xref: /openbmc/qemu/target/arm/helper.c (revision ab37d6bd8917da6130a22a11c5d6e32b31f7d5d4)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* for crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34 
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36 
37 static void switch_mode(CPUARMState *env, int mode);
38 
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41     assert(ri->fieldoffset);
42     if (cpreg_field_is_64bit(ri)) {
43         return CPREG_FIELD64(env, ri);
44     } else {
45         return CPREG_FIELD32(env, ri);
46     }
47 }
48 
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51     assert(ri->fieldoffset);
52     if (cpreg_field_is_64bit(ri)) {
53         CPREG_FIELD64(env, ri) = value;
54     } else {
55         CPREG_FIELD32(env, ri) = value;
56     }
57 }
58 
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61     return (char *)env + ri->fieldoffset;
62 }
63 
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66     /* Raw read of a coprocessor register (as needed for migration, etc). */
67     if (ri->type & ARM_CP_CONST) {
68         return ri->resetvalue;
69     } else if (ri->raw_readfn) {
70         return ri->raw_readfn(env, ri);
71     } else if (ri->readfn) {
72         return ri->readfn(env, ri);
73     } else {
74         return raw_read(env, ri);
75     }
76 }
77 
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79                              uint64_t v)
80 {
81     /*
82      * Raw write of a coprocessor register (as needed for migration, etc).
83      * Note that constant registers are treated as write-ignored; the
84      * caller should check for success by whether a readback gives the
85      * value written.
86      */
87     if (ri->type & ARM_CP_CONST) {
88         return;
89     } else if (ri->raw_writefn) {
90         ri->raw_writefn(env, ri, v);
91     } else if (ri->writefn) {
92         ri->writefn(env, ri, v);
93     } else {
94         raw_write(env, ri, v);
95     }
96 }
97 
raw_accessors_invalid(const ARMCPRegInfo * ri)98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100    /*
101     * Return true if the regdef would cause an assertion if you called
102     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103     * program bug for it not to have the NO_RAW flag).
104     * NB that returning false here doesn't necessarily mean that calling
105     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106     * read/write access functions which are safe for raw use" from "has
107     * read/write access functions which have side effects but has forgotten
108     * to provide raw access functions".
109     * The tests here line up with the conditions in read/write_raw_cp_reg()
110     * and assertions in raw_read()/raw_write().
111     */
112     if ((ri->type & ARM_CP_CONST) ||
113         ri->fieldoffset ||
114         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115         return false;
116     }
117     return true;
118 }
119 
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122     /* Write the coprocessor state from cpu->env to the (index,value) list. */
123     int i;
124     bool ok = true;
125 
126     for (i = 0; i < cpu->cpreg_array_len; i++) {
127         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128         const ARMCPRegInfo *ri;
129         uint64_t newval;
130 
131         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132         if (!ri) {
133             ok = false;
134             continue;
135         }
136         if (ri->type & ARM_CP_NO_RAW) {
137             continue;
138         }
139 
140         newval = read_raw_cp_reg(&cpu->env, ri);
141         if (kvm_sync) {
142             /*
143              * Only sync if the previous list->cpustate sync succeeded.
144              * Rather than tracking the success/failure state for every
145              * item in the list, we just recheck "does the raw write we must
146              * have made in write_list_to_cpustate() read back OK" here.
147              */
148             uint64_t oldval = cpu->cpreg_values[i];
149 
150             if (oldval == newval) {
151                 continue;
152             }
153 
154             write_raw_cp_reg(&cpu->env, ri, oldval);
155             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156                 continue;
157             }
158 
159             write_raw_cp_reg(&cpu->env, ri, newval);
160         }
161         cpu->cpreg_values[i] = newval;
162     }
163     return ok;
164 }
165 
write_list_to_cpustate(ARMCPU * cpu)166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168     int i;
169     bool ok = true;
170 
171     for (i = 0; i < cpu->cpreg_array_len; i++) {
172         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173         uint64_t v = cpu->cpreg_values[i];
174         const ARMCPRegInfo *ri;
175 
176         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177         if (!ri) {
178             ok = false;
179             continue;
180         }
181         if (ri->type & ARM_CP_NO_RAW) {
182             continue;
183         }
184         /*
185          * Write value and confirm it reads back as written
186          * (to catch read-only registers and partially read-only
187          * registers where the incoming migration value doesn't match)
188          */
189         write_raw_cp_reg(&cpu->env, ri, v);
190         if (read_raw_cp_reg(&cpu->env, ri) != v) {
191             ok = false;
192         }
193     }
194     return ok;
195 }
196 
add_cpreg_to_list(gpointer key,gpointer opaque)197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199     ARMCPU *cpu = opaque;
200     uint32_t regidx = (uintptr_t)key;
201     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202 
203     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205         /* The value array need not be initialized at this point */
206         cpu->cpreg_array_len++;
207     }
208 }
209 
count_cpreg(gpointer key,gpointer opaque)210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212     ARMCPU *cpu = opaque;
213     const ARMCPRegInfo *ri;
214 
215     ri = g_hash_table_lookup(cpu->cp_regs, key);
216 
217     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218         cpu->cpreg_array_len++;
219     }
220 }
221 
cpreg_key_compare(gconstpointer a,gconstpointer b)222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226 
227     if (aidx > bidx) {
228         return 1;
229     }
230     if (aidx < bidx) {
231         return -1;
232     }
233     return 0;
234 }
235 
init_cpreg_list(ARMCPU * cpu)236 void init_cpreg_list(ARMCPU *cpu)
237 {
238     /*
239      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240      * Note that we require cpreg_tuples[] to be sorted by key ID.
241      */
242     GList *keys;
243     int arraylen;
244 
245     keys = g_hash_table_get_keys(cpu->cp_regs);
246     keys = g_list_sort(keys, cpreg_key_compare);
247 
248     cpu->cpreg_array_len = 0;
249 
250     g_list_foreach(keys, count_cpreg, cpu);
251 
252     arraylen = cpu->cpreg_array_len;
253     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258     cpu->cpreg_array_len = 0;
259 
260     g_list_foreach(keys, add_cpreg_to_list, cpu);
261 
262     assert(cpu->cpreg_array_len == arraylen);
263 
264     g_list_free(keys);
265 }
266 
arm_pan_enabled(CPUARMState * env)267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269     if (is_a64(env)) {
270         if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271             return false;
272         }
273         return env->pstate & PSTATE_PAN;
274     } else {
275         return env->uncached_cpsr & CPSR_PAN;
276     }
277 }
278 
279 /*
280  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281  */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283                                         const ARMCPRegInfo *ri,
284                                         bool isread)
285 {
286     if (!is_a64(env) && arm_current_el(env) == 3 &&
287         arm_is_secure_below_el3(env)) {
288         return CP_ACCESS_TRAP_UNCATEGORIZED;
289     }
290     return CP_ACCESS_OK;
291 }
292 
293 /*
294  * Some secure-only AArch32 registers trap to EL3 if used from
295  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297  * We assume that the .access field is set to PL1_RW.
298  */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300                                             const ARMCPRegInfo *ri,
301                                             bool isread)
302 {
303     if (arm_current_el(env) == 3) {
304         return CP_ACCESS_OK;
305     }
306     if (arm_is_secure_below_el3(env)) {
307         if (env->cp15.scr_el3 & SCR_EEL2) {
308             return CP_ACCESS_TRAP_EL2;
309         }
310         return CP_ACCESS_TRAP_EL3;
311     }
312     /* This will be EL1 NS and EL2 NS, which just UNDEF */
313     return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315 
316 /*
317  * Check for traps to performance monitor registers, which are controlled
318  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319  */
access_tpm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321                                  bool isread)
322 {
323     int el = arm_current_el(env);
324     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325 
326     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327         return CP_ACCESS_TRAP_EL2;
328     }
329     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330         return CP_ACCESS_TRAP_EL3;
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
access_tvm_trvm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337                                bool isread)
338 {
339     if (arm_current_el(env) == 1) {
340         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341         if (arm_hcr_el2_eff(env) & trap) {
342             return CP_ACCESS_TRAP_EL2;
343         }
344     }
345     return CP_ACCESS_OK;
346 }
347 
348 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
access_tsw(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350                                  bool isread)
351 {
352     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353         return CP_ACCESS_TRAP_EL2;
354     }
355     return CP_ACCESS_OK;
356 }
357 
358 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
access_tacr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360                                   bool isread)
361 {
362     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363         return CP_ACCESS_TRAP_EL2;
364     }
365     return CP_ACCESS_OK;
366 }
367 
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
access_ttlb(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370                                   bool isread)
371 {
372     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373         return CP_ACCESS_TRAP_EL2;
374     }
375     return CP_ACCESS_OK;
376 }
377 
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
access_ttlbis(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380                                     bool isread)
381 {
382     if (arm_current_el(env) == 1 &&
383         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384         return CP_ACCESS_TRAP_EL2;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
access_ttlbos(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392                                     bool isread)
393 {
394     if (arm_current_el(env) == 1 &&
395         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396         return CP_ACCESS_TRAP_EL2;
397     }
398     return CP_ACCESS_OK;
399 }
400 #endif
401 
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404     ARMCPU *cpu = env_archcpu(env);
405 
406     raw_write(env, ri, value);
407     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409 
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412     ARMCPU *cpu = env_archcpu(env);
413 
414     if (raw_read(env, ri) != value) {
415         /*
416          * Unlike real hardware the qemu TLB uses virtual addresses,
417          * not modified virtual addresses, so this causes a TLB flush.
418          */
419         tlb_flush(CPU(cpu));
420         raw_write(env, ri, value);
421     }
422 }
423 
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425                              uint64_t value)
426 {
427     ARMCPU *cpu = env_archcpu(env);
428 
429     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430         && !extended_addresses_enabled(env)) {
431         /*
432          * For VMSA (when not using the LPAE long descriptor page table
433          * format) this register includes the ASID, so do a TLB flush.
434          * For PMSA it is purely a process ID and no action is needed.
435          */
436         tlb_flush(CPU(cpu));
437     }
438     raw_write(env, ri, value);
439 }
440 
alle1_tlbmask(CPUARMState * env)441 static int alle1_tlbmask(CPUARMState *env)
442 {
443     /*
444      * Note that the 'ALL' scope must invalidate both stage 1 and
445      * stage 2 translations, whereas most other scopes only invalidate
446      * stage 1 translations.
447      *
448      * For AArch32 this is only used for TLBIALLNSNH and VTTBR
449      * writes, so only needs to apply to NS PL1&0, not S PL1&0.
450      */
451     return (ARMMMUIdxBit_E10_1 |
452             ARMMMUIdxBit_E10_1_PAN |
453             ARMMMUIdxBit_E10_0 |
454             ARMMMUIdxBit_Stage2 |
455             ARMMMUIdxBit_Stage2_S);
456 }
457 
458 
459 /* IS variants of TLB operations must affect all cores */
tlbiall_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)460 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461                              uint64_t value)
462 {
463     CPUState *cs = env_cpu(env);
464 
465     tlb_flush_all_cpus_synced(cs);
466 }
467 
tlbiasid_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)468 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469                              uint64_t value)
470 {
471     CPUState *cs = env_cpu(env);
472 
473     tlb_flush_all_cpus_synced(cs);
474 }
475 
tlbimva_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)476 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
477                              uint64_t value)
478 {
479     CPUState *cs = env_cpu(env);
480 
481     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
482 }
483 
tlbimvaa_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)484 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
485                              uint64_t value)
486 {
487     CPUState *cs = env_cpu(env);
488 
489     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
490 }
491 
492 /*
493  * Non-IS variants of TLB operations are upgraded to
494  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
495  * force broadcast of these operations.
496  */
tlb_force_broadcast(CPUARMState * env)497 static bool tlb_force_broadcast(CPUARMState *env)
498 {
499     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
500 }
501 
tlbiall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)502 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
503                           uint64_t value)
504 {
505     /* Invalidate all (TLBIALL) */
506     CPUState *cs = env_cpu(env);
507 
508     if (tlb_force_broadcast(env)) {
509         tlb_flush_all_cpus_synced(cs);
510     } else {
511         tlb_flush(cs);
512     }
513 }
514 
tlbimva_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)515 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
516                           uint64_t value)
517 {
518     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
519     CPUState *cs = env_cpu(env);
520 
521     value &= TARGET_PAGE_MASK;
522     if (tlb_force_broadcast(env)) {
523         tlb_flush_page_all_cpus_synced(cs, value);
524     } else {
525         tlb_flush_page(cs, value);
526     }
527 }
528 
tlbiasid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)529 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
530                            uint64_t value)
531 {
532     /* Invalidate by ASID (TLBIASID) */
533     CPUState *cs = env_cpu(env);
534 
535     if (tlb_force_broadcast(env)) {
536         tlb_flush_all_cpus_synced(cs);
537     } else {
538         tlb_flush(cs);
539     }
540 }
541 
tlbimvaa_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)542 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
543                            uint64_t value)
544 {
545     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
546     CPUState *cs = env_cpu(env);
547 
548     value &= TARGET_PAGE_MASK;
549     if (tlb_force_broadcast(env)) {
550         tlb_flush_page_all_cpus_synced(cs, value);
551     } else {
552         tlb_flush_page(cs, value);
553     }
554 }
555 
tlbiall_nsnh_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)556 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                                uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
562 }
563 
tlbiall_nsnh_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)564 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                   uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
570 }
571 
572 
tlbiall_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)573 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                               uint64_t value)
575 {
576     CPUState *cs = env_cpu(env);
577 
578     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
579 }
580 
tlbiall_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)581 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585 
586     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
587 }
588 
tlbimva_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)589 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
590                               uint64_t value)
591 {
592     CPUState *cs = env_cpu(env);
593     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
594 
595     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
596 }
597 
tlbimva_hyp_is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)598 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
599                                  uint64_t value)
600 {
601     CPUState *cs = env_cpu(env);
602     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
603 
604     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
605                                              ARMMMUIdxBit_E2);
606 }
607 
tlbiipas2_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)608 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
609                                 uint64_t value)
610 {
611     CPUState *cs = env_cpu(env);
612     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
613 
614     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
615 }
616 
tlbiipas2is_hyp_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)617 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
618                                 uint64_t value)
619 {
620     CPUState *cs = env_cpu(env);
621     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
622 
623     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
624 }
625 
626 static const ARMCPRegInfo cp_reginfo[] = {
627     /*
628      * Define the secure and non-secure FCSE identifier CP registers
629      * separately because there is no secure bank in V8 (no _EL3).  This allows
630      * the secure register to be properly reset and migrated. There is also no
631      * v8 EL1 version of the register so the non-secure instance stands alone.
632      */
633     { .name = "FCSEIDR",
634       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
635       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
636       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
637       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
638     { .name = "FCSEIDR_S",
639       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
640       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
641       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
642       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
643     /*
644      * Define the secure and non-secure context identifier CP registers
645      * separately because there is no secure bank in V8 (no _EL3).  This allows
646      * the secure register to be properly reset and migrated.  In the
647      * non-secure case, the 32-bit register will have reset and migration
648      * disabled during registration as it is handled by the 64-bit instance.
649      */
650     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
651       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
652       .access = PL1_RW, .accessfn = access_tvm_trvm,
653       .fgt = FGT_CONTEXTIDR_EL1,
654       .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
655       .secure = ARM_CP_SECSTATE_NS,
656       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
657       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
658     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
659       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
660       .access = PL1_RW, .accessfn = access_tvm_trvm,
661       .secure = ARM_CP_SECSTATE_S,
662       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
663       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
664 };
665 
666 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
667     /*
668      * NB: Some of these registers exist in v8 but with more precise
669      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
670      */
671     /* MMU Domain access control / MPU write buffer control */
672     { .name = "DACR",
673       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
674       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
675       .writefn = dacr_write, .raw_writefn = raw_write,
676       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
677                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
678     /*
679      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
680      * For v6 and v5, these mappings are overly broad.
681      */
682     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
683       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
684     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
685       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
686     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
687       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
688     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
689       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
690     /* Cache maintenance ops; some of this space may be overridden later. */
691     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
692       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
693       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
694 };
695 
696 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
697     /*
698      * Not all pre-v6 cores implemented this WFI, so this is slightly
699      * over-broad.
700      */
701     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
702       .access = PL1_W, .type = ARM_CP_WFI },
703 };
704 
705 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
706     /*
707      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
708      * is UNPREDICTABLE; we choose to NOP as most implementations do).
709      */
710     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
711       .access = PL1_W, .type = ARM_CP_WFI },
712     /*
713      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
714      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
715      * OMAPCP will override this space.
716      */
717     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
718       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
719       .resetvalue = 0 },
720     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
721       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
722       .resetvalue = 0 },
723     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
724     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
725       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
726       .resetvalue = 0 },
727     /*
728      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
729      * implementing it as RAZ means the "debug architecture version" bits
730      * will read as a reserved value, which should cause Linux to not try
731      * to use the debug hardware.
732      */
733     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
734       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
735     /*
736      * MMU TLB control. Note that the wildcarding means we cover not just
737      * the unified TLB ops but also the dside/iside/inner-shareable variants.
738      */
739     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
740       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
741       .type = ARM_CP_NO_RAW },
742     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
743       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
744       .type = ARM_CP_NO_RAW },
745     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
749       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
750       .type = ARM_CP_NO_RAW },
751     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
752       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
753     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
754       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
755 };
756 
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
758                         uint64_t value)
759 {
760     uint32_t mask = 0;
761 
762     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
763     if (!arm_feature(env, ARM_FEATURE_V8)) {
764         /*
765          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
766          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
767          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
768          */
769         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
770             /* VFP coprocessor: cp10 & cp11 [23:20] */
771             mask |= R_CPACR_ASEDIS_MASK |
772                     R_CPACR_D32DIS_MASK |
773                     R_CPACR_CP11_MASK |
774                     R_CPACR_CP10_MASK;
775 
776             if (!arm_feature(env, ARM_FEATURE_NEON)) {
777                 /* ASEDIS [31] bit is RAO/WI */
778                 value |= R_CPACR_ASEDIS_MASK;
779             }
780 
781             /*
782              * VFPv3 and upwards with NEON implement 32 double precision
783              * registers (D0-D31).
784              */
785             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
786                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
787                 value |= R_CPACR_D32DIS_MASK;
788             }
789         }
790         value &= mask;
791     }
792 
793     /*
794      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
795      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
796      */
797     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
800         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
801     }
802 
803     env->cp15.cpacr_el1 = value;
804 }
805 
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)806 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
807 {
808     /*
809      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
810      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
811      */
812     uint64_t value = env->cp15.cpacr_el1;
813 
814     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
815         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
816         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
817     }
818     return value;
819 }
820 
821 
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)822 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
823 {
824     /*
825      * Call cpacr_write() so that we reset with the correct RAO bits set
826      * for our CPU features.
827      */
828     cpacr_write(env, ri, 0);
829 }
830 
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)831 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                    bool isread)
833 {
834     if (arm_feature(env, ARM_FEATURE_V8)) {
835         /* Check if CPACR accesses are to be trapped to EL2 */
836         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
837             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
838             return CP_ACCESS_TRAP_EL2;
839         /* Check if CPACR accesses are to be trapped to EL3 */
840         } else if (arm_current_el(env) < 3 &&
841                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
842             return CP_ACCESS_TRAP_EL3;
843         }
844     }
845 
846     return CP_ACCESS_OK;
847 }
848 
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)849 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
850                                   bool isread)
851 {
852     /* Check if CPTR accesses are set to trap to EL3 */
853     if (arm_current_el(env) == 2 &&
854         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
855         return CP_ACCESS_TRAP_EL3;
856     }
857 
858     return CP_ACCESS_OK;
859 }
860 
861 static const ARMCPRegInfo v6_cp_reginfo[] = {
862     /* prefetch by MVA in v6, NOP in v7 */
863     { .name = "MVA_prefetch",
864       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
865       .access = PL1_W, .type = ARM_CP_NOP },
866     /*
867      * We need to break the TB after ISB to execute self-modifying code
868      * correctly and also to take any pending interrupts immediately.
869      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
870      */
871     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
872       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
873     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
874       .access = PL0_W, .type = ARM_CP_NOP },
875     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
876       .access = PL0_W, .type = ARM_CP_NOP },
877     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
878       .access = PL1_RW, .accessfn = access_tvm_trvm,
879       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
880                              offsetof(CPUARMState, cp15.ifar_ns) },
881       .resetvalue = 0, },
882     /*
883      * Watchpoint Fault Address Register : should actually only be present
884      * for 1136, 1176, 11MPCore.
885      */
886     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
887       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
888     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
889       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
890       .fgt = FGT_CPACR_EL1,
891       .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
892       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
893       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
894 };
895 
896 typedef struct pm_event {
897     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
898     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
899     bool (*supported)(CPUARMState *);
900     /*
901      * Retrieve the current count of the underlying event. The programmed
902      * counters hold a difference from the return value from this function
903      */
904     uint64_t (*get_count)(CPUARMState *);
905     /*
906      * Return how many nanoseconds it will take (at a minimum) for count events
907      * to occur. A negative value indicates the counter will never overflow, or
908      * that the counter has otherwise arranged for the overflow bit to be set
909      * and the PMU interrupt to be raised on overflow.
910      */
911     int64_t (*ns_per_count)(uint64_t);
912 } pm_event;
913 
event_always_supported(CPUARMState * env)914 static bool event_always_supported(CPUARMState *env)
915 {
916     return true;
917 }
918 
swinc_get_count(CPUARMState * env)919 static uint64_t swinc_get_count(CPUARMState *env)
920 {
921     /*
922      * SW_INCR events are written directly to the pmevcntr's by writes to
923      * PMSWINC, so there is no underlying count maintained by the PMU itself
924      */
925     return 0;
926 }
927 
swinc_ns_per(uint64_t ignored)928 static int64_t swinc_ns_per(uint64_t ignored)
929 {
930     return -1;
931 }
932 
933 /*
934  * Return the underlying cycle count for the PMU cycle counters. If we're in
935  * usermode, simply return 0.
936  */
cycles_get_count(CPUARMState * env)937 static uint64_t cycles_get_count(CPUARMState *env)
938 {
939 #ifndef CONFIG_USER_ONLY
940     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
941                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
942 #else
943     return cpu_get_host_ticks();
944 #endif
945 }
946 
947 #ifndef CONFIG_USER_ONLY
cycles_ns_per(uint64_t cycles)948 static int64_t cycles_ns_per(uint64_t cycles)
949 {
950     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
951 }
952 
instructions_supported(CPUARMState * env)953 static bool instructions_supported(CPUARMState *env)
954 {
955     /* Precise instruction counting */
956     return icount_enabled() == ICOUNT_PRECISE;
957 }
958 
instructions_get_count(CPUARMState * env)959 static uint64_t instructions_get_count(CPUARMState *env)
960 {
961     assert(icount_enabled() == ICOUNT_PRECISE);
962     return (uint64_t)icount_get_raw();
963 }
964 
instructions_ns_per(uint64_t icount)965 static int64_t instructions_ns_per(uint64_t icount)
966 {
967     assert(icount_enabled() == ICOUNT_PRECISE);
968     return icount_to_ns((int64_t)icount);
969 }
970 #endif
971 
pmuv3p1_events_supported(CPUARMState * env)972 static bool pmuv3p1_events_supported(CPUARMState *env)
973 {
974     /* For events which are supported in any v8.1 PMU */
975     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
976 }
977 
pmuv3p4_events_supported(CPUARMState * env)978 static bool pmuv3p4_events_supported(CPUARMState *env)
979 {
980     /* For events which are supported in any v8.1 PMU */
981     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
982 }
983 
zero_event_get_count(CPUARMState * env)984 static uint64_t zero_event_get_count(CPUARMState *env)
985 {
986     /* For events which on QEMU never fire, so their count is always zero */
987     return 0;
988 }
989 
zero_event_ns_per(uint64_t cycles)990 static int64_t zero_event_ns_per(uint64_t cycles)
991 {
992     /* An event which never fires can never overflow */
993     return -1;
994 }
995 
996 static const pm_event pm_events[] = {
997     { .number = 0x000, /* SW_INCR */
998       .supported = event_always_supported,
999       .get_count = swinc_get_count,
1000       .ns_per_count = swinc_ns_per,
1001     },
1002 #ifndef CONFIG_USER_ONLY
1003     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1004       .supported = instructions_supported,
1005       .get_count = instructions_get_count,
1006       .ns_per_count = instructions_ns_per,
1007     },
1008     { .number = 0x011, /* CPU_CYCLES, Cycle */
1009       .supported = event_always_supported,
1010       .get_count = cycles_get_count,
1011       .ns_per_count = cycles_ns_per,
1012     },
1013 #endif
1014     { .number = 0x023, /* STALL_FRONTEND */
1015       .supported = pmuv3p1_events_supported,
1016       .get_count = zero_event_get_count,
1017       .ns_per_count = zero_event_ns_per,
1018     },
1019     { .number = 0x024, /* STALL_BACKEND */
1020       .supported = pmuv3p1_events_supported,
1021       .get_count = zero_event_get_count,
1022       .ns_per_count = zero_event_ns_per,
1023     },
1024     { .number = 0x03c, /* STALL */
1025       .supported = pmuv3p4_events_supported,
1026       .get_count = zero_event_get_count,
1027       .ns_per_count = zero_event_ns_per,
1028     },
1029 };
1030 
1031 /*
1032  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1033  * events (i.e. the statistical profiling extension), this implementation
1034  * should first be updated to something sparse instead of the current
1035  * supported_event_map[] array.
1036  */
1037 #define MAX_EVENT_ID 0x3c
1038 #define UNSUPPORTED_EVENT UINT16_MAX
1039 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1040 
1041 /*
1042  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1043  * of ARM event numbers to indices in our pm_events array.
1044  *
1045  * Note: Events in the 0x40XX range are not currently supported.
1046  */
pmu_init(ARMCPU * cpu)1047 void pmu_init(ARMCPU *cpu)
1048 {
1049     unsigned int i;
1050 
1051     /*
1052      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1053      * events to them
1054      */
1055     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1056         supported_event_map[i] = UNSUPPORTED_EVENT;
1057     }
1058     cpu->pmceid0 = 0;
1059     cpu->pmceid1 = 0;
1060 
1061     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1062         const pm_event *cnt = &pm_events[i];
1063         assert(cnt->number <= MAX_EVENT_ID);
1064         /* We do not currently support events in the 0x40xx range */
1065         assert(cnt->number <= 0x3f);
1066 
1067         if (cnt->supported(&cpu->env)) {
1068             supported_event_map[cnt->number] = i;
1069             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1070             if (cnt->number & 0x20) {
1071                 cpu->pmceid1 |= event_mask;
1072             } else {
1073                 cpu->pmceid0 |= event_mask;
1074             }
1075         }
1076     }
1077 }
1078 
1079 /*
1080  * Check at runtime whether a PMU event is supported for the current machine
1081  */
event_supported(uint16_t number)1082 static bool event_supported(uint16_t number)
1083 {
1084     if (number > MAX_EVENT_ID) {
1085         return false;
1086     }
1087     return supported_event_map[number] != UNSUPPORTED_EVENT;
1088 }
1089 
pmreg_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1090 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1091                                    bool isread)
1092 {
1093     /*
1094      * Performance monitor registers user accessibility is controlled
1095      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1096      * trapping to EL2 or EL3 for other accesses.
1097      */
1098     int el = arm_current_el(env);
1099     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1100 
1101     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1102         return CP_ACCESS_TRAP;
1103     }
1104     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1105         return CP_ACCESS_TRAP_EL2;
1106     }
1107     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1108         return CP_ACCESS_TRAP_EL3;
1109     }
1110 
1111     return CP_ACCESS_OK;
1112 }
1113 
pmreg_access_xevcntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1114 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1115                                            const ARMCPRegInfo *ri,
1116                                            bool isread)
1117 {
1118     /* ER: event counter read trap control */
1119     if (arm_feature(env, ARM_FEATURE_V8)
1120         && arm_current_el(env) == 0
1121         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1122         && isread) {
1123         return CP_ACCESS_OK;
1124     }
1125 
1126     return pmreg_access(env, ri, isread);
1127 }
1128 
pmreg_access_swinc(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1129 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1130                                          const ARMCPRegInfo *ri,
1131                                          bool isread)
1132 {
1133     /* SW: software increment write trap control */
1134     if (arm_feature(env, ARM_FEATURE_V8)
1135         && arm_current_el(env) == 0
1136         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1137         && !isread) {
1138         return CP_ACCESS_OK;
1139     }
1140 
1141     return pmreg_access(env, ri, isread);
1142 }
1143 
pmreg_access_selr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1144 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1145                                         const ARMCPRegInfo *ri,
1146                                         bool isread)
1147 {
1148     /* ER: event counter read trap control */
1149     if (arm_feature(env, ARM_FEATURE_V8)
1150         && arm_current_el(env) == 0
1151         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1152         return CP_ACCESS_OK;
1153     }
1154 
1155     return pmreg_access(env, ri, isread);
1156 }
1157 
pmreg_access_ccntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1158 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1159                                          const ARMCPRegInfo *ri,
1160                                          bool isread)
1161 {
1162     /* CR: cycle counter read trap control */
1163     if (arm_feature(env, ARM_FEATURE_V8)
1164         && arm_current_el(env) == 0
1165         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1166         && isread) {
1167         return CP_ACCESS_OK;
1168     }
1169 
1170     return pmreg_access(env, ri, isread);
1171 }
1172 
1173 /*
1174  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1175  * We use these to decide whether we need to wrap a write to MDCR_EL2
1176  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1177  */
1178 #define MDCR_EL2_PMU_ENABLE_BITS \
1179     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1180 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1181 
1182 /*
1183  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1184  * the current EL, security state, and register configuration.
1185  */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1186 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1187 {
1188     uint64_t filter;
1189     bool e, p, u, nsk, nsu, nsh, m;
1190     bool enabled, prohibited = false, filtered;
1191     bool secure = arm_is_secure(env);
1192     int el = arm_current_el(env);
1193     uint64_t mdcr_el2;
1194     uint8_t hpmn;
1195 
1196     /*
1197      * We might be called for M-profile cores where MDCR_EL2 doesn't
1198      * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
1199      * must be before we read that value.
1200      */
1201     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1202         return false;
1203     }
1204 
1205     mdcr_el2 = arm_mdcr_el2_eff(env);
1206     hpmn = mdcr_el2 & MDCR_HPMN;
1207 
1208     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1209             (counter < hpmn || counter == 31)) {
1210         e = env->cp15.c9_pmcr & PMCRE;
1211     } else {
1212         e = mdcr_el2 & MDCR_HPME;
1213     }
1214     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1215 
1216     /* Is event counting prohibited? */
1217     if (el == 2 && (counter < hpmn || counter == 31)) {
1218         prohibited = mdcr_el2 & MDCR_HPMD;
1219     }
1220     if (secure) {
1221         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1222     }
1223 
1224     if (counter == 31) {
1225         /*
1226          * The cycle counter defaults to running. PMCR.DP says "disable
1227          * the cycle counter when event counting is prohibited".
1228          * Some MDCR bits disable the cycle counter specifically.
1229          */
1230         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1231         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1232             if (secure) {
1233                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1234             }
1235             if (el == 2) {
1236                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1237             }
1238         }
1239     }
1240 
1241     if (counter == 31) {
1242         filter = env->cp15.pmccfiltr_el0;
1243     } else {
1244         filter = env->cp15.c14_pmevtyper[counter];
1245     }
1246 
1247     p   = filter & PMXEVTYPER_P;
1248     u   = filter & PMXEVTYPER_U;
1249     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1250     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1251     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1252     m   = arm_el_is_aa64(env, 1) &&
1253               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1254 
1255     if (el == 0) {
1256         filtered = secure ? u : u != nsu;
1257     } else if (el == 1) {
1258         filtered = secure ? p : p != nsk;
1259     } else if (el == 2) {
1260         filtered = !nsh;
1261     } else { /* EL3 */
1262         filtered = m != p;
1263     }
1264 
1265     if (counter != 31) {
1266         /*
1267          * If not checking PMCCNTR, ensure the counter is setup to an event we
1268          * support
1269          */
1270         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1271         if (!event_supported(event)) {
1272             return false;
1273         }
1274     }
1275 
1276     return enabled && !prohibited && !filtered;
1277 }
1278 
pmu_update_irq(CPUARMState * env)1279 static void pmu_update_irq(CPUARMState *env)
1280 {
1281     ARMCPU *cpu = env_archcpu(env);
1282     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1283             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1284 }
1285 
pmccntr_clockdiv_enabled(CPUARMState * env)1286 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1287 {
1288     /*
1289      * Return true if the clock divider is enabled and the cycle counter
1290      * is supposed to tick only once every 64 clock cycles. This is
1291      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1292      * (64-bit) cycle counter PMCR.D has no effect.
1293      */
1294     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1295 }
1296 
pmevcntr_is_64_bit(CPUARMState * env,int counter)1297 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1298 {
1299     /* Return true if the specified event counter is configured to be 64 bit */
1300 
1301     /* This isn't intended to be used with the cycle counter */
1302     assert(counter < 31);
1303 
1304     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1305         return false;
1306     }
1307 
1308     if (arm_feature(env, ARM_FEATURE_EL2)) {
1309         /*
1310          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1311          * current security state, so we don't use arm_mdcr_el2_eff() here.
1312          */
1313         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1314         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1315 
1316         if (counter >= hpmn) {
1317             return hlp;
1318         }
1319     }
1320     return env->cp15.c9_pmcr & PMCRLP;
1321 }
1322 
1323 /*
1324  * Ensure c15_ccnt is the guest-visible count so that operations such as
1325  * enabling/disabling the counter or filtering, modifying the count itself,
1326  * etc. can be done logically. This is essentially a no-op if the counter is
1327  * not enabled at the time of the call.
1328  */
pmccntr_op_start(CPUARMState * env)1329 static void pmccntr_op_start(CPUARMState *env)
1330 {
1331     uint64_t cycles = cycles_get_count(env);
1332 
1333     if (pmu_counter_enabled(env, 31)) {
1334         uint64_t eff_cycles = cycles;
1335         if (pmccntr_clockdiv_enabled(env)) {
1336             eff_cycles /= 64;
1337         }
1338 
1339         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1340 
1341         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1342                                  1ull << 63 : 1ull << 31;
1343         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1344             env->cp15.c9_pmovsr |= (1ULL << 31);
1345             pmu_update_irq(env);
1346         }
1347 
1348         env->cp15.c15_ccnt = new_pmccntr;
1349     }
1350     env->cp15.c15_ccnt_delta = cycles;
1351 }
1352 
1353 /*
1354  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1355  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1356  * pmccntr_op_start.
1357  */
pmccntr_op_finish(CPUARMState * env)1358 static void pmccntr_op_finish(CPUARMState *env)
1359 {
1360     if (pmu_counter_enabled(env, 31)) {
1361 #ifndef CONFIG_USER_ONLY
1362         /* Calculate when the counter will next overflow */
1363         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1364         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1365             remaining_cycles = (uint32_t)remaining_cycles;
1366         }
1367         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1368 
1369         if (overflow_in > 0) {
1370             int64_t overflow_at;
1371 
1372             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1373                                  overflow_in, &overflow_at)) {
1374                 ARMCPU *cpu = env_archcpu(env);
1375                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1376             }
1377         }
1378 #endif
1379 
1380         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1381         if (pmccntr_clockdiv_enabled(env)) {
1382             prev_cycles /= 64;
1383         }
1384         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1385     }
1386 }
1387 
pmevcntr_op_start(CPUARMState * env,uint8_t counter)1388 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1389 {
1390 
1391     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1392     uint64_t count = 0;
1393     if (event_supported(event)) {
1394         uint16_t event_idx = supported_event_map[event];
1395         count = pm_events[event_idx].get_count(env);
1396     }
1397 
1398     if (pmu_counter_enabled(env, counter)) {
1399         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1400         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1401             1ULL << 63 : 1ULL << 31;
1402 
1403         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1404             env->cp15.c9_pmovsr |= (1 << counter);
1405             pmu_update_irq(env);
1406         }
1407         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1408     }
1409     env->cp15.c14_pmevcntr_delta[counter] = count;
1410 }
1411 
pmevcntr_op_finish(CPUARMState * env,uint8_t counter)1412 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1413 {
1414     if (pmu_counter_enabled(env, counter)) {
1415 #ifndef CONFIG_USER_ONLY
1416         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1417         uint16_t event_idx = supported_event_map[event];
1418         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1419         int64_t overflow_in;
1420 
1421         if (!pmevcntr_is_64_bit(env, counter)) {
1422             delta = (uint32_t)delta;
1423         }
1424         overflow_in = pm_events[event_idx].ns_per_count(delta);
1425 
1426         if (overflow_in > 0) {
1427             int64_t overflow_at;
1428 
1429             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1430                                  overflow_in, &overflow_at)) {
1431                 ARMCPU *cpu = env_archcpu(env);
1432                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1433             }
1434         }
1435 #endif
1436 
1437         env->cp15.c14_pmevcntr_delta[counter] -=
1438             env->cp15.c14_pmevcntr[counter];
1439     }
1440 }
1441 
pmu_op_start(CPUARMState * env)1442 void pmu_op_start(CPUARMState *env)
1443 {
1444     unsigned int i;
1445     pmccntr_op_start(env);
1446     for (i = 0; i < pmu_num_counters(env); i++) {
1447         pmevcntr_op_start(env, i);
1448     }
1449 }
1450 
pmu_op_finish(CPUARMState * env)1451 void pmu_op_finish(CPUARMState *env)
1452 {
1453     unsigned int i;
1454     pmccntr_op_finish(env);
1455     for (i = 0; i < pmu_num_counters(env); i++) {
1456         pmevcntr_op_finish(env, i);
1457     }
1458 }
1459 
pmu_pre_el_change(ARMCPU * cpu,void * ignored)1460 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1461 {
1462     pmu_op_start(&cpu->env);
1463 }
1464 
pmu_post_el_change(ARMCPU * cpu,void * ignored)1465 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1466 {
1467     pmu_op_finish(&cpu->env);
1468 }
1469 
arm_pmu_timer_cb(void * opaque)1470 void arm_pmu_timer_cb(void *opaque)
1471 {
1472     ARMCPU *cpu = opaque;
1473 
1474     /*
1475      * Update all the counter values based on the current underlying counts,
1476      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1477      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1478      * counter may expire.
1479      */
1480     pmu_op_start(&cpu->env);
1481     pmu_op_finish(&cpu->env);
1482 }
1483 
pmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1484 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485                        uint64_t value)
1486 {
1487     pmu_op_start(env);
1488 
1489     if (value & PMCRC) {
1490         /* The counter has been reset */
1491         env->cp15.c15_ccnt = 0;
1492     }
1493 
1494     if (value & PMCRP) {
1495         unsigned int i;
1496         for (i = 0; i < pmu_num_counters(env); i++) {
1497             env->cp15.c14_pmevcntr[i] = 0;
1498         }
1499     }
1500 
1501     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1502     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1503 
1504     pmu_op_finish(env);
1505 }
1506 
pmcr_read(CPUARMState * env,const ARMCPRegInfo * ri)1507 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1508 {
1509     uint64_t pmcr = env->cp15.c9_pmcr;
1510 
1511     /*
1512      * If EL2 is implemented and enabled for the current security state, reads
1513      * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1514      */
1515     if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1516         pmcr &= ~PMCRN_MASK;
1517         pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1518     }
1519 
1520     return pmcr;
1521 }
1522 
pmswinc_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1523 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                           uint64_t value)
1525 {
1526     unsigned int i;
1527     uint64_t overflow_mask, new_pmswinc;
1528 
1529     for (i = 0; i < pmu_num_counters(env); i++) {
1530         /* Increment a counter's count iff: */
1531         if ((value & (1 << i)) && /* counter's bit is set */
1532                 /* counter is enabled and not filtered */
1533                 pmu_counter_enabled(env, i) &&
1534                 /* counter is SW_INCR */
1535                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1536             pmevcntr_op_start(env, i);
1537 
1538             /*
1539              * Detect if this write causes an overflow since we can't predict
1540              * PMSWINC overflows like we can for other events
1541              */
1542             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1543 
1544             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1545                 1ULL << 63 : 1ULL << 31;
1546 
1547             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1548                 env->cp15.c9_pmovsr |= (1 << i);
1549                 pmu_update_irq(env);
1550             }
1551 
1552             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1553 
1554             pmevcntr_op_finish(env, i);
1555         }
1556     }
1557 }
1558 
pmccntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1559 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1560 {
1561     uint64_t ret;
1562     pmccntr_op_start(env);
1563     ret = env->cp15.c15_ccnt;
1564     pmccntr_op_finish(env);
1565     return ret;
1566 }
1567 
pmselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1568 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1569                          uint64_t value)
1570 {
1571     /*
1572      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1573      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1574      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1575      * accessed.
1576      */
1577     env->cp15.c9_pmselr = value & 0x1f;
1578 }
1579 
pmccntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1580 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1581                         uint64_t value)
1582 {
1583     pmccntr_op_start(env);
1584     env->cp15.c15_ccnt = value;
1585     pmccntr_op_finish(env);
1586 }
1587 
pmccntr_write32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1588 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1589                             uint64_t value)
1590 {
1591     uint64_t cur_val = pmccntr_read(env, NULL);
1592 
1593     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1594 }
1595 
pmccfiltr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1596 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1597                             uint64_t value)
1598 {
1599     pmccntr_op_start(env);
1600     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1601     pmccntr_op_finish(env);
1602 }
1603 
pmccfiltr_write_a32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1604 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1605                             uint64_t value)
1606 {
1607     pmccntr_op_start(env);
1608     /* M is not accessible from AArch32 */
1609     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1610         (value & PMCCFILTR);
1611     pmccntr_op_finish(env);
1612 }
1613 
pmccfiltr_read_a32(CPUARMState * env,const ARMCPRegInfo * ri)1614 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1615 {
1616     /* M is not visible in AArch32 */
1617     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1618 }
1619 
pmcntenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1620 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1621                             uint64_t value)
1622 {
1623     pmu_op_start(env);
1624     value &= pmu_counter_mask(env);
1625     env->cp15.c9_pmcnten |= value;
1626     pmu_op_finish(env);
1627 }
1628 
pmcntenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1629 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1630                              uint64_t value)
1631 {
1632     pmu_op_start(env);
1633     value &= pmu_counter_mask(env);
1634     env->cp15.c9_pmcnten &= ~value;
1635     pmu_op_finish(env);
1636 }
1637 
pmovsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1638 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1639                          uint64_t value)
1640 {
1641     value &= pmu_counter_mask(env);
1642     env->cp15.c9_pmovsr &= ~value;
1643     pmu_update_irq(env);
1644 }
1645 
pmovsset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1646 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647                          uint64_t value)
1648 {
1649     value &= pmu_counter_mask(env);
1650     env->cp15.c9_pmovsr |= value;
1651     pmu_update_irq(env);
1652 }
1653 
pmevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,const uint8_t counter)1654 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1655                              uint64_t value, const uint8_t counter)
1656 {
1657     if (counter == 31) {
1658         pmccfiltr_write(env, ri, value);
1659     } else if (counter < pmu_num_counters(env)) {
1660         pmevcntr_op_start(env, counter);
1661 
1662         /*
1663          * If this counter's event type is changing, store the current
1664          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1665          * pmevcntr_op_finish has the correct baseline when it converts back to
1666          * a delta.
1667          */
1668         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1669             PMXEVTYPER_EVTCOUNT;
1670         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1671         if (old_event != new_event) {
1672             uint64_t count = 0;
1673             if (event_supported(new_event)) {
1674                 uint16_t event_idx = supported_event_map[new_event];
1675                 count = pm_events[event_idx].get_count(env);
1676             }
1677             env->cp15.c14_pmevcntr_delta[counter] = count;
1678         }
1679 
1680         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1681         pmevcntr_op_finish(env, counter);
1682     }
1683     /*
1684      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1685      * PMSELR value is equal to or greater than the number of implemented
1686      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1687      */
1688 }
1689 
pmevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri,const uint8_t counter)1690 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1691                                const uint8_t counter)
1692 {
1693     if (counter == 31) {
1694         return env->cp15.pmccfiltr_el0;
1695     } else if (counter < pmu_num_counters(env)) {
1696         return env->cp15.c14_pmevtyper[counter];
1697     } else {
1698       /*
1699        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1700        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1701        */
1702         return 0;
1703     }
1704 }
1705 
pmevtyper_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1706 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1707                               uint64_t value)
1708 {
1709     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710     pmevtyper_write(env, ri, value, counter);
1711 }
1712 
pmevtyper_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1713 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1714                                uint64_t value)
1715 {
1716     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1717     env->cp15.c14_pmevtyper[counter] = value;
1718 
1719     /*
1720      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1721      * pmu_op_finish calls when loading saved state for a migration. Because
1722      * we're potentially updating the type of event here, the value written to
1723      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1724      * different counter type. Therefore, we need to set this value to the
1725      * current count for the counter type we're writing so that pmu_op_finish
1726      * has the correct count for its calculation.
1727      */
1728     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1729     if (event_supported(event)) {
1730         uint16_t event_idx = supported_event_map[event];
1731         env->cp15.c14_pmevcntr_delta[counter] =
1732             pm_events[event_idx].get_count(env);
1733     }
1734 }
1735 
pmevtyper_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1736 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1737 {
1738     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1739     return pmevtyper_read(env, ri, counter);
1740 }
1741 
pmxevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1742 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1743                              uint64_t value)
1744 {
1745     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1746 }
1747 
pmxevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri)1748 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1749 {
1750     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1751 }
1752 
pmevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,uint8_t counter)1753 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1754                              uint64_t value, uint8_t counter)
1755 {
1756     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1757         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1758         value &= MAKE_64BIT_MASK(0, 32);
1759     }
1760     if (counter < pmu_num_counters(env)) {
1761         pmevcntr_op_start(env, counter);
1762         env->cp15.c14_pmevcntr[counter] = value;
1763         pmevcntr_op_finish(env, counter);
1764     }
1765     /*
1766      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1767      * are CONSTRAINED UNPREDICTABLE.
1768      */
1769 }
1770 
pmevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri,uint8_t counter)1771 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1772                               uint8_t counter)
1773 {
1774     if (counter < pmu_num_counters(env)) {
1775         uint64_t ret;
1776         pmevcntr_op_start(env, counter);
1777         ret = env->cp15.c14_pmevcntr[counter];
1778         pmevcntr_op_finish(env, counter);
1779         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1780             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1781             ret &= MAKE_64BIT_MASK(0, 32);
1782         }
1783         return ret;
1784     } else {
1785       /*
1786        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1787        * are CONSTRAINED UNPREDICTABLE.
1788        */
1789         return 0;
1790     }
1791 }
1792 
pmevcntr_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1794                              uint64_t value)
1795 {
1796     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1797     pmevcntr_write(env, ri, value, counter);
1798 }
1799 
pmevcntr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803     return pmevcntr_read(env, ri, counter);
1804 }
1805 
pmevcntr_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810     assert(counter < pmu_num_counters(env));
1811     env->cp15.c14_pmevcntr[counter] = value;
1812     pmevcntr_write(env, ri, value, counter);
1813 }
1814 
pmevcntr_rawread(CPUARMState * env,const ARMCPRegInfo * ri)1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1816 {
1817     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1818     assert(counter < pmu_num_counters(env));
1819     return env->cp15.c14_pmevcntr[counter];
1820 }
1821 
pmxevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                              uint64_t value)
1824 {
1825     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1826 }
1827 
pmxevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1831 }
1832 
pmuserenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834                             uint64_t value)
1835 {
1836     if (arm_feature(env, ARM_FEATURE_V8)) {
1837         env->cp15.c9_pmuserenr = value & 0xf;
1838     } else {
1839         env->cp15.c9_pmuserenr = value & 1;
1840     }
1841 }
1842 
pmintenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844                              uint64_t value)
1845 {
1846     /* We have no event counters so only the C bit can be changed */
1847     value &= pmu_counter_mask(env);
1848     env->cp15.c9_pminten |= value;
1849     pmu_update_irq(env);
1850 }
1851 
pmintenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853                              uint64_t value)
1854 {
1855     value &= pmu_counter_mask(env);
1856     env->cp15.c9_pminten &= ~value;
1857     pmu_update_irq(env);
1858 }
1859 
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                        uint64_t value)
1862 {
1863     /*
1864      * Note that even though the AArch64 view of this register has bits
1865      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1866      * architectural requirements for bits which are RES0 only in some
1867      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1868      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1869      */
1870     raw_write(env, ri, value & ~0x1FULL);
1871 }
1872 
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1873 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1874 {
1875     /* Begin with base v8.0 state.  */
1876     uint64_t valid_mask = 0x3fff;
1877     ARMCPU *cpu = env_archcpu(env);
1878     uint64_t changed;
1879 
1880     /*
1881      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1882      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1883      * Instead, choose the format based on the mode of EL3.
1884      */
1885     if (arm_el_is_aa64(env, 3)) {
1886         value |= SCR_FW | SCR_AW;      /* RES1 */
1887         valid_mask &= ~SCR_NET;        /* RES0 */
1888 
1889         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1890             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1891             value |= SCR_RW;           /* RAO/WI */
1892         }
1893         if (cpu_isar_feature(aa64_ras, cpu)) {
1894             valid_mask |= SCR_TERR;
1895         }
1896         if (cpu_isar_feature(aa64_lor, cpu)) {
1897             valid_mask |= SCR_TLOR;
1898         }
1899         if (cpu_isar_feature(aa64_pauth, cpu)) {
1900             valid_mask |= SCR_API | SCR_APK;
1901         }
1902         if (cpu_isar_feature(aa64_sel2, cpu)) {
1903             valid_mask |= SCR_EEL2;
1904         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1905             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1906             value |= SCR_NS;
1907         }
1908         if (cpu_isar_feature(aa64_mte, cpu)) {
1909             valid_mask |= SCR_ATA;
1910         }
1911         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1912             valid_mask |= SCR_ENSCXT;
1913         }
1914         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1915             valid_mask |= SCR_EASE | SCR_NMEA;
1916         }
1917         if (cpu_isar_feature(aa64_sme, cpu)) {
1918             valid_mask |= SCR_ENTP2;
1919         }
1920         if (cpu_isar_feature(aa64_hcx, cpu)) {
1921             valid_mask |= SCR_HXEN;
1922         }
1923         if (cpu_isar_feature(aa64_fgt, cpu)) {
1924             valid_mask |= SCR_FGTEN;
1925         }
1926         if (cpu_isar_feature(aa64_rme, cpu)) {
1927             valid_mask |= SCR_NSE | SCR_GPF;
1928         }
1929         if (cpu_isar_feature(aa64_ecv, cpu)) {
1930             valid_mask |= SCR_ECVEN;
1931         }
1932     } else {
1933         valid_mask &= ~(SCR_RW | SCR_ST);
1934         if (cpu_isar_feature(aa32_ras, cpu)) {
1935             valid_mask |= SCR_TERR;
1936         }
1937     }
1938 
1939     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1940         valid_mask &= ~SCR_HCE;
1941 
1942         /*
1943          * On ARMv7, SMD (or SCD as it is called in v7) is only
1944          * supported if EL2 exists. The bit is UNK/SBZP when
1945          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1946          * when EL2 is unavailable.
1947          * On ARMv8, this bit is always available.
1948          */
1949         if (arm_feature(env, ARM_FEATURE_V7) &&
1950             !arm_feature(env, ARM_FEATURE_V8)) {
1951             valid_mask &= ~SCR_SMD;
1952         }
1953     }
1954 
1955     /* Clear all-context RES0 bits.  */
1956     value &= valid_mask;
1957     changed = env->cp15.scr_el3 ^ value;
1958     env->cp15.scr_el3 = value;
1959 
1960     /*
1961      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1962      * we must invalidate all TLBs below EL3.
1963      */
1964     if (changed & (SCR_NS | SCR_NSE)) {
1965         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1966                                            ARMMMUIdxBit_E20_0 |
1967                                            ARMMMUIdxBit_E10_1 |
1968                                            ARMMMUIdxBit_E20_2 |
1969                                            ARMMMUIdxBit_E10_1_PAN |
1970                                            ARMMMUIdxBit_E20_2_PAN |
1971                                            ARMMMUIdxBit_E2));
1972     }
1973 }
1974 
scr_reset(CPUARMState * env,const ARMCPRegInfo * ri)1975 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1976 {
1977     /*
1978      * scr_write will set the RES1 bits on an AArch64-only CPU.
1979      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1980      */
1981     scr_write(env, ri, 0);
1982 }
1983 
access_tid4(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1984 static CPAccessResult access_tid4(CPUARMState *env,
1985                                   const ARMCPRegInfo *ri,
1986                                   bool isread)
1987 {
1988     if (arm_current_el(env) == 1 &&
1989         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1990         return CP_ACCESS_TRAP_EL2;
1991     }
1992 
1993     return CP_ACCESS_OK;
1994 }
1995 
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)1996 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1997 {
1998     ARMCPU *cpu = env_archcpu(env);
1999 
2000     /*
2001      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
2002      * bank
2003      */
2004     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2005                                         ri->secure & ARM_CP_SECSTATE_S);
2006 
2007     return cpu->ccsidr[index];
2008 }
2009 
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2010 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2011                          uint64_t value)
2012 {
2013     raw_write(env, ri, value & 0xf);
2014 }
2015 
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)2016 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2017 {
2018     CPUState *cs = env_cpu(env);
2019     bool el1 = arm_current_el(env) == 1;
2020     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2021     uint64_t ret = 0;
2022 
2023     if (hcr_el2 & HCR_IMO) {
2024         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2025             ret |= CPSR_I;
2026         }
2027         if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
2028             ret |= ISR_IS;
2029             ret |= CPSR_I;
2030         }
2031     } else {
2032         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2033             ret |= CPSR_I;
2034         }
2035 
2036         if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
2037             ret |= ISR_IS;
2038             ret |= CPSR_I;
2039         }
2040     }
2041 
2042     if (hcr_el2 & HCR_FMO) {
2043         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2044             ret |= CPSR_F;
2045         }
2046         if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
2047             ret |= ISR_FS;
2048             ret |= CPSR_F;
2049         }
2050     } else {
2051         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2052             ret |= CPSR_F;
2053         }
2054     }
2055 
2056     if (hcr_el2 & HCR_AMO) {
2057         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2058             ret |= CPSR_A;
2059         }
2060     }
2061 
2062     return ret;
2063 }
2064 
access_aa64_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2065 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2066                                        bool isread)
2067 {
2068     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2069         return CP_ACCESS_TRAP_EL2;
2070     }
2071 
2072     return CP_ACCESS_OK;
2073 }
2074 
access_aa32_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2075 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2076                                        bool isread)
2077 {
2078     if (arm_feature(env, ARM_FEATURE_V8)) {
2079         return access_aa64_tid1(env, ri, isread);
2080     }
2081 
2082     return CP_ACCESS_OK;
2083 }
2084 
2085 static const ARMCPRegInfo v7_cp_reginfo[] = {
2086     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2087     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2088       .access = PL1_W, .type = ARM_CP_NOP },
2089     /*
2090      * Performance monitors are implementation defined in v7,
2091      * but with an ARM recommended set of registers, which we
2092      * follow.
2093      *
2094      * Performance registers fall into three categories:
2095      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2096      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2097      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2098      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2099      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2100      */
2101     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2102       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2103       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2104       .writefn = pmcntenset_write,
2105       .accessfn = pmreg_access,
2106       .fgt = FGT_PMCNTEN,
2107       .raw_writefn = raw_write },
2108     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2109       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2110       .access = PL0_RW, .accessfn = pmreg_access,
2111       .fgt = FGT_PMCNTEN,
2112       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2113       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2114     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2115       .access = PL0_RW,
2116       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2117       .accessfn = pmreg_access,
2118       .fgt = FGT_PMCNTEN,
2119       .writefn = pmcntenclr_write,
2120       .type = ARM_CP_ALIAS | ARM_CP_IO },
2121     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2122       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2123       .access = PL0_RW, .accessfn = pmreg_access,
2124       .fgt = FGT_PMCNTEN,
2125       .type = ARM_CP_ALIAS | ARM_CP_IO,
2126       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2127       .writefn = pmcntenclr_write },
2128     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2129       .access = PL0_RW, .type = ARM_CP_IO,
2130       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2131       .accessfn = pmreg_access,
2132       .fgt = FGT_PMOVS,
2133       .writefn = pmovsr_write,
2134       .raw_writefn = raw_write },
2135     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2136       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2137       .access = PL0_RW, .accessfn = pmreg_access,
2138       .fgt = FGT_PMOVS,
2139       .type = ARM_CP_ALIAS | ARM_CP_IO,
2140       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2141       .writefn = pmovsr_write,
2142       .raw_writefn = raw_write },
2143     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2144       .access = PL0_W, .accessfn = pmreg_access_swinc,
2145       .fgt = FGT_PMSWINC_EL0,
2146       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2147       .writefn = pmswinc_write },
2148     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2149       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2150       .access = PL0_W, .accessfn = pmreg_access_swinc,
2151       .fgt = FGT_PMSWINC_EL0,
2152       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2153       .writefn = pmswinc_write },
2154     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2155       .access = PL0_RW, .type = ARM_CP_ALIAS,
2156       .fgt = FGT_PMSELR_EL0,
2157       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2158       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2159       .raw_writefn = raw_write},
2160     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2161       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2162       .access = PL0_RW, .accessfn = pmreg_access_selr,
2163       .fgt = FGT_PMSELR_EL0,
2164       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2165       .writefn = pmselr_write, .raw_writefn = raw_write, },
2166     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2167       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fgt = FGT_PMCCNTR_EL0,
2169       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2170       .accessfn = pmreg_access_ccntr },
2171     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2172       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2173       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2174       .fgt = FGT_PMCCNTR_EL0,
2175       .type = ARM_CP_IO,
2176       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2177       .readfn = pmccntr_read, .writefn = pmccntr_write,
2178       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2179     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2180       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2181       .access = PL0_RW, .accessfn = pmreg_access,
2182       .fgt = FGT_PMCCFILTR_EL0,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO,
2184       .resetvalue = 0, },
2185     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2186       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2187       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2188       .access = PL0_RW, .accessfn = pmreg_access,
2189       .fgt = FGT_PMCCFILTR_EL0,
2190       .type = ARM_CP_IO,
2191       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2192       .resetvalue = 0, },
2193     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2194       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2195       .accessfn = pmreg_access,
2196       .fgt = FGT_PMEVTYPERN_EL0,
2197       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2198     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2199       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2200       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201       .accessfn = pmreg_access,
2202       .fgt = FGT_PMEVTYPERN_EL0,
2203       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2204     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2205       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2206       .accessfn = pmreg_access_xevcntr,
2207       .fgt = FGT_PMEVCNTRN_EL0,
2208       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2209     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2210       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2211       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2212       .accessfn = pmreg_access_xevcntr,
2213       .fgt = FGT_PMEVCNTRN_EL0,
2214       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2215     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2216       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2217       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2218       .resetvalue = 0,
2219       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2220     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2221       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2222       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2223       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2224       .resetvalue = 0,
2225       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2226     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2227       .access = PL1_RW, .accessfn = access_tpm,
2228       .fgt = FGT_PMINTEN,
2229       .type = ARM_CP_ALIAS | ARM_CP_IO,
2230       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2231       .resetvalue = 0,
2232       .writefn = pmintenset_write, .raw_writefn = raw_write },
2233     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2234       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2235       .access = PL1_RW, .accessfn = access_tpm,
2236       .fgt = FGT_PMINTEN,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2239       .writefn = pmintenset_write, .raw_writefn = raw_write,
2240       .resetvalue = 0x0 },
2241     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2242       .access = PL1_RW, .accessfn = access_tpm,
2243       .fgt = FGT_PMINTEN,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2245       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2246       .writefn = pmintenclr_write, },
2247     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2248       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2249       .access = PL1_RW, .accessfn = access_tpm,
2250       .fgt = FGT_PMINTEN,
2251       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2252       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2253       .writefn = pmintenclr_write },
2254     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2255       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2256       .access = PL1_R,
2257       .accessfn = access_tid4,
2258       .fgt = FGT_CCSIDR_EL1,
2259       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2260     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2261       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2262       .access = PL1_RW,
2263       .accessfn = access_tid4,
2264       .fgt = FGT_CSSELR_EL1,
2265       .writefn = csselr_write, .resetvalue = 0,
2266       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2267                              offsetof(CPUARMState, cp15.csselr_ns) } },
2268     /*
2269      * Auxiliary ID register: this actually has an IMPDEF value but for now
2270      * just RAZ for all cores:
2271      */
2272     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2273       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2274       .access = PL1_R, .type = ARM_CP_CONST,
2275       .accessfn = access_aa64_tid1,
2276       .fgt = FGT_AIDR_EL1,
2277       .resetvalue = 0 },
2278     /*
2279      * Auxiliary fault status registers: these also are IMPDEF, and we
2280      * choose to RAZ/WI for all cores.
2281      */
2282     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2283       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2284       .access = PL1_RW, .accessfn = access_tvm_trvm,
2285       .fgt = FGT_AFSR0_EL1,
2286       .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2287       .type = ARM_CP_CONST, .resetvalue = 0 },
2288     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2289       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tvm_trvm,
2291       .fgt = FGT_AFSR1_EL1,
2292       .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2293       .type = ARM_CP_CONST, .resetvalue = 0 },
2294     /*
2295      * MAIR can just read-as-written because we don't implement caches
2296      * and so don't need to care about memory attributes.
2297      */
2298     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2299       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2300       .access = PL1_RW, .accessfn = access_tvm_trvm,
2301       .fgt = FGT_MAIR_EL1,
2302       .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2303       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2304       .resetvalue = 0 },
2305     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2306       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2307       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2308       .resetvalue = 0 },
2309     /*
2310      * For non-long-descriptor page tables these are PRRR and NMRR;
2311      * regardless they still act as reads-as-written for QEMU.
2312      */
2313      /*
2314       * MAIR0/1 are defined separately from their 64-bit counterpart which
2315       * allows them to assign the correct fieldoffset based on the endianness
2316       * handled in the field definitions.
2317       */
2318     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2319       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2320       .access = PL1_RW, .accessfn = access_tvm_trvm,
2321       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2322                              offsetof(CPUARMState, cp15.mair0_ns) },
2323       .resetfn = arm_cp_reset_ignore },
2324     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2325       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2326       .access = PL1_RW, .accessfn = access_tvm_trvm,
2327       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2328                              offsetof(CPUARMState, cp15.mair1_ns) },
2329       .resetfn = arm_cp_reset_ignore },
2330     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2331       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2332       .fgt = FGT_ISR_EL1,
2333       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2334     /* 32 bit ITLB invalidates */
2335     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2336       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2337       .writefn = tlbiall_write },
2338     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2339       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2340       .writefn = tlbimva_write },
2341     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2342       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2343       .writefn = tlbiasid_write },
2344     /* 32 bit DTLB invalidates */
2345     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2346       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347       .writefn = tlbiall_write },
2348     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2349       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350       .writefn = tlbimva_write },
2351     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2352       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2353       .writefn = tlbiasid_write },
2354     /* 32 bit TLB invalidates */
2355     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2356       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357       .writefn = tlbiall_write },
2358     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2359       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360       .writefn = tlbimva_write },
2361     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2362       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363       .writefn = tlbiasid_write },
2364     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2365       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2366       .writefn = tlbimvaa_write },
2367 };
2368 
2369 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2370     /* 32 bit TLB invalidates, Inner Shareable */
2371     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2372       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2373       .writefn = tlbiall_is_write },
2374     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2375       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2376       .writefn = tlbimva_is_write },
2377     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2378       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2379       .writefn = tlbiasid_is_write },
2380     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2381       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2382       .writefn = tlbimvaa_is_write },
2383 };
2384 
2385 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2386     /* PMOVSSET is not implemented in v7 before v7ve */
2387     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2388       .access = PL0_RW, .accessfn = pmreg_access,
2389       .fgt = FGT_PMOVS,
2390       .type = ARM_CP_ALIAS | ARM_CP_IO,
2391       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2392       .writefn = pmovsset_write,
2393       .raw_writefn = raw_write },
2394     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2395       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2396       .access = PL0_RW, .accessfn = pmreg_access,
2397       .fgt = FGT_PMOVS,
2398       .type = ARM_CP_ALIAS | ARM_CP_IO,
2399       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2400       .writefn = pmovsset_write,
2401       .raw_writefn = raw_write },
2402 };
2403 
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2404 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405                         uint64_t value)
2406 {
2407     value &= 1;
2408     env->teecr = value;
2409 }
2410 
teecr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2411 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412                                    bool isread)
2413 {
2414     /*
2415      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2416      * at all, so we don't need to check whether we're v8A.
2417      */
2418     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2419         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2420         return CP_ACCESS_TRAP_EL2;
2421     }
2422     return CP_ACCESS_OK;
2423 }
2424 
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2426                                     bool isread)
2427 {
2428     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2429         return CP_ACCESS_TRAP;
2430     }
2431     return teecr_access(env, ri, isread);
2432 }
2433 
2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2435     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2436       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2437       .resetvalue = 0,
2438       .writefn = teecr_write, .accessfn = teecr_access },
2439     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2440       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2441       .accessfn = teehbr_access, .resetvalue = 0 },
2442 };
2443 
2444 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2445     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2446       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2447       .access = PL0_RW,
2448       .fgt = FGT_TPIDR_EL0,
2449       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2450     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2451       .access = PL0_RW,
2452       .fgt = FGT_TPIDR_EL0,
2453       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2454                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2455       .resetfn = arm_cp_reset_ignore },
2456     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2457       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2458       .access = PL0_R | PL1_W,
2459       .fgt = FGT_TPIDRRO_EL0,
2460       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2461       .resetvalue = 0},
2462     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2463       .access = PL0_R | PL1_W,
2464       .fgt = FGT_TPIDRRO_EL0,
2465       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2466                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2467       .resetfn = arm_cp_reset_ignore },
2468     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2469       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2470       .access = PL1_RW,
2471       .fgt = FGT_TPIDR_EL1,
2472       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2473     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2474       .access = PL1_RW,
2475       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2476                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2477       .resetvalue = 0 },
2478 };
2479 
arm_gt_cntfrq_reset(CPUARMState * env,const ARMCPRegInfo * opaque)2480 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2481 {
2482     ARMCPU *cpu = env_archcpu(env);
2483 
2484     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2485 }
2486 
2487 #ifndef CONFIG_USER_ONLY
2488 
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2489 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2490                                        bool isread)
2491 {
2492     /*
2493      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2494      * Writable only at the highest implemented exception level.
2495      */
2496     int el = arm_current_el(env);
2497     uint64_t hcr;
2498     uint32_t cntkctl;
2499 
2500     switch (el) {
2501     case 0:
2502         hcr = arm_hcr_el2_eff(env);
2503         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2504             cntkctl = env->cp15.cnthctl_el2;
2505         } else {
2506             cntkctl = env->cp15.c14_cntkctl;
2507         }
2508         if (!extract32(cntkctl, 0, 2)) {
2509             return CP_ACCESS_TRAP;
2510         }
2511         break;
2512     case 1:
2513         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2514             arm_is_secure_below_el3(env)) {
2515             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2516             return CP_ACCESS_TRAP_UNCATEGORIZED;
2517         }
2518         break;
2519     case 2:
2520     case 3:
2521         break;
2522     }
2523 
2524     if (!isread && el < arm_highest_el(env)) {
2525         return CP_ACCESS_TRAP_UNCATEGORIZED;
2526     }
2527 
2528     return CP_ACCESS_OK;
2529 }
2530 
gt_counter_access(CPUARMState * env,int timeridx,bool isread)2531 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2532                                         bool isread)
2533 {
2534     unsigned int cur_el = arm_current_el(env);
2535     bool has_el2 = arm_is_el2_enabled(env);
2536     uint64_t hcr = arm_hcr_el2_eff(env);
2537 
2538     switch (cur_el) {
2539     case 0:
2540         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2541         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2542             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2543                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2544         }
2545 
2546         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2547         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2548             return CP_ACCESS_TRAP;
2549         }
2550         /* fall through */
2551     case 1:
2552         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2553         if (has_el2 && timeridx == GTIMER_PHYS &&
2554             (hcr & HCR_E2H
2555              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2556              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2557             return CP_ACCESS_TRAP_EL2;
2558         }
2559         if (has_el2 && timeridx == GTIMER_VIRT) {
2560             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2561                 return CP_ACCESS_TRAP_EL2;
2562             }
2563         }
2564         break;
2565     }
2566     return CP_ACCESS_OK;
2567 }
2568 
gt_timer_access(CPUARMState * env,int timeridx,bool isread)2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2570                                       bool isread)
2571 {
2572     unsigned int cur_el = arm_current_el(env);
2573     bool has_el2 = arm_is_el2_enabled(env);
2574     uint64_t hcr = arm_hcr_el2_eff(env);
2575 
2576     switch (cur_el) {
2577     case 0:
2578         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2579             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2580             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2581                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2582         }
2583 
2584         /*
2585          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2586          * EL0 if EL0[PV]TEN is zero.
2587          */
2588         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2589             return CP_ACCESS_TRAP;
2590         }
2591         /* fall through */
2592 
2593     case 1:
2594         if (has_el2 && timeridx == GTIMER_PHYS) {
2595             if (hcr & HCR_E2H) {
2596                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2597                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2598                     return CP_ACCESS_TRAP_EL2;
2599                 }
2600             } else {
2601                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2602                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2603                     return CP_ACCESS_TRAP_EL2;
2604                 }
2605             }
2606         }
2607         if (has_el2 && timeridx == GTIMER_VIRT) {
2608             if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2609                 return CP_ACCESS_TRAP_EL2;
2610             }
2611         }
2612         break;
2613     }
2614     return CP_ACCESS_OK;
2615 }
2616 
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2617 static CPAccessResult gt_pct_access(CPUARMState *env,
2618                                     const ARMCPRegInfo *ri,
2619                                     bool isread)
2620 {
2621     return gt_counter_access(env, GTIMER_PHYS, isread);
2622 }
2623 
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2624 static CPAccessResult gt_vct_access(CPUARMState *env,
2625                                     const ARMCPRegInfo *ri,
2626                                     bool isread)
2627 {
2628     return gt_counter_access(env, GTIMER_VIRT, isread);
2629 }
2630 
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2631 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2632                                        bool isread)
2633 {
2634     return gt_timer_access(env, GTIMER_PHYS, isread);
2635 }
2636 
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2637 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2638                                        bool isread)
2639 {
2640     return gt_timer_access(env, GTIMER_VIRT, isread);
2641 }
2642 
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2643 static CPAccessResult gt_stimer_access(CPUARMState *env,
2644                                        const ARMCPRegInfo *ri,
2645                                        bool isread)
2646 {
2647     /*
2648      * The AArch64 register view of the secure physical timer is
2649      * always accessible from EL3, and configurably accessible from
2650      * Secure EL1.
2651      */
2652     switch (arm_current_el(env)) {
2653     case 1:
2654         if (!arm_is_secure(env)) {
2655             return CP_ACCESS_TRAP_UNCATEGORIZED;
2656         }
2657         if (arm_is_el2_enabled(env)) {
2658             return CP_ACCESS_TRAP_UNCATEGORIZED;
2659         }
2660         if (!(env->cp15.scr_el3 & SCR_ST)) {
2661             return CP_ACCESS_TRAP_EL3;
2662         }
2663         return CP_ACCESS_OK;
2664     case 0:
2665     case 2:
2666         return CP_ACCESS_TRAP_UNCATEGORIZED;
2667     case 3:
2668         return CP_ACCESS_OK;
2669     default:
2670         g_assert_not_reached();
2671     }
2672 }
2673 
gt_sel2timer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2674 static CPAccessResult gt_sel2timer_access(CPUARMState *env,
2675                                           const ARMCPRegInfo *ri,
2676                                           bool isread)
2677 {
2678     /*
2679      * The AArch64 register view of the secure EL2 timers are mostly
2680      * accessible from EL3 and EL2 although can also be trapped to EL2
2681      * from EL1 depending on nested virt config.
2682      */
2683     switch (arm_current_el(env)) {
2684     case 0: /* UNDEFINED */
2685         return CP_ACCESS_TRAP_UNCATEGORIZED;
2686     case 1:
2687         if (!arm_is_secure(env)) {
2688             /* UNDEFINED */
2689             return CP_ACCESS_TRAP_UNCATEGORIZED;
2690         } else if (arm_hcr_el2_eff(env) & HCR_NV) {
2691             /* Aarch64.SystemAccessTrap(EL2, 0x18) */
2692             return CP_ACCESS_TRAP_EL2;
2693         }
2694         /* UNDEFINED */
2695         return CP_ACCESS_TRAP_UNCATEGORIZED;
2696     case 2:
2697         if (!arm_is_secure(env)) {
2698             /* UNDEFINED */
2699             return CP_ACCESS_TRAP_UNCATEGORIZED;
2700         }
2701         return CP_ACCESS_OK;
2702     case 3:
2703         if (env->cp15.scr_el3 & SCR_EEL2) {
2704             return CP_ACCESS_OK;
2705         } else {
2706             return CP_ACCESS_TRAP_UNCATEGORIZED;
2707         }
2708     default:
2709         g_assert_not_reached();
2710     }
2711 }
2712 
gt_get_countervalue(CPUARMState * env)2713 uint64_t gt_get_countervalue(CPUARMState *env)
2714 {
2715     ARMCPU *cpu = env_archcpu(env);
2716 
2717     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2718 }
2719 
gt_update_irq(ARMCPU * cpu,int timeridx)2720 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2721 {
2722     CPUARMState *env = &cpu->env;
2723     uint64_t cnthctl = env->cp15.cnthctl_el2;
2724     ARMSecuritySpace ss = arm_security_space(env);
2725     /* ISTATUS && !IMASK */
2726     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2727 
2728     /*
2729      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2730      * It is RES0 in Secure and NonSecure state.
2731      */
2732     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2733         ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2734          (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2735         irqstate = 0;
2736     }
2737 
2738     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2739     trace_arm_gt_update_irq(timeridx, irqstate);
2740 }
2741 
gt_rme_post_el_change(ARMCPU * cpu,void * ignored)2742 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2743 {
2744     /*
2745      * Changing security state between Root and Secure/NonSecure, which may
2746      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2747      * mask bits. Update the IRQ state accordingly.
2748      */
2749     gt_update_irq(cpu, GTIMER_VIRT);
2750     gt_update_irq(cpu, GTIMER_PHYS);
2751 }
2752 
gt_phys_raw_cnt_offset(CPUARMState * env)2753 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2754 {
2755     if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2756         FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2757         arm_is_el2_enabled(env) &&
2758         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2759         return env->cp15.cntpoff_el2;
2760     }
2761     return 0;
2762 }
2763 
gt_indirect_access_timer_offset(CPUARMState * env,int timeridx)2764 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx)
2765 {
2766     /*
2767      * Return the timer offset to use for indirect accesses to the timer.
2768      * This is the Offset value as defined in D12.2.4.1 "Operation of the
2769      * CompareValue views of the timers".
2770      *
2771      * The condition here is not always the same as the condition for
2772      * whether to apply an offset register when doing a direct read of
2773      * the counter sysreg; those conditions are described in the
2774      * access pseudocode for each counter register.
2775      */
2776     switch (timeridx) {
2777     case GTIMER_PHYS:
2778         return gt_phys_raw_cnt_offset(env);
2779     case GTIMER_VIRT:
2780         return env->cp15.cntvoff_el2;
2781     case GTIMER_HYP:
2782     case GTIMER_SEC:
2783     case GTIMER_HYPVIRT:
2784     case GTIMER_S_EL2_PHYS:
2785     case GTIMER_S_EL2_VIRT:
2786         return 0;
2787     default:
2788         g_assert_not_reached();
2789     }
2790 }
2791 
gt_direct_access_timer_offset(CPUARMState * env,int timeridx)2792 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx)
2793 {
2794     /*
2795      * Return the timer offset to use for direct accesses to the
2796      * counter registers CNTPCT and CNTVCT, and for direct accesses
2797      * to the CNT*_TVAL registers.
2798      *
2799      * This isn't exactly the same as the indirect-access offset,
2800      * because here we also care about what EL the register access
2801      * is being made from.
2802      *
2803      * This corresponds to the access pseudocode for the registers.
2804      */
2805     uint64_t hcr;
2806 
2807     switch (timeridx) {
2808     case GTIMER_PHYS:
2809         if (arm_current_el(env) >= 2) {
2810             return 0;
2811         }
2812         return gt_phys_raw_cnt_offset(env);
2813     case GTIMER_VIRT:
2814         switch (arm_current_el(env)) {
2815         case 2:
2816             hcr = arm_hcr_el2_eff(env);
2817             if (hcr & HCR_E2H) {
2818                 return 0;
2819             }
2820             break;
2821         case 0:
2822             hcr = arm_hcr_el2_eff(env);
2823             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2824                 return 0;
2825             }
2826             break;
2827         }
2828         return env->cp15.cntvoff_el2;
2829     case GTIMER_HYP:
2830     case GTIMER_SEC:
2831     case GTIMER_HYPVIRT:
2832     case GTIMER_S_EL2_PHYS:
2833     case GTIMER_S_EL2_VIRT:
2834         return 0;
2835     default:
2836         g_assert_not_reached();
2837     }
2838 }
2839 
gt_recalc_timer(ARMCPU * cpu,int timeridx)2840 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2841 {
2842     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2843 
2844     if (gt->ctl & 1) {
2845         /*
2846          * Timer enabled: calculate and set current ISTATUS, irq, and
2847          * reset timer to when ISTATUS next has to change
2848          */
2849         uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx);
2850         uint64_t count = gt_get_countervalue(&cpu->env);
2851         /* Note that this must be unsigned 64 bit arithmetic: */
2852         int istatus = count - offset >= gt->cval;
2853         uint64_t nexttick;
2854 
2855         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2856 
2857         if (istatus) {
2858             /*
2859              * Next transition is when (count - offset) rolls back over to 0.
2860              * If offset > count then this is when count == offset;
2861              * if offset <= count then this is when count == offset + 2^64
2862              * For the latter case we set nexttick to an "as far in future
2863              * as possible" value and let the code below handle it.
2864              */
2865             if (offset > count) {
2866                 nexttick = offset;
2867             } else {
2868                 nexttick = UINT64_MAX;
2869             }
2870         } else {
2871             /*
2872              * Next transition is when (count - offset) == cval, i.e.
2873              * when count == (cval + offset).
2874              * If that would overflow, then again we set up the next interrupt
2875              * for "as far in the future as possible" for the code below.
2876              */
2877             if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2878                 nexttick = UINT64_MAX;
2879             }
2880         }
2881         /*
2882          * Note that the desired next expiry time might be beyond the
2883          * signed-64-bit range of a QEMUTimer -- in this case we just
2884          * set the timer for as far in the future as possible. When the
2885          * timer expires we will reset the timer for any remaining period.
2886          */
2887         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2888             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2889         } else {
2890             timer_mod(cpu->gt_timer[timeridx], nexttick);
2891         }
2892         trace_arm_gt_recalc(timeridx, nexttick);
2893     } else {
2894         /* Timer disabled: ISTATUS and timer output always clear */
2895         gt->ctl &= ~4;
2896         timer_del(cpu->gt_timer[timeridx]);
2897         trace_arm_gt_recalc_disabled(timeridx);
2898     }
2899     gt_update_irq(cpu, timeridx);
2900 }
2901 
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2902 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2903                            int timeridx)
2904 {
2905     ARMCPU *cpu = env_archcpu(env);
2906 
2907     timer_del(cpu->gt_timer[timeridx]);
2908 }
2909 
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2910 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2911 {
2912     uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS);
2913     return gt_get_countervalue(env) - offset;
2914 }
2915 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2916 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2917 {
2918     uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT);
2919     return gt_get_countervalue(env) - offset;
2920 }
2921 
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2922 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923                           int timeridx,
2924                           uint64_t value)
2925 {
2926     trace_arm_gt_cval_write(timeridx, value);
2927     env->cp15.c14_timer[timeridx].cval = value;
2928     gt_recalc_timer(env_archcpu(env), timeridx);
2929 }
2930 
do_tval_read(CPUARMState * env,int timeridx,uint64_t offset)2931 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset)
2932 {
2933     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2934                       (gt_get_countervalue(env) - offset));
2935 }
2936 
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2937 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2938                              int timeridx)
2939 {
2940     uint64_t offset = gt_direct_access_timer_offset(env, timeridx);
2941 
2942     return do_tval_read(env, timeridx, offset);
2943 }
2944 
do_tval_write(CPUARMState * env,int timeridx,uint64_t value,uint64_t offset)2945 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value,
2946                           uint64_t offset)
2947 {
2948     trace_arm_gt_tval_write(timeridx, value);
2949     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2950                                          sextract64(value, 0, 32);
2951     gt_recalc_timer(env_archcpu(env), timeridx);
2952 }
2953 
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2954 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955                           int timeridx,
2956                           uint64_t value)
2957 {
2958     uint64_t offset = gt_direct_access_timer_offset(env, timeridx);
2959 
2960     do_tval_write(env, timeridx, value, offset);
2961 }
2962 
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2963 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2964                          int timeridx,
2965                          uint64_t value)
2966 {
2967     ARMCPU *cpu = env_archcpu(env);
2968     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2969 
2970     trace_arm_gt_ctl_write(timeridx, value);
2971     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2972     if ((oldval ^ value) & 1) {
2973         /* Enable toggled */
2974         gt_recalc_timer(cpu, timeridx);
2975     } else if ((oldval ^ value) & 2) {
2976         /*
2977          * IMASK toggled: don't need to recalculate,
2978          * just set the interrupt line based on ISTATUS
2979          */
2980         trace_arm_gt_imask_toggle(timeridx);
2981         gt_update_irq(cpu, timeridx);
2982     }
2983 }
2984 
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2985 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2986 {
2987     gt_timer_reset(env, ri, GTIMER_PHYS);
2988 }
2989 
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2990 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2991                                uint64_t value)
2992 {
2993     gt_cval_write(env, ri, GTIMER_PHYS, value);
2994 }
2995 
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2996 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2997 {
2998     return gt_tval_read(env, ri, GTIMER_PHYS);
2999 }
3000 
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3001 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002                                uint64_t value)
3003 {
3004     gt_tval_write(env, ri, GTIMER_PHYS, value);
3005 }
3006 
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3007 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3008                               uint64_t value)
3009 {
3010     gt_ctl_write(env, ri, GTIMER_PHYS, value);
3011 }
3012 
gt_phys_redir_timeridx(CPUARMState * env)3013 static int gt_phys_redir_timeridx(CPUARMState *env)
3014 {
3015     switch (arm_mmu_idx(env)) {
3016     case ARMMMUIdx_E20_0:
3017     case ARMMMUIdx_E20_2:
3018     case ARMMMUIdx_E20_2_PAN:
3019         return GTIMER_HYP;
3020     default:
3021         return GTIMER_PHYS;
3022     }
3023 }
3024 
gt_virt_redir_timeridx(CPUARMState * env)3025 static int gt_virt_redir_timeridx(CPUARMState *env)
3026 {
3027     switch (arm_mmu_idx(env)) {
3028     case ARMMMUIdx_E20_0:
3029     case ARMMMUIdx_E20_2:
3030     case ARMMMUIdx_E20_2_PAN:
3031         return GTIMER_HYPVIRT;
3032     default:
3033         return GTIMER_VIRT;
3034     }
3035 }
3036 
gt_phys_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)3037 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
3038                                         const ARMCPRegInfo *ri)
3039 {
3040     int timeridx = gt_phys_redir_timeridx(env);
3041     return env->cp15.c14_timer[timeridx].cval;
3042 }
3043 
gt_phys_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3044 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3045                                      uint64_t value)
3046 {
3047     int timeridx = gt_phys_redir_timeridx(env);
3048     gt_cval_write(env, ri, timeridx, value);
3049 }
3050 
gt_phys_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3051 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
3052                                         const ARMCPRegInfo *ri)
3053 {
3054     int timeridx = gt_phys_redir_timeridx(env);
3055     return gt_tval_read(env, ri, timeridx);
3056 }
3057 
gt_phys_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3058 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3059                                      uint64_t value)
3060 {
3061     int timeridx = gt_phys_redir_timeridx(env);
3062     gt_tval_write(env, ri, timeridx, value);
3063 }
3064 
gt_phys_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)3065 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
3066                                        const ARMCPRegInfo *ri)
3067 {
3068     int timeridx = gt_phys_redir_timeridx(env);
3069     return env->cp15.c14_timer[timeridx].ctl;
3070 }
3071 
gt_phys_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3072 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3073                                     uint64_t value)
3074 {
3075     int timeridx = gt_phys_redir_timeridx(env);
3076     gt_ctl_write(env, ri, timeridx, value);
3077 }
3078 
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3079 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3080 {
3081     gt_timer_reset(env, ri, GTIMER_VIRT);
3082 }
3083 
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3084 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3085                                uint64_t value)
3086 {
3087     gt_cval_write(env, ri, GTIMER_VIRT, value);
3088 }
3089 
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3090 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3091 {
3092     /*
3093      * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0
3094      * we always apply CNTVOFF_EL2. Special case that here rather
3095      * than going into the generic gt_tval_read() and then having
3096      * to re-detect that it's this register.
3097      * Note that the accessfn/perms mean we know we're at EL2 or EL3 here.
3098      */
3099     return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2);
3100 }
3101 
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3102 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                                uint64_t value)
3104 {
3105     /* Similarly for writes to CNTV_TVAL_EL02 */
3106     do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2);
3107 }
3108 
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3109 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3110                               uint64_t value)
3111 {
3112     gt_ctl_write(env, ri, GTIMER_VIRT, value);
3113 }
3114 
gt_cnthctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3115 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116                              uint64_t value)
3117 {
3118     ARMCPU *cpu = env_archcpu(env);
3119     uint32_t oldval = env->cp15.cnthctl_el2;
3120     uint32_t valid_mask =
3121         R_CNTHCTL_EL0PCTEN_E2H1_MASK |
3122         R_CNTHCTL_EL0VCTEN_E2H1_MASK |
3123         R_CNTHCTL_EVNTEN_MASK |
3124         R_CNTHCTL_EVNTDIR_MASK |
3125         R_CNTHCTL_EVNTI_MASK |
3126         R_CNTHCTL_EL0VTEN_MASK |
3127         R_CNTHCTL_EL0PTEN_MASK |
3128         R_CNTHCTL_EL1PCTEN_E2H1_MASK |
3129         R_CNTHCTL_EL1PTEN_MASK;
3130 
3131     if (cpu_isar_feature(aa64_rme, cpu)) {
3132         valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
3133     }
3134     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
3135         valid_mask |=
3136             R_CNTHCTL_EL1TVT_MASK |
3137             R_CNTHCTL_EL1TVCT_MASK |
3138             R_CNTHCTL_EL1NVPCT_MASK |
3139             R_CNTHCTL_EL1NVVCT_MASK |
3140             R_CNTHCTL_EVNTIS_MASK;
3141     }
3142     if (cpu_isar_feature(aa64_ecv, cpu)) {
3143         valid_mask |= R_CNTHCTL_ECV_MASK;
3144     }
3145 
3146     /* Clear RES0 bits */
3147     value &= valid_mask;
3148 
3149     raw_write(env, ri, value);
3150 
3151     if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
3152         gt_update_irq(cpu, GTIMER_VIRT);
3153     } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
3154         gt_update_irq(cpu, GTIMER_PHYS);
3155     }
3156 }
3157 
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3158 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3159                               uint64_t value)
3160 {
3161     ARMCPU *cpu = env_archcpu(env);
3162 
3163     trace_arm_gt_cntvoff_write(value);
3164     raw_write(env, ri, value);
3165     gt_recalc_timer(cpu, GTIMER_VIRT);
3166 }
3167 
gt_virt_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)3168 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
3169                                         const ARMCPRegInfo *ri)
3170 {
3171     int timeridx = gt_virt_redir_timeridx(env);
3172     return env->cp15.c14_timer[timeridx].cval;
3173 }
3174 
gt_virt_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3175 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3176                                      uint64_t value)
3177 {
3178     int timeridx = gt_virt_redir_timeridx(env);
3179     gt_cval_write(env, ri, timeridx, value);
3180 }
3181 
gt_virt_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3182 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3183                                         const ARMCPRegInfo *ri)
3184 {
3185     int timeridx = gt_virt_redir_timeridx(env);
3186     return gt_tval_read(env, ri, timeridx);
3187 }
3188 
gt_virt_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3189 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190                                      uint64_t value)
3191 {
3192     int timeridx = gt_virt_redir_timeridx(env);
3193     gt_tval_write(env, ri, timeridx, value);
3194 }
3195 
gt_virt_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)3196 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3197                                        const ARMCPRegInfo *ri)
3198 {
3199     int timeridx = gt_virt_redir_timeridx(env);
3200     return env->cp15.c14_timer[timeridx].ctl;
3201 }
3202 
gt_virt_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3203 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3204                                     uint64_t value)
3205 {
3206     int timeridx = gt_virt_redir_timeridx(env);
3207     gt_ctl_write(env, ri, timeridx, value);
3208 }
3209 
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3210 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3211 {
3212     gt_timer_reset(env, ri, GTIMER_HYP);
3213 }
3214 
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3215 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3216                               uint64_t value)
3217 {
3218     gt_cval_write(env, ri, GTIMER_HYP, value);
3219 }
3220 
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3221 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3222 {
3223     return gt_tval_read(env, ri, GTIMER_HYP);
3224 }
3225 
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3226 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3227                               uint64_t value)
3228 {
3229     gt_tval_write(env, ri, GTIMER_HYP, value);
3230 }
3231 
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3232 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3233                               uint64_t value)
3234 {
3235     gt_ctl_write(env, ri, GTIMER_HYP, value);
3236 }
3237 
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3238 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3239 {
3240     gt_timer_reset(env, ri, GTIMER_SEC);
3241 }
3242 
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3243 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3244                               uint64_t value)
3245 {
3246     gt_cval_write(env, ri, GTIMER_SEC, value);
3247 }
3248 
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3249 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3250 {
3251     return gt_tval_read(env, ri, GTIMER_SEC);
3252 }
3253 
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3254 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3255                               uint64_t value)
3256 {
3257     gt_tval_write(env, ri, GTIMER_SEC, value);
3258 }
3259 
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3260 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3261                               uint64_t value)
3262 {
3263     gt_ctl_write(env, ri, GTIMER_SEC, value);
3264 }
3265 
gt_sec_pel2_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3266 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3267 {
3268     gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS);
3269 }
3270 
gt_sec_pel2_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3271 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3272                                    uint64_t value)
3273 {
3274     gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value);
3275 }
3276 
gt_sec_pel2_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3277 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3278 {
3279     return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS);
3280 }
3281 
gt_sec_pel2_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3282 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3283                               uint64_t value)
3284 {
3285     gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value);
3286 }
3287 
gt_sec_pel2_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3288 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3289                               uint64_t value)
3290 {
3291     gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value);
3292 }
3293 
gt_sec_vel2_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3294 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3295 {
3296     gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT);
3297 }
3298 
gt_sec_vel2_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3299 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3300                               uint64_t value)
3301 {
3302     gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value);
3303 }
3304 
gt_sec_vel2_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3305 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3306 {
3307     return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT);
3308 }
3309 
gt_sec_vel2_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3310 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3311                                    uint64_t value)
3312 {
3313     gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value);
3314 }
3315 
gt_sec_vel2_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3316 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3317                               uint64_t value)
3318 {
3319     gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value);
3320 }
3321 
gt_hv_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3322 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3323 {
3324     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3325 }
3326 
gt_hv_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3327 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3328                              uint64_t value)
3329 {
3330     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3331 }
3332 
gt_hv_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3333 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3334 {
3335     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3336 }
3337 
gt_hv_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3338 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3339                              uint64_t value)
3340 {
3341     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3342 }
3343 
gt_hv_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3344 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3345                             uint64_t value)
3346 {
3347     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3348 }
3349 
arm_gt_ptimer_cb(void * opaque)3350 void arm_gt_ptimer_cb(void *opaque)
3351 {
3352     ARMCPU *cpu = opaque;
3353 
3354     gt_recalc_timer(cpu, GTIMER_PHYS);
3355 }
3356 
arm_gt_vtimer_cb(void * opaque)3357 void arm_gt_vtimer_cb(void *opaque)
3358 {
3359     ARMCPU *cpu = opaque;
3360 
3361     gt_recalc_timer(cpu, GTIMER_VIRT);
3362 }
3363 
arm_gt_htimer_cb(void * opaque)3364 void arm_gt_htimer_cb(void *opaque)
3365 {
3366     ARMCPU *cpu = opaque;
3367 
3368     gt_recalc_timer(cpu, GTIMER_HYP);
3369 }
3370 
arm_gt_stimer_cb(void * opaque)3371 void arm_gt_stimer_cb(void *opaque)
3372 {
3373     ARMCPU *cpu = opaque;
3374 
3375     gt_recalc_timer(cpu, GTIMER_SEC);
3376 }
3377 
arm_gt_sel2timer_cb(void * opaque)3378 void arm_gt_sel2timer_cb(void *opaque)
3379 {
3380     ARMCPU *cpu = opaque;
3381 
3382     gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS);
3383 }
3384 
arm_gt_sel2vtimer_cb(void * opaque)3385 void arm_gt_sel2vtimer_cb(void *opaque)
3386 {
3387     ARMCPU *cpu = opaque;
3388 
3389     gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT);
3390 }
3391 
arm_gt_hvtimer_cb(void * opaque)3392 void arm_gt_hvtimer_cb(void *opaque)
3393 {
3394     ARMCPU *cpu = opaque;
3395 
3396     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3397 }
3398 
3399 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3400     /*
3401      * Note that CNTFRQ is purely reads-as-written for the benefit
3402      * of software; writing it doesn't actually change the timer frequency.
3403      * Our reset value matches the fixed frequency we implement the timer at.
3404      */
3405     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3406       .type = ARM_CP_ALIAS,
3407       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3408       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3409     },
3410     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3412       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3413       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3414       .resetfn = arm_gt_cntfrq_reset,
3415     },
3416     /* overall control: mostly access permissions */
3417     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3418       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3419       .access = PL1_RW,
3420       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3421       .resetvalue = 0,
3422     },
3423     /* per-timer control */
3424     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3425       .secure = ARM_CP_SECSTATE_NS,
3426       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3427       .accessfn = gt_ptimer_access,
3428       .fieldoffset = offsetoflow32(CPUARMState,
3429                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3430       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3431       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3432     },
3433     { .name = "CNTP_CTL_S",
3434       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3435       .secure = ARM_CP_SECSTATE_S,
3436       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3437       .accessfn = gt_ptimer_access,
3438       .fieldoffset = offsetoflow32(CPUARMState,
3439                                    cp15.c14_timer[GTIMER_SEC].ctl),
3440       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3441     },
3442     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3444       .type = ARM_CP_IO, .access = PL0_RW,
3445       .accessfn = gt_ptimer_access,
3446       .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3447       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3448       .resetvalue = 0,
3449       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3450       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3451     },
3452     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3453       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3454       .accessfn = gt_vtimer_access,
3455       .fieldoffset = offsetoflow32(CPUARMState,
3456                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3457       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3458       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3459     },
3460     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3462       .type = ARM_CP_IO, .access = PL0_RW,
3463       .accessfn = gt_vtimer_access,
3464       .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3465       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3466       .resetvalue = 0,
3467       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3468       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3469     },
3470     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3471     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3472       .secure = ARM_CP_SECSTATE_NS,
3473       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3474       .accessfn = gt_ptimer_access,
3475       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3476     },
3477     { .name = "CNTP_TVAL_S",
3478       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3479       .secure = ARM_CP_SECSTATE_S,
3480       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3481       .accessfn = gt_ptimer_access,
3482       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3483     },
3484     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3485       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3486       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3487       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3488       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3489     },
3490     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3491       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3492       .accessfn = gt_vtimer_access,
3493       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3494     },
3495     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3496       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3497       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3498       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3499       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3500     },
3501     /* The counter itself */
3502     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3503       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3504       .accessfn = gt_pct_access,
3505       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3506     },
3507     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3508       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3509       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3510       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3511     },
3512     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3513       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3514       .accessfn = gt_vct_access,
3515       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3516     },
3517     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3518       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3519       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3520       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3521     },
3522     /* Comparison value, indicating when the timer goes off */
3523     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3524       .secure = ARM_CP_SECSTATE_NS,
3525       .access = PL0_RW,
3526       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3527       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3528       .accessfn = gt_ptimer_access,
3529       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3530       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3531     },
3532     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3533       .secure = ARM_CP_SECSTATE_S,
3534       .access = PL0_RW,
3535       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3536       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3537       .accessfn = gt_ptimer_access,
3538       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3539     },
3540     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3541       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3542       .access = PL0_RW,
3543       .type = ARM_CP_IO,
3544       .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3545       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3546       .resetvalue = 0, .accessfn = gt_ptimer_access,
3547       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3548       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3549     },
3550     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3551       .access = PL0_RW,
3552       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3553       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3554       .accessfn = gt_vtimer_access,
3555       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3556       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3557     },
3558     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3559       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3560       .access = PL0_RW,
3561       .type = ARM_CP_IO,
3562       .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3563       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3564       .resetvalue = 0, .accessfn = gt_vtimer_access,
3565       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3566       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3567     },
3568     /*
3569      * Secure timer -- this is actually restricted to only EL3
3570      * and configurably Secure-EL1 via the accessfn.
3571      */
3572     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3573       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3574       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3575       .accessfn = gt_stimer_access,
3576       .readfn = gt_sec_tval_read,
3577       .writefn = gt_sec_tval_write,
3578       .resetfn = gt_sec_timer_reset,
3579     },
3580     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3581       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3582       .type = ARM_CP_IO, .access = PL1_RW,
3583       .accessfn = gt_stimer_access,
3584       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3585       .resetvalue = 0,
3586       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3587     },
3588     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3589       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3590       .type = ARM_CP_IO, .access = PL1_RW,
3591       .accessfn = gt_stimer_access,
3592       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3593       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3594     },
3595 };
3596 
3597 /*
3598  * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3599  * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3600  * so our implementations here are identical to the normal registers.
3601  */
3602 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3603     { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3604       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3605       .accessfn = gt_vct_access,
3606       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3607     },
3608     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3609       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3610       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3611       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3612     },
3613     { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3614       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3615       .accessfn = gt_pct_access,
3616       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3617     },
3618     { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3619       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3620       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3621       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3622     },
3623 };
3624 
gt_cntpoff_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3625 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3626                                         const ARMCPRegInfo *ri,
3627                                         bool isread)
3628 {
3629     if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3630         !(env->cp15.scr_el3 & SCR_ECVEN)) {
3631         return CP_ACCESS_TRAP_EL3;
3632     }
3633     return CP_ACCESS_OK;
3634 }
3635 
gt_cntpoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3636 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3637                               uint64_t value)
3638 {
3639     ARMCPU *cpu = env_archcpu(env);
3640 
3641     trace_arm_gt_cntpoff_write(value);
3642     raw_write(env, ri, value);
3643     gt_recalc_timer(cpu, GTIMER_PHYS);
3644 }
3645 
3646 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3647     .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3648     .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3649     .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3650     .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3651     .nv2_redirect_offset = 0x1a8,
3652     .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3653 };
3654 #else
3655 
3656 /*
3657  * In user-mode most of the generic timer registers are inaccessible
3658  * however modern kernels (4.12+) allow access to cntvct_el0
3659  */
3660 
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)3661 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3662 {
3663     ARMCPU *cpu = env_archcpu(env);
3664 
3665     /*
3666      * Currently we have no support for QEMUTimer in linux-user so we
3667      * can't call gt_get_countervalue(env), instead we directly
3668      * call the lower level functions.
3669      */
3670     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3671 }
3672 
3673 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3674     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3675       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3676       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3677       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3678       .resetfn = arm_gt_cntfrq_reset,
3679     },
3680     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3681       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3682       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3683       .readfn = gt_virt_cnt_read,
3684     },
3685 };
3686 
3687 /*
3688  * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3689  * is exposed to userspace by Linux.
3690  */
3691 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3692     { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3693       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3694       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3695       .readfn = gt_virt_cnt_read,
3696     },
3697 };
3698 
3699 #endif
3700 
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3701 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3702 {
3703     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3704         raw_write(env, ri, value);
3705     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3706         raw_write(env, ri, value & 0xfffff6ff);
3707     } else {
3708         raw_write(env, ri, value & 0xfffff1ff);
3709     }
3710 }
3711 
3712 #ifndef CONFIG_USER_ONLY
3713 /* get_phys_addr() isn't present for user-mode-only targets */
3714 
ats_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3715 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3716                                  bool isread)
3717 {
3718     if (ri->opc2 & 4) {
3719         /*
3720          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3721          * Secure EL1 (which can only happen if EL3 is AArch64).
3722          * They are simply UNDEF if executed from NS EL1.
3723          * They function normally from EL2 or EL3.
3724          */
3725         if (arm_current_el(env) == 1) {
3726             if (arm_is_secure_below_el3(env)) {
3727                 if (env->cp15.scr_el3 & SCR_EEL2) {
3728                     return CP_ACCESS_TRAP_EL2;
3729                 }
3730                 return CP_ACCESS_TRAP_EL3;
3731             }
3732             return CP_ACCESS_TRAP_UNCATEGORIZED;
3733         }
3734     }
3735     return CP_ACCESS_OK;
3736 }
3737 
3738 #ifdef CONFIG_TCG
par_el1_shareability(GetPhysAddrResult * res)3739 static int par_el1_shareability(GetPhysAddrResult *res)
3740 {
3741     /*
3742      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3743      * memory -- see pseudocode PAREncodeShareability().
3744      */
3745     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3746         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3747         return 2;
3748     }
3749     return res->cacheattrs.shareability;
3750 }
3751 
do_ats_write(CPUARMState * env,uint64_t value,MMUAccessType access_type,ARMMMUIdx mmu_idx,ARMSecuritySpace ss)3752 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3753                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3754                              ARMSecuritySpace ss)
3755 {
3756     bool ret;
3757     uint64_t par64;
3758     bool format64 = false;
3759     ARMMMUFaultInfo fi = {};
3760     GetPhysAddrResult res = {};
3761 
3762     /*
3763      * I_MXTJT: Granule protection checks are not performed on the final
3764      * address of a successful translation.  This is a translation not a
3765      * memory reference, so "memop = none = 0".
3766      */
3767     ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0,
3768                                          mmu_idx, ss, &res, &fi);
3769 
3770     /*
3771      * ATS operations only do S1 or S1+S2 translations, so we never
3772      * have to deal with the ARMCacheAttrs format for S2 only.
3773      */
3774     assert(!res.cacheattrs.is_s2_format);
3775 
3776     if (ret) {
3777         /*
3778          * Some kinds of translation fault must cause exceptions rather
3779          * than being reported in the PAR.
3780          */
3781         int current_el = arm_current_el(env);
3782         int target_el;
3783         uint32_t syn, fsr, fsc;
3784         bool take_exc = false;
3785 
3786         if (fi.s1ptw && current_el == 1
3787             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3788             /*
3789              * Synchronous stage 2 fault on an access made as part of the
3790              * translation table walk for AT S1E0* or AT S1E1* insn
3791              * executed from NS EL1. If this is a synchronous external abort
3792              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3793              * to EL3. Otherwise the fault is taken as an exception to EL2,
3794              * and HPFAR_EL2 holds the faulting IPA.
3795              */
3796             if (fi.type == ARMFault_SyncExternalOnWalk &&
3797                 (env->cp15.scr_el3 & SCR_EA)) {
3798                 target_el = 3;
3799             } else {
3800                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3801                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3802                     env->cp15.hpfar_el2 |= HPFAR_NS;
3803                 }
3804                 target_el = 2;
3805             }
3806             take_exc = true;
3807         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3808             /*
3809              * Synchronous external aborts during a translation table walk
3810              * are taken as Data Abort exceptions.
3811              */
3812             if (fi.stage2) {
3813                 if (current_el == 3) {
3814                     target_el = 3;
3815                 } else {
3816                     target_el = 2;
3817                 }
3818             } else {
3819                 target_el = exception_target_el(env);
3820             }
3821             take_exc = true;
3822         }
3823 
3824         if (take_exc) {
3825             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3826             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3827                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3828                 fsr = arm_fi_to_lfsc(&fi);
3829                 fsc = extract32(fsr, 0, 6);
3830             } else {
3831                 fsr = arm_fi_to_sfsc(&fi);
3832                 fsc = 0x3f;
3833             }
3834             /*
3835              * Report exception with ESR indicating a fault due to a
3836              * translation table walk for a cache maintenance instruction.
3837              */
3838             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3839                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3840             env->exception.vaddress = value;
3841             env->exception.fsr = fsr;
3842             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3843         }
3844     }
3845 
3846     if (is_a64(env)) {
3847         format64 = true;
3848     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3849         /*
3850          * ATS1Cxx:
3851          * * TTBCR.EAE determines whether the result is returned using the
3852          *   32-bit or the 64-bit PAR format
3853          * * Instructions executed in Hyp mode always use the 64bit format
3854          *
3855          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3856          * * The Non-secure TTBCR.EAE bit is set to 1
3857          * * The implementation includes EL2, and the value of HCR.VM is 1
3858          *
3859          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3860          *
3861          * ATS1Hx always uses the 64bit format.
3862          */
3863         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3864 
3865         if (arm_feature(env, ARM_FEATURE_EL2)) {
3866             if (mmu_idx == ARMMMUIdx_E10_0 ||
3867                 mmu_idx == ARMMMUIdx_E10_1 ||
3868                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3869                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3870             } else {
3871                 format64 |= arm_current_el(env) == 2;
3872             }
3873         }
3874     }
3875 
3876     if (format64) {
3877         /* Create a 64-bit PAR */
3878         par64 = (1 << 11); /* LPAE bit always set */
3879         if (!ret) {
3880             par64 |= res.f.phys_addr & ~0xfffULL;
3881             if (!res.f.attrs.secure) {
3882                 par64 |= (1 << 9); /* NS */
3883             }
3884             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3885             par64 |= par_el1_shareability(&res) << 7; /* SH */
3886         } else {
3887             uint32_t fsr = arm_fi_to_lfsc(&fi);
3888 
3889             par64 |= 1; /* F */
3890             par64 |= (fsr & 0x3f) << 1; /* FS */
3891             if (fi.stage2) {
3892                 par64 |= (1 << 9); /* S */
3893             }
3894             if (fi.s1ptw) {
3895                 par64 |= (1 << 8); /* PTW */
3896             }
3897         }
3898     } else {
3899         /*
3900          * fsr is a DFSR/IFSR value for the short descriptor
3901          * translation table format (with WnR always clear).
3902          * Convert it to a 32-bit PAR.
3903          */
3904         if (!ret) {
3905             /* We do not set any attribute bits in the PAR */
3906             if (res.f.lg_page_size == 24
3907                 && arm_feature(env, ARM_FEATURE_V7)) {
3908                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3909             } else {
3910                 par64 = res.f.phys_addr & 0xfffff000;
3911             }
3912             if (!res.f.attrs.secure) {
3913                 par64 |= (1 << 9); /* NS */
3914             }
3915         } else {
3916             uint32_t fsr = arm_fi_to_sfsc(&fi);
3917 
3918             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3919                     ((fsr & 0xf) << 1) | 1;
3920         }
3921     }
3922     return par64;
3923 }
3924 #endif /* CONFIG_TCG */
3925 
ats_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3926 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3927 {
3928 #ifdef CONFIG_TCG
3929     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3930     uint64_t par64;
3931     ARMMMUIdx mmu_idx;
3932     int el = arm_current_el(env);
3933     ARMSecuritySpace ss = arm_security_space(env);
3934 
3935     switch (ri->opc2 & 6) {
3936     case 0:
3937         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3938         switch (el) {
3939         case 3:
3940             if (ri->crm == 9 && arm_pan_enabled(env)) {
3941                 mmu_idx = ARMMMUIdx_E30_3_PAN;
3942             } else {
3943                 mmu_idx = ARMMMUIdx_E3;
3944             }
3945             break;
3946         case 2:
3947             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3948             /* fall through */
3949         case 1:
3950             if (ri->crm == 9 && arm_pan_enabled(env)) {
3951                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3952             } else {
3953                 mmu_idx = ARMMMUIdx_Stage1_E1;
3954             }
3955             break;
3956         default:
3957             g_assert_not_reached();
3958         }
3959         break;
3960     case 2:
3961         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3962         switch (el) {
3963         case 3:
3964             mmu_idx = ARMMMUIdx_E30_0;
3965             break;
3966         case 2:
3967             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3968             mmu_idx = ARMMMUIdx_Stage1_E0;
3969             break;
3970         case 1:
3971             mmu_idx = ARMMMUIdx_Stage1_E0;
3972             break;
3973         default:
3974             g_assert_not_reached();
3975         }
3976         break;
3977     case 4:
3978         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3979         mmu_idx = ARMMMUIdx_E10_1;
3980         ss = ARMSS_NonSecure;
3981         break;
3982     case 6:
3983         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3984         mmu_idx = ARMMMUIdx_E10_0;
3985         ss = ARMSS_NonSecure;
3986         break;
3987     default:
3988         g_assert_not_reached();
3989     }
3990 
3991     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3992 
3993     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3994 #else
3995     /* Handled by hardware accelerator. */
3996     g_assert_not_reached();
3997 #endif /* CONFIG_TCG */
3998 }
3999 
ats1h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4000 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
4001                         uint64_t value)
4002 {
4003 #ifdef CONFIG_TCG
4004     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
4005     uint64_t par64;
4006 
4007     /* There is no SecureEL2 for AArch32. */
4008     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
4009                          ARMSS_NonSecure);
4010 
4011     A32_BANKED_CURRENT_REG_SET(env, par, par64);
4012 #else
4013     /* Handled by hardware accelerator. */
4014     g_assert_not_reached();
4015 #endif /* CONFIG_TCG */
4016 }
4017 
at_e012_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4018 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
4019                                      bool isread)
4020 {
4021     /*
4022      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
4023      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
4024      * only happen when executing at EL3 because that combination also causes an
4025      * illegal exception return. We don't need to check FEAT_RME either, because
4026      * scr_write() ensures that the NSE bit is not set otherwise.
4027      */
4028     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
4029         return CP_ACCESS_TRAP_UNCATEGORIZED;
4030     }
4031     return CP_ACCESS_OK;
4032 }
4033 
at_s1e2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4034 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
4035                                      bool isread)
4036 {
4037     if (arm_current_el(env) == 3 &&
4038         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
4039         return CP_ACCESS_TRAP_UNCATEGORIZED;
4040     }
4041     return at_e012_access(env, ri, isread);
4042 }
4043 
at_s1e01_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4044 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
4045                                       bool isread)
4046 {
4047     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
4048         return CP_ACCESS_TRAP_EL2;
4049     }
4050     return at_e012_access(env, ri, isread);
4051 }
4052 
ats_write64(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4053 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
4054                         uint64_t value)
4055 {
4056 #ifdef CONFIG_TCG
4057     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
4058     ARMMMUIdx mmu_idx;
4059     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
4060     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
4061     bool for_el3 = false;
4062     ARMSecuritySpace ss;
4063 
4064     switch (ri->opc2 & 6) {
4065     case 0:
4066         switch (ri->opc1) {
4067         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
4068             if (ri->crm == 9 && arm_pan_enabled(env)) {
4069                 mmu_idx = regime_e20 ?
4070                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
4071             } else {
4072                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
4073             }
4074             break;
4075         case 4: /* AT S1E2R, AT S1E2W */
4076             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
4077             break;
4078         case 6: /* AT S1E3R, AT S1E3W */
4079             mmu_idx = ARMMMUIdx_E3;
4080             for_el3 = true;
4081             break;
4082         default:
4083             g_assert_not_reached();
4084         }
4085         break;
4086     case 2: /* AT S1E0R, AT S1E0W */
4087         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
4088         break;
4089     case 4: /* AT S12E1R, AT S12E1W */
4090         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
4091         break;
4092     case 6: /* AT S12E0R, AT S12E0W */
4093         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
4094         break;
4095     default:
4096         g_assert_not_reached();
4097     }
4098 
4099     ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
4100     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
4101 #else
4102     /* Handled by hardware accelerator. */
4103     g_assert_not_reached();
4104 #endif /* CONFIG_TCG */
4105 }
4106 #endif
4107 
4108 /* Return basic MPU access permission bits.  */
simple_mpu_ap_bits(uint32_t val)4109 static uint32_t simple_mpu_ap_bits(uint32_t val)
4110 {
4111     uint32_t ret;
4112     uint32_t mask;
4113     int i;
4114     ret = 0;
4115     mask = 3;
4116     for (i = 0; i < 16; i += 2) {
4117         ret |= (val >> i) & mask;
4118         mask <<= 2;
4119     }
4120     return ret;
4121 }
4122 
4123 /* Pad basic MPU access permission bits to extended format.  */
extended_mpu_ap_bits(uint32_t val)4124 static uint32_t extended_mpu_ap_bits(uint32_t val)
4125 {
4126     uint32_t ret;
4127     uint32_t mask;
4128     int i;
4129     ret = 0;
4130     mask = 3;
4131     for (i = 0; i < 16; i += 2) {
4132         ret |= (val & mask) << i;
4133         mask <<= 2;
4134     }
4135     return ret;
4136 }
4137 
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4138 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
4139                                  uint64_t value)
4140 {
4141     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
4142 }
4143 
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)4144 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
4145 {
4146     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
4147 }
4148 
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4149 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
4150                                  uint64_t value)
4151 {
4152     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
4153 }
4154 
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)4155 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
4156 {
4157     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
4158 }
4159 
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)4160 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
4161 {
4162     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4163 
4164     if (!u32p) {
4165         return 0;
4166     }
4167 
4168     u32p += env->pmsav7.rnr[M_REG_NS];
4169     return *u32p;
4170 }
4171 
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4172 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
4173                          uint64_t value)
4174 {
4175     ARMCPU *cpu = env_archcpu(env);
4176     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
4177 
4178     if (!u32p) {
4179         return;
4180     }
4181 
4182     u32p += env->pmsav7.rnr[M_REG_NS];
4183     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4184     *u32p = value;
4185 }
4186 
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4187 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4188                               uint64_t value)
4189 {
4190     ARMCPU *cpu = env_archcpu(env);
4191     uint32_t nrgs = cpu->pmsav7_dregion;
4192 
4193     if (value >= nrgs) {
4194         qemu_log_mask(LOG_GUEST_ERROR,
4195                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
4196                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
4197         return;
4198     }
4199 
4200     raw_write(env, ri, value);
4201 }
4202 
prbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4203 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4204                           uint64_t value)
4205 {
4206     ARMCPU *cpu = env_archcpu(env);
4207 
4208     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4209     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4210 }
4211 
prbar_read(CPUARMState * env,const ARMCPRegInfo * ri)4212 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4213 {
4214     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4215 }
4216 
prlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4217 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4218                           uint64_t value)
4219 {
4220     ARMCPU *cpu = env_archcpu(env);
4221 
4222     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4223     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
4224 }
4225 
prlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4226 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4227 {
4228     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
4229 }
4230 
prselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4231 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4232                            uint64_t value)
4233 {
4234     ARMCPU *cpu = env_archcpu(env);
4235 
4236     /*
4237      * Ignore writes that would select not implemented region.
4238      * This is architecturally UNPREDICTABLE.
4239      */
4240     if (value >= cpu->pmsav7_dregion) {
4241         return;
4242     }
4243 
4244     env->pmsav7.rnr[M_REG_NS] = value;
4245 }
4246 
hprbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4247 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4248                           uint64_t value)
4249 {
4250     ARMCPU *cpu = env_archcpu(env);
4251 
4252     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4253     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
4254 }
4255 
hprbar_read(CPUARMState * env,const ARMCPRegInfo * ri)4256 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4257 {
4258     return env->pmsav8.hprbar[env->pmsav8.hprselr];
4259 }
4260 
hprlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4261 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4262                           uint64_t value)
4263 {
4264     ARMCPU *cpu = env_archcpu(env);
4265 
4266     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4267     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4268 }
4269 
hprlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4270 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4271 {
4272     return env->pmsav8.hprlar[env->pmsav8.hprselr];
4273 }
4274 
hprenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4275 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4276                           uint64_t value)
4277 {
4278     uint32_t n;
4279     uint32_t bit;
4280     ARMCPU *cpu = env_archcpu(env);
4281 
4282     /* Ignore writes to unimplemented regions */
4283     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4284     value &= MAKE_64BIT_MASK(0, rmax);
4285 
4286     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4287 
4288     /* Register alias is only valid for first 32 indexes */
4289     for (n = 0; n < rmax; ++n) {
4290         bit = extract32(value, n, 1);
4291         env->pmsav8.hprlar[n] = deposit32(
4292                     env->pmsav8.hprlar[n], 0, 1, bit);
4293     }
4294 }
4295 
hprenr_read(CPUARMState * env,const ARMCPRegInfo * ri)4296 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4297 {
4298     uint32_t n;
4299     uint32_t result = 0x0;
4300     ARMCPU *cpu = env_archcpu(env);
4301 
4302     /* Register alias is only valid for first 32 indexes */
4303     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4304         if (env->pmsav8.hprlar[n] & 0x1) {
4305             result |= (0x1 << n);
4306         }
4307     }
4308     return result;
4309 }
4310 
hprselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4311 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4312                            uint64_t value)
4313 {
4314     ARMCPU *cpu = env_archcpu(env);
4315 
4316     /*
4317      * Ignore writes that would select not implemented region.
4318      * This is architecturally UNPREDICTABLE.
4319      */
4320     if (value >= cpu->pmsav8r_hdregion) {
4321         return;
4322     }
4323 
4324     env->pmsav8.hprselr = value;
4325 }
4326 
pmsav8r_regn_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4327 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4328                           uint64_t value)
4329 {
4330     ARMCPU *cpu = env_archcpu(env);
4331     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4332                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4333 
4334     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4335 
4336     if (ri->opc1 & 4) {
4337         if (index >= cpu->pmsav8r_hdregion) {
4338             return;
4339         }
4340         if (ri->opc2 & 0x1) {
4341             env->pmsav8.hprlar[index] = value;
4342         } else {
4343             env->pmsav8.hprbar[index] = value;
4344         }
4345     } else {
4346         if (index >= cpu->pmsav7_dregion) {
4347             return;
4348         }
4349         if (ri->opc2 & 0x1) {
4350             env->pmsav8.rlar[M_REG_NS][index] = value;
4351         } else {
4352             env->pmsav8.rbar[M_REG_NS][index] = value;
4353         }
4354     }
4355 }
4356 
pmsav8r_regn_read(CPUARMState * env,const ARMCPRegInfo * ri)4357 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4358 {
4359     ARMCPU *cpu = env_archcpu(env);
4360     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4361                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4362 
4363     if (ri->opc1 & 4) {
4364         if (index >= cpu->pmsav8r_hdregion) {
4365             return 0x0;
4366         }
4367         if (ri->opc2 & 0x1) {
4368             return env->pmsav8.hprlar[index];
4369         } else {
4370             return env->pmsav8.hprbar[index];
4371         }
4372     } else {
4373         if (index >= cpu->pmsav7_dregion) {
4374             return 0x0;
4375         }
4376         if (ri->opc2 & 0x1) {
4377             return env->pmsav8.rlar[M_REG_NS][index];
4378         } else {
4379             return env->pmsav8.rbar[M_REG_NS][index];
4380         }
4381     }
4382 }
4383 
4384 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4385     { .name = "PRBAR",
4386       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4387       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4388       .accessfn = access_tvm_trvm,
4389       .readfn = prbar_read, .writefn = prbar_write },
4390     { .name = "PRLAR",
4391       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4392       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4393       .accessfn = access_tvm_trvm,
4394       .readfn = prlar_read, .writefn = prlar_write },
4395     { .name = "PRSELR", .resetvalue = 0,
4396       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4397       .access = PL1_RW, .accessfn = access_tvm_trvm,
4398       .writefn = prselr_write,
4399       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4400     { .name = "HPRBAR", .resetvalue = 0,
4401       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4402       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4403       .readfn = hprbar_read, .writefn = hprbar_write },
4404     { .name = "HPRLAR",
4405       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4406       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4407       .readfn = hprlar_read, .writefn = hprlar_write },
4408     { .name = "HPRSELR", .resetvalue = 0,
4409       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4410       .access = PL2_RW,
4411       .writefn = hprselr_write,
4412       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4413     { .name = "HPRENR",
4414       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4415       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4416       .readfn = hprenr_read, .writefn = hprenr_write },
4417 };
4418 
4419 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4420     /*
4421      * Reset for all these registers is handled in arm_cpu_reset(),
4422      * because the PMSAv7 is also used by M-profile CPUs, which do
4423      * not register cpregs but still need the state to be reset.
4424      */
4425     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4426       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4427       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4428       .readfn = pmsav7_read, .writefn = pmsav7_write,
4429       .resetfn = arm_cp_reset_ignore },
4430     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4431       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4432       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4433       .readfn = pmsav7_read, .writefn = pmsav7_write,
4434       .resetfn = arm_cp_reset_ignore },
4435     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4436       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4437       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4438       .readfn = pmsav7_read, .writefn = pmsav7_write,
4439       .resetfn = arm_cp_reset_ignore },
4440     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4441       .access = PL1_RW,
4442       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4443       .writefn = pmsav7_rgnr_write,
4444       .resetfn = arm_cp_reset_ignore },
4445 };
4446 
4447 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4448     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4449       .access = PL1_RW, .type = ARM_CP_ALIAS,
4450       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4451       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4452     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4453       .access = PL1_RW, .type = ARM_CP_ALIAS,
4454       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4455       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4456     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4457       .access = PL1_RW,
4458       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4459       .resetvalue = 0, },
4460     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4461       .access = PL1_RW,
4462       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4463       .resetvalue = 0, },
4464     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4465       .access = PL1_RW,
4466       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4467     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4468       .access = PL1_RW,
4469       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4470     /* Protection region base and size registers */
4471     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4472       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4473       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4474     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4475       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4476       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4477     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4478       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4479       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4480     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4481       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4482       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4483     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4484       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4485       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4486     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4487       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4488       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4489     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4490       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4491       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4492     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4493       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4494       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4495 };
4496 
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4497 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4498                              uint64_t value)
4499 {
4500     ARMCPU *cpu = env_archcpu(env);
4501 
4502     if (!arm_feature(env, ARM_FEATURE_V8)) {
4503         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4504             /*
4505              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4506              * using Long-descriptor translation table format
4507              */
4508             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4509         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4510             /*
4511              * In an implementation that includes the Security Extensions
4512              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4513              * Short-descriptor translation table format.
4514              */
4515             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4516         } else {
4517             value &= TTBCR_N;
4518         }
4519     }
4520 
4521     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4522         /*
4523          * With LPAE the TTBCR could result in a change of ASID
4524          * via the TTBCR.A1 bit, so do a TLB flush.
4525          */
4526         tlb_flush(CPU(cpu));
4527     }
4528     raw_write(env, ri, value);
4529 }
4530 
vmsa_tcr_el12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4531 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4532                                uint64_t value)
4533 {
4534     ARMCPU *cpu = env_archcpu(env);
4535 
4536     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4537     tlb_flush(CPU(cpu));
4538     raw_write(env, ri, value);
4539 }
4540 
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4541 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4542                             uint64_t value)
4543 {
4544     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4545     if (cpreg_field_is_64bit(ri) &&
4546         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4547         ARMCPU *cpu = env_archcpu(env);
4548         tlb_flush(CPU(cpu));
4549     }
4550     raw_write(env, ri, value);
4551 }
4552 
vmsa_tcr_ttbr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4553 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4554                                     uint64_t value)
4555 {
4556     /*
4557      * If we are running with E2&0 regime, then an ASID is active.
4558      * Flush if that might be changing.  Note we're not checking
4559      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4560      * holds the active ASID, only checking the field that might.
4561      */
4562     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4563         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4564         uint16_t mask = ARMMMUIdxBit_E20_2 |
4565                         ARMMMUIdxBit_E20_2_PAN |
4566                         ARMMMUIdxBit_E20_0;
4567         tlb_flush_by_mmuidx(env_cpu(env), mask);
4568     }
4569     raw_write(env, ri, value);
4570 }
4571 
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4572 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4573                         uint64_t value)
4574 {
4575     ARMCPU *cpu = env_archcpu(env);
4576     CPUState *cs = CPU(cpu);
4577 
4578     /*
4579      * A change in VMID to the stage2 page table (Stage2) invalidates
4580      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4581      */
4582     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4583         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4584     }
4585     raw_write(env, ri, value);
4586 }
4587 
4588 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4589     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4590       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4591       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4592                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4593     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4594       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4595       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4596                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4597     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4598       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4599       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4600                              offsetof(CPUARMState, cp15.dfar_ns) } },
4601     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4602       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4603       .access = PL1_RW, .accessfn = access_tvm_trvm,
4604       .fgt = FGT_FAR_EL1,
4605       .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4606       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4607       .resetvalue = 0, },
4608 };
4609 
4610 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4611     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4612       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4613       .access = PL1_RW, .accessfn = access_tvm_trvm,
4614       .fgt = FGT_ESR_EL1,
4615       .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4616       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4617     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4618       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4619       .access = PL1_RW, .accessfn = access_tvm_trvm,
4620       .fgt = FGT_TTBR0_EL1,
4621       .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4622       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4623       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4624                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4625     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4626       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4627       .access = PL1_RW, .accessfn = access_tvm_trvm,
4628       .fgt = FGT_TTBR1_EL1,
4629       .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4630       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4631       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4632                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4633     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4634       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4635       .access = PL1_RW, .accessfn = access_tvm_trvm,
4636       .fgt = FGT_TCR_EL1,
4637       .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4638       .writefn = vmsa_tcr_el12_write,
4639       .raw_writefn = raw_write,
4640       .resetvalue = 0,
4641       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4642     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4643       .access = PL1_RW, .accessfn = access_tvm_trvm,
4644       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4645       .raw_writefn = raw_write,
4646       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4647                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4648 };
4649 
4650 /*
4651  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4652  * qemu tlbs nor adjusting cached masks.
4653  */
4654 static const ARMCPRegInfo ttbcr2_reginfo = {
4655     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4656     .access = PL1_RW, .accessfn = access_tvm_trvm,
4657     .type = ARM_CP_ALIAS,
4658     .bank_fieldoffsets = {
4659         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4660         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4661     },
4662 };
4663 
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4664 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4665                                 uint64_t value)
4666 {
4667     env->cp15.c15_ticonfig = value & 0xe7;
4668     /* The OS_TYPE bit in this register changes the reported CPUID! */
4669     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4670         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4671 }
4672 
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4673 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4674                                 uint64_t value)
4675 {
4676     env->cp15.c15_threadid = value & 0xffff;
4677 }
4678 
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4679 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                            uint64_t value)
4681 {
4682     /* Wait-for-interrupt (deprecated) */
4683     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4684 }
4685 
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4686 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4687                                   uint64_t value)
4688 {
4689     /*
4690      * On OMAP there are registers indicating the max/min index of dcache lines
4691      * containing a dirty line; cache flush operations have to reset these.
4692      */
4693     env->cp15.c15_i_max = 0x000;
4694     env->cp15.c15_i_min = 0xff0;
4695 }
4696 
4697 static const ARMCPRegInfo omap_cp_reginfo[] = {
4698     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4699       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4700       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4701       .resetvalue = 0, },
4702     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4703       .access = PL1_RW, .type = ARM_CP_NOP },
4704     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4705       .access = PL1_RW,
4706       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4707       .writefn = omap_ticonfig_write },
4708     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4709       .access = PL1_RW,
4710       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4711     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4712       .access = PL1_RW, .resetvalue = 0xff0,
4713       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4714     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4715       .access = PL1_RW,
4716       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4717       .writefn = omap_threadid_write },
4718     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4719       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4720       .type = ARM_CP_NO_RAW,
4721       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4722     /*
4723      * TODO: Peripheral port remap register:
4724      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4725      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4726      * when MMU is off.
4727      */
4728     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4729       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4730       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4731       .writefn = omap_cachemaint_write },
4732     { .name = "C9", .cp = 15, .crn = 9,
4733       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4734       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4735 };
4736 
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4737 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4738                               uint64_t value)
4739 {
4740     env->cp15.c15_cpar = value & 0x3fff;
4741 }
4742 
4743 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4744     { .name = "XSCALE_CPAR",
4745       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4746       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4747       .writefn = xscale_cpar_write, },
4748     { .name = "XSCALE_AUXCR",
4749       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4750       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4751       .resetvalue = 0, },
4752     /*
4753      * XScale specific cache-lockdown: since we have no cache we NOP these
4754      * and hope the guest does not really rely on cache behaviour.
4755      */
4756     { .name = "XSCALE_LOCK_ICACHE_LINE",
4757       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4758       .access = PL1_W, .type = ARM_CP_NOP },
4759     { .name = "XSCALE_UNLOCK_ICACHE",
4760       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4761       .access = PL1_W, .type = ARM_CP_NOP },
4762     { .name = "XSCALE_DCACHE_LOCK",
4763       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4764       .access = PL1_RW, .type = ARM_CP_NOP },
4765     { .name = "XSCALE_UNLOCK_DCACHE",
4766       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4767       .access = PL1_W, .type = ARM_CP_NOP },
4768 };
4769 
4770 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4771     /*
4772      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4773      * implementation of this implementation-defined space.
4774      * Ideally this should eventually disappear in favour of actually
4775      * implementing the correct behaviour for all cores.
4776      */
4777     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4778       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4779       .access = PL1_RW,
4780       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4781       .resetvalue = 0 },
4782 };
4783 
4784 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4785     /* Cache status: RAZ because we have no cache so it's always clean */
4786     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4787       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4788       .resetvalue = 0 },
4789 };
4790 
4791 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4792     /* We never have a block transfer operation in progress */
4793     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4794       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4795       .resetvalue = 0 },
4796     /* The cache ops themselves: these all NOP for QEMU */
4797     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4798       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4799     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4800       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4801     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4802       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4803     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4804       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4805     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4806       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4807     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4808       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4809 };
4810 
4811 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4812     /*
4813      * The cache test-and-clean instructions always return (1 << 30)
4814      * to indicate that there are no dirty cache lines.
4815      */
4816     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4817       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4818       .resetvalue = (1 << 30) },
4819     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4820       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4821       .resetvalue = (1 << 30) },
4822 };
4823 
4824 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4825     /* Ignore ReadBuffer accesses */
4826     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4827       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4828       .access = PL1_RW, .resetvalue = 0,
4829       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4830 };
4831 
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)4832 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4833 {
4834     unsigned int cur_el = arm_current_el(env);
4835 
4836     if (arm_is_el2_enabled(env) && cur_el == 1) {
4837         return env->cp15.vpidr_el2;
4838     }
4839     return raw_read(env, ri);
4840 }
4841 
mpidr_read_val(CPUARMState * env)4842 static uint64_t mpidr_read_val(CPUARMState *env)
4843 {
4844     ARMCPU *cpu = env_archcpu(env);
4845     uint64_t mpidr = cpu->mp_affinity;
4846 
4847     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4848         mpidr |= (1U << 31);
4849         /*
4850          * Cores which are uniprocessor (non-coherent)
4851          * but still implement the MP extensions set
4852          * bit 30. (For instance, Cortex-R5).
4853          */
4854         if (cpu->mp_is_up) {
4855             mpidr |= (1u << 30);
4856         }
4857     }
4858     return mpidr;
4859 }
4860 
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)4861 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4862 {
4863     unsigned int cur_el = arm_current_el(env);
4864 
4865     if (arm_is_el2_enabled(env) && cur_el == 1) {
4866         return env->cp15.vmpidr_el2;
4867     }
4868     return mpidr_read_val(env);
4869 }
4870 
4871 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4872     /* NOP AMAIR0/1 */
4873     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4874       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4875       .access = PL1_RW, .accessfn = access_tvm_trvm,
4876       .fgt = FGT_AMAIR_EL1,
4877       .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4878       .type = ARM_CP_CONST, .resetvalue = 0 },
4879     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4880     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4881       .access = PL1_RW, .accessfn = access_tvm_trvm,
4882       .type = ARM_CP_CONST, .resetvalue = 0 },
4883     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4884       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4885       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4886                              offsetof(CPUARMState, cp15.par_ns)} },
4887     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4888       .access = PL1_RW, .accessfn = access_tvm_trvm,
4889       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4890       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4891                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4892       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4893     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4894       .access = PL1_RW, .accessfn = access_tvm_trvm,
4895       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4896       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4897                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4898       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4899 };
4900 
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)4901 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4902 {
4903     return vfp_get_fpcr(env);
4904 }
4905 
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4906 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4907                             uint64_t value)
4908 {
4909     vfp_set_fpcr(env, value);
4910 }
4911 
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)4912 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4913 {
4914     return vfp_get_fpsr(env);
4915 }
4916 
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4917 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4918                             uint64_t value)
4919 {
4920     vfp_set_fpsr(env, value);
4921 }
4922 
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4923 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4924                                        bool isread)
4925 {
4926     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4927         return CP_ACCESS_TRAP;
4928     }
4929     return CP_ACCESS_OK;
4930 }
4931 
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4932 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4933                             uint64_t value)
4934 {
4935     env->daif = value & PSTATE_DAIF;
4936 }
4937 
aa64_pan_read(CPUARMState * env,const ARMCPRegInfo * ri)4938 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4939 {
4940     return env->pstate & PSTATE_PAN;
4941 }
4942 
aa64_pan_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4943 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4944                            uint64_t value)
4945 {
4946     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4947 }
4948 
4949 static const ARMCPRegInfo pan_reginfo = {
4950     .name = "PAN", .state = ARM_CP_STATE_AA64,
4951     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4952     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4953     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4954 };
4955 
aa64_uao_read(CPUARMState * env,const ARMCPRegInfo * ri)4956 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4957 {
4958     return env->pstate & PSTATE_UAO;
4959 }
4960 
aa64_uao_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4961 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4962                            uint64_t value)
4963 {
4964     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4965 }
4966 
4967 static const ARMCPRegInfo uao_reginfo = {
4968     .name = "UAO", .state = ARM_CP_STATE_AA64,
4969     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4970     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4971     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4972 };
4973 
aa64_dit_read(CPUARMState * env,const ARMCPRegInfo * ri)4974 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4975 {
4976     return env->pstate & PSTATE_DIT;
4977 }
4978 
aa64_dit_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4979 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4980                            uint64_t value)
4981 {
4982     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4983 }
4984 
4985 static const ARMCPRegInfo dit_reginfo = {
4986     .name = "DIT", .state = ARM_CP_STATE_AA64,
4987     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4988     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4989     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4990 };
4991 
aa64_ssbs_read(CPUARMState * env,const ARMCPRegInfo * ri)4992 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4993 {
4994     return env->pstate & PSTATE_SSBS;
4995 }
4996 
aa64_ssbs_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4997 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4998                            uint64_t value)
4999 {
5000     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
5001 }
5002 
5003 static const ARMCPRegInfo ssbs_reginfo = {
5004     .name = "SSBS", .state = ARM_CP_STATE_AA64,
5005     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
5006     .type = ARM_CP_NO_RAW, .access = PL0_RW,
5007     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
5008 };
5009 
aa64_cacheop_poc_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5010 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
5011                                               const ARMCPRegInfo *ri,
5012                                               bool isread)
5013 {
5014     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
5015     switch (arm_current_el(env)) {
5016     case 0:
5017         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
5018         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
5019             return CP_ACCESS_TRAP;
5020         }
5021         /* fall through */
5022     case 1:
5023         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
5024         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
5025             return CP_ACCESS_TRAP_EL2;
5026         }
5027         break;
5028     }
5029     return CP_ACCESS_OK;
5030 }
5031 
do_cacheop_pou_access(CPUARMState * env,uint64_t hcrflags)5032 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
5033 {
5034     /* Cache invalidate/clean to Point of Unification... */
5035     switch (arm_current_el(env)) {
5036     case 0:
5037         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
5038         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
5039             return CP_ACCESS_TRAP;
5040         }
5041         /* fall through */
5042     case 1:
5043         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
5044         if (arm_hcr_el2_eff(env) & hcrflags) {
5045             return CP_ACCESS_TRAP_EL2;
5046         }
5047         break;
5048     }
5049     return CP_ACCESS_OK;
5050 }
5051 
access_ticab(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5052 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
5053                                    bool isread)
5054 {
5055     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
5056 }
5057 
access_tocu(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5058 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
5059                                   bool isread)
5060 {
5061     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
5062 }
5063 
5064 /*
5065  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
5066  * Page D4-1736 (DDI0487A.b)
5067  */
5068 
vae1_tlbmask(CPUARMState * env)5069 static int vae1_tlbmask(CPUARMState *env)
5070 {
5071     uint64_t hcr = arm_hcr_el2_eff(env);
5072     uint16_t mask;
5073 
5074     assert(arm_feature(env, ARM_FEATURE_AARCH64));
5075 
5076     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5077         mask = ARMMMUIdxBit_E20_2 |
5078                ARMMMUIdxBit_E20_2_PAN |
5079                ARMMMUIdxBit_E20_0;
5080     } else {
5081         /* This is AArch64 only, so we don't need to touch the EL30_x TLBs */
5082         mask = ARMMMUIdxBit_E10_1 |
5083                ARMMMUIdxBit_E10_1_PAN |
5084                ARMMMUIdxBit_E10_0;
5085     }
5086     return mask;
5087 }
5088 
vae2_tlbmask(CPUARMState * env)5089 static int vae2_tlbmask(CPUARMState *env)
5090 {
5091     uint64_t hcr = arm_hcr_el2_eff(env);
5092     uint16_t mask;
5093 
5094     if (hcr & HCR_E2H) {
5095         mask = ARMMMUIdxBit_E20_2 |
5096                ARMMMUIdxBit_E20_2_PAN |
5097                ARMMMUIdxBit_E20_0;
5098     } else {
5099         mask = ARMMMUIdxBit_E2;
5100     }
5101     return mask;
5102 }
5103 
5104 /* Return 56 if TBI is enabled, 64 otherwise. */
tlbbits_for_regime(CPUARMState * env,ARMMMUIdx mmu_idx,uint64_t addr)5105 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
5106                               uint64_t addr)
5107 {
5108     uint64_t tcr = regime_tcr(env, mmu_idx);
5109     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
5110     int select = extract64(addr, 55, 1);
5111 
5112     return (tbi >> select) & 1 ? 56 : 64;
5113 }
5114 
vae1_tlbbits(CPUARMState * env,uint64_t addr)5115 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
5116 {
5117     uint64_t hcr = arm_hcr_el2_eff(env);
5118     ARMMMUIdx mmu_idx;
5119 
5120     assert(arm_feature(env, ARM_FEATURE_AARCH64));
5121 
5122     /* Only the regime of the mmu_idx below is significant. */
5123     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5124         mmu_idx = ARMMMUIdx_E20_0;
5125     } else {
5126         mmu_idx = ARMMMUIdx_E10_0;
5127     }
5128 
5129     return tlbbits_for_regime(env, mmu_idx, addr);
5130 }
5131 
vae2_tlbbits(CPUARMState * env,uint64_t addr)5132 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
5133 {
5134     uint64_t hcr = arm_hcr_el2_eff(env);
5135     ARMMMUIdx mmu_idx;
5136 
5137     /*
5138      * Only the regime of the mmu_idx below is significant.
5139      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
5140      * only has one.
5141      */
5142     if (hcr & HCR_E2H) {
5143         mmu_idx = ARMMMUIdx_E20_2;
5144     } else {
5145         mmu_idx = ARMMMUIdx_E2;
5146     }
5147 
5148     return tlbbits_for_regime(env, mmu_idx, addr);
5149 }
5150 
tlbi_aa64_vmalle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5151 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5152                                       uint64_t value)
5153 {
5154     CPUState *cs = env_cpu(env);
5155     int mask = vae1_tlbmask(env);
5156 
5157     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5158 }
5159 
tlbi_aa64_vmalle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5160 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5161                                     uint64_t value)
5162 {
5163     CPUState *cs = env_cpu(env);
5164     int mask = vae1_tlbmask(env);
5165 
5166     if (tlb_force_broadcast(env)) {
5167         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5168     } else {
5169         tlb_flush_by_mmuidx(cs, mask);
5170     }
5171 }
5172 
e2_tlbmask(CPUARMState * env)5173 static int e2_tlbmask(CPUARMState *env)
5174 {
5175     return (ARMMMUIdxBit_E20_0 |
5176             ARMMMUIdxBit_E20_2 |
5177             ARMMMUIdxBit_E20_2_PAN |
5178             ARMMMUIdxBit_E2);
5179 }
5180 
tlbi_aa64_alle1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5181 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5182                                   uint64_t value)
5183 {
5184     CPUState *cs = env_cpu(env);
5185     int mask = alle1_tlbmask(env);
5186 
5187     tlb_flush_by_mmuidx(cs, mask);
5188 }
5189 
tlbi_aa64_alle2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5190 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5191                                   uint64_t value)
5192 {
5193     CPUState *cs = env_cpu(env);
5194     int mask = e2_tlbmask(env);
5195 
5196     tlb_flush_by_mmuidx(cs, mask);
5197 }
5198 
tlbi_aa64_alle3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5199 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5200                                   uint64_t value)
5201 {
5202     ARMCPU *cpu = env_archcpu(env);
5203     CPUState *cs = CPU(cpu);
5204 
5205     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
5206 }
5207 
tlbi_aa64_alle1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5208 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5209                                     uint64_t value)
5210 {
5211     CPUState *cs = env_cpu(env);
5212     int mask = alle1_tlbmask(env);
5213 
5214     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5215 }
5216 
tlbi_aa64_alle2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5217 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5218                                     uint64_t value)
5219 {
5220     CPUState *cs = env_cpu(env);
5221     int mask = e2_tlbmask(env);
5222 
5223     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
5224 }
5225 
tlbi_aa64_alle3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5226 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5227                                     uint64_t value)
5228 {
5229     CPUState *cs = env_cpu(env);
5230 
5231     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
5232 }
5233 
tlbi_aa64_vae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5234 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5235                                  uint64_t value)
5236 {
5237     /*
5238      * Invalidate by VA, EL2
5239      * Currently handles both VAE2 and VALE2, since we don't support
5240      * flush-last-level-only.
5241      */
5242     CPUState *cs = env_cpu(env);
5243     int mask = vae2_tlbmask(env);
5244     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5245     int bits = vae2_tlbbits(env, pageaddr);
5246 
5247     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5248 }
5249 
tlbi_aa64_vae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5250 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5251                                  uint64_t value)
5252 {
5253     /*
5254      * Invalidate by VA, EL3
5255      * Currently handles both VAE3 and VALE3, since we don't support
5256      * flush-last-level-only.
5257      */
5258     ARMCPU *cpu = env_archcpu(env);
5259     CPUState *cs = CPU(cpu);
5260     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5261 
5262     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
5263 }
5264 
tlbi_aa64_vae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5265 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5266                                    uint64_t value)
5267 {
5268     CPUState *cs = env_cpu(env);
5269     int mask = vae1_tlbmask(env);
5270     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5271     int bits = vae1_tlbbits(env, pageaddr);
5272 
5273     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5274 }
5275 
tlbi_aa64_vae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5276 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5277                                  uint64_t value)
5278 {
5279     /*
5280      * Invalidate by VA, EL1&0 (AArch64 version).
5281      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
5282      * since we don't support flush-for-specific-ASID-only or
5283      * flush-last-level-only.
5284      */
5285     CPUState *cs = env_cpu(env);
5286     int mask = vae1_tlbmask(env);
5287     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5288     int bits = vae1_tlbbits(env, pageaddr);
5289 
5290     if (tlb_force_broadcast(env)) {
5291         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5292     } else {
5293         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
5294     }
5295 }
5296 
tlbi_aa64_vae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5297 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5298                                    uint64_t value)
5299 {
5300     CPUState *cs = env_cpu(env);
5301     int mask = vae2_tlbmask(env);
5302     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5303     int bits = vae2_tlbbits(env, pageaddr);
5304 
5305     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
5306 }
5307 
tlbi_aa64_vae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5308 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5309                                    uint64_t value)
5310 {
5311     CPUState *cs = env_cpu(env);
5312     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5313     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
5314 
5315     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
5316                                                   ARMMMUIdxBit_E3, bits);
5317 }
5318 
ipas2e1_tlbmask(CPUARMState * env,int64_t value)5319 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5320 {
5321     /*
5322      * The MSB of value is the NS field, which only applies if SEL2
5323      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5324      */
5325     return (value >= 0
5326             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5327             && arm_is_secure_below_el3(env)
5328             ? ARMMMUIdxBit_Stage2_S
5329             : ARMMMUIdxBit_Stage2);
5330 }
5331 
tlbi_aa64_ipas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5332 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5333                                     uint64_t value)
5334 {
5335     CPUState *cs = env_cpu(env);
5336     int mask = ipas2e1_tlbmask(env, value);
5337     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5338 
5339     if (tlb_force_broadcast(env)) {
5340         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5341     } else {
5342         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5343     }
5344 }
5345 
tlbi_aa64_ipas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5346 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5347                                       uint64_t value)
5348 {
5349     CPUState *cs = env_cpu(env);
5350     int mask = ipas2e1_tlbmask(env, value);
5351     uint64_t pageaddr = sextract64(value << 12, 0, 56);
5352 
5353     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5354 }
5355 
5356 #ifdef TARGET_AARCH64
5357 typedef struct {
5358     uint64_t base;
5359     uint64_t length;
5360 } TLBIRange;
5361 
tlbi_range_tg_to_gran_size(int tg)5362 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5363 {
5364     /*
5365      * Note that the TLBI range TG field encoding differs from both
5366      * TG0 and TG1 encodings.
5367      */
5368     switch (tg) {
5369     case 1:
5370         return Gran4K;
5371     case 2:
5372         return Gran16K;
5373     case 3:
5374         return Gran64K;
5375     default:
5376         return GranInvalid;
5377     }
5378 }
5379 
tlbi_aa64_get_range(CPUARMState * env,ARMMMUIdx mmuidx,uint64_t value)5380 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5381                                      uint64_t value)
5382 {
5383     unsigned int page_size_granule, page_shift, num, scale, exponent;
5384     /* Extract one bit to represent the va selector in use. */
5385     uint64_t select = sextract64(value, 36, 1);
5386     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5387     TLBIRange ret = { };
5388     ARMGranuleSize gran;
5389 
5390     page_size_granule = extract64(value, 46, 2);
5391     gran = tlbi_range_tg_to_gran_size(page_size_granule);
5392 
5393     /* The granule encoded in value must match the granule in use. */
5394     if (gran != param.gran) {
5395         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5396                       page_size_granule);
5397         return ret;
5398     }
5399 
5400     page_shift = arm_granule_bits(gran);
5401     num = extract64(value, 39, 5);
5402     scale = extract64(value, 44, 2);
5403     exponent = (5 * scale) + 1;
5404 
5405     ret.length = (num + 1) << (exponent + page_shift);
5406 
5407     if (param.select) {
5408         ret.base = sextract64(value, 0, 37);
5409     } else {
5410         ret.base = extract64(value, 0, 37);
5411     }
5412     if (param.ds) {
5413         /*
5414          * With DS=1, BaseADDR is always shifted 16 so that it is able
5415          * to address all 52 va bits.  The input address is perforce
5416          * aligned on a 64k boundary regardless of translation granule.
5417          */
5418         page_shift = 16;
5419     }
5420     ret.base <<= page_shift;
5421 
5422     return ret;
5423 }
5424 
do_rvae_write(CPUARMState * env,uint64_t value,int idxmap,bool synced)5425 static void do_rvae_write(CPUARMState *env, uint64_t value,
5426                           int idxmap, bool synced)
5427 {
5428     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5429     TLBIRange range;
5430     int bits;
5431 
5432     range = tlbi_aa64_get_range(env, one_idx, value);
5433     bits = tlbbits_for_regime(env, one_idx, range.base);
5434 
5435     if (synced) {
5436         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5437                                                   range.base,
5438                                                   range.length,
5439                                                   idxmap,
5440                                                   bits);
5441     } else {
5442         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5443                                   range.length, idxmap, bits);
5444     }
5445 }
5446 
tlbi_aa64_rvae1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5447 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5448                                   const ARMCPRegInfo *ri,
5449                                   uint64_t value)
5450 {
5451     /*
5452      * Invalidate by VA range, EL1&0.
5453      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5454      * since we don't support flush-for-specific-ASID-only or
5455      * flush-last-level-only.
5456      */
5457 
5458     do_rvae_write(env, value, vae1_tlbmask(env),
5459                   tlb_force_broadcast(env));
5460 }
5461 
tlbi_aa64_rvae1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5462 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5463                                     const ARMCPRegInfo *ri,
5464                                     uint64_t value)
5465 {
5466     /*
5467      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5468      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5469      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5470      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5471      * shareable specific flushes.
5472      */
5473 
5474     do_rvae_write(env, value, vae1_tlbmask(env), true);
5475 }
5476 
tlbi_aa64_rvae2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5477 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5478                                   const ARMCPRegInfo *ri,
5479                                   uint64_t value)
5480 {
5481     /*
5482      * Invalidate by VA range, EL2.
5483      * Currently handles all of RVAE2 and RVALE2,
5484      * since we don't support flush-for-specific-ASID-only or
5485      * flush-last-level-only.
5486      */
5487 
5488     do_rvae_write(env, value, vae2_tlbmask(env),
5489                   tlb_force_broadcast(env));
5490 
5491 
5492 }
5493 
tlbi_aa64_rvae2is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5494 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5495                                     const ARMCPRegInfo *ri,
5496                                     uint64_t value)
5497 {
5498     /*
5499      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5500      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5501      * since we don't support flush-for-specific-ASID-only,
5502      * flush-last-level-only or inner/outer shareable specific flushes.
5503      */
5504 
5505     do_rvae_write(env, value, vae2_tlbmask(env), true);
5506 
5507 }
5508 
tlbi_aa64_rvae3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5509 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5510                                   const ARMCPRegInfo *ri,
5511                                   uint64_t value)
5512 {
5513     /*
5514      * Invalidate by VA range, EL3.
5515      * Currently handles all of RVAE3 and RVALE3,
5516      * since we don't support flush-for-specific-ASID-only or
5517      * flush-last-level-only.
5518      */
5519 
5520     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5521 }
5522 
tlbi_aa64_rvae3is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5523 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5524                                     const ARMCPRegInfo *ri,
5525                                     uint64_t value)
5526 {
5527     /*
5528      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5529      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5530      * since we don't support flush-for-specific-ASID-only,
5531      * flush-last-level-only or inner/outer specific flushes.
5532      */
5533 
5534     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5535 }
5536 
tlbi_aa64_ripas2e1_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5537 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5538                                      uint64_t value)
5539 {
5540     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5541                   tlb_force_broadcast(env));
5542 }
5543 
tlbi_aa64_ripas2e1is_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5544 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5545                                        const ARMCPRegInfo *ri,
5546                                        uint64_t value)
5547 {
5548     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5549 }
5550 #endif
5551 
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5552 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5553                                       bool isread)
5554 {
5555     int cur_el = arm_current_el(env);
5556 
5557     if (cur_el < 2) {
5558         uint64_t hcr = arm_hcr_el2_eff(env);
5559 
5560         if (cur_el == 0) {
5561             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5562                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5563                     return CP_ACCESS_TRAP_EL2;
5564                 }
5565             } else {
5566                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5567                     return CP_ACCESS_TRAP;
5568                 }
5569                 if (hcr & HCR_TDZ) {
5570                     return CP_ACCESS_TRAP_EL2;
5571                 }
5572             }
5573         } else if (hcr & HCR_TDZ) {
5574             return CP_ACCESS_TRAP_EL2;
5575         }
5576     }
5577     return CP_ACCESS_OK;
5578 }
5579 
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)5580 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5581 {
5582     ARMCPU *cpu = env_archcpu(env);
5583     int dzp_bit = 1 << 4;
5584 
5585     /* DZP indicates whether DC ZVA access is allowed */
5586     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5587         dzp_bit = 0;
5588     }
5589     return cpu->dcz_blocksize | dzp_bit;
5590 }
5591 
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5592 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5593                                     bool isread)
5594 {
5595     if (!(env->pstate & PSTATE_SP)) {
5596         /*
5597          * Access to SP_EL0 is undefined if it's being used as
5598          * the stack pointer.
5599          */
5600         return CP_ACCESS_TRAP_UNCATEGORIZED;
5601     }
5602     return CP_ACCESS_OK;
5603 }
5604 
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)5605 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5606 {
5607     return env->pstate & PSTATE_SP;
5608 }
5609 
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)5610 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5611 {
5612     update_spsel(env, val);
5613 }
5614 
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5615 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5616                         uint64_t value)
5617 {
5618     ARMCPU *cpu = env_archcpu(env);
5619 
5620     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5621         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5622         value &= ~SCTLR_M;
5623     }
5624 
5625     /* ??? Lots of these bits are not implemented.  */
5626 
5627     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5628         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5629             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5630         } else {
5631             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5632                        SCTLR_ATA0 | SCTLR_ATA);
5633         }
5634     }
5635 
5636     if (raw_read(env, ri) == value) {
5637         /*
5638          * Skip the TLB flush if nothing actually changed; Linux likes
5639          * to do a lot of pointless SCTLR writes.
5640          */
5641         return;
5642     }
5643 
5644     raw_write(env, ri, value);
5645 
5646     /* This may enable/disable the MMU, so do a TLB flush.  */
5647     tlb_flush(CPU(cpu));
5648 
5649     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5650         /*
5651          * Normally we would always end the TB on an SCTLR write; see the
5652          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5653          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5654          * of hflags from the translator, so do it here.
5655          */
5656         arm_rebuild_hflags(env);
5657     }
5658 }
5659 
mdcr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5660 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5661                            uint64_t value)
5662 {
5663     /*
5664      * Some MDCR_EL3 bits affect whether PMU counters are running:
5665      * if we are trying to change any of those then we must
5666      * bracket this update with PMU start/finish calls.
5667      */
5668     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5669 
5670     if (pmu_op) {
5671         pmu_op_start(env);
5672     }
5673     env->cp15.mdcr_el3 = value;
5674     if (pmu_op) {
5675         pmu_op_finish(env);
5676     }
5677 }
5678 
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5679 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5680                        uint64_t value)
5681 {
5682     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5683     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5684 }
5685 
mdcr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5686 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5687                            uint64_t value)
5688 {
5689     /*
5690      * Some MDCR_EL2 bits affect whether PMU counters are running:
5691      * if we are trying to change any of those then we must
5692      * bracket this update with PMU start/finish calls.
5693      */
5694     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5695 
5696     if (pmu_op) {
5697         pmu_op_start(env);
5698     }
5699     env->cp15.mdcr_el2 = value;
5700     if (pmu_op) {
5701         pmu_op_finish(env);
5702     }
5703 }
5704 
access_nv1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5705 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5706                                  bool isread)
5707 {
5708     if (arm_current_el(env) == 1) {
5709         uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5710 
5711         if (hcr_nv == (HCR_NV | HCR_NV1)) {
5712             return CP_ACCESS_TRAP_EL2;
5713         }
5714     }
5715     return CP_ACCESS_OK;
5716 }
5717 
5718 #ifdef CONFIG_USER_ONLY
5719 /*
5720  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5721  * code to get around W^X restrictions, where one region is writable and the
5722  * other is executable.
5723  *
5724  * Since the executable region is never written to we cannot detect code
5725  * changes when running in user mode, and rely on the emulated JIT telling us
5726  * that the code has changed by executing this instruction.
5727  */
ic_ivau_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5728 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5729                           uint64_t value)
5730 {
5731     uint64_t icache_line_mask, start_address, end_address;
5732     const ARMCPU *cpu;
5733 
5734     cpu = env_archcpu(env);
5735 
5736     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5737     start_address = value & ~icache_line_mask;
5738     end_address = value | icache_line_mask;
5739 
5740     mmap_lock();
5741 
5742     tb_invalidate_phys_range(start_address, end_address);
5743 
5744     mmap_unlock();
5745 }
5746 #endif
5747 
5748 static const ARMCPRegInfo v8_cp_reginfo[] = {
5749     /*
5750      * Minimal set of EL0-visible registers. This will need to be expanded
5751      * significantly for system emulation of AArch64 CPUs.
5752      */
5753     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5754       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5755       .access = PL0_RW, .type = ARM_CP_NZCV },
5756     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5757       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5758       .type = ARM_CP_NO_RAW,
5759       .access = PL0_RW, .accessfn = aa64_daif_access,
5760       .fieldoffset = offsetof(CPUARMState, daif),
5761       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5762     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5763       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5764       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5765       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5766     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5767       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5768       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5769       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5770     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5772       .access = PL0_R, .type = ARM_CP_NO_RAW,
5773       .fgt = FGT_DCZID_EL0,
5774       .readfn = aa64_dczid_read },
5775     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5776       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5777       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5778 #ifndef CONFIG_USER_ONLY
5779       /* Avoid overhead of an access check that always passes in user-mode */
5780       .accessfn = aa64_zva_access,
5781       .fgt = FGT_DCZVA,
5782 #endif
5783     },
5784     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5785       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5786       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5787     /*
5788      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5789      * don't emulate caches.
5790      */
5791     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5792       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5793       .access = PL1_W, .type = ARM_CP_NOP,
5794       .fgt = FGT_ICIALLUIS,
5795       .accessfn = access_ticab },
5796     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5797       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5798       .access = PL1_W, .type = ARM_CP_NOP,
5799       .fgt = FGT_ICIALLU,
5800       .accessfn = access_tocu },
5801     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5802       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5803       .access = PL0_W,
5804       .fgt = FGT_ICIVAU,
5805       .accessfn = access_tocu,
5806 #ifdef CONFIG_USER_ONLY
5807       .type = ARM_CP_NO_RAW,
5808       .writefn = ic_ivau_write
5809 #else
5810       .type = ARM_CP_NOP
5811 #endif
5812     },
5813     /* Cache ops: all NOPs since we don't emulate caches */
5814     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5815       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5816       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5817       .fgt = FGT_DCIVAC,
5818       .type = ARM_CP_NOP },
5819     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5820       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5821       .fgt = FGT_DCISW,
5822       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5823     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5824       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5825       .access = PL0_W, .type = ARM_CP_NOP,
5826       .fgt = FGT_DCCVAC,
5827       .accessfn = aa64_cacheop_poc_access },
5828     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5829       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5830       .fgt = FGT_DCCSW,
5831       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5832     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5833       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5834       .access = PL0_W, .type = ARM_CP_NOP,
5835       .fgt = FGT_DCCVAU,
5836       .accessfn = access_tocu },
5837     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5838       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5839       .access = PL0_W, .type = ARM_CP_NOP,
5840       .fgt = FGT_DCCIVAC,
5841       .accessfn = aa64_cacheop_poc_access },
5842     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5843       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5844       .fgt = FGT_DCCISW,
5845       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5846     /* TLBI operations */
5847     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5848       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5849       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5850       .fgt = FGT_TLBIVMALLE1IS,
5851       .writefn = tlbi_aa64_vmalle1is_write },
5852     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5853       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5854       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5855       .fgt = FGT_TLBIVAE1IS,
5856       .writefn = tlbi_aa64_vae1is_write },
5857     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5858       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5859       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5860       .fgt = FGT_TLBIASIDE1IS,
5861       .writefn = tlbi_aa64_vmalle1is_write },
5862     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5863       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5864       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5865       .fgt = FGT_TLBIVAAE1IS,
5866       .writefn = tlbi_aa64_vae1is_write },
5867     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5868       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5869       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5870       .fgt = FGT_TLBIVALE1IS,
5871       .writefn = tlbi_aa64_vae1is_write },
5872     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5873       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5874       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5875       .fgt = FGT_TLBIVAALE1IS,
5876       .writefn = tlbi_aa64_vae1is_write },
5877     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5880       .fgt = FGT_TLBIVMALLE1,
5881       .writefn = tlbi_aa64_vmalle1_write },
5882     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5883       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5884       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5885       .fgt = FGT_TLBIVAE1,
5886       .writefn = tlbi_aa64_vae1_write },
5887     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5888       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5889       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5890       .fgt = FGT_TLBIASIDE1,
5891       .writefn = tlbi_aa64_vmalle1_write },
5892     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5893       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5894       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5895       .fgt = FGT_TLBIVAAE1,
5896       .writefn = tlbi_aa64_vae1_write },
5897     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5899       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5900       .fgt = FGT_TLBIVALE1,
5901       .writefn = tlbi_aa64_vae1_write },
5902     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5903       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5904       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5905       .fgt = FGT_TLBIVAALE1,
5906       .writefn = tlbi_aa64_vae1_write },
5907     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5908       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5909       .access = PL2_W, .type = ARM_CP_NO_RAW,
5910       .writefn = tlbi_aa64_ipas2e1is_write },
5911     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5912       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5913       .access = PL2_W, .type = ARM_CP_NO_RAW,
5914       .writefn = tlbi_aa64_ipas2e1is_write },
5915     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5916       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5917       .access = PL2_W, .type = ARM_CP_NO_RAW,
5918       .writefn = tlbi_aa64_alle1is_write },
5919     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5920       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5921       .access = PL2_W, .type = ARM_CP_NO_RAW,
5922       .writefn = tlbi_aa64_alle1is_write },
5923     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5924       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5925       .access = PL2_W, .type = ARM_CP_NO_RAW,
5926       .writefn = tlbi_aa64_ipas2e1_write },
5927     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5929       .access = PL2_W, .type = ARM_CP_NO_RAW,
5930       .writefn = tlbi_aa64_ipas2e1_write },
5931     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5932       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5933       .access = PL2_W, .type = ARM_CP_NO_RAW,
5934       .writefn = tlbi_aa64_alle1_write },
5935     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5936       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5937       .access = PL2_W, .type = ARM_CP_NO_RAW,
5938       .writefn = tlbi_aa64_alle1is_write },
5939 #ifndef CONFIG_USER_ONLY
5940     /* 64 bit address translation operations */
5941     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5942       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5943       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5944       .fgt = FGT_ATS1E1R,
5945       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5946     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5947       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5948       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5949       .fgt = FGT_ATS1E1W,
5950       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5951     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5952       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5953       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5954       .fgt = FGT_ATS1E0R,
5955       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5956     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5957       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5958       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5959       .fgt = FGT_ATS1E0W,
5960       .accessfn = at_s1e01_access, .writefn = ats_write64 },
5961     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5962       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5963       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5964       .accessfn = at_e012_access, .writefn = ats_write64 },
5965     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5966       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5967       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5968       .accessfn = at_e012_access, .writefn = ats_write64 },
5969     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5970       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5971       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5972       .accessfn = at_e012_access, .writefn = ats_write64 },
5973     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5974       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5975       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5976       .accessfn = at_e012_access, .writefn = ats_write64 },
5977     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5978     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5979       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5980       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5981       .writefn = ats_write64 },
5982     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5983       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5984       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5985       .writefn = ats_write64 },
5986     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5987       .type = ARM_CP_ALIAS,
5988       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5989       .access = PL1_RW, .resetvalue = 0,
5990       .fgt = FGT_PAR_EL1,
5991       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5992       .writefn = par_write },
5993 #endif
5994     /* TLB invalidate last level of translation table walk */
5995     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5996       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5997       .writefn = tlbimva_is_write },
5998     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5999       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
6000       .writefn = tlbimvaa_is_write },
6001     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
6002       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
6003       .writefn = tlbimva_write },
6004     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
6005       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
6006       .writefn = tlbimvaa_write },
6007     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6008       .type = ARM_CP_NO_RAW, .access = PL2_W,
6009       .writefn = tlbimva_hyp_write },
6010     { .name = "TLBIMVALHIS",
6011       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6012       .type = ARM_CP_NO_RAW, .access = PL2_W,
6013       .writefn = tlbimva_hyp_is_write },
6014     { .name = "TLBIIPAS2",
6015       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
6016       .type = ARM_CP_NO_RAW, .access = PL2_W,
6017       .writefn = tlbiipas2_hyp_write },
6018     { .name = "TLBIIPAS2IS",
6019       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
6020       .type = ARM_CP_NO_RAW, .access = PL2_W,
6021       .writefn = tlbiipas2is_hyp_write },
6022     { .name = "TLBIIPAS2L",
6023       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
6024       .type = ARM_CP_NO_RAW, .access = PL2_W,
6025       .writefn = tlbiipas2_hyp_write },
6026     { .name = "TLBIIPAS2LIS",
6027       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
6028       .type = ARM_CP_NO_RAW, .access = PL2_W,
6029       .writefn = tlbiipas2is_hyp_write },
6030     /* 32 bit cache operations */
6031     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
6032       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
6033     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
6034       .type = ARM_CP_NOP, .access = PL1_W },
6035     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
6036       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
6037     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
6038       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
6039     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
6040       .type = ARM_CP_NOP, .access = PL1_W },
6041     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
6042       .type = ARM_CP_NOP, .access = PL1_W },
6043     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
6044       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
6045     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
6046       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6047     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
6048       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
6049     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
6050       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6051     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
6052       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
6053     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
6054       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
6055     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
6056       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6057     /* MMU Domain access control / MPU write buffer control */
6058     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
6059       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
6060       .writefn = dacr_write, .raw_writefn = raw_write,
6061       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
6062                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
6063     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
6064       .type = ARM_CP_ALIAS,
6065       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6066       .access = PL1_RW, .accessfn = access_nv1,
6067       .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
6068       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
6069     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
6070       .type = ARM_CP_ALIAS,
6071       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
6072       .access = PL1_RW, .accessfn = access_nv1,
6073       .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
6074       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
6075     /*
6076      * We rely on the access checks not allowing the guest to write to the
6077      * state field when SPSel indicates that it's being used as the stack
6078      * pointer.
6079      */
6080     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
6081       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
6082       .access = PL1_RW, .accessfn = sp_el0_access,
6083       .type = ARM_CP_ALIAS,
6084       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
6085     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
6086       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
6087       .nv2_redirect_offset = 0x240,
6088       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
6089       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
6090     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
6091       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
6092       .type = ARM_CP_NO_RAW,
6093       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
6094     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
6095       .type = ARM_CP_ALIAS,
6096       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
6097       .access = PL2_RW,
6098       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
6099     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
6100       .type = ARM_CP_ALIAS,
6101       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
6102       .access = PL2_RW,
6103       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
6104     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
6105       .type = ARM_CP_ALIAS,
6106       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
6107       .access = PL2_RW,
6108       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
6109     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
6110       .type = ARM_CP_ALIAS,
6111       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
6112       .access = PL2_RW,
6113       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
6114     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
6115       .type = ARM_CP_IO,
6116       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
6117       .resetvalue = 0,
6118       .access = PL3_RW,
6119       .writefn = mdcr_el3_write,
6120       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
6121     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
6122       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
6123       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6124       .writefn = sdcr_write,
6125       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
6126 };
6127 
6128 /* These are present only when EL1 supports AArch32 */
6129 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
6130     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
6131       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
6132       .access = PL2_RW,
6133       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
6134       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
6135     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
6136       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
6137       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
6138       .writefn = dacr_write, .raw_writefn = raw_write,
6139       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
6140     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
6141       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
6142       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
6143       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
6144 };
6145 
do_hcr_write(CPUARMState * env,uint64_t value,uint64_t valid_mask)6146 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
6147 {
6148     ARMCPU *cpu = env_archcpu(env);
6149 
6150     if (arm_feature(env, ARM_FEATURE_V8)) {
6151         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
6152     } else {
6153         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
6154     }
6155 
6156     if (arm_feature(env, ARM_FEATURE_EL3)) {
6157         valid_mask &= ~HCR_HCD;
6158     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
6159         /*
6160          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
6161          * However, if we're using the SMC PSCI conduit then QEMU is
6162          * effectively acting like EL3 firmware and so the guest at
6163          * EL2 should retain the ability to prevent EL1 from being
6164          * able to make SMC calls into the ersatz firmware, so in
6165          * that case HCR.TSC should be read/write.
6166          */
6167         valid_mask &= ~HCR_TSC;
6168     }
6169 
6170     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6171         if (cpu_isar_feature(aa64_vh, cpu)) {
6172             valid_mask |= HCR_E2H;
6173         }
6174         if (cpu_isar_feature(aa64_ras, cpu)) {
6175             valid_mask |= HCR_TERR | HCR_TEA;
6176         }
6177         if (cpu_isar_feature(aa64_lor, cpu)) {
6178             valid_mask |= HCR_TLOR;
6179         }
6180         if (cpu_isar_feature(aa64_pauth, cpu)) {
6181             valid_mask |= HCR_API | HCR_APK;
6182         }
6183         if (cpu_isar_feature(aa64_mte, cpu)) {
6184             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
6185         }
6186         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
6187             valid_mask |= HCR_ENSCXT;
6188         }
6189         if (cpu_isar_feature(aa64_fwb, cpu)) {
6190             valid_mask |= HCR_FWB;
6191         }
6192         if (cpu_isar_feature(aa64_rme, cpu)) {
6193             valid_mask |= HCR_GPF;
6194         }
6195         if (cpu_isar_feature(aa64_nv, cpu)) {
6196             valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
6197         }
6198         if (cpu_isar_feature(aa64_nv2, cpu)) {
6199             valid_mask |= HCR_NV2;
6200         }
6201     }
6202 
6203     if (cpu_isar_feature(any_evt, cpu)) {
6204         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
6205     } else if (cpu_isar_feature(any_half_evt, cpu)) {
6206         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
6207     }
6208 
6209     /* Clear RES0 bits.  */
6210     value &= valid_mask;
6211 
6212     /*
6213      * These bits change the MMU setup:
6214      * HCR_VM enables stage 2 translation
6215      * HCR_PTW forbids certain page-table setups
6216      * HCR_DC disables stage1 and enables stage2 translation
6217      * HCR_DCT enables tagging on (disabled) stage1 translation
6218      * HCR_FWB changes the interpretation of stage2 descriptor bits
6219      * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
6220      */
6221     if ((env->cp15.hcr_el2 ^ value) &
6222         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
6223         tlb_flush(CPU(cpu));
6224     }
6225     env->cp15.hcr_el2 = value;
6226 
6227     /*
6228      * Updates to VI and VF require us to update the status of
6229      * virtual interrupts, which are the logical OR of these bits
6230      * and the state of the input lines from the GIC. (This requires
6231      * that we have the BQL, which is done by marking the
6232      * reginfo structs as ARM_CP_IO.)
6233      * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
6234      * VFNMI, it is never possible for it to be taken immediately
6235      * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
6236      * at EL0 or EL1, and HCR can only be written at EL2.
6237      */
6238     g_assert(bql_locked());
6239     arm_cpu_update_virq(cpu);
6240     arm_cpu_update_vfiq(cpu);
6241     arm_cpu_update_vserr(cpu);
6242     if (cpu_isar_feature(aa64_nmi, cpu)) {
6243         arm_cpu_update_vinmi(cpu);
6244         arm_cpu_update_vfnmi(cpu);
6245     }
6246 }
6247 
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6248 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
6249 {
6250     do_hcr_write(env, value, 0);
6251 }
6252 
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6253 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
6254                           uint64_t value)
6255 {
6256     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
6257     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
6258     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
6259 }
6260 
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6261 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
6262                          uint64_t value)
6263 {
6264     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
6265     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
6266     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
6267 }
6268 
6269 /*
6270  * Return the effective value of HCR_EL2, at the given security state.
6271  * Bits that are not included here:
6272  * RW       (read from SCR_EL3.RW as needed)
6273  */
arm_hcr_el2_eff_secstate(CPUARMState * env,ARMSecuritySpace space)6274 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
6275 {
6276     uint64_t ret = env->cp15.hcr_el2;
6277 
6278     assert(space != ARMSS_Root);
6279 
6280     if (!arm_is_el2_enabled_secstate(env, space)) {
6281         /*
6282          * "This register has no effect if EL2 is not enabled in the
6283          * current Security state".  This is ARMv8.4-SecEL2 speak for
6284          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
6285          *
6286          * Prior to that, the language was "In an implementation that
6287          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
6288          * as if this field is 0 for all purposes other than a direct
6289          * read or write access of HCR_EL2".  With lots of enumeration
6290          * on a per-field basis.  In current QEMU, this is condition
6291          * is arm_is_secure_below_el3.
6292          *
6293          * Since the v8.4 language applies to the entire register, and
6294          * appears to be backward compatible, use that.
6295          */
6296         return 0;
6297     }
6298 
6299     /*
6300      * For a cpu that supports both aarch64 and aarch32, we can set bits
6301      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
6302      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
6303      */
6304     if (!arm_el_is_aa64(env, 2)) {
6305         uint64_t aa32_valid;
6306 
6307         /*
6308          * These bits are up-to-date as of ARMv8.6.
6309          * For HCR, it's easiest to list just the 2 bits that are invalid.
6310          * For HCR2, list those that are valid.
6311          */
6312         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
6313         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
6314                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
6315         ret &= aa32_valid;
6316     }
6317 
6318     if (ret & HCR_TGE) {
6319         /* These bits are up-to-date as of ARMv8.6.  */
6320         if (ret & HCR_E2H) {
6321             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
6322                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
6323                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6324                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6325                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6326                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6327         } else {
6328             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6329         }
6330         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6331                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6332                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6333                  HCR_TLOR);
6334     }
6335 
6336     return ret;
6337 }
6338 
arm_hcr_el2_eff(CPUARMState * env)6339 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6340 {
6341     if (arm_feature(env, ARM_FEATURE_M)) {
6342         return 0;
6343     }
6344     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6345 }
6346 
6347 /*
6348  * Corresponds to ARM pseudocode function ELIsInHost().
6349  */
el_is_in_host(CPUARMState * env,int el)6350 bool el_is_in_host(CPUARMState *env, int el)
6351 {
6352     uint64_t mask;
6353 
6354     /*
6355      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6356      * Perform the simplest bit tests first, and validate EL2 afterward.
6357      */
6358     if (el & 1) {
6359         return false; /* EL1 or EL3 */
6360     }
6361 
6362     /*
6363      * Note that hcr_write() checks isar_feature_aa64_vh(),
6364      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6365      */
6366     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6367     if ((env->cp15.hcr_el2 & mask) != mask) {
6368         return false;
6369     }
6370 
6371     /* TGE and/or E2H set: double check those bits are currently legal. */
6372     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6373 }
6374 
hcrx_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6375 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6376                        uint64_t value)
6377 {
6378     ARMCPU *cpu = env_archcpu(env);
6379     uint64_t valid_mask = 0;
6380 
6381     /* FEAT_MOPS adds MSCEn and MCE2 */
6382     if (cpu_isar_feature(aa64_mops, cpu)) {
6383         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6384     }
6385 
6386     /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
6387     if (cpu_isar_feature(aa64_nmi, cpu)) {
6388         valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
6389     }
6390     /* FEAT_CMOW adds CMOW */
6391 
6392     if (cpu_isar_feature(aa64_cmow, cpu)) {
6393         valid_mask |= HCRX_CMOW;
6394     }
6395 
6396     /* Clear RES0 bits.  */
6397     env->cp15.hcrx_el2 = value & valid_mask;
6398 
6399     /*
6400      * Updates to VINMI and VFNMI require us to update the status of
6401      * virtual NMI, which are the logical OR of these bits
6402      * and the state of the input lines from the GIC. (This requires
6403      * that we have the BQL, which is done by marking the
6404      * reginfo structs as ARM_CP_IO.)
6405      * Note that if a write to HCRX pends a VINMI or VFNMI it is never
6406      * possible for it to be taken immediately, because VINMI and
6407      * VFNMI are masked unless running at EL0 or EL1, and HCRX
6408      * can only be written at EL2.
6409      */
6410     if (cpu_isar_feature(aa64_nmi, cpu)) {
6411         g_assert(bql_locked());
6412         arm_cpu_update_vinmi(cpu);
6413         arm_cpu_update_vfnmi(cpu);
6414     }
6415 }
6416 
access_hxen(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6417 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6418                                   bool isread)
6419 {
6420     if (arm_current_el(env) == 2
6421         && arm_feature(env, ARM_FEATURE_EL3)
6422         && !(env->cp15.scr_el3 & SCR_HXEN)) {
6423         return CP_ACCESS_TRAP_EL3;
6424     }
6425     return CP_ACCESS_OK;
6426 }
6427 
6428 static const ARMCPRegInfo hcrx_el2_reginfo = {
6429     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6430     .type = ARM_CP_IO,
6431     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6432     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6433     .nv2_redirect_offset = 0xa0,
6434     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6435 };
6436 
6437 /* Return the effective value of HCRX_EL2.  */
arm_hcrx_el2_eff(CPUARMState * env)6438 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6439 {
6440     /*
6441      * The bits in this register behave as 0 for all purposes other than
6442      * direct reads of the register if SCR_EL3.HXEn is 0.
6443      * If EL2 is not enabled in the current security state, then the
6444      * bit may behave as if 0, or as if 1, depending on the bit.
6445      * For the moment, we treat the EL2-disabled case as taking
6446      * priority over the HXEn-disabled case. This is true for the only
6447      * bit for a feature which we implement where the answer is different
6448      * for the two cases (MSCEn for FEAT_MOPS).
6449      * This may need to be revisited for future bits.
6450      */
6451     if (!arm_is_el2_enabled(env)) {
6452         uint64_t hcrx = 0;
6453         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6454             /* MSCEn behaves as 1 if EL2 is not enabled */
6455             hcrx |= HCRX_MSCEN;
6456         }
6457         return hcrx;
6458     }
6459     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6460         return 0;
6461     }
6462     return env->cp15.hcrx_el2;
6463 }
6464 
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6465 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6466                            uint64_t value)
6467 {
6468     /*
6469      * For A-profile AArch32 EL3, if NSACR.CP10
6470      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6471      */
6472     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6473         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6474         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6475         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6476     }
6477     env->cp15.cptr_el[2] = value;
6478 }
6479 
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)6480 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6481 {
6482     /*
6483      * For A-profile AArch32 EL3, if NSACR.CP10
6484      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6485      */
6486     uint64_t value = env->cp15.cptr_el[2];
6487 
6488     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6489         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6490         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6491     }
6492     return value;
6493 }
6494 
6495 static const ARMCPRegInfo el2_cp_reginfo[] = {
6496     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6497       .type = ARM_CP_IO,
6498       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6499       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6500       .nv2_redirect_offset = 0x78,
6501       .writefn = hcr_write, .raw_writefn = raw_write },
6502     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6503       .type = ARM_CP_ALIAS | ARM_CP_IO,
6504       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6505       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6506       .writefn = hcr_writelow },
6507     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6508       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6509       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6510     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6511       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6512       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6513       .access = PL2_RW,
6514       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6515     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6516       .type = ARM_CP_NV2_REDIRECT,
6517       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6518       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6519     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6520       .type = ARM_CP_NV2_REDIRECT,
6521       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6522       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6523     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6524       .type = ARM_CP_ALIAS,
6525       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6526       .access = PL2_RW,
6527       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6528     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6529       .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6530       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6531       .access = PL2_RW,
6532       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6533     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6534       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6535       .access = PL2_RW, .writefn = vbar_write,
6536       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6537       .resetvalue = 0 },
6538     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6539       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6540       .access = PL3_RW, .type = ARM_CP_ALIAS,
6541       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6542     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6543       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6544       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6545       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6546       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6547     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6548       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6549       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6550       .resetvalue = 0 },
6551     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6552       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6553       .access = PL2_RW, .type = ARM_CP_ALIAS,
6554       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6555     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6556       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6557       .access = PL2_RW, .type = ARM_CP_CONST,
6558       .resetvalue = 0 },
6559     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6560     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6561       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6562       .access = PL2_RW, .type = ARM_CP_CONST,
6563       .resetvalue = 0 },
6564     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6565       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6566       .access = PL2_RW, .type = ARM_CP_CONST,
6567       .resetvalue = 0 },
6568     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6569       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6570       .access = PL2_RW, .type = ARM_CP_CONST,
6571       .resetvalue = 0 },
6572     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6573       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6574       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6575       .raw_writefn = raw_write,
6576       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6577     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6578       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6579       .type = ARM_CP_ALIAS,
6580       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6581       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6582     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6583       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6584       .access = PL2_RW,
6585       .nv2_redirect_offset = 0x40,
6586       /* no .writefn needed as this can't cause an ASID change */
6587       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6588     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6589       .cp = 15, .opc1 = 6, .crm = 2,
6590       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6591       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6592       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6593       .writefn = vttbr_write, .raw_writefn = raw_write },
6594     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6595       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6596       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6597       .nv2_redirect_offset = 0x20,
6598       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6599     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6600       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6601       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6602       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6603     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6604       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6605       .access = PL2_RW, .resetvalue = 0,
6606       .nv2_redirect_offset = 0x90,
6607       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6608     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6609       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6610       .access = PL2_RW, .resetvalue = 0,
6611       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6612       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6613     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6614       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6615       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6616     { .name = "TLBIALLNSNH",
6617       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6618       .type = ARM_CP_NO_RAW, .access = PL2_W,
6619       .writefn = tlbiall_nsnh_write },
6620     { .name = "TLBIALLNSNHIS",
6621       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6622       .type = ARM_CP_NO_RAW, .access = PL2_W,
6623       .writefn = tlbiall_nsnh_is_write },
6624     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6625       .type = ARM_CP_NO_RAW, .access = PL2_W,
6626       .writefn = tlbiall_hyp_write },
6627     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6628       .type = ARM_CP_NO_RAW, .access = PL2_W,
6629       .writefn = tlbiall_hyp_is_write },
6630     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6631       .type = ARM_CP_NO_RAW, .access = PL2_W,
6632       .writefn = tlbimva_hyp_write },
6633     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6634       .type = ARM_CP_NO_RAW, .access = PL2_W,
6635       .writefn = tlbimva_hyp_is_write },
6636     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6637       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6638       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6639       .writefn = tlbi_aa64_alle2_write },
6640     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6641       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6642       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6643       .writefn = tlbi_aa64_vae2_write },
6644     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6645       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6646       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6647       .writefn = tlbi_aa64_vae2_write },
6648     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6649       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6650       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6651       .writefn = tlbi_aa64_alle2is_write },
6652     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6653       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6654       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6655       .writefn = tlbi_aa64_vae2is_write },
6656     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6657       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6658       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6659       .writefn = tlbi_aa64_vae2is_write },
6660 #ifndef CONFIG_USER_ONLY
6661     /*
6662      * Unlike the other EL2-related AT operations, these must
6663      * UNDEF from EL3 if EL2 is not implemented, which is why we
6664      * define them here rather than with the rest of the AT ops.
6665      */
6666     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6667       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6668       .access = PL2_W, .accessfn = at_s1e2_access,
6669       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6670       .writefn = ats_write64 },
6671     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6672       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6673       .access = PL2_W, .accessfn = at_s1e2_access,
6674       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6675       .writefn = ats_write64 },
6676     /*
6677      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6678      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6679      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6680      * to behave as if SCR.NS was 1.
6681      */
6682     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6683       .access = PL2_W,
6684       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6685     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6686       .access = PL2_W,
6687       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6688     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6689       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6690       /*
6691        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6692        * reset values as IMPDEF. We choose to reset to 3 to comply with
6693        * both ARMv7 and ARMv8.
6694        */
6695       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6696       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6697       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6698     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6699       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6700       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6701       .writefn = gt_cntvoff_write,
6702       .nv2_redirect_offset = 0x60,
6703       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6704     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6705       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6706       .writefn = gt_cntvoff_write,
6707       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6708     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6709       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6710       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6711       .type = ARM_CP_IO, .access = PL2_RW,
6712       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6713     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6714       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6715       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6716       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6717     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6718       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6719       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6720       .resetfn = gt_hyp_timer_reset,
6721       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6722     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6723       .type = ARM_CP_IO,
6724       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6725       .access = PL2_RW,
6726       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6727       .resetvalue = 0,
6728       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6729 #endif
6730     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6731       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6732       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6733       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6734     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6735       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6736       .access = PL2_RW,
6737       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6738     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6739       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6740       .access = PL2_RW,
6741       .nv2_redirect_offset = 0x80,
6742       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6743 };
6744 
6745 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6746     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6747       .type = ARM_CP_ALIAS | ARM_CP_IO,
6748       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6749       .access = PL2_RW,
6750       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6751       .writefn = hcr_writehigh },
6752 };
6753 
sel2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6754 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6755                                   bool isread)
6756 {
6757     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6758         return CP_ACCESS_OK;
6759     }
6760     return CP_ACCESS_TRAP_UNCATEGORIZED;
6761 }
6762 
6763 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6764     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6765       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6766       .access = PL2_RW, .accessfn = sel2_access,
6767       .nv2_redirect_offset = 0x30,
6768       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6769     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6770       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6771       .access = PL2_RW, .accessfn = sel2_access,
6772       .nv2_redirect_offset = 0x48,
6773       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6774 #ifndef CONFIG_USER_ONLY
6775     /* Secure EL2 Physical Timer */
6776     { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64,
6777       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0,
6778       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6779       .accessfn = gt_sel2timer_access,
6780       .readfn = gt_sec_pel2_tval_read,
6781       .writefn = gt_sec_pel2_tval_write,
6782       .resetfn = gt_sec_pel2_timer_reset,
6783     },
6784     { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64,
6785       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1,
6786       .type = ARM_CP_IO, .access = PL2_RW,
6787       .accessfn = gt_sel2timer_access,
6788       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl),
6789       .resetvalue = 0,
6790       .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write,
6791     },
6792     { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6793       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2,
6794       .type = ARM_CP_IO, .access = PL2_RW,
6795       .accessfn = gt_sel2timer_access,
6796       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval),
6797       .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write,
6798     },
6799     /* Secure EL2 Virtual Timer */
6800     { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64,
6801       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0,
6802       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6803       .accessfn = gt_sel2timer_access,
6804       .readfn = gt_sec_vel2_tval_read,
6805       .writefn = gt_sec_vel2_tval_write,
6806       .resetfn = gt_sec_vel2_timer_reset,
6807     },
6808     { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64,
6809       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1,
6810       .type = ARM_CP_IO, .access = PL2_RW,
6811       .accessfn = gt_sel2timer_access,
6812       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl),
6813       .resetvalue = 0,
6814       .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write,
6815     },
6816     { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6817       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2,
6818       .type = ARM_CP_IO, .access = PL2_RW,
6819       .accessfn = gt_sel2timer_access,
6820       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval),
6821       .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write,
6822     },
6823 #endif
6824 };
6825 
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6826 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6827                                    bool isread)
6828 {
6829     /*
6830      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6831      * At Secure EL1 it traps to EL3 or EL2.
6832      */
6833     if (arm_current_el(env) == 3) {
6834         return CP_ACCESS_OK;
6835     }
6836     if (arm_is_secure_below_el3(env)) {
6837         if (env->cp15.scr_el3 & SCR_EEL2) {
6838             return CP_ACCESS_TRAP_EL2;
6839         }
6840         return CP_ACCESS_TRAP_EL3;
6841     }
6842     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6843     if (isread) {
6844         return CP_ACCESS_OK;
6845     }
6846     return CP_ACCESS_TRAP_UNCATEGORIZED;
6847 }
6848 
6849 static const ARMCPRegInfo el3_cp_reginfo[] = {
6850     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6851       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6852       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6853       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6854     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6855       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6856       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6857       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6858       .writefn = scr_write, .raw_writefn = raw_write },
6859     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6860       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6861       .access = PL3_RW, .resetvalue = 0,
6862       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6863     { .name = "SDER",
6864       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6865       .access = PL3_RW, .resetvalue = 0,
6866       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6867     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6868       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6869       .writefn = vbar_write, .resetvalue = 0,
6870       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6871     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6872       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6873       .access = PL3_RW, .resetvalue = 0,
6874       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6875     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6876       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6877       .access = PL3_RW,
6878       /* no .writefn needed as this can't cause an ASID change */
6879       .resetvalue = 0,
6880       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6881     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6882       .type = ARM_CP_ALIAS,
6883       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6884       .access = PL3_RW,
6885       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6886     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6887       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6888       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6889     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6890       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6891       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6892     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6893       .type = ARM_CP_ALIAS,
6894       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6895       .access = PL3_RW,
6896       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6897     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6898       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6899       .access = PL3_RW, .writefn = vbar_write,
6900       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6901       .resetvalue = 0 },
6902     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6903       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6904       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6905       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6906     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6907       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6908       .access = PL3_RW, .resetvalue = 0,
6909       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6910     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6911       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6912       .access = PL3_RW, .type = ARM_CP_CONST,
6913       .resetvalue = 0 },
6914     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6915       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6916       .access = PL3_RW, .type = ARM_CP_CONST,
6917       .resetvalue = 0 },
6918     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6919       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6920       .access = PL3_RW, .type = ARM_CP_CONST,
6921       .resetvalue = 0 },
6922     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6923       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6924       .access = PL3_W, .type = ARM_CP_NO_RAW,
6925       .writefn = tlbi_aa64_alle3is_write },
6926     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6927       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6928       .access = PL3_W, .type = ARM_CP_NO_RAW,
6929       .writefn = tlbi_aa64_vae3is_write },
6930     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6931       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6932       .access = PL3_W, .type = ARM_CP_NO_RAW,
6933       .writefn = tlbi_aa64_vae3is_write },
6934     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6935       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6936       .access = PL3_W, .type = ARM_CP_NO_RAW,
6937       .writefn = tlbi_aa64_alle3_write },
6938     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6939       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6940       .access = PL3_W, .type = ARM_CP_NO_RAW,
6941       .writefn = tlbi_aa64_vae3_write },
6942     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6943       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6944       .access = PL3_W, .type = ARM_CP_NO_RAW,
6945       .writefn = tlbi_aa64_vae3_write },
6946 };
6947 
6948 #ifndef CONFIG_USER_ONLY
6949 
e2h_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6950 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6951                                  bool isread)
6952 {
6953     if (arm_current_el(env) == 1) {
6954         /* This must be a FEAT_NV access */
6955         return CP_ACCESS_OK;
6956     }
6957     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6958         return CP_ACCESS_TRAP_UNCATEGORIZED;
6959     }
6960     return CP_ACCESS_OK;
6961 }
6962 
access_el1nvpct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6963 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6964                                       bool isread)
6965 {
6966     if (arm_current_el(env) == 1) {
6967         /* This must be a FEAT_NV access with NVx == 101 */
6968         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6969             return CP_ACCESS_TRAP_EL2;
6970         }
6971     }
6972     return e2h_access(env, ri, isread);
6973 }
6974 
access_el1nvvct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6975 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6976                                       bool isread)
6977 {
6978     if (arm_current_el(env) == 1) {
6979         /* This must be a FEAT_NV access with NVx == 101 */
6980         if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6981             return CP_ACCESS_TRAP_EL2;
6982         }
6983     }
6984     return e2h_access(env, ri, isread);
6985 }
6986 
6987 /* Test if system register redirection is to occur in the current state.  */
redirect_for_e2h(CPUARMState * env)6988 static bool redirect_for_e2h(CPUARMState *env)
6989 {
6990     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6991 }
6992 
el2_e2h_read(CPUARMState * env,const ARMCPRegInfo * ri)6993 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6994 {
6995     CPReadFn *readfn;
6996 
6997     if (redirect_for_e2h(env)) {
6998         /* Switch to the saved EL2 version of the register.  */
6999         ri = ri->opaque;
7000         readfn = ri->readfn;
7001     } else {
7002         readfn = ri->orig_readfn;
7003     }
7004     if (readfn == NULL) {
7005         readfn = raw_read;
7006     }
7007     return readfn(env, ri);
7008 }
7009 
el2_e2h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7010 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
7011                           uint64_t value)
7012 {
7013     CPWriteFn *writefn;
7014 
7015     if (redirect_for_e2h(env)) {
7016         /* Switch to the saved EL2 version of the register.  */
7017         ri = ri->opaque;
7018         writefn = ri->writefn;
7019     } else {
7020         writefn = ri->orig_writefn;
7021     }
7022     if (writefn == NULL) {
7023         writefn = raw_write;
7024     }
7025     writefn(env, ri, value);
7026 }
7027 
el2_e2h_e12_read(CPUARMState * env,const ARMCPRegInfo * ri)7028 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
7029 {
7030     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
7031     return ri->orig_readfn(env, ri->opaque);
7032 }
7033 
el2_e2h_e12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7034 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
7035                               uint64_t value)
7036 {
7037     /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
7038     return ri->orig_writefn(env, ri->opaque, value);
7039 }
7040 
el2_e2h_e12_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7041 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
7042                                          const ARMCPRegInfo *ri,
7043                                          bool isread)
7044 {
7045     if (arm_current_el(env) == 1) {
7046         /*
7047          * This must be a FEAT_NV access (will either trap or redirect
7048          * to memory). None of the registers with _EL12 aliases want to
7049          * apply their trap controls for this kind of access, so don't
7050          * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
7051          */
7052         return CP_ACCESS_OK;
7053     }
7054     /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
7055     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
7056         return CP_ACCESS_TRAP_UNCATEGORIZED;
7057     }
7058     if (ri->orig_accessfn) {
7059         return ri->orig_accessfn(env, ri->opaque, isread);
7060     }
7061     return CP_ACCESS_OK;
7062 }
7063 
define_arm_vh_e2h_redirects_aliases(ARMCPU * cpu)7064 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
7065 {
7066     struct E2HAlias {
7067         uint32_t src_key, dst_key, new_key;
7068         const char *src_name, *dst_name, *new_name;
7069         bool (*feature)(const ARMISARegisters *id);
7070     };
7071 
7072 #define K(op0, op1, crn, crm, op2) \
7073     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
7074 
7075     static const struct E2HAlias aliases[] = {
7076         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
7077           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
7078         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
7079           "CPACR", "CPTR_EL2", "CPACR_EL12" },
7080         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
7081           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
7082         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
7083           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
7084         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
7085           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
7086         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
7087           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
7088         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
7089           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
7090         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
7091           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
7092         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
7093           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
7094         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
7095           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
7096         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
7097           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
7098         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
7099           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
7100         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
7101           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
7102         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
7103           "VBAR", "VBAR_EL2", "VBAR_EL12" },
7104         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
7105           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
7106         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
7107           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
7108 
7109         /*
7110          * Note that redirection of ZCR is mentioned in the description
7111          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
7112          * not in the summary table.
7113          */
7114         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
7115           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
7116         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
7117           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
7118 
7119         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
7120           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
7121 
7122         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
7123           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
7124           isar_feature_aa64_scxtnum },
7125 
7126         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
7127         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
7128     };
7129 #undef K
7130 
7131     size_t i;
7132 
7133     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
7134         const struct E2HAlias *a = &aliases[i];
7135         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
7136         bool ok;
7137 
7138         if (a->feature && !a->feature(&cpu->isar)) {
7139             continue;
7140         }
7141 
7142         src_reg = g_hash_table_lookup(cpu->cp_regs,
7143                                       (gpointer)(uintptr_t)a->src_key);
7144         dst_reg = g_hash_table_lookup(cpu->cp_regs,
7145                                       (gpointer)(uintptr_t)a->dst_key);
7146         g_assert(src_reg != NULL);
7147         g_assert(dst_reg != NULL);
7148 
7149         /* Cross-compare names to detect typos in the keys.  */
7150         g_assert(strcmp(src_reg->name, a->src_name) == 0);
7151         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
7152 
7153         /* None of the core system registers use opaque; we will.  */
7154         g_assert(src_reg->opaque == NULL);
7155 
7156         /* Create alias before redirection so we dup the right data. */
7157         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
7158 
7159         new_reg->name = a->new_name;
7160         new_reg->type |= ARM_CP_ALIAS;
7161         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
7162         new_reg->access &= PL2_RW | PL3_RW;
7163         /* The new_reg op fields are as per new_key, not the target reg */
7164         new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
7165             >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
7166         new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
7167             >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
7168         new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
7169             >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
7170         new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
7171             >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
7172         new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
7173             >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
7174         new_reg->opaque = src_reg;
7175         new_reg->orig_readfn = src_reg->readfn ?: raw_read;
7176         new_reg->orig_writefn = src_reg->writefn ?: raw_write;
7177         new_reg->orig_accessfn = src_reg->accessfn;
7178         if (!new_reg->raw_readfn) {
7179             new_reg->raw_readfn = raw_read;
7180         }
7181         if (!new_reg->raw_writefn) {
7182             new_reg->raw_writefn = raw_write;
7183         }
7184         new_reg->readfn = el2_e2h_e12_read;
7185         new_reg->writefn = el2_e2h_e12_write;
7186         new_reg->accessfn = el2_e2h_e12_access;
7187 
7188         /*
7189          * If the _EL1 register is redirected to memory by FEAT_NV2,
7190          * then it shares the offset with the _EL12 register,
7191          * and which one is redirected depends on HCR_EL2.NV1.
7192          */
7193         if (new_reg->nv2_redirect_offset) {
7194             assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
7195             new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
7196             new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
7197         }
7198 
7199         ok = g_hash_table_insert(cpu->cp_regs,
7200                                  (gpointer)(uintptr_t)a->new_key, new_reg);
7201         g_assert(ok);
7202 
7203         src_reg->opaque = dst_reg;
7204         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
7205         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
7206         if (!src_reg->raw_readfn) {
7207             src_reg->raw_readfn = raw_read;
7208         }
7209         if (!src_reg->raw_writefn) {
7210             src_reg->raw_writefn = raw_write;
7211         }
7212         src_reg->readfn = el2_e2h_read;
7213         src_reg->writefn = el2_e2h_write;
7214     }
7215 }
7216 #endif
7217 
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7218 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
7219                                      bool isread)
7220 {
7221     int cur_el = arm_current_el(env);
7222 
7223     if (cur_el < 2) {
7224         uint64_t hcr = arm_hcr_el2_eff(env);
7225 
7226         if (cur_el == 0) {
7227             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
7228                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
7229                     return CP_ACCESS_TRAP_EL2;
7230                 }
7231             } else {
7232                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7233                     return CP_ACCESS_TRAP;
7234                 }
7235                 if (hcr & HCR_TID2) {
7236                     return CP_ACCESS_TRAP_EL2;
7237                 }
7238             }
7239         } else if (hcr & HCR_TID2) {
7240             return CP_ACCESS_TRAP_EL2;
7241         }
7242     }
7243 
7244     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
7245         return CP_ACCESS_TRAP_EL2;
7246     }
7247 
7248     return CP_ACCESS_OK;
7249 }
7250 
7251 /*
7252  * Check for traps to RAS registers, which are controlled
7253  * by HCR_EL2.TERR and SCR_EL3.TERR.
7254  */
access_terr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7255 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
7256                                   bool isread)
7257 {
7258     int el = arm_current_el(env);
7259 
7260     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
7261         return CP_ACCESS_TRAP_EL2;
7262     }
7263     if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) {
7264         return CP_ACCESS_TRAP_EL3;
7265     }
7266     return CP_ACCESS_OK;
7267 }
7268 
disr_read(CPUARMState * env,const ARMCPRegInfo * ri)7269 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
7270 {
7271     int el = arm_current_el(env);
7272 
7273     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7274         return env->cp15.vdisr_el2;
7275     }
7276     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7277         return 0; /* RAZ/WI */
7278     }
7279     return env->cp15.disr_el1;
7280 }
7281 
disr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)7282 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7283 {
7284     int el = arm_current_el(env);
7285 
7286     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
7287         env->cp15.vdisr_el2 = val;
7288         return;
7289     }
7290     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
7291         return; /* RAZ/WI */
7292     }
7293     env->cp15.disr_el1 = val;
7294 }
7295 
7296 /*
7297  * Minimal RAS implementation with no Error Records.
7298  * Which means that all of the Error Record registers:
7299  *   ERXADDR_EL1
7300  *   ERXCTLR_EL1
7301  *   ERXFR_EL1
7302  *   ERXMISC0_EL1
7303  *   ERXMISC1_EL1
7304  *   ERXMISC2_EL1
7305  *   ERXMISC3_EL1
7306  *   ERXPFGCDN_EL1  (RASv1p1)
7307  *   ERXPFGCTL_EL1  (RASv1p1)
7308  *   ERXPFGF_EL1    (RASv1p1)
7309  *   ERXSTATUS_EL1
7310  * and
7311  *   ERRSELR_EL1
7312  * may generate UNDEFINED, which is the effect we get by not
7313  * listing them at all.
7314  *
7315  * These registers have fine-grained trap bits, but UNDEF-to-EL1
7316  * is higher priority than FGT-to-EL2 so we do not need to list them
7317  * in order to check for an FGT.
7318  */
7319 static const ARMCPRegInfo minimal_ras_reginfo[] = {
7320     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
7321       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
7322       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
7323       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
7324     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
7325       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
7326       .access = PL1_R, .accessfn = access_terr,
7327       .fgt = FGT_ERRIDR_EL1,
7328       .type = ARM_CP_CONST, .resetvalue = 0 },
7329     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
7330       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
7331       .nv2_redirect_offset = 0x500,
7332       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
7333     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
7334       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
7335       .nv2_redirect_offset = 0x508,
7336       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
7337 };
7338 
7339 /*
7340  * Return the exception level to which exceptions should be taken
7341  * via SVEAccessTrap.  This excludes the check for whether the exception
7342  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
7343  * be found by testing 0 < fp_exception_el < sve_exception_el.
7344  *
7345  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
7346  * pseudocode does *not* separate out the FP trap checks, but has them
7347  * all in one function.
7348  */
sve_exception_el(CPUARMState * env,int el)7349 int sve_exception_el(CPUARMState *env, int el)
7350 {
7351 #ifndef CONFIG_USER_ONLY
7352     if (el <= 1 && !el_is_in_host(env, el)) {
7353         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
7354         case 1:
7355             if (el != 0) {
7356                 break;
7357             }
7358             /* fall through */
7359         case 0:
7360         case 2:
7361             return 1;
7362         }
7363     }
7364 
7365     if (el <= 2 && arm_is_el2_enabled(env)) {
7366         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7367         if (env->cp15.hcr_el2 & HCR_E2H) {
7368             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
7369             case 1:
7370                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7371                     break;
7372                 }
7373                 /* fall through */
7374             case 0:
7375             case 2:
7376                 return 2;
7377             }
7378         } else {
7379             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
7380                 return 2;
7381             }
7382         }
7383     }
7384 
7385     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
7386     if (arm_feature(env, ARM_FEATURE_EL3)
7387         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
7388         return 3;
7389     }
7390 #endif
7391     return 0;
7392 }
7393 
7394 /*
7395  * Return the exception level to which exceptions should be taken for SME.
7396  * C.f. the ARM pseudocode function CheckSMEAccess.
7397  */
sme_exception_el(CPUARMState * env,int el)7398 int sme_exception_el(CPUARMState *env, int el)
7399 {
7400 #ifndef CONFIG_USER_ONLY
7401     if (el <= 1 && !el_is_in_host(env, el)) {
7402         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
7403         case 1:
7404             if (el != 0) {
7405                 break;
7406             }
7407             /* fall through */
7408         case 0:
7409         case 2:
7410             return 1;
7411         }
7412     }
7413 
7414     if (el <= 2 && arm_is_el2_enabled(env)) {
7415         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
7416         if (env->cp15.hcr_el2 & HCR_E2H) {
7417             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
7418             case 1:
7419                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
7420                     break;
7421                 }
7422                 /* fall through */
7423             case 0:
7424             case 2:
7425                 return 2;
7426             }
7427         } else {
7428             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
7429                 return 2;
7430             }
7431         }
7432     }
7433 
7434     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
7435     if (arm_feature(env, ARM_FEATURE_EL3)
7436         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7437         return 3;
7438     }
7439 #endif
7440     return 0;
7441 }
7442 
7443 /*
7444  * Given that SVE is enabled, return the vector length for EL.
7445  */
sve_vqm1_for_el_sm(CPUARMState * env,int el,bool sm)7446 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7447 {
7448     ARMCPU *cpu = env_archcpu(env);
7449     uint64_t *cr = env->vfp.zcr_el;
7450     uint32_t map = cpu->sve_vq.map;
7451     uint32_t len = ARM_MAX_VQ - 1;
7452 
7453     if (sm) {
7454         cr = env->vfp.smcr_el;
7455         map = cpu->sme_vq.map;
7456     }
7457 
7458     if (el <= 1 && !el_is_in_host(env, el)) {
7459         len = MIN(len, 0xf & (uint32_t)cr[1]);
7460     }
7461     if (el <= 2 && arm_is_el2_enabled(env)) {
7462         len = MIN(len, 0xf & (uint32_t)cr[2]);
7463     }
7464     if (arm_feature(env, ARM_FEATURE_EL3)) {
7465         len = MIN(len, 0xf & (uint32_t)cr[3]);
7466     }
7467 
7468     map &= MAKE_64BIT_MASK(0, len + 1);
7469     if (map != 0) {
7470         return 31 - clz32(map);
7471     }
7472 
7473     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7474     assert(sm);
7475     return ctz32(cpu->sme_vq.map);
7476 }
7477 
sve_vqm1_for_el(CPUARMState * env,int el)7478 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7479 {
7480     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7481 }
7482 
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7483 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7484                       uint64_t value)
7485 {
7486     int cur_el = arm_current_el(env);
7487     int old_len = sve_vqm1_for_el(env, cur_el);
7488     int new_len;
7489 
7490     /* Bits other than [3:0] are RAZ/WI.  */
7491     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7492     raw_write(env, ri, value & 0xf);
7493 
7494     /*
7495      * Because we arrived here, we know both FP and SVE are enabled;
7496      * otherwise we would have trapped access to the ZCR_ELn register.
7497      */
7498     new_len = sve_vqm1_for_el(env, cur_el);
7499     if (new_len < old_len) {
7500         aarch64_sve_narrow_vq(env, new_len + 1);
7501     }
7502 }
7503 
7504 static const ARMCPRegInfo zcr_reginfo[] = {
7505     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7506       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7507       .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7508       .access = PL1_RW, .type = ARM_CP_SVE,
7509       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7510       .writefn = zcr_write, .raw_writefn = raw_write },
7511     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7512       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7513       .access = PL2_RW, .type = ARM_CP_SVE,
7514       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7515       .writefn = zcr_write, .raw_writefn = raw_write },
7516     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7517       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7518       .access = PL3_RW, .type = ARM_CP_SVE,
7519       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7520       .writefn = zcr_write, .raw_writefn = raw_write },
7521 };
7522 
7523 #ifdef TARGET_AARCH64
access_tpidr2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7524 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7525                                     bool isread)
7526 {
7527     int el = arm_current_el(env);
7528 
7529     if (el == 0) {
7530         uint64_t sctlr = arm_sctlr(env, el);
7531         if (!(sctlr & SCTLR_EnTP2)) {
7532             return CP_ACCESS_TRAP;
7533         }
7534     }
7535     /* TODO: FEAT_FGT */
7536     if (el < 3
7537         && arm_feature(env, ARM_FEATURE_EL3)
7538         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7539         return CP_ACCESS_TRAP_EL3;
7540     }
7541     return CP_ACCESS_OK;
7542 }
7543 
access_smprimap(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7544 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7545                                       bool isread)
7546 {
7547     /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7548     if (arm_current_el(env) == 2
7549         && arm_feature(env, ARM_FEATURE_EL3)
7550         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7551         return CP_ACCESS_TRAP_EL3;
7552     }
7553     return CP_ACCESS_OK;
7554 }
7555 
access_smpri(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7556 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7557                                    bool isread)
7558 {
7559     if (arm_current_el(env) < 3
7560         && arm_feature(env, ARM_FEATURE_EL3)
7561         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7562         return CP_ACCESS_TRAP_EL3;
7563     }
7564     return CP_ACCESS_OK;
7565 }
7566 
7567 /* ResetSVEState */
arm_reset_sve_state(CPUARMState * env)7568 static void arm_reset_sve_state(CPUARMState *env)
7569 {
7570     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7571     /* Recall that FFR is stored as pregs[16]. */
7572     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7573     vfp_set_fpsr(env, 0x0800009f);
7574 }
7575 
aarch64_set_svcr(CPUARMState * env,uint64_t new,uint64_t mask)7576 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7577 {
7578     uint64_t change = (env->svcr ^ new) & mask;
7579 
7580     if (change == 0) {
7581         return;
7582     }
7583     env->svcr ^= change;
7584 
7585     if (change & R_SVCR_SM_MASK) {
7586         arm_reset_sve_state(env);
7587     }
7588 
7589     /*
7590      * ResetSMEState.
7591      *
7592      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
7593      * on enable: while disabled, the storage is inaccessible and the
7594      * value does not matter.  We're not saving the storage in vmstate
7595      * when disabled either.
7596      */
7597     if (change & new & R_SVCR_ZA_MASK) {
7598         memset(env->zarray, 0, sizeof(env->zarray));
7599     }
7600 
7601     if (tcg_enabled()) {
7602         arm_rebuild_hflags(env);
7603     }
7604 }
7605 
svcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7606 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7607                        uint64_t value)
7608 {
7609     aarch64_set_svcr(env, value, -1);
7610 }
7611 
smcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7612 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7613                        uint64_t value)
7614 {
7615     int cur_el = arm_current_el(env);
7616     int old_len = sve_vqm1_for_el(env, cur_el);
7617     int new_len;
7618 
7619     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7620     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7621     raw_write(env, ri, value);
7622 
7623     /*
7624      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7625      * when SVL is widened (old values kept, or zeros).  Choose to keep the
7626      * current values for simplicity.  But for QEMU internals, we must still
7627      * apply the narrower SVL to the Zregs and Pregs -- see the comment
7628      * above aarch64_sve_narrow_vq.
7629      */
7630     new_len = sve_vqm1_for_el(env, cur_el);
7631     if (new_len < old_len) {
7632         aarch64_sve_narrow_vq(env, new_len + 1);
7633     }
7634 }
7635 
7636 static const ARMCPRegInfo sme_reginfo[] = {
7637     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7638       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7639       .access = PL0_RW, .accessfn = access_tpidr2,
7640       .fgt = FGT_NTPIDR2_EL0,
7641       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7642     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7643       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7644       .access = PL0_RW, .type = ARM_CP_SME,
7645       .fieldoffset = offsetof(CPUARMState, svcr),
7646       .writefn = svcr_write, .raw_writefn = raw_write },
7647     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7648       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7649       .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7650       .access = PL1_RW, .type = ARM_CP_SME,
7651       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7652       .writefn = smcr_write, .raw_writefn = raw_write },
7653     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7654       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7655       .access = PL2_RW, .type = ARM_CP_SME,
7656       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7657       .writefn = smcr_write, .raw_writefn = raw_write },
7658     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7659       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7660       .access = PL3_RW, .type = ARM_CP_SME,
7661       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7662       .writefn = smcr_write, .raw_writefn = raw_write },
7663     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7664       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7665       .access = PL1_R, .accessfn = access_aa64_tid1,
7666       /*
7667        * IMPLEMENTOR = 0 (software)
7668        * REVISION    = 0 (implementation defined)
7669        * SMPS        = 0 (no streaming execution priority in QEMU)
7670        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7671        */
7672       .type = ARM_CP_CONST, .resetvalue = 0, },
7673     /*
7674      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7675      */
7676     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7677       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7678       .access = PL1_RW, .accessfn = access_smpri,
7679       .fgt = FGT_NSMPRI_EL1,
7680       .type = ARM_CP_CONST, .resetvalue = 0 },
7681     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7682       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7683       .nv2_redirect_offset = 0x1f8,
7684       .access = PL2_RW, .accessfn = access_smprimap,
7685       .type = ARM_CP_CONST, .resetvalue = 0 },
7686 };
7687 
tlbi_aa64_paall_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7688 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7689                                   uint64_t value)
7690 {
7691     CPUState *cs = env_cpu(env);
7692 
7693     tlb_flush(cs);
7694 }
7695 
gpccr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7696 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7697                         uint64_t value)
7698 {
7699     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7700     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7701         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7702         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7703 
7704     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7705 }
7706 
gpccr_reset(CPUARMState * env,const ARMCPRegInfo * ri)7707 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7708 {
7709     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7710                                      env_archcpu(env)->reset_l0gptsz);
7711 }
7712 
tlbi_aa64_paallos_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7713 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7714                                     uint64_t value)
7715 {
7716     CPUState *cs = env_cpu(env);
7717 
7718     tlb_flush_all_cpus_synced(cs);
7719 }
7720 
7721 static const ARMCPRegInfo rme_reginfo[] = {
7722     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7723       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7724       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7725       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7726     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7727       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7728       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7729     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7730       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7731       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7732     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7733       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7734       .access = PL3_W, .type = ARM_CP_NO_RAW,
7735       .writefn = tlbi_aa64_paall_write },
7736     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7737       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7738       .access = PL3_W, .type = ARM_CP_NO_RAW,
7739       .writefn = tlbi_aa64_paallos_write },
7740     /*
7741      * QEMU does not have a way to invalidate by physical address, thus
7742      * invalidating a range of physical addresses is accomplished by
7743      * flushing all tlb entries in the outer shareable domain,
7744      * just like PAALLOS.
7745      */
7746     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7747       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7748       .access = PL3_W, .type = ARM_CP_NO_RAW,
7749       .writefn = tlbi_aa64_paallos_write },
7750     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7751       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7752       .access = PL3_W, .type = ARM_CP_NO_RAW,
7753       .writefn = tlbi_aa64_paallos_write },
7754     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7755       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7756       .access = PL3_W, .type = ARM_CP_NOP },
7757 };
7758 
7759 static const ARMCPRegInfo rme_mte_reginfo[] = {
7760     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7761       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7762       .access = PL3_W, .type = ARM_CP_NOP },
7763 };
7764 
aa64_allint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7765 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
7766                               uint64_t value)
7767 {
7768     env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
7769 }
7770 
aa64_allint_read(CPUARMState * env,const ARMCPRegInfo * ri)7771 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
7772 {
7773     return env->pstate & PSTATE_ALLINT;
7774 }
7775 
aa64_allint_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7776 static CPAccessResult aa64_allint_access(CPUARMState *env,
7777                                          const ARMCPRegInfo *ri, bool isread)
7778 {
7779     if (!isread && arm_current_el(env) == 1 &&
7780         (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
7781         return CP_ACCESS_TRAP_EL2;
7782     }
7783     return CP_ACCESS_OK;
7784 }
7785 
7786 static const ARMCPRegInfo nmi_reginfo[] = {
7787     { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
7788       .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
7789       .type = ARM_CP_NO_RAW,
7790       .access = PL1_RW, .accessfn = aa64_allint_access,
7791       .fieldoffset = offsetof(CPUARMState, pstate),
7792       .writefn = aa64_allint_write, .readfn = aa64_allint_read,
7793       .resetfn = arm_cp_reset_ignore },
7794 };
7795 #endif /* TARGET_AARCH64 */
7796 
define_pmu_regs(ARMCPU * cpu)7797 static void define_pmu_regs(ARMCPU *cpu)
7798 {
7799     /*
7800      * v7 performance monitor control register: same implementor
7801      * field as main ID register, and we implement four counters in
7802      * addition to the cycle count register.
7803      */
7804     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7805     ARMCPRegInfo pmcr = {
7806         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7807         .access = PL0_RW,
7808         .fgt = FGT_PMCR_EL0,
7809         .type = ARM_CP_IO | ARM_CP_ALIAS,
7810         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7811         .accessfn = pmreg_access,
7812         .readfn = pmcr_read, .raw_readfn = raw_read,
7813         .writefn = pmcr_write, .raw_writefn = raw_write,
7814     };
7815     ARMCPRegInfo pmcr64 = {
7816         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7817         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7818         .access = PL0_RW, .accessfn = pmreg_access,
7819         .fgt = FGT_PMCR_EL0,
7820         .type = ARM_CP_IO,
7821         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7822         .resetvalue = cpu->isar.reset_pmcr_el0,
7823         .readfn = pmcr_read, .raw_readfn = raw_read,
7824         .writefn = pmcr_write, .raw_writefn = raw_write,
7825     };
7826 
7827     define_one_arm_cp_reg(cpu, &pmcr);
7828     define_one_arm_cp_reg(cpu, &pmcr64);
7829     for (i = 0; i < pmcrn; i++) {
7830         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7831         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7832         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7833         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7834         ARMCPRegInfo pmev_regs[] = {
7835             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7836               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7837               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7838               .fgt = FGT_PMEVCNTRN_EL0,
7839               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7840               .accessfn = pmreg_access_xevcntr },
7841             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7842               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7843               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7844               .type = ARM_CP_IO,
7845               .fgt = FGT_PMEVCNTRN_EL0,
7846               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7847               .raw_readfn = pmevcntr_rawread,
7848               .raw_writefn = pmevcntr_rawwrite },
7849             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7850               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7851               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7852               .fgt = FGT_PMEVTYPERN_EL0,
7853               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7854               .accessfn = pmreg_access },
7855             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7856               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7857               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7858               .fgt = FGT_PMEVTYPERN_EL0,
7859               .type = ARM_CP_IO,
7860               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7861               .raw_writefn = pmevtyper_rawwrite },
7862         };
7863         define_arm_cp_regs(cpu, pmev_regs);
7864         g_free(pmevcntr_name);
7865         g_free(pmevcntr_el0_name);
7866         g_free(pmevtyper_name);
7867         g_free(pmevtyper_el0_name);
7868     }
7869     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7870         ARMCPRegInfo v81_pmu_regs[] = {
7871             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7872               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7873               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7874               .fgt = FGT_PMCEIDN_EL0,
7875               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7876             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7877               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7878               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7879               .fgt = FGT_PMCEIDN_EL0,
7880               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7881         };
7882         define_arm_cp_regs(cpu, v81_pmu_regs);
7883     }
7884     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7885         static const ARMCPRegInfo v84_pmmir = {
7886             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7887             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7888             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7889             .fgt = FGT_PMMIR_EL1,
7890             .resetvalue = 0
7891         };
7892         define_one_arm_cp_reg(cpu, &v84_pmmir);
7893     }
7894 }
7895 
7896 #ifndef CONFIG_USER_ONLY
7897 /*
7898  * We don't know until after realize whether there's a GICv3
7899  * attached, and that is what registers the gicv3 sysregs.
7900  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7901  * at runtime.
7902  */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)7903 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7904 {
7905     ARMCPU *cpu = env_archcpu(env);
7906     uint64_t pfr1 = cpu->isar.id_pfr1;
7907 
7908     if (env->gicv3state) {
7909         pfr1 |= 1 << 28;
7910     }
7911     return pfr1;
7912 }
7913 
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)7914 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7915 {
7916     ARMCPU *cpu = env_archcpu(env);
7917     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7918 
7919     if (env->gicv3state) {
7920         pfr0 |= 1 << 24;
7921     }
7922     return pfr0;
7923 }
7924 #endif
7925 
7926 /*
7927  * Shared logic between LORID and the rest of the LOR* registers.
7928  * Secure state exclusion has already been dealt with.
7929  */
access_lor_ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7930 static CPAccessResult access_lor_ns(CPUARMState *env,
7931                                     const ARMCPRegInfo *ri, bool isread)
7932 {
7933     int el = arm_current_el(env);
7934 
7935     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7936         return CP_ACCESS_TRAP_EL2;
7937     }
7938     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7939         return CP_ACCESS_TRAP_EL3;
7940     }
7941     return CP_ACCESS_OK;
7942 }
7943 
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7944 static CPAccessResult access_lor_other(CPUARMState *env,
7945                                        const ARMCPRegInfo *ri, bool isread)
7946 {
7947     if (arm_is_secure_below_el3(env)) {
7948         /* UNDEF if SCR_EL3.NS == 0 */
7949         return CP_ACCESS_TRAP_UNCATEGORIZED;
7950     }
7951     return access_lor_ns(env, ri, isread);
7952 }
7953 
7954 /*
7955  * A trivial implementation of ARMv8.1-LOR leaves all of these
7956  * registers fixed at 0, which indicates that there are zero
7957  * supported Limited Ordering regions.
7958  */
7959 static const ARMCPRegInfo lor_reginfo[] = {
7960     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7961       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7962       .access = PL1_RW, .accessfn = access_lor_other,
7963       .fgt = FGT_LORSA_EL1,
7964       .type = ARM_CP_CONST, .resetvalue = 0 },
7965     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7966       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7967       .access = PL1_RW, .accessfn = access_lor_other,
7968       .fgt = FGT_LOREA_EL1,
7969       .type = ARM_CP_CONST, .resetvalue = 0 },
7970     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7971       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7972       .access = PL1_RW, .accessfn = access_lor_other,
7973       .fgt = FGT_LORN_EL1,
7974       .type = ARM_CP_CONST, .resetvalue = 0 },
7975     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7976       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7977       .access = PL1_RW, .accessfn = access_lor_other,
7978       .fgt = FGT_LORC_EL1,
7979       .type = ARM_CP_CONST, .resetvalue = 0 },
7980     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7981       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7982       .access = PL1_R, .accessfn = access_lor_ns,
7983       .fgt = FGT_LORID_EL1,
7984       .type = ARM_CP_CONST, .resetvalue = 0 },
7985 };
7986 
7987 #ifdef TARGET_AARCH64
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7988 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7989                                    bool isread)
7990 {
7991     int el = arm_current_el(env);
7992 
7993     if (el < 2 &&
7994         arm_is_el2_enabled(env) &&
7995         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7996         return CP_ACCESS_TRAP_EL2;
7997     }
7998     if (el < 3 &&
7999         arm_feature(env, ARM_FEATURE_EL3) &&
8000         !(env->cp15.scr_el3 & SCR_APK)) {
8001         return CP_ACCESS_TRAP_EL3;
8002     }
8003     return CP_ACCESS_OK;
8004 }
8005 
8006 static const ARMCPRegInfo pauth_reginfo[] = {
8007     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
8008       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
8009       .access = PL1_RW, .accessfn = access_pauth,
8010       .fgt = FGT_APDAKEY,
8011       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
8012     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
8013       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
8014       .access = PL1_RW, .accessfn = access_pauth,
8015       .fgt = FGT_APDAKEY,
8016       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
8017     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
8018       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
8019       .access = PL1_RW, .accessfn = access_pauth,
8020       .fgt = FGT_APDBKEY,
8021       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
8022     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
8023       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
8024       .access = PL1_RW, .accessfn = access_pauth,
8025       .fgt = FGT_APDBKEY,
8026       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
8027     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
8028       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
8029       .access = PL1_RW, .accessfn = access_pauth,
8030       .fgt = FGT_APGAKEY,
8031       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
8032     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
8033       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
8034       .access = PL1_RW, .accessfn = access_pauth,
8035       .fgt = FGT_APGAKEY,
8036       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
8037     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
8038       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
8039       .access = PL1_RW, .accessfn = access_pauth,
8040       .fgt = FGT_APIAKEY,
8041       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
8042     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
8043       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
8044       .access = PL1_RW, .accessfn = access_pauth,
8045       .fgt = FGT_APIAKEY,
8046       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
8047     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
8048       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
8049       .access = PL1_RW, .accessfn = access_pauth,
8050       .fgt = FGT_APIBKEY,
8051       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
8052     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
8053       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
8054       .access = PL1_RW, .accessfn = access_pauth,
8055       .fgt = FGT_APIBKEY,
8056       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
8057 };
8058 
8059 static const ARMCPRegInfo tlbirange_reginfo[] = {
8060     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
8061       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
8062       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
8063       .fgt = FGT_TLBIRVAE1IS,
8064       .writefn = tlbi_aa64_rvae1is_write },
8065     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
8066       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
8067       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
8068       .fgt = FGT_TLBIRVAAE1IS,
8069       .writefn = tlbi_aa64_rvae1is_write },
8070    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
8071       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
8072       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
8073       .fgt = FGT_TLBIRVALE1IS,
8074       .writefn = tlbi_aa64_rvae1is_write },
8075     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
8076       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
8077       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
8078       .fgt = FGT_TLBIRVAALE1IS,
8079       .writefn = tlbi_aa64_rvae1is_write },
8080     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
8081       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
8082       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8083       .fgt = FGT_TLBIRVAE1OS,
8084       .writefn = tlbi_aa64_rvae1is_write },
8085     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
8086       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
8087       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8088       .fgt = FGT_TLBIRVAAE1OS,
8089       .writefn = tlbi_aa64_rvae1is_write },
8090    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
8091       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
8092       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8093       .fgt = FGT_TLBIRVALE1OS,
8094       .writefn = tlbi_aa64_rvae1is_write },
8095     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
8096       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
8097       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8098       .fgt = FGT_TLBIRVAALE1OS,
8099       .writefn = tlbi_aa64_rvae1is_write },
8100     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
8101       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
8102       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
8103       .fgt = FGT_TLBIRVAE1,
8104       .writefn = tlbi_aa64_rvae1_write },
8105     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
8106       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
8107       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
8108       .fgt = FGT_TLBIRVAAE1,
8109       .writefn = tlbi_aa64_rvae1_write },
8110    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
8111       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
8112       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
8113       .fgt = FGT_TLBIRVALE1,
8114       .writefn = tlbi_aa64_rvae1_write },
8115     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
8116       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
8117       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
8118       .fgt = FGT_TLBIRVAALE1,
8119       .writefn = tlbi_aa64_rvae1_write },
8120     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
8121       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
8122       .access = PL2_W, .type = ARM_CP_NO_RAW,
8123       .writefn = tlbi_aa64_ripas2e1is_write },
8124     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
8125       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
8126       .access = PL2_W, .type = ARM_CP_NO_RAW,
8127       .writefn = tlbi_aa64_ripas2e1is_write },
8128     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
8129       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
8130       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8131       .writefn = tlbi_aa64_rvae2is_write },
8132    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
8133       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
8134       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8135       .writefn = tlbi_aa64_rvae2is_write },
8136     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
8137       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
8138       .access = PL2_W, .type = ARM_CP_NO_RAW,
8139       .writefn = tlbi_aa64_ripas2e1_write },
8140     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
8141       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
8142       .access = PL2_W, .type = ARM_CP_NO_RAW,
8143       .writefn = tlbi_aa64_ripas2e1_write },
8144    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
8145       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
8146       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8147       .writefn = tlbi_aa64_rvae2is_write },
8148    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
8149       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
8150       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8151       .writefn = tlbi_aa64_rvae2is_write },
8152     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
8153       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
8154       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8155       .writefn = tlbi_aa64_rvae2_write },
8156    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
8157       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
8158       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8159       .writefn = tlbi_aa64_rvae2_write },
8160    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
8161       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
8162       .access = PL3_W, .type = ARM_CP_NO_RAW,
8163       .writefn = tlbi_aa64_rvae3is_write },
8164    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
8165       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
8166       .access = PL3_W, .type = ARM_CP_NO_RAW,
8167       .writefn = tlbi_aa64_rvae3is_write },
8168    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
8169       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
8170       .access = PL3_W, .type = ARM_CP_NO_RAW,
8171       .writefn = tlbi_aa64_rvae3is_write },
8172    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
8173       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
8174       .access = PL3_W, .type = ARM_CP_NO_RAW,
8175       .writefn = tlbi_aa64_rvae3is_write },
8176    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
8177       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
8178       .access = PL3_W, .type = ARM_CP_NO_RAW,
8179       .writefn = tlbi_aa64_rvae3_write },
8180    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
8181       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
8182       .access = PL3_W, .type = ARM_CP_NO_RAW,
8183       .writefn = tlbi_aa64_rvae3_write },
8184 };
8185 
8186 static const ARMCPRegInfo tlbios_reginfo[] = {
8187     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
8188       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
8189       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8190       .fgt = FGT_TLBIVMALLE1OS,
8191       .writefn = tlbi_aa64_vmalle1is_write },
8192     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
8193       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
8194       .fgt = FGT_TLBIVAE1OS,
8195       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8196       .writefn = tlbi_aa64_vae1is_write },
8197     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
8198       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
8199       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8200       .fgt = FGT_TLBIASIDE1OS,
8201       .writefn = tlbi_aa64_vmalle1is_write },
8202     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
8203       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
8204       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8205       .fgt = FGT_TLBIVAAE1OS,
8206       .writefn = tlbi_aa64_vae1is_write },
8207     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
8208       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
8209       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8210       .fgt = FGT_TLBIVALE1OS,
8211       .writefn = tlbi_aa64_vae1is_write },
8212     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
8213       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
8214       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
8215       .fgt = FGT_TLBIVAALE1OS,
8216       .writefn = tlbi_aa64_vae1is_write },
8217     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
8218       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
8219       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8220       .writefn = tlbi_aa64_alle2is_write },
8221     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
8222       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
8223       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8224       .writefn = tlbi_aa64_vae2is_write },
8225    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
8226       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
8227       .access = PL2_W, .type = ARM_CP_NO_RAW,
8228       .writefn = tlbi_aa64_alle1is_write },
8229     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
8230       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
8231       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
8232       .writefn = tlbi_aa64_vae2is_write },
8233     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
8234       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
8235       .access = PL2_W, .type = ARM_CP_NO_RAW,
8236       .writefn = tlbi_aa64_alle1is_write },
8237     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
8238       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
8239       .access = PL2_W, .type = ARM_CP_NOP },
8240     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
8241       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
8242       .access = PL2_W, .type = ARM_CP_NOP },
8243     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8244       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
8245       .access = PL2_W, .type = ARM_CP_NOP },
8246     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
8247       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
8248       .access = PL2_W, .type = ARM_CP_NOP },
8249     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
8250       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
8251       .access = PL3_W, .type = ARM_CP_NO_RAW,
8252       .writefn = tlbi_aa64_alle3is_write },
8253     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
8254       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
8255       .access = PL3_W, .type = ARM_CP_NO_RAW,
8256       .writefn = tlbi_aa64_vae3is_write },
8257     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
8258       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
8259       .access = PL3_W, .type = ARM_CP_NO_RAW,
8260       .writefn = tlbi_aa64_vae3is_write },
8261 };
8262 
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)8263 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
8264 {
8265     Error *err = NULL;
8266     uint64_t ret;
8267 
8268     /* Success sets NZCV = 0000.  */
8269     env->NF = env->CF = env->VF = 0, env->ZF = 1;
8270 
8271     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
8272         /*
8273          * ??? Failed, for unknown reasons in the crypto subsystem.
8274          * The best we can do is log the reason and return the
8275          * timed-out indication to the guest.  There is no reason
8276          * we know to expect this failure to be transitory, so the
8277          * guest may well hang retrying the operation.
8278          */
8279         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
8280                       ri->name, error_get_pretty(err));
8281         error_free(err);
8282 
8283         env->ZF = 0; /* NZCF = 0100 */
8284         return 0;
8285     }
8286     return ret;
8287 }
8288 
8289 /* We do not support re-seeding, so the two registers operate the same.  */
8290 static const ARMCPRegInfo rndr_reginfo[] = {
8291     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
8292       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8293       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
8294       .access = PL0_R, .readfn = rndr_readfn },
8295     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
8296       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
8297       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
8298       .access = PL0_R, .readfn = rndr_readfn },
8299 };
8300 
dccvap_writefn(CPUARMState * env,const ARMCPRegInfo * opaque,uint64_t value)8301 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
8302                           uint64_t value)
8303 {
8304 #ifdef CONFIG_TCG
8305     ARMCPU *cpu = env_archcpu(env);
8306     /* CTR_EL0 System register -> DminLine, bits [19:16] */
8307     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
8308     uint64_t vaddr_in = (uint64_t) value;
8309     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
8310     void *haddr;
8311     int mem_idx = arm_env_mmu_index(env);
8312 
8313     /* This won't be crossing page boundaries */
8314     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
8315     if (haddr) {
8316 #ifndef CONFIG_USER_ONLY
8317 
8318         ram_addr_t offset;
8319         MemoryRegion *mr;
8320 
8321         /* RCU lock is already being held */
8322         mr = memory_region_from_host(haddr, &offset);
8323 
8324         if (mr) {
8325             memory_region_writeback(mr, offset, dline_size);
8326         }
8327 #endif /*CONFIG_USER_ONLY*/
8328     }
8329 #else
8330     /* Handled by hardware accelerator. */
8331     g_assert_not_reached();
8332 #endif /* CONFIG_TCG */
8333 }
8334 
8335 static const ARMCPRegInfo dcpop_reg[] = {
8336     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
8337       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
8338       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8339       .fgt = FGT_DCCVAP,
8340       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8341 };
8342 
8343 static const ARMCPRegInfo dcpodp_reg[] = {
8344     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
8345       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
8346       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
8347       .fgt = FGT_DCCVADP,
8348       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
8349 };
8350 
access_aa64_tid5(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8351 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
8352                                        bool isread)
8353 {
8354     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
8355         return CP_ACCESS_TRAP_EL2;
8356     }
8357 
8358     return CP_ACCESS_OK;
8359 }
8360 
access_mte(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8361 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
8362                                  bool isread)
8363 {
8364     int el = arm_current_el(env);
8365     if (el < 2 && arm_is_el2_enabled(env)) {
8366         uint64_t hcr = arm_hcr_el2_eff(env);
8367         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8368             return CP_ACCESS_TRAP_EL2;
8369         }
8370     }
8371     if (el < 3 &&
8372         arm_feature(env, ARM_FEATURE_EL3) &&
8373         !(env->cp15.scr_el3 & SCR_ATA)) {
8374         return CP_ACCESS_TRAP_EL3;
8375     }
8376     return CP_ACCESS_OK;
8377 }
8378 
access_tfsr_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8379 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
8380                                       bool isread)
8381 {
8382     CPAccessResult nv1 = access_nv1(env, ri, isread);
8383 
8384     if (nv1 != CP_ACCESS_OK) {
8385         return nv1;
8386     }
8387     return access_mte(env, ri, isread);
8388 }
8389 
access_tfsr_el2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8390 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
8391                                       bool isread)
8392 {
8393     /*
8394      * TFSR_EL2: similar to generic access_mte(), but we need to
8395      * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
8396      * if NV2 is enabled then we will redirect this to TFSR_EL1
8397      * after doing the HCR and SCR ATA traps; otherwise this will
8398      * be a trap to EL2 and the HCR/SCR traps do not apply.
8399      */
8400     int el = arm_current_el(env);
8401 
8402     if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
8403         return CP_ACCESS_OK;
8404     }
8405     if (el < 2 && arm_is_el2_enabled(env)) {
8406         uint64_t hcr = arm_hcr_el2_eff(env);
8407         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
8408             return CP_ACCESS_TRAP_EL2;
8409         }
8410     }
8411     if (el < 3 &&
8412         arm_feature(env, ARM_FEATURE_EL3) &&
8413         !(env->cp15.scr_el3 & SCR_ATA)) {
8414         return CP_ACCESS_TRAP_EL3;
8415     }
8416     return CP_ACCESS_OK;
8417 }
8418 
tco_read(CPUARMState * env,const ARMCPRegInfo * ri)8419 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
8420 {
8421     return env->pstate & PSTATE_TCO;
8422 }
8423 
tco_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)8424 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
8425 {
8426     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
8427 }
8428 
8429 static const ARMCPRegInfo mte_reginfo[] = {
8430     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
8431       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
8432       .access = PL1_RW, .accessfn = access_mte,
8433       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
8434     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
8435       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
8436       .access = PL1_RW, .accessfn = access_tfsr_el1,
8437       .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
8438       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
8439     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
8440       .type = ARM_CP_NV2_REDIRECT,
8441       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
8442       .access = PL2_RW, .accessfn = access_tfsr_el2,
8443       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
8444     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
8445       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
8446       .access = PL3_RW,
8447       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
8448     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
8449       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
8450       .access = PL1_RW, .accessfn = access_mte,
8451       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
8452     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
8453       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
8454       .access = PL1_RW, .accessfn = access_mte,
8455       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
8456     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8457       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8458       .type = ARM_CP_NO_RAW,
8459       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
8460     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
8461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
8462       .type = ARM_CP_NOP, .access = PL1_W,
8463       .fgt = FGT_DCIVAC,
8464       .accessfn = aa64_cacheop_poc_access },
8465     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
8466       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8467       .fgt = FGT_DCISW,
8468       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8469     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8470       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8471       .type = ARM_CP_NOP, .access = PL1_W,
8472       .fgt = FGT_DCIVAC,
8473       .accessfn = aa64_cacheop_poc_access },
8474     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8475       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8476       .fgt = FGT_DCISW,
8477       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8478     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8479       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8480       .fgt = FGT_DCCSW,
8481       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8482     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8483       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8484       .fgt = FGT_DCCSW,
8485       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8486     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8487       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8488       .fgt = FGT_DCCISW,
8489       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8490     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8491       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8492       .fgt = FGT_DCCISW,
8493       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8494 };
8495 
8496 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8497     { .name = "TCO", .state = ARM_CP_STATE_AA64,
8498       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8499       .type = ARM_CP_CONST, .access = PL0_RW, },
8500 };
8501 
8502 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8503     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8504       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8505       .type = ARM_CP_NOP, .access = PL0_W,
8506       .fgt = FGT_DCCVAC,
8507       .accessfn = aa64_cacheop_poc_access },
8508     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8509       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8510       .type = ARM_CP_NOP, .access = PL0_W,
8511       .fgt = FGT_DCCVAC,
8512       .accessfn = aa64_cacheop_poc_access },
8513     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8514       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8515       .type = ARM_CP_NOP, .access = PL0_W,
8516       .fgt = FGT_DCCVAP,
8517       .accessfn = aa64_cacheop_poc_access },
8518     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8519       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8520       .type = ARM_CP_NOP, .access = PL0_W,
8521       .fgt = FGT_DCCVAP,
8522       .accessfn = aa64_cacheop_poc_access },
8523     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8524       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8525       .type = ARM_CP_NOP, .access = PL0_W,
8526       .fgt = FGT_DCCVADP,
8527       .accessfn = aa64_cacheop_poc_access },
8528     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8529       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8530       .type = ARM_CP_NOP, .access = PL0_W,
8531       .fgt = FGT_DCCVADP,
8532       .accessfn = aa64_cacheop_poc_access },
8533     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8534       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8535       .type = ARM_CP_NOP, .access = PL0_W,
8536       .fgt = FGT_DCCIVAC,
8537       .accessfn = aa64_cacheop_poc_access },
8538     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8539       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8540       .type = ARM_CP_NOP, .access = PL0_W,
8541       .fgt = FGT_DCCIVAC,
8542       .accessfn = aa64_cacheop_poc_access },
8543     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8544       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8545       .access = PL0_W, .type = ARM_CP_DC_GVA,
8546 #ifndef CONFIG_USER_ONLY
8547       /* Avoid overhead of an access check that always passes in user-mode */
8548       .accessfn = aa64_zva_access,
8549       .fgt = FGT_DCZVA,
8550 #endif
8551     },
8552     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8553       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8554       .access = PL0_W, .type = ARM_CP_DC_GZVA,
8555 #ifndef CONFIG_USER_ONLY
8556       /* Avoid overhead of an access check that always passes in user-mode */
8557       .accessfn = aa64_zva_access,
8558       .fgt = FGT_DCZVA,
8559 #endif
8560     },
8561 };
8562 
access_scxtnum(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8563 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8564                                      bool isread)
8565 {
8566     uint64_t hcr = arm_hcr_el2_eff(env);
8567     int el = arm_current_el(env);
8568 
8569     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8570         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8571             if (hcr & HCR_TGE) {
8572                 return CP_ACCESS_TRAP_EL2;
8573             }
8574             return CP_ACCESS_TRAP;
8575         }
8576     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8577         return CP_ACCESS_TRAP_EL2;
8578     }
8579     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8580         return CP_ACCESS_TRAP_EL2;
8581     }
8582     if (el < 3
8583         && arm_feature(env, ARM_FEATURE_EL3)
8584         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8585         return CP_ACCESS_TRAP_EL3;
8586     }
8587     return CP_ACCESS_OK;
8588 }
8589 
access_scxtnum_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8590 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8591                                          const ARMCPRegInfo *ri,
8592                                          bool isread)
8593 {
8594     CPAccessResult nv1 = access_nv1(env, ri, isread);
8595 
8596     if (nv1 != CP_ACCESS_OK) {
8597         return nv1;
8598     }
8599     return access_scxtnum(env, ri, isread);
8600 }
8601 
8602 static const ARMCPRegInfo scxtnum_reginfo[] = {
8603     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8604       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8605       .access = PL0_RW, .accessfn = access_scxtnum,
8606       .fgt = FGT_SCXTNUM_EL0,
8607       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8608     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8609       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8610       .access = PL1_RW, .accessfn = access_scxtnum_el1,
8611       .fgt = FGT_SCXTNUM_EL1,
8612       .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8613       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8614     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8615       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8616       .access = PL2_RW, .accessfn = access_scxtnum,
8617       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8618     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8619       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8620       .access = PL3_RW,
8621       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8622 };
8623 
access_fgt(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8624 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8625                                  bool isread)
8626 {
8627     if (arm_current_el(env) == 2 &&
8628         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8629         return CP_ACCESS_TRAP_EL3;
8630     }
8631     return CP_ACCESS_OK;
8632 }
8633 
8634 static const ARMCPRegInfo fgt_reginfo[] = {
8635     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8636       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8637       .nv2_redirect_offset = 0x1b8,
8638       .access = PL2_RW, .accessfn = access_fgt,
8639       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8640     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8641       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8642       .nv2_redirect_offset = 0x1c0,
8643       .access = PL2_RW, .accessfn = access_fgt,
8644       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8645     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8646       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8647       .nv2_redirect_offset = 0x1d0,
8648       .access = PL2_RW, .accessfn = access_fgt,
8649       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8650     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8651       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8652       .nv2_redirect_offset = 0x1d8,
8653       .access = PL2_RW, .accessfn = access_fgt,
8654       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8655     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8656       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8657       .nv2_redirect_offset = 0x1c8,
8658       .access = PL2_RW, .accessfn = access_fgt,
8659       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8660 };
8661 
vncr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)8662 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8663                        uint64_t value)
8664 {
8665     /*
8666      * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8667      * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8668      * about the RESS bits at the top -- we choose the "generate an EL2
8669      * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8670      * the ptw.c code detect the resulting invalid address).
8671      */
8672     env->cp15.vncr_el2 = value & ~0xfffULL;
8673 }
8674 
8675 static const ARMCPRegInfo nv2_reginfo[] = {
8676     { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8677       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8678       .access = PL2_RW,
8679       .writefn = vncr_write,
8680       .nv2_redirect_offset = 0xb0,
8681       .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8682 };
8683 
8684 #endif /* TARGET_AARCH64 */
8685 
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8686 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8687                                      bool isread)
8688 {
8689     int el = arm_current_el(env);
8690 
8691     if (el == 0) {
8692         uint64_t sctlr = arm_sctlr(env, el);
8693         if (!(sctlr & SCTLR_EnRCTX)) {
8694             return CP_ACCESS_TRAP;
8695         }
8696     } else if (el == 1) {
8697         uint64_t hcr = arm_hcr_el2_eff(env);
8698         if (hcr & HCR_NV) {
8699             return CP_ACCESS_TRAP_EL2;
8700         }
8701     }
8702     return CP_ACCESS_OK;
8703 }
8704 
8705 static const ARMCPRegInfo predinv_reginfo[] = {
8706     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8707       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8708       .fgt = FGT_CFPRCTX,
8709       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8710     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8711       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8712       .fgt = FGT_DVPRCTX,
8713       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8714     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8715       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8716       .fgt = FGT_CPPRCTX,
8717       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8718     /*
8719      * Note the AArch32 opcodes have a different OPC1.
8720      */
8721     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8722       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8723       .fgt = FGT_CFPRCTX,
8724       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8725     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8726       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8727       .fgt = FGT_DVPRCTX,
8728       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8729     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8730       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8731       .fgt = FGT_CPPRCTX,
8732       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8733 };
8734 
ccsidr2_read(CPUARMState * env,const ARMCPRegInfo * ri)8735 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8736 {
8737     /* Read the high 32 bits of the current CCSIDR */
8738     return extract64(ccsidr_read(env, ri), 32, 32);
8739 }
8740 
8741 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8742     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8743       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8744       .access = PL1_R,
8745       .accessfn = access_tid4,
8746       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8747 };
8748 
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8749 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8750                                        bool isread)
8751 {
8752     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8753         return CP_ACCESS_TRAP_EL2;
8754     }
8755 
8756     return CP_ACCESS_OK;
8757 }
8758 
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8759 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8760                                        bool isread)
8761 {
8762     if (arm_feature(env, ARM_FEATURE_V8)) {
8763         return access_aa64_tid3(env, ri, isread);
8764     }
8765 
8766     return CP_ACCESS_OK;
8767 }
8768 
access_jazelle(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8769 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8770                                      bool isread)
8771 {
8772     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8773         return CP_ACCESS_TRAP_EL2;
8774     }
8775 
8776     return CP_ACCESS_OK;
8777 }
8778 
access_joscr_jmcr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)8779 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8780                                         const ARMCPRegInfo *ri, bool isread)
8781 {
8782     /*
8783      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8784      * in v7A, not in v8A.
8785      */
8786     if (!arm_feature(env, ARM_FEATURE_V8) &&
8787         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8788         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8789         return CP_ACCESS_TRAP_EL2;
8790     }
8791     return CP_ACCESS_OK;
8792 }
8793 
8794 static const ARMCPRegInfo jazelle_regs[] = {
8795     { .name = "JIDR",
8796       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8797       .access = PL1_R, .accessfn = access_jazelle,
8798       .type = ARM_CP_CONST, .resetvalue = 0 },
8799     { .name = "JOSCR",
8800       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8801       .accessfn = access_joscr_jmcr,
8802       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8803     { .name = "JMCR",
8804       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8805       .accessfn = access_joscr_jmcr,
8806       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8807 };
8808 
8809 static const ARMCPRegInfo contextidr_el2 = {
8810     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8811     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8812     .access = PL2_RW,
8813     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8814 };
8815 
8816 static const ARMCPRegInfo vhe_reginfo[] = {
8817     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8818       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8819       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8820       .raw_writefn = raw_write,
8821       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8822 #ifndef CONFIG_USER_ONLY
8823     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8824       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8825       .fieldoffset =
8826         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8827       .type = ARM_CP_IO, .access = PL2_RW,
8828       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8829     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8830       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8831       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8832       .resetfn = gt_hv_timer_reset,
8833       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8834     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8835       .type = ARM_CP_IO,
8836       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8837       .access = PL2_RW,
8838       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8839       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8840     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8841       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8842       .type = ARM_CP_IO | ARM_CP_ALIAS,
8843       .access = PL2_RW, .accessfn = access_el1nvpct,
8844       .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8845       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8846       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8847     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8848       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8849       .type = ARM_CP_IO | ARM_CP_ALIAS,
8850       .access = PL2_RW, .accessfn = access_el1nvvct,
8851       .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8852       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8853       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8854     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8855       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8856       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8857       .access = PL2_RW, .accessfn = e2h_access,
8858       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8859     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8860       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8861       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8862       .access = PL2_RW, .accessfn = e2h_access,
8863       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8864     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8865       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8866       .type = ARM_CP_IO | ARM_CP_ALIAS,
8867       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8868       .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8869       .access = PL2_RW, .accessfn = access_el1nvpct,
8870       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8871     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8872       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8873       .type = ARM_CP_IO | ARM_CP_ALIAS,
8874       .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8875       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8876       .access = PL2_RW, .accessfn = access_el1nvvct,
8877       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8878 #endif
8879 };
8880 
8881 #ifndef CONFIG_USER_ONLY
8882 static const ARMCPRegInfo ats1e1_reginfo[] = {
8883     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8884       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8885       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8886       .fgt = FGT_ATS1E1RP,
8887       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8888     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8889       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8890       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8891       .fgt = FGT_ATS1E1WP,
8892       .accessfn = at_s1e01_access, .writefn = ats_write64 },
8893 };
8894 
8895 static const ARMCPRegInfo ats1cp_reginfo[] = {
8896     { .name = "ATS1CPRP",
8897       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8898       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8899       .writefn = ats_write },
8900     { .name = "ATS1CPWP",
8901       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8902       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8903       .writefn = ats_write },
8904 };
8905 #endif
8906 
8907 /*
8908  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8909  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8910  * is non-zero, which is never for ARMv7, optionally in ARMv8
8911  * and mandatorily for ARMv8.2 and up.
8912  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8913  * implementation is RAZ/WI we can ignore this detail, as we
8914  * do for ACTLR.
8915  */
8916 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8917     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8918       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8919       .access = PL1_RW, .accessfn = access_tacr,
8920       .type = ARM_CP_CONST, .resetvalue = 0 },
8921     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8922       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8923       .access = PL2_RW, .type = ARM_CP_CONST,
8924       .resetvalue = 0 },
8925 };
8926 
register_cp_regs_for_features(ARMCPU * cpu)8927 void register_cp_regs_for_features(ARMCPU *cpu)
8928 {
8929     /* Register all the coprocessor registers based on feature bits */
8930     CPUARMState *env = &cpu->env;
8931     if (arm_feature(env, ARM_FEATURE_M)) {
8932         /* M profile has no coprocessor registers */
8933         return;
8934     }
8935 
8936     define_arm_cp_regs(cpu, cp_reginfo);
8937     if (!arm_feature(env, ARM_FEATURE_V8)) {
8938         /*
8939          * Must go early as it is full of wildcards that may be
8940          * overridden by later definitions.
8941          */
8942         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8943     }
8944 
8945     if (arm_feature(env, ARM_FEATURE_V6)) {
8946         /* The ID registers all have impdef reset values */
8947         ARMCPRegInfo v6_idregs[] = {
8948             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8950               .access = PL1_R, .type = ARM_CP_CONST,
8951               .accessfn = access_aa32_tid3,
8952               .resetvalue = cpu->isar.id_pfr0 },
8953             /*
8954              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8955              * the value of the GIC field until after we define these regs.
8956              */
8957             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8958               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8959               .access = PL1_R, .type = ARM_CP_NO_RAW,
8960               .accessfn = access_aa32_tid3,
8961 #ifdef CONFIG_USER_ONLY
8962               .type = ARM_CP_CONST,
8963               .resetvalue = cpu->isar.id_pfr1,
8964 #else
8965               .type = ARM_CP_NO_RAW,
8966               .accessfn = access_aa32_tid3,
8967               .readfn = id_pfr1_read,
8968               .writefn = arm_cp_write_ignore
8969 #endif
8970             },
8971             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8972               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8973               .access = PL1_R, .type = ARM_CP_CONST,
8974               .accessfn = access_aa32_tid3,
8975               .resetvalue = cpu->isar.id_dfr0 },
8976             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8977               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8978               .access = PL1_R, .type = ARM_CP_CONST,
8979               .accessfn = access_aa32_tid3,
8980               .resetvalue = cpu->id_afr0 },
8981             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8982               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8983               .access = PL1_R, .type = ARM_CP_CONST,
8984               .accessfn = access_aa32_tid3,
8985               .resetvalue = cpu->isar.id_mmfr0 },
8986             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8987               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8988               .access = PL1_R, .type = ARM_CP_CONST,
8989               .accessfn = access_aa32_tid3,
8990               .resetvalue = cpu->isar.id_mmfr1 },
8991             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8992               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8993               .access = PL1_R, .type = ARM_CP_CONST,
8994               .accessfn = access_aa32_tid3,
8995               .resetvalue = cpu->isar.id_mmfr2 },
8996             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8997               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8998               .access = PL1_R, .type = ARM_CP_CONST,
8999               .accessfn = access_aa32_tid3,
9000               .resetvalue = cpu->isar.id_mmfr3 },
9001             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
9002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
9003               .access = PL1_R, .type = ARM_CP_CONST,
9004               .accessfn = access_aa32_tid3,
9005               .resetvalue = cpu->isar.id_isar0 },
9006             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
9007               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
9008               .access = PL1_R, .type = ARM_CP_CONST,
9009               .accessfn = access_aa32_tid3,
9010               .resetvalue = cpu->isar.id_isar1 },
9011             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
9012               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
9013               .access = PL1_R, .type = ARM_CP_CONST,
9014               .accessfn = access_aa32_tid3,
9015               .resetvalue = cpu->isar.id_isar2 },
9016             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
9017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
9018               .access = PL1_R, .type = ARM_CP_CONST,
9019               .accessfn = access_aa32_tid3,
9020               .resetvalue = cpu->isar.id_isar3 },
9021             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
9022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
9023               .access = PL1_R, .type = ARM_CP_CONST,
9024               .accessfn = access_aa32_tid3,
9025               .resetvalue = cpu->isar.id_isar4 },
9026             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
9027               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
9028               .access = PL1_R, .type = ARM_CP_CONST,
9029               .accessfn = access_aa32_tid3,
9030               .resetvalue = cpu->isar.id_isar5 },
9031             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
9032               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
9033               .access = PL1_R, .type = ARM_CP_CONST,
9034               .accessfn = access_aa32_tid3,
9035               .resetvalue = cpu->isar.id_mmfr4 },
9036             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
9037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
9038               .access = PL1_R, .type = ARM_CP_CONST,
9039               .accessfn = access_aa32_tid3,
9040               .resetvalue = cpu->isar.id_isar6 },
9041         };
9042         define_arm_cp_regs(cpu, v6_idregs);
9043         define_arm_cp_regs(cpu, v6_cp_reginfo);
9044     } else {
9045         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
9046     }
9047     if (arm_feature(env, ARM_FEATURE_V6K)) {
9048         define_arm_cp_regs(cpu, v6k_cp_reginfo);
9049     }
9050     if (arm_feature(env, ARM_FEATURE_V7MP) &&
9051         !arm_feature(env, ARM_FEATURE_PMSA)) {
9052         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
9053     }
9054     if (arm_feature(env, ARM_FEATURE_V7VE)) {
9055         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
9056     }
9057     if (arm_feature(env, ARM_FEATURE_V7)) {
9058         ARMCPRegInfo clidr = {
9059             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
9060             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
9061             .access = PL1_R, .type = ARM_CP_CONST,
9062             .accessfn = access_tid4,
9063             .fgt = FGT_CLIDR_EL1,
9064             .resetvalue = cpu->clidr
9065         };
9066         define_one_arm_cp_reg(cpu, &clidr);
9067         define_arm_cp_regs(cpu, v7_cp_reginfo);
9068         define_debug_regs(cpu);
9069         define_pmu_regs(cpu);
9070     } else {
9071         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
9072     }
9073     if (arm_feature(env, ARM_FEATURE_V8)) {
9074         /*
9075          * v8 ID registers, which all have impdef reset values.
9076          * Note that within the ID register ranges the unused slots
9077          * must all RAZ, not UNDEF; future architecture versions may
9078          * define new registers here.
9079          * ID registers which are AArch64 views of the AArch32 ID registers
9080          * which already existed in v6 and v7 are handled elsewhere,
9081          * in v6_idregs[].
9082          */
9083         int i;
9084         ARMCPRegInfo v8_idregs[] = {
9085             /*
9086              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
9087              * emulation because we don't know the right value for the
9088              * GIC field until after we define these regs.
9089              */
9090             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
9091               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
9092               .access = PL1_R,
9093 #ifdef CONFIG_USER_ONLY
9094               .type = ARM_CP_CONST,
9095               .resetvalue = cpu->isar.id_aa64pfr0
9096 #else
9097               .type = ARM_CP_NO_RAW,
9098               .accessfn = access_aa64_tid3,
9099               .readfn = id_aa64pfr0_read,
9100               .writefn = arm_cp_write_ignore
9101 #endif
9102             },
9103             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
9104               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
9105               .access = PL1_R, .type = ARM_CP_CONST,
9106               .accessfn = access_aa64_tid3,
9107               .resetvalue = cpu->isar.id_aa64pfr1},
9108             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9109               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
9110               .access = PL1_R, .type = ARM_CP_CONST,
9111               .accessfn = access_aa64_tid3,
9112               .resetvalue = 0 },
9113             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9114               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
9115               .access = PL1_R, .type = ARM_CP_CONST,
9116               .accessfn = access_aa64_tid3,
9117               .resetvalue = 0 },
9118             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
9119               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
9120               .access = PL1_R, .type = ARM_CP_CONST,
9121               .accessfn = access_aa64_tid3,
9122               .resetvalue = cpu->isar.id_aa64zfr0 },
9123             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
9124               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
9125               .access = PL1_R, .type = ARM_CP_CONST,
9126               .accessfn = access_aa64_tid3,
9127               .resetvalue = cpu->isar.id_aa64smfr0 },
9128             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9129               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
9130               .access = PL1_R, .type = ARM_CP_CONST,
9131               .accessfn = access_aa64_tid3,
9132               .resetvalue = 0 },
9133             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9134               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
9135               .access = PL1_R, .type = ARM_CP_CONST,
9136               .accessfn = access_aa64_tid3,
9137               .resetvalue = 0 },
9138             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
9139               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
9140               .access = PL1_R, .type = ARM_CP_CONST,
9141               .accessfn = access_aa64_tid3,
9142               .resetvalue = cpu->isar.id_aa64dfr0 },
9143             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
9144               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
9145               .access = PL1_R, .type = ARM_CP_CONST,
9146               .accessfn = access_aa64_tid3,
9147               .resetvalue = cpu->isar.id_aa64dfr1 },
9148             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9149               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
9150               .access = PL1_R, .type = ARM_CP_CONST,
9151               .accessfn = access_aa64_tid3,
9152               .resetvalue = 0 },
9153             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9154               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
9155               .access = PL1_R, .type = ARM_CP_CONST,
9156               .accessfn = access_aa64_tid3,
9157               .resetvalue = 0 },
9158             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
9159               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
9160               .access = PL1_R, .type = ARM_CP_CONST,
9161               .accessfn = access_aa64_tid3,
9162               .resetvalue = cpu->id_aa64afr0 },
9163             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
9164               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
9165               .access = PL1_R, .type = ARM_CP_CONST,
9166               .accessfn = access_aa64_tid3,
9167               .resetvalue = cpu->id_aa64afr1 },
9168             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9169               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
9170               .access = PL1_R, .type = ARM_CP_CONST,
9171               .accessfn = access_aa64_tid3,
9172               .resetvalue = 0 },
9173             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9174               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
9175               .access = PL1_R, .type = ARM_CP_CONST,
9176               .accessfn = access_aa64_tid3,
9177               .resetvalue = 0 },
9178             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
9179               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
9180               .access = PL1_R, .type = ARM_CP_CONST,
9181               .accessfn = access_aa64_tid3,
9182               .resetvalue = cpu->isar.id_aa64isar0 },
9183             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
9184               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
9185               .access = PL1_R, .type = ARM_CP_CONST,
9186               .accessfn = access_aa64_tid3,
9187               .resetvalue = cpu->isar.id_aa64isar1 },
9188             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
9189               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
9190               .access = PL1_R, .type = ARM_CP_CONST,
9191               .accessfn = access_aa64_tid3,
9192               .resetvalue = cpu->isar.id_aa64isar2 },
9193             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9194               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
9195               .access = PL1_R, .type = ARM_CP_CONST,
9196               .accessfn = access_aa64_tid3,
9197               .resetvalue = 0 },
9198             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9199               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
9200               .access = PL1_R, .type = ARM_CP_CONST,
9201               .accessfn = access_aa64_tid3,
9202               .resetvalue = 0 },
9203             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9204               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
9205               .access = PL1_R, .type = ARM_CP_CONST,
9206               .accessfn = access_aa64_tid3,
9207               .resetvalue = 0 },
9208             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9209               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
9210               .access = PL1_R, .type = ARM_CP_CONST,
9211               .accessfn = access_aa64_tid3,
9212               .resetvalue = 0 },
9213             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9214               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
9215               .access = PL1_R, .type = ARM_CP_CONST,
9216               .accessfn = access_aa64_tid3,
9217               .resetvalue = 0 },
9218             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
9219               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
9220               .access = PL1_R, .type = ARM_CP_CONST,
9221               .accessfn = access_aa64_tid3,
9222               .resetvalue = cpu->isar.id_aa64mmfr0 },
9223             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
9224               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
9225               .access = PL1_R, .type = ARM_CP_CONST,
9226               .accessfn = access_aa64_tid3,
9227               .resetvalue = cpu->isar.id_aa64mmfr1 },
9228             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
9229               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
9230               .access = PL1_R, .type = ARM_CP_CONST,
9231               .accessfn = access_aa64_tid3,
9232               .resetvalue = cpu->isar.id_aa64mmfr2 },
9233             { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
9234               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
9235               .access = PL1_R, .type = ARM_CP_CONST,
9236               .accessfn = access_aa64_tid3,
9237               .resetvalue = cpu->isar.id_aa64mmfr3 },
9238             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9239               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
9240               .access = PL1_R, .type = ARM_CP_CONST,
9241               .accessfn = access_aa64_tid3,
9242               .resetvalue = 0 },
9243             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9244               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
9245               .access = PL1_R, .type = ARM_CP_CONST,
9246               .accessfn = access_aa64_tid3,
9247               .resetvalue = 0 },
9248             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9249               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
9250               .access = PL1_R, .type = ARM_CP_CONST,
9251               .accessfn = access_aa64_tid3,
9252               .resetvalue = 0 },
9253             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
9254               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
9255               .access = PL1_R, .type = ARM_CP_CONST,
9256               .accessfn = access_aa64_tid3,
9257               .resetvalue = 0 },
9258             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
9259               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9260               .access = PL1_R, .type = ARM_CP_CONST,
9261               .accessfn = access_aa64_tid3,
9262               .resetvalue = cpu->isar.mvfr0 },
9263             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
9264               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9265               .access = PL1_R, .type = ARM_CP_CONST,
9266               .accessfn = access_aa64_tid3,
9267               .resetvalue = cpu->isar.mvfr1 },
9268             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
9269               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9270               .access = PL1_R, .type = ARM_CP_CONST,
9271               .accessfn = access_aa64_tid3,
9272               .resetvalue = cpu->isar.mvfr2 },
9273             /*
9274              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
9275              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
9276              * as RAZ, since it is in the "reserved for future ID
9277              * registers, RAZ" part of the AArch32 encoding space.
9278              */
9279             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
9280               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
9281               .access = PL1_R, .type = ARM_CP_CONST,
9282               .accessfn = access_aa64_tid3,
9283               .resetvalue = 0 },
9284             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
9285               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
9286               .access = PL1_R, .type = ARM_CP_CONST,
9287               .accessfn = access_aa64_tid3,
9288               .resetvalue = 0 },
9289             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
9290               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
9291               .access = PL1_R, .type = ARM_CP_CONST,
9292               .accessfn = access_aa64_tid3,
9293               .resetvalue = 0 },
9294             /*
9295              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
9296              * they're also RAZ for AArch64, and in v8 are gradually
9297              * being filled with AArch64-view-of-AArch32-ID-register
9298              * for new ID registers.
9299              */
9300             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
9301               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
9302               .access = PL1_R, .type = ARM_CP_CONST,
9303               .accessfn = access_aa64_tid3,
9304               .resetvalue = 0 },
9305             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
9306               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
9307               .access = PL1_R, .type = ARM_CP_CONST,
9308               .accessfn = access_aa64_tid3,
9309               .resetvalue = cpu->isar.id_pfr2 },
9310             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
9311               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
9312               .access = PL1_R, .type = ARM_CP_CONST,
9313               .accessfn = access_aa64_tid3,
9314               .resetvalue = cpu->isar.id_dfr1 },
9315             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
9316               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
9317               .access = PL1_R, .type = ARM_CP_CONST,
9318               .accessfn = access_aa64_tid3,
9319               .resetvalue = cpu->isar.id_mmfr5 },
9320             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
9321               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
9322               .access = PL1_R, .type = ARM_CP_CONST,
9323               .accessfn = access_aa64_tid3,
9324               .resetvalue = 0 },
9325             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
9326               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
9327               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9328               .fgt = FGT_PMCEIDN_EL0,
9329               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
9330             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
9331               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
9332               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9333               .fgt = FGT_PMCEIDN_EL0,
9334               .resetvalue = cpu->pmceid0 },
9335             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
9336               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
9337               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9338               .fgt = FGT_PMCEIDN_EL0,
9339               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
9340             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
9341               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
9342               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
9343               .fgt = FGT_PMCEIDN_EL0,
9344               .resetvalue = cpu->pmceid1 },
9345         };
9346 #ifdef CONFIG_USER_ONLY
9347         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
9348             { .name = "ID_AA64PFR0_EL1",
9349               .exported_bits = R_ID_AA64PFR0_FP_MASK |
9350                                R_ID_AA64PFR0_ADVSIMD_MASK |
9351                                R_ID_AA64PFR0_SVE_MASK |
9352                                R_ID_AA64PFR0_DIT_MASK,
9353               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
9354                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
9355             { .name = "ID_AA64PFR1_EL1",
9356               .exported_bits = R_ID_AA64PFR1_BT_MASK |
9357                                R_ID_AA64PFR1_SSBS_MASK |
9358                                R_ID_AA64PFR1_MTE_MASK |
9359                                R_ID_AA64PFR1_SME_MASK },
9360             { .name = "ID_AA64PFR*_EL1_RESERVED",
9361               .is_glob = true },
9362             { .name = "ID_AA64ZFR0_EL1",
9363               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
9364                                R_ID_AA64ZFR0_AES_MASK |
9365                                R_ID_AA64ZFR0_BITPERM_MASK |
9366                                R_ID_AA64ZFR0_BFLOAT16_MASK |
9367                                R_ID_AA64ZFR0_B16B16_MASK |
9368                                R_ID_AA64ZFR0_SHA3_MASK |
9369                                R_ID_AA64ZFR0_SM4_MASK |
9370                                R_ID_AA64ZFR0_I8MM_MASK |
9371                                R_ID_AA64ZFR0_F32MM_MASK |
9372                                R_ID_AA64ZFR0_F64MM_MASK },
9373             { .name = "ID_AA64SMFR0_EL1",
9374               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
9375                                R_ID_AA64SMFR0_BI32I32_MASK |
9376                                R_ID_AA64SMFR0_B16F32_MASK |
9377                                R_ID_AA64SMFR0_F16F32_MASK |
9378                                R_ID_AA64SMFR0_I8I32_MASK |
9379                                R_ID_AA64SMFR0_F16F16_MASK |
9380                                R_ID_AA64SMFR0_B16B16_MASK |
9381                                R_ID_AA64SMFR0_I16I32_MASK |
9382                                R_ID_AA64SMFR0_F64F64_MASK |
9383                                R_ID_AA64SMFR0_I16I64_MASK |
9384                                R_ID_AA64SMFR0_SMEVER_MASK |
9385                                R_ID_AA64SMFR0_FA64_MASK },
9386             { .name = "ID_AA64MMFR0_EL1",
9387               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
9388               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
9389                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
9390             { .name = "ID_AA64MMFR1_EL1",
9391               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
9392             { .name = "ID_AA64MMFR2_EL1",
9393               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
9394             { .name = "ID_AA64MMFR3_EL1",
9395               .exported_bits = 0 },
9396             { .name = "ID_AA64MMFR*_EL1_RESERVED",
9397               .is_glob = true },
9398             { .name = "ID_AA64DFR0_EL1",
9399               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
9400             { .name = "ID_AA64DFR1_EL1" },
9401             { .name = "ID_AA64DFR*_EL1_RESERVED",
9402               .is_glob = true },
9403             { .name = "ID_AA64AFR*",
9404               .is_glob = true },
9405             { .name = "ID_AA64ISAR0_EL1",
9406               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
9407                                R_ID_AA64ISAR0_SHA1_MASK |
9408                                R_ID_AA64ISAR0_SHA2_MASK |
9409                                R_ID_AA64ISAR0_CRC32_MASK |
9410                                R_ID_AA64ISAR0_ATOMIC_MASK |
9411                                R_ID_AA64ISAR0_RDM_MASK |
9412                                R_ID_AA64ISAR0_SHA3_MASK |
9413                                R_ID_AA64ISAR0_SM3_MASK |
9414                                R_ID_AA64ISAR0_SM4_MASK |
9415                                R_ID_AA64ISAR0_DP_MASK |
9416                                R_ID_AA64ISAR0_FHM_MASK |
9417                                R_ID_AA64ISAR0_TS_MASK |
9418                                R_ID_AA64ISAR0_RNDR_MASK },
9419             { .name = "ID_AA64ISAR1_EL1",
9420               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
9421                                R_ID_AA64ISAR1_APA_MASK |
9422                                R_ID_AA64ISAR1_API_MASK |
9423                                R_ID_AA64ISAR1_JSCVT_MASK |
9424                                R_ID_AA64ISAR1_FCMA_MASK |
9425                                R_ID_AA64ISAR1_LRCPC_MASK |
9426                                R_ID_AA64ISAR1_GPA_MASK |
9427                                R_ID_AA64ISAR1_GPI_MASK |
9428                                R_ID_AA64ISAR1_FRINTTS_MASK |
9429                                R_ID_AA64ISAR1_SB_MASK |
9430                                R_ID_AA64ISAR1_BF16_MASK |
9431                                R_ID_AA64ISAR1_DGH_MASK |
9432                                R_ID_AA64ISAR1_I8MM_MASK },
9433             { .name = "ID_AA64ISAR2_EL1",
9434               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
9435                                R_ID_AA64ISAR2_RPRES_MASK |
9436                                R_ID_AA64ISAR2_GPA3_MASK |
9437                                R_ID_AA64ISAR2_APA3_MASK |
9438                                R_ID_AA64ISAR2_MOPS_MASK |
9439                                R_ID_AA64ISAR2_BC_MASK |
9440                                R_ID_AA64ISAR2_RPRFM_MASK |
9441                                R_ID_AA64ISAR2_CSSC_MASK },
9442             { .name = "ID_AA64ISAR*_EL1_RESERVED",
9443               .is_glob = true },
9444         };
9445         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
9446 #endif
9447         /*
9448          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
9449          * TODO: For RMR, a write with bit 1 set should do something with
9450          * cpu_reset(). In the meantime, "the bit is strictly a request",
9451          * so we are in spec just ignoring writes.
9452          */
9453         if (!arm_feature(env, ARM_FEATURE_EL3) &&
9454             !arm_feature(env, ARM_FEATURE_EL2)) {
9455             ARMCPRegInfo el1_reset_regs[] = {
9456                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
9457                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9458                   .access = PL1_R,
9459                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9460                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
9461                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9462                   .access = PL1_RW, .type = ARM_CP_CONST,
9463                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
9464             };
9465             define_arm_cp_regs(cpu, el1_reset_regs);
9466         }
9467         define_arm_cp_regs(cpu, v8_idregs);
9468         define_arm_cp_regs(cpu, v8_cp_reginfo);
9469         if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9470             define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9471         }
9472 
9473         for (i = 4; i < 16; i++) {
9474             /*
9475              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9476              * For pre-v8 cores there are RAZ patterns for these in
9477              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9478              * v8 extends the "must RAZ" part of the ID register space
9479              * to also cover c0, 0, c{8-15}, {0-7}.
9480              * These are STATE_AA32 because in the AArch64 sysreg space
9481              * c4-c7 is where the AArch64 ID registers live (and we've
9482              * already defined those in v8_idregs[]), and c8-c15 are not
9483              * "must RAZ" for AArch64.
9484              */
9485             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9486             ARMCPRegInfo v8_aa32_raz_idregs = {
9487                 .name = name,
9488                 .state = ARM_CP_STATE_AA32,
9489                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9490                 .access = PL1_R, .type = ARM_CP_CONST,
9491                 .accessfn = access_aa64_tid3,
9492                 .resetvalue = 0 };
9493             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9494         }
9495     }
9496 
9497     /*
9498      * Register the base EL2 cpregs.
9499      * Pre v8, these registers are implemented only as part of the
9500      * Virtualization Extensions (EL2 present).  Beginning with v8,
9501      * if EL2 is missing but EL3 is enabled, mostly these become
9502      * RES0 from EL3, with some specific exceptions.
9503      */
9504     if (arm_feature(env, ARM_FEATURE_EL2)
9505         || (arm_feature(env, ARM_FEATURE_EL3)
9506             && arm_feature(env, ARM_FEATURE_V8))) {
9507         uint64_t vmpidr_def = mpidr_read_val(env);
9508         ARMCPRegInfo vpidr_regs[] = {
9509             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9510               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9511               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9512               .resetvalue = cpu->midr,
9513               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9514               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9515             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9516               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9517               .access = PL2_RW, .resetvalue = cpu->midr,
9518               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9519               .nv2_redirect_offset = 0x88,
9520               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9521             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9522               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9523               .access = PL2_RW, .accessfn = access_el3_aa32ns,
9524               .resetvalue = vmpidr_def,
9525               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9526               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9527             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9528               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9529               .access = PL2_RW, .resetvalue = vmpidr_def,
9530               .type = ARM_CP_EL3_NO_EL2_C_NZ,
9531               .nv2_redirect_offset = 0x50,
9532               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9533         };
9534         /*
9535          * The only field of MDCR_EL2 that has a defined architectural reset
9536          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9537          */
9538         ARMCPRegInfo mdcr_el2 = {
9539             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9540             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9541             .writefn = mdcr_el2_write,
9542             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9543             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9544         };
9545         define_one_arm_cp_reg(cpu, &mdcr_el2);
9546         define_arm_cp_regs(cpu, vpidr_regs);
9547         define_arm_cp_regs(cpu, el2_cp_reginfo);
9548         if (arm_feature(env, ARM_FEATURE_V8)) {
9549             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9550         }
9551         if (cpu_isar_feature(aa64_sel2, cpu)) {
9552             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9553         }
9554         /*
9555          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9556          * See commentary near RMR_EL1.
9557          */
9558         if (!arm_feature(env, ARM_FEATURE_EL3)) {
9559             static const ARMCPRegInfo el2_reset_regs[] = {
9560                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9561                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9562                   .access = PL2_R,
9563                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9564                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9565                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9566                   .access = PL2_R,
9567                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9568                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9569                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9570                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9571             };
9572             define_arm_cp_regs(cpu, el2_reset_regs);
9573         }
9574     }
9575 
9576     /* Register the base EL3 cpregs. */
9577     if (arm_feature(env, ARM_FEATURE_EL3)) {
9578         define_arm_cp_regs(cpu, el3_cp_reginfo);
9579         ARMCPRegInfo el3_regs[] = {
9580             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9581               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9582               .access = PL3_R,
9583               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9584             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9585               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9586               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9587             { .name = "RMR", .state = ARM_CP_STATE_AA32,
9588               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9589               .access = PL3_RW, .type = ARM_CP_CONST,
9590               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9591             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9592               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9593               .access = PL3_RW,
9594               .raw_writefn = raw_write, .writefn = sctlr_write,
9595               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9596               .resetvalue = cpu->reset_sctlr },
9597         };
9598 
9599         define_arm_cp_regs(cpu, el3_regs);
9600     }
9601     /*
9602      * The behaviour of NSACR is sufficiently various that we don't
9603      * try to describe it in a single reginfo:
9604      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
9605      *     reads as constant 0xc00 from NS EL1 and NS EL2
9606      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9607      *  if v7 without EL3, register doesn't exist
9608      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9609      */
9610     if (arm_feature(env, ARM_FEATURE_EL3)) {
9611         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9612             static const ARMCPRegInfo nsacr = {
9613                 .name = "NSACR", .type = ARM_CP_CONST,
9614                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9615                 .access = PL1_RW, .accessfn = nsacr_access,
9616                 .resetvalue = 0xc00
9617             };
9618             define_one_arm_cp_reg(cpu, &nsacr);
9619         } else {
9620             static const ARMCPRegInfo nsacr = {
9621                 .name = "NSACR",
9622                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9623                 .access = PL3_RW | PL1_R,
9624                 .resetvalue = 0,
9625                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9626             };
9627             define_one_arm_cp_reg(cpu, &nsacr);
9628         }
9629     } else {
9630         if (arm_feature(env, ARM_FEATURE_V8)) {
9631             static const ARMCPRegInfo nsacr = {
9632                 .name = "NSACR", .type = ARM_CP_CONST,
9633                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9634                 .access = PL1_R,
9635                 .resetvalue = 0xc00
9636             };
9637             define_one_arm_cp_reg(cpu, &nsacr);
9638         }
9639     }
9640 
9641     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9642         if (arm_feature(env, ARM_FEATURE_V6)) {
9643             /* PMSAv6 not implemented */
9644             assert(arm_feature(env, ARM_FEATURE_V7));
9645             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9646             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9647         } else {
9648             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9649         }
9650     } else {
9651         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9652         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9653         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
9654         if (cpu_isar_feature(aa32_hpd, cpu)) {
9655             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9656         }
9657     }
9658     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9659         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9660     }
9661     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9662         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9663     }
9664     if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
9665         define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
9666     }
9667 #ifndef CONFIG_USER_ONLY
9668     if (cpu_isar_feature(aa64_ecv, cpu)) {
9669         define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
9670     }
9671 #endif
9672     if (arm_feature(env, ARM_FEATURE_VAPA)) {
9673         ARMCPRegInfo vapa_cp_reginfo[] = {
9674             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9675               .access = PL1_RW, .resetvalue = 0,
9676               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9677                                      offsetoflow32(CPUARMState, cp15.par_ns) },
9678               .writefn = par_write},
9679 #ifndef CONFIG_USER_ONLY
9680             /* This underdecoding is safe because the reginfo is NO_RAW. */
9681             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9682               .access = PL1_W, .accessfn = ats_access,
9683               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9684 #endif
9685         };
9686 
9687         /*
9688          * When LPAE exists this 32-bit PAR register is an alias of the
9689          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9690          */
9691         if (arm_feature(env, ARM_FEATURE_LPAE)) {
9692             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9693         }
9694         define_arm_cp_regs(cpu, vapa_cp_reginfo);
9695     }
9696     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9697         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9698     }
9699     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9700         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9701     }
9702     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9703         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9704     }
9705     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9706         define_arm_cp_regs(cpu, omap_cp_reginfo);
9707     }
9708     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9709         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9710     }
9711     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9712         define_arm_cp_regs(cpu, xscale_cp_reginfo);
9713     }
9714     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9715         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9716     }
9717     if (arm_feature(env, ARM_FEATURE_LPAE)) {
9718         define_arm_cp_regs(cpu, lpae_cp_reginfo);
9719     }
9720     if (cpu_isar_feature(aa32_jazelle, cpu)) {
9721         define_arm_cp_regs(cpu, jazelle_regs);
9722     }
9723     /*
9724      * Slightly awkwardly, the OMAP and StrongARM cores need all of
9725      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9726      * be read-only (ie write causes UNDEF exception).
9727      */
9728     {
9729         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9730             /*
9731              * Pre-v8 MIDR space.
9732              * Note that the MIDR isn't a simple constant register because
9733              * of the TI925 behaviour where writes to another register can
9734              * cause the MIDR value to change.
9735              *
9736              * Unimplemented registers in the c15 0 0 0 space default to
9737              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9738              * and friends override accordingly.
9739              */
9740             { .name = "MIDR",
9741               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9742               .access = PL1_R, .resetvalue = cpu->midr,
9743               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9744               .readfn = midr_read,
9745               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9746               .type = ARM_CP_OVERRIDE },
9747             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9748             { .name = "DUMMY",
9749               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9750               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9751             { .name = "DUMMY",
9752               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9753               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9754             { .name = "DUMMY",
9755               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9756               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9757             { .name = "DUMMY",
9758               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9759               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9760             { .name = "DUMMY",
9761               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9762               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9763         };
9764         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9765             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9766               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9767               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9768               .fgt = FGT_MIDR_EL1,
9769               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9770               .readfn = midr_read },
9771             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9772             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9773               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9774               .access = PL1_R, .resetvalue = cpu->midr },
9775             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9777               .access = PL1_R,
9778               .accessfn = access_aa64_tid1,
9779               .fgt = FGT_REVIDR_EL1,
9780               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9781         };
9782         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9783             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9784             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9785             .access = PL1_R, .resetvalue = cpu->midr
9786         };
9787         ARMCPRegInfo id_cp_reginfo[] = {
9788             /* These are common to v8 and pre-v8 */
9789             { .name = "CTR",
9790               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9791               .access = PL1_R, .accessfn = ctr_el0_access,
9792               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9793             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9794               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9795               .access = PL0_R, .accessfn = ctr_el0_access,
9796               .fgt = FGT_CTR_EL0,
9797               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9798             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9799             { .name = "TCMTR",
9800               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9801               .access = PL1_R,
9802               .accessfn = access_aa32_tid1,
9803               .type = ARM_CP_CONST, .resetvalue = 0 },
9804         };
9805         /* TLBTR is specific to VMSA */
9806         ARMCPRegInfo id_tlbtr_reginfo = {
9807               .name = "TLBTR",
9808               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9809               .access = PL1_R,
9810               .accessfn = access_aa32_tid1,
9811               .type = ARM_CP_CONST, .resetvalue = 0,
9812         };
9813         /* MPUIR is specific to PMSA V6+ */
9814         ARMCPRegInfo id_mpuir_reginfo = {
9815               .name = "MPUIR",
9816               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9817               .access = PL1_R, .type = ARM_CP_CONST,
9818               .resetvalue = cpu->pmsav7_dregion << 8
9819         };
9820         /* HMPUIR is specific to PMSA V8 */
9821         ARMCPRegInfo id_hmpuir_reginfo = {
9822             .name = "HMPUIR",
9823             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9824             .access = PL2_R, .type = ARM_CP_CONST,
9825             .resetvalue = cpu->pmsav8r_hdregion
9826         };
9827         static const ARMCPRegInfo crn0_wi_reginfo = {
9828             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9829             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9830             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9831         };
9832 #ifdef CONFIG_USER_ONLY
9833         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9834             { .name = "MIDR_EL1",
9835               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9836                                R_MIDR_EL1_PARTNUM_MASK |
9837                                R_MIDR_EL1_ARCHITECTURE_MASK |
9838                                R_MIDR_EL1_VARIANT_MASK |
9839                                R_MIDR_EL1_IMPLEMENTER_MASK },
9840             { .name = "REVIDR_EL1" },
9841         };
9842         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9843 #endif
9844         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9845             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9846             size_t i;
9847             /*
9848              * Register the blanket "writes ignored" value first to cover the
9849              * whole space. Then update the specific ID registers to allow write
9850              * access, so that they ignore writes rather than causing them to
9851              * UNDEF.
9852              */
9853             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9854             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9855                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9856             }
9857             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9858                 id_cp_reginfo[i].access = PL1_RW;
9859             }
9860             id_mpuir_reginfo.access = PL1_RW;
9861             id_tlbtr_reginfo.access = PL1_RW;
9862         }
9863         if (arm_feature(env, ARM_FEATURE_V8)) {
9864             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9865             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9866                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9867             }
9868         } else {
9869             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9870         }
9871         define_arm_cp_regs(cpu, id_cp_reginfo);
9872         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9873             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9874         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9875                    arm_feature(env, ARM_FEATURE_V8)) {
9876             uint32_t i = 0;
9877             char *tmp_string;
9878 
9879             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9880             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9881             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9882 
9883             /* Register alias is only valid for first 32 indexes */
9884             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9885                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9886                 uint8_t opc1 = extract32(i, 4, 1);
9887                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9888 
9889                 tmp_string = g_strdup_printf("PRBAR%u", i);
9890                 ARMCPRegInfo tmp_prbarn_reginfo = {
9891                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9892                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9893                     .access = PL1_RW, .resetvalue = 0,
9894                     .accessfn = access_tvm_trvm,
9895                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9896                 };
9897                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9898                 g_free(tmp_string);
9899 
9900                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9901                 tmp_string = g_strdup_printf("PRLAR%u", i);
9902                 ARMCPRegInfo tmp_prlarn_reginfo = {
9903                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9904                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9905                     .access = PL1_RW, .resetvalue = 0,
9906                     .accessfn = access_tvm_trvm,
9907                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9908                 };
9909                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9910                 g_free(tmp_string);
9911             }
9912 
9913             /* Register alias is only valid for first 32 indexes */
9914             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9915                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9916                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9917                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9918 
9919                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9920                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9921                     .name = tmp_string,
9922                     .type = ARM_CP_NO_RAW,
9923                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9924                     .access = PL2_RW, .resetvalue = 0,
9925                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9926                 };
9927                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9928                 g_free(tmp_string);
9929 
9930                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9931                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9932                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9933                     .name = tmp_string,
9934                     .type = ARM_CP_NO_RAW,
9935                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9936                     .access = PL2_RW, .resetvalue = 0,
9937                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9938                 };
9939                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9940                 g_free(tmp_string);
9941             }
9942         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9943             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9944         }
9945     }
9946 
9947     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9948         ARMCPRegInfo mpidr_cp_reginfo[] = {
9949             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9950               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9951               .fgt = FGT_MPIDR_EL1,
9952               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9953         };
9954 #ifdef CONFIG_USER_ONLY
9955         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9956             { .name = "MPIDR_EL1",
9957               .fixed_bits = 0x0000000080000000 },
9958         };
9959         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9960 #endif
9961         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9962     }
9963 
9964     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9965         ARMCPRegInfo auxcr_reginfo[] = {
9966             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9967               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9968               .access = PL1_RW, .accessfn = access_tacr,
9969               .nv2_redirect_offset = 0x118,
9970               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9971             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9972               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9973               .access = PL2_RW, .type = ARM_CP_CONST,
9974               .resetvalue = 0 },
9975             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9976               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9977               .access = PL3_RW, .type = ARM_CP_CONST,
9978               .resetvalue = 0 },
9979         };
9980         define_arm_cp_regs(cpu, auxcr_reginfo);
9981         if (cpu_isar_feature(aa32_ac2, cpu)) {
9982             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9983         }
9984     }
9985 
9986     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9987         /*
9988          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9989          * There are two flavours:
9990          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9991          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9992          *      32-bit register visible to AArch32 at a different encoding
9993          *      to the "flavour 1" register and with the bits rearranged to
9994          *      be able to squash a 64-bit address into the 32-bit view.
9995          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9996          * in future if we support AArch32-only configs of some of the
9997          * AArch64 cores we might need to add a specific feature flag
9998          * to indicate cores with "flavour 2" CBAR.
9999          */
10000         if (arm_feature(env, ARM_FEATURE_V8)) {
10001             /* 32 bit view is [31:18] 0...0 [43:32]. */
10002             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
10003                 | extract64(cpu->reset_cbar, 32, 12);
10004             ARMCPRegInfo cbar_reginfo[] = {
10005                 { .name = "CBAR",
10006                   .type = ARM_CP_CONST,
10007                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
10008                   .access = PL1_R, .resetvalue = cbar32 },
10009                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
10010                   .type = ARM_CP_CONST,
10011                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
10012                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
10013             };
10014             /* We don't implement a r/w 64 bit CBAR currently */
10015             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
10016             define_arm_cp_regs(cpu, cbar_reginfo);
10017         } else {
10018             ARMCPRegInfo cbar = {
10019                 .name = "CBAR",
10020                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
10021                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
10022                 .fieldoffset = offsetof(CPUARMState,
10023                                         cp15.c15_config_base_address)
10024             };
10025             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
10026                 cbar.access = PL1_R;
10027                 cbar.fieldoffset = 0;
10028                 cbar.type = ARM_CP_CONST;
10029             }
10030             define_one_arm_cp_reg(cpu, &cbar);
10031         }
10032     }
10033 
10034     if (arm_feature(env, ARM_FEATURE_VBAR)) {
10035         static const ARMCPRegInfo vbar_cp_reginfo[] = {
10036             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
10037               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
10038               .access = PL1_RW, .writefn = vbar_write,
10039               .accessfn = access_nv1,
10040               .fgt = FGT_VBAR_EL1,
10041               .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
10042               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
10043                                      offsetof(CPUARMState, cp15.vbar_ns) },
10044               .resetvalue = 0 },
10045         };
10046         define_arm_cp_regs(cpu, vbar_cp_reginfo);
10047     }
10048 
10049     /* Generic registers whose values depend on the implementation */
10050     {
10051         ARMCPRegInfo sctlr = {
10052             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
10053             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
10054             .access = PL1_RW, .accessfn = access_tvm_trvm,
10055             .fgt = FGT_SCTLR_EL1,
10056             .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
10057             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
10058                                    offsetof(CPUARMState, cp15.sctlr_ns) },
10059             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
10060             .raw_writefn = raw_write,
10061         };
10062         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
10063             /*
10064              * Normally we would always end the TB on an SCTLR write, but Linux
10065              * arch/arm/mach-pxa/sleep.S expects two instructions following
10066              * an MMU enable to execute from cache.  Imitate this behaviour.
10067              */
10068             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
10069         }
10070         define_one_arm_cp_reg(cpu, &sctlr);
10071 
10072         if (arm_feature(env, ARM_FEATURE_PMSA) &&
10073             arm_feature(env, ARM_FEATURE_V8)) {
10074             ARMCPRegInfo vsctlr = {
10075                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
10076                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
10077                 .access = PL2_RW, .resetvalue = 0x0,
10078                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
10079             };
10080             define_one_arm_cp_reg(cpu, &vsctlr);
10081         }
10082     }
10083 
10084     if (cpu_isar_feature(aa64_lor, cpu)) {
10085         define_arm_cp_regs(cpu, lor_reginfo);
10086     }
10087     if (cpu_isar_feature(aa64_pan, cpu)) {
10088         define_one_arm_cp_reg(cpu, &pan_reginfo);
10089     }
10090 #ifndef CONFIG_USER_ONLY
10091     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
10092         define_arm_cp_regs(cpu, ats1e1_reginfo);
10093     }
10094     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
10095         define_arm_cp_regs(cpu, ats1cp_reginfo);
10096     }
10097 #endif
10098     if (cpu_isar_feature(aa64_uao, cpu)) {
10099         define_one_arm_cp_reg(cpu, &uao_reginfo);
10100     }
10101 
10102     if (cpu_isar_feature(aa64_dit, cpu)) {
10103         define_one_arm_cp_reg(cpu, &dit_reginfo);
10104     }
10105     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10106         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
10107     }
10108     if (cpu_isar_feature(any_ras, cpu)) {
10109         define_arm_cp_regs(cpu, minimal_ras_reginfo);
10110     }
10111 
10112     if (cpu_isar_feature(aa64_vh, cpu) ||
10113         cpu_isar_feature(aa64_debugv8p2, cpu)) {
10114         define_one_arm_cp_reg(cpu, &contextidr_el2);
10115     }
10116     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
10117         define_arm_cp_regs(cpu, vhe_reginfo);
10118     }
10119 
10120     if (cpu_isar_feature(aa64_sve, cpu)) {
10121         define_arm_cp_regs(cpu, zcr_reginfo);
10122     }
10123 
10124     if (cpu_isar_feature(aa64_hcx, cpu)) {
10125         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
10126     }
10127 
10128 #ifdef TARGET_AARCH64
10129     if (cpu_isar_feature(aa64_sme, cpu)) {
10130         define_arm_cp_regs(cpu, sme_reginfo);
10131     }
10132     if (cpu_isar_feature(aa64_pauth, cpu)) {
10133         define_arm_cp_regs(cpu, pauth_reginfo);
10134     }
10135     if (cpu_isar_feature(aa64_rndr, cpu)) {
10136         define_arm_cp_regs(cpu, rndr_reginfo);
10137     }
10138     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
10139         define_arm_cp_regs(cpu, tlbirange_reginfo);
10140     }
10141     if (cpu_isar_feature(aa64_tlbios, cpu)) {
10142         define_arm_cp_regs(cpu, tlbios_reginfo);
10143     }
10144     /* Data Cache clean instructions up to PoP */
10145     if (cpu_isar_feature(aa64_dcpop, cpu)) {
10146         define_one_arm_cp_reg(cpu, dcpop_reg);
10147 
10148         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
10149             define_one_arm_cp_reg(cpu, dcpodp_reg);
10150         }
10151     }
10152 
10153     /*
10154      * If full MTE is enabled, add all of the system registers.
10155      * If only "instructions available at EL0" are enabled,
10156      * then define only a RAZ/WI version of PSTATE.TCO.
10157      */
10158     if (cpu_isar_feature(aa64_mte, cpu)) {
10159         ARMCPRegInfo gmid_reginfo = {
10160             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
10161             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
10162             .access = PL1_R, .accessfn = access_aa64_tid5,
10163             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
10164         };
10165         define_one_arm_cp_reg(cpu, &gmid_reginfo);
10166         define_arm_cp_regs(cpu, mte_reginfo);
10167         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
10168     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
10169         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
10170         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
10171     }
10172 
10173     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
10174         define_arm_cp_regs(cpu, scxtnum_reginfo);
10175     }
10176 
10177     if (cpu_isar_feature(aa64_fgt, cpu)) {
10178         define_arm_cp_regs(cpu, fgt_reginfo);
10179     }
10180 
10181     if (cpu_isar_feature(aa64_rme, cpu)) {
10182         define_arm_cp_regs(cpu, rme_reginfo);
10183         if (cpu_isar_feature(aa64_mte, cpu)) {
10184             define_arm_cp_regs(cpu, rme_mte_reginfo);
10185         }
10186     }
10187 
10188     if (cpu_isar_feature(aa64_nv2, cpu)) {
10189         define_arm_cp_regs(cpu, nv2_reginfo);
10190     }
10191 
10192     if (cpu_isar_feature(aa64_nmi, cpu)) {
10193         define_arm_cp_regs(cpu, nmi_reginfo);
10194     }
10195 #endif
10196 
10197     if (cpu_isar_feature(any_predinv, cpu)) {
10198         define_arm_cp_regs(cpu, predinv_reginfo);
10199     }
10200 
10201     if (cpu_isar_feature(any_ccidx, cpu)) {
10202         define_arm_cp_regs(cpu, ccsidr2_reginfo);
10203     }
10204 
10205 #ifndef CONFIG_USER_ONLY
10206     /*
10207      * Register redirections and aliases must be done last,
10208      * after the registers from the other extensions have been defined.
10209      */
10210     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
10211         define_arm_vh_e2h_redirects_aliases(cpu);
10212     }
10213 #endif
10214 }
10215 
10216 /*
10217  * Private utility function for define_one_arm_cp_reg_with_opaque():
10218  * add a single reginfo struct to the hash table.
10219  */
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,CPState state,CPSecureState secstate,int crm,int opc1,int opc2,const char * name)10220 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
10221                                    void *opaque, CPState state,
10222                                    CPSecureState secstate,
10223                                    int crm, int opc1, int opc2,
10224                                    const char *name)
10225 {
10226     CPUARMState *env = &cpu->env;
10227     uint32_t key;
10228     ARMCPRegInfo *r2;
10229     bool is64 = r->type & ARM_CP_64BIT;
10230     bool ns = secstate & ARM_CP_SECSTATE_NS;
10231     int cp = r->cp;
10232     size_t name_len;
10233     bool make_const;
10234 
10235     switch (state) {
10236     case ARM_CP_STATE_AA32:
10237         /* We assume it is a cp15 register if the .cp field is left unset. */
10238         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
10239             cp = 15;
10240         }
10241         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
10242         break;
10243     case ARM_CP_STATE_AA64:
10244         /*
10245          * To allow abbreviation of ARMCPRegInfo definitions, we treat
10246          * cp == 0 as equivalent to the value for "standard guest-visible
10247          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
10248          * in their AArch64 view (the .cp value may be non-zero for the
10249          * benefit of the AArch32 view).
10250          */
10251         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
10252             cp = CP_REG_ARM64_SYSREG_CP;
10253         }
10254         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
10255         break;
10256     default:
10257         g_assert_not_reached();
10258     }
10259 
10260     /* Overriding of an existing definition must be explicitly requested. */
10261     if (!(r->type & ARM_CP_OVERRIDE)) {
10262         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
10263         if (oldreg) {
10264             assert(oldreg->type & ARM_CP_OVERRIDE);
10265         }
10266     }
10267 
10268     /*
10269      * Eliminate registers that are not present because the EL is missing.
10270      * Doing this here makes it easier to put all registers for a given
10271      * feature into the same ARMCPRegInfo array and define them all at once.
10272      */
10273     make_const = false;
10274     if (arm_feature(env, ARM_FEATURE_EL3)) {
10275         /*
10276          * An EL2 register without EL2 but with EL3 is (usually) RES0.
10277          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
10278          */
10279         int min_el = ctz32(r->access) / 2;
10280         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
10281             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
10282                 return;
10283             }
10284             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
10285         }
10286     } else {
10287         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
10288                                  ? PL2_RW : PL1_RW);
10289         if ((r->access & max_el) == 0) {
10290             return;
10291         }
10292     }
10293 
10294     /* Combine cpreg and name into one allocation. */
10295     name_len = strlen(name) + 1;
10296     r2 = g_malloc(sizeof(*r2) + name_len);
10297     *r2 = *r;
10298     r2->name = memcpy(r2 + 1, name, name_len);
10299 
10300     /*
10301      * Update fields to match the instantiation, overwiting wildcards
10302      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
10303      */
10304     r2->cp = cp;
10305     r2->crm = crm;
10306     r2->opc1 = opc1;
10307     r2->opc2 = opc2;
10308     r2->state = state;
10309     r2->secure = secstate;
10310     if (opaque) {
10311         r2->opaque = opaque;
10312     }
10313 
10314     if (make_const) {
10315         /* This should not have been a very special register to begin. */
10316         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
10317         assert(old_special == 0 || old_special == ARM_CP_NOP);
10318         /*
10319          * Set the special function to CONST, retaining the other flags.
10320          * This is important for e.g. ARM_CP_SVE so that we still
10321          * take the SVE trap if CPTR_EL3.EZ == 0.
10322          */
10323         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
10324         /*
10325          * Usually, these registers become RES0, but there are a few
10326          * special cases like VPIDR_EL2 which have a constant non-zero
10327          * value with writes ignored.
10328          */
10329         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
10330             r2->resetvalue = 0;
10331         }
10332         /*
10333          * ARM_CP_CONST has precedence, so removing the callbacks and
10334          * offsets are not strictly necessary, but it is potentially
10335          * less confusing to debug later.
10336          */
10337         r2->readfn = NULL;
10338         r2->writefn = NULL;
10339         r2->raw_readfn = NULL;
10340         r2->raw_writefn = NULL;
10341         r2->resetfn = NULL;
10342         r2->fieldoffset = 0;
10343         r2->bank_fieldoffsets[0] = 0;
10344         r2->bank_fieldoffsets[1] = 0;
10345     } else {
10346         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
10347 
10348         if (isbanked) {
10349             /*
10350              * Register is banked (using both entries in array).
10351              * Overwriting fieldoffset as the array is only used to define
10352              * banked registers but later only fieldoffset is used.
10353              */
10354             r2->fieldoffset = r->bank_fieldoffsets[ns];
10355         }
10356         if (state == ARM_CP_STATE_AA32) {
10357             if (isbanked) {
10358                 /*
10359                  * If the register is banked then we don't need to migrate or
10360                  * reset the 32-bit instance in certain cases:
10361                  *
10362                  * 1) If the register has both 32-bit and 64-bit instances
10363                  *    then we can count on the 64-bit instance taking care
10364                  *    of the non-secure bank.
10365                  * 2) If ARMv8 is enabled then we can count on a 64-bit
10366                  *    version taking care of the secure bank.  This requires
10367                  *    that separate 32 and 64-bit definitions are provided.
10368                  */
10369                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
10370                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
10371                     r2->type |= ARM_CP_ALIAS;
10372                 }
10373             } else if ((secstate != r->secure) && !ns) {
10374                 /*
10375                  * The register is not banked so we only want to allow
10376                  * migration of the non-secure instance.
10377                  */
10378                 r2->type |= ARM_CP_ALIAS;
10379             }
10380 
10381             if (HOST_BIG_ENDIAN &&
10382                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
10383                 r2->fieldoffset += sizeof(uint32_t);
10384             }
10385         }
10386     }
10387 
10388     /*
10389      * By convention, for wildcarded registers only the first
10390      * entry is used for migration; the others are marked as
10391      * ALIAS so we don't try to transfer the register
10392      * multiple times. Special registers (ie NOP/WFI) are
10393      * never migratable and not even raw-accessible.
10394      */
10395     if (r2->type & ARM_CP_SPECIAL_MASK) {
10396         r2->type |= ARM_CP_NO_RAW;
10397     }
10398     if (((r->crm == CP_ANY) && crm != 0) ||
10399         ((r->opc1 == CP_ANY) && opc1 != 0) ||
10400         ((r->opc2 == CP_ANY) && opc2 != 0)) {
10401         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
10402     }
10403 
10404     /*
10405      * Check that raw accesses are either forbidden or handled. Note that
10406      * we can't assert this earlier because the setup of fieldoffset for
10407      * banked registers has to be done first.
10408      */
10409     if (!(r2->type & ARM_CP_NO_RAW)) {
10410         assert(!raw_accessors_invalid(r2));
10411     }
10412 
10413     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
10414 }
10415 
10416 
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)10417 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
10418                                        const ARMCPRegInfo *r, void *opaque)
10419 {
10420     /*
10421      * Define implementations of coprocessor registers.
10422      * We store these in a hashtable because typically
10423      * there are less than 150 registers in a space which
10424      * is 16*16*16*8*8 = 262144 in size.
10425      * Wildcarding is supported for the crm, opc1 and opc2 fields.
10426      * If a register is defined twice then the second definition is
10427      * used, so this can be used to define some generic registers and
10428      * then override them with implementation specific variations.
10429      * At least one of the original and the second definition should
10430      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
10431      * against accidental use.
10432      *
10433      * The state field defines whether the register is to be
10434      * visible in the AArch32 or AArch64 execution state. If the
10435      * state is set to ARM_CP_STATE_BOTH then we synthesise a
10436      * reginfo structure for the AArch32 view, which sees the lower
10437      * 32 bits of the 64 bit register.
10438      *
10439      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
10440      * be wildcarded. AArch64 registers are always considered to be 64
10441      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
10442      * the register, if any.
10443      */
10444     int crm, opc1, opc2;
10445     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
10446     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
10447     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
10448     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
10449     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
10450     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
10451     CPState state;
10452 
10453     /* 64 bit registers have only CRm and Opc1 fields */
10454     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
10455     /* op0 only exists in the AArch64 encodings */
10456     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
10457     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
10458     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
10459     /*
10460      * This API is only for Arm's system coprocessors (14 and 15) or
10461      * (M-profile or v7A-and-earlier only) for implementation defined
10462      * coprocessors in the range 0..7.  Our decode assumes this, since
10463      * 8..13 can be used for other insns including VFP and Neon. See
10464      * valid_cp() in translate.c.  Assert here that we haven't tried
10465      * to use an invalid coprocessor number.
10466      */
10467     switch (r->state) {
10468     case ARM_CP_STATE_BOTH:
10469         /* 0 has a special meaning, but otherwise the same rules as AA32. */
10470         if (r->cp == 0) {
10471             break;
10472         }
10473         /* fall through */
10474     case ARM_CP_STATE_AA32:
10475         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
10476             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
10477             assert(r->cp >= 14 && r->cp <= 15);
10478         } else {
10479             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
10480         }
10481         break;
10482     case ARM_CP_STATE_AA64:
10483         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10484         break;
10485     default:
10486         g_assert_not_reached();
10487     }
10488     /*
10489      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10490      * encodes a minimum access level for the register. We roll this
10491      * runtime check into our general permission check code, so check
10492      * here that the reginfo's specified permissions are strict enough
10493      * to encompass the generic architectural permission check.
10494      */
10495     if (r->state != ARM_CP_STATE_AA32) {
10496         CPAccessRights mask;
10497         switch (r->opc1) {
10498         case 0:
10499             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10500             mask = PL0U_R | PL1_RW;
10501             break;
10502         case 1: case 2:
10503             /* min_EL EL1 */
10504             mask = PL1_RW;
10505             break;
10506         case 3:
10507             /* min_EL EL0 */
10508             mask = PL0_RW;
10509             break;
10510         case 4:
10511         case 5:
10512             /* min_EL EL2 */
10513             mask = PL2_RW;
10514             break;
10515         case 6:
10516             /* min_EL EL3 */
10517             mask = PL3_RW;
10518             break;
10519         case 7:
10520             /* min_EL EL1, secure mode only (we don't check the latter) */
10521             mask = PL1_RW;
10522             break;
10523         default:
10524             /* broken reginfo with out-of-range opc1 */
10525             g_assert_not_reached();
10526         }
10527         /* assert our permissions are not too lax (stricter is fine) */
10528         assert((r->access & ~mask) == 0);
10529     }
10530 
10531     /*
10532      * Check that the register definition has enough info to handle
10533      * reads and writes if they are permitted.
10534      */
10535     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10536         if (r->access & PL3_R) {
10537             assert((r->fieldoffset ||
10538                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10539                    r->readfn);
10540         }
10541         if (r->access & PL3_W) {
10542             assert((r->fieldoffset ||
10543                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10544                    r->writefn);
10545         }
10546     }
10547 
10548     for (crm = crmmin; crm <= crmmax; crm++) {
10549         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10550             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10551                 for (state = ARM_CP_STATE_AA32;
10552                      state <= ARM_CP_STATE_AA64; state++) {
10553                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10554                         continue;
10555                     }
10556                     if (state == ARM_CP_STATE_AA32) {
10557                         /*
10558                          * Under AArch32 CP registers can be common
10559                          * (same for secure and non-secure world) or banked.
10560                          */
10561                         char *name;
10562 
10563                         switch (r->secure) {
10564                         case ARM_CP_SECSTATE_S:
10565                         case ARM_CP_SECSTATE_NS:
10566                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10567                                                    r->secure, crm, opc1, opc2,
10568                                                    r->name);
10569                             break;
10570                         case ARM_CP_SECSTATE_BOTH:
10571                             name = g_strdup_printf("%s_S", r->name);
10572                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10573                                                    ARM_CP_SECSTATE_S,
10574                                                    crm, opc1, opc2, name);
10575                             g_free(name);
10576                             add_cpreg_to_hashtable(cpu, r, opaque, state,
10577                                                    ARM_CP_SECSTATE_NS,
10578                                                    crm, opc1, opc2, r->name);
10579                             break;
10580                         default:
10581                             g_assert_not_reached();
10582                         }
10583                     } else {
10584                         /*
10585                          * AArch64 registers get mapped to non-secure instance
10586                          * of AArch32
10587                          */
10588                         add_cpreg_to_hashtable(cpu, r, opaque, state,
10589                                                ARM_CP_SECSTATE_NS,
10590                                                crm, opc1, opc2, r->name);
10591                     }
10592                 }
10593             }
10594         }
10595     }
10596 }
10597 
10598 /* Define a whole list of registers */
define_arm_cp_regs_with_opaque_len(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque,size_t len)10599 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10600                                         void *opaque, size_t len)
10601 {
10602     size_t i;
10603     for (i = 0; i < len; ++i) {
10604         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10605     }
10606 }
10607 
10608 /*
10609  * Modify ARMCPRegInfo for access from userspace.
10610  *
10611  * This is a data driven modification directed by
10612  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10613  * user-space cannot alter any values and dynamic values pertaining to
10614  * execution state are hidden from user space view anyway.
10615  */
modify_arm_cp_regs_with_len(ARMCPRegInfo * regs,size_t regs_len,const ARMCPRegUserSpaceInfo * mods,size_t mods_len)10616 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10617                                  const ARMCPRegUserSpaceInfo *mods,
10618                                  size_t mods_len)
10619 {
10620     for (size_t mi = 0; mi < mods_len; ++mi) {
10621         const ARMCPRegUserSpaceInfo *m = mods + mi;
10622         GPatternSpec *pat = NULL;
10623 
10624         if (m->is_glob) {
10625             pat = g_pattern_spec_new(m->name);
10626         }
10627         for (size_t ri = 0; ri < regs_len; ++ri) {
10628             ARMCPRegInfo *r = regs + ri;
10629 
10630             if (pat && g_pattern_match_string(pat, r->name)) {
10631                 r->type = ARM_CP_CONST;
10632                 r->access = PL0U_R;
10633                 r->resetvalue = 0;
10634                 /* continue */
10635             } else if (strcmp(r->name, m->name) == 0) {
10636                 r->type = ARM_CP_CONST;
10637                 r->access = PL0U_R;
10638                 r->resetvalue &= m->exported_bits;
10639                 r->resetvalue |= m->fixed_bits;
10640                 break;
10641             }
10642         }
10643         if (pat) {
10644             g_pattern_spec_free(pat);
10645         }
10646     }
10647 }
10648 
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)10649 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10650 {
10651     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10652 }
10653 
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)10654 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10655                          uint64_t value)
10656 {
10657     /* Helper coprocessor write function for write-ignore registers */
10658 }
10659 
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)10660 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10661 {
10662     /* Helper coprocessor write function for read-as-zero registers */
10663     return 0;
10664 }
10665 
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)10666 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10667 {
10668     /* Helper coprocessor reset function for do-nothing-on-reset registers */
10669 }
10670 
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)10671 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10672 {
10673     /*
10674      * Return true if it is not valid for us to switch to
10675      * this CPU mode (ie all the UNPREDICTABLE cases in
10676      * the ARM ARM CPSRWriteByInstr pseudocode).
10677      */
10678 
10679     /* Changes to or from Hyp via MSR and CPS are illegal. */
10680     if (write_type == CPSRWriteByInstr &&
10681         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10682          mode == ARM_CPU_MODE_HYP)) {
10683         return 1;
10684     }
10685 
10686     switch (mode) {
10687     case ARM_CPU_MODE_USR:
10688         return 0;
10689     case ARM_CPU_MODE_SYS:
10690     case ARM_CPU_MODE_SVC:
10691     case ARM_CPU_MODE_ABT:
10692     case ARM_CPU_MODE_UND:
10693     case ARM_CPU_MODE_IRQ:
10694     case ARM_CPU_MODE_FIQ:
10695         /*
10696          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10697          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10698          */
10699         /*
10700          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10701          * and CPS are treated as illegal mode changes.
10702          */
10703         if (write_type == CPSRWriteByInstr &&
10704             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10705             (arm_hcr_el2_eff(env) & HCR_TGE)) {
10706             return 1;
10707         }
10708         return 0;
10709     case ARM_CPU_MODE_HYP:
10710         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10711     case ARM_CPU_MODE_MON:
10712         return arm_current_el(env) < 3;
10713     default:
10714         return 1;
10715     }
10716 }
10717 
cpsr_read(CPUARMState * env)10718 uint32_t cpsr_read(CPUARMState *env)
10719 {
10720     int ZF;
10721     ZF = (env->ZF == 0);
10722     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10723         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10724         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10725         | ((env->condexec_bits & 0xfc) << 8)
10726         | (env->GE << 16) | (env->daif & CPSR_AIF);
10727 }
10728 
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)10729 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10730                 CPSRWriteType write_type)
10731 {
10732     uint32_t changed_daif;
10733     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10734         (mask & (CPSR_M | CPSR_E | CPSR_IL));
10735 
10736     if (mask & CPSR_NZCV) {
10737         env->ZF = (~val) & CPSR_Z;
10738         env->NF = val;
10739         env->CF = (val >> 29) & 1;
10740         env->VF = (val << 3) & 0x80000000;
10741     }
10742     if (mask & CPSR_Q) {
10743         env->QF = ((val & CPSR_Q) != 0);
10744     }
10745     if (mask & CPSR_T) {
10746         env->thumb = ((val & CPSR_T) != 0);
10747     }
10748     if (mask & CPSR_IT_0_1) {
10749         env->condexec_bits &= ~3;
10750         env->condexec_bits |= (val >> 25) & 3;
10751     }
10752     if (mask & CPSR_IT_2_7) {
10753         env->condexec_bits &= 3;
10754         env->condexec_bits |= (val >> 8) & 0xfc;
10755     }
10756     if (mask & CPSR_GE) {
10757         env->GE = (val >> 16) & 0xf;
10758     }
10759 
10760     /*
10761      * In a V7 implementation that includes the security extensions but does
10762      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10763      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10764      * bits respectively.
10765      *
10766      * In a V8 implementation, it is permitted for privileged software to
10767      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10768      */
10769     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10770         arm_feature(env, ARM_FEATURE_EL3) &&
10771         !arm_feature(env, ARM_FEATURE_EL2) &&
10772         !arm_is_secure(env)) {
10773 
10774         changed_daif = (env->daif ^ val) & mask;
10775 
10776         if (changed_daif & CPSR_A) {
10777             /*
10778              * Check to see if we are allowed to change the masking of async
10779              * abort exceptions from a non-secure state.
10780              */
10781             if (!(env->cp15.scr_el3 & SCR_AW)) {
10782                 qemu_log_mask(LOG_GUEST_ERROR,
10783                               "Ignoring attempt to switch CPSR_A flag from "
10784                               "non-secure world with SCR.AW bit clear\n");
10785                 mask &= ~CPSR_A;
10786             }
10787         }
10788 
10789         if (changed_daif & CPSR_F) {
10790             /*
10791              * Check to see if we are allowed to change the masking of FIQ
10792              * exceptions from a non-secure state.
10793              */
10794             if (!(env->cp15.scr_el3 & SCR_FW)) {
10795                 qemu_log_mask(LOG_GUEST_ERROR,
10796                               "Ignoring attempt to switch CPSR_F flag from "
10797                               "non-secure world with SCR.FW bit clear\n");
10798                 mask &= ~CPSR_F;
10799             }
10800 
10801             /*
10802              * Check whether non-maskable FIQ (NMFI) support is enabled.
10803              * If this bit is set software is not allowed to mask
10804              * FIQs, but is allowed to set CPSR_F to 0.
10805              */
10806             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10807                 (val & CPSR_F)) {
10808                 qemu_log_mask(LOG_GUEST_ERROR,
10809                               "Ignoring attempt to enable CPSR_F flag "
10810                               "(non-maskable FIQ [NMFI] support enabled)\n");
10811                 mask &= ~CPSR_F;
10812             }
10813         }
10814     }
10815 
10816     env->daif &= ~(CPSR_AIF & mask);
10817     env->daif |= val & CPSR_AIF & mask;
10818 
10819     if (write_type != CPSRWriteRaw &&
10820         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10821         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10822             /*
10823              * Note that we can only get here in USR mode if this is a
10824              * gdb stub write; for this case we follow the architectural
10825              * behaviour for guest writes in USR mode of ignoring an attempt
10826              * to switch mode. (Those are caught by translate.c for writes
10827              * triggered by guest instructions.)
10828              */
10829             mask &= ~CPSR_M;
10830         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10831             /*
10832              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10833              * v7, and has defined behaviour in v8:
10834              *  + leave CPSR.M untouched
10835              *  + allow changes to the other CPSR fields
10836              *  + set PSTATE.IL
10837              * For user changes via the GDB stub, we don't set PSTATE.IL,
10838              * as this would be unnecessarily harsh for a user error.
10839              */
10840             mask &= ~CPSR_M;
10841             if (write_type != CPSRWriteByGDBStub &&
10842                 arm_feature(env, ARM_FEATURE_V8)) {
10843                 mask |= CPSR_IL;
10844                 val |= CPSR_IL;
10845             }
10846             qemu_log_mask(LOG_GUEST_ERROR,
10847                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10848                           aarch32_mode_name(env->uncached_cpsr),
10849                           aarch32_mode_name(val));
10850         } else {
10851             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10852                           write_type == CPSRWriteExceptionReturn ?
10853                           "Exception return from AArch32" :
10854                           "AArch32 mode switch from",
10855                           aarch32_mode_name(env->uncached_cpsr),
10856                           aarch32_mode_name(val), env->regs[15]);
10857             switch_mode(env, val & CPSR_M);
10858         }
10859     }
10860     mask &= ~CACHED_CPSR_BITS;
10861     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10862     if (tcg_enabled() && rebuild_hflags) {
10863         arm_rebuild_hflags(env);
10864     }
10865 }
10866 
10867 #ifdef CONFIG_USER_ONLY
10868 
switch_mode(CPUARMState * env,int mode)10869 static void switch_mode(CPUARMState *env, int mode)
10870 {
10871     ARMCPU *cpu = env_archcpu(env);
10872 
10873     if (mode != ARM_CPU_MODE_USR) {
10874         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10875     }
10876 }
10877 
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10878 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10879                                  uint32_t cur_el, bool secure)
10880 {
10881     return 1;
10882 }
10883 
aarch64_sync_64_to_32(CPUARMState * env)10884 void aarch64_sync_64_to_32(CPUARMState *env)
10885 {
10886     g_assert_not_reached();
10887 }
10888 
10889 #else
10890 
switch_mode(CPUARMState * env,int mode)10891 static void switch_mode(CPUARMState *env, int mode)
10892 {
10893     int old_mode;
10894     int i;
10895 
10896     old_mode = env->uncached_cpsr & CPSR_M;
10897     if (mode == old_mode) {
10898         return;
10899     }
10900 
10901     if (old_mode == ARM_CPU_MODE_FIQ) {
10902         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10903         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10904     } else if (mode == ARM_CPU_MODE_FIQ) {
10905         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10906         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10907     }
10908 
10909     i = bank_number(old_mode);
10910     env->banked_r13[i] = env->regs[13];
10911     env->banked_spsr[i] = env->spsr;
10912 
10913     i = bank_number(mode);
10914     env->regs[13] = env->banked_r13[i];
10915     env->spsr = env->banked_spsr[i];
10916 
10917     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10918     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10919 }
10920 
10921 /*
10922  * Physical Interrupt Target EL Lookup Table
10923  *
10924  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10925  *
10926  * The below multi-dimensional table is used for looking up the target
10927  * exception level given numerous condition criteria.  Specifically, the
10928  * target EL is based on SCR and HCR routing controls as well as the
10929  * currently executing EL and secure state.
10930  *
10931  *    Dimensions:
10932  *    target_el_table[2][2][2][2][2][4]
10933  *                    |  |  |  |  |  +--- Current EL
10934  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10935  *                    |  |  |  +--------- HCR mask override
10936  *                    |  |  +------------ SCR exec state control
10937  *                    |  +--------------- SCR mask override
10938  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10939  *
10940  *    The table values are as such:
10941  *    0-3 = EL0-EL3
10942  *     -1 = Cannot occur
10943  *
10944  * The ARM ARM target EL table includes entries indicating that an "exception
10945  * is not taken".  The two cases where this is applicable are:
10946  *    1) An exception is taken from EL3 but the SCR does not have the exception
10947  *    routed to EL3.
10948  *    2) An exception is taken from EL2 but the HCR does not have the exception
10949  *    routed to EL2.
10950  * In these two cases, the below table contain a target of EL1.  This value is
10951  * returned as it is expected that the consumer of the table data will check
10952  * for "target EL >= current EL" to ensure the exception is not taken.
10953  *
10954  *            SCR     HCR
10955  *         64  EA     AMO                 From
10956  *        BIT IRQ     IMO      Non-secure         Secure
10957  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10958  */
10959 static const int8_t target_el_table[2][2][2][2][2][4] = {
10960     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10961        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10962       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10963        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10964      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10965        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10966       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10967        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10968     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10969        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10970       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10971        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10972      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10973        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10974       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10975        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10976 };
10977 
10978 /*
10979  * Determine the target EL for physical exceptions
10980  */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)10981 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10982                                  uint32_t cur_el, bool secure)
10983 {
10984     CPUARMState *env = cpu_env(cs);
10985     bool rw;
10986     bool scr;
10987     bool hcr;
10988     int target_el;
10989     /* Is the highest EL AArch64? */
10990     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10991     uint64_t hcr_el2;
10992 
10993     if (arm_feature(env, ARM_FEATURE_EL3)) {
10994         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10995     } else {
10996         /*
10997          * Either EL2 is the highest EL (and so the EL2 register width
10998          * is given by is64); or there is no EL2 or EL3, in which case
10999          * the value of 'rw' does not affect the table lookup anyway.
11000          */
11001         rw = is64;
11002     }
11003 
11004     hcr_el2 = arm_hcr_el2_eff(env);
11005     switch (excp_idx) {
11006     case EXCP_IRQ:
11007     case EXCP_NMI:
11008         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
11009         hcr = hcr_el2 & HCR_IMO;
11010         break;
11011     case EXCP_FIQ:
11012         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
11013         hcr = hcr_el2 & HCR_FMO;
11014         break;
11015     default:
11016         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
11017         hcr = hcr_el2 & HCR_AMO;
11018         break;
11019     };
11020 
11021     /*
11022      * For these purposes, TGE and AMO/IMO/FMO both force the
11023      * interrupt to EL2.  Fold TGE into the bit extracted above.
11024      */
11025     hcr |= (hcr_el2 & HCR_TGE) != 0;
11026 
11027     /* Perform a table-lookup for the target EL given the current state */
11028     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
11029 
11030     assert(target_el > 0);
11031 
11032     return target_el;
11033 }
11034 
arm_log_exception(CPUState * cs)11035 void arm_log_exception(CPUState *cs)
11036 {
11037     int idx = cs->exception_index;
11038 
11039     if (qemu_loglevel_mask(CPU_LOG_INT)) {
11040         const char *exc = NULL;
11041         static const char * const excnames[] = {
11042             [EXCP_UDEF] = "Undefined Instruction",
11043             [EXCP_SWI] = "SVC",
11044             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
11045             [EXCP_DATA_ABORT] = "Data Abort",
11046             [EXCP_IRQ] = "IRQ",
11047             [EXCP_FIQ] = "FIQ",
11048             [EXCP_BKPT] = "Breakpoint",
11049             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
11050             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
11051             [EXCP_HVC] = "Hypervisor Call",
11052             [EXCP_HYP_TRAP] = "Hypervisor Trap",
11053             [EXCP_SMC] = "Secure Monitor Call",
11054             [EXCP_VIRQ] = "Virtual IRQ",
11055             [EXCP_VFIQ] = "Virtual FIQ",
11056             [EXCP_SEMIHOST] = "Semihosting call",
11057             [EXCP_NOCP] = "v7M NOCP UsageFault",
11058             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
11059             [EXCP_STKOF] = "v8M STKOF UsageFault",
11060             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
11061             [EXCP_LSERR] = "v8M LSERR UsageFault",
11062             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
11063             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
11064             [EXCP_VSERR] = "Virtual SERR",
11065             [EXCP_GPC] = "Granule Protection Check",
11066             [EXCP_NMI] = "NMI",
11067             [EXCP_VINMI] = "Virtual IRQ NMI",
11068             [EXCP_VFNMI] = "Virtual FIQ NMI",
11069             [EXCP_MON_TRAP] = "Monitor Trap",
11070         };
11071 
11072         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
11073             exc = excnames[idx];
11074         }
11075         if (!exc) {
11076             exc = "unknown";
11077         }
11078         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
11079                       idx, exc, cs->cpu_index);
11080     }
11081 }
11082 
11083 /*
11084  * Function used to synchronize QEMU's AArch64 register set with AArch32
11085  * register set.  This is necessary when switching between AArch32 and AArch64
11086  * execution state.
11087  */
aarch64_sync_32_to_64(CPUARMState * env)11088 void aarch64_sync_32_to_64(CPUARMState *env)
11089 {
11090     int i;
11091     uint32_t mode = env->uncached_cpsr & CPSR_M;
11092 
11093     /* We can blanket copy R[0:7] to X[0:7] */
11094     for (i = 0; i < 8; i++) {
11095         env->xregs[i] = env->regs[i];
11096     }
11097 
11098     /*
11099      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
11100      * Otherwise, they come from the banked user regs.
11101      */
11102     if (mode == ARM_CPU_MODE_FIQ) {
11103         for (i = 8; i < 13; i++) {
11104             env->xregs[i] = env->usr_regs[i - 8];
11105         }
11106     } else {
11107         for (i = 8; i < 13; i++) {
11108             env->xregs[i] = env->regs[i];
11109         }
11110     }
11111 
11112     /*
11113      * Registers x13-x23 are the various mode SP and FP registers. Registers
11114      * r13 and r14 are only copied if we are in that mode, otherwise we copy
11115      * from the mode banked register.
11116      */
11117     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
11118         env->xregs[13] = env->regs[13];
11119         env->xregs[14] = env->regs[14];
11120     } else {
11121         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
11122         /* HYP is an exception in that it is copied from r14 */
11123         if (mode == ARM_CPU_MODE_HYP) {
11124             env->xregs[14] = env->regs[14];
11125         } else {
11126             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
11127         }
11128     }
11129 
11130     if (mode == ARM_CPU_MODE_HYP) {
11131         env->xregs[15] = env->regs[13];
11132     } else {
11133         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
11134     }
11135 
11136     if (mode == ARM_CPU_MODE_IRQ) {
11137         env->xregs[16] = env->regs[14];
11138         env->xregs[17] = env->regs[13];
11139     } else {
11140         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
11141         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
11142     }
11143 
11144     if (mode == ARM_CPU_MODE_SVC) {
11145         env->xregs[18] = env->regs[14];
11146         env->xregs[19] = env->regs[13];
11147     } else {
11148         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
11149         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
11150     }
11151 
11152     if (mode == ARM_CPU_MODE_ABT) {
11153         env->xregs[20] = env->regs[14];
11154         env->xregs[21] = env->regs[13];
11155     } else {
11156         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
11157         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
11158     }
11159 
11160     if (mode == ARM_CPU_MODE_UND) {
11161         env->xregs[22] = env->regs[14];
11162         env->xregs[23] = env->regs[13];
11163     } else {
11164         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
11165         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
11166     }
11167 
11168     /*
11169      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
11170      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
11171      * FIQ bank for r8-r14.
11172      */
11173     if (mode == ARM_CPU_MODE_FIQ) {
11174         for (i = 24; i < 31; i++) {
11175             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
11176         }
11177     } else {
11178         for (i = 24; i < 29; i++) {
11179             env->xregs[i] = env->fiq_regs[i - 24];
11180         }
11181         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
11182         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
11183     }
11184 
11185     env->pc = env->regs[15];
11186 }
11187 
11188 /*
11189  * Function used to synchronize QEMU's AArch32 register set with AArch64
11190  * register set.  This is necessary when switching between AArch32 and AArch64
11191  * execution state.
11192  */
aarch64_sync_64_to_32(CPUARMState * env)11193 void aarch64_sync_64_to_32(CPUARMState *env)
11194 {
11195     int i;
11196     uint32_t mode = env->uncached_cpsr & CPSR_M;
11197 
11198     /* We can blanket copy X[0:7] to R[0:7] */
11199     for (i = 0; i < 8; i++) {
11200         env->regs[i] = env->xregs[i];
11201     }
11202 
11203     /*
11204      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
11205      * Otherwise, we copy x8-x12 into the banked user regs.
11206      */
11207     if (mode == ARM_CPU_MODE_FIQ) {
11208         for (i = 8; i < 13; i++) {
11209             env->usr_regs[i - 8] = env->xregs[i];
11210         }
11211     } else {
11212         for (i = 8; i < 13; i++) {
11213             env->regs[i] = env->xregs[i];
11214         }
11215     }
11216 
11217     /*
11218      * Registers r13 & r14 depend on the current mode.
11219      * If we are in a given mode, we copy the corresponding x registers to r13
11220      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
11221      * for the mode.
11222      */
11223     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
11224         env->regs[13] = env->xregs[13];
11225         env->regs[14] = env->xregs[14];
11226     } else {
11227         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
11228 
11229         /*
11230          * HYP is an exception in that it does not have its own banked r14 but
11231          * shares the USR r14
11232          */
11233         if (mode == ARM_CPU_MODE_HYP) {
11234             env->regs[14] = env->xregs[14];
11235         } else {
11236             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
11237         }
11238     }
11239 
11240     if (mode == ARM_CPU_MODE_HYP) {
11241         env->regs[13] = env->xregs[15];
11242     } else {
11243         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
11244     }
11245 
11246     if (mode == ARM_CPU_MODE_IRQ) {
11247         env->regs[14] = env->xregs[16];
11248         env->regs[13] = env->xregs[17];
11249     } else {
11250         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
11251         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
11252     }
11253 
11254     if (mode == ARM_CPU_MODE_SVC) {
11255         env->regs[14] = env->xregs[18];
11256         env->regs[13] = env->xregs[19];
11257     } else {
11258         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
11259         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
11260     }
11261 
11262     if (mode == ARM_CPU_MODE_ABT) {
11263         env->regs[14] = env->xregs[20];
11264         env->regs[13] = env->xregs[21];
11265     } else {
11266         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
11267         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
11268     }
11269 
11270     if (mode == ARM_CPU_MODE_UND) {
11271         env->regs[14] = env->xregs[22];
11272         env->regs[13] = env->xregs[23];
11273     } else {
11274         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
11275         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
11276     }
11277 
11278     /*
11279      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
11280      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
11281      * FIQ bank for r8-r14.
11282      */
11283     if (mode == ARM_CPU_MODE_FIQ) {
11284         for (i = 24; i < 31; i++) {
11285             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
11286         }
11287     } else {
11288         for (i = 24; i < 29; i++) {
11289             env->fiq_regs[i - 24] = env->xregs[i];
11290         }
11291         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
11292         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
11293     }
11294 
11295     env->regs[15] = env->pc;
11296 }
11297 
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)11298 static void take_aarch32_exception(CPUARMState *env, int new_mode,
11299                                    uint32_t mask, uint32_t offset,
11300                                    uint32_t newpc)
11301 {
11302     int new_el;
11303 
11304     /* Change the CPU state so as to actually take the exception. */
11305     switch_mode(env, new_mode);
11306 
11307     /*
11308      * For exceptions taken to AArch32 we must clear the SS bit in both
11309      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
11310      */
11311     env->pstate &= ~PSTATE_SS;
11312     env->spsr = cpsr_read(env);
11313     /* Clear IT bits.  */
11314     env->condexec_bits = 0;
11315     /* Switch to the new mode, and to the correct instruction set.  */
11316     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
11317 
11318     /* This must be after mode switching. */
11319     new_el = arm_current_el(env);
11320 
11321     /* Set new mode endianness */
11322     env->uncached_cpsr &= ~CPSR_E;
11323     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
11324         env->uncached_cpsr |= CPSR_E;
11325     }
11326     /* J and IL must always be cleared for exception entry */
11327     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
11328     env->daif |= mask;
11329 
11330     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
11331         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
11332             env->uncached_cpsr |= CPSR_SSBS;
11333         } else {
11334             env->uncached_cpsr &= ~CPSR_SSBS;
11335         }
11336     }
11337 
11338     if (new_mode == ARM_CPU_MODE_HYP) {
11339         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
11340         env->elr_el[2] = env->regs[15];
11341     } else {
11342         /* CPSR.PAN is normally preserved preserved unless...  */
11343         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
11344             switch (new_el) {
11345             case 3:
11346                 if (!arm_is_secure_below_el3(env)) {
11347                     /* ... the target is EL3, from non-secure state.  */
11348                     env->uncached_cpsr &= ~CPSR_PAN;
11349                     break;
11350                 }
11351                 /* ... the target is EL3, from secure state ... */
11352                 /* fall through */
11353             case 1:
11354                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
11355                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
11356                     env->uncached_cpsr |= CPSR_PAN;
11357                 }
11358                 break;
11359             }
11360         }
11361         /*
11362          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
11363          * and we should just guard the thumb mode on V4
11364          */
11365         if (arm_feature(env, ARM_FEATURE_V4T)) {
11366             env->thumb =
11367                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
11368         }
11369         env->regs[14] = env->regs[15] + offset;
11370     }
11371     env->regs[15] = newpc;
11372 
11373     if (tcg_enabled()) {
11374         arm_rebuild_hflags(env);
11375     }
11376 }
11377 
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)11378 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
11379 {
11380     /*
11381      * Handle exception entry to Hyp mode; this is sufficiently
11382      * different to entry to other AArch32 modes that we handle it
11383      * separately here.
11384      *
11385      * The vector table entry used is always the 0x14 Hyp mode entry point,
11386      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
11387      * The offset applied to the preferred return address is always zero
11388      * (see DDI0487C.a section G1.12.3).
11389      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
11390      */
11391     uint32_t addr, mask;
11392     ARMCPU *cpu = ARM_CPU(cs);
11393     CPUARMState *env = &cpu->env;
11394 
11395     switch (cs->exception_index) {
11396     case EXCP_UDEF:
11397         addr = 0x04;
11398         break;
11399     case EXCP_SWI:
11400         addr = 0x08;
11401         break;
11402     case EXCP_BKPT:
11403         /* Fall through to prefetch abort.  */
11404     case EXCP_PREFETCH_ABORT:
11405         env->cp15.ifar_s = env->exception.vaddress;
11406         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
11407                       (uint32_t)env->exception.vaddress);
11408         addr = 0x0c;
11409         break;
11410     case EXCP_DATA_ABORT:
11411         env->cp15.dfar_s = env->exception.vaddress;
11412         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
11413                       (uint32_t)env->exception.vaddress);
11414         addr = 0x10;
11415         break;
11416     case EXCP_IRQ:
11417         addr = 0x18;
11418         break;
11419     case EXCP_FIQ:
11420         addr = 0x1c;
11421         break;
11422     case EXCP_HVC:
11423         addr = 0x08;
11424         break;
11425     case EXCP_HYP_TRAP:
11426         addr = 0x14;
11427         break;
11428     default:
11429         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11430     }
11431 
11432     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
11433         if (!arm_feature(env, ARM_FEATURE_V8)) {
11434             /*
11435              * QEMU syndrome values are v8-style. v7 has the IL bit
11436              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
11437              * If this is a v7 CPU, squash the IL bit in those cases.
11438              */
11439             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
11440                 (cs->exception_index == EXCP_DATA_ABORT &&
11441                  !(env->exception.syndrome & ARM_EL_ISV)) ||
11442                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
11443                 env->exception.syndrome &= ~ARM_EL_IL;
11444             }
11445         }
11446         env->cp15.esr_el[2] = env->exception.syndrome;
11447     }
11448 
11449     if (arm_current_el(env) != 2 && addr < 0x14) {
11450         addr = 0x14;
11451     }
11452 
11453     mask = 0;
11454     if (!(env->cp15.scr_el3 & SCR_EA)) {
11455         mask |= CPSR_A;
11456     }
11457     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
11458         mask |= CPSR_I;
11459     }
11460     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
11461         mask |= CPSR_F;
11462     }
11463 
11464     addr += env->cp15.hvbar;
11465 
11466     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
11467 }
11468 
arm_cpu_do_interrupt_aarch32(CPUState * cs)11469 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
11470 {
11471     ARMCPU *cpu = ARM_CPU(cs);
11472     CPUARMState *env = &cpu->env;
11473     uint32_t addr;
11474     uint32_t mask;
11475     int new_mode;
11476     uint32_t offset;
11477     uint32_t moe;
11478 
11479     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
11480     switch (syn_get_ec(env->exception.syndrome)) {
11481     case EC_BREAKPOINT:
11482     case EC_BREAKPOINT_SAME_EL:
11483         moe = 1;
11484         break;
11485     case EC_WATCHPOINT:
11486     case EC_WATCHPOINT_SAME_EL:
11487         moe = 10;
11488         break;
11489     case EC_AA32_BKPT:
11490         moe = 3;
11491         break;
11492     case EC_VECTORCATCH:
11493         moe = 5;
11494         break;
11495     default:
11496         moe = 0;
11497         break;
11498     }
11499 
11500     if (moe) {
11501         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11502     }
11503 
11504     if (env->exception.target_el == 2) {
11505         /* Debug exceptions are reported differently on AArch32 */
11506         switch (syn_get_ec(env->exception.syndrome)) {
11507         case EC_BREAKPOINT:
11508         case EC_BREAKPOINT_SAME_EL:
11509         case EC_AA32_BKPT:
11510         case EC_VECTORCATCH:
11511             env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
11512                                                      0, 0, 0x22);
11513             break;
11514         case EC_WATCHPOINT:
11515             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11516                                                  EC_DATAABORT);
11517             break;
11518         case EC_WATCHPOINT_SAME_EL:
11519             env->exception.syndrome = syn_set_ec(env->exception.syndrome,
11520                                                  EC_DATAABORT_SAME_EL);
11521             break;
11522         }
11523         arm_cpu_do_interrupt_aarch32_hyp(cs);
11524         return;
11525     }
11526 
11527     switch (cs->exception_index) {
11528     case EXCP_UDEF:
11529         new_mode = ARM_CPU_MODE_UND;
11530         addr = 0x04;
11531         mask = CPSR_I;
11532         if (env->thumb) {
11533             offset = 2;
11534         } else {
11535             offset = 4;
11536         }
11537         break;
11538     case EXCP_SWI:
11539         new_mode = ARM_CPU_MODE_SVC;
11540         addr = 0x08;
11541         mask = CPSR_I;
11542         /* The PC already points to the next instruction.  */
11543         offset = 0;
11544         break;
11545     case EXCP_BKPT:
11546         /* Fall through to prefetch abort.  */
11547     case EXCP_PREFETCH_ABORT:
11548         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11549         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11550         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11551                       env->exception.fsr, (uint32_t)env->exception.vaddress);
11552         new_mode = ARM_CPU_MODE_ABT;
11553         addr = 0x0c;
11554         mask = CPSR_A | CPSR_I;
11555         offset = 4;
11556         break;
11557     case EXCP_DATA_ABORT:
11558         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11559         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11560         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11561                       env->exception.fsr,
11562                       (uint32_t)env->exception.vaddress);
11563         new_mode = ARM_CPU_MODE_ABT;
11564         addr = 0x10;
11565         mask = CPSR_A | CPSR_I;
11566         offset = 8;
11567         break;
11568     case EXCP_IRQ:
11569         new_mode = ARM_CPU_MODE_IRQ;
11570         addr = 0x18;
11571         /* Disable IRQ and imprecise data aborts.  */
11572         mask = CPSR_A | CPSR_I;
11573         offset = 4;
11574         if (env->cp15.scr_el3 & SCR_IRQ) {
11575             /* IRQ routed to monitor mode */
11576             new_mode = ARM_CPU_MODE_MON;
11577             mask |= CPSR_F;
11578         }
11579         break;
11580     case EXCP_FIQ:
11581         new_mode = ARM_CPU_MODE_FIQ;
11582         addr = 0x1c;
11583         /* Disable FIQ, IRQ and imprecise data aborts.  */
11584         mask = CPSR_A | CPSR_I | CPSR_F;
11585         if (env->cp15.scr_el3 & SCR_FIQ) {
11586             /* FIQ routed to monitor mode */
11587             new_mode = ARM_CPU_MODE_MON;
11588         }
11589         offset = 4;
11590         break;
11591     case EXCP_VIRQ:
11592         new_mode = ARM_CPU_MODE_IRQ;
11593         addr = 0x18;
11594         /* Disable IRQ and imprecise data aborts.  */
11595         mask = CPSR_A | CPSR_I;
11596         offset = 4;
11597         break;
11598     case EXCP_VFIQ:
11599         new_mode = ARM_CPU_MODE_FIQ;
11600         addr = 0x1c;
11601         /* Disable FIQ, IRQ and imprecise data aborts.  */
11602         mask = CPSR_A | CPSR_I | CPSR_F;
11603         offset = 4;
11604         break;
11605     case EXCP_VSERR:
11606         {
11607             /*
11608              * Note that this is reported as a data abort, but the DFAR
11609              * has an UNKNOWN value.  Construct the SError syndrome from
11610              * AET and ExT fields.
11611              */
11612             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11613 
11614             if (extended_addresses_enabled(env)) {
11615                 env->exception.fsr = arm_fi_to_lfsc(&fi);
11616             } else {
11617                 env->exception.fsr = arm_fi_to_sfsc(&fi);
11618             }
11619             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11620             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11621             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11622                           env->exception.fsr);
11623 
11624             new_mode = ARM_CPU_MODE_ABT;
11625             addr = 0x10;
11626             mask = CPSR_A | CPSR_I;
11627             offset = 8;
11628         }
11629         break;
11630     case EXCP_SMC:
11631         new_mode = ARM_CPU_MODE_MON;
11632         addr = 0x08;
11633         mask = CPSR_A | CPSR_I | CPSR_F;
11634         offset = 0;
11635         break;
11636     case EXCP_MON_TRAP:
11637         new_mode = ARM_CPU_MODE_MON;
11638         addr = 0x04;
11639         mask = CPSR_A | CPSR_I | CPSR_F;
11640         if (env->thumb) {
11641             offset = 2;
11642         } else {
11643             offset = 4;
11644         }
11645         break;
11646     default:
11647         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11648         return; /* Never happens.  Keep compiler happy.  */
11649     }
11650 
11651     if (new_mode == ARM_CPU_MODE_MON) {
11652         addr += env->cp15.mvbar;
11653     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11654         /* High vectors. When enabled, base address cannot be remapped. */
11655         addr += 0xffff0000;
11656     } else {
11657         /*
11658          * ARM v7 architectures provide a vector base address register to remap
11659          * the interrupt vector table.
11660          * This register is only followed in non-monitor mode, and is banked.
11661          * Note: only bits 31:5 are valid.
11662          */
11663         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11664     }
11665 
11666     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11667         env->cp15.scr_el3 &= ~SCR_NS;
11668     }
11669 
11670     take_aarch32_exception(env, new_mode, mask, offset, addr);
11671 }
11672 
aarch64_regnum(CPUARMState * env,int aarch32_reg)11673 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11674 {
11675     /*
11676      * Return the register number of the AArch64 view of the AArch32
11677      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11678      * be that of the AArch32 mode the exception came from.
11679      */
11680     int mode = env->uncached_cpsr & CPSR_M;
11681 
11682     switch (aarch32_reg) {
11683     case 0 ... 7:
11684         return aarch32_reg;
11685     case 8 ... 12:
11686         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11687     case 13:
11688         switch (mode) {
11689         case ARM_CPU_MODE_USR:
11690         case ARM_CPU_MODE_SYS:
11691             return 13;
11692         case ARM_CPU_MODE_HYP:
11693             return 15;
11694         case ARM_CPU_MODE_IRQ:
11695             return 17;
11696         case ARM_CPU_MODE_SVC:
11697             return 19;
11698         case ARM_CPU_MODE_ABT:
11699             return 21;
11700         case ARM_CPU_MODE_UND:
11701             return 23;
11702         case ARM_CPU_MODE_FIQ:
11703             return 29;
11704         default:
11705             g_assert_not_reached();
11706         }
11707     case 14:
11708         switch (mode) {
11709         case ARM_CPU_MODE_USR:
11710         case ARM_CPU_MODE_SYS:
11711         case ARM_CPU_MODE_HYP:
11712             return 14;
11713         case ARM_CPU_MODE_IRQ:
11714             return 16;
11715         case ARM_CPU_MODE_SVC:
11716             return 18;
11717         case ARM_CPU_MODE_ABT:
11718             return 20;
11719         case ARM_CPU_MODE_UND:
11720             return 22;
11721         case ARM_CPU_MODE_FIQ:
11722             return 30;
11723         default:
11724             g_assert_not_reached();
11725         }
11726     case 15:
11727         return 31;
11728     default:
11729         g_assert_not_reached();
11730     }
11731 }
11732 
cpsr_read_for_spsr_elx(CPUARMState * env)11733 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11734 {
11735     uint32_t ret = cpsr_read(env);
11736 
11737     /* Move DIT to the correct location for SPSR_ELx */
11738     if (ret & CPSR_DIT) {
11739         ret &= ~CPSR_DIT;
11740         ret |= PSTATE_DIT;
11741     }
11742     /* Merge PSTATE.SS into SPSR_ELx */
11743     ret |= env->pstate & PSTATE_SS;
11744 
11745     return ret;
11746 }
11747 
syndrome_is_sync_extabt(uint32_t syndrome)11748 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11749 {
11750     /* Return true if this syndrome value is a synchronous external abort */
11751     switch (syn_get_ec(syndrome)) {
11752     case EC_INSNABORT:
11753     case EC_INSNABORT_SAME_EL:
11754     case EC_DATAABORT:
11755     case EC_DATAABORT_SAME_EL:
11756         /* Look at fault status code for all the synchronous ext abort cases */
11757         switch (syndrome & 0x3f) {
11758         case 0x10:
11759         case 0x13:
11760         case 0x14:
11761         case 0x15:
11762         case 0x16:
11763         case 0x17:
11764             return true;
11765         default:
11766             return false;
11767         }
11768     default:
11769         return false;
11770     }
11771 }
11772 
11773 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)11774 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11775 {
11776     ARMCPU *cpu = ARM_CPU(cs);
11777     CPUARMState *env = &cpu->env;
11778     unsigned int new_el = env->exception.target_el;
11779     target_ulong addr = env->cp15.vbar_el[new_el];
11780     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11781     unsigned int old_mode;
11782     unsigned int cur_el = arm_current_el(env);
11783     int rt;
11784 
11785     if (tcg_enabled()) {
11786         /*
11787          * Note that new_el can never be 0.  If cur_el is 0, then
11788          * el0_a64 is is_a64(), else el0_a64 is ignored.
11789          */
11790         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11791     }
11792 
11793     if (cur_el < new_el) {
11794         /*
11795          * Entry vector offset depends on whether the implemented EL
11796          * immediately lower than the target level is using AArch32 or AArch64
11797          */
11798         bool is_aa64;
11799         uint64_t hcr;
11800 
11801         switch (new_el) {
11802         case 3:
11803             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11804             break;
11805         case 2:
11806             hcr = arm_hcr_el2_eff(env);
11807             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11808                 is_aa64 = (hcr & HCR_RW) != 0;
11809                 break;
11810             }
11811             /* fall through */
11812         case 1:
11813             is_aa64 = is_a64(env);
11814             break;
11815         default:
11816             g_assert_not_reached();
11817         }
11818 
11819         if (is_aa64) {
11820             addr += 0x400;
11821         } else {
11822             addr += 0x600;
11823         }
11824     } else if (pstate_read(env) & PSTATE_SP) {
11825         addr += 0x200;
11826     }
11827 
11828     switch (cs->exception_index) {
11829     case EXCP_GPC:
11830         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11831                       env->cp15.mfar_el3);
11832         /* fall through */
11833     case EXCP_PREFETCH_ABORT:
11834     case EXCP_DATA_ABORT:
11835         /*
11836          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11837          * to be taken to the SError vector entrypoint.
11838          */
11839         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11840             syndrome_is_sync_extabt(env->exception.syndrome)) {
11841             addr += 0x180;
11842         }
11843         env->cp15.far_el[new_el] = env->exception.vaddress;
11844         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11845                       env->cp15.far_el[new_el]);
11846         /* fall through */
11847     case EXCP_BKPT:
11848     case EXCP_UDEF:
11849     case EXCP_SWI:
11850     case EXCP_HVC:
11851     case EXCP_HYP_TRAP:
11852     case EXCP_SMC:
11853         switch (syn_get_ec(env->exception.syndrome)) {
11854         case EC_ADVSIMDFPACCESSTRAP:
11855             /*
11856              * QEMU internal FP/SIMD syndromes from AArch32 include the
11857              * TA and coproc fields which are only exposed if the exception
11858              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11859              * AArch64 format syndrome.
11860              */
11861             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11862             break;
11863         case EC_CP14RTTRAP:
11864         case EC_CP15RTTRAP:
11865         case EC_CP14DTTRAP:
11866             /*
11867              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11868              * the raw register field from the insn; when taking this to
11869              * AArch64 we must convert it to the AArch64 view of the register
11870              * number. Notice that we read a 4-bit AArch32 register number and
11871              * write back a 5-bit AArch64 one.
11872              */
11873             rt = extract32(env->exception.syndrome, 5, 4);
11874             rt = aarch64_regnum(env, rt);
11875             env->exception.syndrome = deposit32(env->exception.syndrome,
11876                                                 5, 5, rt);
11877             break;
11878         case EC_CP15RRTTRAP:
11879         case EC_CP14RRTTRAP:
11880             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11881             rt = extract32(env->exception.syndrome, 5, 4);
11882             rt = aarch64_regnum(env, rt);
11883             env->exception.syndrome = deposit32(env->exception.syndrome,
11884                                                 5, 5, rt);
11885             rt = extract32(env->exception.syndrome, 10, 4);
11886             rt = aarch64_regnum(env, rt);
11887             env->exception.syndrome = deposit32(env->exception.syndrome,
11888                                                 10, 5, rt);
11889             break;
11890         }
11891         env->cp15.esr_el[new_el] = env->exception.syndrome;
11892         break;
11893     case EXCP_IRQ:
11894     case EXCP_VIRQ:
11895     case EXCP_NMI:
11896     case EXCP_VINMI:
11897         addr += 0x80;
11898         break;
11899     case EXCP_FIQ:
11900     case EXCP_VFIQ:
11901     case EXCP_VFNMI:
11902         addr += 0x100;
11903         break;
11904     case EXCP_VSERR:
11905         addr += 0x180;
11906         /* Construct the SError syndrome from IDS and ISS fields. */
11907         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11908         env->cp15.esr_el[new_el] = env->exception.syndrome;
11909         break;
11910     default:
11911         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11912     }
11913 
11914     if (is_a64(env)) {
11915         old_mode = pstate_read(env);
11916         aarch64_save_sp(env, arm_current_el(env));
11917         env->elr_el[new_el] = env->pc;
11918 
11919         if (cur_el == 1 && new_el == 1) {
11920             uint64_t hcr = arm_hcr_el2_eff(env);
11921             if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11922                 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11923                 /*
11924                  * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11925                  * by setting M[3:2] to 0b10.
11926                  * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11927                  * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11928                  */
11929                 old_mode = deposit32(old_mode, 2, 2, 2);
11930             }
11931         }
11932     } else {
11933         old_mode = cpsr_read_for_spsr_elx(env);
11934         env->elr_el[new_el] = env->regs[15];
11935 
11936         aarch64_sync_32_to_64(env);
11937 
11938         env->condexec_bits = 0;
11939     }
11940     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11941 
11942     qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11943     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11944                   env->elr_el[new_el]);
11945 
11946     if (cpu_isar_feature(aa64_pan, cpu)) {
11947         /* The value of PSTATE.PAN is normally preserved, except when ... */
11948         new_mode |= old_mode & PSTATE_PAN;
11949         switch (new_el) {
11950         case 2:
11951             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11952             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11953                 != (HCR_E2H | HCR_TGE)) {
11954                 break;
11955             }
11956             /* fall through */
11957         case 1:
11958             /* ... the target is EL1 ... */
11959             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11960             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11961                 new_mode |= PSTATE_PAN;
11962             }
11963             break;
11964         }
11965     }
11966     if (cpu_isar_feature(aa64_mte, cpu)) {
11967         new_mode |= PSTATE_TCO;
11968     }
11969 
11970     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11971         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11972             new_mode |= PSTATE_SSBS;
11973         } else {
11974             new_mode &= ~PSTATE_SSBS;
11975         }
11976     }
11977 
11978     if (cpu_isar_feature(aa64_nmi, cpu)) {
11979         if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
11980             new_mode |= PSTATE_ALLINT;
11981         } else {
11982             new_mode &= ~PSTATE_ALLINT;
11983         }
11984     }
11985 
11986     pstate_write(env, PSTATE_DAIF | new_mode);
11987     env->aarch64 = true;
11988     aarch64_restore_sp(env, new_el);
11989 
11990     if (tcg_enabled()) {
11991         helper_rebuild_hflags_a64(env, new_el);
11992     }
11993 
11994     env->pc = addr;
11995 
11996     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11997                   new_el, env->pc, pstate_read(env));
11998 }
11999 
12000 /*
12001  * Do semihosting call and set the appropriate return value. All the
12002  * permission and validity checks have been done at translate time.
12003  *
12004  * We only see semihosting exceptions in TCG only as they are not
12005  * trapped to the hypervisor in KVM.
12006  */
12007 #ifdef CONFIG_TCG
tcg_handle_semihosting(CPUState * cs)12008 static void tcg_handle_semihosting(CPUState *cs)
12009 {
12010     ARMCPU *cpu = ARM_CPU(cs);
12011     CPUARMState *env = &cpu->env;
12012 
12013     if (is_a64(env)) {
12014         qemu_log_mask(CPU_LOG_INT,
12015                       "...handling as semihosting call 0x%" PRIx64 "\n",
12016                       env->xregs[0]);
12017         do_common_semihosting(cs);
12018         env->pc += 4;
12019     } else {
12020         qemu_log_mask(CPU_LOG_INT,
12021                       "...handling as semihosting call 0x%x\n",
12022                       env->regs[0]);
12023         do_common_semihosting(cs);
12024         env->regs[15] += env->thumb ? 2 : 4;
12025     }
12026 }
12027 #endif
12028 
12029 /*
12030  * Handle a CPU exception for A and R profile CPUs.
12031  * Do any appropriate logging, handle PSCI calls, and then hand off
12032  * to the AArch64-entry or AArch32-entry function depending on the
12033  * target exception level's register width.
12034  *
12035  * Note: this is used for both TCG (as the do_interrupt tcg op),
12036  *       and KVM to re-inject guest debug exceptions, and to
12037  *       inject a Synchronous-External-Abort.
12038  */
arm_cpu_do_interrupt(CPUState * cs)12039 void arm_cpu_do_interrupt(CPUState *cs)
12040 {
12041     ARMCPU *cpu = ARM_CPU(cs);
12042     CPUARMState *env = &cpu->env;
12043     unsigned int new_el = env->exception.target_el;
12044 
12045     assert(!arm_feature(env, ARM_FEATURE_M));
12046 
12047     arm_log_exception(cs);
12048     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
12049                   new_el);
12050     if (qemu_loglevel_mask(CPU_LOG_INT)
12051         && !excp_is_internal(cs->exception_index)) {
12052         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
12053                       syn_get_ec(env->exception.syndrome),
12054                       env->exception.syndrome);
12055     }
12056 
12057     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
12058         arm_handle_psci_call(cpu);
12059         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
12060         return;
12061     }
12062 
12063     /*
12064      * Semihosting semantics depend on the register width of the code
12065      * that caused the exception, not the target exception level, so
12066      * must be handled here.
12067      */
12068 #ifdef CONFIG_TCG
12069     if (cs->exception_index == EXCP_SEMIHOST) {
12070         tcg_handle_semihosting(cs);
12071         return;
12072     }
12073 #endif
12074 
12075     /*
12076      * Hooks may change global state so BQL should be held, also the
12077      * BQL needs to be held for any modification of
12078      * cs->interrupt_request.
12079      */
12080     g_assert(bql_locked());
12081 
12082     arm_call_pre_el_change_hook(cpu);
12083 
12084     assert(!excp_is_internal(cs->exception_index));
12085     if (arm_el_is_aa64(env, new_el)) {
12086         arm_cpu_do_interrupt_aarch64(cs);
12087     } else {
12088         arm_cpu_do_interrupt_aarch32(cs);
12089     }
12090 
12091     arm_call_el_change_hook(cpu);
12092 
12093     if (!kvm_enabled()) {
12094         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
12095     }
12096 }
12097 #endif /* !CONFIG_USER_ONLY */
12098 
arm_sctlr(CPUARMState * env,int el)12099 uint64_t arm_sctlr(CPUARMState *env, int el)
12100 {
12101     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */
12102     if (el == 0) {
12103         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
12104         switch (mmu_idx) {
12105         case ARMMMUIdx_E20_0:
12106             el = 2;
12107             break;
12108         case ARMMMUIdx_E30_0:
12109             el = 3;
12110             break;
12111         default:
12112             el = 1;
12113             break;
12114         }
12115     }
12116     return env->cp15.sctlr_el[el];
12117 }
12118 
aa64_va_parameter_tbi(uint64_t tcr,ARMMMUIdx mmu_idx)12119 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
12120 {
12121     if (regime_has_2_ranges(mmu_idx)) {
12122         return extract64(tcr, 37, 2);
12123     } else if (regime_is_stage2(mmu_idx)) {
12124         return 0; /* VTCR_EL2 */
12125     } else {
12126         /* Replicate the single TBI bit so we always have 2 bits.  */
12127         return extract32(tcr, 20, 1) * 3;
12128     }
12129 }
12130 
aa64_va_parameter_tbid(uint64_t tcr,ARMMMUIdx mmu_idx)12131 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
12132 {
12133     if (regime_has_2_ranges(mmu_idx)) {
12134         return extract64(tcr, 51, 2);
12135     } else if (regime_is_stage2(mmu_idx)) {
12136         return 0; /* VTCR_EL2 */
12137     } else {
12138         /* Replicate the single TBID bit so we always have 2 bits.  */
12139         return extract32(tcr, 29, 1) * 3;
12140     }
12141 }
12142 
aa64_va_parameter_tcma(uint64_t tcr,ARMMMUIdx mmu_idx)12143 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
12144 {
12145     if (regime_has_2_ranges(mmu_idx)) {
12146         return extract64(tcr, 57, 2);
12147     } else {
12148         /* Replicate the single TCMA bit so we always have 2 bits.  */
12149         return extract32(tcr, 30, 1) * 3;
12150     }
12151 }
12152 
tg0_to_gran_size(int tg)12153 static ARMGranuleSize tg0_to_gran_size(int tg)
12154 {
12155     switch (tg) {
12156     case 0:
12157         return Gran4K;
12158     case 1:
12159         return Gran64K;
12160     case 2:
12161         return Gran16K;
12162     default:
12163         return GranInvalid;
12164     }
12165 }
12166 
tg1_to_gran_size(int tg)12167 static ARMGranuleSize tg1_to_gran_size(int tg)
12168 {
12169     switch (tg) {
12170     case 1:
12171         return Gran16K;
12172     case 2:
12173         return Gran4K;
12174     case 3:
12175         return Gran64K;
12176     default:
12177         return GranInvalid;
12178     }
12179 }
12180 
have4k(ARMCPU * cpu,bool stage2)12181 static inline bool have4k(ARMCPU *cpu, bool stage2)
12182 {
12183     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
12184         : cpu_isar_feature(aa64_tgran4, cpu);
12185 }
12186 
have16k(ARMCPU * cpu,bool stage2)12187 static inline bool have16k(ARMCPU *cpu, bool stage2)
12188 {
12189     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
12190         : cpu_isar_feature(aa64_tgran16, cpu);
12191 }
12192 
have64k(ARMCPU * cpu,bool stage2)12193 static inline bool have64k(ARMCPU *cpu, bool stage2)
12194 {
12195     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
12196         : cpu_isar_feature(aa64_tgran64, cpu);
12197 }
12198 
sanitize_gran_size(ARMCPU * cpu,ARMGranuleSize gran,bool stage2)12199 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
12200                                          bool stage2)
12201 {
12202     switch (gran) {
12203     case Gran4K:
12204         if (have4k(cpu, stage2)) {
12205             return gran;
12206         }
12207         break;
12208     case Gran16K:
12209         if (have16k(cpu, stage2)) {
12210             return gran;
12211         }
12212         break;
12213     case Gran64K:
12214         if (have64k(cpu, stage2)) {
12215             return gran;
12216         }
12217         break;
12218     case GranInvalid:
12219         break;
12220     }
12221     /*
12222      * If the guest selects a granule size that isn't implemented,
12223      * the architecture requires that we behave as if it selected one
12224      * that is (with an IMPDEF choice of which one to pick). We choose
12225      * to implement the smallest supported granule size.
12226      */
12227     if (have4k(cpu, stage2)) {
12228         return Gran4K;
12229     }
12230     if (have16k(cpu, stage2)) {
12231         return Gran16K;
12232     }
12233     assert(have64k(cpu, stage2));
12234     return Gran64K;
12235 }
12236 
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data,bool el1_is_aa32)12237 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
12238                                    ARMMMUIdx mmu_idx, bool data,
12239                                    bool el1_is_aa32)
12240 {
12241     uint64_t tcr = regime_tcr(env, mmu_idx);
12242     bool epd, hpd, tsz_oob, ds, ha, hd;
12243     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
12244     ARMGranuleSize gran;
12245     ARMCPU *cpu = env_archcpu(env);
12246     bool stage2 = regime_is_stage2(mmu_idx);
12247 
12248     if (!regime_has_2_ranges(mmu_idx)) {
12249         select = 0;
12250         tsz = extract32(tcr, 0, 6);
12251         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12252         if (stage2) {
12253             /* VTCR_EL2 */
12254             hpd = false;
12255         } else {
12256             hpd = extract32(tcr, 24, 1);
12257         }
12258         epd = false;
12259         sh = extract32(tcr, 12, 2);
12260         ps = extract32(tcr, 16, 3);
12261         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
12262         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12263         ds = extract64(tcr, 32, 1);
12264     } else {
12265         bool e0pd;
12266 
12267         /*
12268          * Bit 55 is always between the two regions, and is canonical for
12269          * determining if address tagging is enabled.
12270          */
12271         select = extract64(va, 55, 1);
12272         if (!select) {
12273             tsz = extract32(tcr, 0, 6);
12274             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
12275             epd = extract32(tcr, 7, 1);
12276             sh = extract32(tcr, 12, 2);
12277             hpd = extract64(tcr, 41, 1);
12278             e0pd = extract64(tcr, 55, 1);
12279         } else {
12280             tsz = extract32(tcr, 16, 6);
12281             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
12282             epd = extract32(tcr, 23, 1);
12283             sh = extract32(tcr, 28, 2);
12284             hpd = extract64(tcr, 42, 1);
12285             e0pd = extract64(tcr, 56, 1);
12286         }
12287         ps = extract64(tcr, 32, 3);
12288         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
12289         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
12290         ds = extract64(tcr, 59, 1);
12291 
12292         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
12293             regime_is_user(env, mmu_idx)) {
12294             epd = true;
12295         }
12296     }
12297 
12298     gran = sanitize_gran_size(cpu, gran, stage2);
12299 
12300     if (cpu_isar_feature(aa64_st, cpu)) {
12301         max_tsz = 48 - (gran == Gran64K);
12302     } else {
12303         max_tsz = 39;
12304     }
12305 
12306     /*
12307      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
12308      * adjust the effective value of DS, as documented.
12309      */
12310     min_tsz = 16;
12311     if (gran == Gran64K) {
12312         if (cpu_isar_feature(aa64_lva, cpu)) {
12313             min_tsz = 12;
12314         }
12315         ds = false;
12316     } else if (ds) {
12317         if (regime_is_stage2(mmu_idx)) {
12318             if (gran == Gran16K) {
12319                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
12320             } else {
12321                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
12322             }
12323         } else {
12324             if (gran == Gran16K) {
12325                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
12326             } else {
12327                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
12328             }
12329         }
12330         if (ds) {
12331             min_tsz = 12;
12332         }
12333     }
12334 
12335     if (stage2 && el1_is_aa32) {
12336         /*
12337          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
12338          * are loosened: a configured IPA of 40 bits is permitted even if
12339          * the implemented PA is less than that (and so a 40 bit IPA would
12340          * fault for an AArch64 EL1). See R_DTLMN.
12341          */
12342         min_tsz = MIN(min_tsz, 24);
12343     }
12344 
12345     if (tsz > max_tsz) {
12346         tsz = max_tsz;
12347         tsz_oob = true;
12348     } else if (tsz < min_tsz) {
12349         tsz = min_tsz;
12350         tsz_oob = true;
12351     } else {
12352         tsz_oob = false;
12353     }
12354 
12355     /* Present TBI as a composite with TBID.  */
12356     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12357     if (!data) {
12358         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12359     }
12360     tbi = (tbi >> select) & 1;
12361 
12362     return (ARMVAParameters) {
12363         .tsz = tsz,
12364         .ps = ps,
12365         .sh = sh,
12366         .select = select,
12367         .tbi = tbi,
12368         .epd = epd,
12369         .hpd = hpd,
12370         .tsz_oob = tsz_oob,
12371         .ds = ds,
12372         .ha = ha,
12373         .hd = ha && hd,
12374         .gran = gran,
12375     };
12376 }
12377 
12378 /*
12379  * Note that signed overflow is undefined in C.  The following routines are
12380  * careful to use unsigned types where modulo arithmetic is required.
12381  * Failure to do so _will_ break on newer gcc.
12382  */
12383 
12384 /* Signed saturating arithmetic.  */
12385 
12386 /* Perform 16-bit signed saturating addition.  */
add16_sat(uint16_t a,uint16_t b)12387 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12388 {
12389     uint16_t res;
12390 
12391     res = a + b;
12392     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12393         if (a & 0x8000) {
12394             res = 0x8000;
12395         } else {
12396             res = 0x7fff;
12397         }
12398     }
12399     return res;
12400 }
12401 
12402 /* Perform 8-bit signed saturating addition.  */
add8_sat(uint8_t a,uint8_t b)12403 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12404 {
12405     uint8_t res;
12406 
12407     res = a + b;
12408     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12409         if (a & 0x80) {
12410             res = 0x80;
12411         } else {
12412             res = 0x7f;
12413         }
12414     }
12415     return res;
12416 }
12417 
12418 /* Perform 16-bit signed saturating subtraction.  */
sub16_sat(uint16_t a,uint16_t b)12419 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12420 {
12421     uint16_t res;
12422 
12423     res = a - b;
12424     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12425         if (a & 0x8000) {
12426             res = 0x8000;
12427         } else {
12428             res = 0x7fff;
12429         }
12430     }
12431     return res;
12432 }
12433 
12434 /* Perform 8-bit signed saturating subtraction.  */
sub8_sat(uint8_t a,uint8_t b)12435 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12436 {
12437     uint8_t res;
12438 
12439     res = a - b;
12440     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12441         if (a & 0x80) {
12442             res = 0x80;
12443         } else {
12444             res = 0x7f;
12445         }
12446     }
12447     return res;
12448 }
12449 
12450 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12451 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12452 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12453 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12454 #define PFX q
12455 
12456 #include "op_addsub.h"
12457 
12458 /* Unsigned saturating arithmetic.  */
add16_usat(uint16_t a,uint16_t b)12459 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12460 {
12461     uint16_t res;
12462     res = a + b;
12463     if (res < a) {
12464         res = 0xffff;
12465     }
12466     return res;
12467 }
12468 
sub16_usat(uint16_t a,uint16_t b)12469 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12470 {
12471     if (a > b) {
12472         return a - b;
12473     } else {
12474         return 0;
12475     }
12476 }
12477 
add8_usat(uint8_t a,uint8_t b)12478 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12479 {
12480     uint8_t res;
12481     res = a + b;
12482     if (res < a) {
12483         res = 0xff;
12484     }
12485     return res;
12486 }
12487 
sub8_usat(uint8_t a,uint8_t b)12488 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12489 {
12490     if (a > b) {
12491         return a - b;
12492     } else {
12493         return 0;
12494     }
12495 }
12496 
12497 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12498 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12499 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12500 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12501 #define PFX uq
12502 
12503 #include "op_addsub.h"
12504 
12505 /* Signed modulo arithmetic.  */
12506 #define SARITH16(a, b, n, op) do { \
12507     int32_t sum; \
12508     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12509     RESULT(sum, n, 16); \
12510     if (sum >= 0) \
12511         ge |= 3 << (n * 2); \
12512     } while (0)
12513 
12514 #define SARITH8(a, b, n, op) do { \
12515     int32_t sum; \
12516     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12517     RESULT(sum, n, 8); \
12518     if (sum >= 0) \
12519         ge |= 1 << n; \
12520     } while (0)
12521 
12522 
12523 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12524 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12525 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12526 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12527 #define PFX s
12528 #define ARITH_GE
12529 
12530 #include "op_addsub.h"
12531 
12532 /* Unsigned modulo arithmetic.  */
12533 #define ADD16(a, b, n) do { \
12534     uint32_t sum; \
12535     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12536     RESULT(sum, n, 16); \
12537     if ((sum >> 16) == 1) \
12538         ge |= 3 << (n * 2); \
12539     } while (0)
12540 
12541 #define ADD8(a, b, n) do { \
12542     uint32_t sum; \
12543     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12544     RESULT(sum, n, 8); \
12545     if ((sum >> 8) == 1) \
12546         ge |= 1 << n; \
12547     } while (0)
12548 
12549 #define SUB16(a, b, n) do { \
12550     uint32_t sum; \
12551     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12552     RESULT(sum, n, 16); \
12553     if ((sum >> 16) == 0) \
12554         ge |= 3 << (n * 2); \
12555     } while (0)
12556 
12557 #define SUB8(a, b, n) do { \
12558     uint32_t sum; \
12559     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12560     RESULT(sum, n, 8); \
12561     if ((sum >> 8) == 0) \
12562         ge |= 1 << n; \
12563     } while (0)
12564 
12565 #define PFX u
12566 #define ARITH_GE
12567 
12568 #include "op_addsub.h"
12569 
12570 /* Halved signed arithmetic.  */
12571 #define ADD16(a, b, n) \
12572   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12573 #define SUB16(a, b, n) \
12574   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12575 #define ADD8(a, b, n) \
12576   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12577 #define SUB8(a, b, n) \
12578   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12579 #define PFX sh
12580 
12581 #include "op_addsub.h"
12582 
12583 /* Halved unsigned arithmetic.  */
12584 #define ADD16(a, b, n) \
12585   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12586 #define SUB16(a, b, n) \
12587   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12588 #define ADD8(a, b, n) \
12589   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12590 #define SUB8(a, b, n) \
12591   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12592 #define PFX uh
12593 
12594 #include "op_addsub.h"
12595 
do_usad(uint8_t a,uint8_t b)12596 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12597 {
12598     if (a > b) {
12599         return a - b;
12600     } else {
12601         return b - a;
12602     }
12603 }
12604 
12605 /* Unsigned sum of absolute byte differences.  */
HELPER(usad8)12606 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12607 {
12608     uint32_t sum;
12609     sum = do_usad(a, b);
12610     sum += do_usad(a >> 8, b >> 8);
12611     sum += do_usad(a >> 16, b >> 16);
12612     sum += do_usad(a >> 24, b >> 24);
12613     return sum;
12614 }
12615 
12616 /* For ARMv6 SEL instruction.  */
HELPER(sel_flags)12617 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12618 {
12619     uint32_t mask;
12620 
12621     mask = 0;
12622     if (flags & 1) {
12623         mask |= 0xff;
12624     }
12625     if (flags & 2) {
12626         mask |= 0xff00;
12627     }
12628     if (flags & 4) {
12629         mask |= 0xff0000;
12630     }
12631     if (flags & 8) {
12632         mask |= 0xff000000;
12633     }
12634     return (a & mask) | (b & ~mask);
12635 }
12636 
12637 /*
12638  * CRC helpers.
12639  * The upper bytes of val (above the number specified by 'bytes') must have
12640  * been zeroed out by the caller.
12641  */
HELPER(crc32)12642 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12643 {
12644     uint8_t buf[4];
12645 
12646     stl_le_p(buf, val);
12647 
12648     /* zlib crc32 converts the accumulator and output to one's complement.  */
12649     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12650 }
12651 
HELPER(crc32c)12652 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12653 {
12654     uint8_t buf[4];
12655 
12656     stl_le_p(buf, val);
12657 
12658     /* Linux crc32c converts the output to one's complement.  */
12659     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12660 }
12661 
12662 /*
12663  * Return the exception level to which FP-disabled exceptions should
12664  * be taken, or 0 if FP is enabled.
12665  */
fp_exception_el(CPUARMState * env,int cur_el)12666 int fp_exception_el(CPUARMState *env, int cur_el)
12667 {
12668 #ifndef CONFIG_USER_ONLY
12669     uint64_t hcr_el2;
12670 
12671     /*
12672      * CPACR and the CPTR registers don't exist before v6, so FP is
12673      * always accessible
12674      */
12675     if (!arm_feature(env, ARM_FEATURE_V6)) {
12676         return 0;
12677     }
12678 
12679     if (arm_feature(env, ARM_FEATURE_M)) {
12680         /* CPACR can cause a NOCP UsageFault taken to current security state */
12681         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12682             return 1;
12683         }
12684 
12685         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12686             if (!extract32(env->v7m.nsacr, 10, 1)) {
12687                 /* FP insns cause a NOCP UsageFault taken to Secure */
12688                 return 3;
12689             }
12690         }
12691 
12692         return 0;
12693     }
12694 
12695     hcr_el2 = arm_hcr_el2_eff(env);
12696 
12697     /*
12698      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12699      * 0, 2 : trap EL0 and EL1/PL1 accesses
12700      * 1    : trap only EL0 accesses
12701      * 3    : trap no accesses
12702      * This register is ignored if E2H+TGE are both set.
12703      */
12704     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12705         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12706 
12707         switch (fpen) {
12708         case 1:
12709             if (cur_el != 0) {
12710                 break;
12711             }
12712             /* fall through */
12713         case 0:
12714         case 2:
12715             /* Trap from Secure PL0 or PL1 to Secure PL1. */
12716             if (!arm_el_is_aa64(env, 3)
12717                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12718                 return 3;
12719             }
12720             if (cur_el <= 1) {
12721                 return 1;
12722             }
12723             break;
12724         }
12725     }
12726 
12727     /*
12728      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12729      * to control non-secure access to the FPU. It doesn't have any
12730      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12731      */
12732     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12733          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12734         if (!extract32(env->cp15.nsacr, 10, 1)) {
12735             /* FP insns act as UNDEF */
12736             return cur_el == 2 ? 2 : 1;
12737         }
12738     }
12739 
12740     /*
12741      * CPTR_EL2 is present in v7VE or v8, and changes format
12742      * with HCR_EL2.E2H (regardless of TGE).
12743      */
12744     if (cur_el <= 2) {
12745         if (hcr_el2 & HCR_E2H) {
12746             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12747             case 1:
12748                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12749                     break;
12750                 }
12751                 /* fall through */
12752             case 0:
12753             case 2:
12754                 return 2;
12755             }
12756         } else if (arm_is_el2_enabled(env)) {
12757             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12758                 return 2;
12759             }
12760         }
12761     }
12762 
12763     /* CPTR_EL3 : present in v8 */
12764     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12765         /* Trap all FP ops to EL3 */
12766         return 3;
12767     }
12768 #endif
12769     return 0;
12770 }
12771 
12772 /* Return the exception level we're running at if this is our mmu_idx */
arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)12773 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12774 {
12775     if (mmu_idx & ARM_MMU_IDX_M) {
12776         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12777     }
12778 
12779     switch (mmu_idx) {
12780     case ARMMMUIdx_E10_0:
12781     case ARMMMUIdx_E20_0:
12782     case ARMMMUIdx_E30_0:
12783         return 0;
12784     case ARMMMUIdx_E10_1:
12785     case ARMMMUIdx_E10_1_PAN:
12786         return 1;
12787     case ARMMMUIdx_E2:
12788     case ARMMMUIdx_E20_2:
12789     case ARMMMUIdx_E20_2_PAN:
12790         return 2;
12791     case ARMMMUIdx_E3:
12792     case ARMMMUIdx_E30_3_PAN:
12793         return 3;
12794     default:
12795         g_assert_not_reached();
12796     }
12797 }
12798 
12799 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)12800 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12801 {
12802     g_assert_not_reached();
12803 }
12804 #endif
12805 
arm_mmu_idx_el(CPUARMState * env,int el)12806 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12807 {
12808     ARMMMUIdx idx;
12809     uint64_t hcr;
12810 
12811     if (arm_feature(env, ARM_FEATURE_M)) {
12812         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12813     }
12814 
12815     /* See ARM pseudo-function ELIsInHost.  */
12816     switch (el) {
12817     case 0:
12818         hcr = arm_hcr_el2_eff(env);
12819         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12820             idx = ARMMMUIdx_E20_0;
12821         } else if (arm_is_secure_below_el3(env) &&
12822                    !arm_el_is_aa64(env, 3)) {
12823             idx = ARMMMUIdx_E30_0;
12824         } else {
12825             idx = ARMMMUIdx_E10_0;
12826         }
12827         break;
12828     case 1:
12829         if (arm_pan_enabled(env)) {
12830             idx = ARMMMUIdx_E10_1_PAN;
12831         } else {
12832             idx = ARMMMUIdx_E10_1;
12833         }
12834         break;
12835     case 2:
12836         /* Note that TGE does not apply at EL2.  */
12837         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12838             if (arm_pan_enabled(env)) {
12839                 idx = ARMMMUIdx_E20_2_PAN;
12840             } else {
12841                 idx = ARMMMUIdx_E20_2;
12842             }
12843         } else {
12844             idx = ARMMMUIdx_E2;
12845         }
12846         break;
12847     case 3:
12848         if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) {
12849             return ARMMMUIdx_E30_3_PAN;
12850         }
12851         return ARMMMUIdx_E3;
12852     default:
12853         g_assert_not_reached();
12854     }
12855 
12856     return idx;
12857 }
12858 
arm_mmu_idx(CPUARMState * env)12859 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12860 {
12861     return arm_mmu_idx_el(env, arm_current_el(env));
12862 }
12863 
mve_no_pred(CPUARMState * env)12864 static bool mve_no_pred(CPUARMState *env)
12865 {
12866     /*
12867      * Return true if there is definitely no predication of MVE
12868      * instructions by VPR or LTPSIZE. (Returning false even if there
12869      * isn't any predication is OK; generated code will just be
12870      * a little worse.)
12871      * If the CPU does not implement MVE then this TB flag is always 0.
12872      *
12873      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12874      * logic in gen_update_fp_context() needs to be updated to match.
12875      *
12876      * We do not include the effect of the ECI bits here -- they are
12877      * tracked in other TB flags. This simplifies the logic for
12878      * "when did we emit code that changes the MVE_NO_PRED TB flag
12879      * and thus need to end the TB?".
12880      */
12881     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12882         return false;
12883     }
12884     if (env->v7m.vpr) {
12885         return false;
12886     }
12887     if (env->v7m.ltpsize < 4) {
12888         return false;
12889     }
12890     return true;
12891 }
12892 
cpu_get_tb_cpu_state(CPUARMState * env,vaddr * pc,uint64_t * cs_base,uint32_t * pflags)12893 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12894                           uint64_t *cs_base, uint32_t *pflags)
12895 {
12896     CPUARMTBFlags flags;
12897 
12898     assert_hflags_rebuild_correctly(env);
12899     flags = env->hflags;
12900 
12901     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12902         *pc = env->pc;
12903         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12904             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12905         }
12906     } else {
12907         *pc = env->regs[15];
12908 
12909         if (arm_feature(env, ARM_FEATURE_M)) {
12910             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12911                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12912                 != env->v7m.secure) {
12913                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12914             }
12915 
12916             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12917                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12918                  (env->v7m.secure &&
12919                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12920                 /*
12921                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12922                  * active FP context; we must create a new FP context before
12923                  * executing any FP insn.
12924                  */
12925                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12926             }
12927 
12928             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12929             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12930                 DP_TBFLAG_M32(flags, LSPACT, 1);
12931             }
12932 
12933             if (mve_no_pred(env)) {
12934                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12935             }
12936         } else {
12937             /*
12938              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12939              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12940              */
12941             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12942                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12943             } else {
12944                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12945                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12946             }
12947             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12948                 DP_TBFLAG_A32(flags, VFPEN, 1);
12949             }
12950         }
12951 
12952         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12953         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12954     }
12955 
12956     /*
12957      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12958      * states defined in the ARM ARM for software singlestep:
12959      *  SS_ACTIVE   PSTATE.SS   State
12960      *     0            x       Inactive (the TB flag for SS is always 0)
12961      *     1            0       Active-pending
12962      *     1            1       Active-not-pending
12963      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12964      */
12965     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12966         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12967     }
12968 
12969     *pflags = flags.flags;
12970     *cs_base = flags.flags2;
12971 }
12972 
12973 #ifdef TARGET_AARCH64
12974 /*
12975  * The manual says that when SVE is enabled and VQ is widened the
12976  * implementation is allowed to zero the previously inaccessible
12977  * portion of the registers.  The corollary to that is that when
12978  * SVE is enabled and VQ is narrowed we are also allowed to zero
12979  * the now inaccessible portion of the registers.
12980  *
12981  * The intent of this is that no predicate bit beyond VQ is ever set.
12982  * Which means that some operations on predicate registers themselves
12983  * may operate on full uint64_t or even unrolled across the maximum
12984  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12985  * may well be cheaper than conditionals to restrict the operation
12986  * to the relevant portion of a uint16_t[16].
12987  */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)12988 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12989 {
12990     int i, j;
12991     uint64_t pmask;
12992 
12993     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12994     assert(vq <= env_archcpu(env)->sve_max_vq);
12995 
12996     /* Zap the high bits of the zregs.  */
12997     for (i = 0; i < 32; i++) {
12998         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12999     }
13000 
13001     /* Zap the high bits of the pregs and ffr.  */
13002     pmask = 0;
13003     if (vq & 3) {
13004         pmask = ~(-1ULL << (16 * (vq & 3)));
13005     }
13006     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13007         for (i = 0; i < 17; ++i) {
13008             env->vfp.pregs[i].p[j] &= pmask;
13009         }
13010         pmask = 0;
13011     }
13012 }
13013 
sve_vqm1_for_el_sm_ena(CPUARMState * env,int el,bool sm)13014 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
13015 {
13016     int exc_el;
13017 
13018     if (sm) {
13019         exc_el = sme_exception_el(env, el);
13020     } else {
13021         exc_el = sve_exception_el(env, el);
13022     }
13023     if (exc_el) {
13024         return 0; /* disabled */
13025     }
13026     return sve_vqm1_for_el_sm(env, el, sm);
13027 }
13028 
13029 /*
13030  * Notice a change in SVE vector size when changing EL.
13031  */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)13032 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13033                            int new_el, bool el0_a64)
13034 {
13035     ARMCPU *cpu = env_archcpu(env);
13036     int old_len, new_len;
13037     bool old_a64, new_a64, sm;
13038 
13039     /* Nothing to do if no SVE.  */
13040     if (!cpu_isar_feature(aa64_sve, cpu)) {
13041         return;
13042     }
13043 
13044     /* Nothing to do if FP is disabled in either EL.  */
13045     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13046         return;
13047     }
13048 
13049     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13050     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13051 
13052     /*
13053      * Both AArch64.TakeException and AArch64.ExceptionReturn
13054      * invoke ResetSVEState when taking an exception from, or
13055      * returning to, AArch32 state when PSTATE.SM is enabled.
13056      */
13057     sm = FIELD_EX64(env->svcr, SVCR, SM);
13058     if (old_a64 != new_a64 && sm) {
13059         arm_reset_sve_state(env);
13060         return;
13061     }
13062 
13063     /*
13064      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13065      * at ELx, or not available because the EL is in AArch32 state, then
13066      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13067      * has an effective value of 0".
13068      *
13069      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13070      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13071      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13072      * we already have the correct register contents when encountering the
13073      * vq0->vq0 transition between EL0->EL1.
13074      */
13075     old_len = new_len = 0;
13076     if (old_a64) {
13077         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
13078     }
13079     if (new_a64) {
13080         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
13081     }
13082 
13083     /* When changing vector length, clear inaccessible state.  */
13084     if (new_len < old_len) {
13085         aarch64_sve_narrow_vq(env, new_len + 1);
13086     }
13087 }
13088 #endif
13089 
13090 #ifndef CONFIG_USER_ONLY
arm_security_space(CPUARMState * env)13091 ARMSecuritySpace arm_security_space(CPUARMState *env)
13092 {
13093     if (arm_feature(env, ARM_FEATURE_M)) {
13094         return arm_secure_to_space(env->v7m.secure);
13095     }
13096 
13097     /*
13098      * If EL3 is not supported then the secure state is implementation
13099      * defined, in which case QEMU defaults to non-secure.
13100      */
13101     if (!arm_feature(env, ARM_FEATURE_EL3)) {
13102         return ARMSS_NonSecure;
13103     }
13104 
13105     /* Check for AArch64 EL3 or AArch32 Mon. */
13106     if (is_a64(env)) {
13107         if (extract32(env->pstate, 2, 2) == 3) {
13108             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
13109                 return ARMSS_Root;
13110             } else {
13111                 return ARMSS_Secure;
13112             }
13113         }
13114     } else {
13115         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
13116             return ARMSS_Secure;
13117         }
13118     }
13119 
13120     return arm_security_space_below_el3(env);
13121 }
13122 
arm_security_space_below_el3(CPUARMState * env)13123 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
13124 {
13125     assert(!arm_feature(env, ARM_FEATURE_M));
13126 
13127     /*
13128      * If EL3 is not supported then the secure state is implementation
13129      * defined, in which case QEMU defaults to non-secure.
13130      */
13131     if (!arm_feature(env, ARM_FEATURE_EL3)) {
13132         return ARMSS_NonSecure;
13133     }
13134 
13135     /*
13136      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
13137      * Ignoring NSE when !NS retains consistency without having to
13138      * modify other predicates.
13139      */
13140     if (!(env->cp15.scr_el3 & SCR_NS)) {
13141         return ARMSS_Secure;
13142     } else if (env->cp15.scr_el3 & SCR_NSE) {
13143         return ARMSS_Realm;
13144     } else {
13145         return ARMSS_NonSecure;
13146     }
13147 }
13148 #endif /* !CONFIG_USER_ONLY */
13149