0;
2591 }
2592
2593 static int
mt7531_setup_common(struct dsa_switch * ds)2594 mt7531_setup_common(struct dsa_switch *ds)
2595 {
2596 struct mt7530_priv *priv = ds->priv;
2597 int ret, i;
2598
2599 mt753x_trap_frames(priv);
2600
2601 /* Enable and reset MIB counters */
2602 mt7530_mib_reset(ds);
2603
2604 /* Disable flooding on all ports */
2605 mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2606 UNU_FFP_MASK);
2607
2608 for (i = 0; i < MT7530_NUM_PORTS; i++) {
2609 /* Disable forwarding by default on all ports */
2610 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2611 PCR_MATRIX_CLR);
2612
2613 /* Disable learning by default on all ports */
2614 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2615
2616 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2617
2618 if (dsa_is_cpu_port(ds, i)) {
2619 ret = mt753x_cpu_port_enable(ds, i);
2620 if (ret)
2621 return ret;
2622 } else {
2623 mt7530_port_disable(ds, i);
2624
2625 /* Set default PVID to 0 on all user ports */
2626 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2627 G0_PORT_VID_DEF);
2628 }
2629
2630 /* Enable consistent egress tag */
2631 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2632 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2633 }
2634
2635 /* Allow mirroring frames received on the local port (monitor port). */
2636 mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2637
2638 /* Flush the FDB table */
2639 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2640 if (ret < 0)
2641 return ret;
2642
2643 /* Setup VLAN ID 0 for VLAN-unaware bridges */
2644 return mt7530_setup_vlan0(priv);
2645 }
2646
2647 static int
mt7531_setup(struct dsa_switch * ds)2648 mt7531_setup(struct dsa_switch *ds)
2649 {
2650 struct mt7530_priv *priv = ds->priv;
2651 struct mt7530_dummy_poll p;
2652 u32 val, id;
2653 int ret, i;
2654
2655 /* Reset whole chip through gpio pin or memory-mapped registers for
2656 * different type of hardware
2657 */
2658 if (priv->mcm) {
2659 reset_control_assert(priv->rstc);
2660 usleep_range(5000, 5100);
2661 reset_control_deassert(priv->rstc);
2662 } else {
2663 gpiod_set_value_cansleep(priv->reset, 0);
2664 usleep_range(5000, 5100);
2665 gpiod_set_value_cansleep(priv->reset, 1);
2666 }
2667
2668 /* Waiting for MT7530 got to stable */
2669 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2670 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2671 20, 1000000);
2672 if (ret < 0) {
2673 dev_err(priv->dev, "reset timeout\n");
2674 return ret;
2675 }
2676
2677 id = mt7530_read(priv, MT7531_CREV);
2678 id >>= CHIP_NAME_SHIFT;
2679
2680 if (id != MT7531_ID) {
2681 dev_err(priv->dev, "chip %x can't be supported\n", id);
2682 return -ENODEV;
2683 }
2684
2685 /* all MACs must be forced link-down before sw reset */
2686 for (i = 0; i < MT7530_NUM_PORTS; i++)
2687 mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2688
2689 /* Reset the switch through internal reset */
2690 mt7530_write(priv, MT7530_SYS_CTRL,
2691 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2692 SYS_CTRL_REG_RST);
2693
2694 mt7531_pll_setup(priv);
2695
2696 if (mt7531_dual_sgmii_supported(priv)) {
2697 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2698
2699 /* Let ds->slave_mii_bus be able to access external phy. */
2700 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2701 MT7531_EXT_P_MDC_11);
2702 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2703 MT7531_EXT_P_MDIO_12);
2704 } else {
2705 priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2706 }
2707 dev_dbg(ds->dev, "P5 support %s interface\n",
2708 p5_intf_modes(priv->p5_intf_sel));
2709
2710 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2711 MT7531_GPIO0_INTERRUPT);
2712
2713 /* Let phylink decide the interface later. */
2714 priv->p5_interface = PHY_INTERFACE_MODE_NA;
2715 priv->p6_interface = PHY_INTERFACE_MODE_NA;
2716
2717 /* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2718 * phy_device has not yet been created provided for
2719 * phy_[read,write]_mmd_indirect is called, we provide our own
2720 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2721 */
2722 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2723 MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2724 val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2725 val &= ~MT7531_PHY_PLL_OFF;
2726 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2727 CORE_PLL_GROUP4, val);
2728
2729 /* Disable EEE advertisement on the switch PHYs. */
2730 for (i = MT753X_CTRL_PHY_ADDR;
2731 i < MT753X_CTRL_PHY_ADDR + MT7530_NUM_PHYS; i++) {
2732 mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2733 0);
2734 }
2735
2736 mt7531_setup_common(ds);
2737
2738 ds->assisted_learning_on_cpu_port = true;
2739 ds->mtu_enforcement_ingress = true;
2740
2741 return 0;
2742 }
2743
mt7530_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2744 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2745 struct phylink_config *config)
2746 {
2747 switch (port) {
2748 case 0 ... 4: /* Internal phy */
2749 __set_bit(PHY_INTERFACE_MODE_GMII,
2750 config->supported_interfaces);
2751 break;
2752
2753 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2754 phy_interface_set_rgmii(config->supported_interfaces);
2755 __set_bit(PHY_INTERFACE_MODE_MII,
2756 config->supported_interfaces);
2757 __set_bit(PHY_INTERFACE_MODE_GMII,
2758 config->supported_interfaces);
2759 break;
2760
2761 case 6: /* 1st cpu port */
2762 __set_bit(PHY_INTERFACE_MODE_RGMII,
2763 config->supported_interfaces);
2764 __set_bit(PHY_INTERFACE_MODE_TRGMII,
2765 config->supported_interfaces);
2766 break;
2767 }
2768 }
2769
mt7531_is_rgmii_port(struct mt7530_priv * priv,u32 port)2770 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2771 {
2772 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2773 }
2774
mt7531_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2775 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2776 struct phylink_config *config)
2777 {
2778 struct mt7530_priv *priv = ds->priv;
2779
2780 switch (port) {
2781 case 0 ... 4: /* Internal phy */
2782 __set_bit(PHY_INTERFACE_MODE_GMII,
2783 config->supported_interfaces);
2784 break;
2785
2786 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2787 if (mt7531_is_rgmii_port(priv, port)) {
2788 phy_interface_set_rgmii(config->supported_interfaces);
2789 break;
2790 }
2791 fallthrough;
2792
2793 case 6: /* 1st cpu port supports sgmii/8023z only */
2794 __set_bit(PHY_INTERFACE_MODE_SGMII,
2795 config->supported_interfaces);
2796 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2797 config->supported_interfaces);
2798 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
2799 config->supported_interfaces);
2800
2801 config->mac_capabilities |= MAC_2500FD;
2802 break;
2803 }
2804 }
2805
mt7988_mac_port_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)2806 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2807 struct phylink_config *config)
2808 {
2809 phy_interface_zero(config->supported_interfaces);
2810
2811 switch (port) {
2812 case 0 ... 4: /* Internal phy */
2813 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2814 config->supported_interfaces);
2815 break;
2816
2817 case 6:
2818 __set_bit(PHY_INTERFACE_MODE_INTERNAL,
2819 config->supported_interfaces);
2820 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2821 MAC_10000FD;
2822 }
2823 }
2824
2825 static int
mt753x_pad_setup(struct dsa_switch * ds,const struct phylink_link_state * state)2826 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2827 {
2828 struct mt7530_priv *priv = ds->priv;
2829
2830 return priv->info->pad_setup(ds, state->interface);
2831 }
2832
2833 static int
mt7530_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2834 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2835 phy_interface_t interface)
2836 {
2837 struct mt7530_priv *priv = ds->priv;
2838
2839 /* Only need to setup port5. */
2840 if (port != 5)
2841 return 0;
2842
2843 mt7530_setup_port5(priv->ds, interface);
2844
2845 return 0;
2846 }
2847
mt7531_rgmii_setup(struct mt7530_priv * priv,u32 port,phy_interface_t interface,struct phy_device * phydev)2848 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2849 phy_interface_t interface,
2850 struct phy_device *phydev)
2851 {
2852 u32 val;
2853
2854 if (!mt7531_is_rgmii_port(priv, port)) {
2855 dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2856 port);
2857 return -EINVAL;
2858 }
2859
2860 val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2861 val |= GP_CLK_EN;
2862 val &= ~GP_MODE_MASK;
2863 val |= GP_MODE(MT7531_GP_MODE_RGMII);
2864 val &= ~CLK_SKEW_IN_MASK;
2865 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2866 val &= ~CLK_SKEW_OUT_MASK;
2867 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2868 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2869
2870 /* Do not adjust rgmii delay when vendor phy driver presents. */
2871 if (!phydev || phy_driver_is_genphy(phydev)) {
2872 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2873 switch (interface) {
2874 case PHY_INTERFACE_MODE_RGMII:
2875 val |= TXCLK_NO_REVERSE;
2876 val |= RXCLK_NO_DELAY;
2877 break;
2878 case PHY_INTERFACE_MODE_RGMII_RXID:
2879 val |= TXCLK_NO_REVERSE;
2880 break;
2881 case PHY_INTERFACE_MODE_RGMII_TXID:
2882 val |= RXCLK_NO_DELAY;
2883 break;
2884 case PHY_INTERFACE_MODE_RGMII_ID:
2885 break;
2886 default:
2887 return -EINVAL;
2888 }
2889 }
2890 mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2891
2892 return 0;
2893 }
2894
mt753x_is_mac_port(u32 port)2895 static bool mt753x_is_mac_port(u32 port)
2896 {
2897 return (port == 5 || port == 6);
2898 }
2899
2900 static int
mt7988_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2901 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2902 phy_interface_t interface)
2903 {
2904 if (dsa_is_cpu_port(ds, port) &&
2905 interface == PHY_INTERFACE_MODE_INTERNAL)
2906 return 0;
2907
2908 return -EINVAL;
2909 }
2910
2911 static int
mt7531_mac_config(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)2912 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2913 phy_interface_t interface)
2914 {
2915 struct mt7530_priv *priv = ds->priv;
2916 struct phy_device *phydev;
2917 struct dsa_port *dp;
2918
2919 if (!mt753x_is_mac_port(port)) {
2920 dev_err(priv->dev, "port %d is not a MAC port\n", port);
2921 return -EINVAL;
2922 }
2923
2924 switch (interface) {
2925 case PHY_INTERFACE_MODE_RGMII:
2926 case PHY_INTERFACE_MODE_RGMII_ID:
2927 case PHY_INTERFACE_MODE_RGMII_RXID:
2928 case PHY_INTERFACE_MODE_RGMII_TXID:
2929 dp = dsa_to_port(ds, port);
2930 phydev = dp->slave->phydev;
2931 return mt7531_rgmii_setup(priv, port, interface, phydev);
2932 case PHY_INTERFACE_MODE_SGMII:
2933 case PHY_INTERFACE_MODE_NA:
2934 case PHY_INTERFACE_MODE_1000BASEX:
2935 case PHY_INTERFACE_MODE_2500BASEX:
2936 /* handled in SGMII PCS driver */
2937 return 0;
2938 default:
2939 return -EINVAL;
2940 }
2941
2942 return -EINVAL;
2943 }
2944
2945 static int
mt753x_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)2946 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2947 const struct phylink_link_state *state)
2948 {
2949 struct mt7530_priv *priv = ds->priv;
2950
2951 return priv->info->mac_port_config(ds, port, mode, state->interface);
2952 }
2953
2954 static struct phylink_pcs *
mt753x_phylink_mac_select_pcs(struct dsa_switch * ds,int port,phy_interface_t interface)2955 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2956 phy_interface_t interface)
2957 {
2958 struct mt7530_priv *priv = ds->priv;
2959
2960 switch (interface) {
2961 case PHY_INTERFACE_MODE_TRGMII:
2962 return &priv->pcs[port].pcs;
2963 case PHY_INTERFACE_MODE_SGMII:
2964 case PHY_INTERFACE_MODE_1000BASEX:
2965 case PHY_INTERFACE_MODE_2500BASEX:
2966 return priv->ports[port].sgmii_pcs;
2967 default:
2968 return NULL;
2969 }
2970 }
2971
2972 static void
mt753x_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)2973 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2974 const struct phylink_link_state *state)
2975 {
2976 struct mt7530_priv *priv = ds->priv;
2977 u32 mcr_cur, mcr_new;
2978
2979 switch (port) {
2980 case 0 ... 4: /* Internal phy */
2981 if (state->interface != PHY_INTERFACE_MODE_GMII &&
2982 state->interface != PHY_INTERFACE_MODE_INTERNAL)
2983 goto unsupported;
2984 break;
2985 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2986 if (priv->p5_interface == state->interface)
2987 break;
2988
2989 if (mt753x_mac_config(ds, port, mode, state) < 0)
2990 goto unsupported;
2991
2992 if (priv->p5_intf_sel != P5_DISABLED)
2993 priv->p5_interface = state->interface;
2994 break;
2995 case 6: /* 1st cpu port */
2996 if (priv->p6_interface == state->interface)
2997 break;
2998
2999 mt753x_pad_setup(ds, state);
3000
3001 if (mt753x_mac_config(ds, port, mode, state) < 0)
3002 goto unsupported;
3003
3004 priv->p6_interface = state->interface;
3005 break;
3006 default:
3007 unsupported:
3008 dev_err(ds->dev, "%s: unsupported %s port: %i\n",
3009 __func__, phy_modes(state->interface), port);
3010 return;
3011 }
3012
3013 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
3014 mcr_new = mcr_cur;
3015 mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
3016 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
3017 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
3018
3019 /* Are we connected to external phy */
3020 if (port == 5 && dsa_is_user_port(ds, 5))
3021 mcr_new |= PMCR_EXT_PHY;
3022
3023 if (mcr_new != mcr_cur)
3024 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
3025 }
3026
mt753x_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)3027 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
3028 unsigned int mode,
3029 phy_interface_t interface)
3030 {
3031 struct mt7530_priv *priv = ds->priv;
3032
3033 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
3034 }
3035
mt753x_phylink_pcs_link_up(struct phylink_pcs * pcs,unsigned int mode,phy_interface_t interface,int speed,int duplex)3036 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
3037 unsigned int mode,
3038 phy_interface_t interface,
3039 int speed, int duplex)
3040 {
3041 if (pcs->ops->pcs_link_up)
3042 pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
3043 }
3044
mt753x_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)3045 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
3046 unsigned int mode,
3047 phy_interface_t interface,
3048 struct phy_device *phydev,
3049 int speed, int duplex,
3050 bool tx_pause, bool rx_pause)
3051 {
3052 struct mt7530_priv *priv = ds->priv;
3053 u32 mcr;
3054
3055 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
3056
3057 /* MT753x MAC works in 1G full duplex mode for all up-clocked
3058 * variants.
3059 */
3060 if (interface == PHY_INTERFACE_MODE_TRGMII ||
3061 (phy_interface_mode_is_8023z(interface))) {
3062 speed = SPEED_1000;
3063 duplex = DUPLEX_FULL;
3064 }
3065
3066 switch (speed) {
3067 case SPEED_1000:
3068 mcr |= PMCR_FORCE_SPEED_1000;
3069 break;
3070 case SPEED_100:
3071 mcr |= PMCR_FORCE_SPEED_100;
3072 break;
3073 }
3074 if (duplex == DUPLEX_FULL) {
3075 mcr |= PMCR_FORCE_FDX;
3076 if (tx_pause)
3077 mcr |= PMCR_TX_FC_EN;
3078 if (rx_pause)
3079 mcr |= PMCR_RX_FC_EN;
3080 }
3081
3082 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
3083 switch (speed) {
3084 case SPEED_1000:
3085 mcr |= PMCR_FORCE_EEE1G;
3086 break;
3087 case SPEED_100:
3088 mcr |= PMCR_FORCE_EEE100;
3089 break;
3090 }
3091 }
3092
3093 mt7530_set(priv, MT7530_PMCR_P(port), mcr);
3094 }
3095
3096 static int
mt7531_cpu_port_config(struct dsa_switch * ds,int port)3097 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
3098 {
3099 struct mt7530_priv *priv = ds->priv;
3100 phy_interface_t interface;
3101 int speed;
3102 int ret;
3103
3104 switch (port) {
3105 case 5:
3106 if (mt7531_is_rgmii_port(priv, port))
3107 interface = PHY_INTERFACE_MODE_RGMII;
3108 else
3109 interface = PHY_INTERFACE_MODE_2500BASEX;
3110
3111 priv->p5_interface = interface;
3112 break;
3113 case 6:
3114 interface = PHY_INTERFACE_MODE_2500BASEX;
3115
3116 priv->p6_interface = interface;
3117 break;
3118 default:
3119 return -EINVAL;
3120 }
3121
3122 if (interface == PHY_INTERFACE_MODE_2500BASEX)
3123 speed = SPEED_2500;
3124 else
3125 speed = SPEED_1000;
3126
3127 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
3128 if (ret)
3129 return ret;
3130 mt7530_write(priv, MT7530_PMCR_P(port),
3131 PMCR_CPU_PORT_SETTING(priv->id));
3132 mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
3133 interface, speed, DUPLEX_FULL);
3134 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
3135 speed, DUPLEX_FULL, true, true);
3136
3137 return 0;
3138 }
3139
3140 static int
mt7988_cpu_port_config(struct dsa_switch * ds,int port)3141 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
3142 {
3143 struct mt7530_priv *priv = ds->priv;
3144
3145 mt7530_write(priv, MT7530_PMCR_P(port),
3146 PMCR_CPU_PORT_SETTING(priv->id));
3147
3148 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
3149 PHY_INTERFACE_MODE_INTERNAL, NULL,
3150 SPEED_10000, DUPLEX_FULL, true, true);
3151
3152 return 0;
3153 }
3154
mt753x_phylink_get_caps(struct dsa_switch * ds,int port,struct phylink_config * config)3155 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
3156 struct phylink_config *config)
3157 {
3158 struct mt7530_priv *priv = ds->priv;
3159
3160 /* This switch only supports full-duplex at 1Gbps */
3161 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
3162 MAC_10 | MAC_100 | MAC_1000FD;
3163
3164 priv->info->mac_port_get_caps(ds, port, config);
3165 }
3166
mt753x_pcs_validate(struct phylink_pcs * pcs,unsigned long * supported,const struct phylink_link_state * state)3167 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
3168 unsigned long *supported,
3169 const struct phylink_link_state *state)
3170 {
3171 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */
3172 if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
3173 phy_interface_mode_is_8023z(state->interface))
3174 phylink_clear(supported, Autoneg);
3175
3176 return 0;
3177 }
3178
mt7530_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)3179 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
3180 struct phylink_link_state *state)
3181 {
3182 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3183 int port = pcs_to_mt753x_pcs(pcs)->port;
3184 u32 pmsr;
3185
3186 pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3187
3188 state->link = (pmsr & PMSR_LINK);
3189 state->an_complete = state->link;
3190 state->duplex = !!(pmsr & PMSR_DPX);
3191
3192 switch (pmsr & PMSR_SPEED_MASK) {
3193 case PMSR_SPEED_10:
3194 state->speed = SPEED_10;
3195 break;
3196 case PMSR_SPEED_100:
3197 state->speed = SPEED_100;
3198 break;
3199 case PMSR_SPEED_1000:
3200 state->speed = SPEED_1000;
3201 break;
3202 default:
3203 state->speed = SPEED_UNKNOWN;
3204 break;
3205 }
3206
3207 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3208 if (pmsr & PMSR_RX_FC)
3209 state->pause |= MLO_PAUSE_RX;
3210 if (pmsr & PMSR_TX_FC)
3211 state->pause |= MLO_PAUSE_TX;
3212 }
3213
mt753x_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)3214 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3215 phy_interface_t interface,
3216 const unsigned long *advertising,
3217 bool permit_pause_to_mac)
3218 {
3219 return 0;
3220 }
3221
mt7530_pcs_an_restart(struct phylink_pcs * pcs)3222 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3223 {
3224 }
3225
3226 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3227 .pcs_validate = mt753x_pcs_validate,
3228 .pcs_get_state = mt7530_pcs_get_state,
3229 .pcs_config = mt753x_pcs_config,
3230 .pcs_an_restart = mt7530_pcs_an_restart,
3231 };
3232
3233 static int
mt753x_setup(struct dsa_switch * ds)3234 mt753x_setup(struct dsa_switch *ds)
3235 {
3236 struct mt7530_priv *priv = ds->priv;
3237 int i, ret;
3238
3239 /* Initialise the PCS devices */
3240 for (i = 0; i < priv->ds->num_ports; i++) {
3241 priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3242 priv->pcs[i].pcs.neg_mode = true;
3243 priv->pcs[i].priv = priv;
3244 priv->pcs[i].port = i;
3245 }
3246
3247 ret = priv->info->sw_setup(ds);
3248 if (ret)
3249 return ret;
3250
3251 ret = mt7530_setup_irq(priv);
3252 if (ret)
3253 return ret;
3254
3255 ret = mt7530_setup_mdio(priv);
3256 if (ret && priv->irq)
3257 mt7530_free_irq_common(priv);
3258
3259 if (priv->create_sgmii) {
3260 ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3261 if (ret && priv->irq)
3262 mt7530_free_irq(priv);
3263 }
3264
3265 return ret;
3266 }
3267
mt753x_get_mac_eee(struct dsa_switch * ds,int port,struct ethtool_eee * e)3268 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3269 struct ethtool_eee *e)
3270 {
3271 struct mt7530_priv *priv = ds->priv;
3272 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3273
3274 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3275 e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3276
3277 return 0;
3278 }
3279
mt753x_set_mac_eee(struct dsa_switch * ds,int port,struct ethtool_eee * e)3280 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3281 struct ethtool_eee *e)
3282 {
3283 struct mt7530_priv *priv = ds->priv;
3284 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3285
3286 if (e->tx_lpi_timer > 0xFFF)
3287 return -EINVAL;
3288
3289 set = SET_LPI_THRESH(e->tx_lpi_timer);
3290 if (!e->tx_lpi_enabled)
3291 /* Force LPI Mode without a delay */
3292 set |= LPI_MODE_EN;
3293 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3294
3295 return 0;
3296 }
3297
mt7988_pad_setup(struct dsa_switch * ds,phy_interface_t interface)3298 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3299 {
3300 return 0;
3301 }
3302
mt7988_setup(struct dsa_switch * ds)3303 static int mt7988_setup(struct dsa_switch *ds)
3304 {
3305 struct mt7530_priv *priv = ds->priv;
3306
3307 /* Reset the switch */
3308 reset_control_assert(priv->rstc);
3309 usleep_range(20, 50);
3310 reset_control_deassert(priv->rstc);
3311 usleep_range(20, 50);
3312
3313 /* Reset the switch PHYs */
3314 mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3315
3316 return mt7531_setup_common(ds);
3317 }
3318
3319 const struct dsa_switch_ops mt7530_switch_ops = {
3320 .get_tag_protocol = mtk_get_tag_protocol,
3321 .setup = mt753x_setup,
3322 .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3323 .get_strings = mt7530_get_strings,
3324 .get_ethtool_stats = mt7530_get_ethtool_stats,
3325 .get_sset_count = mt7530_get_sset_count,
3326 .set_ageing_time = mt7530_set_ageing_time,
3327 .port_enable = mt7530_port_enable,
3328 .port_disable = mt7530_port_disable,
3329 .port_change_mtu = mt7530_port_change_mtu,
3330 .port_max_mtu = mt7530_port_max_mtu,
3331 .port_stp_state_set = mt7530_stp_state_set,
3332 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags,
3333 .port_bridge_flags = mt7530_port_bridge_flags,
3334 .port_bridge_join = mt7530_port_bridge_join,
3335 .port_bridge_leave = mt7530_port_bridge_leave,
3336 .port_fdb_add = mt7530_port_fdb_add,
3337 .port_fdb_del = mt7530_port_fdb_del,
3338 .port_fdb_dump = mt7530_port_fdb_dump,
3339 .port_mdb_add = mt7530_port_mdb_add,
3340 .port_mdb_del = mt7530_port_mdb_del,
3341 .port_vlan_filtering = mt7530_port_vlan_filtering,
3342 .port_vlan_add = mt7530_port_vlan_add,
3343 .port_vlan_del = mt7530_port_vlan_del,
3344 .port_mirror_add = mt753x_port_mirror_add,
3345 .port_mirror_del = mt753x_port_mirror_del,
3346 .phylink_get_caps = mt753x_phylink_get_caps,
3347 .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs,
3348 .phylink_mac_config = mt753x_phylink_mac_config,
3349 .phylink_mac_link_down = mt753x_phylink_mac_link_down,
3350 .phylink_mac_link_up = mt753x_phylink_mac_link_up,
3351 .get_mac_eee = mt753x_get_mac_eee,
3352 .set_mac_eee = mt753x_set_mac_eee,
3353 };
3354 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3355
3356 const struct mt753x_info mt753x_table[] = {
3357 [ID_MT7621] = {
3358 .id = ID_MT7621,
3359 .pcs_ops = &mt7530_pcs_ops,
3360 .sw_setup = mt7530_setup,
3361 .phy_read_c22 = mt7530_phy_read_c22,
3362 .phy_write_c22 = mt7530_phy_write_c22,
3363 .phy_read_c45 = mt7530_phy_read_c45,
3364 .phy_write_c45 = mt7530_phy_write_c45,
3365 .pad_setup = mt7530_pad_clk_setup,
3366 .mac_port_get_caps = mt7530_mac_port_get_caps,
3367 .mac_port_config = mt7530_mac_config,
3368 },
3369 [ID_MT7530] = {
3370 .id = ID_MT7530,
3371 .pcs_ops = &mt7530_pcs_ops,
3372 .sw_setup = mt7530_setup,
3373 .phy_read_c22 = mt7530_phy_read_c22,
3374 .phy_write_c22 = mt7530_phy_write_c22,
3375 .phy_read_c45 = mt7530_phy_read_c45,
3376 .phy_write_c45 = mt7530_phy_write_c45,
3377 .pad_setup = mt7530_pad_clk_setup,
3378 .mac_port_get_caps = mt7530_mac_port_get_caps,
3379 .mac_port_config = mt7530_mac_config,
3380 },
3381 [ID_MT7531] = {
3382 .id = ID_MT7531,
3383 .pcs_ops = &mt7530_pcs_ops,
3384 .sw_setup = mt7531_setup,
3385 .phy_read_c22 = mt7531_ind_c22_phy_read,
3386 .phy_write_c22 = mt7531_ind_c22_phy_write,
3387 .phy_read_c45 = mt7531_ind_c45_phy_read,
3388 .phy_write_c45 = mt7531_ind_c45_phy_write,
3389 .pad_setup = mt7531_pad_setup,
3390 .cpu_port_config = mt7531_cpu_port_config,
3391 .mac_port_get_caps = mt7531_mac_port_get_caps,
3392 .mac_port_config = mt7531_mac_config,
3393 },
3394 [ID_MT7988] = {
3395 .id = ID_MT7988,
3396 .pcs_ops = &mt7530_pcs_ops,
3397 .sw_setup = mt7988_setup,
3398 .phy_read_c22 = mt7531_ind_c22_phy_read,
3399 .phy_write_c22 = mt7531_ind_c22_phy_write,
3400 .phy_read_c45 = mt7531_ind_c45_phy_read,
3401 .phy_write_c45 = mt7531_ind_c45_phy_write,
3402 .pad_setup = mt7988_pad_setup,
3403 .cpu_port_config = mt7988_cpu_port_config,
3404 .mac_port_get_caps = mt7988_mac_port_get_caps,
3405 .mac_port_config = mt7988_mac_config,
3406 },
3407 };
3408 EXPORT_SYMBOL_GPL(mt753x_table);
3409
3410 int
mt7530_probe_common(struct mt7530_priv * priv)3411 mt7530_probe_common(struct mt7530_priv *priv)
3412 {
3413 struct device *dev = priv->dev;
3414
3415 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3416 if (!priv->ds)
3417 return -ENOMEM;
3418
3419 priv->ds->dev = dev;
3420 priv->ds->num_ports = MT7530_NUM_PORTS;
3421
3422 /* Get the hardware identifier from the devicetree node.
3423 * We will need it for some of the clock and regulator setup.
3424 */
3425 priv->info = of_device_get_match_data(dev);
3426 if (!priv->info)
3427 return -EINVAL;
3428
3429 /* Sanity check if these required device operations are filled
3430 * properly.
3431 */
3432 if (!priv->info->sw_setup || !priv->info->pad_setup ||
3433 !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3434 !priv->info->mac_port_get_caps ||
3435 !priv->info->mac_port_config)
3436 return -EINVAL;
3437
3438 priv->id = priv->info->id;
3439 priv->dev = dev;
3440 priv->ds->priv = priv;
3441 priv->ds->ops = &mt7530_switch_ops;
3442 mutex_init(&priv->reg_mutex);
3443 dev_set_drvdata(dev, priv);
3444
3445 return 0;
3446 }
3447 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3448
3449 void
mt7530_remove_common(struct mt7530_priv * priv)3450 mt7530_remove_common(struct mt7530_priv *priv)
3451 {
3452 if (priv->irq)
3453 mt7530_free_irq(priv);
3454
3455 dsa_unregister_switch(priv->ds);
3456
3457 mutex_destroy(&priv->reg_mutex);
3458 }
3459 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3460
3461 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3462 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3463 MODULE_LICENSE("GPL");
3464