1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18 * ice tracepoint functions. This must be done exactly once across the
19 * ice driver.
20 */
21 #define CREATE_TRACE_POINTS
22 #include "ice_trace.h"
23 #include "ice_eswitch.h"
24 #include "ice_tc_lib.h"
25 #include "ice_vsi_vlan_ops.h"
26 #include <net/xdp_sock_drv.h>
27
28 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
29 static const char ice_driver_string[] = DRV_SUMMARY;
30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
31
32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
33 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
34 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
35
36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
37 MODULE_DESCRIPTION(DRV_SUMMARY);
38 MODULE_LICENSE("GPL v2");
39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
40
41 static int debug = -1;
42 module_param(debug, int, 0644);
43 #ifndef CONFIG_DYNAMIC_DEBUG
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
45 #else
46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
47 #endif /* !CONFIG_DYNAMIC_DEBUG */
48
49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
50 EXPORT_SYMBOL(ice_xdp_locking_key);
51
52 /**
53 * ice_hw_to_dev - Get device pointer from the hardware structure
54 * @hw: pointer to the device HW structure
55 *
56 * Used to access the device pointer from compilation units which can't easily
57 * include the definition of struct ice_pf without leading to circular header
58 * dependencies.
59 */
ice_hw_to_dev(struct ice_hw * hw)60 struct device *ice_hw_to_dev(struct ice_hw *hw)
61 {
62 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
63
64 return &pf->pdev->dev;
65 }
66
67 static struct workqueue_struct *ice_wq;
68 struct workqueue_struct *ice_lag_wq;
69 static const struct net_device_ops ice_netdev_safe_mode_ops;
70 static const struct net_device_ops ice_netdev_ops;
71
72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
73
74 static void ice_vsi_release_all(struct ice_pf *pf);
75
76 static int ice_rebuild_channels(struct ice_pf *pf);
77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
78
79 static int
80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
81 void *cb_priv, enum tc_setup_type type, void *type_data,
82 void *data,
83 void (*cleanup)(struct flow_block_cb *block_cb));
84
netif_is_ice(const struct net_device * dev)85 bool netif_is_ice(const struct net_device *dev)
86 {
87 return dev && (dev->netdev_ops == &ice_netdev_ops ||
88 dev->netdev_ops == &ice_netdev_safe_mode_ops);
89 }
90
91 /**
92 * ice_get_tx_pending - returns number of Tx descriptors not processed
93 * @ring: the ring of descriptors
94 */
ice_get_tx_pending(struct ice_tx_ring * ring)95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 u16 head, tail;
98
99 head = ring->next_to_clean;
100 tail = ring->next_to_use;
101
102 if (head != tail)
103 return (head < tail) ?
104 tail - head : (tail + ring->count - head);
105 return 0;
106 }
107
108 /**
109 * ice_check_for_hang_subtask - check for and recover hung queues
110 * @pf: pointer to PF struct
111 */
ice_check_for_hang_subtask(struct ice_pf * pf)112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 struct ice_vsi *vsi = NULL;
115 struct ice_hw *hw;
116 unsigned int i;
117 int packets;
118 u32 v;
119
120 ice_for_each_vsi(pf, v)
121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 vsi = pf->vsi[v];
123 break;
124 }
125
126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 return;
128
129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 return;
131
132 hw = &vsi->back->hw;
133
134 ice_for_each_txq(vsi, i) {
135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 struct ice_ring_stats *ring_stats;
137
138 if (!tx_ring)
139 continue;
140 if (ice_ring_ch_enabled(tx_ring))
141 continue;
142
143 ring_stats = tx_ring->ring_stats;
144 if (!ring_stats)
145 continue;
146
147 if (tx_ring->desc) {
148 /* If packet counter has not changed the queue is
149 * likely stalled, so force an interrupt for this
150 * queue.
151 *
152 * prev_pkt would be negative if there was no
153 * pending work.
154 */
155 packets = ring_stats->stats.pkts & INT_MAX;
156 if (ring_stats->tx_stats.prev_pkt == packets) {
157 /* Trigger sw interrupt to revive the queue */
158 ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 continue;
160 }
161
162 /* Memory barrier between read of packet count and call
163 * to ice_get_tx_pending()
164 */
165 smp_rmb();
166 ring_stats->tx_stats.prev_pkt =
167 ice_get_tx_pending(tx_ring) ? packets : -1;
168 }
169 }
170 }
171
172 /**
173 * ice_init_mac_fltr - Set initial MAC filters
174 * @pf: board private structure
175 *
176 * Set initial set of MAC filters for PF VSI; configure filters for permanent
177 * address and broadcast address. If an error is encountered, netdevice will be
178 * unregistered.
179 */
ice_init_mac_fltr(struct ice_pf * pf)180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 struct ice_vsi *vsi;
183 u8 *perm_addr;
184
185 vsi = ice_get_main_vsi(pf);
186 if (!vsi)
187 return -EINVAL;
188
189 perm_addr = vsi->port_info->mac.perm_addr;
190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192
193 /**
194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195 * @netdev: the net device on which the sync is happening
196 * @addr: MAC address to sync
197 *
198 * This is a callback function which is called by the in kernel device sync
199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201 * MAC filters from the hardware.
202 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 struct ice_netdev_priv *np = netdev_priv(netdev);
206 struct ice_vsi *vsi = np->vsi;
207
208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 ICE_FWD_TO_VSI))
210 return -EINVAL;
211
212 return 0;
213 }
214
215 /**
216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217 * @netdev: the net device on which the unsync is happening
218 * @addr: MAC address to unsync
219 *
220 * This is a callback function which is called by the in kernel device unsync
221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223 * delete the MAC filters from the hardware.
224 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 struct ice_netdev_priv *np = netdev_priv(netdev);
228 struct ice_vsi *vsi = np->vsi;
229
230 /* Under some circumstances, we might receive a request to delete our
231 * own device address from our uc list. Because we store the device
232 * address in the VSI's MAC filter list, we need to ignore such
233 * requests and not delete our device address from this list.
234 */
235 if (ether_addr_equal(addr, netdev->dev_addr))
236 return 0;
237
238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 ICE_FWD_TO_VSI))
240 return -EINVAL;
241
242 return 0;
243 }
244
245 /**
246 * ice_vsi_fltr_changed - check if filter state changed
247 * @vsi: VSI to be checked
248 *
249 * returns true if filter state has changed, false otherwise.
250 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256
257 /**
258 * ice_set_promisc - Enable promiscuous mode for a given PF
259 * @vsi: the VSI being configured
260 * @promisc_m: mask of promiscuous config bits
261 *
262 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 int status;
266
267 if (vsi->type != ICE_VSI_PF)
268 return 0;
269
270 if (ice_vsi_has_non_zero_vlans(vsi)) {
271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 promisc_m);
274 } else {
275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 promisc_m, 0);
277 }
278 if (status && status != -EEXIST)
279 return status;
280
281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 vsi->vsi_num, promisc_m);
283 return 0;
284 }
285
286 /**
287 * ice_clear_promisc - Disable promiscuous mode for a given PF
288 * @vsi: the VSI being configured
289 * @promisc_m: mask of promiscuous config bits
290 *
291 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 int status;
295
296 if (vsi->type != ICE_VSI_PF)
297 return 0;
298
299 if (ice_vsi_has_non_zero_vlans(vsi)) {
300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 promisc_m);
303 } else {
304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 promisc_m, 0);
306 }
307
308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 vsi->vsi_num, promisc_m);
310 return status;
311 }
312
313 /**
314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315 * @vsi: ptr to the VSI
316 *
317 * Push any outstanding VSI filter changes through the AdminQ.
318 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 struct device *dev = ice_pf_to_dev(vsi->back);
323 struct net_device *netdev = vsi->netdev;
324 bool promisc_forced_on = false;
325 struct ice_pf *pf = vsi->back;
326 struct ice_hw *hw = &pf->hw;
327 u32 changed_flags = 0;
328 int err;
329
330 if (!vsi->netdev)
331 return -EINVAL;
332
333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 usleep_range(1000, 2000);
335
336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 vsi->current_netdev_flags = vsi->netdev->flags;
338
339 INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341
342 if (ice_vsi_fltr_changed(vsi)) {
343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345
346 /* grab the netdev's addr_list_lock */
347 netif_addr_lock_bh(netdev);
348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 ice_add_mac_to_unsync_list);
350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 ice_add_mac_to_unsync_list);
352 /* our temp lists are populated. release lock */
353 netif_addr_unlock_bh(netdev);
354 }
355
356 /* Remove MAC addresses in the unsync list */
357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 if (err) {
360 netdev_err(netdev, "Failed to delete MAC filters\n");
361 /* if we failed because of alloc failures, just bail */
362 if (err == -ENOMEM)
363 goto out;
364 }
365
366 /* Add MAC addresses in the sync list */
367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 /* If filter is added successfully or already exists, do not go into
370 * 'if' condition and report it as error. Instead continue processing
371 * rest of the function.
372 */
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Failed to add MAC filters\n");
375 /* If there is no more space for new umac filters, VSI
376 * should go into promiscuous mode. There should be some
377 * space reserved for promiscuous filters.
378 */
379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 vsi->state)) {
382 promisc_forced_on = true;
383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 vsi->vsi_num);
385 } else {
386 goto out;
387 }
388 }
389 err = 0;
390 /* check for changes in promiscuous modes */
391 if (changed_flags & IFF_ALLMULTI) {
392 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 if (err) {
395 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 goto out_promisc;
397 }
398 } else {
399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 if (err) {
402 vsi->current_netdev_flags |= IFF_ALLMULTI;
403 goto out_promisc;
404 }
405 }
406 }
407
408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 if (vsi->current_netdev_flags & IFF_PROMISC) {
412 /* Apply Rx filter rule to get traffic from wire */
413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 err = ice_set_dflt_vsi(vsi);
415 if (err && err != -EEXIST) {
416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 err, vsi->vsi_num);
418 vsi->current_netdev_flags &=
419 ~IFF_PROMISC;
420 goto out_promisc;
421 }
422 err = 0;
423 vlan_ops->dis_rx_filtering(vsi);
424
425 /* promiscuous mode implies allmulticast so
426 * that VSIs that are in promiscuous mode are
427 * subscribed to multicast packets coming to
428 * the port
429 */
430 err = ice_set_promisc(vsi,
431 ICE_MCAST_PROMISC_BITS);
432 if (err)
433 goto out_promisc;
434 }
435 } else {
436 /* Clear Rx filter to remove traffic from wire */
437 if (ice_is_vsi_dflt_vsi(vsi)) {
438 err = ice_clear_dflt_vsi(vsi);
439 if (err) {
440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 err, vsi->vsi_num);
442 vsi->current_netdev_flags |=
443 IFF_PROMISC;
444 goto out_promisc;
445 }
446 if (vsi->netdev->features &
447 NETIF_F_HW_VLAN_CTAG_FILTER)
448 vlan_ops->ena_rx_filtering(vsi);
449 }
450
451 /* disable allmulti here, but only if allmulti is not
452 * still enabled for the netdev
453 */
454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 err = ice_clear_promisc(vsi,
456 ICE_MCAST_PROMISC_BITS);
457 if (err) {
458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 err, vsi->vsi_num);
460 }
461 }
462 }
463 }
464 goto exit;
465
466 out_promisc:
467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 goto exit;
469 out:
470 /* if something went wrong then set the changed flag so we try again */
471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 clear_bit(ICE_CFG_BUSY, vsi->state);
475 return err;
476 }
477
478 /**
479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480 * @pf: board private structure
481 */
ice_sync_fltr_subtask(struct ice_pf * pf)482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 int v;
485
486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 return;
488
489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490
491 ice_for_each_vsi(pf, v)
492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 ice_vsi_sync_fltr(pf->vsi[v])) {
494 /* come back and try again later */
495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 break;
497 }
498 }
499
500 /**
501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502 * @pf: the PF
503 * @locked: is the rtnl_lock already held
504 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 int node;
508 int v;
509
510 ice_for_each_vsi(pf, v)
511 if (pf->vsi[v])
512 ice_dis_vsi(pf->vsi[v], locked);
513
514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 pf->pf_agg_node[node].num_vsis = 0;
516
517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 pf->vf_agg_node[node].num_vsis = 0;
519 }
520
521 /**
522 * ice_prepare_for_reset - prep for reset
523 * @pf: board private structure
524 * @reset_type: reset type requested
525 *
526 * Inform or close all dependent features in prep for reset.
527 */
528 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)529 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
530 {
531 struct ice_hw *hw = &pf->hw;
532 struct ice_vsi *vsi;
533 struct ice_vf *vf;
534 unsigned int bkt;
535
536 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
537
538 /* already prepared for reset */
539 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
540 return;
541
542 synchronize_irq(pf->oicr_irq.virq);
543
544 ice_unplug_aux_dev(pf);
545
546 /* Notify VFs of impending reset */
547 if (ice_check_sq_alive(hw, &hw->mailboxq))
548 ice_vc_notify_reset(pf);
549
550 /* Disable VFs until reset is completed */
551 mutex_lock(&pf->vfs.table_lock);
552 ice_for_each_vf(pf, bkt, vf)
553 ice_set_vf_state_dis(vf);
554 mutex_unlock(&pf->vfs.table_lock);
555
556 if (ice_is_eswitch_mode_switchdev(pf)) {
557 rtnl_lock();
558 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
559 rtnl_unlock();
560 }
561
562 /* release ADQ specific HW and SW resources */
563 vsi = ice_get_main_vsi(pf);
564 if (!vsi)
565 goto skip;
566
567 /* to be on safe side, reset orig_rss_size so that normal flow
568 * of deciding rss_size can take precedence
569 */
570 vsi->orig_rss_size = 0;
571
572 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
573 if (reset_type == ICE_RESET_PFR) {
574 vsi->old_ena_tc = vsi->all_enatc;
575 vsi->old_numtc = vsi->all_numtc;
576 } else {
577 ice_remove_q_channels(vsi, true);
578
579 /* for other reset type, do not support channel rebuild
580 * hence reset needed info
581 */
582 vsi->old_ena_tc = 0;
583 vsi->all_enatc = 0;
584 vsi->old_numtc = 0;
585 vsi->all_numtc = 0;
586 vsi->req_txq = 0;
587 vsi->req_rxq = 0;
588 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
589 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
590 }
591 }
592
593 if (vsi->netdev)
594 netif_device_detach(vsi->netdev);
595 skip:
596
597 /* clear SW filtering DB */
598 ice_clear_hw_tbls(hw);
599 /* disable the VSIs and their queues that are not already DOWN */
600 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
601 ice_pf_dis_all_vsi(pf, false);
602
603 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
604 ice_ptp_prepare_for_reset(pf);
605
606 if (ice_is_feature_supported(pf, ICE_F_GNSS))
607 ice_gnss_exit(pf);
608
609 if (hw->port_info)
610 ice_sched_clear_port(hw->port_info);
611
612 ice_shutdown_all_ctrlq(hw);
613
614 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
615 }
616
617 /**
618 * ice_do_reset - Initiate one of many types of resets
619 * @pf: board private structure
620 * @reset_type: reset type requested before this function was called.
621 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)622 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
623 {
624 struct device *dev = ice_pf_to_dev(pf);
625 struct ice_hw *hw = &pf->hw;
626
627 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
628
629 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
630 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
631 reset_type = ICE_RESET_CORER;
632 }
633
634 ice_prepare_for_reset(pf, reset_type);
635
636 /* trigger the reset */
637 if (ice_reset(hw, reset_type)) {
638 dev_err(dev, "reset %d failed\n", reset_type);
639 set_bit(ICE_RESET_FAILED, pf->state);
640 clear_bit(ICE_RESET_OICR_RECV, pf->state);
641 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
642 clear_bit(ICE_PFR_REQ, pf->state);
643 clear_bit(ICE_CORER_REQ, pf->state);
644 clear_bit(ICE_GLOBR_REQ, pf->state);
645 wake_up(&pf->reset_wait_queue);
646 return;
647 }
648
649 /* PFR is a bit of a special case because it doesn't result in an OICR
650 * interrupt. So for PFR, rebuild after the reset and clear the reset-
651 * associated state bits.
652 */
653 if (reset_type == ICE_RESET_PFR) {
654 pf->pfr_count++;
655 ice_rebuild(pf, reset_type);
656 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
657 clear_bit(ICE_PFR_REQ, pf->state);
658 wake_up(&pf->reset_wait_queue);
659 ice_reset_all_vfs(pf);
660 }
661 }
662
663 /**
664 * ice_reset_subtask - Set up for resetting the device and driver
665 * @pf: board private structure
666 */
ice_reset_subtask(struct ice_pf * pf)667 static void ice_reset_subtask(struct ice_pf *pf)
668 {
669 enum ice_reset_req reset_type = ICE_RESET_INVAL;
670
671 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
672 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
673 * of reset is pending and sets bits in pf->state indicating the reset
674 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
675 * prepare for pending reset if not already (for PF software-initiated
676 * global resets the software should already be prepared for it as
677 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
678 * by firmware or software on other PFs, that bit is not set so prepare
679 * for the reset now), poll for reset done, rebuild and return.
680 */
681 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
682 /* Perform the largest reset requested */
683 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
684 reset_type = ICE_RESET_CORER;
685 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
686 reset_type = ICE_RESET_GLOBR;
687 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
688 reset_type = ICE_RESET_EMPR;
689 /* return if no valid reset type requested */
690 if (reset_type == ICE_RESET_INVAL)
691 return;
692 ice_prepare_for_reset(pf, reset_type);
693
694 /* make sure we are ready to rebuild */
695 if (ice_check_reset(&pf->hw)) {
696 set_bit(ICE_RESET_FAILED, pf->state);
697 } else {
698 /* done with reset. start rebuild */
699 pf->hw.reset_ongoing = false;
700 ice_rebuild(pf, reset_type);
701 /* clear bit to resume normal operations, but
702 * ICE_NEEDS_RESTART bit is set in case rebuild failed
703 */
704 clear_bit(ICE_RESET_OICR_RECV, pf->state);
705 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
706 clear_bit(ICE_PFR_REQ, pf->state);
707 clear_bit(ICE_CORER_REQ, pf->state);
708 clear_bit(ICE_GLOBR_REQ, pf->state);
709 wake_up(&pf->reset_wait_queue);
710 ice_reset_all_vfs(pf);
711 }
712
713 return;
714 }
715
716 /* No pending resets to finish processing. Check for new resets */
717 if (test_bit(ICE_PFR_REQ, pf->state)) {
718 reset_type = ICE_RESET_PFR;
719 if (pf->lag && pf->lag->bonded) {
720 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
721 reset_type = ICE_RESET_CORER;
722 }
723 }
724 if (test_bit(ICE_CORER_REQ, pf->state))
725 reset_type = ICE_RESET_CORER;
726 if (test_bit(ICE_GLOBR_REQ, pf->state))
727 reset_type = ICE_RESET_GLOBR;
728 /* If no valid reset type requested just return */
729 if (reset_type == ICE_RESET_INVAL)
730 return;
731
732 /* reset if not already down or busy */
733 if (!test_bit(ICE_DOWN, pf->state) &&
734 !test_bit(ICE_CFG_BUSY, pf->state)) {
735 ice_do_reset(pf, reset_type);
736 }
737 }
738
739 /**
740 * ice_print_topo_conflict - print topology conflict message
741 * @vsi: the VSI whose topology status is being checked
742 */
ice_print_topo_conflict(struct ice_vsi * vsi)743 static void ice_print_topo_conflict(struct ice_vsi *vsi)
744 {
745 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
746 case ICE_AQ_LINK_TOPO_CONFLICT:
747 case ICE_AQ_LINK_MEDIA_CONFLICT:
748 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
749 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
750 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
751 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
752 break;
753 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
754 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
755 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
756 else
757 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
758 break;
759 default:
760 break;
761 }
762 }
763
764 /**
765 * ice_print_link_msg - print link up or down message
766 * @vsi: the VSI whose link status is being queried
767 * @isup: boolean for if the link is now up or down
768 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)769 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
770 {
771 struct ice_aqc_get_phy_caps_data *caps;
772 const char *an_advertised;
773 const char *fec_req;
774 const char *speed;
775 const char *fec;
776 const char *fc;
777 const char *an;
778 int status;
779
780 if (!vsi)
781 return;
782
783 if (vsi->current_isup == isup)
784 return;
785
786 vsi->current_isup = isup;
787
788 if (!isup) {
789 netdev_info(vsi->netdev, "NIC Link is Down\n");
790 return;
791 }
792
793 switch (vsi->port_info->phy.link_info.link_speed) {
794 case ICE_AQ_LINK_SPEED_100GB:
795 speed = "100 G";
796 break;
797 case ICE_AQ_LINK_SPEED_50GB:
798 speed = "50 G";
799 break;
800 case ICE_AQ_LINK_SPEED_40GB:
801 speed = "40 G";
802 break;
803 case ICE_AQ_LINK_SPEED_25GB:
804 speed = "25 G";
805 break;
806 case ICE_AQ_LINK_SPEED_20GB:
807 speed = "20 G";
808 break;
809 case ICE_AQ_LINK_SPEED_10GB:
810 speed = "10 G";
811 break;
812 case ICE_AQ_LINK_SPEED_5GB:
813 speed = "5 G";
814 break;
815 case ICE_AQ_LINK_SPEED_2500MB:
816 speed = "2.5 G";
817 break;
818 case ICE_AQ_LINK_SPEED_1000MB:
819 speed = "1 G";
820 break;
821 case ICE_AQ_LINK_SPEED_100MB:
822 speed = "100 M";
823 break;
824 default:
825 speed = "Unknown ";
826 break;
827 }
828
829 switch (vsi->port_info->fc.current_mode) {
830 case ICE_FC_FULL:
831 fc = "Rx/Tx";
832 break;
833 case ICE_FC_TX_PAUSE:
834 fc = "Tx";
835 break;
836 case ICE_FC_RX_PAUSE:
837 fc = "Rx";
838 break;
839 case ICE_FC_NONE:
840 fc = "None";
841 break;
842 default:
843 fc = "Unknown";
844 break;
845 }
846
847 /* Get FEC mode based on negotiated link info */
848 switch (vsi->port_info->phy.link_info.fec_info) {
849 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
850 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
851 fec = "RS-FEC";
852 break;
853 case ICE_AQ_LINK_25G_KR_FEC_EN:
854 fec = "FC-FEC/BASE-R";
855 break;
856 default:
857 fec = "NONE";
858 break;
859 }
860
861 /* check if autoneg completed, might be false due to not supported */
862 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
863 an = "True";
864 else
865 an = "False";
866
867 /* Get FEC mode requested based on PHY caps last SW configuration */
868 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
869 if (!caps) {
870 fec_req = "Unknown";
871 an_advertised = "Unknown";
872 goto done;
873 }
874
875 status = ice_aq_get_phy_caps(vsi->port_info, false,
876 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
877 if (status)
878 netdev_info(vsi->netdev, "Get phy capability failed.\n");
879
880 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
881
882 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
883 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
884 fec_req = "RS-FEC";
885 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
886 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
887 fec_req = "FC-FEC/BASE-R";
888 else
889 fec_req = "NONE";
890
891 kfree(caps);
892
893 done:
894 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
895 speed, fec_req, fec, an_advertised, an, fc);
896 ice_print_topo_conflict(vsi);
897 }
898
899 /**
900 * ice_vsi_link_event - update the VSI's netdev
901 * @vsi: the VSI on which the link event occurred
902 * @link_up: whether or not the VSI needs to be set up or down
903 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)904 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
905 {
906 if (!vsi)
907 return;
908
909 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
910 return;
911
912 if (vsi->type == ICE_VSI_PF) {
913 if (link_up == netif_carrier_ok(vsi->netdev))
914 return;
915
916 if (link_up) {
917 netif_carrier_on(vsi->netdev);
918 netif_tx_wake_all_queues(vsi->netdev);
919 } else {
920 netif_carrier_off(vsi->netdev);
921 netif_tx_stop_all_queues(vsi->netdev);
922 }
923 }
924 }
925
926 /**
927 * ice_set_dflt_mib - send a default config MIB to the FW
928 * @pf: private PF struct
929 *
930 * This function sends a default configuration MIB to the FW.
931 *
932 * If this function errors out at any point, the driver is still able to
933 * function. The main impact is that LFC may not operate as expected.
934 * Therefore an error state in this function should be treated with a DBG
935 * message and continue on with driver rebuild/reenable.
936 */
ice_set_dflt_mib(struct ice_pf * pf)937 static void ice_set_dflt_mib(struct ice_pf *pf)
938 {
939 struct device *dev = ice_pf_to_dev(pf);
940 u8 mib_type, *buf, *lldpmib = NULL;
941 u16 len, typelen, offset = 0;
942 struct ice_lldp_org_tlv *tlv;
943 struct ice_hw *hw = &pf->hw;
944 u32 ouisubtype;
945
946 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
947 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
948 if (!lldpmib) {
949 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
950 __func__);
951 return;
952 }
953
954 /* Add ETS CFG TLV */
955 tlv = (struct ice_lldp_org_tlv *)lldpmib;
956 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
957 ICE_IEEE_ETS_TLV_LEN);
958 tlv->typelen = htons(typelen);
959 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
960 ICE_IEEE_SUBTYPE_ETS_CFG);
961 tlv->ouisubtype = htonl(ouisubtype);
962
963 buf = tlv->tlvinfo;
964 buf[0] = 0;
965
966 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
967 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
968 * Octets 13 - 20 are TSA values - leave as zeros
969 */
970 buf[5] = 0x64;
971 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
972 offset += len + 2;
973 tlv = (struct ice_lldp_org_tlv *)
974 ((char *)tlv + sizeof(tlv->typelen) + len);
975
976 /* Add ETS REC TLV */
977 buf = tlv->tlvinfo;
978 tlv->typelen = htons(typelen);
979
980 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
981 ICE_IEEE_SUBTYPE_ETS_REC);
982 tlv->ouisubtype = htonl(ouisubtype);
983
984 /* First octet of buf is reserved
985 * Octets 1 - 4 map UP to TC - all UPs map to zero
986 * Octets 5 - 12 are BW values - set TC 0 to 100%.
987 * Octets 13 - 20 are TSA value - leave as zeros
988 */
989 buf[5] = 0x64;
990 offset += len + 2;
991 tlv = (struct ice_lldp_org_tlv *)
992 ((char *)tlv + sizeof(tlv->typelen) + len);
993
994 /* Add PFC CFG TLV */
995 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
996 ICE_IEEE_PFC_TLV_LEN);
997 tlv->typelen = htons(typelen);
998
999 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1000 ICE_IEEE_SUBTYPE_PFC_CFG);
1001 tlv->ouisubtype = htonl(ouisubtype);
1002
1003 /* Octet 1 left as all zeros - PFC disabled */
1004 buf[0] = 0x08;
1005 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1006 offset += len + 2;
1007
1008 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1009 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1010
1011 kfree(lldpmib);
1012 }
1013
1014 /**
1015 * ice_check_phy_fw_load - check if PHY FW load failed
1016 * @pf: pointer to PF struct
1017 * @link_cfg_err: bitmap from the link info structure
1018 *
1019 * check if external PHY FW load failed and print an error message if it did
1020 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1021 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1022 {
1023 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1024 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1025 return;
1026 }
1027
1028 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1029 return;
1030
1031 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1032 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1033 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1034 }
1035 }
1036
1037 /**
1038 * ice_check_module_power
1039 * @pf: pointer to PF struct
1040 * @link_cfg_err: bitmap from the link info structure
1041 *
1042 * check module power level returned by a previous call to aq_get_link_info
1043 * and print error messages if module power level is not supported
1044 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1045 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1046 {
1047 /* if module power level is supported, clear the flag */
1048 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1049 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1050 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1051 return;
1052 }
1053
1054 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1055 * above block didn't clear this bit, there's nothing to do
1056 */
1057 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1058 return;
1059
1060 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1061 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1062 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1064 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1065 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1066 }
1067 }
1068
1069 /**
1070 * ice_check_link_cfg_err - check if link configuration failed
1071 * @pf: pointer to the PF struct
1072 * @link_cfg_err: bitmap from the link info structure
1073 *
1074 * print if any link configuration failure happens due to the value in the
1075 * link_cfg_err parameter in the link info structure
1076 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1077 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1078 {
1079 ice_check_module_power(pf, link_cfg_err);
1080 ice_check_phy_fw_load(pf, link_cfg_err);
1081 }
1082
1083 /**
1084 * ice_link_event - process the link event
1085 * @pf: PF that the link event is associated with
1086 * @pi: port_info for the port that the link event is associated with
1087 * @link_up: true if the physical link is up and false if it is down
1088 * @link_speed: current link speed received from the link event
1089 *
1090 * Returns 0 on success and negative on failure
1091 */
1092 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1093 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1094 u16 link_speed)
1095 {
1096 struct device *dev = ice_pf_to_dev(pf);
1097 struct ice_phy_info *phy_info;
1098 struct ice_vsi *vsi;
1099 u16 old_link_speed;
1100 bool old_link;
1101 int status;
1102
1103 phy_info = &pi->phy;
1104 phy_info->link_info_old = phy_info->link_info;
1105
1106 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1107 old_link_speed = phy_info->link_info_old.link_speed;
1108
1109 /* update the link info structures and re-enable link events,
1110 * don't bail on failure due to other book keeping needed
1111 */
1112 status = ice_update_link_info(pi);
1113 if (status)
1114 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1115 pi->lport, status,
1116 ice_aq_str(pi->hw->adminq.sq_last_status));
1117
1118 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1119
1120 /* Check if the link state is up after updating link info, and treat
1121 * this event as an UP event since the link is actually UP now.
1122 */
1123 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1124 link_up = true;
1125
1126 vsi = ice_get_main_vsi(pf);
1127 if (!vsi || !vsi->port_info)
1128 return -EINVAL;
1129
1130 /* turn off PHY if media was removed */
1131 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1132 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1133 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1134 ice_set_link(vsi, false);
1135 }
1136
1137 /* if the old link up/down and speed is the same as the new */
1138 if (link_up == old_link && link_speed == old_link_speed)
1139 return 0;
1140
1141 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1142
1143 if (ice_is_dcb_active(pf)) {
1144 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1145 ice_dcb_rebuild(pf);
1146 } else {
1147 if (link_up)
1148 ice_set_dflt_mib(pf);
1149 }
1150 ice_vsi_link_event(vsi, link_up);
1151 ice_print_link_msg(vsi, link_up);
1152
1153 ice_vc_notify_link_state(pf);
1154
1155 return 0;
1156 }
1157
1158 /**
1159 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1160 * @pf: board private structure
1161 */
ice_watchdog_subtask(struct ice_pf * pf)1162 static void ice_watchdog_subtask(struct ice_pf *pf)
1163 {
1164 int i;
1165
1166 /* if interface is down do nothing */
1167 if (test_bit(ICE_DOWN, pf->state) ||
1168 test_bit(ICE_CFG_BUSY, pf->state))
1169 return;
1170
1171 /* make sure we don't do these things too often */
1172 if (time_before(jiffies,
1173 pf->serv_tmr_prev + pf->serv_tmr_period))
1174 return;
1175
1176 pf->serv_tmr_prev = jiffies;
1177
1178 /* Update the stats for active netdevs so the network stack
1179 * can look at updated numbers whenever it cares to
1180 */
1181 ice_update_pf_stats(pf);
1182 ice_for_each_vsi(pf, i)
1183 if (pf->vsi[i] && pf->vsi[i]->netdev)
1184 ice_update_vsi_stats(pf->vsi[i]);
1185 }
1186
1187 /**
1188 * ice_init_link_events - enable/initialize link events
1189 * @pi: pointer to the port_info instance
1190 *
1191 * Returns -EIO on failure, 0 on success
1192 */
ice_init_link_events(struct ice_port_info * pi)1193 static int ice_init_link_events(struct ice_port_info *pi)
1194 {
1195 u16 mask;
1196
1197 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1198 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1199 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1200
1201 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1202 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1203 pi->lport);
1204 return -EIO;
1205 }
1206
1207 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1209 pi->lport);
1210 return -EIO;
1211 }
1212
1213 return 0;
1214 }
1215
1216 /**
1217 * ice_handle_link_event - handle link event via ARQ
1218 * @pf: PF that the link event is associated with
1219 * @event: event structure containing link status info
1220 */
1221 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1222 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1223 {
1224 struct ice_aqc_get_link_status_data *link_data;
1225 struct ice_port_info *port_info;
1226 int status;
1227
1228 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1229 port_info = pf->hw.port_info;
1230 if (!port_info)
1231 return -EINVAL;
1232
1233 status = ice_link_event(pf, port_info,
1234 !!(link_data->link_info & ICE_AQ_LINK_UP),
1235 le16_to_cpu(link_data->link_speed));
1236 if (status)
1237 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1238 status);
1239
1240 return status;
1241 }
1242
1243 /**
1244 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1245 * @pf: pointer to the PF private structure
1246 * @task: intermediate helper storage and identifier for waiting
1247 * @opcode: the opcode to wait for
1248 *
1249 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1250 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1251 *
1252 * Calls are separated to allow caller registering for event before sending
1253 * the command, which mitigates a race between registering and FW responding.
1254 *
1255 * To obtain only the descriptor contents, pass an task->event with null
1256 * msg_buf. If the complete data buffer is desired, allocate the
1257 * task->event.msg_buf with enough space ahead of time.
1258 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1259 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1260 u16 opcode)
1261 {
1262 INIT_HLIST_NODE(&task->entry);
1263 task->opcode = opcode;
1264 task->state = ICE_AQ_TASK_WAITING;
1265
1266 spin_lock_bh(&pf->aq_wait_lock);
1267 hlist_add_head(&task->entry, &pf->aq_wait_list);
1268 spin_unlock_bh(&pf->aq_wait_lock);
1269 }
1270
1271 /**
1272 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1273 * @pf: pointer to the PF private structure
1274 * @task: ptr prepared by ice_aq_prep_for_event()
1275 * @timeout: how long to wait, in jiffies
1276 *
1277 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1278 * current thread will be put to sleep until the specified event occurs or
1279 * until the given timeout is reached.
1280 *
1281 * Returns: zero on success, or a negative error code on failure.
1282 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1283 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1284 unsigned long timeout)
1285 {
1286 enum ice_aq_task_state *state = &task->state;
1287 struct device *dev = ice_pf_to_dev(pf);
1288 unsigned long start = jiffies;
1289 long ret;
1290 int err;
1291
1292 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1293 *state != ICE_AQ_TASK_WAITING,
1294 timeout);
1295 switch (*state) {
1296 case ICE_AQ_TASK_NOT_PREPARED:
1297 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1298 err = -EINVAL;
1299 break;
1300 case ICE_AQ_TASK_WAITING:
1301 err = ret < 0 ? ret : -ETIMEDOUT;
1302 break;
1303 case ICE_AQ_TASK_CANCELED:
1304 err = ret < 0 ? ret : -ECANCELED;
1305 break;
1306 case ICE_AQ_TASK_COMPLETE:
1307 err = ret < 0 ? ret : 0;
1308 break;
1309 default:
1310 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1311 err = -EINVAL;
1312 break;
1313 }
1314
1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1316 jiffies_to_msecs(jiffies - start),
1317 jiffies_to_msecs(timeout),
1318 task->opcode);
1319
1320 spin_lock_bh(&pf->aq_wait_lock);
1321 hlist_del(&task->entry);
1322 spin_unlock_bh(&pf->aq_wait_lock);
1323
1324 return err;
1325 }
1326
1327 /**
1328 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1329 * @pf: pointer to the PF private structure
1330 * @opcode: the opcode of the event
1331 * @event: the event to check
1332 *
1333 * Loops over the current list of pending threads waiting for an AdminQ event.
1334 * For each matching task, copy the contents of the event into the task
1335 * structure and wake up the thread.
1336 *
1337 * If multiple threads wait for the same opcode, they will all be woken up.
1338 *
1339 * Note that event->msg_buf will only be duplicated if the event has a buffer
1340 * with enough space already allocated. Otherwise, only the descriptor and
1341 * message length will be copied.
1342 *
1343 * Returns: true if an event was found, false otherwise
1344 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1345 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1346 struct ice_rq_event_info *event)
1347 {
1348 struct ice_rq_event_info *task_ev;
1349 struct ice_aq_task *task;
1350 bool found = false;
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1354 if (task->state != ICE_AQ_TASK_WAITING)
1355 continue;
1356 if (task->opcode != opcode)
1357 continue;
1358
1359 task_ev = &task->event;
1360 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1361 task_ev->msg_len = event->msg_len;
1362
1363 /* Only copy the data buffer if a destination was set */
1364 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1365 memcpy(task_ev->msg_buf, event->msg_buf,
1366 event->buf_len);
1367 task_ev->buf_len = event->buf_len;
1368 }
1369
1370 task->state = ICE_AQ_TASK_COMPLETE;
1371 found = true;
1372 }
1373 spin_unlock_bh(&pf->aq_wait_lock);
1374
1375 if (found)
1376 wake_up(&pf->aq_wait_queue);
1377 }
1378
1379 /**
1380 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1381 * @pf: the PF private structure
1382 *
1383 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1384 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1385 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1386 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1387 {
1388 struct ice_aq_task *task;
1389
1390 spin_lock_bh(&pf->aq_wait_lock);
1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1392 task->state = ICE_AQ_TASK_CANCELED;
1393 spin_unlock_bh(&pf->aq_wait_lock);
1394
1395 wake_up(&pf->aq_wait_queue);
1396 }
1397
1398 #define ICE_MBX_OVERFLOW_WATERMARK 64
1399
1400 /**
1401 * __ice_clean_ctrlq - helper function to clean controlq rings
1402 * @pf: ptr to struct ice_pf
1403 * @q_type: specific Control queue type
1404 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1405 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1406 {
1407 struct device *dev = ice_pf_to_dev(pf);
1408 struct ice_rq_event_info event;
1409 struct ice_hw *hw = &pf->hw;
1410 struct ice_ctl_q_info *cq;
1411 u16 pending, i = 0;
1412 const char *qtype;
1413 u32 oldval, val;
1414
1415 /* Do not clean control queue if/when PF reset fails */
1416 if (test_bit(ICE_RESET_FAILED, pf->state))
1417 return 0;
1418
1419 switch (q_type) {
1420 case ICE_CTL_Q_ADMIN:
1421 cq = &hw->adminq;
1422 qtype = "Admin";
1423 break;
1424 case ICE_CTL_Q_SB:
1425 cq = &hw->sbq;
1426 qtype = "Sideband";
1427 break;
1428 case ICE_CTL_Q_MAILBOX:
1429 cq = &hw->mailboxq;
1430 qtype = "Mailbox";
1431 /* we are going to try to detect a malicious VF, so set the
1432 * state to begin detection
1433 */
1434 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1435 break;
1436 default:
1437 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1438 return 0;
1439 }
1440
1441 /* check for error indications - PF_xx_AxQLEN register layout for
1442 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1443 */
1444 val = rd32(hw, cq->rq.len);
1445 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1446 PF_FW_ARQLEN_ARQCRIT_M)) {
1447 oldval = val;
1448 if (val & PF_FW_ARQLEN_ARQVFE_M)
1449 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1450 qtype);
1451 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1452 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1453 qtype);
1454 }
1455 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1456 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1457 qtype);
1458 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1459 PF_FW_ARQLEN_ARQCRIT_M);
1460 if (oldval != val)
1461 wr32(hw, cq->rq.len, val);
1462 }
1463
1464 val = rd32(hw, cq->sq.len);
1465 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1466 PF_FW_ATQLEN_ATQCRIT_M)) {
1467 oldval = val;
1468 if (val & PF_FW_ATQLEN_ATQVFE_M)
1469 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1470 qtype);
1471 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1472 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1473 qtype);
1474 }
1475 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1476 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1477 qtype);
1478 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1479 PF_FW_ATQLEN_ATQCRIT_M);
1480 if (oldval != val)
1481 wr32(hw, cq->sq.len, val);
1482 }
1483
1484 event.buf_len = cq->rq_buf_size;
1485 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1486 if (!event.msg_buf)
1487 return 0;
1488
1489 do {
1490 struct ice_mbx_data data = {};
1491 u16 opcode;
1492 int ret;
1493
1494 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1495 if (ret == -EALREADY)
1496 break;
1497 if (ret) {
1498 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1499 ret);
1500 break;
1501 }
1502
1503 opcode = le16_to_cpu(event.desc.opcode);
1504
1505 /* Notify any thread that might be waiting for this event */
1506 ice_aq_check_events(pf, opcode, &event);
1507
1508 switch (opcode) {
1509 case ice_aqc_opc_get_link_status:
1510 if (ice_handle_link_event(pf, &event))
1511 dev_err(dev, "Could not handle link event\n");
1512 break;
1513 case ice_aqc_opc_event_lan_overflow:
1514 ice_vf_lan_overflow_event(pf, &event);
1515 break;
1516 case ice_mbx_opc_send_msg_to_pf:
1517 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1518 ice_vc_process_vf_msg(pf, &event, NULL);
1519 ice_mbx_vf_dec_trig_e830(hw, &event);
1520 } else {
1521 u16 val = hw->mailboxq.num_rq_entries;
1522
1523 data.max_num_msgs_mbx = val;
1524 val = ICE_MBX_OVERFLOW_WATERMARK;
1525 data.async_watermark_val = val;
1526 data.num_msg_proc = i;
1527 data.num_pending_arq = pending;
1528
1529 ice_vc_process_vf_msg(pf, &event, &data);
1530 }
1531 break;
1532 case ice_aqc_opc_fw_logging:
1533 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1534 break;
1535 case ice_aqc_opc_lldp_set_mib_change:
1536 ice_dcb_process_lldp_set_mib_change(pf, &event);
1537 break;
1538 default:
1539 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1540 qtype, opcode);
1541 break;
1542 }
1543 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1544
1545 kfree(event.msg_buf);
1546
1547 return pending && (i == ICE_DFLT_IRQ_WORK);
1548 }
1549
1550 /**
1551 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1552 * @hw: pointer to hardware info
1553 * @cq: control queue information
1554 *
1555 * returns true if there are pending messages in a queue, false if there aren't
1556 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1557 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1558 {
1559 u16 ntu;
1560
1561 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1562 return cq->rq.next_to_clean != ntu;
1563 }
1564
1565 /**
1566 * ice_clean_adminq_subtask - clean the AdminQ rings
1567 * @pf: board private structure
1568 */
ice_clean_adminq_subtask(struct ice_pf * pf)1569 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1570 {
1571 struct ice_hw *hw = &pf->hw;
1572
1573 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1574 return;
1575
1576 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1577 return;
1578
1579 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1580
1581 /* There might be a situation where new messages arrive to a control
1582 * queue between processing the last message and clearing the
1583 * EVENT_PENDING bit. So before exiting, check queue head again (using
1584 * ice_ctrlq_pending) and process new messages if any.
1585 */
1586 if (ice_ctrlq_pending(hw, &hw->adminq))
1587 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1588
1589 ice_flush(hw);
1590 }
1591
1592 /**
1593 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1594 * @pf: board private structure
1595 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1596 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1597 {
1598 struct ice_hw *hw = &pf->hw;
1599
1600 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1601 return;
1602
1603 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1604 return;
1605
1606 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1607
1608 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1609 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1610
1611 ice_flush(hw);
1612 }
1613
1614 /**
1615 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1616 * @pf: board private structure
1617 */
ice_clean_sbq_subtask(struct ice_pf * pf)1618 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1619 {
1620 struct ice_hw *hw = &pf->hw;
1621
1622 /* Nothing to do here if sideband queue is not supported */
1623 if (!ice_is_sbq_supported(hw)) {
1624 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1625 return;
1626 }
1627
1628 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1629 return;
1630
1631 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1632 return;
1633
1634 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1635
1636 if (ice_ctrlq_pending(hw, &hw->sbq))
1637 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1638
1639 ice_flush(hw);
1640 }
1641
1642 /**
1643 * ice_service_task_schedule - schedule the service task to wake up
1644 * @pf: board private structure
1645 *
1646 * If not already scheduled, this puts the task into the work queue.
1647 */
ice_service_task_schedule(struct ice_pf * pf)1648 void ice_service_task_schedule(struct ice_pf *pf)
1649 {
1650 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1651 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1652 !test_bit(ICE_NEEDS_RESTART, pf->state))
1653 queue_work(ice_wq, &pf->serv_task);
1654 }
1655
1656 /**
1657 * ice_service_task_complete - finish up the service task
1658 * @pf: board private structure
1659 */
ice_service_task_complete(struct ice_pf * pf)1660 static void ice_service_task_complete(struct ice_pf *pf)
1661 {
1662 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1663
1664 /* force memory (pf->state) to sync before next service task */
1665 smp_mb__before_atomic();
1666 clear_bit(ICE_SERVICE_SCHED, pf->state);
1667 }
1668
1669 /**
1670 * ice_service_task_stop - stop service task and cancel works
1671 * @pf: board private structure
1672 *
1673 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1674 * 1 otherwise.
1675 */
ice_service_task_stop(struct ice_pf * pf)1676 static int ice_service_task_stop(struct ice_pf *pf)
1677 {
1678 int ret;
1679
1680 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1681
1682 if (pf->serv_tmr.function)
1683 del_timer_sync(&pf->serv_tmr);
1684 if (pf->serv_task.func)
1685 cancel_work_sync(&pf->serv_task);
1686
1687 clear_bit(ICE_SERVICE_SCHED, pf->state);
1688 return ret;
1689 }
1690
1691 /**
1692 * ice_service_task_restart - restart service task and schedule works
1693 * @pf: board private structure
1694 *
1695 * This function is needed for suspend and resume works (e.g WoL scenario)
1696 */
ice_service_task_restart(struct ice_pf * pf)1697 static void ice_service_task_restart(struct ice_pf *pf)
1698 {
1699 clear_bit(ICE_SERVICE_DIS, pf->state);
1700 ice_service_task_schedule(pf);
1701 }
1702
1703 /**
1704 * ice_service_timer - timer callback to schedule service task
1705 * @t: pointer to timer_list
1706 */
ice_service_timer(struct timer_list * t)1707 static void ice_service_timer(struct timer_list *t)
1708 {
1709 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1710
1711 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1712 ice_service_task_schedule(pf);
1713 }
1714
1715 /**
1716 * ice_handle_mdd_event - handle malicious driver detect event
1717 * @pf: pointer to the PF structure
1718 *
1719 * Called from service task. OICR interrupt handler indicates MDD event.
1720 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1721 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1722 * disable the queue, the PF can be configured to reset the VF using ethtool
1723 * private flag mdd-auto-reset-vf.
1724 */
ice_handle_mdd_event(struct ice_pf * pf)1725 static void ice_handle_mdd_event(struct ice_pf *pf)
1726 {
1727 struct device *dev = ice_pf_to_dev(pf);
1728 struct ice_hw *hw = &pf->hw;
1729 struct ice_vf *vf;
1730 unsigned int bkt;
1731 u32 reg;
1732
1733 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1734 /* Since the VF MDD event logging is rate limited, check if
1735 * there are pending MDD events.
1736 */
1737 ice_print_vfs_mdd_events(pf);
1738 return;
1739 }
1740
1741 /* find what triggered an MDD event */
1742 reg = rd32(hw, GL_MDET_TX_PQM);
1743 if (reg & GL_MDET_TX_PQM_VALID_M) {
1744 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1745 GL_MDET_TX_PQM_PF_NUM_S;
1746 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1747 GL_MDET_TX_PQM_VF_NUM_S;
1748 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1749 GL_MDET_TX_PQM_MAL_TYPE_S;
1750 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1751 GL_MDET_TX_PQM_QNUM_S);
1752
1753 if (netif_msg_tx_err(pf))
1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1755 event, queue, pf_num, vf_num);
1756 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1757 }
1758
1759 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1760 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1761 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1762 GL_MDET_TX_TCLAN_PF_NUM_S;
1763 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1764 GL_MDET_TX_TCLAN_VF_NUM_S;
1765 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1766 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1767 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1768 GL_MDET_TX_TCLAN_QNUM_S);
1769
1770 if (netif_msg_tx_err(pf))
1771 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1772 event, queue, pf_num, vf_num);
1773 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1774 }
1775
1776 reg = rd32(hw, GL_MDET_RX);
1777 if (reg & GL_MDET_RX_VALID_M) {
1778 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1779 GL_MDET_RX_PF_NUM_S;
1780 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1781 GL_MDET_RX_VF_NUM_S;
1782 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1783 GL_MDET_RX_MAL_TYPE_S;
1784 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1785 GL_MDET_RX_QNUM_S);
1786
1787 if (netif_msg_rx_err(pf))
1788 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1789 event, queue, pf_num, vf_num);
1790 wr32(hw, GL_MDET_RX, 0xffffffff);
1791 }
1792
1793 /* check to see if this PF caused an MDD event */
1794 reg = rd32(hw, PF_MDET_TX_PQM);
1795 if (reg & PF_MDET_TX_PQM_VALID_M) {
1796 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1797 if (netif_msg_tx_err(pf))
1798 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1799 }
1800
1801 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1802 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1803 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1804 if (netif_msg_tx_err(pf))
1805 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1806 }
1807
1808 reg = rd32(hw, PF_MDET_RX);
1809 if (reg & PF_MDET_RX_VALID_M) {
1810 wr32(hw, PF_MDET_RX, 0xFFFF);
1811 if (netif_msg_rx_err(pf))
1812 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1813 }
1814
1815 /* Check to see if one of the VFs caused an MDD event, and then
1816 * increment counters and set print pending
1817 */
1818 mutex_lock(&pf->vfs.table_lock);
1819 ice_for_each_vf(pf, bkt, vf) {
1820 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1821 if (reg & VP_MDET_TX_PQM_VALID_M) {
1822 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1823 vf->mdd_tx_events.count++;
1824 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1825 if (netif_msg_tx_err(pf))
1826 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1827 vf->vf_id);
1828 }
1829
1830 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1831 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1832 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1833 vf->mdd_tx_events.count++;
1834 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1835 if (netif_msg_tx_err(pf))
1836 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1837 vf->vf_id);
1838 }
1839
1840 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1841 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1842 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1843 vf->mdd_tx_events.count++;
1844 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1845 if (netif_msg_tx_err(pf))
1846 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1847 vf->vf_id);
1848 }
1849
1850 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1851 if (reg & VP_MDET_RX_VALID_M) {
1852 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1853 vf->mdd_rx_events.count++;
1854 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1855 if (netif_msg_rx_err(pf))
1856 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1857 vf->vf_id);
1858
1859 /* Since the queue is disabled on VF Rx MDD events, the
1860 * PF can be configured to reset the VF through ethtool
1861 * private flag mdd-auto-reset-vf.
1862 */
1863 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1864 /* VF MDD event counters will be cleared by
1865 * reset, so print the event prior to reset.
1866 */
1867 ice_print_vf_rx_mdd_event(vf);
1868 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1869 }
1870 }
1871 }
1872 mutex_unlock(&pf->vfs.table_lock);
1873
1874 ice_print_vfs_mdd_events(pf);
1875 }
1876
1877 /**
1878 * ice_force_phys_link_state - Force the physical link state
1879 * @vsi: VSI to force the physical link state to up/down
1880 * @link_up: true/false indicates to set the physical link to up/down
1881 *
1882 * Force the physical link state by getting the current PHY capabilities from
1883 * hardware and setting the PHY config based on the determined capabilities. If
1884 * link changes a link event will be triggered because both the Enable Automatic
1885 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1886 *
1887 * Returns 0 on success, negative on failure
1888 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1889 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1890 {
1891 struct ice_aqc_get_phy_caps_data *pcaps;
1892 struct ice_aqc_set_phy_cfg_data *cfg;
1893 struct ice_port_info *pi;
1894 struct device *dev;
1895 int retcode;
1896
1897 if (!vsi || !vsi->port_info || !vsi->back)
1898 return -EINVAL;
1899 if (vsi->type != ICE_VSI_PF)
1900 return 0;
1901
1902 dev = ice_pf_to_dev(vsi->back);
1903
1904 pi = vsi->port_info;
1905
1906 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1907 if (!pcaps)
1908 return -ENOMEM;
1909
1910 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1911 NULL);
1912 if (retcode) {
1913 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1914 vsi->vsi_num, retcode);
1915 retcode = -EIO;
1916 goto out;
1917 }
1918
1919 /* No change in link */
1920 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1921 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1922 goto out;
1923
1924 /* Use the current user PHY configuration. The current user PHY
1925 * configuration is initialized during probe from PHY capabilities
1926 * software mode, and updated on set PHY configuration.
1927 */
1928 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1929 if (!cfg) {
1930 retcode = -ENOMEM;
1931 goto out;
1932 }
1933
1934 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1935 if (link_up)
1936 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1937 else
1938 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1939
1940 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1941 if (retcode) {
1942 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1943 vsi->vsi_num, retcode);
1944 retcode = -EIO;
1945 }
1946
1947 kfree(cfg);
1948 out:
1949 kfree(pcaps);
1950 return retcode;
1951 }
1952
1953 /**
1954 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1955 * @pi: port info structure
1956 *
1957 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1958 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1959 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1960 {
1961 struct ice_aqc_get_phy_caps_data *pcaps;
1962 struct ice_pf *pf = pi->hw->back;
1963 int err;
1964
1965 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1966 if (!pcaps)
1967 return -ENOMEM;
1968
1969 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1970 pcaps, NULL);
1971
1972 if (err) {
1973 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1974 goto out;
1975 }
1976
1977 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1978 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1979
1980 out:
1981 kfree(pcaps);
1982 return err;
1983 }
1984
1985 /**
1986 * ice_init_link_dflt_override - Initialize link default override
1987 * @pi: port info structure
1988 *
1989 * Initialize link default override and PHY total port shutdown during probe
1990 */
ice_init_link_dflt_override(struct ice_port_info * pi)1991 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1992 {
1993 struct ice_link_default_override_tlv *ldo;
1994 struct ice_pf *pf = pi->hw->back;
1995
1996 ldo = &pf->link_dflt_override;
1997 if (ice_get_link_default_override(ldo, pi))
1998 return;
1999
2000 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2001 return;
2002
2003 /* Enable Total Port Shutdown (override/replace link-down-on-close
2004 * ethtool private flag) for ports with Port Disable bit set.
2005 */
2006 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2007 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2008 }
2009
2010 /**
2011 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2012 * @pi: port info structure
2013 *
2014 * If default override is enabled, initialize the user PHY cfg speed and FEC
2015 * settings using the default override mask from the NVM.
2016 *
2017 * The PHY should only be configured with the default override settings the
2018 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2019 * is used to indicate that the user PHY cfg default override is initialized
2020 * and the PHY has not been configured with the default override settings. The
2021 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2022 * configured.
2023 *
2024 * This function should be called only if the FW doesn't support default
2025 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2026 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2027 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2028 {
2029 struct ice_link_default_override_tlv *ldo;
2030 struct ice_aqc_set_phy_cfg_data *cfg;
2031 struct ice_phy_info *phy = &pi->phy;
2032 struct ice_pf *pf = pi->hw->back;
2033
2034 ldo = &pf->link_dflt_override;
2035
2036 /* If link default override is enabled, use to mask NVM PHY capabilities
2037 * for speed and FEC default configuration.
2038 */
2039 cfg = &phy->curr_user_phy_cfg;
2040
2041 if (ldo->phy_type_low || ldo->phy_type_high) {
2042 cfg->phy_type_low = pf->nvm_phy_type_lo &
2043 cpu_to_le64(ldo->phy_type_low);
2044 cfg->phy_type_high = pf->nvm_phy_type_hi &
2045 cpu_to_le64(ldo->phy_type_high);
2046 }
2047 cfg->link_fec_opt = ldo->fec_options;
2048 phy->curr_user_fec_req = ICE_FEC_AUTO;
2049
2050 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2051 }
2052
2053 /**
2054 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2055 * @pi: port info structure
2056 *
2057 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2058 * mode to default. The PHY defaults are from get PHY capabilities topology
2059 * with media so call when media is first available. An error is returned if
2060 * called when media is not available. The PHY initialization completed state is
2061 * set here.
2062 *
2063 * These configurations are used when setting PHY
2064 * configuration. The user PHY configuration is updated on set PHY
2065 * configuration. Returns 0 on success, negative on failure
2066 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2067 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2068 {
2069 struct ice_aqc_get_phy_caps_data *pcaps;
2070 struct ice_phy_info *phy = &pi->phy;
2071 struct ice_pf *pf = pi->hw->back;
2072 int err;
2073
2074 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2075 return -EIO;
2076
2077 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2078 if (!pcaps)
2079 return -ENOMEM;
2080
2081 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2082 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2083 pcaps, NULL);
2084 else
2085 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2086 pcaps, NULL);
2087 if (err) {
2088 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2089 goto err_out;
2090 }
2091
2092 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2093
2094 /* check if lenient mode is supported and enabled */
2095 if (ice_fw_supports_link_override(pi->hw) &&
2096 !(pcaps->module_compliance_enforcement &
2097 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2098 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2099
2100 /* if the FW supports default PHY configuration mode, then the driver
2101 * does not have to apply link override settings. If not,
2102 * initialize user PHY configuration with link override values
2103 */
2104 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2105 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2106 ice_init_phy_cfg_dflt_override(pi);
2107 goto out;
2108 }
2109 }
2110
2111 /* if link default override is not enabled, set user flow control and
2112 * FEC settings based on what get_phy_caps returned
2113 */
2114 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2115 pcaps->link_fec_options);
2116 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2117
2118 out:
2119 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2120 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2121 err_out:
2122 kfree(pcaps);
2123 return err;
2124 }
2125
2126 /**
2127 * ice_configure_phy - configure PHY
2128 * @vsi: VSI of PHY
2129 *
2130 * Set the PHY configuration. If the current PHY configuration is the same as
2131 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2132 * configure the based get PHY capabilities for topology with media.
2133 */
ice_configure_phy(struct ice_vsi * vsi)2134 static int ice_configure_phy(struct ice_vsi *vsi)
2135 {
2136 struct device *dev = ice_pf_to_dev(vsi->back);
2137 struct ice_port_info *pi = vsi->port_info;
2138 struct ice_aqc_get_phy_caps_data *pcaps;
2139 struct ice_aqc_set_phy_cfg_data *cfg;
2140 struct ice_phy_info *phy = &pi->phy;
2141 struct ice_pf *pf = vsi->back;
2142 int err;
2143
2144 /* Ensure we have media as we cannot configure a medialess port */
2145 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2146 return -ENOMEDIUM;
2147
2148 ice_print_topo_conflict(vsi);
2149
2150 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2151 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2152 return -EPERM;
2153
2154 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2155 return ice_force_phys_link_state(vsi, true);
2156
2157 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2158 if (!pcaps)
2159 return -ENOMEM;
2160
2161 /* Get current PHY config */
2162 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2163 NULL);
2164 if (err) {
2165 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2166 vsi->vsi_num, err);
2167 goto done;
2168 }
2169
2170 /* If PHY enable link is configured and configuration has not changed,
2171 * there's nothing to do
2172 */
2173 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2174 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2175 goto done;
2176
2177 /* Use PHY topology as baseline for configuration */
2178 memset(pcaps, 0, sizeof(*pcaps));
2179 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2180 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2181 pcaps, NULL);
2182 else
2183 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2184 pcaps, NULL);
2185 if (err) {
2186 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2187 vsi->vsi_num, err);
2188 goto done;
2189 }
2190
2191 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2192 if (!cfg) {
2193 err = -ENOMEM;
2194 goto done;
2195 }
2196
2197 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2198
2199 /* Speed - If default override pending, use curr_user_phy_cfg set in
2200 * ice_init_phy_user_cfg_ldo.
2201 */
2202 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2203 vsi->back->state)) {
2204 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2205 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2206 } else {
2207 u64 phy_low = 0, phy_high = 0;
2208
2209 ice_update_phy_type(&phy_low, &phy_high,
2210 pi->phy.curr_user_speed_req);
2211 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2212 cfg->phy_type_high = pcaps->phy_type_high &
2213 cpu_to_le64(phy_high);
2214 }
2215
2216 /* Can't provide what was requested; use PHY capabilities */
2217 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2218 cfg->phy_type_low = pcaps->phy_type_low;
2219 cfg->phy_type_high = pcaps->phy_type_high;
2220 }
2221
2222 /* FEC */
2223 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2224
2225 /* Can't provide what was requested; use PHY capabilities */
2226 if (cfg->link_fec_opt !=
2227 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2228 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2229 cfg->link_fec_opt = pcaps->link_fec_options;
2230 }
2231
2232 /* Flow Control - always supported; no need to check against
2233 * capabilities
2234 */
2235 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2236
2237 /* Enable link and link update */
2238 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2239
2240 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2241 if (err)
2242 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2243 vsi->vsi_num, err);
2244
2245 kfree(cfg);
2246 done:
2247 kfree(pcaps);
2248 return err;
2249 }
2250
2251 /**
2252 * ice_check_media_subtask - Check for media
2253 * @pf: pointer to PF struct
2254 *
2255 * If media is available, then initialize PHY user configuration if it is not
2256 * been, and configure the PHY if the interface is up.
2257 */
ice_check_media_subtask(struct ice_pf * pf)2258 static void ice_check_media_subtask(struct ice_pf *pf)
2259 {
2260 struct ice_port_info *pi;
2261 struct ice_vsi *vsi;
2262 int err;
2263
2264 /* No need to check for media if it's already present */
2265 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2266 return;
2267
2268 vsi = ice_get_main_vsi(pf);
2269 if (!vsi)
2270 return;
2271
2272 /* Refresh link info and check if media is present */
2273 pi = vsi->port_info;
2274 err = ice_update_link_info(pi);
2275 if (err)
2276 return;
2277
2278 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2279
2280 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2281 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2282 ice_init_phy_user_cfg(pi);
2283
2284 /* PHY settings are reset on media insertion, reconfigure
2285 * PHY to preserve settings.
2286 */
2287 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2288 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2289 return;
2290
2291 err = ice_configure_phy(vsi);
2292 if (!err)
2293 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2294
2295 /* A Link Status Event will be generated; the event handler
2296 * will complete bringing the interface up
2297 */
2298 }
2299 }
2300
2301 /**
2302 * ice_service_task - manage and run subtasks
2303 * @work: pointer to work_struct contained by the PF struct
2304 */
ice_service_task(struct work_struct * work)2305 static void ice_service_task(struct work_struct *work)
2306 {
2307 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2308 unsigned long start_time = jiffies;
2309
2310 /* subtasks */
2311
2312 /* process reset requests first */
2313 ice_reset_subtask(pf);
2314
2315 /* bail if a reset/recovery cycle is pending or rebuild failed */
2316 if (ice_is_reset_in_progress(pf->state) ||
2317 test_bit(ICE_SUSPENDED, pf->state) ||
2318 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2319 ice_service_task_complete(pf);
2320 return;
2321 }
2322
2323 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2324 struct iidc_event *event;
2325
2326 event = kzalloc(sizeof(*event), GFP_KERNEL);
2327 if (event) {
2328 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2329 /* report the entire OICR value to AUX driver */
2330 swap(event->reg, pf->oicr_err_reg);
2331 ice_send_event_to_aux(pf, event);
2332 kfree(event);
2333 }
2334 }
2335
2336 /* unplug aux dev per request, if an unplug request came in
2337 * while processing a plug request, this will handle it
2338 */
2339 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2340 ice_unplug_aux_dev(pf);
2341
2342 /* Plug aux device per request */
2343 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2344 ice_plug_aux_dev(pf);
2345
2346 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2347 struct iidc_event *event;
2348
2349 event = kzalloc(sizeof(*event), GFP_KERNEL);
2350 if (event) {
2351 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2352 ice_send_event_to_aux(pf, event);
2353 kfree(event);
2354 }
2355 }
2356
2357 ice_clean_adminq_subtask(pf);
2358 ice_check_media_subtask(pf);
2359 ice_check_for_hang_subtask(pf);
2360 ice_sync_fltr_subtask(pf);
2361 ice_handle_mdd_event(pf);
2362 ice_watchdog_subtask(pf);
2363
2364 if (ice_is_safe_mode(pf)) {
2365 ice_service_task_complete(pf);
2366 return;
2367 }
2368
2369 ice_process_vflr_event(pf);
2370 ice_clean_mailboxq_subtask(pf);
2371 ice_clean_sbq_subtask(pf);
2372 ice_sync_arfs_fltrs(pf);
2373 ice_flush_fdir_ctx(pf);
2374
2375 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2376 ice_service_task_complete(pf);
2377
2378 /* If the tasks have taken longer than one service timer period
2379 * or there is more work to be done, reset the service timer to
2380 * schedule the service task now.
2381 */
2382 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2383 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2384 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2385 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2386 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2387 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2388 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2389 mod_timer(&pf->serv_tmr, jiffies);
2390 }
2391
2392 /**
2393 * ice_set_ctrlq_len - helper function to set controlq length
2394 * @hw: pointer to the HW instance
2395 */
ice_set_ctrlq_len(struct ice_hw * hw)2396 static void ice_set_ctrlq_len(struct ice_hw *hw)
2397 {
2398 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2399 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2400 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2401 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2402 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2403 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2404 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2405 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2406 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2407 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2408 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2409 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2410 }
2411
2412 /**
2413 * ice_schedule_reset - schedule a reset
2414 * @pf: board private structure
2415 * @reset: reset being requested
2416 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2417 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2418 {
2419 struct device *dev = ice_pf_to_dev(pf);
2420
2421 /* bail out if earlier reset has failed */
2422 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2423 dev_dbg(dev, "earlier reset has failed\n");
2424 return -EIO;
2425 }
2426 /* bail if reset/recovery already in progress */
2427 if (ice_is_reset_in_progress(pf->state)) {
2428 dev_dbg(dev, "Reset already in progress\n");
2429 return -EBUSY;
2430 }
2431
2432 switch (reset) {
2433 case ICE_RESET_PFR:
2434 set_bit(ICE_PFR_REQ, pf->state);
2435 break;
2436 case ICE_RESET_CORER:
2437 set_bit(ICE_CORER_REQ, pf->state);
2438 break;
2439 case ICE_RESET_GLOBR:
2440 set_bit(ICE_GLOBR_REQ, pf->state);
2441 break;
2442 default:
2443 return -EINVAL;
2444 }
2445
2446 ice_service_task_schedule(pf);
2447 return 0;
2448 }
2449
2450 /**
2451 * ice_irq_affinity_notify - Callback for affinity changes
2452 * @notify: context as to what irq was changed
2453 * @mask: the new affinity mask
2454 *
2455 * This is a callback function used by the irq_set_affinity_notifier function
2456 * so that we may register to receive changes to the irq affinity masks.
2457 */
2458 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2459 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2460 const cpumask_t *mask)
2461 {
2462 struct ice_q_vector *q_vector =
2463 container_of(notify, struct ice_q_vector, affinity_notify);
2464
2465 cpumask_copy(&q_vector->affinity_mask, mask);
2466 }
2467
2468 /**
2469 * ice_irq_affinity_release - Callback for affinity notifier release
2470 * @ref: internal core kernel usage
2471 *
2472 * This is a callback function used by the irq_set_affinity_notifier function
2473 * to inform the current notification subscriber that they will no longer
2474 * receive notifications.
2475 */
ice_irq_affinity_release(struct kref __always_unused * ref)2476 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2477
2478 /**
2479 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2480 * @vsi: the VSI being configured
2481 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2482 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2483 {
2484 struct ice_hw *hw = &vsi->back->hw;
2485 int i;
2486
2487 ice_for_each_q_vector(vsi, i)
2488 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2489
2490 ice_flush(hw);
2491 return 0;
2492 }
2493
2494 /**
2495 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2496 * @vsi: the VSI being configured
2497 * @basename: name for the vector
2498 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2499 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2500 {
2501 int q_vectors = vsi->num_q_vectors;
2502 struct ice_pf *pf = vsi->back;
2503 struct device *dev;
2504 int rx_int_idx = 0;
2505 int tx_int_idx = 0;
2506 int vector, err;
2507 int irq_num;
2508
2509 dev = ice_pf_to_dev(pf);
2510 for (vector = 0; vector < q_vectors; vector++) {
2511 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2512
2513 irq_num = q_vector->irq.virq;
2514
2515 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2516 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2517 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2518 tx_int_idx++;
2519 } else if (q_vector->rx.rx_ring) {
2520 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2521 "%s-%s-%d", basename, "rx", rx_int_idx++);
2522 } else if (q_vector->tx.tx_ring) {
2523 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2524 "%s-%s-%d", basename, "tx", tx_int_idx++);
2525 } else {
2526 /* skip this unused q_vector */
2527 continue;
2528 }
2529 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2530 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2531 IRQF_SHARED, q_vector->name,
2532 q_vector);
2533 else
2534 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2535 0, q_vector->name, q_vector);
2536 if (err) {
2537 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2538 err);
2539 goto free_q_irqs;
2540 }
2541
2542 /* register for affinity change notifications */
2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2544 struct irq_affinity_notify *affinity_notify;
2545
2546 affinity_notify = &q_vector->affinity_notify;
2547 affinity_notify->notify = ice_irq_affinity_notify;
2548 affinity_notify->release = ice_irq_affinity_release;
2549 irq_set_affinity_notifier(irq_num, affinity_notify);
2550 }
2551
2552 /* assign the mask for this irq */
2553 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2554 }
2555
2556 err = ice_set_cpu_rx_rmap(vsi);
2557 if (err) {
2558 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2559 vsi->vsi_num, ERR_PTR(err));
2560 goto free_q_irqs;
2561 }
2562
2563 vsi->irqs_ready = true;
2564 return 0;
2565
2566 free_q_irqs:
2567 while (vector--) {
2568 irq_num = vsi->q_vectors[vector]->irq.virq;
2569 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2570 irq_set_affinity_notifier(irq_num, NULL);
2571 irq_set_affinity_hint(irq_num, NULL);
2572 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2573 }
2574 return err;
2575 }
2576
2577 /**
2578 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2579 * @vsi: VSI to setup Tx rings used by XDP
2580 *
2581 * Return 0 on success and negative value on error
2582 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2583 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2584 {
2585 struct device *dev = ice_pf_to_dev(vsi->back);
2586 struct ice_tx_desc *tx_desc;
2587 int i, j;
2588
2589 ice_for_each_xdp_txq(vsi, i) {
2590 u16 xdp_q_idx = vsi->alloc_txq + i;
2591 struct ice_ring_stats *ring_stats;
2592 struct ice_tx_ring *xdp_ring;
2593
2594 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2595 if (!xdp_ring)
2596 goto free_xdp_rings;
2597
2598 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2599 if (!ring_stats) {
2600 ice_free_tx_ring(xdp_ring);
2601 goto free_xdp_rings;
2602 }
2603
2604 xdp_ring->ring_stats = ring_stats;
2605 xdp_ring->q_index = xdp_q_idx;
2606 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2607 xdp_ring->vsi = vsi;
2608 xdp_ring->netdev = NULL;
2609 xdp_ring->dev = dev;
2610 xdp_ring->count = vsi->num_tx_desc;
2611 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2612 if (ice_setup_tx_ring(xdp_ring))
2613 goto free_xdp_rings;
2614 ice_set_ring_xdp(xdp_ring);
2615 spin_lock_init(&xdp_ring->tx_lock);
2616 for (j = 0; j < xdp_ring->count; j++) {
2617 tx_desc = ICE_TX_DESC(xdp_ring, j);
2618 tx_desc->cmd_type_offset_bsz = 0;
2619 }
2620 }
2621
2622 return 0;
2623
2624 free_xdp_rings:
2625 for (; i >= 0; i--) {
2626 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2627 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2628 vsi->xdp_rings[i]->ring_stats = NULL;
2629 ice_free_tx_ring(vsi->xdp_rings[i]);
2630 }
2631 }
2632 return -ENOMEM;
2633 }
2634
2635 /**
2636 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2637 * @vsi: VSI to set the bpf prog on
2638 * @prog: the bpf prog pointer
2639 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2640 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2641 {
2642 struct bpf_prog *old_prog;
2643 int i;
2644
2645 old_prog = xchg(&vsi->xdp_prog, prog);
2646 ice_for_each_rxq(vsi, i)
2647 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2648
2649 if (old_prog)
2650 bpf_prog_put(old_prog);
2651 }
2652
2653 /**
2654 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2655 * @vsi: the VSI with XDP rings being unmapped
2656 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2657 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2658 {
2659 int v_idx;
2660
2661 ice_for_each_q_vector(vsi, v_idx) {
2662 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2663 struct ice_tx_ring *ring;
2664
2665 ice_for_each_tx_ring(ring, q_vector->tx)
2666 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2667 break;
2668
2669 /* restore the value of last node prior to XDP setup */
2670 q_vector->tx.tx_ring = ring;
2671 }
2672 }
2673
2674 /**
2675 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2676 * @vsi: VSI to bring up Tx rings used by XDP
2677 * @prog: bpf program that will be assigned to VSI
2678 * @cfg_type: create from scratch or restore the existing configuration
2679 *
2680 * Return 0 on success and negative value on error
2681 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2682 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2683 enum ice_xdp_cfg cfg_type)
2684 {
2685 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2686 int xdp_rings_rem = vsi->num_xdp_txq;
2687 struct ice_pf *pf = vsi->back;
2688 struct ice_qs_cfg xdp_qs_cfg = {
2689 .qs_mutex = &pf->avail_q_mutex,
2690 .pf_map = pf->avail_txqs,
2691 .pf_map_size = pf->max_pf_txqs,
2692 .q_count = vsi->num_xdp_txq,
2693 .scatter_count = ICE_MAX_SCATTER_TXQS,
2694 .vsi_map = vsi->txq_map,
2695 .vsi_map_offset = vsi->alloc_txq,
2696 .mapping_mode = ICE_VSI_MAP_CONTIG
2697 };
2698 struct device *dev;
2699 int i, v_idx;
2700 int status;
2701
2702 dev = ice_pf_to_dev(pf);
2703 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2704 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2705 if (!vsi->xdp_rings)
2706 return -ENOMEM;
2707
2708 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2709 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2710 goto err_map_xdp;
2711
2712 if (static_key_enabled(&ice_xdp_locking_key))
2713 netdev_warn(vsi->netdev,
2714 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2715
2716 if (ice_xdp_alloc_setup_rings(vsi))
2717 goto clear_xdp_rings;
2718
2719 /* follow the logic from ice_vsi_map_rings_to_vectors */
2720 ice_for_each_q_vector(vsi, v_idx) {
2721 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2722 int xdp_rings_per_v, q_id, q_base;
2723
2724 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2725 vsi->num_q_vectors - v_idx);
2726 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2727
2728 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2729 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2730
2731 xdp_ring->q_vector = q_vector;
2732 xdp_ring->next = q_vector->tx.tx_ring;
2733 q_vector->tx.tx_ring = xdp_ring;
2734 }
2735 xdp_rings_rem -= xdp_rings_per_v;
2736 }
2737
2738 ice_for_each_rxq(vsi, i) {
2739 if (static_key_enabled(&ice_xdp_locking_key)) {
2740 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2741 } else {
2742 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2743 struct ice_tx_ring *ring;
2744
2745 ice_for_each_tx_ring(ring, q_vector->tx) {
2746 if (ice_ring_is_xdp(ring)) {
2747 vsi->rx_rings[i]->xdp_ring = ring;
2748 break;
2749 }
2750 }
2751 }
2752 ice_tx_xsk_pool(vsi, i);
2753 }
2754
2755 /* omit the scheduler update if in reset path; XDP queues will be
2756 * taken into account at the end of ice_vsi_rebuild, where
2757 * ice_cfg_vsi_lan is being called
2758 */
2759 if (cfg_type == ICE_XDP_CFG_PART)
2760 return 0;
2761
2762 /* tell the Tx scheduler that right now we have
2763 * additional queues
2764 */
2765 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2766 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2767
2768 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2769 max_txqs);
2770 if (status) {
2771 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2772 status);
2773 goto unmap_xdp_rings;
2774 }
2775
2776 /* assign the prog only when it's not already present on VSI;
2777 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2778 * VSI rebuild that happens under ethtool -L can expose us to
2779 * the bpf_prog refcount issues as we would be swapping same
2780 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2781 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2782 * this is not harmful as dev_xdp_install bumps the refcount
2783 * before calling the op exposed by the driver;
2784 */
2785 if (!ice_is_xdp_ena_vsi(vsi))
2786 ice_vsi_assign_bpf_prog(vsi, prog);
2787
2788 return 0;
2789 unmap_xdp_rings:
2790 ice_unmap_xdp_rings(vsi);
2791 clear_xdp_rings:
2792 ice_for_each_xdp_txq(vsi, i)
2793 if (vsi->xdp_rings[i]) {
2794 kfree_rcu(vsi->xdp_rings[i], rcu);
2795 vsi->xdp_rings[i] = NULL;
2796 }
2797
2798 err_map_xdp:
2799 mutex_lock(&pf->avail_q_mutex);
2800 ice_for_each_xdp_txq(vsi, i) {
2801 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2802 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2803 }
2804 mutex_unlock(&pf->avail_q_mutex);
2805
2806 devm_kfree(dev, vsi->xdp_rings);
2807 vsi->xdp_rings = NULL;
2808
2809 return -ENOMEM;
2810 }
2811
2812 /**
2813 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2814 * @vsi: VSI to remove XDP rings
2815 * @cfg_type: disable XDP permanently or allow it to be restored later
2816 *
2817 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2818 * resources
2819 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2820 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2821 {
2822 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2823 struct ice_pf *pf = vsi->back;
2824 int i;
2825
2826 /* q_vectors are freed in reset path so there's no point in detaching
2827 * rings
2828 */
2829 if (cfg_type == ICE_XDP_CFG_PART)
2830 goto free_qmap;
2831
2832 ice_unmap_xdp_rings(vsi);
2833
2834 free_qmap:
2835 mutex_lock(&pf->avail_q_mutex);
2836 ice_for_each_xdp_txq(vsi, i) {
2837 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2838 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2839 }
2840 mutex_unlock(&pf->avail_q_mutex);
2841
2842 ice_for_each_xdp_txq(vsi, i)
2843 if (vsi->xdp_rings[i]) {
2844 if (vsi->xdp_rings[i]->desc) {
2845 synchronize_rcu();
2846 ice_free_tx_ring(vsi->xdp_rings[i]);
2847 }
2848 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2849 vsi->xdp_rings[i]->ring_stats = NULL;
2850 kfree_rcu(vsi->xdp_rings[i], rcu);
2851 vsi->xdp_rings[i] = NULL;
2852 }
2853
2854 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2855 vsi->xdp_rings = NULL;
2856
2857 if (static_key_enabled(&ice_xdp_locking_key))
2858 static_branch_dec(&ice_xdp_locking_key);
2859
2860 if (cfg_type == ICE_XDP_CFG_PART)
2861 return 0;
2862
2863 ice_vsi_assign_bpf_prog(vsi, NULL);
2864
2865 /* notify Tx scheduler that we destroyed XDP queues and bring
2866 * back the old number of child nodes
2867 */
2868 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2869 max_txqs[i] = vsi->num_txq;
2870
2871 /* change number of XDP Tx queues to 0 */
2872 vsi->num_xdp_txq = 0;
2873
2874 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2875 max_txqs);
2876 }
2877
2878 /**
2879 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2880 * @vsi: VSI to schedule napi on
2881 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2882 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2883 {
2884 int i;
2885
2886 ice_for_each_rxq(vsi, i) {
2887 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2888
2889 if (rx_ring->xsk_pool)
2890 napi_schedule(&rx_ring->q_vector->napi);
2891 }
2892 }
2893
2894 /**
2895 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2896 * @vsi: VSI to determine the count of XDP Tx qs
2897 *
2898 * returns 0 if Tx qs count is higher than at least half of CPU count,
2899 * -ENOMEM otherwise
2900 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2901 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2902 {
2903 u16 avail = ice_get_avail_txq_count(vsi->back);
2904 u16 cpus = num_possible_cpus();
2905
2906 if (avail < cpus / 2)
2907 return -ENOMEM;
2908
2909 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2910
2911 if (vsi->num_xdp_txq < cpus)
2912 static_branch_inc(&ice_xdp_locking_key);
2913
2914 return 0;
2915 }
2916
2917 /**
2918 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2919 * @vsi: Pointer to VSI structure
2920 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2921 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2922 {
2923 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2924 return ICE_RXBUF_1664;
2925 else
2926 return ICE_RXBUF_3072;
2927 }
2928
2929 /**
2930 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2931 * @vsi: VSI to setup XDP for
2932 * @prog: XDP program
2933 * @extack: netlink extended ack
2934 */
2935 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2936 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2937 struct netlink_ext_ack *extack)
2938 {
2939 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2940 int ret = 0, xdp_ring_err = 0;
2941 bool if_running;
2942
2943 if (prog && !prog->aux->xdp_has_frags) {
2944 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2945 NL_SET_ERR_MSG_MOD(extack,
2946 "MTU is too large for linear frames and XDP prog does not support frags");
2947 return -EOPNOTSUPP;
2948 }
2949 }
2950
2951 /* hot swap progs and avoid toggling link */
2952 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2953 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2954 ice_vsi_assign_bpf_prog(vsi, prog);
2955 return 0;
2956 }
2957
2958 if_running = netif_running(vsi->netdev) &&
2959 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
2960
2961 /* need to stop netdev while setting up the program for Rx rings */
2962 if (if_running) {
2963 ret = ice_down(vsi);
2964 if (ret) {
2965 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2966 return ret;
2967 }
2968 }
2969
2970 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2971 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2972 if (xdp_ring_err) {
2973 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2974 goto resume_if;
2975 } else {
2976 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
2977 ICE_XDP_CFG_FULL);
2978 if (xdp_ring_err) {
2979 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2980 goto resume_if;
2981 }
2982 }
2983 xdp_features_set_redirect_target(vsi->netdev, true);
2984 /* reallocate Rx queues that are used for zero-copy */
2985 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2986 if (xdp_ring_err)
2987 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2988 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2989 xdp_features_clear_redirect_target(vsi->netdev);
2990 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
2991 if (xdp_ring_err)
2992 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2993 /* reallocate Rx queues that were used for zero-copy */
2994 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2995 if (xdp_ring_err)
2996 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2997 }
2998
2999 resume_if:
3000 if (if_running)
3001 ret = ice_up(vsi);
3002
3003 if (!ret && prog)
3004 ice_vsi_rx_napi_schedule(vsi);
3005
3006 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3007 }
3008
3009 /**
3010 * ice_xdp_safe_mode - XDP handler for safe mode
3011 * @dev: netdevice
3012 * @xdp: XDP command
3013 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3014 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3015 struct netdev_bpf *xdp)
3016 {
3017 NL_SET_ERR_MSG_MOD(xdp->extack,
3018 "Please provide working DDP firmware package in order to use XDP\n"
3019 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3020 return -EOPNOTSUPP;
3021 }
3022
3023 /**
3024 * ice_xdp - implements XDP handler
3025 * @dev: netdevice
3026 * @xdp: XDP command
3027 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3028 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3029 {
3030 struct ice_netdev_priv *np = netdev_priv(dev);
3031 struct ice_vsi *vsi = np->vsi;
3032 int ret;
3033
3034 if (vsi->type != ICE_VSI_PF) {
3035 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3036 return -EINVAL;
3037 }
3038
3039 mutex_lock(&vsi->xdp_state_lock);
3040
3041 switch (xdp->command) {
3042 case XDP_SETUP_PROG:
3043 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3044 break;
3045 case XDP_SETUP_XSK_POOL:
3046 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3047 break;
3048 default:
3049 ret = -EINVAL;
3050 }
3051
3052 mutex_unlock(&vsi->xdp_state_lock);
3053 return ret;
3054 }
3055
3056 /**
3057 * ice_ena_misc_vector - enable the non-queue interrupts
3058 * @pf: board private structure
3059 */
ice_ena_misc_vector(struct ice_pf * pf)3060 static void ice_ena_misc_vector(struct ice_pf *pf)
3061 {
3062 struct ice_hw *hw = &pf->hw;
3063 u32 val;
3064
3065 /* Disable anti-spoof detection interrupt to prevent spurious event
3066 * interrupts during a function reset. Anti-spoof functionally is
3067 * still supported.
3068 */
3069 val = rd32(hw, GL_MDCK_TX_TDPU);
3070 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3071 wr32(hw, GL_MDCK_TX_TDPU, val);
3072
3073 /* clear things first */
3074 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3075 rd32(hw, PFINT_OICR); /* read to clear */
3076
3077 val = (PFINT_OICR_ECC_ERR_M |
3078 PFINT_OICR_MAL_DETECT_M |
3079 PFINT_OICR_GRST_M |
3080 PFINT_OICR_PCI_EXCEPTION_M |
3081 PFINT_OICR_VFLR_M |
3082 PFINT_OICR_HMC_ERR_M |
3083 PFINT_OICR_PE_PUSH_M |
3084 PFINT_OICR_PE_CRITERR_M);
3085
3086 wr32(hw, PFINT_OICR_ENA, val);
3087
3088 /* SW_ITR_IDX = 0, but don't change INTENA */
3089 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3090 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3091 }
3092
3093 /**
3094 * ice_misc_intr - misc interrupt handler
3095 * @irq: interrupt number
3096 * @data: pointer to a q_vector
3097 */
ice_misc_intr(int __always_unused irq,void * data)3098 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3099 {
3100 struct ice_pf *pf = (struct ice_pf *)data;
3101 struct ice_hw *hw = &pf->hw;
3102 struct device *dev;
3103 u32 oicr, ena_mask;
3104
3105 dev = ice_pf_to_dev(pf);
3106 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3107 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3108 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3109
3110 oicr = rd32(hw, PFINT_OICR);
3111 ena_mask = rd32(hw, PFINT_OICR_ENA);
3112
3113 if (oicr & PFINT_OICR_SWINT_M) {
3114 ena_mask &= ~PFINT_OICR_SWINT_M;
3115 pf->sw_int_count++;
3116 }
3117
3118 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3119 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3120 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3121 }
3122 if (oicr & PFINT_OICR_VFLR_M) {
3123 /* disable any further VFLR event notifications */
3124 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3125 u32 reg = rd32(hw, PFINT_OICR_ENA);
3126
3127 reg &= ~PFINT_OICR_VFLR_M;
3128 wr32(hw, PFINT_OICR_ENA, reg);
3129 } else {
3130 ena_mask &= ~PFINT_OICR_VFLR_M;
3131 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3132 }
3133 }
3134
3135 if (oicr & PFINT_OICR_GRST_M) {
3136 u32 reset;
3137
3138 /* we have a reset warning */
3139 ena_mask &= ~PFINT_OICR_GRST_M;
3140 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3141 GLGEN_RSTAT_RESET_TYPE_S;
3142
3143 if (reset == ICE_RESET_CORER)
3144 pf->corer_count++;
3145 else if (reset == ICE_RESET_GLOBR)
3146 pf->globr_count++;
3147 else if (reset == ICE_RESET_EMPR)
3148 pf->empr_count++;
3149 else
3150 dev_dbg(dev, "Invalid reset type %d\n", reset);
3151
3152 /* If a reset cycle isn't already in progress, we set a bit in
3153 * pf->state so that the service task can start a reset/rebuild.
3154 */
3155 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3156 if (reset == ICE_RESET_CORER)
3157 set_bit(ICE_CORER_RECV, pf->state);
3158 else if (reset == ICE_RESET_GLOBR)
3159 set_bit(ICE_GLOBR_RECV, pf->state);
3160 else
3161 set_bit(ICE_EMPR_RECV, pf->state);
3162
3163 /* There are couple of different bits at play here.
3164 * hw->reset_ongoing indicates whether the hardware is
3165 * in reset. This is set to true when a reset interrupt
3166 * is received and set back to false after the driver
3167 * has determined that the hardware is out of reset.
3168 *
3169 * ICE_RESET_OICR_RECV in pf->state indicates
3170 * that a post reset rebuild is required before the
3171 * driver is operational again. This is set above.
3172 *
3173 * As this is the start of the reset/rebuild cycle, set
3174 * both to indicate that.
3175 */
3176 hw->reset_ongoing = true;
3177 }
3178 }
3179
3180 if (oicr & PFINT_OICR_TSYN_TX_M) {
3181 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3182 if (!hw->reset_ongoing)
3183 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3184 }
3185
3186 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3187 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3188 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3189
3190 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3191
3192 if (hw->func_caps.ts_func_info.src_tmr_owned) {
3193 /* Save EVENTs from GLTSYN register */
3194 pf->ptp.ext_ts_irq |= gltsyn_stat &
3195 (GLTSYN_STAT_EVENT0_M |
3196 GLTSYN_STAT_EVENT1_M |
3197 GLTSYN_STAT_EVENT2_M);
3198
3199 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3200 }
3201 }
3202
3203 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3204 if (oicr & ICE_AUX_CRIT_ERR) {
3205 pf->oicr_err_reg |= oicr;
3206 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3207 ena_mask &= ~ICE_AUX_CRIT_ERR;
3208 }
3209
3210 /* Report any remaining unexpected interrupts */
3211 oicr &= ena_mask;
3212 if (oicr) {
3213 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3214 /* If a critical error is pending there is no choice but to
3215 * reset the device.
3216 */
3217 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3218 PFINT_OICR_ECC_ERR_M)) {
3219 set_bit(ICE_PFR_REQ, pf->state);
3220 }
3221 }
3222
3223 return IRQ_WAKE_THREAD;
3224 }
3225
3226 /**
3227 * ice_misc_intr_thread_fn - misc interrupt thread function
3228 * @irq: interrupt number
3229 * @data: pointer to a q_vector
3230 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3231 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3232 {
3233 struct ice_pf *pf = data;
3234 struct ice_hw *hw;
3235
3236 hw = &pf->hw;
3237
3238 if (ice_is_reset_in_progress(pf->state))
3239 return IRQ_HANDLED;
3240
3241 ice_service_task_schedule(pf);
3242
3243 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3244 ice_ptp_extts_event(pf);
3245
3246 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3247 /* Process outstanding Tx timestamps. If there is more work,
3248 * re-arm the interrupt to trigger again.
3249 */
3250 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3251 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3252 ice_flush(hw);
3253 }
3254 }
3255
3256 ice_irq_dynamic_ena(hw, NULL, NULL);
3257
3258 return IRQ_HANDLED;
3259 }
3260
3261 /**
3262 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3263 * @hw: pointer to HW structure
3264 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3265 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3266 {
3267 /* disable Admin queue Interrupt causes */
3268 wr32(hw, PFINT_FW_CTL,
3269 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3270
3271 /* disable Mailbox queue Interrupt causes */
3272 wr32(hw, PFINT_MBX_CTL,
3273 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3274
3275 wr32(hw, PFINT_SB_CTL,
3276 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3277
3278 /* disable Control queue Interrupt causes */
3279 wr32(hw, PFINT_OICR_CTL,
3280 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3281
3282 ice_flush(hw);
3283 }
3284
3285 /**
3286 * ice_free_irq_msix_misc - Unroll misc vector setup
3287 * @pf: board private structure
3288 */
ice_free_irq_msix_misc(struct ice_pf * pf)3289 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3290 {
3291 int misc_irq_num = pf->oicr_irq.virq;
3292 struct ice_hw *hw = &pf->hw;
3293
3294 ice_dis_ctrlq_interrupts(hw);
3295
3296 /* disable OICR interrupt */
3297 wr32(hw, PFINT_OICR_ENA, 0);
3298 ice_flush(hw);
3299
3300 synchronize_irq(misc_irq_num);
3301 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3302
3303 ice_free_irq(pf, pf->oicr_irq);
3304 }
3305
3306 /**
3307 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3308 * @hw: pointer to HW structure
3309 * @reg_idx: HW vector index to associate the control queue interrupts with
3310 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3311 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3312 {
3313 u32 val;
3314
3315 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3316 PFINT_OICR_CTL_CAUSE_ENA_M);
3317 wr32(hw, PFINT_OICR_CTL, val);
3318
3319 /* enable Admin queue Interrupt causes */
3320 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3321 PFINT_FW_CTL_CAUSE_ENA_M);
3322 wr32(hw, PFINT_FW_CTL, val);
3323
3324 /* enable Mailbox queue Interrupt causes */
3325 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3326 PFINT_MBX_CTL_CAUSE_ENA_M);
3327 wr32(hw, PFINT_MBX_CTL, val);
3328
3329 /* This enables Sideband queue Interrupt causes */
3330 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3331 PFINT_SB_CTL_CAUSE_ENA_M);
3332 wr32(hw, PFINT_SB_CTL, val);
3333
3334 ice_flush(hw);
3335 }
3336
3337 /**
3338 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3339 * @pf: board private structure
3340 *
3341 * This sets up the handler for MSIX 0, which is used to manage the
3342 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3343 * when in MSI or Legacy interrupt mode.
3344 */
ice_req_irq_msix_misc(struct ice_pf * pf)3345 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3346 {
3347 struct device *dev = ice_pf_to_dev(pf);
3348 struct ice_hw *hw = &pf->hw;
3349 struct msi_map oicr_irq;
3350 int err = 0;
3351
3352 if (!pf->int_name[0])
3353 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3354 dev_driver_string(dev), dev_name(dev));
3355
3356 /* Do not request IRQ but do enable OICR interrupt since settings are
3357 * lost during reset. Note that this function is called only during
3358 * rebuild path and not while reset is in progress.
3359 */
3360 if (ice_is_reset_in_progress(pf->state))
3361 goto skip_req_irq;
3362
3363 /* reserve one vector in irq_tracker for misc interrupts */
3364 oicr_irq = ice_alloc_irq(pf, false);
3365 if (oicr_irq.index < 0)
3366 return oicr_irq.index;
3367
3368 pf->oicr_irq = oicr_irq;
3369 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3370 ice_misc_intr_thread_fn, 0,
3371 pf->int_name, pf);
3372 if (err) {
3373 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3374 pf->int_name, err);
3375 ice_free_irq(pf, pf->oicr_irq);
3376 return err;
3377 }
3378
3379 skip_req_irq:
3380 ice_ena_misc_vector(pf);
3381
3382 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3383 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3384 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3385
3386 ice_flush(hw);
3387 ice_irq_dynamic_ena(hw, NULL, NULL);
3388
3389 return 0;
3390 }
3391
3392 /**
3393 * ice_napi_add - register NAPI handler for the VSI
3394 * @vsi: VSI for which NAPI handler is to be registered
3395 *
3396 * This function is only called in the driver's load path. Registering the NAPI
3397 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3398 * reset/rebuild, etc.)
3399 */
ice_napi_add(struct ice_vsi * vsi)3400 static void ice_napi_add(struct ice_vsi *vsi)
3401 {
3402 int v_idx;
3403
3404 if (!vsi->netdev)
3405 return;
3406
3407 ice_for_each_q_vector(vsi, v_idx)
3408 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3409 ice_napi_poll);
3410 }
3411
3412 /**
3413 * ice_set_ops - set netdev and ethtools ops for the given netdev
3414 * @vsi: the VSI associated with the new netdev
3415 */
ice_set_ops(struct ice_vsi * vsi)3416 static void ice_set_ops(struct ice_vsi *vsi)
3417 {
3418 struct net_device *netdev = vsi->netdev;
3419 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3420
3421 if (ice_is_safe_mode(pf)) {
3422 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3423 ice_set_ethtool_safe_mode_ops(netdev);
3424 return;
3425 }
3426
3427 netdev->netdev_ops = &ice_netdev_ops;
3428 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3429 ice_set_ethtool_ops(netdev);
3430
3431 if (vsi->type != ICE_VSI_PF)
3432 return;
3433
3434 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3435 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3436 NETDEV_XDP_ACT_RX_SG;
3437 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3438 }
3439
3440 /**
3441 * ice_set_netdev_features - set features for the given netdev
3442 * @netdev: netdev instance
3443 */
ice_set_netdev_features(struct net_device * netdev)3444 static void ice_set_netdev_features(struct net_device *netdev)
3445 {
3446 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3447 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3448 netdev_features_t csumo_features;
3449 netdev_features_t vlano_features;
3450 netdev_features_t dflt_features;
3451 netdev_features_t tso_features;
3452
3453 if (ice_is_safe_mode(pf)) {
3454 /* safe mode */
3455 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3456 netdev->hw_features = netdev->features;
3457 return;
3458 }
3459
3460 dflt_features = NETIF_F_SG |
3461 NETIF_F_HIGHDMA |
3462 NETIF_F_NTUPLE |
3463 NETIF_F_RXHASH;
3464
3465 csumo_features = NETIF_F_RXCSUM |
3466 NETIF_F_IP_CSUM |
3467 NETIF_F_SCTP_CRC |
3468 NETIF_F_IPV6_CSUM;
3469
3470 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3471 NETIF_F_HW_VLAN_CTAG_TX |
3472 NETIF_F_HW_VLAN_CTAG_RX;
3473
3474 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3475 if (is_dvm_ena)
3476 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3477
3478 tso_features = NETIF_F_TSO |
3479 NETIF_F_TSO_ECN |
3480 NETIF_F_TSO6 |
3481 NETIF_F_GSO_GRE |
3482 NETIF_F_GSO_UDP_TUNNEL |
3483 NETIF_F_GSO_GRE_CSUM |
3484 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3485 NETIF_F_GSO_PARTIAL |
3486 NETIF_F_GSO_IPXIP4 |
3487 NETIF_F_GSO_IPXIP6 |
3488 NETIF_F_GSO_UDP_L4;
3489
3490 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3491 NETIF_F_GSO_GRE_CSUM;
3492 /* set features that user can change */
3493 netdev->hw_features = dflt_features | csumo_features |
3494 vlano_features | tso_features;
3495
3496 /* add support for HW_CSUM on packets with MPLS header */
3497 netdev->mpls_features = NETIF_F_HW_CSUM |
3498 NETIF_F_TSO |
3499 NETIF_F_TSO6;
3500
3501 /* enable features */
3502 netdev->features |= netdev->hw_features;
3503
3504 netdev->hw_features |= NETIF_F_HW_TC;
3505 netdev->hw_features |= NETIF_F_LOOPBACK;
3506
3507 /* encap and VLAN devices inherit default, csumo and tso features */
3508 netdev->hw_enc_features |= dflt_features | csumo_features |
3509 tso_features;
3510 netdev->vlan_features |= dflt_features | csumo_features |
3511 tso_features;
3512
3513 /* advertise support but don't enable by default since only one type of
3514 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3515 * type turns on the other has to be turned off. This is enforced by the
3516 * ice_fix_features() ndo callback.
3517 */
3518 if (is_dvm_ena)
3519 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3520 NETIF_F_HW_VLAN_STAG_TX;
3521
3522 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3523 * be changed at runtime
3524 */
3525 netdev->hw_features |= NETIF_F_RXFCS;
3526
3527 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3528 }
3529
3530 /**
3531 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3532 * @lut: Lookup table
3533 * @rss_table_size: Lookup table size
3534 * @rss_size: Range of queue number for hashing
3535 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3536 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3537 {
3538 u16 i;
3539
3540 for (i = 0; i < rss_table_size; i++)
3541 lut[i] = i % rss_size;
3542 }
3543
3544 /**
3545 * ice_pf_vsi_setup - Set up a PF VSI
3546 * @pf: board private structure
3547 * @pi: pointer to the port_info instance
3548 *
3549 * Returns pointer to the successfully allocated VSI software struct
3550 * on success, otherwise returns NULL on failure.
3551 */
3552 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3553 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3554 {
3555 struct ice_vsi_cfg_params params = {};
3556
3557 params.type = ICE_VSI_PF;
3558 params.pi = pi;
3559 params.flags = ICE_VSI_FLAG_INIT;
3560
3561 return ice_vsi_setup(pf, ¶ms);
3562 }
3563
3564 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3565 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3566 struct ice_channel *ch)
3567 {
3568 struct ice_vsi_cfg_params params = {};
3569
3570 params.type = ICE_VSI_CHNL;
3571 params.pi = pi;
3572 params.ch = ch;
3573 params.flags = ICE_VSI_FLAG_INIT;
3574
3575 return ice_vsi_setup(pf, ¶ms);
3576 }
3577
3578 /**
3579 * ice_ctrl_vsi_setup - Set up a control VSI
3580 * @pf: board private structure
3581 * @pi: pointer to the port_info instance
3582 *
3583 * Returns pointer to the successfully allocated VSI software struct
3584 * on success, otherwise returns NULL on failure.
3585 */
3586 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3587 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3588 {
3589 struct ice_vsi_cfg_params params = {};
3590
3591 params.type = ICE_VSI_CTRL;
3592 params.pi = pi;
3593 params.flags = ICE_VSI_FLAG_INIT;
3594
3595 return ice_vsi_setup(pf, ¶ms);
3596 }
3597
3598 /**
3599 * ice_lb_vsi_setup - Set up a loopback VSI
3600 * @pf: board private structure
3601 * @pi: pointer to the port_info instance
3602 *
3603 * Returns pointer to the successfully allocated VSI software struct
3604 * on success, otherwise returns NULL on failure.
3605 */
3606 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3607 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3608 {
3609 struct ice_vsi_cfg_params params = {};
3610
3611 params.type = ICE_VSI_LB;
3612 params.pi = pi;
3613 params.flags = ICE_VSI_FLAG_INIT;
3614
3615 return ice_vsi_setup(pf, ¶ms);
3616 }
3617
3618 /**
3619 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3620 * @netdev: network interface to be adjusted
3621 * @proto: VLAN TPID
3622 * @vid: VLAN ID to be added
3623 *
3624 * net_device_ops implementation for adding VLAN IDs
3625 */
3626 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3627 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3628 {
3629 struct ice_netdev_priv *np = netdev_priv(netdev);
3630 struct ice_vsi_vlan_ops *vlan_ops;
3631 struct ice_vsi *vsi = np->vsi;
3632 struct ice_vlan vlan;
3633 int ret;
3634
3635 /* VLAN 0 is added by default during load/reset */
3636 if (!vid)
3637 return 0;
3638
3639 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3640 usleep_range(1000, 2000);
3641
3642 /* Add multicast promisc rule for the VLAN ID to be added if
3643 * all-multicast is currently enabled.
3644 */
3645 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3646 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3647 ICE_MCAST_VLAN_PROMISC_BITS,
3648 vid);
3649 if (ret)
3650 goto finish;
3651 }
3652
3653 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3654
3655 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3656 * packets aren't pruned by the device's internal switch on Rx
3657 */
3658 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3659 ret = vlan_ops->add_vlan(vsi, &vlan);
3660 if (ret)
3661 goto finish;
3662
3663 /* If all-multicast is currently enabled and this VLAN ID is only one
3664 * besides VLAN-0 we have to update look-up type of multicast promisc
3665 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3666 */
3667 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3668 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3669 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3670 ICE_MCAST_PROMISC_BITS, 0);
3671 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3672 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3673 }
3674
3675 finish:
3676 clear_bit(ICE_CFG_BUSY, vsi->state);
3677
3678 return ret;
3679 }
3680
3681 /**
3682 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3683 * @netdev: network interface to be adjusted
3684 * @proto: VLAN TPID
3685 * @vid: VLAN ID to be removed
3686 *
3687 * net_device_ops implementation for removing VLAN IDs
3688 */
3689 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3690 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3691 {
3692 struct ice_netdev_priv *np = netdev_priv(netdev);
3693 struct ice_vsi_vlan_ops *vlan_ops;
3694 struct ice_vsi *vsi = np->vsi;
3695 struct ice_vlan vlan;
3696 int ret;
3697
3698 /* don't allow removal of VLAN 0 */
3699 if (!vid)
3700 return 0;
3701
3702 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3703 usleep_range(1000, 2000);
3704
3705 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3706 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3707 if (ret) {
3708 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3709 vsi->vsi_num);
3710 vsi->current_netdev_flags |= IFF_ALLMULTI;
3711 }
3712
3713 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3714
3715 /* Make sure VLAN delete is successful before updating VLAN
3716 * information
3717 */
3718 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3719 ret = vlan_ops->del_vlan(vsi, &vlan);
3720 if (ret)
3721 goto finish;
3722
3723 /* Remove multicast promisc rule for the removed VLAN ID if
3724 * all-multicast is enabled.
3725 */
3726 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3727 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3728 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3729
3730 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3731 /* Update look-up type of multicast promisc rule for VLAN 0
3732 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3733 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3734 */
3735 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3736 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3737 ICE_MCAST_VLAN_PROMISC_BITS,
3738 0);
3739 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3740 ICE_MCAST_PROMISC_BITS, 0);
3741 }
3742 }
3743
3744 finish:
3745 clear_bit(ICE_CFG_BUSY, vsi->state);
3746
3747 return ret;
3748 }
3749
3750 /**
3751 * ice_rep_indr_tc_block_unbind
3752 * @cb_priv: indirection block private data
3753 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3754 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3755 {
3756 struct ice_indr_block_priv *indr_priv = cb_priv;
3757
3758 list_del(&indr_priv->list);
3759 kfree(indr_priv);
3760 }
3761
3762 /**
3763 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3764 * @vsi: VSI struct which has the netdev
3765 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3766 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3767 {
3768 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3769
3770 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3771 ice_rep_indr_tc_block_unbind);
3772 }
3773
3774 /**
3775 * ice_tc_indir_block_register - Register TC indirect block notifications
3776 * @vsi: VSI struct which has the netdev
3777 *
3778 * Returns 0 on success, negative value on failure
3779 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3780 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3781 {
3782 struct ice_netdev_priv *np;
3783
3784 if (!vsi || !vsi->netdev)
3785 return -EINVAL;
3786
3787 np = netdev_priv(vsi->netdev);
3788
3789 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3790 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3791 }
3792
3793 /**
3794 * ice_get_avail_q_count - Get count of queues in use
3795 * @pf_qmap: bitmap to get queue use count from
3796 * @lock: pointer to a mutex that protects access to pf_qmap
3797 * @size: size of the bitmap
3798 */
3799 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3800 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3801 {
3802 unsigned long bit;
3803 u16 count = 0;
3804
3805 mutex_lock(lock);
3806 for_each_clear_bit(bit, pf_qmap, size)
3807 count++;
3808 mutex_unlock(lock);
3809
3810 return count;
3811 }
3812
3813 /**
3814 * ice_get_avail_txq_count - Get count of Tx queues in use
3815 * @pf: pointer to an ice_pf instance
3816 */
ice_get_avail_txq_count(struct ice_pf * pf)3817 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3818 {
3819 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3820 pf->max_pf_txqs);
3821 }
3822
3823 /**
3824 * ice_get_avail_rxq_count - Get count of Rx queues in use
3825 * @pf: pointer to an ice_pf instance
3826 */
ice_get_avail_rxq_count(struct ice_pf * pf)3827 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3828 {
3829 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3830 pf->max_pf_rxqs);
3831 }
3832
3833 /**
3834 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3835 * @pf: board private structure to initialize
3836 */
ice_deinit_pf(struct ice_pf * pf)3837 static void ice_deinit_pf(struct ice_pf *pf)
3838 {
3839 ice_service_task_stop(pf);
3840 mutex_destroy(&pf->lag_mutex);
3841 mutex_destroy(&pf->adev_mutex);
3842 mutex_destroy(&pf->sw_mutex);
3843 mutex_destroy(&pf->tc_mutex);
3844 mutex_destroy(&pf->avail_q_mutex);
3845 mutex_destroy(&pf->vfs.table_lock);
3846
3847 if (pf->avail_txqs) {
3848 bitmap_free(pf->avail_txqs);
3849 pf->avail_txqs = NULL;
3850 }
3851
3852 if (pf->avail_rxqs) {
3853 bitmap_free(pf->avail_rxqs);
3854 pf->avail_rxqs = NULL;
3855 }
3856
3857 if (pf->ptp.clock)
3858 ptp_clock_unregister(pf->ptp.clock);
3859 }
3860
3861 /**
3862 * ice_set_pf_caps - set PFs capability flags
3863 * @pf: pointer to the PF instance
3864 */
ice_set_pf_caps(struct ice_pf * pf)3865 static void ice_set_pf_caps(struct ice_pf *pf)
3866 {
3867 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3868
3869 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3870 if (func_caps->common_cap.rdma)
3871 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3872 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3873 if (func_caps->common_cap.dcb)
3874 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3875 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3876 if (func_caps->common_cap.sr_iov_1_1) {
3877 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3878 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3879 ICE_MAX_SRIOV_VFS);
3880 }
3881 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3882 if (func_caps->common_cap.rss_table_size)
3883 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3884
3885 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3886 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3887 u16 unused;
3888
3889 /* ctrl_vsi_idx will be set to a valid value when flow director
3890 * is setup by ice_init_fdir
3891 */
3892 pf->ctrl_vsi_idx = ICE_NO_VSI;
3893 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3894 /* force guaranteed filter pool for PF */
3895 ice_alloc_fd_guar_item(&pf->hw, &unused,
3896 func_caps->fd_fltr_guar);
3897 /* force shared filter pool for PF */
3898 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3899 func_caps->fd_fltr_best_effort);
3900 }
3901
3902 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3903 if (func_caps->common_cap.ieee_1588 &&
3904 !(pf->hw.mac_type == ICE_MAC_E830))
3905 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3906
3907 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3908 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3909 }
3910
3911 /**
3912 * ice_init_pf - Initialize general software structures (struct ice_pf)
3913 * @pf: board private structure to initialize
3914 */
ice_init_pf(struct ice_pf * pf)3915 static int ice_init_pf(struct ice_pf *pf)
3916 {
3917 ice_set_pf_caps(pf);
3918
3919 mutex_init(&pf->sw_mutex);
3920 mutex_init(&pf->tc_mutex);
3921 mutex_init(&pf->adev_mutex);
3922 mutex_init(&pf->lag_mutex);
3923
3924 INIT_HLIST_HEAD(&pf->aq_wait_list);
3925 spin_lock_init(&pf->aq_wait_lock);
3926 init_waitqueue_head(&pf->aq_wait_queue);
3927
3928 init_waitqueue_head(&pf->reset_wait_queue);
3929
3930 /* setup service timer and periodic service task */
3931 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3932 pf->serv_tmr_period = HZ;
3933 INIT_WORK(&pf->serv_task, ice_service_task);
3934 clear_bit(ICE_SERVICE_SCHED, pf->state);
3935
3936 mutex_init(&pf->avail_q_mutex);
3937 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3938 if (!pf->avail_txqs)
3939 return -ENOMEM;
3940
3941 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3942 if (!pf->avail_rxqs) {
3943 bitmap_free(pf->avail_txqs);
3944 pf->avail_txqs = NULL;
3945 return -ENOMEM;
3946 }
3947
3948 mutex_init(&pf->vfs.table_lock);
3949 hash_init(pf->vfs.table);
3950 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
3951 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
3952 ICE_MBX_OVERFLOW_WATERMARK);
3953 else
3954 ice_mbx_init_snapshot(&pf->hw);
3955
3956 return 0;
3957 }
3958
3959 /**
3960 * ice_is_wol_supported - check if WoL is supported
3961 * @hw: pointer to hardware info
3962 *
3963 * Check if WoL is supported based on the HW configuration.
3964 * Returns true if NVM supports and enables WoL for this port, false otherwise
3965 */
ice_is_wol_supported(struct ice_hw * hw)3966 bool ice_is_wol_supported(struct ice_hw *hw)
3967 {
3968 u16 wol_ctrl;
3969
3970 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3971 * word) indicates WoL is not supported on the corresponding PF ID.
3972 */
3973 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3974 return false;
3975
3976 return !(BIT(hw->port_info->lport) & wol_ctrl);
3977 }
3978
3979 /**
3980 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3981 * @vsi: VSI being changed
3982 * @new_rx: new number of Rx queues
3983 * @new_tx: new number of Tx queues
3984 * @locked: is adev device_lock held
3985 *
3986 * Only change the number of queues if new_tx, or new_rx is non-0.
3987 *
3988 * Returns 0 on success.
3989 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)3990 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3991 {
3992 struct ice_pf *pf = vsi->back;
3993 int i, err = 0, timeout = 50;
3994
3995 if (!new_rx && !new_tx)
3996 return -EINVAL;
3997
3998 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3999 timeout--;
4000 if (!timeout)
4001 return -EBUSY;
4002 usleep_range(1000, 2000);
4003 }
4004
4005 if (new_tx)
4006 vsi->req_txq = (u16)new_tx;
4007 if (new_rx)
4008 vsi->req_rxq = (u16)new_rx;
4009
4010 /* set for the next time the netdev is started */
4011 if (!netif_running(vsi->netdev)) {
4012 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4013 if (err)
4014 goto rebuild_err;
4015 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4016 goto done;
4017 }
4018
4019 ice_vsi_close(vsi);
4020 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4021 if (err)
4022 goto rebuild_err;
4023
4024 ice_for_each_traffic_class(i) {
4025 if (vsi->tc_cfg.ena_tc & BIT(i))
4026 netdev_set_tc_queue(vsi->netdev,
4027 vsi->tc_cfg.tc_info[i].netdev_tc,
4028 vsi->tc_cfg.tc_info[i].qcount_tx,
4029 vsi->tc_cfg.tc_info[i].qoffset);
4030 }
4031 ice_pf_dcb_recfg(pf, locked);
4032 ice_vsi_open(vsi);
4033 goto done;
4034
4035 rebuild_err:
4036 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4037 err);
4038 done:
4039 clear_bit(ICE_CFG_BUSY, pf->state);
4040 return err;
4041 }
4042
4043 /**
4044 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4045 * @pf: PF to configure
4046 *
4047 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4048 * VSI can still Tx/Rx VLAN tagged packets.
4049 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4050 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4051 {
4052 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4053 struct ice_vsi_ctx *ctxt;
4054 struct ice_hw *hw;
4055 int status;
4056
4057 if (!vsi)
4058 return;
4059
4060 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4061 if (!ctxt)
4062 return;
4063
4064 hw = &pf->hw;
4065 ctxt->info = vsi->info;
4066
4067 ctxt->info.valid_sections =
4068 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4069 ICE_AQ_VSI_PROP_SECURITY_VALID |
4070 ICE_AQ_VSI_PROP_SW_VALID);
4071
4072 /* disable VLAN anti-spoof */
4073 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4074 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4075
4076 /* disable VLAN pruning and keep all other settings */
4077 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4078
4079 /* allow all VLANs on Tx and don't strip on Rx */
4080 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4081 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4082
4083 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4084 if (status) {
4085 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4086 status, ice_aq_str(hw->adminq.sq_last_status));
4087 } else {
4088 vsi->info.sec_flags = ctxt->info.sec_flags;
4089 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4090 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4091 }
4092
4093 kfree(ctxt);
4094 }
4095
4096 /**
4097 * ice_log_pkg_init - log result of DDP package load
4098 * @hw: pointer to hardware info
4099 * @state: state of package load
4100 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4101 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4102 {
4103 struct ice_pf *pf = hw->back;
4104 struct device *dev;
4105
4106 dev = ice_pf_to_dev(pf);
4107
4108 switch (state) {
4109 case ICE_DDP_PKG_SUCCESS:
4110 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4111 hw->active_pkg_name,
4112 hw->active_pkg_ver.major,
4113 hw->active_pkg_ver.minor,
4114 hw->active_pkg_ver.update,
4115 hw->active_pkg_ver.draft);
4116 break;
4117 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4118 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4119 hw->active_pkg_name,
4120 hw->active_pkg_ver.major,
4121 hw->active_pkg_ver.minor,
4122 hw->active_pkg_ver.update,
4123 hw->active_pkg_ver.draft);
4124 break;
4125 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4126 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4127 hw->active_pkg_name,
4128 hw->active_pkg_ver.major,
4129 hw->active_pkg_ver.minor,
4130 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4131 break;
4132 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4133 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4134 hw->active_pkg_name,
4135 hw->active_pkg_ver.major,
4136 hw->active_pkg_ver.minor,
4137 hw->active_pkg_ver.update,
4138 hw->active_pkg_ver.draft,
4139 hw->pkg_name,
4140 hw->pkg_ver.major,
4141 hw->pkg_ver.minor,
4142 hw->pkg_ver.update,
4143 hw->pkg_ver.draft);
4144 break;
4145 case ICE_DDP_PKG_FW_MISMATCH:
4146 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4147 break;
4148 case ICE_DDP_PKG_INVALID_FILE:
4149 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4150 break;
4151 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4152 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4153 break;
4154 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4155 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4156 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4157 break;
4158 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4159 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4160 break;
4161 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4162 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4163 break;
4164 case ICE_DDP_PKG_LOAD_ERROR:
4165 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4166 /* poll for reset to complete */
4167 if (ice_check_reset(hw))
4168 dev_err(dev, "Error resetting device. Please reload the driver\n");
4169 break;
4170 case ICE_DDP_PKG_ERR:
4171 default:
4172 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4173 break;
4174 }
4175 }
4176
4177 /**
4178 * ice_load_pkg - load/reload the DDP Package file
4179 * @firmware: firmware structure when firmware requested or NULL for reload
4180 * @pf: pointer to the PF instance
4181 *
4182 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4183 * initialize HW tables.
4184 */
4185 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4186 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4187 {
4188 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4189 struct device *dev = ice_pf_to_dev(pf);
4190 struct ice_hw *hw = &pf->hw;
4191
4192 /* Load DDP Package */
4193 if (firmware && !hw->pkg_copy) {
4194 state = ice_copy_and_init_pkg(hw, firmware->data,
4195 firmware->size);
4196 ice_log_pkg_init(hw, state);
4197 } else if (!firmware && hw->pkg_copy) {
4198 /* Reload package during rebuild after CORER/GLOBR reset */
4199 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4200 ice_log_pkg_init(hw, state);
4201 } else {
4202 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4203 }
4204
4205 if (!ice_is_init_pkg_successful(state)) {
4206 /* Safe Mode */
4207 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4208 return;
4209 }
4210
4211 /* Successful download package is the precondition for advanced
4212 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4213 */
4214 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4215 }
4216
4217 /**
4218 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4219 * @pf: pointer to the PF structure
4220 *
4221 * There is no error returned here because the driver should be able to handle
4222 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4223 * specifically with Tx.
4224 */
ice_verify_cacheline_size(struct ice_pf * pf)4225 static void ice_verify_cacheline_size(struct ice_pf *pf)
4226 {
4227 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4228 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4229 ICE_CACHE_LINE_BYTES);
4230 }
4231
4232 /**
4233 * ice_send_version - update firmware with driver version
4234 * @pf: PF struct
4235 *
4236 * Returns 0 on success, else error code
4237 */
ice_send_version(struct ice_pf * pf)4238 static int ice_send_version(struct ice_pf *pf)
4239 {
4240 struct ice_driver_ver dv;
4241
4242 dv.major_ver = 0xff;
4243 dv.minor_ver = 0xff;
4244 dv.build_ver = 0xff;
4245 dv.subbuild_ver = 0;
4246 strscpy((char *)dv.driver_string, UTS_RELEASE,
4247 sizeof(dv.driver_string));
4248 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4249 }
4250
4251 /**
4252 * ice_init_fdir - Initialize flow director VSI and configuration
4253 * @pf: pointer to the PF instance
4254 *
4255 * returns 0 on success, negative on error
4256 */
ice_init_fdir(struct ice_pf * pf)4257 static int ice_init_fdir(struct ice_pf *pf)
4258 {
4259 struct device *dev = ice_pf_to_dev(pf);
4260 struct ice_vsi *ctrl_vsi;
4261 int err;
4262
4263 /* Side Band Flow Director needs to have a control VSI.
4264 * Allocate it and store it in the PF.
4265 */
4266 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4267 if (!ctrl_vsi) {
4268 dev_dbg(dev, "could not create control VSI\n");
4269 return -ENOMEM;
4270 }
4271
4272 err = ice_vsi_open_ctrl(ctrl_vsi);
4273 if (err) {
4274 dev_dbg(dev, "could not open control VSI\n");
4275 goto err_vsi_open;
4276 }
4277
4278 mutex_init(&pf->hw.fdir_fltr_lock);
4279
4280 err = ice_fdir_create_dflt_rules(pf);
4281 if (err)
4282 goto err_fdir_rule;
4283
4284 return 0;
4285
4286 err_fdir_rule:
4287 ice_fdir_release_flows(&pf->hw);
4288 ice_vsi_close(ctrl_vsi);
4289 err_vsi_open:
4290 ice_vsi_release(ctrl_vsi);
4291 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4292 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4293 pf->ctrl_vsi_idx = ICE_NO_VSI;
4294 }
4295 return err;
4296 }
4297
ice_deinit_fdir(struct ice_pf * pf)4298 static void ice_deinit_fdir(struct ice_pf *pf)
4299 {
4300 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4301
4302 if (!vsi)
4303 return;
4304
4305 ice_vsi_manage_fdir(vsi, false);
4306 ice_vsi_release(vsi);
4307 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4308 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4309 pf->ctrl_vsi_idx = ICE_NO_VSI;
4310 }
4311
4312 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4313 }
4314
4315 /**
4316 * ice_get_opt_fw_name - return optional firmware file name or NULL
4317 * @pf: pointer to the PF instance
4318 */
ice_get_opt_fw_name(struct ice_pf * pf)4319 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4320 {
4321 /* Optional firmware name same as default with additional dash
4322 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4323 */
4324 struct pci_dev *pdev = pf->pdev;
4325 char *opt_fw_filename;
4326 u64 dsn;
4327
4328 /* Determine the name of the optional file using the DSN (two
4329 * dwords following the start of the DSN Capability).
4330 */
4331 dsn = pci_get_dsn(pdev);
4332 if (!dsn)
4333 return NULL;
4334
4335 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4336 if (!opt_fw_filename)
4337 return NULL;
4338
4339 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4340 ICE_DDP_PKG_PATH, dsn);
4341
4342 return opt_fw_filename;
4343 }
4344
4345 /**
4346 * ice_request_fw - Device initialization routine
4347 * @pf: pointer to the PF instance
4348 */
ice_request_fw(struct ice_pf * pf)4349 static void ice_request_fw(struct ice_pf *pf)
4350 {
4351 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4352 const struct firmware *firmware = NULL;
4353 struct device *dev = ice_pf_to_dev(pf);
4354 int err = 0;
4355
4356 /* optional device-specific DDP (if present) overrides the default DDP
4357 * package file. kernel logs a debug message if the file doesn't exist,
4358 * and warning messages for other errors.
4359 */
4360 if (opt_fw_filename) {
4361 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4362 if (err) {
4363 kfree(opt_fw_filename);
4364 goto dflt_pkg_load;
4365 }
4366
4367 /* request for firmware was successful. Download to device */
4368 ice_load_pkg(firmware, pf);
4369 kfree(opt_fw_filename);
4370 release_firmware(firmware);
4371 return;
4372 }
4373
4374 dflt_pkg_load:
4375 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4376 if (err) {
4377 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4378 return;
4379 }
4380
4381 /* request for firmware was successful. Download to device */
4382 ice_load_pkg(firmware, pf);
4383 release_firmware(firmware);
4384 }
4385
4386 /**
4387 * ice_print_wake_reason - show the wake up cause in the log
4388 * @pf: pointer to the PF struct
4389 */
ice_print_wake_reason(struct ice_pf * pf)4390 static void ice_print_wake_reason(struct ice_pf *pf)
4391 {
4392 u32 wus = pf->wakeup_reason;
4393 const char *wake_str;
4394
4395 /* if no wake event, nothing to print */
4396 if (!wus)
4397 return;
4398
4399 if (wus & PFPM_WUS_LNKC_M)
4400 wake_str = "Link\n";
4401 else if (wus & PFPM_WUS_MAG_M)
4402 wake_str = "Magic Packet\n";
4403 else if (wus & PFPM_WUS_MNG_M)
4404 wake_str = "Management\n";
4405 else if (wus & PFPM_WUS_FW_RST_WK_M)
4406 wake_str = "Firmware Reset\n";
4407 else
4408 wake_str = "Unknown\n";
4409
4410 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4411 }
4412
4413 /**
4414 * ice_register_netdev - register netdev
4415 * @vsi: pointer to the VSI struct
4416 */
ice_register_netdev(struct ice_vsi * vsi)4417 static int ice_register_netdev(struct ice_vsi *vsi)
4418 {
4419 int err;
4420
4421 if (!vsi || !vsi->netdev)
4422 return -EIO;
4423
4424 err = register_netdev(vsi->netdev);
4425 if (err)
4426 return err;
4427
4428 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4429 netif_carrier_off(vsi->netdev);
4430 netif_tx_stop_all_queues(vsi->netdev);
4431
4432 return 0;
4433 }
4434
ice_unregister_netdev(struct ice_vsi * vsi)4435 static void ice_unregister_netdev(struct ice_vsi *vsi)
4436 {
4437 if (!vsi || !vsi->netdev)
4438 return;
4439
4440 unregister_netdev(vsi->netdev);
4441 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4442 }
4443
4444 /**
4445 * ice_cfg_netdev - Allocate, configure and register a netdev
4446 * @vsi: the VSI associated with the new netdev
4447 *
4448 * Returns 0 on success, negative value on failure
4449 */
ice_cfg_netdev(struct ice_vsi * vsi)4450 static int ice_cfg_netdev(struct ice_vsi *vsi)
4451 {
4452 struct ice_netdev_priv *np;
4453 struct net_device *netdev;
4454 u8 mac_addr[ETH_ALEN];
4455
4456 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4457 vsi->alloc_rxq);
4458 if (!netdev)
4459 return -ENOMEM;
4460
4461 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4462 vsi->netdev = netdev;
4463 np = netdev_priv(netdev);
4464 np->vsi = vsi;
4465
4466 ice_set_netdev_features(netdev);
4467 ice_set_ops(vsi);
4468
4469 if (vsi->type == ICE_VSI_PF) {
4470 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4471 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4472 eth_hw_addr_set(netdev, mac_addr);
4473 }
4474
4475 netdev->priv_flags |= IFF_UNICAST_FLT;
4476
4477 /* Setup netdev TC information */
4478 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4479
4480 netdev->max_mtu = ICE_MAX_MTU;
4481
4482 return 0;
4483 }
4484
ice_decfg_netdev(struct ice_vsi * vsi)4485 static void ice_decfg_netdev(struct ice_vsi *vsi)
4486 {
4487 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4488 free_netdev(vsi->netdev);
4489 vsi->netdev = NULL;
4490 }
4491
ice_start_eth(struct ice_vsi * vsi)4492 static int ice_start_eth(struct ice_vsi *vsi)
4493 {
4494 int err;
4495
4496 err = ice_init_mac_fltr(vsi->back);
4497 if (err)
4498 return err;
4499
4500 err = ice_vsi_open(vsi);
4501 if (err)
4502 ice_fltr_remove_all(vsi);
4503
4504 return err;
4505 }
4506
ice_stop_eth(struct ice_vsi * vsi)4507 static void ice_stop_eth(struct ice_vsi *vsi)
4508 {
4509 ice_fltr_remove_all(vsi);
4510 ice_vsi_close(vsi);
4511 }
4512
ice_init_eth(struct ice_pf * pf)4513 static int ice_init_eth(struct ice_pf *pf)
4514 {
4515 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4516 int err;
4517
4518 if (!vsi)
4519 return -EINVAL;
4520
4521 /* init channel list */
4522 INIT_LIST_HEAD(&vsi->ch_list);
4523
4524 err = ice_cfg_netdev(vsi);
4525 if (err)
4526 return err;
4527 /* Setup DCB netlink interface */
4528 ice_dcbnl_setup(vsi);
4529
4530 err = ice_init_mac_fltr(pf);
4531 if (err)
4532 goto err_init_mac_fltr;
4533
4534 err = ice_devlink_create_pf_port(pf);
4535 if (err)
4536 goto err_devlink_create_pf_port;
4537
4538 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4539
4540 err = ice_register_netdev(vsi);
4541 if (err)
4542 goto err_register_netdev;
4543
4544 err = ice_tc_indir_block_register(vsi);
4545 if (err)
4546 goto err_tc_indir_block_register;
4547
4548 ice_napi_add(vsi);
4549
4550 return 0;
4551
4552 err_tc_indir_block_register:
4553 ice_unregister_netdev(vsi);
4554 err_register_netdev:
4555 ice_devlink_destroy_pf_port(pf);
4556 err_devlink_create_pf_port:
4557 err_init_mac_fltr:
4558 ice_decfg_netdev(vsi);
4559 return err;
4560 }
4561
ice_deinit_eth(struct ice_pf * pf)4562 static void ice_deinit_eth(struct ice_pf *pf)
4563 {
4564 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4565
4566 if (!vsi)
4567 return;
4568
4569 ice_vsi_close(vsi);
4570 ice_unregister_netdev(vsi);
4571 ice_devlink_destroy_pf_port(pf);
4572 ice_tc_indir_block_unregister(vsi);
4573 ice_decfg_netdev(vsi);
4574 }
4575
4576 /**
4577 * ice_wait_for_fw - wait for full FW readiness
4578 * @hw: pointer to the hardware structure
4579 * @timeout: milliseconds that can elapse before timing out
4580 */
ice_wait_for_fw(struct ice_hw * hw,u32 timeout)4581 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4582 {
4583 int fw_loading;
4584 u32 elapsed = 0;
4585
4586 while (elapsed <= timeout) {
4587 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4588
4589 /* firmware was not yet loaded, we have to wait more */
4590 if (fw_loading) {
4591 elapsed += 100;
4592 msleep(100);
4593 continue;
4594 }
4595 return 0;
4596 }
4597
4598 return -ETIMEDOUT;
4599 }
4600
ice_init_dev(struct ice_pf * pf)4601 static int ice_init_dev(struct ice_pf *pf)
4602 {
4603 struct device *dev = ice_pf_to_dev(pf);
4604 struct ice_hw *hw = &pf->hw;
4605 int err;
4606
4607 err = ice_init_hw(hw);
4608 if (err) {
4609 dev_err(dev, "ice_init_hw failed: %d\n", err);
4610 return err;
4611 }
4612
4613 /* Some cards require longer initialization times
4614 * due to necessity of loading FW from an external source.
4615 * This can take even half a minute.
4616 */
4617 if (ice_is_pf_c827(hw)) {
4618 err = ice_wait_for_fw(hw, 30000);
4619 if (err) {
4620 dev_err(dev, "ice_wait_for_fw timed out");
4621 return err;
4622 }
4623 }
4624
4625 ice_init_feature_support(pf);
4626
4627 ice_request_fw(pf);
4628
4629 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4630 * set in pf->state, which will cause ice_is_safe_mode to return
4631 * true
4632 */
4633 if (ice_is_safe_mode(pf)) {
4634 /* we already got function/device capabilities but these don't
4635 * reflect what the driver needs to do in safe mode. Instead of
4636 * adding conditional logic everywhere to ignore these
4637 * device/function capabilities, override them.
4638 */
4639 ice_set_safe_mode_caps(hw);
4640 }
4641
4642 err = ice_init_pf(pf);
4643 if (err) {
4644 dev_err(dev, "ice_init_pf failed: %d\n", err);
4645 goto err_init_pf;
4646 }
4647
4648 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4649 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4650 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4651 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4652 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4653 pf->hw.udp_tunnel_nic.tables[0].n_entries =
4654 pf->hw.tnl.valid_count[TNL_VXLAN];
4655 pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4656 UDP_TUNNEL_TYPE_VXLAN;
4657 }
4658 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4659 pf->hw.udp_tunnel_nic.tables[1].n_entries =
4660 pf->hw.tnl.valid_count[TNL_GENEVE];
4661 pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4662 UDP_TUNNEL_TYPE_GENEVE;
4663 }
4664
4665 err = ice_init_interrupt_scheme(pf);
4666 if (err) {
4667 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4668 err = -EIO;
4669 goto err_init_interrupt_scheme;
4670 }
4671
4672 /* In case of MSIX we are going to setup the misc vector right here
4673 * to handle admin queue events etc. In case of legacy and MSI
4674 * the misc functionality and queue processing is combined in
4675 * the same vector and that gets setup at open.
4676 */
4677 err = ice_req_irq_msix_misc(pf);
4678 if (err) {
4679 dev_err(dev, "setup of misc vector failed: %d\n", err);
4680 goto err_req_irq_msix_misc;
4681 }
4682
4683 return 0;
4684
4685 err_req_irq_msix_misc:
4686 ice_clear_interrupt_scheme(pf);
4687 err_init_interrupt_scheme:
4688 ice_deinit_pf(pf);
4689 err_init_pf:
4690 ice_deinit_hw(hw);
4691 return err;
4692 }
4693
ice_deinit_dev(struct ice_pf * pf)4694 static void ice_deinit_dev(struct ice_pf *pf)
4695 {
4696 ice_free_irq_msix_misc(pf);
4697 ice_deinit_pf(pf);
4698 ice_deinit_hw(&pf->hw);
4699
4700 /* Service task is already stopped, so call reset directly. */
4701 ice_reset(&pf->hw, ICE_RESET_PFR);
4702 pci_wait_for_pending_transaction(pf->pdev);
4703 ice_clear_interrupt_scheme(pf);
4704 }
4705
ice_init_features(struct ice_pf * pf)4706 static void ice_init_features(struct ice_pf *pf)
4707 {
4708 struct device *dev = ice_pf_to_dev(pf);
4709
4710 if (ice_is_safe_mode(pf))
4711 return;
4712
4713 /* initialize DDP driven features */
4714 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4715 ice_ptp_init(pf);
4716
4717 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4718 ice_gnss_init(pf);
4719
4720 /* Note: Flow director init failure is non-fatal to load */
4721 if (ice_init_fdir(pf))
4722 dev_err(dev, "could not initialize flow director\n");
4723
4724 /* Note: DCB init failure is non-fatal to load */
4725 if (ice_init_pf_dcb(pf, false)) {
4726 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4727 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4728 } else {
4729 ice_cfg_lldp_mib_change(&pf->hw, true);
4730 }
4731
4732 if (ice_init_lag(pf))
4733 dev_warn(dev, "Failed to init link aggregation support\n");
4734 }
4735
ice_deinit_features(struct ice_pf * pf)4736 static void ice_deinit_features(struct ice_pf *pf)
4737 {
4738 if (ice_is_safe_mode(pf))
4739 return;
4740
4741 ice_deinit_lag(pf);
4742 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4743 ice_cfg_lldp_mib_change(&pf->hw, false);
4744 ice_deinit_fdir(pf);
4745 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4746 ice_gnss_exit(pf);
4747 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4748 ice_ptp_release(pf);
4749 }
4750
ice_init_wakeup(struct ice_pf * pf)4751 static void ice_init_wakeup(struct ice_pf *pf)
4752 {
4753 /* Save wakeup reason register for later use */
4754 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4755
4756 /* check for a power management event */
4757 ice_print_wake_reason(pf);
4758
4759 /* clear wake status, all bits */
4760 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4761
4762 /* Disable WoL at init, wait for user to enable */
4763 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4764 }
4765
ice_init_link(struct ice_pf * pf)4766 static int ice_init_link(struct ice_pf *pf)
4767 {
4768 struct device *dev = ice_pf_to_dev(pf);
4769 int err;
4770
4771 err = ice_init_link_events(pf->hw.port_info);
4772 if (err) {
4773 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4774 return err;
4775 }
4776
4777 /* not a fatal error if this fails */
4778 err = ice_init_nvm_phy_type(pf->hw.port_info);
4779 if (err)
4780 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4781
4782 /* not a fatal error if this fails */
4783 err = ice_update_link_info(pf->hw.port_info);
4784 if (err)
4785 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4786
4787 ice_init_link_dflt_override(pf->hw.port_info);
4788
4789 ice_check_link_cfg_err(pf,
4790 pf->hw.port_info->phy.link_info.link_cfg_err);
4791
4792 /* if media available, initialize PHY settings */
4793 if (pf->hw.port_info->phy.link_info.link_info &
4794 ICE_AQ_MEDIA_AVAILABLE) {
4795 /* not a fatal error if this fails */
4796 err = ice_init_phy_user_cfg(pf->hw.port_info);
4797 if (err)
4798 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4799
4800 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4801 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4802
4803 if (vsi)
4804 ice_configure_phy(vsi);
4805 }
4806 } else {
4807 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4808 }
4809
4810 return err;
4811 }
4812
ice_init_pf_sw(struct ice_pf * pf)4813 static int ice_init_pf_sw(struct ice_pf *pf)
4814 {
4815 bool dvm = ice_is_dvm_ena(&pf->hw);
4816 struct ice_vsi *vsi;
4817 int err;
4818
4819 /* create switch struct for the switch element created by FW on boot */
4820 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4821 if (!pf->first_sw)
4822 return -ENOMEM;
4823
4824 if (pf->hw.evb_veb)
4825 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4826 else
4827 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4828
4829 pf->first_sw->pf = pf;
4830
4831 /* record the sw_id available for later use */
4832 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4833
4834 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4835 if (err)
4836 goto err_aq_set_port_params;
4837
4838 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4839 if (!vsi) {
4840 err = -ENOMEM;
4841 goto err_pf_vsi_setup;
4842 }
4843
4844 return 0;
4845
4846 err_pf_vsi_setup:
4847 err_aq_set_port_params:
4848 kfree(pf->first_sw);
4849 return err;
4850 }
4851
ice_deinit_pf_sw(struct ice_pf * pf)4852 static void ice_deinit_pf_sw(struct ice_pf *pf)
4853 {
4854 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4855
4856 if (!vsi)
4857 return;
4858
4859 ice_vsi_release(vsi);
4860 kfree(pf->first_sw);
4861 }
4862
ice_alloc_vsis(struct ice_pf * pf)4863 static int ice_alloc_vsis(struct ice_pf *pf)
4864 {
4865 struct device *dev = ice_pf_to_dev(pf);
4866
4867 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4868 if (!pf->num_alloc_vsi)
4869 return -EIO;
4870
4871 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4872 dev_warn(dev,
4873 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4874 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4875 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4876 }
4877
4878 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4879 GFP_KERNEL);
4880 if (!pf->vsi)
4881 return -ENOMEM;
4882
4883 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4884 sizeof(*pf->vsi_stats), GFP_KERNEL);
4885 if (!pf->vsi_stats) {
4886 devm_kfree(dev, pf->vsi);
4887 return -ENOMEM;
4888 }
4889
4890 return 0;
4891 }
4892
ice_dealloc_vsis(struct ice_pf * pf)4893 static void ice_dealloc_vsis(struct ice_pf *pf)
4894 {
4895 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4896 pf->vsi_stats = NULL;
4897
4898 pf->num_alloc_vsi = 0;
4899 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4900 pf->vsi = NULL;
4901 }
4902
ice_init_devlink(struct ice_pf * pf)4903 static int ice_init_devlink(struct ice_pf *pf)
4904 {
4905 int err;
4906
4907 err = ice_devlink_register_params(pf);
4908 if (err)
4909 return err;
4910
4911 ice_devlink_init_regions(pf);
4912 ice_devlink_register(pf);
4913
4914 return 0;
4915 }
4916
ice_deinit_devlink(struct ice_pf * pf)4917 static void ice_deinit_devlink(struct ice_pf *pf)
4918 {
4919 ice_devlink_unregister(pf);
4920 ice_devlink_destroy_regions(pf);
4921 ice_devlink_unregister_params(pf);
4922 }
4923
ice_init(struct ice_pf * pf)4924 static int ice_init(struct ice_pf *pf)
4925 {
4926 int err;
4927
4928 err = ice_init_dev(pf);
4929 if (err)
4930 return err;
4931
4932 err = ice_alloc_vsis(pf);
4933 if (err)
4934 goto err_alloc_vsis;
4935
4936 err = ice_init_pf_sw(pf);
4937 if (err)
4938 goto err_init_pf_sw;
4939
4940 ice_init_wakeup(pf);
4941
4942 err = ice_init_link(pf);
4943 if (err)
4944 goto err_init_link;
4945
4946 err = ice_send_version(pf);
4947 if (err)
4948 goto err_init_link;
4949
4950 ice_verify_cacheline_size(pf);
4951
4952 if (ice_is_safe_mode(pf))
4953 ice_set_safe_mode_vlan_cfg(pf);
4954 else
4955 /* print PCI link speed and width */
4956 pcie_print_link_status(pf->pdev);
4957
4958 /* ready to go, so clear down state bit */
4959 clear_bit(ICE_DOWN, pf->state);
4960 clear_bit(ICE_SERVICE_DIS, pf->state);
4961
4962 /* since everything is good, start the service timer */
4963 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4964
4965 return 0;
4966
4967 err_init_link:
4968 ice_deinit_pf_sw(pf);
4969 err_init_pf_sw:
4970 ice_dealloc_vsis(pf);
4971 err_alloc_vsis:
4972 ice_deinit_dev(pf);
4973 return err;
4974 }
4975
ice_deinit(struct ice_pf * pf)4976 static void ice_deinit(struct ice_pf *pf)
4977 {
4978 set_bit(ICE_SERVICE_DIS, pf->state);
4979 set_bit(ICE_DOWN, pf->state);
4980
4981 ice_deinit_pf_sw(pf);
4982 ice_dealloc_vsis(pf);
4983 ice_deinit_dev(pf);
4984 }
4985
4986 /**
4987 * ice_load - load pf by init hw and starting VSI
4988 * @pf: pointer to the pf instance
4989 */
ice_load(struct ice_pf * pf)4990 int ice_load(struct ice_pf *pf)
4991 {
4992 struct ice_vsi_cfg_params params = {};
4993 struct ice_vsi *vsi;
4994 int err;
4995
4996 err = ice_init_dev(pf);
4997 if (err)
4998 return err;
4999
5000 vsi = ice_get_main_vsi(pf);
5001
5002 params = ice_vsi_to_params(vsi);
5003 params.flags = ICE_VSI_FLAG_INIT;
5004
5005 rtnl_lock();
5006 err = ice_vsi_cfg(vsi, ¶ms);
5007 if (err)
5008 goto err_vsi_cfg;
5009
5010 err = ice_start_eth(ice_get_main_vsi(pf));
5011 if (err)
5012 goto err_start_eth;
5013 rtnl_unlock();
5014
5015 err = ice_init_rdma(pf);
5016 if (err)
5017 goto err_init_rdma;
5018
5019 ice_init_features(pf);
5020 ice_service_task_restart(pf);
5021
5022 clear_bit(ICE_DOWN, pf->state);
5023
5024 return 0;
5025
5026 err_init_rdma:
5027 ice_vsi_close(ice_get_main_vsi(pf));
5028 rtnl_lock();
5029 err_start_eth:
5030 ice_vsi_decfg(ice_get_main_vsi(pf));
5031 err_vsi_cfg:
5032 rtnl_unlock();
5033 ice_deinit_dev(pf);
5034 return err;
5035 }
5036
5037 /**
5038 * ice_unload - unload pf by stopping VSI and deinit hw
5039 * @pf: pointer to the pf instance
5040 */
ice_unload(struct ice_pf * pf)5041 void ice_unload(struct ice_pf *pf)
5042 {
5043 ice_deinit_features(pf);
5044 ice_deinit_rdma(pf);
5045 rtnl_lock();
5046 ice_stop_eth(ice_get_main_vsi(pf));
5047 ice_vsi_decfg(ice_get_main_vsi(pf));
5048 rtnl_unlock();
5049 ice_deinit_dev(pf);
5050 }
5051
5052 /**
5053 * ice_probe - Device initialization routine
5054 * @pdev: PCI device information struct
5055 * @ent: entry in ice_pci_tbl
5056 *
5057 * Returns 0 on success, negative on failure
5058 */
5059 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5060 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5061 {
5062 struct device *dev = &pdev->dev;
5063 struct ice_pf *pf;
5064 struct ice_hw *hw;
5065 int err;
5066
5067 if (pdev->is_virtfn) {
5068 dev_err(dev, "can't probe a virtual function\n");
5069 return -EINVAL;
5070 }
5071
5072 /* when under a kdump kernel initiate a reset before enabling the
5073 * device in order to clear out any pending DMA transactions. These
5074 * transactions can cause some systems to machine check when doing
5075 * the pcim_enable_device() below.
5076 */
5077 if (is_kdump_kernel()) {
5078 pci_save_state(pdev);
5079 pci_clear_master(pdev);
5080 err = pcie_flr(pdev);
5081 if (err)
5082 return err;
5083 pci_restore_state(pdev);
5084 }
5085
5086 /* this driver uses devres, see
5087 * Documentation/driver-api/driver-model/devres.rst
5088 */
5089 err = pcim_enable_device(pdev);
5090 if (err)
5091 return err;
5092
5093 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5094 if (err) {
5095 dev_err(dev, "BAR0 I/O map error %d\n", err);
5096 return err;
5097 }
5098
5099 pf = ice_allocate_pf(dev);
5100 if (!pf)
5101 return -ENOMEM;
5102
5103 /* initialize Auxiliary index to invalid value */
5104 pf->aux_idx = -1;
5105
5106 /* set up for high or low DMA */
5107 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5108 if (err) {
5109 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5110 return err;
5111 }
5112
5113 pci_set_master(pdev);
5114
5115 pf->pdev = pdev;
5116 pci_set_drvdata(pdev, pf);
5117 set_bit(ICE_DOWN, pf->state);
5118 /* Disable service task until DOWN bit is cleared */
5119 set_bit(ICE_SERVICE_DIS, pf->state);
5120
5121 hw = &pf->hw;
5122 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5123 pci_save_state(pdev);
5124
5125 hw->back = pf;
5126 hw->port_info = NULL;
5127 hw->vendor_id = pdev->vendor;
5128 hw->device_id = pdev->device;
5129 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5130 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5131 hw->subsystem_device_id = pdev->subsystem_device;
5132 hw->bus.device = PCI_SLOT(pdev->devfn);
5133 hw->bus.func = PCI_FUNC(pdev->devfn);
5134 ice_set_ctrlq_len(hw);
5135
5136 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5137
5138 #ifndef CONFIG_DYNAMIC_DEBUG
5139 if (debug < -1)
5140 hw->debug_mask = debug;
5141 #endif
5142
5143 err = ice_init(pf);
5144 if (err)
5145 goto err_init;
5146
5147 err = ice_init_eth(pf);
5148 if (err)
5149 goto err_init_eth;
5150
5151 err = ice_init_rdma(pf);
5152 if (err)
5153 goto err_init_rdma;
5154
5155 err = ice_init_devlink(pf);
5156 if (err)
5157 goto err_init_devlink;
5158
5159 ice_init_features(pf);
5160
5161 return 0;
5162
5163 err_init_devlink:
5164 ice_deinit_rdma(pf);
5165 err_init_rdma:
5166 ice_deinit_eth(pf);
5167 err_init_eth:
5168 ice_deinit(pf);
5169 err_init:
5170 pci_disable_device(pdev);
5171 return err;
5172 }
5173
5174 /**
5175 * ice_set_wake - enable or disable Wake on LAN
5176 * @pf: pointer to the PF struct
5177 *
5178 * Simple helper for WoL control
5179 */
ice_set_wake(struct ice_pf * pf)5180 static void ice_set_wake(struct ice_pf *pf)
5181 {
5182 struct ice_hw *hw = &pf->hw;
5183 bool wol = pf->wol_ena;
5184
5185 /* clear wake state, otherwise new wake events won't fire */
5186 wr32(hw, PFPM_WUS, U32_MAX);
5187
5188 /* enable / disable APM wake up, no RMW needed */
5189 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5190
5191 /* set magic packet filter enabled */
5192 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5193 }
5194
5195 /**
5196 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5197 * @pf: pointer to the PF struct
5198 *
5199 * Issue firmware command to enable multicast magic wake, making
5200 * sure that any locally administered address (LAA) is used for
5201 * wake, and that PF reset doesn't undo the LAA.
5202 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5203 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5204 {
5205 struct device *dev = ice_pf_to_dev(pf);
5206 struct ice_hw *hw = &pf->hw;
5207 u8 mac_addr[ETH_ALEN];
5208 struct ice_vsi *vsi;
5209 int status;
5210 u8 flags;
5211
5212 if (!pf->wol_ena)
5213 return;
5214
5215 vsi = ice_get_main_vsi(pf);
5216 if (!vsi)
5217 return;
5218
5219 /* Get current MAC address in case it's an LAA */
5220 if (vsi->netdev)
5221 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5222 else
5223 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5224
5225 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5226 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5227 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5228
5229 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5230 if (status)
5231 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5232 status, ice_aq_str(hw->adminq.sq_last_status));
5233 }
5234
5235 /**
5236 * ice_remove - Device removal routine
5237 * @pdev: PCI device information struct
5238 */
ice_remove(struct pci_dev * pdev)5239 static void ice_remove(struct pci_dev *pdev)
5240 {
5241 struct ice_pf *pf = pci_get_drvdata(pdev);
5242 int i;
5243
5244 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5245 if (!ice_is_reset_in_progress(pf->state))
5246 break;
5247 msleep(100);
5248 }
5249
5250 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5251 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5252 ice_free_vfs(pf);
5253 }
5254
5255 ice_service_task_stop(pf);
5256 ice_aq_cancel_waiting_tasks(pf);
5257 set_bit(ICE_DOWN, pf->state);
5258
5259 if (!ice_is_safe_mode(pf))
5260 ice_remove_arfs(pf);
5261 ice_deinit_features(pf);
5262 ice_deinit_devlink(pf);
5263 ice_deinit_rdma(pf);
5264 ice_deinit_eth(pf);
5265 ice_deinit(pf);
5266
5267 ice_vsi_release_all(pf);
5268
5269 ice_setup_mc_magic_wake(pf);
5270 ice_set_wake(pf);
5271
5272 pci_disable_device(pdev);
5273 }
5274
5275 /**
5276 * ice_shutdown - PCI callback for shutting down device
5277 * @pdev: PCI device information struct
5278 */
ice_shutdown(struct pci_dev * pdev)5279 static void ice_shutdown(struct pci_dev *pdev)
5280 {
5281 struct ice_pf *pf = pci_get_drvdata(pdev);
5282
5283 ice_remove(pdev);
5284
5285 if (system_state == SYSTEM_POWER_OFF) {
5286 pci_wake_from_d3(pdev, pf->wol_ena);
5287 pci_set_power_state(pdev, PCI_D3hot);
5288 }
5289 }
5290
5291 #ifdef CONFIG_PM
5292 /**
5293 * ice_prepare_for_shutdown - prep for PCI shutdown
5294 * @pf: board private structure
5295 *
5296 * Inform or close all dependent features in prep for PCI device shutdown
5297 */
ice_prepare_for_shutdown(struct ice_pf * pf)5298 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5299 {
5300 struct ice_hw *hw = &pf->hw;
5301 u32 v;
5302
5303 /* Notify VFs of impending reset */
5304 if (ice_check_sq_alive(hw, &hw->mailboxq))
5305 ice_vc_notify_reset(pf);
5306
5307 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5308
5309 /* disable the VSIs and their queues that are not already DOWN */
5310 ice_pf_dis_all_vsi(pf, false);
5311
5312 ice_for_each_vsi(pf, v)
5313 if (pf->vsi[v])
5314 pf->vsi[v]->vsi_num = 0;
5315
5316 ice_shutdown_all_ctrlq(hw);
5317 }
5318
5319 /**
5320 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5321 * @pf: board private structure to reinitialize
5322 *
5323 * This routine reinitialize interrupt scheme that was cleared during
5324 * power management suspend callback.
5325 *
5326 * This should be called during resume routine to re-allocate the q_vectors
5327 * and reacquire interrupts.
5328 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5329 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5330 {
5331 struct device *dev = ice_pf_to_dev(pf);
5332 int ret, v;
5333
5334 /* Since we clear MSIX flag during suspend, we need to
5335 * set it back during resume...
5336 */
5337
5338 ret = ice_init_interrupt_scheme(pf);
5339 if (ret) {
5340 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5341 return ret;
5342 }
5343
5344 /* Remap vectors and rings, after successful re-init interrupts */
5345 ice_for_each_vsi(pf, v) {
5346 if (!pf->vsi[v])
5347 continue;
5348
5349 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5350 if (ret)
5351 goto err_reinit;
5352 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5353 }
5354
5355 ret = ice_req_irq_msix_misc(pf);
5356 if (ret) {
5357 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5358 ret);
5359 goto err_reinit;
5360 }
5361
5362 return 0;
5363
5364 err_reinit:
5365 while (v--)
5366 if (pf->vsi[v])
5367 ice_vsi_free_q_vectors(pf->vsi[v]);
5368
5369 return ret;
5370 }
5371
5372 /**
5373 * ice_suspend
5374 * @dev: generic device information structure
5375 *
5376 * Power Management callback to quiesce the device and prepare
5377 * for D3 transition.
5378 */
ice_suspend(struct device * dev)5379 static int __maybe_unused ice_suspend(struct device *dev)
5380 {
5381 struct pci_dev *pdev = to_pci_dev(dev);
5382 struct ice_pf *pf;
5383 int disabled, v;
5384
5385 pf = pci_get_drvdata(pdev);
5386
5387 if (!ice_pf_state_is_nominal(pf)) {
5388 dev_err(dev, "Device is not ready, no need to suspend it\n");
5389 return -EBUSY;
5390 }
5391
5392 /* Stop watchdog tasks until resume completion.
5393 * Even though it is most likely that the service task is
5394 * disabled if the device is suspended or down, the service task's
5395 * state is controlled by a different state bit, and we should
5396 * store and honor whatever state that bit is in at this point.
5397 */
5398 disabled = ice_service_task_stop(pf);
5399
5400 ice_deinit_rdma(pf);
5401
5402 /* Already suspended?, then there is nothing to do */
5403 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5404 if (!disabled)
5405 ice_service_task_restart(pf);
5406 return 0;
5407 }
5408
5409 if (test_bit(ICE_DOWN, pf->state) ||
5410 ice_is_reset_in_progress(pf->state)) {
5411 dev_err(dev, "can't suspend device in reset or already down\n");
5412 if (!disabled)
5413 ice_service_task_restart(pf);
5414 return 0;
5415 }
5416
5417 ice_setup_mc_magic_wake(pf);
5418
5419 ice_prepare_for_shutdown(pf);
5420
5421 ice_set_wake(pf);
5422
5423 /* Free vectors, clear the interrupt scheme and release IRQs
5424 * for proper hibernation, especially with large number of CPUs.
5425 * Otherwise hibernation might fail when mapping all the vectors back
5426 * to CPU0.
5427 */
5428 ice_free_irq_msix_misc(pf);
5429 ice_for_each_vsi(pf, v) {
5430 if (!pf->vsi[v])
5431 continue;
5432 ice_vsi_free_q_vectors(pf->vsi[v]);
5433 }
5434 ice_clear_interrupt_scheme(pf);
5435
5436 pci_save_state(pdev);
5437 pci_wake_from_d3(pdev, pf->wol_ena);
5438 pci_set_power_state(pdev, PCI_D3hot);
5439 return 0;
5440 }
5441
5442 /**
5443 * ice_resume - PM callback for waking up from D3
5444 * @dev: generic device information structure
5445 */
ice_resume(struct device * dev)5446 static int __maybe_unused ice_resume(struct device *dev)
5447 {
5448 struct pci_dev *pdev = to_pci_dev(dev);
5449 enum ice_reset_req reset_type;
5450 struct ice_pf *pf;
5451 struct ice_hw *hw;
5452 int ret;
5453
5454 pci_set_power_state(pdev, PCI_D0);
5455 pci_restore_state(pdev);
5456 pci_save_state(pdev);
5457
5458 if (!pci_device_is_present(pdev))
5459 return -ENODEV;
5460
5461 ret = pci_enable_device_mem(pdev);
5462 if (ret) {
5463 dev_err(dev, "Cannot enable device after suspend\n");
5464 return ret;
5465 }
5466
5467 pf = pci_get_drvdata(pdev);
5468 hw = &pf->hw;
5469
5470 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5471 ice_print_wake_reason(pf);
5472
5473 /* We cleared the interrupt scheme when we suspended, so we need to
5474 * restore it now to resume device functionality.
5475 */
5476 ret = ice_reinit_interrupt_scheme(pf);
5477 if (ret)
5478 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5479
5480 ret = ice_init_rdma(pf);
5481 if (ret)
5482 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5483 ret);
5484
5485 clear_bit(ICE_DOWN, pf->state);
5486 /* Now perform PF reset and rebuild */
5487 reset_type = ICE_RESET_PFR;
5488 /* re-enable service task for reset, but allow reset to schedule it */
5489 clear_bit(ICE_SERVICE_DIS, pf->state);
5490
5491 if (ice_schedule_reset(pf, reset_type))
5492 dev_err(dev, "Reset during resume failed.\n");
5493
5494 clear_bit(ICE_SUSPENDED, pf->state);
5495 ice_service_task_restart(pf);
5496
5497 /* Restart the service task */
5498 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5499
5500 return 0;
5501 }
5502 #endif /* CONFIG_PM */
5503
5504 /**
5505 * ice_pci_err_detected - warning that PCI error has been detected
5506 * @pdev: PCI device information struct
5507 * @err: the type of PCI error
5508 *
5509 * Called to warn that something happened on the PCI bus and the error handling
5510 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5511 */
5512 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5513 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5514 {
5515 struct ice_pf *pf = pci_get_drvdata(pdev);
5516
5517 if (!pf) {
5518 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5519 __func__, err);
5520 return PCI_ERS_RESULT_DISCONNECT;
5521 }
5522
5523 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5524 ice_service_task_stop(pf);
5525
5526 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5527 set_bit(ICE_PFR_REQ, pf->state);
5528 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5529 }
5530 }
5531
5532 return PCI_ERS_RESULT_NEED_RESET;
5533 }
5534
5535 /**
5536 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5537 * @pdev: PCI device information struct
5538 *
5539 * Called to determine if the driver can recover from the PCI slot reset by
5540 * using a register read to determine if the device is recoverable.
5541 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5542 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5543 {
5544 struct ice_pf *pf = pci_get_drvdata(pdev);
5545 pci_ers_result_t result;
5546 int err;
5547 u32 reg;
5548
5549 err = pci_enable_device_mem(pdev);
5550 if (err) {
5551 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5552 err);
5553 result = PCI_ERS_RESULT_DISCONNECT;
5554 } else {
5555 pci_set_master(pdev);
5556 pci_restore_state(pdev);
5557 pci_save_state(pdev);
5558 pci_wake_from_d3(pdev, false);
5559
5560 /* Check for life */
5561 reg = rd32(&pf->hw, GLGEN_RTRIG);
5562 if (!reg)
5563 result = PCI_ERS_RESULT_RECOVERED;
5564 else
5565 result = PCI_ERS_RESULT_DISCONNECT;
5566 }
5567
5568 return result;
5569 }
5570
5571 /**
5572 * ice_pci_err_resume - restart operations after PCI error recovery
5573 * @pdev: PCI device information struct
5574 *
5575 * Called to allow the driver to bring things back up after PCI error and/or
5576 * reset recovery have finished
5577 */
ice_pci_err_resume(struct pci_dev * pdev)5578 static void ice_pci_err_resume(struct pci_dev *pdev)
5579 {
5580 struct ice_pf *pf = pci_get_drvdata(pdev);
5581
5582 if (!pf) {
5583 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5584 __func__);
5585 return;
5586 }
5587
5588 if (test_bit(ICE_SUSPENDED, pf->state)) {
5589 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5590 __func__);
5591 return;
5592 }
5593
5594 ice_restore_all_vfs_msi_state(pdev);
5595
5596 ice_do_reset(pf, ICE_RESET_PFR);
5597 ice_service_task_restart(pf);
5598 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5599 }
5600
5601 /**
5602 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5603 * @pdev: PCI device information struct
5604 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5605 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5606 {
5607 struct ice_pf *pf = pci_get_drvdata(pdev);
5608
5609 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5610 ice_service_task_stop(pf);
5611
5612 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5613 set_bit(ICE_PFR_REQ, pf->state);
5614 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5615 }
5616 }
5617 }
5618
5619 /**
5620 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5621 * @pdev: PCI device information struct
5622 */
ice_pci_err_reset_done(struct pci_dev * pdev)5623 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5624 {
5625 ice_pci_err_resume(pdev);
5626 }
5627
5628 /* ice_pci_tbl - PCI Device ID Table
5629 *
5630 * Wildcard entries (PCI_ANY_ID) should come last
5631 * Last entry must be all 0s
5632 *
5633 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5634 * Class, Class Mask, private data (not used) }
5635 */
5636 static const struct pci_device_id ice_pci_tbl[] = {
5637 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5638 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5639 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5640 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5641 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5642 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5643 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5644 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5645 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5646 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5647 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5648 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5649 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5650 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5651 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5652 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5653 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5654 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5655 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5656 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5657 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5658 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5659 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5660 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5661 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5662 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5663 /* required last entry */
5664 { 0, }
5665 };
5666 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5667
5668 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5669
5670 static const struct pci_error_handlers ice_pci_err_handler = {
5671 .error_detected = ice_pci_err_detected,
5672 .slot_reset = ice_pci_err_slot_reset,
5673 .reset_prepare = ice_pci_err_reset_prepare,
5674 .reset_done = ice_pci_err_reset_done,
5675 .resume = ice_pci_err_resume
5676 };
5677
5678 static struct pci_driver ice_driver = {
5679 .name = KBUILD_MODNAME,
5680 .id_table = ice_pci_tbl,
5681 .probe = ice_probe,
5682 .remove = ice_remove,
5683 #ifdef CONFIG_PM
5684 .driver.pm = &ice_pm_ops,
5685 #endif /* CONFIG_PM */
5686 .shutdown = ice_shutdown,
5687 .sriov_configure = ice_sriov_configure,
5688 .err_handler = &ice_pci_err_handler
5689 };
5690
5691 /**
5692 * ice_module_init - Driver registration routine
5693 *
5694 * ice_module_init is the first routine called when the driver is
5695 * loaded. All it does is register with the PCI subsystem.
5696 */
ice_module_init(void)5697 static int __init ice_module_init(void)
5698 {
5699 int status = -ENOMEM;
5700
5701 pr_info("%s\n", ice_driver_string);
5702 pr_info("%s\n", ice_copyright);
5703
5704 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5705 if (!ice_wq) {
5706 pr_err("Failed to create workqueue\n");
5707 return status;
5708 }
5709
5710 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5711 if (!ice_lag_wq) {
5712 pr_err("Failed to create LAG workqueue\n");
5713 goto err_dest_wq;
5714 }
5715
5716 status = pci_register_driver(&ice_driver);
5717 if (status) {
5718 pr_err("failed to register PCI driver, err %d\n", status);
5719 goto err_dest_lag_wq;
5720 }
5721
5722 return 0;
5723
5724 err_dest_lag_wq:
5725 destroy_workqueue(ice_lag_wq);
5726 err_dest_wq:
5727 destroy_workqueue(ice_wq);
5728 return status;
5729 }
5730 module_init(ice_module_init);
5731
5732 /**
5733 * ice_module_exit - Driver exit cleanup routine
5734 *
5735 * ice_module_exit is called just before the driver is removed
5736 * from memory.
5737 */
ice_module_exit(void)5738 static void __exit ice_module_exit(void)
5739 {
5740 pci_unregister_driver(&ice_driver);
5741 destroy_workqueue(ice_wq);
5742 destroy_workqueue(ice_lag_wq);
5743 pr_info("module unloaded\n");
5744 }
5745 module_exit(ice_module_exit);
5746
5747 /**
5748 * ice_set_mac_address - NDO callback to set MAC address
5749 * @netdev: network interface device structure
5750 * @pi: pointer to an address structure
5751 *
5752 * Returns 0 on success, negative on failure
5753 */
ice_set_mac_address(struct net_device * netdev,void * pi)5754 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5755 {
5756 struct ice_netdev_priv *np = netdev_priv(netdev);
5757 struct ice_vsi *vsi = np->vsi;
5758 struct ice_pf *pf = vsi->back;
5759 struct ice_hw *hw = &pf->hw;
5760 struct sockaddr *addr = pi;
5761 u8 old_mac[ETH_ALEN];
5762 u8 flags = 0;
5763 u8 *mac;
5764 int err;
5765
5766 mac = (u8 *)addr->sa_data;
5767
5768 if (!is_valid_ether_addr(mac))
5769 return -EADDRNOTAVAIL;
5770
5771 if (test_bit(ICE_DOWN, pf->state) ||
5772 ice_is_reset_in_progress(pf->state)) {
5773 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5774 mac);
5775 return -EBUSY;
5776 }
5777
5778 if (ice_chnl_dmac_fltr_cnt(pf)) {
5779 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5780 mac);
5781 return -EAGAIN;
5782 }
5783
5784 netif_addr_lock_bh(netdev);
5785 ether_addr_copy(old_mac, netdev->dev_addr);
5786 /* change the netdev's MAC address */
5787 eth_hw_addr_set(netdev, mac);
5788 netif_addr_unlock_bh(netdev);
5789
5790 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5791 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5792 if (err && err != -ENOENT) {
5793 err = -EADDRNOTAVAIL;
5794 goto err_update_filters;
5795 }
5796
5797 /* Add filter for new MAC. If filter exists, return success */
5798 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5799 if (err == -EEXIST) {
5800 /* Although this MAC filter is already present in hardware it's
5801 * possible in some cases (e.g. bonding) that dev_addr was
5802 * modified outside of the driver and needs to be restored back
5803 * to this value.
5804 */
5805 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5806
5807 return 0;
5808 } else if (err) {
5809 /* error if the new filter addition failed */
5810 err = -EADDRNOTAVAIL;
5811 }
5812
5813 err_update_filters:
5814 if (err) {
5815 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5816 mac);
5817 netif_addr_lock_bh(netdev);
5818 eth_hw_addr_set(netdev, old_mac);
5819 netif_addr_unlock_bh(netdev);
5820 return err;
5821 }
5822
5823 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5824 netdev->dev_addr);
5825
5826 /* write new MAC address to the firmware */
5827 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5828 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5829 if (err) {
5830 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5831 mac, err);
5832 }
5833 return 0;
5834 }
5835
5836 /**
5837 * ice_set_rx_mode - NDO callback to set the netdev filters
5838 * @netdev: network interface device structure
5839 */
ice_set_rx_mode(struct net_device * netdev)5840 static void ice_set_rx_mode(struct net_device *netdev)
5841 {
5842 struct ice_netdev_priv *np = netdev_priv(netdev);
5843 struct ice_vsi *vsi = np->vsi;
5844
5845 if (!vsi || ice_is_switchdev_running(vsi->back))
5846 return;
5847
5848 /* Set the flags to synchronize filters
5849 * ndo_set_rx_mode may be triggered even without a change in netdev
5850 * flags
5851 */
5852 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5853 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5854 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5855
5856 /* schedule our worker thread which will take care of
5857 * applying the new filter changes
5858 */
5859 ice_service_task_schedule(vsi->back);
5860 }
5861
5862 /**
5863 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5864 * @netdev: network interface device structure
5865 * @queue_index: Queue ID
5866 * @maxrate: maximum bandwidth in Mbps
5867 */
5868 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5869 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5870 {
5871 struct ice_netdev_priv *np = netdev_priv(netdev);
5872 struct ice_vsi *vsi = np->vsi;
5873 u16 q_handle;
5874 int status;
5875 u8 tc;
5876
5877 /* Validate maxrate requested is within permitted range */
5878 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5879 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5880 maxrate, queue_index);
5881 return -EINVAL;
5882 }
5883
5884 q_handle = vsi->tx_rings[queue_index]->q_handle;
5885 tc = ice_dcb_get_tc(vsi, queue_index);
5886
5887 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5888 if (!vsi) {
5889 netdev_err(netdev, "Invalid VSI for given queue %d\n",
5890 queue_index);
5891 return -EINVAL;
5892 }
5893
5894 /* Set BW back to default, when user set maxrate to 0 */
5895 if (!maxrate)
5896 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5897 q_handle, ICE_MAX_BW);
5898 else
5899 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5900 q_handle, ICE_MAX_BW, maxrate * 1000);
5901 if (status)
5902 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5903 status);
5904
5905 return status;
5906 }
5907
5908 /**
5909 * ice_fdb_add - add an entry to the hardware database
5910 * @ndm: the input from the stack
5911 * @tb: pointer to array of nladdr (unused)
5912 * @dev: the net device pointer
5913 * @addr: the MAC address entry being added
5914 * @vid: VLAN ID
5915 * @flags: instructions from stack about fdb operation
5916 * @extack: netlink extended ack
5917 */
5918 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5919 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5920 struct net_device *dev, const unsigned char *addr, u16 vid,
5921 u16 flags, struct netlink_ext_ack __always_unused *extack)
5922 {
5923 int err;
5924
5925 if (vid) {
5926 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5927 return -EINVAL;
5928 }
5929 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5930 netdev_err(dev, "FDB only supports static addresses\n");
5931 return -EINVAL;
5932 }
5933
5934 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5935 err = dev_uc_add_excl(dev, addr);
5936 else if (is_multicast_ether_addr(addr))
5937 err = dev_mc_add_excl(dev, addr);
5938 else
5939 err = -EINVAL;
5940
5941 /* Only return duplicate errors if NLM_F_EXCL is set */
5942 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5943 err = 0;
5944
5945 return err;
5946 }
5947
5948 /**
5949 * ice_fdb_del - delete an entry from the hardware database
5950 * @ndm: the input from the stack
5951 * @tb: pointer to array of nladdr (unused)
5952 * @dev: the net device pointer
5953 * @addr: the MAC address entry being added
5954 * @vid: VLAN ID
5955 * @extack: netlink extended ack
5956 */
5957 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)5958 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5959 struct net_device *dev, const unsigned char *addr,
5960 __always_unused u16 vid, struct netlink_ext_ack *extack)
5961 {
5962 int err;
5963
5964 if (ndm->ndm_state & NUD_PERMANENT) {
5965 netdev_err(dev, "FDB only supports static addresses\n");
5966 return -EINVAL;
5967 }
5968
5969 if (is_unicast_ether_addr(addr))
5970 err = dev_uc_del(dev, addr);
5971 else if (is_multicast_ether_addr(addr))
5972 err = dev_mc_del(dev, addr);
5973 else
5974 err = -EINVAL;
5975
5976 return err;
5977 }
5978
5979 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5980 NETIF_F_HW_VLAN_CTAG_TX | \
5981 NETIF_F_HW_VLAN_STAG_RX | \
5982 NETIF_F_HW_VLAN_STAG_TX)
5983
5984 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5985 NETIF_F_HW_VLAN_STAG_RX)
5986
5987 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5988 NETIF_F_HW_VLAN_STAG_FILTER)
5989
5990 /**
5991 * ice_fix_features - fix the netdev features flags based on device limitations
5992 * @netdev: ptr to the netdev that flags are being fixed on
5993 * @features: features that need to be checked and possibly fixed
5994 *
5995 * Make sure any fixups are made to features in this callback. This enables the
5996 * driver to not have to check unsupported configurations throughout the driver
5997 * because that's the responsiblity of this callback.
5998 *
5999 * Single VLAN Mode (SVM) Supported Features:
6000 * NETIF_F_HW_VLAN_CTAG_FILTER
6001 * NETIF_F_HW_VLAN_CTAG_RX
6002 * NETIF_F_HW_VLAN_CTAG_TX
6003 *
6004 * Double VLAN Mode (DVM) Supported Features:
6005 * NETIF_F_HW_VLAN_CTAG_FILTER
6006 * NETIF_F_HW_VLAN_CTAG_RX
6007 * NETIF_F_HW_VLAN_CTAG_TX
6008 *
6009 * NETIF_F_HW_VLAN_STAG_FILTER
6010 * NETIF_HW_VLAN_STAG_RX
6011 * NETIF_HW_VLAN_STAG_TX
6012 *
6013 * Features that need fixing:
6014 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6015 * These are mutually exlusive as the VSI context cannot support multiple
6016 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6017 * is not done, then default to clearing the requested STAG offload
6018 * settings.
6019 *
6020 * All supported filtering has to be enabled or disabled together. For
6021 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6022 * together. If this is not done, then default to VLAN filtering disabled.
6023 * These are mutually exclusive as there is currently no way to
6024 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6025 * prune rules.
6026 */
6027 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6028 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6029 {
6030 struct ice_netdev_priv *np = netdev_priv(netdev);
6031 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6032 bool cur_ctag, cur_stag, req_ctag, req_stag;
6033
6034 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6035 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6036 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6037
6038 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6039 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6040 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6041
6042 if (req_vlan_fltr != cur_vlan_fltr) {
6043 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6044 if (req_ctag && req_stag) {
6045 features |= NETIF_VLAN_FILTERING_FEATURES;
6046 } else if (!req_ctag && !req_stag) {
6047 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6048 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6049 (!cur_stag && req_stag && !cur_ctag)) {
6050 features |= NETIF_VLAN_FILTERING_FEATURES;
6051 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6052 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6053 (cur_stag && !req_stag && cur_ctag)) {
6054 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6055 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6056 }
6057 } else {
6058 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6059 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6060
6061 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6062 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6063 }
6064 }
6065
6066 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6067 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6068 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6069 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6070 NETIF_F_HW_VLAN_STAG_TX);
6071 }
6072
6073 if (!(netdev->features & NETIF_F_RXFCS) &&
6074 (features & NETIF_F_RXFCS) &&
6075 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6076 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6077 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6078 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6079 }
6080
6081 return features;
6082 }
6083
6084 /**
6085 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6086 * @vsi: PF's VSI
6087 * @features: features used to determine VLAN offload settings
6088 *
6089 * First, determine the vlan_ethertype based on the VLAN offload bits in
6090 * features. Then determine if stripping and insertion should be enabled or
6091 * disabled. Finally enable or disable VLAN stripping and insertion.
6092 */
6093 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6094 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6095 {
6096 bool enable_stripping = true, enable_insertion = true;
6097 struct ice_vsi_vlan_ops *vlan_ops;
6098 int strip_err = 0, insert_err = 0;
6099 u16 vlan_ethertype = 0;
6100
6101 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6102
6103 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6104 vlan_ethertype = ETH_P_8021AD;
6105 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6106 vlan_ethertype = ETH_P_8021Q;
6107
6108 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6109 enable_stripping = false;
6110 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6111 enable_insertion = false;
6112
6113 if (enable_stripping)
6114 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6115 else
6116 strip_err = vlan_ops->dis_stripping(vsi);
6117
6118 if (enable_insertion)
6119 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6120 else
6121 insert_err = vlan_ops->dis_insertion(vsi);
6122
6123 if (strip_err || insert_err)
6124 return -EIO;
6125
6126 return 0;
6127 }
6128
6129 /**
6130 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6131 * @vsi: PF's VSI
6132 * @features: features used to determine VLAN filtering settings
6133 *
6134 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6135 * features.
6136 */
6137 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6138 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6139 {
6140 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6141 int err = 0;
6142
6143 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6144 * if either bit is set
6145 */
6146 if (features &
6147 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6148 err = vlan_ops->ena_rx_filtering(vsi);
6149 else
6150 err = vlan_ops->dis_rx_filtering(vsi);
6151
6152 return err;
6153 }
6154
6155 /**
6156 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6157 * @netdev: ptr to the netdev being adjusted
6158 * @features: the feature set that the stack is suggesting
6159 *
6160 * Only update VLAN settings if the requested_vlan_features are different than
6161 * the current_vlan_features.
6162 */
6163 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6164 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6165 {
6166 netdev_features_t current_vlan_features, requested_vlan_features;
6167 struct ice_netdev_priv *np = netdev_priv(netdev);
6168 struct ice_vsi *vsi = np->vsi;
6169 int err;
6170
6171 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6172 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6173 if (current_vlan_features ^ requested_vlan_features) {
6174 if ((features & NETIF_F_RXFCS) &&
6175 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6176 dev_err(ice_pf_to_dev(vsi->back),
6177 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6178 return -EIO;
6179 }
6180
6181 err = ice_set_vlan_offload_features(vsi, features);
6182 if (err)
6183 return err;
6184 }
6185
6186 current_vlan_features = netdev->features &
6187 NETIF_VLAN_FILTERING_FEATURES;
6188 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6189 if (current_vlan_features ^ requested_vlan_features) {
6190 err = ice_set_vlan_filtering_features(vsi, features);
6191 if (err)
6192 return err;
6193 }
6194
6195 return 0;
6196 }
6197
6198 /**
6199 * ice_set_loopback - turn on/off loopback mode on underlying PF
6200 * @vsi: ptr to VSI
6201 * @ena: flag to indicate the on/off setting
6202 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6203 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6204 {
6205 bool if_running = netif_running(vsi->netdev);
6206 int ret;
6207
6208 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6209 ret = ice_down(vsi);
6210 if (ret) {
6211 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6212 return ret;
6213 }
6214 }
6215 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6216 if (ret)
6217 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6218 if (if_running)
6219 ret = ice_up(vsi);
6220
6221 return ret;
6222 }
6223
6224 /**
6225 * ice_set_features - set the netdev feature flags
6226 * @netdev: ptr to the netdev being adjusted
6227 * @features: the feature set that the stack is suggesting
6228 */
6229 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6230 ice_set_features(struct net_device *netdev, netdev_features_t features)
6231 {
6232 netdev_features_t changed = netdev->features ^ features;
6233 struct ice_netdev_priv *np = netdev_priv(netdev);
6234 struct ice_vsi *vsi = np->vsi;
6235 struct ice_pf *pf = vsi->back;
6236 int ret = 0;
6237
6238 /* Don't set any netdev advanced features with device in Safe Mode */
6239 if (ice_is_safe_mode(pf)) {
6240 dev_err(ice_pf_to_dev(pf),
6241 "Device is in Safe Mode - not enabling advanced netdev features\n");
6242 return ret;
6243 }
6244
6245 /* Do not change setting during reset */
6246 if (ice_is_reset_in_progress(pf->state)) {
6247 dev_err(ice_pf_to_dev(pf),
6248 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6249 return -EBUSY;
6250 }
6251
6252 /* Multiple features can be changed in one call so keep features in
6253 * separate if/else statements to guarantee each feature is checked
6254 */
6255 if (changed & NETIF_F_RXHASH)
6256 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6257
6258 ret = ice_set_vlan_features(netdev, features);
6259 if (ret)
6260 return ret;
6261
6262 /* Turn on receive of FCS aka CRC, and after setting this
6263 * flag the packet data will have the 4 byte CRC appended
6264 */
6265 if (changed & NETIF_F_RXFCS) {
6266 if ((features & NETIF_F_RXFCS) &&
6267 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6268 dev_err(ice_pf_to_dev(vsi->back),
6269 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6270 return -EIO;
6271 }
6272
6273 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6274 ret = ice_down_up(vsi);
6275 if (ret)
6276 return ret;
6277 }
6278
6279 if (changed & NETIF_F_NTUPLE) {
6280 bool ena = !!(features & NETIF_F_NTUPLE);
6281
6282 ice_vsi_manage_fdir(vsi, ena);
6283 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6284 }
6285
6286 /* don't turn off hw_tc_offload when ADQ is already enabled */
6287 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6288 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6289 return -EACCES;
6290 }
6291
6292 if (changed & NETIF_F_HW_TC) {
6293 bool ena = !!(features & NETIF_F_HW_TC);
6294
6295 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6296 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6297 }
6298
6299 if (changed & NETIF_F_LOOPBACK)
6300 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6301
6302 return ret;
6303 }
6304
6305 /**
6306 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6307 * @vsi: VSI to setup VLAN properties for
6308 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6309 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6310 {
6311 int err;
6312
6313 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6314 if (err)
6315 return err;
6316
6317 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6318 if (err)
6319 return err;
6320
6321 return ice_vsi_add_vlan_zero(vsi);
6322 }
6323
6324 /**
6325 * ice_vsi_cfg_lan - Setup the VSI lan related config
6326 * @vsi: the VSI being configured
6327 *
6328 * Return 0 on success and negative value on error
6329 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6330 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6331 {
6332 int err;
6333
6334 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6335 ice_set_rx_mode(vsi->netdev);
6336
6337 err = ice_vsi_vlan_setup(vsi);
6338 if (err)
6339 return err;
6340 }
6341 ice_vsi_cfg_dcb_rings(vsi);
6342
6343 err = ice_vsi_cfg_lan_txqs(vsi);
6344 if (!err && ice_is_xdp_ena_vsi(vsi))
6345 err = ice_vsi_cfg_xdp_txqs(vsi);
6346 if (!err)
6347 err = ice_vsi_cfg_rxqs(vsi);
6348
6349 return err;
6350 }
6351
6352 /* THEORY OF MODERATION:
6353 * The ice driver hardware works differently than the hardware that DIMLIB was
6354 * originally made for. ice hardware doesn't have packet count limits that
6355 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6356 * which is hard-coded to a limit of 250,000 ints/second.
6357 * If not using dynamic moderation, the INTRL value can be modified
6358 * by ethtool rx-usecs-high.
6359 */
6360 struct ice_dim {
6361 /* the throttle rate for interrupts, basically worst case delay before
6362 * an initial interrupt fires, value is stored in microseconds.
6363 */
6364 u16 itr;
6365 };
6366
6367 /* Make a different profile for Rx that doesn't allow quite so aggressive
6368 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6369 * second.
6370 */
6371 static const struct ice_dim rx_profile[] = {
6372 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6373 {8}, /* 125,000 ints/s */
6374 {16}, /* 62,500 ints/s */
6375 {62}, /* 16,129 ints/s */
6376 {126} /* 7,936 ints/s */
6377 };
6378
6379 /* The transmit profile, which has the same sorts of values
6380 * as the previous struct
6381 */
6382 static const struct ice_dim tx_profile[] = {
6383 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6384 {8}, /* 125,000 ints/s */
6385 {40}, /* 16,125 ints/s */
6386 {128}, /* 7,812 ints/s */
6387 {256} /* 3,906 ints/s */
6388 };
6389
ice_tx_dim_work(struct work_struct * work)6390 static void ice_tx_dim_work(struct work_struct *work)
6391 {
6392 struct ice_ring_container *rc;
6393 struct dim *dim;
6394 u16 itr;
6395
6396 dim = container_of(work, struct dim, work);
6397 rc = dim->priv;
6398
6399 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6400
6401 /* look up the values in our local table */
6402 itr = tx_profile[dim->profile_ix].itr;
6403
6404 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6405 ice_write_itr(rc, itr);
6406
6407 dim->state = DIM_START_MEASURE;
6408 }
6409
ice_rx_dim_work(struct work_struct * work)6410 static void ice_rx_dim_work(struct work_struct *work)
6411 {
6412 struct ice_ring_container *rc;
6413 struct dim *dim;
6414 u16 itr;
6415
6416 dim = container_of(work, struct dim, work);
6417 rc = dim->priv;
6418
6419 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6420
6421 /* look up the values in our local table */
6422 itr = rx_profile[dim->profile_ix].itr;
6423
6424 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6425 ice_write_itr(rc, itr);
6426
6427 dim->state = DIM_START_MEASURE;
6428 }
6429
6430 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6431
6432 /**
6433 * ice_init_moderation - set up interrupt moderation
6434 * @q_vector: the vector containing rings to be configured
6435 *
6436 * Set up interrupt moderation registers, with the intent to do the right thing
6437 * when called from reset or from probe, and whether or not dynamic moderation
6438 * is enabled or not. Take special care to write all the registers in both
6439 * dynamic moderation mode or not in order to make sure hardware is in a known
6440 * state.
6441 */
ice_init_moderation(struct ice_q_vector * q_vector)6442 static void ice_init_moderation(struct ice_q_vector *q_vector)
6443 {
6444 struct ice_ring_container *rc;
6445 bool tx_dynamic, rx_dynamic;
6446
6447 rc = &q_vector->tx;
6448 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6449 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6450 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6451 rc->dim.priv = rc;
6452 tx_dynamic = ITR_IS_DYNAMIC(rc);
6453
6454 /* set the initial TX ITR to match the above */
6455 ice_write_itr(rc, tx_dynamic ?
6456 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6457
6458 rc = &q_vector->rx;
6459 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6460 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6461 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6462 rc->dim.priv = rc;
6463 rx_dynamic = ITR_IS_DYNAMIC(rc);
6464
6465 /* set the initial RX ITR to match the above */
6466 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6467 rc->itr_setting);
6468
6469 ice_set_q_vector_intrl(q_vector);
6470 }
6471
6472 /**
6473 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6474 * @vsi: the VSI being configured
6475 */
ice_napi_enable_all(struct ice_vsi * vsi)6476 static void ice_napi_enable_all(struct ice_vsi *vsi)
6477 {
6478 int q_idx;
6479
6480 if (!vsi->netdev)
6481 return;
6482
6483 ice_for_each_q_vector(vsi, q_idx) {
6484 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6485
6486 ice_init_moderation(q_vector);
6487
6488 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6489 napi_enable(&q_vector->napi);
6490 }
6491 }
6492
6493 /**
6494 * ice_up_complete - Finish the last steps of bringing up a connection
6495 * @vsi: The VSI being configured
6496 *
6497 * Return 0 on success and negative value on error
6498 */
ice_up_complete(struct ice_vsi * vsi)6499 static int ice_up_complete(struct ice_vsi *vsi)
6500 {
6501 struct ice_pf *pf = vsi->back;
6502 int err;
6503
6504 ice_vsi_cfg_msix(vsi);
6505
6506 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6507 * Tx queue group list was configured and the context bits were
6508 * programmed using ice_vsi_cfg_txqs
6509 */
6510 err = ice_vsi_start_all_rx_rings(vsi);
6511 if (err)
6512 return err;
6513
6514 clear_bit(ICE_VSI_DOWN, vsi->state);
6515 ice_napi_enable_all(vsi);
6516 ice_vsi_ena_irq(vsi);
6517
6518 if (vsi->port_info &&
6519 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6520 vsi->netdev && vsi->type == ICE_VSI_PF) {
6521 ice_print_link_msg(vsi, true);
6522 netif_tx_start_all_queues(vsi->netdev);
6523 netif_carrier_on(vsi->netdev);
6524 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6525 }
6526
6527 /* Perform an initial read of the statistics registers now to
6528 * set the baseline so counters are ready when interface is up
6529 */
6530 ice_update_eth_stats(vsi);
6531
6532 if (vsi->type == ICE_VSI_PF)
6533 ice_service_task_schedule(pf);
6534
6535 return 0;
6536 }
6537
6538 /**
6539 * ice_up - Bring the connection back up after being down
6540 * @vsi: VSI being configured
6541 */
ice_up(struct ice_vsi * vsi)6542 int ice_up(struct ice_vsi *vsi)
6543 {
6544 int err;
6545
6546 err = ice_vsi_cfg_lan(vsi);
6547 if (!err)
6548 err = ice_up_complete(vsi);
6549
6550 return err;
6551 }
6552
6553 /**
6554 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6555 * @syncp: pointer to u64_stats_sync
6556 * @stats: stats that pkts and bytes count will be taken from
6557 * @pkts: packets stats counter
6558 * @bytes: bytes stats counter
6559 *
6560 * This function fetches stats from the ring considering the atomic operations
6561 * that needs to be performed to read u64 values in 32 bit machine.
6562 */
6563 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6564 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6565 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6566 {
6567 unsigned int start;
6568
6569 do {
6570 start = u64_stats_fetch_begin(syncp);
6571 *pkts = stats.pkts;
6572 *bytes = stats.bytes;
6573 } while (u64_stats_fetch_retry(syncp, start));
6574 }
6575
6576 /**
6577 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6578 * @vsi: the VSI to be updated
6579 * @vsi_stats: the stats struct to be updated
6580 * @rings: rings to work on
6581 * @count: number of rings
6582 */
6583 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6584 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6585 struct rtnl_link_stats64 *vsi_stats,
6586 struct ice_tx_ring **rings, u16 count)
6587 {
6588 u16 i;
6589
6590 for (i = 0; i < count; i++) {
6591 struct ice_tx_ring *ring;
6592 u64 pkts = 0, bytes = 0;
6593
6594 ring = READ_ONCE(rings[i]);
6595 if (!ring || !ring->ring_stats)
6596 continue;
6597 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6598 ring->ring_stats->stats, &pkts,
6599 &bytes);
6600 vsi_stats->tx_packets += pkts;
6601 vsi_stats->tx_bytes += bytes;
6602 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6603 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6604 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6605 }
6606 }
6607
6608 /**
6609 * ice_update_vsi_ring_stats - Update VSI stats counters
6610 * @vsi: the VSI to be updated
6611 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6612 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6613 {
6614 struct rtnl_link_stats64 *net_stats, *stats_prev;
6615 struct rtnl_link_stats64 *vsi_stats;
6616 struct ice_pf *pf = vsi->back;
6617 u64 pkts, bytes;
6618 int i;
6619
6620 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6621 if (!vsi_stats)
6622 return;
6623
6624 /* reset non-netdev (extended) stats */
6625 vsi->tx_restart = 0;
6626 vsi->tx_busy = 0;
6627 vsi->tx_linearize = 0;
6628 vsi->rx_buf_failed = 0;
6629 vsi->rx_page_failed = 0;
6630
6631 rcu_read_lock();
6632
6633 /* update Tx rings counters */
6634 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6635 vsi->num_txq);
6636
6637 /* update Rx rings counters */
6638 ice_for_each_rxq(vsi, i) {
6639 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6640 struct ice_ring_stats *ring_stats;
6641
6642 ring_stats = ring->ring_stats;
6643 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6644 ring_stats->stats, &pkts,
6645 &bytes);
6646 vsi_stats->rx_packets += pkts;
6647 vsi_stats->rx_bytes += bytes;
6648 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6649 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6650 }
6651
6652 /* update XDP Tx rings counters */
6653 if (ice_is_xdp_ena_vsi(vsi))
6654 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6655 vsi->num_xdp_txq);
6656
6657 rcu_read_unlock();
6658
6659 net_stats = &vsi->net_stats;
6660 stats_prev = &vsi->net_stats_prev;
6661
6662 /* Update netdev counters, but keep in mind that values could start at
6663 * random value after PF reset. And as we increase the reported stat by
6664 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6665 * let's skip this round.
6666 */
6667 if (likely(pf->stat_prev_loaded)) {
6668 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6669 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6670 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6671 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6672 }
6673
6674 stats_prev->tx_packets = vsi_stats->tx_packets;
6675 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6676 stats_prev->rx_packets = vsi_stats->rx_packets;
6677 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6678
6679 kfree(vsi_stats);
6680 }
6681
6682 /**
6683 * ice_update_vsi_stats - Update VSI stats counters
6684 * @vsi: the VSI to be updated
6685 */
ice_update_vsi_stats(struct ice_vsi * vsi)6686 void ice_update_vsi_stats(struct ice_vsi *vsi)
6687 {
6688 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6689 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6690 struct ice_pf *pf = vsi->back;
6691
6692 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6693 test_bit(ICE_CFG_BUSY, pf->state))
6694 return;
6695
6696 /* get stats as recorded by Tx/Rx rings */
6697 ice_update_vsi_ring_stats(vsi);
6698
6699 /* get VSI stats as recorded by the hardware */
6700 ice_update_eth_stats(vsi);
6701
6702 cur_ns->tx_errors = cur_es->tx_errors;
6703 cur_ns->rx_dropped = cur_es->rx_discards;
6704 cur_ns->tx_dropped = cur_es->tx_discards;
6705 cur_ns->multicast = cur_es->rx_multicast;
6706
6707 /* update some more netdev stats if this is main VSI */
6708 if (vsi->type == ICE_VSI_PF) {
6709 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6710 cur_ns->rx_errors = pf->stats.crc_errors +
6711 pf->stats.illegal_bytes +
6712 pf->stats.rx_len_errors +
6713 pf->stats.rx_undersize +
6714 pf->hw_csum_rx_error +
6715 pf->stats.rx_jabber +
6716 pf->stats.rx_fragments +
6717 pf->stats.rx_oversize;
6718 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6719 /* record drops from the port level */
6720 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6721 }
6722 }
6723
6724 /**
6725 * ice_update_pf_stats - Update PF port stats counters
6726 * @pf: PF whose stats needs to be updated
6727 */
ice_update_pf_stats(struct ice_pf * pf)6728 void ice_update_pf_stats(struct ice_pf *pf)
6729 {
6730 struct ice_hw_port_stats *prev_ps, *cur_ps;
6731 struct ice_hw *hw = &pf->hw;
6732 u16 fd_ctr_base;
6733 u8 port;
6734
6735 port = hw->port_info->lport;
6736 prev_ps = &pf->stats_prev;
6737 cur_ps = &pf->stats;
6738
6739 if (ice_is_reset_in_progress(pf->state))
6740 pf->stat_prev_loaded = false;
6741
6742 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6743 &prev_ps->eth.rx_bytes,
6744 &cur_ps->eth.rx_bytes);
6745
6746 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6747 &prev_ps->eth.rx_unicast,
6748 &cur_ps->eth.rx_unicast);
6749
6750 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6751 &prev_ps->eth.rx_multicast,
6752 &cur_ps->eth.rx_multicast);
6753
6754 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6755 &prev_ps->eth.rx_broadcast,
6756 &cur_ps->eth.rx_broadcast);
6757
6758 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6759 &prev_ps->eth.rx_discards,
6760 &cur_ps->eth.rx_discards);
6761
6762 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6763 &prev_ps->eth.tx_bytes,
6764 &cur_ps->eth.tx_bytes);
6765
6766 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6767 &prev_ps->eth.tx_unicast,
6768 &cur_ps->eth.tx_unicast);
6769
6770 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6771 &prev_ps->eth.tx_multicast,
6772 &cur_ps->eth.tx_multicast);
6773
6774 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6775 &prev_ps->eth.tx_broadcast,
6776 &cur_ps->eth.tx_broadcast);
6777
6778 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6779 &prev_ps->tx_dropped_link_down,
6780 &cur_ps->tx_dropped_link_down);
6781
6782 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6783 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6784
6785 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6786 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6787
6788 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6789 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6790
6791 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6792 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6793
6794 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6795 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6796
6797 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6798 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6799
6800 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6801 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6802
6803 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6804 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6805
6806 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6807 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6808
6809 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6810 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6811
6812 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6813 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6814
6815 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6816 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6817
6818 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6819 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6820
6821 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6822 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6823
6824 fd_ctr_base = hw->fd_ctr_base;
6825
6826 ice_stat_update40(hw,
6827 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6828 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6829 &cur_ps->fd_sb_match);
6830 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6831 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6832
6833 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6834 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6835
6836 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6837 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6838
6839 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6840 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6841
6842 ice_update_dcb_stats(pf);
6843
6844 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6845 &prev_ps->crc_errors, &cur_ps->crc_errors);
6846
6847 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6848 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6849
6850 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6851 &prev_ps->mac_local_faults,
6852 &cur_ps->mac_local_faults);
6853
6854 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6855 &prev_ps->mac_remote_faults,
6856 &cur_ps->mac_remote_faults);
6857
6858 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6859 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6860
6861 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6862 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6863
6864 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6865 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6866
6867 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6868 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6869
6870 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6871 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6872
6873 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6874
6875 pf->stat_prev_loaded = true;
6876 }
6877
6878 /**
6879 * ice_get_stats64 - get statistics for network device structure
6880 * @netdev: network interface device structure
6881 * @stats: main device statistics structure
6882 */
6883 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6884 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6885 {
6886 struct ice_netdev_priv *np = netdev_priv(netdev);
6887 struct rtnl_link_stats64 *vsi_stats;
6888 struct ice_vsi *vsi = np->vsi;
6889
6890 vsi_stats = &vsi->net_stats;
6891
6892 if (!vsi->num_txq || !vsi->num_rxq)
6893 return;
6894
6895 /* netdev packet/byte stats come from ring counter. These are obtained
6896 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6897 * But, only call the update routine and read the registers if VSI is
6898 * not down.
6899 */
6900 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6901 ice_update_vsi_ring_stats(vsi);
6902 stats->tx_packets = vsi_stats->tx_packets;
6903 stats->tx_bytes = vsi_stats->tx_bytes;
6904 stats->rx_packets = vsi_stats->rx_packets;
6905 stats->rx_bytes = vsi_stats->rx_bytes;
6906
6907 /* The rest of the stats can be read from the hardware but instead we
6908 * just return values that the watchdog task has already obtained from
6909 * the hardware.
6910 */
6911 stats->multicast = vsi_stats->multicast;
6912 stats->tx_errors = vsi_stats->tx_errors;
6913 stats->tx_dropped = vsi_stats->tx_dropped;
6914 stats->rx_errors = vsi_stats->rx_errors;
6915 stats->rx_dropped = vsi_stats->rx_dropped;
6916 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6917 stats->rx_length_errors = vsi_stats->rx_length_errors;
6918 }
6919
6920 /**
6921 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6922 * @vsi: VSI having NAPI disabled
6923 */
ice_napi_disable_all(struct ice_vsi * vsi)6924 static void ice_napi_disable_all(struct ice_vsi *vsi)
6925 {
6926 int q_idx;
6927
6928 if (!vsi->netdev)
6929 return;
6930
6931 ice_for_each_q_vector(vsi, q_idx) {
6932 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6933
6934 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6935 napi_disable(&q_vector->napi);
6936
6937 cancel_work_sync(&q_vector->tx.dim.work);
6938 cancel_work_sync(&q_vector->rx.dim.work);
6939 }
6940 }
6941
6942 /**
6943 * ice_down - Shutdown the connection
6944 * @vsi: The VSI being stopped
6945 *
6946 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6947 */
ice_down(struct ice_vsi * vsi)6948 int ice_down(struct ice_vsi *vsi)
6949 {
6950 int i, tx_err, rx_err, vlan_err = 0;
6951
6952 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6953
6954 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6955 vlan_err = ice_vsi_del_vlan_zero(vsi);
6956 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6957 netif_carrier_off(vsi->netdev);
6958 netif_tx_disable(vsi->netdev);
6959 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6960 ice_eswitch_stop_all_tx_queues(vsi->back);
6961 }
6962
6963 ice_vsi_dis_irq(vsi);
6964
6965 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6966 if (tx_err)
6967 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6968 vsi->vsi_num, tx_err);
6969 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6970 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6971 if (tx_err)
6972 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6973 vsi->vsi_num, tx_err);
6974 }
6975
6976 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6977 if (rx_err)
6978 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6979 vsi->vsi_num, rx_err);
6980
6981 ice_napi_disable_all(vsi);
6982
6983 ice_for_each_txq(vsi, i)
6984 ice_clean_tx_ring(vsi->tx_rings[i]);
6985
6986 if (ice_is_xdp_ena_vsi(vsi))
6987 ice_for_each_xdp_txq(vsi, i)
6988 ice_clean_tx_ring(vsi->xdp_rings[i]);
6989
6990 ice_for_each_rxq(vsi, i)
6991 ice_clean_rx_ring(vsi->rx_rings[i]);
6992
6993 if (tx_err || rx_err || vlan_err) {
6994 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6995 vsi->vsi_num, vsi->vsw->sw_id);
6996 return -EIO;
6997 }
6998
6999 return 0;
7000 }
7001
7002 /**
7003 * ice_down_up - shutdown the VSI connection and bring it up
7004 * @vsi: the VSI to be reconnected
7005 */
ice_down_up(struct ice_vsi * vsi)7006 int ice_down_up(struct ice_vsi *vsi)
7007 {
7008 int ret;
7009
7010 /* if DOWN already set, nothing to do */
7011 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7012 return 0;
7013
7014 ret = ice_down(vsi);
7015 if (ret)
7016 return ret;
7017
7018 ret = ice_up(vsi);
7019 if (ret) {
7020 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7021 return ret;
7022 }
7023
7024 return 0;
7025 }
7026
7027 /**
7028 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7029 * @vsi: VSI having resources allocated
7030 *
7031 * Return 0 on success, negative on failure
7032 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7033 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7034 {
7035 int i, err = 0;
7036
7037 if (!vsi->num_txq) {
7038 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7039 vsi->vsi_num);
7040 return -EINVAL;
7041 }
7042
7043 ice_for_each_txq(vsi, i) {
7044 struct ice_tx_ring *ring = vsi->tx_rings[i];
7045
7046 if (!ring)
7047 return -EINVAL;
7048
7049 if (vsi->netdev)
7050 ring->netdev = vsi->netdev;
7051 err = ice_setup_tx_ring(ring);
7052 if (err)
7053 break;
7054 }
7055
7056 return err;
7057 }
7058
7059 /**
7060 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7061 * @vsi: VSI having resources allocated
7062 *
7063 * Return 0 on success, negative on failure
7064 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7065 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7066 {
7067 int i, err = 0;
7068
7069 if (!vsi->num_rxq) {
7070 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7071 vsi->vsi_num);
7072 return -EINVAL;
7073 }
7074
7075 ice_for_each_rxq(vsi, i) {
7076 struct ice_rx_ring *ring = vsi->rx_rings[i];
7077
7078 if (!ring)
7079 return -EINVAL;
7080
7081 if (vsi->netdev)
7082 ring->netdev = vsi->netdev;
7083 err = ice_setup_rx_ring(ring);
7084 if (err)
7085 break;
7086 }
7087
7088 return err;
7089 }
7090
7091 /**
7092 * ice_vsi_open_ctrl - open control VSI for use
7093 * @vsi: the VSI to open
7094 *
7095 * Initialization of the Control VSI
7096 *
7097 * Returns 0 on success, negative value on error
7098 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7099 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7100 {
7101 char int_name[ICE_INT_NAME_STR_LEN];
7102 struct ice_pf *pf = vsi->back;
7103 struct device *dev;
7104 int err;
7105
7106 dev = ice_pf_to_dev(pf);
7107 /* allocate descriptors */
7108 err = ice_vsi_setup_tx_rings(vsi);
7109 if (err)
7110 goto err_setup_tx;
7111
7112 err = ice_vsi_setup_rx_rings(vsi);
7113 if (err)
7114 goto err_setup_rx;
7115
7116 err = ice_vsi_cfg_lan(vsi);
7117 if (err)
7118 goto err_setup_rx;
7119
7120 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7121 dev_driver_string(dev), dev_name(dev));
7122 err = ice_vsi_req_irq_msix(vsi, int_name);
7123 if (err)
7124 goto err_setup_rx;
7125
7126 ice_vsi_cfg_msix(vsi);
7127
7128 err = ice_vsi_start_all_rx_rings(vsi);
7129 if (err)
7130 goto err_up_complete;
7131
7132 clear_bit(ICE_VSI_DOWN, vsi->state);
7133 ice_vsi_ena_irq(vsi);
7134
7135 return 0;
7136
7137 err_up_complete:
7138 ice_down(vsi);
7139 err_setup_rx:
7140 ice_vsi_free_rx_rings(vsi);
7141 err_setup_tx:
7142 ice_vsi_free_tx_rings(vsi);
7143
7144 return err;
7145 }
7146
7147 /**
7148 * ice_vsi_open - Called when a network interface is made active
7149 * @vsi: the VSI to open
7150 *
7151 * Initialization of the VSI
7152 *
7153 * Returns 0 on success, negative value on error
7154 */
ice_vsi_open(struct ice_vsi * vsi)7155 int ice_vsi_open(struct ice_vsi *vsi)
7156 {
7157 char int_name[ICE_INT_NAME_STR_LEN];
7158 struct ice_pf *pf = vsi->back;
7159 int err;
7160
7161 /* allocate descriptors */
7162 err = ice_vsi_setup_tx_rings(vsi);
7163 if (err)
7164 goto err_setup_tx;
7165
7166 err = ice_vsi_setup_rx_rings(vsi);
7167 if (err)
7168 goto err_setup_rx;
7169
7170 err = ice_vsi_cfg_lan(vsi);
7171 if (err)
7172 goto err_setup_rx;
7173
7174 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7175 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7176 err = ice_vsi_req_irq_msix(vsi, int_name);
7177 if (err)
7178 goto err_setup_rx;
7179
7180 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7181
7182 if (vsi->type == ICE_VSI_PF) {
7183 /* Notify the stack of the actual queue counts. */
7184 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7185 if (err)
7186 goto err_set_qs;
7187
7188 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7189 if (err)
7190 goto err_set_qs;
7191 }
7192
7193 err = ice_up_complete(vsi);
7194 if (err)
7195 goto err_up_complete;
7196
7197 return 0;
7198
7199 err_up_complete:
7200 ice_down(vsi);
7201 err_set_qs:
7202 ice_vsi_free_irq(vsi);
7203 err_setup_rx:
7204 ice_vsi_free_rx_rings(vsi);
7205 err_setup_tx:
7206 ice_vsi_free_tx_rings(vsi);
7207
7208 return err;
7209 }
7210
7211 /**
7212 * ice_vsi_release_all - Delete all VSIs
7213 * @pf: PF from which all VSIs are being removed
7214 */
ice_vsi_release_all(struct ice_pf * pf)7215 static void ice_vsi_release_all(struct ice_pf *pf)
7216 {
7217 int err, i;
7218
7219 if (!pf->vsi)
7220 return;
7221
7222 ice_for_each_vsi(pf, i) {
7223 if (!pf->vsi[i])
7224 continue;
7225
7226 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7227 continue;
7228
7229 err = ice_vsi_release(pf->vsi[i]);
7230 if (err)
7231 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7232 i, err, pf->vsi[i]->vsi_num);
7233 }
7234 }
7235
7236 /**
7237 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7238 * @pf: pointer to the PF instance
7239 * @type: VSI type to rebuild
7240 *
7241 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7242 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7243 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7244 {
7245 struct device *dev = ice_pf_to_dev(pf);
7246 int i, err;
7247
7248 ice_for_each_vsi(pf, i) {
7249 struct ice_vsi *vsi = pf->vsi[i];
7250
7251 if (!vsi || vsi->type != type)
7252 continue;
7253
7254 /* rebuild the VSI */
7255 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7256 if (err) {
7257 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7258 err, vsi->idx, ice_vsi_type_str(type));
7259 return err;
7260 }
7261
7262 /* replay filters for the VSI */
7263 err = ice_replay_vsi(&pf->hw, vsi->idx);
7264 if (err) {
7265 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7266 err, vsi->idx, ice_vsi_type_str(type));
7267 return err;
7268 }
7269
7270 /* Re-map HW VSI number, using VSI handle that has been
7271 * previously validated in ice_replay_vsi() call above
7272 */
7273 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7274
7275 /* enable the VSI */
7276 err = ice_ena_vsi(vsi, false);
7277 if (err) {
7278 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7279 err, vsi->idx, ice_vsi_type_str(type));
7280 return err;
7281 }
7282
7283 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7284 ice_vsi_type_str(type));
7285 }
7286
7287 return 0;
7288 }
7289
7290 /**
7291 * ice_update_pf_netdev_link - Update PF netdev link status
7292 * @pf: pointer to the PF instance
7293 */
ice_update_pf_netdev_link(struct ice_pf * pf)7294 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7295 {
7296 bool link_up;
7297 int i;
7298
7299 ice_for_each_vsi(pf, i) {
7300 struct ice_vsi *vsi = pf->vsi[i];
7301
7302 if (!vsi || vsi->type != ICE_VSI_PF)
7303 return;
7304
7305 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7306 if (link_up) {
7307 netif_carrier_on(pf->vsi[i]->netdev);
7308 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7309 } else {
7310 netif_carrier_off(pf->vsi[i]->netdev);
7311 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7312 }
7313 }
7314 }
7315
7316 /**
7317 * ice_rebuild - rebuild after reset
7318 * @pf: PF to rebuild
7319 * @reset_type: type of reset
7320 *
7321 * Do not rebuild VF VSI in this flow because that is already handled via
7322 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7323 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7324 * to reset/rebuild all the VF VSI twice.
7325 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7326 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7327 {
7328 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7329 struct device *dev = ice_pf_to_dev(pf);
7330 struct ice_hw *hw = &pf->hw;
7331 bool dvm;
7332 int err;
7333
7334 if (test_bit(ICE_DOWN, pf->state))
7335 goto clear_recovery;
7336
7337 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7338
7339 #define ICE_EMP_RESET_SLEEP_MS 5000
7340 if (reset_type == ICE_RESET_EMPR) {
7341 /* If an EMP reset has occurred, any previously pending flash
7342 * update will have completed. We no longer know whether or
7343 * not the NVM update EMP reset is restricted.
7344 */
7345 pf->fw_emp_reset_disabled = false;
7346
7347 msleep(ICE_EMP_RESET_SLEEP_MS);
7348 }
7349
7350 err = ice_init_all_ctrlq(hw);
7351 if (err) {
7352 dev_err(dev, "control queues init failed %d\n", err);
7353 goto err_init_ctrlq;
7354 }
7355
7356 /* if DDP was previously loaded successfully */
7357 if (!ice_is_safe_mode(pf)) {
7358 /* reload the SW DB of filter tables */
7359 if (reset_type == ICE_RESET_PFR)
7360 ice_fill_blk_tbls(hw);
7361 else
7362 /* Reload DDP Package after CORER/GLOBR reset */
7363 ice_load_pkg(NULL, pf);
7364 }
7365
7366 err = ice_clear_pf_cfg(hw);
7367 if (err) {
7368 dev_err(dev, "clear PF configuration failed %d\n", err);
7369 goto err_init_ctrlq;
7370 }
7371
7372 ice_clear_pxe_mode(hw);
7373
7374 err = ice_init_nvm(hw);
7375 if (err) {
7376 dev_err(dev, "ice_init_nvm failed %d\n", err);
7377 goto err_init_ctrlq;
7378 }
7379
7380 err = ice_get_caps(hw);
7381 if (err) {
7382 dev_err(dev, "ice_get_caps failed %d\n", err);
7383 goto err_init_ctrlq;
7384 }
7385
7386 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7387 if (err) {
7388 dev_err(dev, "set_mac_cfg failed %d\n", err);
7389 goto err_init_ctrlq;
7390 }
7391
7392 dvm = ice_is_dvm_ena(hw);
7393
7394 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7395 if (err)
7396 goto err_init_ctrlq;
7397
7398 err = ice_sched_init_port(hw->port_info);
7399 if (err)
7400 goto err_sched_init_port;
7401
7402 /* start misc vector */
7403 err = ice_req_irq_msix_misc(pf);
7404 if (err) {
7405 dev_err(dev, "misc vector setup failed: %d\n", err);
7406 goto err_sched_init_port;
7407 }
7408
7409 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7410 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7411 if (!rd32(hw, PFQF_FD_SIZE)) {
7412 u16 unused, guar, b_effort;
7413
7414 guar = hw->func_caps.fd_fltr_guar;
7415 b_effort = hw->func_caps.fd_fltr_best_effort;
7416
7417 /* force guaranteed filter pool for PF */
7418 ice_alloc_fd_guar_item(hw, &unused, guar);
7419 /* force shared filter pool for PF */
7420 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7421 }
7422 }
7423
7424 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7425 ice_dcb_rebuild(pf);
7426
7427 /* If the PF previously had enabled PTP, PTP init needs to happen before
7428 * the VSI rebuild. If not, this causes the PTP link status events to
7429 * fail.
7430 */
7431 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7432 ice_ptp_reset(pf);
7433
7434 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7435 ice_gnss_init(pf);
7436
7437 /* rebuild PF VSI */
7438 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7439 if (err) {
7440 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7441 goto err_vsi_rebuild;
7442 }
7443
7444 /* configure PTP timestamping after VSI rebuild */
7445 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7446 ice_ptp_cfg_timestamp(pf, false);
7447
7448 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7449 if (err) {
7450 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7451 goto err_vsi_rebuild;
7452 }
7453
7454 if (reset_type == ICE_RESET_PFR) {
7455 err = ice_rebuild_channels(pf);
7456 if (err) {
7457 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7458 err);
7459 goto err_vsi_rebuild;
7460 }
7461 }
7462
7463 /* If Flow Director is active */
7464 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7465 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7466 if (err) {
7467 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7468 goto err_vsi_rebuild;
7469 }
7470
7471 /* replay HW Flow Director recipes */
7472 if (hw->fdir_prof)
7473 ice_fdir_replay_flows(hw);
7474
7475 /* replay Flow Director filters */
7476 ice_fdir_replay_fltrs(pf);
7477
7478 ice_rebuild_arfs(pf);
7479 }
7480
7481 if (vsi && vsi->netdev)
7482 netif_device_attach(vsi->netdev);
7483
7484 ice_update_pf_netdev_link(pf);
7485
7486 /* tell the firmware we are up */
7487 err = ice_send_version(pf);
7488 if (err) {
7489 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7490 err);
7491 goto err_vsi_rebuild;
7492 }
7493
7494 ice_replay_post(hw);
7495
7496 /* if we get here, reset flow is successful */
7497 clear_bit(ICE_RESET_FAILED, pf->state);
7498
7499 ice_plug_aux_dev(pf);
7500 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7501 ice_lag_rebuild(pf);
7502 return;
7503
7504 err_vsi_rebuild:
7505 err_sched_init_port:
7506 ice_sched_cleanup_all(hw);
7507 err_init_ctrlq:
7508 ice_shutdown_all_ctrlq(hw);
7509 set_bit(ICE_RESET_FAILED, pf->state);
7510 clear_recovery:
7511 /* set this bit in PF state to control service task scheduling */
7512 set_bit(ICE_NEEDS_RESTART, pf->state);
7513 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7514 }
7515
7516 /**
7517 * ice_change_mtu - NDO callback to change the MTU
7518 * @netdev: network interface device structure
7519 * @new_mtu: new value for maximum frame size
7520 *
7521 * Returns 0 on success, negative on failure
7522 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7523 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7524 {
7525 struct ice_netdev_priv *np = netdev_priv(netdev);
7526 struct ice_vsi *vsi = np->vsi;
7527 struct ice_pf *pf = vsi->back;
7528 struct bpf_prog *prog;
7529 u8 count = 0;
7530 int err = 0;
7531
7532 if (new_mtu == (int)netdev->mtu) {
7533 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7534 return 0;
7535 }
7536
7537 prog = vsi->xdp_prog;
7538 if (prog && !prog->aux->xdp_has_frags) {
7539 int frame_size = ice_max_xdp_frame_size(vsi);
7540
7541 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7542 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7543 frame_size - ICE_ETH_PKT_HDR_PAD);
7544 return -EINVAL;
7545 }
7546 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7547 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7548 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7549 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7550 return -EINVAL;
7551 }
7552 }
7553
7554 /* if a reset is in progress, wait for some time for it to complete */
7555 do {
7556 if (ice_is_reset_in_progress(pf->state)) {
7557 count++;
7558 usleep_range(1000, 2000);
7559 } else {
7560 break;
7561 }
7562
7563 } while (count < 100);
7564
7565 if (count == 100) {
7566 netdev_err(netdev, "can't change MTU. Device is busy\n");
7567 return -EBUSY;
7568 }
7569
7570 netdev->mtu = (unsigned int)new_mtu;
7571 err = ice_down_up(vsi);
7572 if (err)
7573 return err;
7574
7575 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7576 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7577
7578 return err;
7579 }
7580
7581 /**
7582 * ice_eth_ioctl - Access the hwtstamp interface
7583 * @netdev: network interface device structure
7584 * @ifr: interface request data
7585 * @cmd: ioctl command
7586 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7587 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7588 {
7589 struct ice_netdev_priv *np = netdev_priv(netdev);
7590 struct ice_pf *pf = np->vsi->back;
7591
7592 switch (cmd) {
7593 case SIOCGHWTSTAMP:
7594 return ice_ptp_get_ts_config(pf, ifr);
7595 case SIOCSHWTSTAMP:
7596 return ice_ptp_set_ts_config(pf, ifr);
7597 default:
7598 return -EOPNOTSUPP;
7599 }
7600 }
7601
7602 /**
7603 * ice_aq_str - convert AQ err code to a string
7604 * @aq_err: the AQ error code to convert
7605 */
ice_aq_str(enum ice_aq_err aq_err)7606 const char *ice_aq_str(enum ice_aq_err aq_err)
7607 {
7608 switch (aq_err) {
7609 case ICE_AQ_RC_OK:
7610 return "OK";
7611 case ICE_AQ_RC_EPERM:
7612 return "ICE_AQ_RC_EPERM";
7613 case ICE_AQ_RC_ENOENT:
7614 return "ICE_AQ_RC_ENOENT";
7615 case ICE_AQ_RC_ENOMEM:
7616 return "ICE_AQ_RC_ENOMEM";
7617 case ICE_AQ_RC_EBUSY:
7618 return "ICE_AQ_RC_EBUSY";
7619 case ICE_AQ_RC_EEXIST:
7620 return "ICE_AQ_RC_EEXIST";
7621 case ICE_AQ_RC_EINVAL:
7622 return "ICE_AQ_RC_EINVAL";
7623 case ICE_AQ_RC_ENOSPC:
7624 return "ICE_AQ_RC_ENOSPC";
7625 case ICE_AQ_RC_ENOSYS:
7626 return "ICE_AQ_RC_ENOSYS";
7627 case ICE_AQ_RC_EMODE:
7628 return "ICE_AQ_RC_EMODE";
7629 case ICE_AQ_RC_ENOSEC:
7630 return "ICE_AQ_RC_ENOSEC";
7631 case ICE_AQ_RC_EBADSIG:
7632 return "ICE_AQ_RC_EBADSIG";
7633 case ICE_AQ_RC_ESVN:
7634 return "ICE_AQ_RC_ESVN";
7635 case ICE_AQ_RC_EBADMAN:
7636 return "ICE_AQ_RC_EBADMAN";
7637 case ICE_AQ_RC_EBADBUF:
7638 return "ICE_AQ_RC_EBADBUF";
7639 }
7640
7641 return "ICE_AQ_RC_UNKNOWN";
7642 }
7643
7644 /**
7645 * ice_set_rss_lut - Set RSS LUT
7646 * @vsi: Pointer to VSI structure
7647 * @lut: Lookup table
7648 * @lut_size: Lookup table size
7649 *
7650 * Returns 0 on success, negative on failure
7651 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7652 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7653 {
7654 struct ice_aq_get_set_rss_lut_params params = {};
7655 struct ice_hw *hw = &vsi->back->hw;
7656 int status;
7657
7658 if (!lut)
7659 return -EINVAL;
7660
7661 params.vsi_handle = vsi->idx;
7662 params.lut_size = lut_size;
7663 params.lut_type = vsi->rss_lut_type;
7664 params.lut = lut;
7665
7666 status = ice_aq_set_rss_lut(hw, ¶ms);
7667 if (status)
7668 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7669 status, ice_aq_str(hw->adminq.sq_last_status));
7670
7671 return status;
7672 }
7673
7674 /**
7675 * ice_set_rss_key - Set RSS key
7676 * @vsi: Pointer to the VSI structure
7677 * @seed: RSS hash seed
7678 *
7679 * Returns 0 on success, negative on failure
7680 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7681 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7682 {
7683 struct ice_hw *hw = &vsi->back->hw;
7684 int status;
7685
7686 if (!seed)
7687 return -EINVAL;
7688
7689 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7690 if (status)
7691 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7692 status, ice_aq_str(hw->adminq.sq_last_status));
7693
7694 return status;
7695 }
7696
7697 /**
7698 * ice_get_rss_lut - Get RSS LUT
7699 * @vsi: Pointer to VSI structure
7700 * @lut: Buffer to store the lookup table entries
7701 * @lut_size: Size of buffer to store the lookup table entries
7702 *
7703 * Returns 0 on success, negative on failure
7704 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7705 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7706 {
7707 struct ice_aq_get_set_rss_lut_params params = {};
7708 struct ice_hw *hw = &vsi->back->hw;
7709 int status;
7710
7711 if (!lut)
7712 return -EINVAL;
7713
7714 params.vsi_handle = vsi->idx;
7715 params.lut_size = lut_size;
7716 params.lut_type = vsi->rss_lut_type;
7717 params.lut = lut;
7718
7719 status = ice_aq_get_rss_lut(hw, ¶ms);
7720 if (status)
7721 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7722 status, ice_aq_str(hw->adminq.sq_last_status));
7723
7724 return status;
7725 }
7726
7727 /**
7728 * ice_get_rss_key - Get RSS key
7729 * @vsi: Pointer to VSI structure
7730 * @seed: Buffer to store the key in
7731 *
7732 * Returns 0 on success, negative on failure
7733 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7734 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7735 {
7736 struct ice_hw *hw = &vsi->back->hw;
7737 int status;
7738
7739 if (!seed)
7740 return -EINVAL;
7741
7742 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7743 if (status)
7744 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7745 status, ice_aq_str(hw->adminq.sq_last_status));
7746
7747 return status;
7748 }
7749
7750 /**
7751 * ice_bridge_getlink - Get the hardware bridge mode
7752 * @skb: skb buff
7753 * @pid: process ID
7754 * @seq: RTNL message seq
7755 * @dev: the netdev being configured
7756 * @filter_mask: filter mask passed in
7757 * @nlflags: netlink flags passed in
7758 *
7759 * Return the bridge mode (VEB/VEPA)
7760 */
7761 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)7762 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7763 struct net_device *dev, u32 filter_mask, int nlflags)
7764 {
7765 struct ice_netdev_priv *np = netdev_priv(dev);
7766 struct ice_vsi *vsi = np->vsi;
7767 struct ice_pf *pf = vsi->back;
7768 u16 bmode;
7769
7770 bmode = pf->first_sw->bridge_mode;
7771
7772 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7773 filter_mask, NULL);
7774 }
7775
7776 /**
7777 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7778 * @vsi: Pointer to VSI structure
7779 * @bmode: Hardware bridge mode (VEB/VEPA)
7780 *
7781 * Returns 0 on success, negative on failure
7782 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)7783 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7784 {
7785 struct ice_aqc_vsi_props *vsi_props;
7786 struct ice_hw *hw = &vsi->back->hw;
7787 struct ice_vsi_ctx *ctxt;
7788 int ret;
7789
7790 vsi_props = &vsi->info;
7791
7792 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7793 if (!ctxt)
7794 return -ENOMEM;
7795
7796 ctxt->info = vsi->info;
7797
7798 if (bmode == BRIDGE_MODE_VEB)
7799 /* change from VEPA to VEB mode */
7800 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7801 else
7802 /* change from VEB to VEPA mode */
7803 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7804 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7805
7806 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7807 if (ret) {
7808 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7809 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7810 goto out;
7811 }
7812 /* Update sw flags for book keeping */
7813 vsi_props->sw_flags = ctxt->info.sw_flags;
7814
7815 out:
7816 kfree(ctxt);
7817 return ret;
7818 }
7819
7820 /**
7821 * ice_bridge_setlink - Set the hardware bridge mode
7822 * @dev: the netdev being configured
7823 * @nlh: RTNL message
7824 * @flags: bridge setlink flags
7825 * @extack: netlink extended ack
7826 *
7827 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7828 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7829 * not already set for all VSIs connected to this switch. And also update the
7830 * unicast switch filter rules for the corresponding switch of the netdev.
7831 */
7832 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)7833 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7834 u16 __always_unused flags,
7835 struct netlink_ext_ack __always_unused *extack)
7836 {
7837 struct ice_netdev_priv *np = netdev_priv(dev);
7838 struct ice_pf *pf = np->vsi->back;
7839 struct nlattr *attr, *br_spec;
7840 struct ice_hw *hw = &pf->hw;
7841 struct ice_sw *pf_sw;
7842 int rem, v, err = 0;
7843
7844 pf_sw = pf->first_sw;
7845 /* find the attribute in the netlink message */
7846 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7847 if (!br_spec)
7848 return -EINVAL;
7849
7850 nla_for_each_nested(attr, br_spec, rem) {
7851 __u16 mode;
7852
7853 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7854 continue;
7855 mode = nla_get_u16(attr);
7856 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7857 return -EINVAL;
7858 /* Continue if bridge mode is not being flipped */
7859 if (mode == pf_sw->bridge_mode)
7860 continue;
7861 /* Iterates through the PF VSI list and update the loopback
7862 * mode of the VSI
7863 */
7864 ice_for_each_vsi(pf, v) {
7865 if (!pf->vsi[v])
7866 continue;
7867 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7868 if (err)
7869 return err;
7870 }
7871
7872 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7873 /* Update the unicast switch filter rules for the corresponding
7874 * switch of the netdev
7875 */
7876 err = ice_update_sw_rule_bridge_mode(hw);
7877 if (err) {
7878 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7879 mode, err,
7880 ice_aq_str(hw->adminq.sq_last_status));
7881 /* revert hw->evb_veb */
7882 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7883 return err;
7884 }
7885
7886 pf_sw->bridge_mode = mode;
7887 }
7888
7889 return 0;
7890 }
7891
7892 /**
7893 * ice_tx_timeout - Respond to a Tx Hang
7894 * @netdev: network interface device structure
7895 * @txqueue: Tx queue
7896 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)7897 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7898 {
7899 struct ice_netdev_priv *np = netdev_priv(netdev);
7900 struct ice_tx_ring *tx_ring = NULL;
7901 struct ice_vsi *vsi = np->vsi;
7902 struct ice_pf *pf = vsi->back;
7903 u32 i;
7904
7905 pf->tx_timeout_count++;
7906
7907 /* Check if PFC is enabled for the TC to which the queue belongs
7908 * to. If yes then Tx timeout is not caused by a hung queue, no
7909 * need to reset and rebuild
7910 */
7911 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7912 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7913 txqueue);
7914 return;
7915 }
7916
7917 /* now that we have an index, find the tx_ring struct */
7918 ice_for_each_txq(vsi, i)
7919 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7920 if (txqueue == vsi->tx_rings[i]->q_index) {
7921 tx_ring = vsi->tx_rings[i];
7922 break;
7923 }
7924
7925 /* Reset recovery level if enough time has elapsed after last timeout.
7926 * Also ensure no new reset action happens before next timeout period.
7927 */
7928 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7929 pf->tx_timeout_recovery_level = 1;
7930 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7931 netdev->watchdog_timeo)))
7932 return;
7933
7934 if (tx_ring) {
7935 struct ice_hw *hw = &pf->hw;
7936 u32 head, val = 0;
7937
7938 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7939 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7940 /* Read interrupt register */
7941 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7942
7943 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7944 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7945 head, tx_ring->next_to_use, val);
7946 }
7947
7948 pf->tx_timeout_last_recovery = jiffies;
7949 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7950 pf->tx_timeout_recovery_level, txqueue);
7951
7952 switch (pf->tx_timeout_recovery_level) {
7953 case 1:
7954 set_bit(ICE_PFR_REQ, pf->state);
7955 break;
7956 case 2:
7957 set_bit(ICE_CORER_REQ, pf->state);
7958 break;
7959 case 3:
7960 set_bit(ICE_GLOBR_REQ, pf->state);
7961 break;
7962 default:
7963 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7964 set_bit(ICE_DOWN, pf->state);
7965 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7966 set_bit(ICE_SERVICE_DIS, pf->state);
7967 break;
7968 }
7969
7970 ice_service_task_schedule(pf);
7971 pf->tx_timeout_recovery_level++;
7972 }
7973
7974 /**
7975 * ice_setup_tc_cls_flower - flower classifier offloads
7976 * @np: net device to configure
7977 * @filter_dev: device on which filter is added
7978 * @cls_flower: offload data
7979 */
7980 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)7981 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7982 struct net_device *filter_dev,
7983 struct flow_cls_offload *cls_flower)
7984 {
7985 struct ice_vsi *vsi = np->vsi;
7986
7987 if (cls_flower->common.chain_index)
7988 return -EOPNOTSUPP;
7989
7990 switch (cls_flower->command) {
7991 case FLOW_CLS_REPLACE:
7992 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7993 case FLOW_CLS_DESTROY:
7994 return ice_del_cls_flower(vsi, cls_flower);
7995 default:
7996 return -EINVAL;
7997 }
7998 }
7999
8000 /**
8001 * ice_setup_tc_block_cb - callback handler registered for TC block
8002 * @type: TC SETUP type
8003 * @type_data: TC flower offload data that contains user input
8004 * @cb_priv: netdev private data
8005 */
8006 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8007 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8008 {
8009 struct ice_netdev_priv *np = cb_priv;
8010
8011 switch (type) {
8012 case TC_SETUP_CLSFLOWER:
8013 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8014 type_data);
8015 default:
8016 return -EOPNOTSUPP;
8017 }
8018 }
8019
8020 /**
8021 * ice_validate_mqprio_qopt - Validate TCF input parameters
8022 * @vsi: Pointer to VSI
8023 * @mqprio_qopt: input parameters for mqprio queue configuration
8024 *
8025 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8026 * needed), and make sure user doesn't specify qcount and BW rate limit
8027 * for TCs, which are more than "num_tc"
8028 */
8029 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8030 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8031 struct tc_mqprio_qopt_offload *mqprio_qopt)
8032 {
8033 int non_power_of_2_qcount = 0;
8034 struct ice_pf *pf = vsi->back;
8035 int max_rss_q_cnt = 0;
8036 u64 sum_min_rate = 0;
8037 struct device *dev;
8038 int i, speed;
8039 u8 num_tc;
8040
8041 if (vsi->type != ICE_VSI_PF)
8042 return -EINVAL;
8043
8044 if (mqprio_qopt->qopt.offset[0] != 0 ||
8045 mqprio_qopt->qopt.num_tc < 1 ||
8046 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8047 return -EINVAL;
8048
8049 dev = ice_pf_to_dev(pf);
8050 vsi->ch_rss_size = 0;
8051 num_tc = mqprio_qopt->qopt.num_tc;
8052 speed = ice_get_link_speed_kbps(vsi);
8053
8054 for (i = 0; num_tc; i++) {
8055 int qcount = mqprio_qopt->qopt.count[i];
8056 u64 max_rate, min_rate, rem;
8057
8058 if (!qcount)
8059 return -EINVAL;
8060
8061 if (is_power_of_2(qcount)) {
8062 if (non_power_of_2_qcount &&
8063 qcount > non_power_of_2_qcount) {
8064 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8065 qcount, non_power_of_2_qcount);
8066 return -EINVAL;
8067 }
8068 if (qcount > max_rss_q_cnt)
8069 max_rss_q_cnt = qcount;
8070 } else {
8071 if (non_power_of_2_qcount &&
8072 qcount != non_power_of_2_qcount) {
8073 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8074 qcount, non_power_of_2_qcount);
8075 return -EINVAL;
8076 }
8077 if (qcount < max_rss_q_cnt) {
8078 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8079 qcount, max_rss_q_cnt);
8080 return -EINVAL;
8081 }
8082 max_rss_q_cnt = qcount;
8083 non_power_of_2_qcount = qcount;
8084 }
8085
8086 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8087 * converts the bandwidth rate limit into Bytes/s when
8088 * passing it down to the driver. So convert input bandwidth
8089 * from Bytes/s to Kbps
8090 */
8091 max_rate = mqprio_qopt->max_rate[i];
8092 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8093
8094 /* min_rate is minimum guaranteed rate and it can't be zero */
8095 min_rate = mqprio_qopt->min_rate[i];
8096 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8097 sum_min_rate += min_rate;
8098
8099 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8100 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8101 min_rate, ICE_MIN_BW_LIMIT);
8102 return -EINVAL;
8103 }
8104
8105 if (max_rate && max_rate > speed) {
8106 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8107 i, max_rate, speed);
8108 return -EINVAL;
8109 }
8110
8111 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8112 if (rem) {
8113 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8114 i, ICE_MIN_BW_LIMIT);
8115 return -EINVAL;
8116 }
8117
8118 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8119 if (rem) {
8120 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8121 i, ICE_MIN_BW_LIMIT);
8122 return -EINVAL;
8123 }
8124
8125 /* min_rate can't be more than max_rate, except when max_rate
8126 * is zero (implies max_rate sought is max line rate). In such
8127 * a case min_rate can be more than max.
8128 */
8129 if (max_rate && min_rate > max_rate) {
8130 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8131 min_rate, max_rate);
8132 return -EINVAL;
8133 }
8134
8135 if (i >= mqprio_qopt->qopt.num_tc - 1)
8136 break;
8137 if (mqprio_qopt->qopt.offset[i + 1] !=
8138 (mqprio_qopt->qopt.offset[i] + qcount))
8139 return -EINVAL;
8140 }
8141 if (vsi->num_rxq <
8142 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8143 return -EINVAL;
8144 if (vsi->num_txq <
8145 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8146 return -EINVAL;
8147
8148 if (sum_min_rate && sum_min_rate > (u64)speed) {
8149 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8150 sum_min_rate, speed);
8151 return -EINVAL;
8152 }
8153
8154 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8155 vsi->ch_rss_size = max_rss_q_cnt;
8156
8157 return 0;
8158 }
8159
8160 /**
8161 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8162 * @pf: ptr to PF device
8163 * @vsi: ptr to VSI
8164 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8165 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8166 {
8167 struct device *dev = ice_pf_to_dev(pf);
8168 bool added = false;
8169 struct ice_hw *hw;
8170 int flow;
8171
8172 if (!(vsi->num_gfltr || vsi->num_bfltr))
8173 return -EINVAL;
8174
8175 hw = &pf->hw;
8176 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8177 struct ice_fd_hw_prof *prof;
8178 int tun, status;
8179 u64 entry_h;
8180
8181 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8182 hw->fdir_prof[flow]->cnt))
8183 continue;
8184
8185 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8186 enum ice_flow_priority prio;
8187 u64 prof_id;
8188
8189 /* add this VSI to FDir profile for this flow */
8190 prio = ICE_FLOW_PRIO_NORMAL;
8191 prof = hw->fdir_prof[flow];
8192 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8193 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8194 prof->vsi_h[0], vsi->idx,
8195 prio, prof->fdir_seg[tun],
8196 &entry_h);
8197 if (status) {
8198 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8199 vsi->idx, flow);
8200 continue;
8201 }
8202
8203 prof->entry_h[prof->cnt][tun] = entry_h;
8204 }
8205
8206 /* store VSI for filter replay and delete */
8207 prof->vsi_h[prof->cnt] = vsi->idx;
8208 prof->cnt++;
8209
8210 added = true;
8211 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8212 flow);
8213 }
8214
8215 if (!added)
8216 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8217
8218 return 0;
8219 }
8220
8221 /**
8222 * ice_add_channel - add a channel by adding VSI
8223 * @pf: ptr to PF device
8224 * @sw_id: underlying HW switching element ID
8225 * @ch: ptr to channel structure
8226 *
8227 * Add a channel (VSI) using add_vsi and queue_map
8228 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8229 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8230 {
8231 struct device *dev = ice_pf_to_dev(pf);
8232 struct ice_vsi *vsi;
8233
8234 if (ch->type != ICE_VSI_CHNL) {
8235 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8236 return -EINVAL;
8237 }
8238
8239 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8240 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8241 dev_err(dev, "create chnl VSI failure\n");
8242 return -EINVAL;
8243 }
8244
8245 ice_add_vsi_to_fdir(pf, vsi);
8246
8247 ch->sw_id = sw_id;
8248 ch->vsi_num = vsi->vsi_num;
8249 ch->info.mapping_flags = vsi->info.mapping_flags;
8250 ch->ch_vsi = vsi;
8251 /* set the back pointer of channel for newly created VSI */
8252 vsi->ch = ch;
8253
8254 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8255 sizeof(vsi->info.q_mapping));
8256 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8257 sizeof(vsi->info.tc_mapping));
8258
8259 return 0;
8260 }
8261
8262 /**
8263 * ice_chnl_cfg_res
8264 * @vsi: the VSI being setup
8265 * @ch: ptr to channel structure
8266 *
8267 * Configure channel specific resources such as rings, vector.
8268 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8269 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8270 {
8271 int i;
8272
8273 for (i = 0; i < ch->num_txq; i++) {
8274 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8275 struct ice_ring_container *rc;
8276 struct ice_tx_ring *tx_ring;
8277 struct ice_rx_ring *rx_ring;
8278
8279 tx_ring = vsi->tx_rings[ch->base_q + i];
8280 rx_ring = vsi->rx_rings[ch->base_q + i];
8281 if (!tx_ring || !rx_ring)
8282 continue;
8283
8284 /* setup ring being channel enabled */
8285 tx_ring->ch = ch;
8286 rx_ring->ch = ch;
8287
8288 /* following code block sets up vector specific attributes */
8289 tx_q_vector = tx_ring->q_vector;
8290 rx_q_vector = rx_ring->q_vector;
8291 if (!tx_q_vector && !rx_q_vector)
8292 continue;
8293
8294 if (tx_q_vector) {
8295 tx_q_vector->ch = ch;
8296 /* setup Tx and Rx ITR setting if DIM is off */
8297 rc = &tx_q_vector->tx;
8298 if (!ITR_IS_DYNAMIC(rc))
8299 ice_write_itr(rc, rc->itr_setting);
8300 }
8301 if (rx_q_vector) {
8302 rx_q_vector->ch = ch;
8303 /* setup Tx and Rx ITR setting if DIM is off */
8304 rc = &rx_q_vector->rx;
8305 if (!ITR_IS_DYNAMIC(rc))
8306 ice_write_itr(rc, rc->itr_setting);
8307 }
8308 }
8309
8310 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8311 * GLINT_ITR register would have written to perform in-context
8312 * update, hence perform flush
8313 */
8314 if (ch->num_txq || ch->num_rxq)
8315 ice_flush(&vsi->back->hw);
8316 }
8317
8318 /**
8319 * ice_cfg_chnl_all_res - configure channel resources
8320 * @vsi: pte to main_vsi
8321 * @ch: ptr to channel structure
8322 *
8323 * This function configures channel specific resources such as flow-director
8324 * counter index, and other resources such as queues, vectors, ITR settings
8325 */
8326 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8327 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8328 {
8329 /* configure channel (aka ADQ) resources such as queues, vectors,
8330 * ITR settings for channel specific vectors and anything else
8331 */
8332 ice_chnl_cfg_res(vsi, ch);
8333 }
8334
8335 /**
8336 * ice_setup_hw_channel - setup new channel
8337 * @pf: ptr to PF device
8338 * @vsi: the VSI being setup
8339 * @ch: ptr to channel structure
8340 * @sw_id: underlying HW switching element ID
8341 * @type: type of channel to be created (VMDq2/VF)
8342 *
8343 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8344 * and configures Tx rings accordingly
8345 */
8346 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8347 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8348 struct ice_channel *ch, u16 sw_id, u8 type)
8349 {
8350 struct device *dev = ice_pf_to_dev(pf);
8351 int ret;
8352
8353 ch->base_q = vsi->next_base_q;
8354 ch->type = type;
8355
8356 ret = ice_add_channel(pf, sw_id, ch);
8357 if (ret) {
8358 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8359 return ret;
8360 }
8361
8362 /* configure/setup ADQ specific resources */
8363 ice_cfg_chnl_all_res(vsi, ch);
8364
8365 /* make sure to update the next_base_q so that subsequent channel's
8366 * (aka ADQ) VSI queue map is correct
8367 */
8368 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8369 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8370 ch->num_rxq);
8371
8372 return 0;
8373 }
8374
8375 /**
8376 * ice_setup_channel - setup new channel using uplink element
8377 * @pf: ptr to PF device
8378 * @vsi: the VSI being setup
8379 * @ch: ptr to channel structure
8380 *
8381 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8382 * and uplink switching element
8383 */
8384 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8385 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8386 struct ice_channel *ch)
8387 {
8388 struct device *dev = ice_pf_to_dev(pf);
8389 u16 sw_id;
8390 int ret;
8391
8392 if (vsi->type != ICE_VSI_PF) {
8393 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8394 return false;
8395 }
8396
8397 sw_id = pf->first_sw->sw_id;
8398
8399 /* create channel (VSI) */
8400 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8401 if (ret) {
8402 dev_err(dev, "failed to setup hw_channel\n");
8403 return false;
8404 }
8405 dev_dbg(dev, "successfully created channel()\n");
8406
8407 return ch->ch_vsi ? true : false;
8408 }
8409
8410 /**
8411 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8412 * @vsi: VSI to be configured
8413 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8414 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8415 */
8416 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8417 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8418 {
8419 int err;
8420
8421 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8422 if (err)
8423 return err;
8424
8425 return ice_set_max_bw_limit(vsi, max_tx_rate);
8426 }
8427
8428 /**
8429 * ice_create_q_channel - function to create channel
8430 * @vsi: VSI to be configured
8431 * @ch: ptr to channel (it contains channel specific params)
8432 *
8433 * This function creates channel (VSI) using num_queues specified by user,
8434 * reconfigs RSS if needed.
8435 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8436 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8437 {
8438 struct ice_pf *pf = vsi->back;
8439 struct device *dev;
8440
8441 if (!ch)
8442 return -EINVAL;
8443
8444 dev = ice_pf_to_dev(pf);
8445 if (!ch->num_txq || !ch->num_rxq) {
8446 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8447 return -EINVAL;
8448 }
8449
8450 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8451 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8452 vsi->cnt_q_avail, ch->num_txq);
8453 return -EINVAL;
8454 }
8455
8456 if (!ice_setup_channel(pf, vsi, ch)) {
8457 dev_info(dev, "Failed to setup channel\n");
8458 return -EINVAL;
8459 }
8460 /* configure BW rate limit */
8461 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8462 int ret;
8463
8464 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8465 ch->min_tx_rate);
8466 if (ret)
8467 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8468 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8469 else
8470 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8471 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8472 }
8473
8474 vsi->cnt_q_avail -= ch->num_txq;
8475
8476 return 0;
8477 }
8478
8479 /**
8480 * ice_rem_all_chnl_fltrs - removes all channel filters
8481 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8482 *
8483 * Remove all advanced switch filters only if they are channel specific
8484 * tc-flower based filter
8485 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8486 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8487 {
8488 struct ice_tc_flower_fltr *fltr;
8489 struct hlist_node *node;
8490
8491 /* to remove all channel filters, iterate an ordered list of filters */
8492 hlist_for_each_entry_safe(fltr, node,
8493 &pf->tc_flower_fltr_list,
8494 tc_flower_node) {
8495 struct ice_rule_query_data rule;
8496 int status;
8497
8498 /* for now process only channel specific filters */
8499 if (!ice_is_chnl_fltr(fltr))
8500 continue;
8501
8502 rule.rid = fltr->rid;
8503 rule.rule_id = fltr->rule_id;
8504 rule.vsi_handle = fltr->dest_vsi_handle;
8505 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8506 if (status) {
8507 if (status == -ENOENT)
8508 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8509 rule.rule_id);
8510 else
8511 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8512 status);
8513 } else if (fltr->dest_vsi) {
8514 /* update advanced switch filter count */
8515 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8516 u32 flags = fltr->flags;
8517
8518 fltr->dest_vsi->num_chnl_fltr--;
8519 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8520 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8521 pf->num_dmac_chnl_fltrs--;
8522 }
8523 }
8524
8525 hlist_del(&fltr->tc_flower_node);
8526 kfree(fltr);
8527 }
8528 }
8529
8530 /**
8531 * ice_remove_q_channels - Remove queue channels for the TCs
8532 * @vsi: VSI to be configured
8533 * @rem_fltr: delete advanced switch filter or not
8534 *
8535 * Remove queue channels for the TCs
8536 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8537 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8538 {
8539 struct ice_channel *ch, *ch_tmp;
8540 struct ice_pf *pf = vsi->back;
8541 int i;
8542
8543 /* remove all tc-flower based filter if they are channel filters only */
8544 if (rem_fltr)
8545 ice_rem_all_chnl_fltrs(pf);
8546
8547 /* remove ntuple filters since queue configuration is being changed */
8548 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8549 struct ice_hw *hw = &pf->hw;
8550
8551 mutex_lock(&hw->fdir_fltr_lock);
8552 ice_fdir_del_all_fltrs(vsi);
8553 mutex_unlock(&hw->fdir_fltr_lock);
8554 }
8555
8556 /* perform cleanup for channels if they exist */
8557 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8558 struct ice_vsi *ch_vsi;
8559
8560 list_del(&ch->list);
8561 ch_vsi = ch->ch_vsi;
8562 if (!ch_vsi) {
8563 kfree(ch);
8564 continue;
8565 }
8566
8567 /* Reset queue contexts */
8568 for (i = 0; i < ch->num_rxq; i++) {
8569 struct ice_tx_ring *tx_ring;
8570 struct ice_rx_ring *rx_ring;
8571
8572 tx_ring = vsi->tx_rings[ch->base_q + i];
8573 rx_ring = vsi->rx_rings[ch->base_q + i];
8574 if (tx_ring) {
8575 tx_ring->ch = NULL;
8576 if (tx_ring->q_vector)
8577 tx_ring->q_vector->ch = NULL;
8578 }
8579 if (rx_ring) {
8580 rx_ring->ch = NULL;
8581 if (rx_ring->q_vector)
8582 rx_ring->q_vector->ch = NULL;
8583 }
8584 }
8585
8586 /* Release FD resources for the channel VSI */
8587 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8588
8589 /* clear the VSI from scheduler tree */
8590 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8591
8592 /* Delete VSI from FW, PF and HW VSI arrays */
8593 ice_vsi_delete(ch->ch_vsi);
8594
8595 /* free the channel */
8596 kfree(ch);
8597 }
8598
8599 /* clear the channel VSI map which is stored in main VSI */
8600 ice_for_each_chnl_tc(i)
8601 vsi->tc_map_vsi[i] = NULL;
8602
8603 /* reset main VSI's all TC information */
8604 vsi->all_enatc = 0;
8605 vsi->all_numtc = 0;
8606 }
8607
8608 /**
8609 * ice_rebuild_channels - rebuild channel
8610 * @pf: ptr to PF
8611 *
8612 * Recreate channel VSIs and replay filters
8613 */
ice_rebuild_channels(struct ice_pf * pf)8614 static int ice_rebuild_channels(struct ice_pf *pf)
8615 {
8616 struct device *dev = ice_pf_to_dev(pf);
8617 struct ice_vsi *main_vsi;
8618 bool rem_adv_fltr = true;
8619 struct ice_channel *ch;
8620 struct ice_vsi *vsi;
8621 int tc_idx = 1;
8622 int i, err;
8623
8624 main_vsi = ice_get_main_vsi(pf);
8625 if (!main_vsi)
8626 return 0;
8627
8628 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8629 main_vsi->old_numtc == 1)
8630 return 0; /* nothing to be done */
8631
8632 /* reconfigure main VSI based on old value of TC and cached values
8633 * for MQPRIO opts
8634 */
8635 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8636 if (err) {
8637 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8638 main_vsi->old_ena_tc, main_vsi->vsi_num);
8639 return err;
8640 }
8641
8642 /* rebuild ADQ VSIs */
8643 ice_for_each_vsi(pf, i) {
8644 enum ice_vsi_type type;
8645
8646 vsi = pf->vsi[i];
8647 if (!vsi || vsi->type != ICE_VSI_CHNL)
8648 continue;
8649
8650 type = vsi->type;
8651
8652 /* rebuild ADQ VSI */
8653 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8654 if (err) {
8655 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8656 ice_vsi_type_str(type), vsi->idx, err);
8657 goto cleanup;
8658 }
8659
8660 /* Re-map HW VSI number, using VSI handle that has been
8661 * previously validated in ice_replay_vsi() call above
8662 */
8663 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8664
8665 /* replay filters for the VSI */
8666 err = ice_replay_vsi(&pf->hw, vsi->idx);
8667 if (err) {
8668 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8669 ice_vsi_type_str(type), err, vsi->idx);
8670 rem_adv_fltr = false;
8671 goto cleanup;
8672 }
8673 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8674 ice_vsi_type_str(type), vsi->idx);
8675
8676 /* store ADQ VSI at correct TC index in main VSI's
8677 * map of TC to VSI
8678 */
8679 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8680 }
8681
8682 /* ADQ VSI(s) has been rebuilt successfully, so setup
8683 * channel for main VSI's Tx and Rx rings
8684 */
8685 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8686 struct ice_vsi *ch_vsi;
8687
8688 ch_vsi = ch->ch_vsi;
8689 if (!ch_vsi)
8690 continue;
8691
8692 /* reconfig channel resources */
8693 ice_cfg_chnl_all_res(main_vsi, ch);
8694
8695 /* replay BW rate limit if it is non-zero */
8696 if (!ch->max_tx_rate && !ch->min_tx_rate)
8697 continue;
8698
8699 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8700 ch->min_tx_rate);
8701 if (err)
8702 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8703 err, ch->max_tx_rate, ch->min_tx_rate,
8704 ch_vsi->vsi_num);
8705 else
8706 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8707 ch->max_tx_rate, ch->min_tx_rate,
8708 ch_vsi->vsi_num);
8709 }
8710
8711 /* reconfig RSS for main VSI */
8712 if (main_vsi->ch_rss_size)
8713 ice_vsi_cfg_rss_lut_key(main_vsi);
8714
8715 return 0;
8716
8717 cleanup:
8718 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8719 return err;
8720 }
8721
8722 /**
8723 * ice_create_q_channels - Add queue channel for the given TCs
8724 * @vsi: VSI to be configured
8725 *
8726 * Configures queue channel mapping to the given TCs
8727 */
ice_create_q_channels(struct ice_vsi * vsi)8728 static int ice_create_q_channels(struct ice_vsi *vsi)
8729 {
8730 struct ice_pf *pf = vsi->back;
8731 struct ice_channel *ch;
8732 int ret = 0, i;
8733
8734 ice_for_each_chnl_tc(i) {
8735 if (!(vsi->all_enatc & BIT(i)))
8736 continue;
8737
8738 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8739 if (!ch) {
8740 ret = -ENOMEM;
8741 goto err_free;
8742 }
8743 INIT_LIST_HEAD(&ch->list);
8744 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8745 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8746 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8747 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8748 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8749
8750 /* convert to Kbits/s */
8751 if (ch->max_tx_rate)
8752 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8753 ICE_BW_KBPS_DIVISOR);
8754 if (ch->min_tx_rate)
8755 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8756 ICE_BW_KBPS_DIVISOR);
8757
8758 ret = ice_create_q_channel(vsi, ch);
8759 if (ret) {
8760 dev_err(ice_pf_to_dev(pf),
8761 "failed creating channel TC:%d\n", i);
8762 kfree(ch);
8763 goto err_free;
8764 }
8765 list_add_tail(&ch->list, &vsi->ch_list);
8766 vsi->tc_map_vsi[i] = ch->ch_vsi;
8767 dev_dbg(ice_pf_to_dev(pf),
8768 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8769 }
8770 return 0;
8771
8772 err_free:
8773 ice_remove_q_channels(vsi, false);
8774
8775 return ret;
8776 }
8777
8778 /**
8779 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8780 * @netdev: net device to configure
8781 * @type_data: TC offload data
8782 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)8783 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8784 {
8785 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8786 struct ice_netdev_priv *np = netdev_priv(netdev);
8787 struct ice_vsi *vsi = np->vsi;
8788 struct ice_pf *pf = vsi->back;
8789 u16 mode, ena_tc_qdisc = 0;
8790 int cur_txq, cur_rxq;
8791 u8 hw = 0, num_tcf;
8792 struct device *dev;
8793 int ret, i;
8794
8795 dev = ice_pf_to_dev(pf);
8796 num_tcf = mqprio_qopt->qopt.num_tc;
8797 hw = mqprio_qopt->qopt.hw;
8798 mode = mqprio_qopt->mode;
8799 if (!hw) {
8800 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8801 vsi->ch_rss_size = 0;
8802 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8803 goto config_tcf;
8804 }
8805
8806 /* Generate queue region map for number of TCF requested */
8807 for (i = 0; i < num_tcf; i++)
8808 ena_tc_qdisc |= BIT(i);
8809
8810 switch (mode) {
8811 case TC_MQPRIO_MODE_CHANNEL:
8812
8813 if (pf->hw.port_info->is_custom_tx_enabled) {
8814 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8815 return -EBUSY;
8816 }
8817 ice_tear_down_devlink_rate_tree(pf);
8818
8819 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8820 if (ret) {
8821 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8822 ret);
8823 return ret;
8824 }
8825 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8826 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8827 /* don't assume state of hw_tc_offload during driver load
8828 * and set the flag for TC flower filter if hw_tc_offload
8829 * already ON
8830 */
8831 if (vsi->netdev->features & NETIF_F_HW_TC)
8832 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8833 break;
8834 default:
8835 return -EINVAL;
8836 }
8837
8838 config_tcf:
8839
8840 /* Requesting same TCF configuration as already enabled */
8841 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8842 mode != TC_MQPRIO_MODE_CHANNEL)
8843 return 0;
8844
8845 /* Pause VSI queues */
8846 ice_dis_vsi(vsi, true);
8847
8848 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8849 ice_remove_q_channels(vsi, true);
8850
8851 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8852 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8853 num_online_cpus());
8854 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8855 num_online_cpus());
8856 } else {
8857 /* logic to rebuild VSI, same like ethtool -L */
8858 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8859
8860 for (i = 0; i < num_tcf; i++) {
8861 if (!(ena_tc_qdisc & BIT(i)))
8862 continue;
8863
8864 offset = vsi->mqprio_qopt.qopt.offset[i];
8865 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8866 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8867 }
8868 vsi->req_txq = offset + qcount_tx;
8869 vsi->req_rxq = offset + qcount_rx;
8870
8871 /* store away original rss_size info, so that it gets reused
8872 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8873 * determine, what should be the rss_sizefor main VSI
8874 */
8875 vsi->orig_rss_size = vsi->rss_size;
8876 }
8877
8878 /* save current values of Tx and Rx queues before calling VSI rebuild
8879 * for fallback option
8880 */
8881 cur_txq = vsi->num_txq;
8882 cur_rxq = vsi->num_rxq;
8883
8884 /* proceed with rebuild main VSI using correct number of queues */
8885 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8886 if (ret) {
8887 /* fallback to current number of queues */
8888 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8889 vsi->req_txq = cur_txq;
8890 vsi->req_rxq = cur_rxq;
8891 clear_bit(ICE_RESET_FAILED, pf->state);
8892 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8893 dev_err(dev, "Rebuild of main VSI failed again\n");
8894 return ret;
8895 }
8896 }
8897
8898 vsi->all_numtc = num_tcf;
8899 vsi->all_enatc = ena_tc_qdisc;
8900 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8901 if (ret) {
8902 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8903 vsi->vsi_num);
8904 goto exit;
8905 }
8906
8907 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8908 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8909 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8910
8911 /* set TC0 rate limit if specified */
8912 if (max_tx_rate || min_tx_rate) {
8913 /* convert to Kbits/s */
8914 if (max_tx_rate)
8915 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8916 if (min_tx_rate)
8917 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8918
8919 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8920 if (!ret) {
8921 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8922 max_tx_rate, min_tx_rate, vsi->vsi_num);
8923 } else {
8924 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8925 max_tx_rate, min_tx_rate, vsi->vsi_num);
8926 goto exit;
8927 }
8928 }
8929 ret = ice_create_q_channels(vsi);
8930 if (ret) {
8931 netdev_err(netdev, "failed configuring queue channels\n");
8932 goto exit;
8933 } else {
8934 netdev_dbg(netdev, "successfully configured channels\n");
8935 }
8936 }
8937
8938 if (vsi->ch_rss_size)
8939 ice_vsi_cfg_rss_lut_key(vsi);
8940
8941 exit:
8942 /* if error, reset the all_numtc and all_enatc */
8943 if (ret) {
8944 vsi->all_numtc = 0;
8945 vsi->all_enatc = 0;
8946 }
8947 /* resume VSI */
8948 ice_ena_vsi(vsi, true);
8949
8950 return ret;
8951 }
8952
8953 static LIST_HEAD(ice_block_cb_list);
8954
8955 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8956 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8957 void *type_data)
8958 {
8959 struct ice_netdev_priv *np = netdev_priv(netdev);
8960 struct ice_pf *pf = np->vsi->back;
8961 bool locked = false;
8962 int err;
8963
8964 switch (type) {
8965 case TC_SETUP_BLOCK:
8966 return flow_block_cb_setup_simple(type_data,
8967 &ice_block_cb_list,
8968 ice_setup_tc_block_cb,
8969 np, np, true);
8970 case TC_SETUP_QDISC_MQPRIO:
8971 if (ice_is_eswitch_mode_switchdev(pf)) {
8972 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
8973 return -EOPNOTSUPP;
8974 }
8975
8976 if (pf->adev) {
8977 mutex_lock(&pf->adev_mutex);
8978 device_lock(&pf->adev->dev);
8979 locked = true;
8980 if (pf->adev->dev.driver) {
8981 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
8982 err = -EBUSY;
8983 goto adev_unlock;
8984 }
8985 }
8986
8987 /* setup traffic classifier for receive side */
8988 mutex_lock(&pf->tc_mutex);
8989 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8990 mutex_unlock(&pf->tc_mutex);
8991
8992 adev_unlock:
8993 if (locked) {
8994 device_unlock(&pf->adev->dev);
8995 mutex_unlock(&pf->adev_mutex);
8996 }
8997 return err;
8998 default:
8999 return -EOPNOTSUPP;
9000 }
9001 return -EOPNOTSUPP;
9002 }
9003
9004 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9005 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9006 struct net_device *netdev)
9007 {
9008 struct ice_indr_block_priv *cb_priv;
9009
9010 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9011 if (!cb_priv->netdev)
9012 return NULL;
9013 if (cb_priv->netdev == netdev)
9014 return cb_priv;
9015 }
9016 return NULL;
9017 }
9018
9019 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9020 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9021 void *indr_priv)
9022 {
9023 struct ice_indr_block_priv *priv = indr_priv;
9024 struct ice_netdev_priv *np = priv->np;
9025
9026 switch (type) {
9027 case TC_SETUP_CLSFLOWER:
9028 return ice_setup_tc_cls_flower(np, priv->netdev,
9029 (struct flow_cls_offload *)
9030 type_data);
9031 default:
9032 return -EOPNOTSUPP;
9033 }
9034 }
9035
9036 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9037 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9038 struct ice_netdev_priv *np,
9039 struct flow_block_offload *f, void *data,
9040 void (*cleanup)(struct flow_block_cb *block_cb))
9041 {
9042 struct ice_indr_block_priv *indr_priv;
9043 struct flow_block_cb *block_cb;
9044
9045 if (!ice_is_tunnel_supported(netdev) &&
9046 !(is_vlan_dev(netdev) &&
9047 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9048 return -EOPNOTSUPP;
9049
9050 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9051 return -EOPNOTSUPP;
9052
9053 switch (f->command) {
9054 case FLOW_BLOCK_BIND:
9055 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9056 if (indr_priv)
9057 return -EEXIST;
9058
9059 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9060 if (!indr_priv)
9061 return -ENOMEM;
9062
9063 indr_priv->netdev = netdev;
9064 indr_priv->np = np;
9065 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9066
9067 block_cb =
9068 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9069 indr_priv, indr_priv,
9070 ice_rep_indr_tc_block_unbind,
9071 f, netdev, sch, data, np,
9072 cleanup);
9073
9074 if (IS_ERR(block_cb)) {
9075 list_del(&indr_priv->list);
9076 kfree(indr_priv);
9077 return PTR_ERR(block_cb);
9078 }
9079 flow_block_cb_add(block_cb, f);
9080 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9081 break;
9082 case FLOW_BLOCK_UNBIND:
9083 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9084 if (!indr_priv)
9085 return -ENOENT;
9086
9087 block_cb = flow_block_cb_lookup(f->block,
9088 ice_indr_setup_block_cb,
9089 indr_priv);
9090 if (!block_cb)
9091 return -ENOENT;
9092
9093 flow_indr_block_cb_remove(block_cb, f);
9094
9095 list_del(&block_cb->driver_list);
9096 break;
9097 default:
9098 return -EOPNOTSUPP;
9099 }
9100 return 0;
9101 }
9102
9103 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9104 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9105 void *cb_priv, enum tc_setup_type type, void *type_data,
9106 void *data,
9107 void (*cleanup)(struct flow_block_cb *block_cb))
9108 {
9109 switch (type) {
9110 case TC_SETUP_BLOCK:
9111 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9112 data, cleanup);
9113
9114 default:
9115 return -EOPNOTSUPP;
9116 }
9117 }
9118
9119 /**
9120 * ice_open - Called when a network interface becomes active
9121 * @netdev: network interface device structure
9122 *
9123 * The open entry point is called when a network interface is made
9124 * active by the system (IFF_UP). At this point all resources needed
9125 * for transmit and receive operations are allocated, the interrupt
9126 * handler is registered with the OS, the netdev watchdog is enabled,
9127 * and the stack is notified that the interface is ready.
9128 *
9129 * Returns 0 on success, negative value on failure
9130 */
ice_open(struct net_device * netdev)9131 int ice_open(struct net_device *netdev)
9132 {
9133 struct ice_netdev_priv *np = netdev_priv(netdev);
9134 struct ice_pf *pf = np->vsi->back;
9135
9136 if (ice_is_reset_in_progress(pf->state)) {
9137 netdev_err(netdev, "can't open net device while reset is in progress");
9138 return -EBUSY;
9139 }
9140
9141 return ice_open_internal(netdev);
9142 }
9143
9144 /**
9145 * ice_open_internal - Called when a network interface becomes active
9146 * @netdev: network interface device structure
9147 *
9148 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9149 * handling routine
9150 *
9151 * Returns 0 on success, negative value on failure
9152 */
ice_open_internal(struct net_device * netdev)9153 int ice_open_internal(struct net_device *netdev)
9154 {
9155 struct ice_netdev_priv *np = netdev_priv(netdev);
9156 struct ice_vsi *vsi = np->vsi;
9157 struct ice_pf *pf = vsi->back;
9158 struct ice_port_info *pi;
9159 int err;
9160
9161 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9162 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9163 return -EIO;
9164 }
9165
9166 netif_carrier_off(netdev);
9167
9168 pi = vsi->port_info;
9169 err = ice_update_link_info(pi);
9170 if (err) {
9171 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9172 return err;
9173 }
9174
9175 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9176
9177 /* Set PHY if there is media, otherwise, turn off PHY */
9178 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9179 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9180 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9181 err = ice_init_phy_user_cfg(pi);
9182 if (err) {
9183 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9184 err);
9185 return err;
9186 }
9187 }
9188
9189 err = ice_configure_phy(vsi);
9190 if (err) {
9191 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9192 err);
9193 return err;
9194 }
9195 } else {
9196 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9197 ice_set_link(vsi, false);
9198 }
9199
9200 err = ice_vsi_open(vsi);
9201 if (err)
9202 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9203 vsi->vsi_num, vsi->vsw->sw_id);
9204
9205 /* Update existing tunnels information */
9206 udp_tunnel_get_rx_info(netdev);
9207
9208 return err;
9209 }
9210
9211 /**
9212 * ice_stop - Disables a network interface
9213 * @netdev: network interface device structure
9214 *
9215 * The stop entry point is called when an interface is de-activated by the OS,
9216 * and the netdevice enters the DOWN state. The hardware is still under the
9217 * driver's control, but the netdev interface is disabled.
9218 *
9219 * Returns success only - not allowed to fail
9220 */
ice_stop(struct net_device * netdev)9221 int ice_stop(struct net_device *netdev)
9222 {
9223 struct ice_netdev_priv *np = netdev_priv(netdev);
9224 struct ice_vsi *vsi = np->vsi;
9225 struct ice_pf *pf = vsi->back;
9226
9227 if (ice_is_reset_in_progress(pf->state)) {
9228 netdev_err(netdev, "can't stop net device while reset is in progress");
9229 return -EBUSY;
9230 }
9231
9232 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9233 int link_err = ice_force_phys_link_state(vsi, false);
9234
9235 if (link_err) {
9236 if (link_err == -ENOMEDIUM)
9237 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9238 vsi->vsi_num);
9239 else
9240 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9241 vsi->vsi_num, link_err);
9242
9243 ice_vsi_close(vsi);
9244 return -EIO;
9245 }
9246 }
9247
9248 ice_vsi_close(vsi);
9249
9250 return 0;
9251 }
9252
9253 /**
9254 * ice_features_check - Validate encapsulated packet conforms to limits
9255 * @skb: skb buffer
9256 * @netdev: This port's netdev
9257 * @features: Offload features that the stack believes apply
9258 */
9259 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9260 ice_features_check(struct sk_buff *skb,
9261 struct net_device __always_unused *netdev,
9262 netdev_features_t features)
9263 {
9264 bool gso = skb_is_gso(skb);
9265 size_t len;
9266
9267 /* No point in doing any of this if neither checksum nor GSO are
9268 * being requested for this frame. We can rule out both by just
9269 * checking for CHECKSUM_PARTIAL
9270 */
9271 if (skb->ip_summed != CHECKSUM_PARTIAL)
9272 return features;
9273
9274 /* We cannot support GSO if the MSS is going to be less than
9275 * 64 bytes. If it is then we need to drop support for GSO.
9276 */
9277 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9278 features &= ~NETIF_F_GSO_MASK;
9279
9280 len = skb_network_offset(skb);
9281 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9282 goto out_rm_features;
9283
9284 len = skb_network_header_len(skb);
9285 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9286 goto out_rm_features;
9287
9288 if (skb->encapsulation) {
9289 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9290 * the case of IPIP frames, the transport header pointer is
9291 * after the inner header! So check to make sure that this
9292 * is a GRE or UDP_TUNNEL frame before doing that math.
9293 */
9294 if (gso && (skb_shinfo(skb)->gso_type &
9295 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9296 len = skb_inner_network_header(skb) -
9297 skb_transport_header(skb);
9298 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9299 goto out_rm_features;
9300 }
9301
9302 len = skb_inner_network_header_len(skb);
9303 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9304 goto out_rm_features;
9305 }
9306
9307 return features;
9308 out_rm_features:
9309 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9310 }
9311
9312 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9313 .ndo_open = ice_open,
9314 .ndo_stop = ice_stop,
9315 .ndo_start_xmit = ice_start_xmit,
9316 .ndo_set_mac_address = ice_set_mac_address,
9317 .ndo_validate_addr = eth_validate_addr,
9318 .ndo_change_mtu = ice_change_mtu,
9319 .ndo_get_stats64 = ice_get_stats64,
9320 .ndo_tx_timeout = ice_tx_timeout,
9321 .ndo_bpf = ice_xdp_safe_mode,
9322 };
9323
9324 static const struct net_device_ops ice_netdev_ops = {
9325 .ndo_open = ice_open,
9326 .ndo_stop = ice_stop,
9327 .ndo_start_xmit = ice_start_xmit,
9328 .ndo_select_queue = ice_select_queue,
9329 .ndo_features_check = ice_features_check,
9330 .ndo_fix_features = ice_fix_features,
9331 .ndo_set_rx_mode = ice_set_rx_mode,
9332 .ndo_set_mac_address = ice_set_mac_address,
9333 .ndo_validate_addr = eth_validate_addr,
9334 .ndo_change_mtu = ice_change_mtu,
9335 .ndo_get_stats64 = ice_get_stats64,
9336 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9337 .ndo_eth_ioctl = ice_eth_ioctl,
9338 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9339 .ndo_set_vf_mac = ice_set_vf_mac,
9340 .ndo_get_vf_config = ice_get_vf_cfg,
9341 .ndo_set_vf_trust = ice_set_vf_trust,
9342 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9343 .ndo_set_vf_link_state = ice_set_vf_link_state,
9344 .ndo_get_vf_stats = ice_get_vf_stats,
9345 .ndo_set_vf_rate = ice_set_vf_bw,
9346 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9347 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9348 .ndo_setup_tc = ice_setup_tc,
9349 .ndo_set_features = ice_set_features,
9350 .ndo_bridge_getlink = ice_bridge_getlink,
9351 .ndo_bridge_setlink = ice_bridge_setlink,
9352 .ndo_fdb_add = ice_fdb_add,
9353 .ndo_fdb_del = ice_fdb_del,
9354 #ifdef CONFIG_RFS_ACCEL
9355 .ndo_rx_flow_steer = ice_rx_flow_steer,
9356 #endif
9357 .ndo_tx_timeout = ice_tx_timeout,
9358 .ndo_bpf = ice_xdp,
9359 .ndo_xdp_xmit = ice_xdp_xmit,
9360 .ndo_xsk_wakeup = ice_xsk_wakeup,
9361 };
9362