xref: /openbmc/linux/drivers/tty/serial/sh-sci.c (revision 360823a09426347ea8f232b0b0b5156d0aed0302)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/minmax.h>
35 #include <linux/module.h>
36 #include <linux/mm.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/reset.h>
41 #include <linux/scatterlist.h>
42 #include <linux/serial.h>
43 #include <linux/serial_sci.h>
44 #include <linux/sh_dma.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/sysrq.h>
48 #include <linux/timer.h>
49 #include <linux/tty.h>
50 #include <linux/tty_flip.h>
51 
52 #ifdef CONFIG_SUPERH
53 #include <asm/sh_bios.h>
54 #include <asm/platform_early.h>
55 #endif
56 
57 #include "serial_mctrl_gpio.h"
58 #include "sh-sci.h"
59 
60 /* Offsets into the sci_port->irqs array */
61 enum {
62 	SCIx_ERI_IRQ,
63 	SCIx_RXI_IRQ,
64 	SCIx_TXI_IRQ,
65 	SCIx_BRI_IRQ,
66 	SCIx_DRI_IRQ,
67 	SCIx_TEI_IRQ,
68 	SCIx_NR_IRQS,
69 
70 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71 };
72 
73 #define SCIx_IRQ_IS_MUXED(port)			\
74 	((port)->irqs[SCIx_ERI_IRQ] ==	\
75 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76 	((port)->irqs[SCIx_ERI_IRQ] &&	\
77 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78 
79 enum SCI_CLKS {
80 	SCI_FCK,		/* Functional Clock */
81 	SCI_SCK,		/* Optional External Clock */
82 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
83 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
84 	SCI_NUM_CLKS
85 };
86 
87 /* Bit x set means sampling rate x + 1 is supported */
88 #define SCI_SR(x)		BIT((x) - 1)
89 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
90 
91 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
92 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
93 				SCI_SR(19) | SCI_SR(27)
94 
95 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
96 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
97 
98 /* Iterate over all supported sampling rates, from high to low */
99 #define for_each_sr(_sr, _port)						\
100 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
101 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
102 
103 struct plat_sci_reg {
104 	u8 offset, size;
105 };
106 
107 struct sci_port_params {
108 	const struct plat_sci_reg regs[SCIx_NR_REGS];
109 	unsigned int fifosize;
110 	unsigned int overrun_reg;
111 	unsigned int overrun_mask;
112 	unsigned int sampling_rate_mask;
113 	unsigned int error_mask;
114 	unsigned int error_clear;
115 };
116 
117 struct sci_port {
118 	struct uart_port	port;
119 
120 	/* Platform configuration */
121 	const struct sci_port_params *params;
122 	const struct plat_sci_port *cfg;
123 	unsigned int		sampling_rate_mask;
124 	resource_size_t		reg_size;
125 	struct mctrl_gpios	*gpios;
126 
127 	/* Clocks */
128 	struct clk		*clks[SCI_NUM_CLKS];
129 	unsigned long		clk_rates[SCI_NUM_CLKS];
130 
131 	int			irqs[SCIx_NR_IRQS];
132 	char			*irqstr[SCIx_NR_IRQS];
133 
134 	struct dma_chan			*chan_tx;
135 	struct dma_chan			*chan_rx;
136 
137 #ifdef CONFIG_SERIAL_SH_SCI_DMA
138 	struct dma_chan			*chan_tx_saved;
139 	struct dma_chan			*chan_rx_saved;
140 	dma_cookie_t			cookie_tx;
141 	dma_cookie_t			cookie_rx[2];
142 	dma_cookie_t			active_rx;
143 	dma_addr_t			tx_dma_addr;
144 	unsigned int			tx_dma_len;
145 	struct scatterlist		sg_rx[2];
146 	void				*rx_buf[2];
147 	size_t				buf_len_rx;
148 	struct work_struct		work_tx;
149 	struct hrtimer			rx_timer;
150 	unsigned int			rx_timeout;	/* microseconds */
151 #endif
152 	unsigned int			rx_frame;
153 	int				rx_trigger;
154 	struct timer_list		rx_fifo_timer;
155 	int				rx_fifo_timeout;
156 	u16				hscif_tot;
157 
158 	bool has_rtscts;
159 	bool autorts;
160 };
161 
162 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
163 
164 static struct sci_port sci_ports[SCI_NPORTS];
165 static unsigned long sci_ports_in_use;
166 static struct uart_driver sci_uart_driver;
167 static bool sci_uart_earlycon;
168 
169 static inline struct sci_port *
to_sci_port(struct uart_port * uart)170 to_sci_port(struct uart_port *uart)
171 {
172 	return container_of(uart, struct sci_port, port);
173 }
174 
175 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
176 	/*
177 	 * Common SCI definitions, dependent on the port's regshift
178 	 * value.
179 	 */
180 	[SCIx_SCI_REGTYPE] = {
181 		.regs = {
182 			[SCSMR]		= { 0x00,  8 },
183 			[SCBRR]		= { 0x01,  8 },
184 			[SCSCR]		= { 0x02,  8 },
185 			[SCxTDR]	= { 0x03,  8 },
186 			[SCxSR]		= { 0x04,  8 },
187 			[SCxRDR]	= { 0x05,  8 },
188 		},
189 		.fifosize = 1,
190 		.overrun_reg = SCxSR,
191 		.overrun_mask = SCI_ORER,
192 		.sampling_rate_mask = SCI_SR(32),
193 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
194 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
195 	},
196 
197 	/*
198 	 * Common definitions for legacy IrDA ports.
199 	 */
200 	[SCIx_IRDA_REGTYPE] = {
201 		.regs = {
202 			[SCSMR]		= { 0x00,  8 },
203 			[SCBRR]		= { 0x02,  8 },
204 			[SCSCR]		= { 0x04,  8 },
205 			[SCxTDR]	= { 0x06,  8 },
206 			[SCxSR]		= { 0x08, 16 },
207 			[SCxRDR]	= { 0x0a,  8 },
208 			[SCFCR]		= { 0x0c,  8 },
209 			[SCFDR]		= { 0x0e, 16 },
210 		},
211 		.fifosize = 1,
212 		.overrun_reg = SCxSR,
213 		.overrun_mask = SCI_ORER,
214 		.sampling_rate_mask = SCI_SR(32),
215 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
216 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
217 	},
218 
219 	/*
220 	 * Common SCIFA definitions.
221 	 */
222 	[SCIx_SCIFA_REGTYPE] = {
223 		.regs = {
224 			[SCSMR]		= { 0x00, 16 },
225 			[SCBRR]		= { 0x04,  8 },
226 			[SCSCR]		= { 0x08, 16 },
227 			[SCxTDR]	= { 0x20,  8 },
228 			[SCxSR]		= { 0x14, 16 },
229 			[SCxRDR]	= { 0x24,  8 },
230 			[SCFCR]		= { 0x18, 16 },
231 			[SCFDR]		= { 0x1c, 16 },
232 			[SCPCR]		= { 0x30, 16 },
233 			[SCPDR]		= { 0x34, 16 },
234 		},
235 		.fifosize = 64,
236 		.overrun_reg = SCxSR,
237 		.overrun_mask = SCIFA_ORER,
238 		.sampling_rate_mask = SCI_SR_SCIFAB,
239 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
240 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
241 	},
242 
243 	/*
244 	 * Common SCIFB definitions.
245 	 */
246 	[SCIx_SCIFB_REGTYPE] = {
247 		.regs = {
248 			[SCSMR]		= { 0x00, 16 },
249 			[SCBRR]		= { 0x04,  8 },
250 			[SCSCR]		= { 0x08, 16 },
251 			[SCxTDR]	= { 0x40,  8 },
252 			[SCxSR]		= { 0x14, 16 },
253 			[SCxRDR]	= { 0x60,  8 },
254 			[SCFCR]		= { 0x18, 16 },
255 			[SCTFDR]	= { 0x38, 16 },
256 			[SCRFDR]	= { 0x3c, 16 },
257 			[SCPCR]		= { 0x30, 16 },
258 			[SCPDR]		= { 0x34, 16 },
259 		},
260 		.fifosize = 256,
261 		.overrun_reg = SCxSR,
262 		.overrun_mask = SCIFA_ORER,
263 		.sampling_rate_mask = SCI_SR_SCIFAB,
264 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
265 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
266 	},
267 
268 	/*
269 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
270 	 * count registers.
271 	 */
272 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
273 		.regs = {
274 			[SCSMR]		= { 0x00, 16 },
275 			[SCBRR]		= { 0x04,  8 },
276 			[SCSCR]		= { 0x08, 16 },
277 			[SCxTDR]	= { 0x0c,  8 },
278 			[SCxSR]		= { 0x10, 16 },
279 			[SCxRDR]	= { 0x14,  8 },
280 			[SCFCR]		= { 0x18, 16 },
281 			[SCFDR]		= { 0x1c, 16 },
282 			[SCSPTR]	= { 0x20, 16 },
283 			[SCLSR]		= { 0x24, 16 },
284 		},
285 		.fifosize = 16,
286 		.overrun_reg = SCLSR,
287 		.overrun_mask = SCLSR_ORER,
288 		.sampling_rate_mask = SCI_SR(32),
289 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
290 		.error_clear = SCIF_ERROR_CLEAR,
291 	},
292 
293 	/*
294 	 * The "SCIFA" that is in RZ/A2, RZ/G2L and RZ/T.
295 	 * It looks like a normal SCIF with FIFO data, but with a
296 	 * compressed address space. Also, the break out of interrupts
297 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
298 	 */
299 	[SCIx_RZ_SCIFA_REGTYPE] = {
300 		.regs = {
301 			[SCSMR]		= { 0x00, 16 },
302 			[SCBRR]		= { 0x02,  8 },
303 			[SCSCR]		= { 0x04, 16 },
304 			[SCxTDR]	= { 0x06,  8 },
305 			[SCxSR]		= { 0x08, 16 },
306 			[SCxRDR]	= { 0x0A,  8 },
307 			[SCFCR]		= { 0x0C, 16 },
308 			[SCFDR]		= { 0x0E, 16 },
309 			[SCSPTR]	= { 0x10, 16 },
310 			[SCLSR]		= { 0x12, 16 },
311 			[SEMR]		= { 0x14, 8 },
312 		},
313 		.fifosize = 16,
314 		.overrun_reg = SCLSR,
315 		.overrun_mask = SCLSR_ORER,
316 		.sampling_rate_mask = SCI_SR(32),
317 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
318 		.error_clear = SCIF_ERROR_CLEAR,
319 	},
320 
321 	/*
322 	 * Common SH-3 SCIF definitions.
323 	 */
324 	[SCIx_SH3_SCIF_REGTYPE] = {
325 		.regs = {
326 			[SCSMR]		= { 0x00,  8 },
327 			[SCBRR]		= { 0x02,  8 },
328 			[SCSCR]		= { 0x04,  8 },
329 			[SCxTDR]	= { 0x06,  8 },
330 			[SCxSR]		= { 0x08, 16 },
331 			[SCxRDR]	= { 0x0a,  8 },
332 			[SCFCR]		= { 0x0c,  8 },
333 			[SCFDR]		= { 0x0e, 16 },
334 		},
335 		.fifosize = 16,
336 		.overrun_reg = SCLSR,
337 		.overrun_mask = SCLSR_ORER,
338 		.sampling_rate_mask = SCI_SR(32),
339 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
340 		.error_clear = SCIF_ERROR_CLEAR,
341 	},
342 
343 	/*
344 	 * Common SH-4(A) SCIF(B) definitions.
345 	 */
346 	[SCIx_SH4_SCIF_REGTYPE] = {
347 		.regs = {
348 			[SCSMR]		= { 0x00, 16 },
349 			[SCBRR]		= { 0x04,  8 },
350 			[SCSCR]		= { 0x08, 16 },
351 			[SCxTDR]	= { 0x0c,  8 },
352 			[SCxSR]		= { 0x10, 16 },
353 			[SCxRDR]	= { 0x14,  8 },
354 			[SCFCR]		= { 0x18, 16 },
355 			[SCFDR]		= { 0x1c, 16 },
356 			[SCSPTR]	= { 0x20, 16 },
357 			[SCLSR]		= { 0x24, 16 },
358 		},
359 		.fifosize = 16,
360 		.overrun_reg = SCLSR,
361 		.overrun_mask = SCLSR_ORER,
362 		.sampling_rate_mask = SCI_SR(32),
363 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
364 		.error_clear = SCIF_ERROR_CLEAR,
365 	},
366 
367 	/*
368 	 * Common SCIF definitions for ports with a Baud Rate Generator for
369 	 * External Clock (BRG).
370 	 */
371 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
372 		.regs = {
373 			[SCSMR]		= { 0x00, 16 },
374 			[SCBRR]		= { 0x04,  8 },
375 			[SCSCR]		= { 0x08, 16 },
376 			[SCxTDR]	= { 0x0c,  8 },
377 			[SCxSR]		= { 0x10, 16 },
378 			[SCxRDR]	= { 0x14,  8 },
379 			[SCFCR]		= { 0x18, 16 },
380 			[SCFDR]		= { 0x1c, 16 },
381 			[SCSPTR]	= { 0x20, 16 },
382 			[SCLSR]		= { 0x24, 16 },
383 			[SCDL]		= { 0x30, 16 },
384 			[SCCKS]		= { 0x34, 16 },
385 		},
386 		.fifosize = 16,
387 		.overrun_reg = SCLSR,
388 		.overrun_mask = SCLSR_ORER,
389 		.sampling_rate_mask = SCI_SR(32),
390 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
391 		.error_clear = SCIF_ERROR_CLEAR,
392 	},
393 
394 	/*
395 	 * Common HSCIF definitions.
396 	 */
397 	[SCIx_HSCIF_REGTYPE] = {
398 		.regs = {
399 			[SCSMR]		= { 0x00, 16 },
400 			[SCBRR]		= { 0x04,  8 },
401 			[SCSCR]		= { 0x08, 16 },
402 			[SCxTDR]	= { 0x0c,  8 },
403 			[SCxSR]		= { 0x10, 16 },
404 			[SCxRDR]	= { 0x14,  8 },
405 			[SCFCR]		= { 0x18, 16 },
406 			[SCFDR]		= { 0x1c, 16 },
407 			[SCSPTR]	= { 0x20, 16 },
408 			[SCLSR]		= { 0x24, 16 },
409 			[HSSRR]		= { 0x40, 16 },
410 			[SCDL]		= { 0x30, 16 },
411 			[SCCKS]		= { 0x34, 16 },
412 			[HSRTRGR]	= { 0x54, 16 },
413 			[HSTTRGR]	= { 0x58, 16 },
414 		},
415 		.fifosize = 128,
416 		.overrun_reg = SCLSR,
417 		.overrun_mask = SCLSR_ORER,
418 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
419 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
420 		.error_clear = SCIF_ERROR_CLEAR,
421 	},
422 
423 	/*
424 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
425 	 * register.
426 	 */
427 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
428 		.regs = {
429 			[SCSMR]		= { 0x00, 16 },
430 			[SCBRR]		= { 0x04,  8 },
431 			[SCSCR]		= { 0x08, 16 },
432 			[SCxTDR]	= { 0x0c,  8 },
433 			[SCxSR]		= { 0x10, 16 },
434 			[SCxRDR]	= { 0x14,  8 },
435 			[SCFCR]		= { 0x18, 16 },
436 			[SCFDR]		= { 0x1c, 16 },
437 			[SCLSR]		= { 0x24, 16 },
438 		},
439 		.fifosize = 16,
440 		.overrun_reg = SCLSR,
441 		.overrun_mask = SCLSR_ORER,
442 		.sampling_rate_mask = SCI_SR(32),
443 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
444 		.error_clear = SCIF_ERROR_CLEAR,
445 	},
446 
447 	/*
448 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
449 	 * count registers.
450 	 */
451 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
452 		.regs = {
453 			[SCSMR]		= { 0x00, 16 },
454 			[SCBRR]		= { 0x04,  8 },
455 			[SCSCR]		= { 0x08, 16 },
456 			[SCxTDR]	= { 0x0c,  8 },
457 			[SCxSR]		= { 0x10, 16 },
458 			[SCxRDR]	= { 0x14,  8 },
459 			[SCFCR]		= { 0x18, 16 },
460 			[SCFDR]		= { 0x1c, 16 },
461 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
462 			[SCRFDR]	= { 0x20, 16 },
463 			[SCSPTR]	= { 0x24, 16 },
464 			[SCLSR]		= { 0x28, 16 },
465 		},
466 		.fifosize = 16,
467 		.overrun_reg = SCLSR,
468 		.overrun_mask = SCLSR_ORER,
469 		.sampling_rate_mask = SCI_SR(32),
470 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
471 		.error_clear = SCIF_ERROR_CLEAR,
472 	},
473 
474 	/*
475 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
476 	 * registers.
477 	 */
478 	[SCIx_SH7705_SCIF_REGTYPE] = {
479 		.regs = {
480 			[SCSMR]		= { 0x00, 16 },
481 			[SCBRR]		= { 0x04,  8 },
482 			[SCSCR]		= { 0x08, 16 },
483 			[SCxTDR]	= { 0x20,  8 },
484 			[SCxSR]		= { 0x14, 16 },
485 			[SCxRDR]	= { 0x24,  8 },
486 			[SCFCR]		= { 0x18, 16 },
487 			[SCFDR]		= { 0x1c, 16 },
488 		},
489 		.fifosize = 64,
490 		.overrun_reg = SCxSR,
491 		.overrun_mask = SCIFA_ORER,
492 		.sampling_rate_mask = SCI_SR(16),
493 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
494 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
495 	},
496 };
497 
498 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
499 
500 /*
501  * The "offset" here is rather misleading, in that it refers to an enum
502  * value relative to the port mapping rather than the fixed offset
503  * itself, which needs to be manually retrieved from the platform's
504  * register map for the given port.
505  */
sci_serial_in(struct uart_port * p,int offset)506 static unsigned int sci_serial_in(struct uart_port *p, int offset)
507 {
508 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
509 
510 	if (reg->size == 8)
511 		return ioread8(p->membase + (reg->offset << p->regshift));
512 	else if (reg->size == 16)
513 		return ioread16(p->membase + (reg->offset << p->regshift));
514 	else
515 		WARN(1, "Invalid register access\n");
516 
517 	return 0;
518 }
519 
sci_serial_out(struct uart_port * p,int offset,int value)520 static void sci_serial_out(struct uart_port *p, int offset, int value)
521 {
522 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
523 
524 	if (reg->size == 8)
525 		iowrite8(value, p->membase + (reg->offset << p->regshift));
526 	else if (reg->size == 16)
527 		iowrite16(value, p->membase + (reg->offset << p->regshift));
528 	else
529 		WARN(1, "Invalid register access\n");
530 }
531 
sci_port_enable(struct sci_port * sci_port)532 static void sci_port_enable(struct sci_port *sci_port)
533 {
534 	unsigned int i;
535 
536 	if (!sci_port->port.dev)
537 		return;
538 
539 	pm_runtime_get_sync(sci_port->port.dev);
540 
541 	for (i = 0; i < SCI_NUM_CLKS; i++) {
542 		clk_prepare_enable(sci_port->clks[i]);
543 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
544 	}
545 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
546 }
547 
sci_port_disable(struct sci_port * sci_port)548 static void sci_port_disable(struct sci_port *sci_port)
549 {
550 	unsigned int i;
551 
552 	if (!sci_port->port.dev)
553 		return;
554 
555 	for (i = SCI_NUM_CLKS; i-- > 0; )
556 		clk_disable_unprepare(sci_port->clks[i]);
557 
558 	pm_runtime_put_sync(sci_port->port.dev);
559 }
560 
port_rx_irq_mask(struct uart_port * port)561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563 	/*
564 	 * Not all ports (such as SCIFA) will support REIE. Rather than
565 	 * special-casing the port type, we check the port initialization
566 	 * IRQ enable mask to see whether the IRQ is desired at all. If
567 	 * it's unset, it's logically inferred that there's no point in
568 	 * testing for it.
569 	 */
570 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572 
sci_start_tx(struct uart_port * port)573 static void sci_start_tx(struct uart_port *port)
574 {
575 	struct sci_port *s = to_sci_port(port);
576 	unsigned short ctrl;
577 
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 		u16 new, scr = serial_port_in(port, SCSCR);
581 		if (s->chan_tx)
582 			new = scr | SCSCR_TDRQE;
583 		else
584 			new = scr & ~SCSCR_TDRQE;
585 		if (new != scr)
586 			serial_port_out(port, SCSCR, new);
587 	}
588 
589 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 	    dma_submit_error(s->cookie_tx)) {
591 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
592 			/* Switch irq from SCIF to DMA */
593 			disable_irq_nosync(s->irqs[SCIx_TXI_IRQ]);
594 
595 		s->cookie_tx = 0;
596 		schedule_work(&s->work_tx);
597 	}
598 #endif
599 
600 	if (!s->chan_tx || s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE ||
601 	    port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
602 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
603 		ctrl = serial_port_in(port, SCSCR);
604 
605 		/*
606 		 * For SCI, TE (transmit enable) must be set after setting TIE
607 		 * (transmit interrupt enable) or in the same instruction to start
608 		 * the transmit process.
609 		 */
610 		if (port->type == PORT_SCI)
611 			ctrl |= SCSCR_TE;
612 
613 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
614 	}
615 }
616 
sci_stop_tx(struct uart_port * port)617 static void sci_stop_tx(struct uart_port *port)
618 {
619 	unsigned short ctrl;
620 
621 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
622 	ctrl = serial_port_in(port, SCSCR);
623 
624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625 		ctrl &= ~SCSCR_TDRQE;
626 
627 	ctrl &= ~SCSCR_TIE;
628 
629 	serial_port_out(port, SCSCR, ctrl);
630 
631 #ifdef CONFIG_SERIAL_SH_SCI_DMA
632 	if (to_sci_port(port)->chan_tx &&
633 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
634 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
635 		to_sci_port(port)->cookie_tx = -EINVAL;
636 	}
637 #endif
638 }
639 
sci_start_rx(struct uart_port * port)640 static void sci_start_rx(struct uart_port *port)
641 {
642 	unsigned short ctrl;
643 
644 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
645 
646 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
647 		ctrl &= ~SCSCR_RDRQE;
648 
649 	serial_port_out(port, SCSCR, ctrl);
650 }
651 
sci_stop_rx(struct uart_port * port)652 static void sci_stop_rx(struct uart_port *port)
653 {
654 	unsigned short ctrl;
655 
656 	ctrl = serial_port_in(port, SCSCR);
657 
658 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
659 		ctrl &= ~SCSCR_RDRQE;
660 
661 	ctrl &= ~port_rx_irq_mask(port);
662 
663 	serial_port_out(port, SCSCR, ctrl);
664 }
665 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)666 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
667 {
668 	if (port->type == PORT_SCI) {
669 		/* Just store the mask */
670 		serial_port_out(port, SCxSR, mask);
671 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
672 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
673 		/* Only clear the status bits we want to clear */
674 		serial_port_out(port, SCxSR,
675 				serial_port_in(port, SCxSR) & mask);
676 	} else {
677 		/* Store the mask, clear parity/framing errors */
678 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
679 	}
680 }
681 
682 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
683     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
684 
685 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)686 static int sci_poll_get_char(struct uart_port *port)
687 {
688 	unsigned short status;
689 	int c;
690 
691 	do {
692 		status = serial_port_in(port, SCxSR);
693 		if (status & SCxSR_ERRORS(port)) {
694 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
695 			continue;
696 		}
697 		break;
698 	} while (1);
699 
700 	if (!(status & SCxSR_RDxF(port)))
701 		return NO_POLL_CHAR;
702 
703 	c = serial_port_in(port, SCxRDR);
704 
705 	/* Dummy read */
706 	serial_port_in(port, SCxSR);
707 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
708 
709 	return c;
710 }
711 #endif
712 
sci_poll_put_char(struct uart_port * port,unsigned char c)713 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
714 {
715 	unsigned short status;
716 
717 	do {
718 		status = serial_port_in(port, SCxSR);
719 	} while (!(status & SCxSR_TDxE(port)));
720 
721 	serial_port_out(port, SCxTDR, c);
722 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
723 }
724 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
725 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
726 
sci_init_pins(struct uart_port * port,unsigned int cflag)727 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
728 {
729 	struct sci_port *s = to_sci_port(port);
730 
731 	/*
732 	 * Use port-specific handler if provided.
733 	 */
734 	if (s->cfg->ops && s->cfg->ops->init_pins) {
735 		s->cfg->ops->init_pins(port, cflag);
736 		return;
737 	}
738 
739 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
740 		u16 data = serial_port_in(port, SCPDR);
741 		u16 ctrl = serial_port_in(port, SCPCR);
742 
743 		/* Enable RXD and TXD pin functions */
744 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
745 		if (to_sci_port(port)->has_rtscts) {
746 			/* RTS# is output, active low, unless autorts */
747 			if (!(port->mctrl & TIOCM_RTS)) {
748 				ctrl |= SCPCR_RTSC;
749 				data |= SCPDR_RTSD;
750 			} else if (!s->autorts) {
751 				ctrl |= SCPCR_RTSC;
752 				data &= ~SCPDR_RTSD;
753 			} else {
754 				/* Enable RTS# pin function */
755 				ctrl &= ~SCPCR_RTSC;
756 			}
757 			/* Enable CTS# pin function */
758 			ctrl &= ~SCPCR_CTSC;
759 		}
760 		serial_port_out(port, SCPDR, data);
761 		serial_port_out(port, SCPCR, ctrl);
762 	} else if (sci_getreg(port, SCSPTR)->size) {
763 		u16 status = serial_port_in(port, SCSPTR);
764 
765 		/* RTS# is always output; and active low, unless autorts */
766 		status |= SCSPTR_RTSIO;
767 		if (!(port->mctrl & TIOCM_RTS))
768 			status |= SCSPTR_RTSDT;
769 		else if (!s->autorts)
770 			status &= ~SCSPTR_RTSDT;
771 		/* CTS# and SCK are inputs */
772 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
773 		serial_port_out(port, SCSPTR, status);
774 	}
775 }
776 
sci_txfill(struct uart_port * port)777 static int sci_txfill(struct uart_port *port)
778 {
779 	struct sci_port *s = to_sci_port(port);
780 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
781 	const struct plat_sci_reg *reg;
782 
783 	reg = sci_getreg(port, SCTFDR);
784 	if (reg->size)
785 		return serial_port_in(port, SCTFDR) & fifo_mask;
786 
787 	reg = sci_getreg(port, SCFDR);
788 	if (reg->size)
789 		return serial_port_in(port, SCFDR) >> 8;
790 
791 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
792 }
793 
sci_txroom(struct uart_port * port)794 static int sci_txroom(struct uart_port *port)
795 {
796 	return port->fifosize - sci_txfill(port);
797 }
798 
sci_rxfill(struct uart_port * port)799 static int sci_rxfill(struct uart_port *port)
800 {
801 	struct sci_port *s = to_sci_port(port);
802 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
803 	const struct plat_sci_reg *reg;
804 
805 	reg = sci_getreg(port, SCRFDR);
806 	if (reg->size)
807 		return serial_port_in(port, SCRFDR) & fifo_mask;
808 
809 	reg = sci_getreg(port, SCFDR);
810 	if (reg->size)
811 		return serial_port_in(port, SCFDR) & fifo_mask;
812 
813 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
814 }
815 
816 /* ********************************************************************** *
817  *                   the interrupt related routines                       *
818  * ********************************************************************** */
819 
sci_transmit_chars(struct uart_port * port)820 static void sci_transmit_chars(struct uart_port *port)
821 {
822 	struct circ_buf *xmit = &port->state->xmit;
823 	unsigned int stopped = uart_tx_stopped(port);
824 	unsigned short status;
825 	unsigned short ctrl;
826 	int count;
827 
828 	status = serial_port_in(port, SCxSR);
829 	if (!(status & SCxSR_TDxE(port))) {
830 		ctrl = serial_port_in(port, SCSCR);
831 		if (uart_circ_empty(xmit))
832 			ctrl &= ~SCSCR_TIE;
833 		else
834 			ctrl |= SCSCR_TIE;
835 		serial_port_out(port, SCSCR, ctrl);
836 		return;
837 	}
838 
839 	count = sci_txroom(port);
840 
841 	do {
842 		unsigned char c;
843 
844 		if (port->x_char) {
845 			c = port->x_char;
846 			port->x_char = 0;
847 		} else if (!uart_circ_empty(xmit) && !stopped) {
848 			c = xmit->buf[xmit->tail];
849 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
850 		} else if (port->type == PORT_SCI && uart_circ_empty(xmit)) {
851 			ctrl = serial_port_in(port, SCSCR);
852 			ctrl &= ~SCSCR_TE;
853 			serial_port_out(port, SCSCR, ctrl);
854 			return;
855 		} else {
856 			break;
857 		}
858 
859 		serial_port_out(port, SCxTDR, c);
860 
861 		port->icount.tx++;
862 	} while (--count > 0);
863 
864 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
865 
866 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
867 		uart_write_wakeup(port);
868 	if (uart_circ_empty(xmit)) {
869 		if (port->type == PORT_SCI) {
870 			ctrl = serial_port_in(port, SCSCR);
871 			ctrl &= ~SCSCR_TIE;
872 			ctrl |= SCSCR_TEIE;
873 			serial_port_out(port, SCSCR, ctrl);
874 		}
875 
876 		sci_stop_tx(port);
877 	}
878 }
879 
sci_receive_chars(struct uart_port * port)880 static void sci_receive_chars(struct uart_port *port)
881 {
882 	struct tty_port *tport = &port->state->port;
883 	int i, count, copied = 0;
884 	unsigned short status;
885 	unsigned char flag;
886 
887 	status = serial_port_in(port, SCxSR);
888 	if (!(status & SCxSR_RDxF(port)))
889 		return;
890 
891 	while (1) {
892 		/* Don't copy more bytes than there is room for in the buffer */
893 		count = tty_buffer_request_room(tport, sci_rxfill(port));
894 
895 		/* If for any reason we can't copy more data, we're done! */
896 		if (count == 0)
897 			break;
898 
899 		if (port->type == PORT_SCI) {
900 			char c = serial_port_in(port, SCxRDR);
901 			if (uart_handle_sysrq_char(port, c))
902 				count = 0;
903 			else
904 				tty_insert_flip_char(tport, c, TTY_NORMAL);
905 		} else {
906 			for (i = 0; i < count; i++) {
907 				char c;
908 
909 				if (port->type == PORT_SCIF ||
910 				    port->type == PORT_HSCIF) {
911 					status = serial_port_in(port, SCxSR);
912 					c = serial_port_in(port, SCxRDR);
913 				} else {
914 					c = serial_port_in(port, SCxRDR);
915 					status = serial_port_in(port, SCxSR);
916 				}
917 				if (uart_handle_sysrq_char(port, c)) {
918 					count--; i--;
919 					continue;
920 				}
921 
922 				/* Store data and status */
923 				if (status & SCxSR_FER(port)) {
924 					flag = TTY_FRAME;
925 					port->icount.frame++;
926 				} else if (status & SCxSR_PER(port)) {
927 					flag = TTY_PARITY;
928 					port->icount.parity++;
929 				} else
930 					flag = TTY_NORMAL;
931 
932 				tty_insert_flip_char(tport, c, flag);
933 			}
934 		}
935 
936 		serial_port_in(port, SCxSR); /* dummy read */
937 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
938 
939 		copied += count;
940 		port->icount.rx += count;
941 	}
942 
943 	if (copied) {
944 		/* Tell the rest of the system the news. New characters! */
945 		tty_flip_buffer_push(tport);
946 	} else {
947 		/* TTY buffers full; read from RX reg to prevent lockup */
948 		serial_port_in(port, SCxRDR);
949 		serial_port_in(port, SCxSR); /* dummy read */
950 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
951 	}
952 }
953 
sci_handle_errors(struct uart_port * port)954 static int sci_handle_errors(struct uart_port *port)
955 {
956 	int copied = 0;
957 	unsigned short status = serial_port_in(port, SCxSR);
958 	struct tty_port *tport = &port->state->port;
959 	struct sci_port *s = to_sci_port(port);
960 
961 	/* Handle overruns */
962 	if (status & s->params->overrun_mask) {
963 		port->icount.overrun++;
964 
965 		/* overrun error */
966 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
967 			copied++;
968 	}
969 
970 	if (status & SCxSR_FER(port)) {
971 		/* frame error */
972 		port->icount.frame++;
973 
974 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
975 			copied++;
976 	}
977 
978 	if (status & SCxSR_PER(port)) {
979 		/* parity error */
980 		port->icount.parity++;
981 
982 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
983 			copied++;
984 	}
985 
986 	if (copied)
987 		tty_flip_buffer_push(tport);
988 
989 	return copied;
990 }
991 
sci_handle_fifo_overrun(struct uart_port * port)992 static int sci_handle_fifo_overrun(struct uart_port *port)
993 {
994 	struct tty_port *tport = &port->state->port;
995 	struct sci_port *s = to_sci_port(port);
996 	const struct plat_sci_reg *reg;
997 	int copied = 0;
998 	u16 status;
999 
1000 	reg = sci_getreg(port, s->params->overrun_reg);
1001 	if (!reg->size)
1002 		return 0;
1003 
1004 	status = serial_port_in(port, s->params->overrun_reg);
1005 	if (status & s->params->overrun_mask) {
1006 		status &= ~s->params->overrun_mask;
1007 		serial_port_out(port, s->params->overrun_reg, status);
1008 
1009 		port->icount.overrun++;
1010 
1011 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
1012 		tty_flip_buffer_push(tport);
1013 		copied++;
1014 	}
1015 
1016 	return copied;
1017 }
1018 
sci_handle_breaks(struct uart_port * port)1019 static int sci_handle_breaks(struct uart_port *port)
1020 {
1021 	int copied = 0;
1022 	unsigned short status = serial_port_in(port, SCxSR);
1023 	struct tty_port *tport = &port->state->port;
1024 
1025 	if (uart_handle_break(port))
1026 		return 0;
1027 
1028 	if (status & SCxSR_BRK(port)) {
1029 		port->icount.brk++;
1030 
1031 		/* Notify of BREAK */
1032 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1033 			copied++;
1034 	}
1035 
1036 	if (copied)
1037 		tty_flip_buffer_push(tport);
1038 
1039 	copied += sci_handle_fifo_overrun(port);
1040 
1041 	return copied;
1042 }
1043 
scif_set_rtrg(struct uart_port * port,int rx_trig)1044 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1045 {
1046 	unsigned int bits;
1047 
1048 	if (rx_trig >= port->fifosize)
1049 		rx_trig = port->fifosize - 1;
1050 	if (rx_trig < 1)
1051 		rx_trig = 1;
1052 
1053 	/* HSCIF can be set to an arbitrary level. */
1054 	if (sci_getreg(port, HSRTRGR)->size) {
1055 		serial_port_out(port, HSRTRGR, rx_trig);
1056 		return rx_trig;
1057 	}
1058 
1059 	switch (port->type) {
1060 	case PORT_SCIF:
1061 		if (rx_trig < 4) {
1062 			bits = 0;
1063 			rx_trig = 1;
1064 		} else if (rx_trig < 8) {
1065 			bits = SCFCR_RTRG0;
1066 			rx_trig = 4;
1067 		} else if (rx_trig < 14) {
1068 			bits = SCFCR_RTRG1;
1069 			rx_trig = 8;
1070 		} else {
1071 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1072 			rx_trig = 14;
1073 		}
1074 		break;
1075 	case PORT_SCIFA:
1076 	case PORT_SCIFB:
1077 		if (rx_trig < 16) {
1078 			bits = 0;
1079 			rx_trig = 1;
1080 		} else if (rx_trig < 32) {
1081 			bits = SCFCR_RTRG0;
1082 			rx_trig = 16;
1083 		} else if (rx_trig < 48) {
1084 			bits = SCFCR_RTRG1;
1085 			rx_trig = 32;
1086 		} else {
1087 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1088 			rx_trig = 48;
1089 		}
1090 		break;
1091 	default:
1092 		WARN(1, "unknown FIFO configuration");
1093 		return 1;
1094 	}
1095 
1096 	serial_port_out(port, SCFCR,
1097 		(serial_port_in(port, SCFCR) &
1098 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1099 
1100 	return rx_trig;
1101 }
1102 
scif_rtrg_enabled(struct uart_port * port)1103 static int scif_rtrg_enabled(struct uart_port *port)
1104 {
1105 	if (sci_getreg(port, HSRTRGR)->size)
1106 		return serial_port_in(port, HSRTRGR) != 0;
1107 	else
1108 		return (serial_port_in(port, SCFCR) &
1109 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1110 }
1111 
rx_fifo_timer_fn(struct timer_list * t)1112 static void rx_fifo_timer_fn(struct timer_list *t)
1113 {
1114 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1115 	struct uart_port *port = &s->port;
1116 
1117 	dev_dbg(port->dev, "Rx timed out\n");
1118 	scif_set_rtrg(port, 1);
1119 }
1120 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1121 static ssize_t rx_fifo_trigger_show(struct device *dev,
1122 				    struct device_attribute *attr, char *buf)
1123 {
1124 	struct uart_port *port = dev_get_drvdata(dev);
1125 	struct sci_port *sci = to_sci_port(port);
1126 
1127 	return sprintf(buf, "%d\n", sci->rx_trigger);
1128 }
1129 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1130 static ssize_t rx_fifo_trigger_store(struct device *dev,
1131 				     struct device_attribute *attr,
1132 				     const char *buf, size_t count)
1133 {
1134 	struct uart_port *port = dev_get_drvdata(dev);
1135 	struct sci_port *sci = to_sci_port(port);
1136 	int ret;
1137 	long r;
1138 
1139 	ret = kstrtol(buf, 0, &r);
1140 	if (ret)
1141 		return ret;
1142 
1143 	sci->rx_trigger = scif_set_rtrg(port, r);
1144 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1145 		scif_set_rtrg(port, 1);
1146 
1147 	return count;
1148 }
1149 
1150 static DEVICE_ATTR_RW(rx_fifo_trigger);
1151 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1152 static ssize_t rx_fifo_timeout_show(struct device *dev,
1153 			       struct device_attribute *attr,
1154 			       char *buf)
1155 {
1156 	struct uart_port *port = dev_get_drvdata(dev);
1157 	struct sci_port *sci = to_sci_port(port);
1158 	int v;
1159 
1160 	if (port->type == PORT_HSCIF)
1161 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1162 	else
1163 		v = sci->rx_fifo_timeout;
1164 
1165 	return sprintf(buf, "%d\n", v);
1166 }
1167 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1168 static ssize_t rx_fifo_timeout_store(struct device *dev,
1169 				struct device_attribute *attr,
1170 				const char *buf,
1171 				size_t count)
1172 {
1173 	struct uart_port *port = dev_get_drvdata(dev);
1174 	struct sci_port *sci = to_sci_port(port);
1175 	int ret;
1176 	long r;
1177 
1178 	ret = kstrtol(buf, 0, &r);
1179 	if (ret)
1180 		return ret;
1181 
1182 	if (port->type == PORT_HSCIF) {
1183 		if (r < 0 || r > 3)
1184 			return -EINVAL;
1185 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1186 	} else {
1187 		sci->rx_fifo_timeout = r;
1188 		scif_set_rtrg(port, 1);
1189 		if (r > 0)
1190 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1191 	}
1192 
1193 	return count;
1194 }
1195 
1196 static DEVICE_ATTR_RW(rx_fifo_timeout);
1197 
1198 
1199 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1200 static void sci_dma_tx_complete(void *arg)
1201 {
1202 	struct sci_port *s = arg;
1203 	struct uart_port *port = &s->port;
1204 	struct circ_buf *xmit = &port->state->xmit;
1205 	unsigned long flags;
1206 
1207 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1208 
1209 	spin_lock_irqsave(&port->lock, flags);
1210 
1211 	uart_xmit_advance(port, s->tx_dma_len);
1212 
1213 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1214 		uart_write_wakeup(port);
1215 
1216 	if (!uart_circ_empty(xmit)) {
1217 		s->cookie_tx = 0;
1218 		schedule_work(&s->work_tx);
1219 	} else {
1220 		s->cookie_tx = -EINVAL;
1221 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1222 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1223 			u16 ctrl = serial_port_in(port, SCSCR);
1224 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1225 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1226 				/* Switch irq from DMA to SCIF */
1227 				dmaengine_pause(s->chan_tx_saved);
1228 				enable_irq(s->irqs[SCIx_TXI_IRQ]);
1229 			}
1230 		}
1231 	}
1232 
1233 	spin_unlock_irqrestore(&port->lock, flags);
1234 }
1235 
1236 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1237 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1238 {
1239 	struct uart_port *port = &s->port;
1240 	struct tty_port *tport = &port->state->port;
1241 	int copied;
1242 
1243 	copied = tty_insert_flip_string(tport, buf, count);
1244 	if (copied < count)
1245 		port->icount.buf_overrun++;
1246 
1247 	port->icount.rx += copied;
1248 
1249 	return copied;
1250 }
1251 
sci_dma_rx_find_active(struct sci_port * s)1252 static int sci_dma_rx_find_active(struct sci_port *s)
1253 {
1254 	unsigned int i;
1255 
1256 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1257 		if (s->active_rx == s->cookie_rx[i])
1258 			return i;
1259 
1260 	return -1;
1261 }
1262 
sci_dma_rx_chan_invalidate(struct sci_port * s)1263 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1264 {
1265 	unsigned int i;
1266 
1267 	s->chan_rx = NULL;
1268 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1269 		s->cookie_rx[i] = -EINVAL;
1270 	s->active_rx = 0;
1271 }
1272 
sci_dma_rx_release(struct sci_port * s)1273 static void sci_dma_rx_release(struct sci_port *s)
1274 {
1275 	struct dma_chan *chan = s->chan_rx_saved;
1276 	struct uart_port *port = &s->port;
1277 	unsigned long flags;
1278 
1279 	uart_port_lock_irqsave(port, &flags);
1280 	s->chan_rx_saved = NULL;
1281 	sci_dma_rx_chan_invalidate(s);
1282 	uart_port_unlock_irqrestore(port, flags);
1283 
1284 	dmaengine_terminate_sync(chan);
1285 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1286 			  sg_dma_address(&s->sg_rx[0]));
1287 	dma_release_channel(chan);
1288 }
1289 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1290 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1291 {
1292 	long sec = usec / 1000000;
1293 	long nsec = (usec % 1000000) * 1000;
1294 	ktime_t t = ktime_set(sec, nsec);
1295 
1296 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1297 }
1298 
sci_dma_rx_reenable_irq(struct sci_port * s)1299 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1300 {
1301 	struct uart_port *port = &s->port;
1302 	u16 scr;
1303 
1304 	/* Direct new serial port interrupts back to CPU */
1305 	scr = serial_port_in(port, SCSCR);
1306 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1307 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1308 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1309 		if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1310 			scif_set_rtrg(port, s->rx_trigger);
1311 		else
1312 			scr &= ~SCSCR_RDRQE;
1313 	}
1314 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1315 }
1316 
sci_dma_rx_complete(void * arg)1317 static void sci_dma_rx_complete(void *arg)
1318 {
1319 	struct sci_port *s = arg;
1320 	struct dma_chan *chan = s->chan_rx;
1321 	struct uart_port *port = &s->port;
1322 	struct dma_async_tx_descriptor *desc;
1323 	unsigned long flags;
1324 	int active, count = 0;
1325 
1326 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1327 		s->active_rx);
1328 
1329 	spin_lock_irqsave(&port->lock, flags);
1330 
1331 	active = sci_dma_rx_find_active(s);
1332 	if (active >= 0)
1333 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1334 
1335 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1336 
1337 	if (count)
1338 		tty_flip_buffer_push(&port->state->port);
1339 
1340 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1341 				       DMA_DEV_TO_MEM,
1342 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1343 	if (!desc)
1344 		goto fail;
1345 
1346 	desc->callback = sci_dma_rx_complete;
1347 	desc->callback_param = s;
1348 	s->cookie_rx[active] = dmaengine_submit(desc);
1349 	if (dma_submit_error(s->cookie_rx[active]))
1350 		goto fail;
1351 
1352 	s->active_rx = s->cookie_rx[!active];
1353 
1354 	dma_async_issue_pending(chan);
1355 
1356 	spin_unlock_irqrestore(&port->lock, flags);
1357 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1358 		__func__, s->cookie_rx[active], active, s->active_rx);
1359 	return;
1360 
1361 fail:
1362 	spin_unlock_irqrestore(&port->lock, flags);
1363 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1364 	/* Switch to PIO */
1365 	spin_lock_irqsave(&port->lock, flags);
1366 	dmaengine_terminate_async(chan);
1367 	sci_dma_rx_chan_invalidate(s);
1368 	sci_dma_rx_reenable_irq(s);
1369 	spin_unlock_irqrestore(&port->lock, flags);
1370 }
1371 
sci_dma_tx_release(struct sci_port * s)1372 static void sci_dma_tx_release(struct sci_port *s)
1373 {
1374 	struct dma_chan *chan = s->chan_tx_saved;
1375 
1376 	cancel_work_sync(&s->work_tx);
1377 	s->chan_tx_saved = s->chan_tx = NULL;
1378 	s->cookie_tx = -EINVAL;
1379 	dmaengine_terminate_sync(chan);
1380 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1381 			 DMA_TO_DEVICE);
1382 	dma_release_channel(chan);
1383 }
1384 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1385 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1386 {
1387 	struct dma_chan *chan = s->chan_rx;
1388 	struct uart_port *port = &s->port;
1389 	unsigned long flags;
1390 	int i;
1391 
1392 	for (i = 0; i < 2; i++) {
1393 		struct scatterlist *sg = &s->sg_rx[i];
1394 		struct dma_async_tx_descriptor *desc;
1395 
1396 		desc = dmaengine_prep_slave_sg(chan,
1397 			sg, 1, DMA_DEV_TO_MEM,
1398 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1399 		if (!desc)
1400 			goto fail;
1401 
1402 		desc->callback = sci_dma_rx_complete;
1403 		desc->callback_param = s;
1404 		s->cookie_rx[i] = dmaengine_submit(desc);
1405 		if (dma_submit_error(s->cookie_rx[i]))
1406 			goto fail;
1407 
1408 	}
1409 
1410 	s->active_rx = s->cookie_rx[0];
1411 
1412 	dma_async_issue_pending(chan);
1413 	return 0;
1414 
1415 fail:
1416 	/* Switch to PIO */
1417 	if (!port_lock_held)
1418 		spin_lock_irqsave(&port->lock, flags);
1419 	if (i)
1420 		dmaengine_terminate_async(chan);
1421 	sci_dma_rx_chan_invalidate(s);
1422 	sci_start_rx(port);
1423 	if (!port_lock_held)
1424 		spin_unlock_irqrestore(&port->lock, flags);
1425 	return -EAGAIN;
1426 }
1427 
sci_dma_tx_work_fn(struct work_struct * work)1428 static void sci_dma_tx_work_fn(struct work_struct *work)
1429 {
1430 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1431 	struct dma_async_tx_descriptor *desc;
1432 	struct dma_chan *chan = s->chan_tx;
1433 	struct uart_port *port = &s->port;
1434 	struct circ_buf *xmit = &port->state->xmit;
1435 	unsigned long flags;
1436 	dma_addr_t buf;
1437 	int head, tail;
1438 
1439 	/*
1440 	 * DMA is idle now.
1441 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1442 	 * offsets and lengths. Since it is a circular buffer, we have to
1443 	 * transmit till the end, and then the rest. Take the port lock to get a
1444 	 * consistent xmit buffer state.
1445 	 */
1446 	spin_lock_irq(&port->lock);
1447 	head = xmit->head;
1448 	tail = xmit->tail;
1449 	buf = s->tx_dma_addr + tail;
1450 	s->tx_dma_len = CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE);
1451 	if (!s->tx_dma_len) {
1452 		/* Transmit buffer has been flushed */
1453 		spin_unlock_irq(&port->lock);
1454 		return;
1455 	}
1456 
1457 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1458 					   DMA_MEM_TO_DEV,
1459 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1460 	if (!desc) {
1461 		spin_unlock_irq(&port->lock);
1462 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1463 		goto switch_to_pio;
1464 	}
1465 
1466 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1467 				   DMA_TO_DEVICE);
1468 
1469 	desc->callback = sci_dma_tx_complete;
1470 	desc->callback_param = s;
1471 	s->cookie_tx = dmaengine_submit(desc);
1472 	if (dma_submit_error(s->cookie_tx)) {
1473 		spin_unlock_irq(&port->lock);
1474 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1475 		goto switch_to_pio;
1476 	}
1477 
1478 	spin_unlock_irq(&port->lock);
1479 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1480 		__func__, xmit->buf, tail, head, s->cookie_tx);
1481 
1482 	dma_async_issue_pending(chan);
1483 	return;
1484 
1485 switch_to_pio:
1486 	spin_lock_irqsave(&port->lock, flags);
1487 	s->chan_tx = NULL;
1488 	sci_start_tx(port);
1489 	spin_unlock_irqrestore(&port->lock, flags);
1490 	return;
1491 }
1492 
sci_dma_rx_timer_fn(struct hrtimer * t)1493 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1494 {
1495 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1496 	struct dma_chan *chan = s->chan_rx;
1497 	struct uart_port *port = &s->port;
1498 	struct dma_tx_state state;
1499 	enum dma_status status;
1500 	unsigned long flags;
1501 	unsigned int read;
1502 	int active, count;
1503 
1504 	dev_dbg(port->dev, "DMA Rx timed out\n");
1505 
1506 	spin_lock_irqsave(&port->lock, flags);
1507 
1508 	active = sci_dma_rx_find_active(s);
1509 	if (active < 0) {
1510 		spin_unlock_irqrestore(&port->lock, flags);
1511 		return HRTIMER_NORESTART;
1512 	}
1513 
1514 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1515 	if (status == DMA_COMPLETE) {
1516 		spin_unlock_irqrestore(&port->lock, flags);
1517 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1518 			s->active_rx, active);
1519 
1520 		/* Let packet complete handler take care of the packet */
1521 		return HRTIMER_NORESTART;
1522 	}
1523 
1524 	dmaengine_pause(chan);
1525 
1526 	/*
1527 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1528 	 * data keeps on coming until transaction is complete so check
1529 	 * for DMA_COMPLETE again
1530 	 * Let packet complete handler take care of the packet
1531 	 */
1532 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1533 	if (status == DMA_COMPLETE) {
1534 		spin_unlock_irqrestore(&port->lock, flags);
1535 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1536 		return HRTIMER_NORESTART;
1537 	}
1538 
1539 	/* Handle incomplete DMA receive */
1540 	dmaengine_terminate_async(s->chan_rx);
1541 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1542 
1543 	if (read) {
1544 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1545 		if (count)
1546 			tty_flip_buffer_push(&port->state->port);
1547 	}
1548 
1549 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1550 	    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1551 		sci_dma_rx_submit(s, true);
1552 
1553 	sci_dma_rx_reenable_irq(s);
1554 
1555 	spin_unlock_irqrestore(&port->lock, flags);
1556 
1557 	return HRTIMER_NORESTART;
1558 }
1559 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1560 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1561 					     enum dma_transfer_direction dir)
1562 {
1563 	struct dma_chan *chan;
1564 	struct dma_slave_config cfg;
1565 	int ret;
1566 
1567 	chan = dma_request_slave_channel(port->dev,
1568 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1569 	if (!chan) {
1570 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1571 		return NULL;
1572 	}
1573 
1574 	memset(&cfg, 0, sizeof(cfg));
1575 	cfg.direction = dir;
1576 	cfg.dst_addr = port->mapbase +
1577 		(sci_getreg(port, SCxTDR)->offset << port->regshift);
1578 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1579 	cfg.src_addr = port->mapbase +
1580 		(sci_getreg(port, SCxRDR)->offset << port->regshift);
1581 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1582 
1583 	ret = dmaengine_slave_config(chan, &cfg);
1584 	if (ret) {
1585 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1586 		dma_release_channel(chan);
1587 		return NULL;
1588 	}
1589 
1590 	return chan;
1591 }
1592 
sci_request_dma(struct uart_port * port)1593 static void sci_request_dma(struct uart_port *port)
1594 {
1595 	struct sci_port *s = to_sci_port(port);
1596 	struct dma_chan *chan;
1597 
1598 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1599 
1600 	/*
1601 	 * DMA on console may interfere with Kernel log messages which use
1602 	 * plain putchar(). So, simply don't use it with a console.
1603 	 */
1604 	if (uart_console(port))
1605 		return;
1606 
1607 	if (!port->dev->of_node)
1608 		return;
1609 
1610 	s->cookie_tx = -EINVAL;
1611 
1612 	/*
1613 	 * Don't request a dma channel if no channel was specified
1614 	 * in the device tree.
1615 	 */
1616 	if (!of_property_present(port->dev->of_node, "dmas"))
1617 		return;
1618 
1619 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1620 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1621 	if (chan) {
1622 		/* UART circular tx buffer is an aligned page. */
1623 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1624 						port->state->xmit.buf,
1625 						UART_XMIT_SIZE,
1626 						DMA_TO_DEVICE);
1627 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1628 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1629 			dma_release_channel(chan);
1630 		} else {
1631 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1632 				__func__, UART_XMIT_SIZE,
1633 				port->state->xmit.buf, &s->tx_dma_addr);
1634 
1635 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1636 			s->chan_tx_saved = s->chan_tx = chan;
1637 		}
1638 	}
1639 
1640 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1641 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1642 	if (chan) {
1643 		unsigned int i;
1644 		dma_addr_t dma;
1645 		void *buf;
1646 
1647 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1648 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1649 					 &dma, GFP_KERNEL);
1650 		if (!buf) {
1651 			dev_warn(port->dev,
1652 				 "Failed to allocate Rx dma buffer, using PIO\n");
1653 			dma_release_channel(chan);
1654 			return;
1655 		}
1656 
1657 		for (i = 0; i < 2; i++) {
1658 			struct scatterlist *sg = &s->sg_rx[i];
1659 
1660 			sg_init_table(sg, 1);
1661 			s->rx_buf[i] = buf;
1662 			sg_dma_address(sg) = dma;
1663 			sg_dma_len(sg) = s->buf_len_rx;
1664 
1665 			buf += s->buf_len_rx;
1666 			dma += s->buf_len_rx;
1667 		}
1668 
1669 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1670 		s->rx_timer.function = sci_dma_rx_timer_fn;
1671 
1672 		s->chan_rx_saved = s->chan_rx = chan;
1673 
1674 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1675 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE)
1676 			sci_dma_rx_submit(s, false);
1677 	}
1678 }
1679 
sci_free_dma(struct uart_port * port)1680 static void sci_free_dma(struct uart_port *port)
1681 {
1682 	struct sci_port *s = to_sci_port(port);
1683 
1684 	if (s->chan_tx_saved)
1685 		sci_dma_tx_release(s);
1686 	if (s->chan_rx_saved)
1687 		sci_dma_rx_release(s);
1688 }
1689 
sci_flush_buffer(struct uart_port * port)1690 static void sci_flush_buffer(struct uart_port *port)
1691 {
1692 	struct sci_port *s = to_sci_port(port);
1693 
1694 	/*
1695 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1696 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1697 	 * pending transfers
1698 	 */
1699 	s->tx_dma_len = 0;
1700 	if (s->chan_tx) {
1701 		dmaengine_terminate_async(s->chan_tx);
1702 		s->cookie_tx = -EINVAL;
1703 	}
1704 }
1705 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1706 static inline void sci_request_dma(struct uart_port *port)
1707 {
1708 }
1709 
sci_free_dma(struct uart_port * port)1710 static inline void sci_free_dma(struct uart_port *port)
1711 {
1712 }
1713 
1714 #define sci_flush_buffer	NULL
1715 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1716 
sci_rx_interrupt(int irq,void * ptr)1717 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1718 {
1719 	struct uart_port *port = ptr;
1720 	struct sci_port *s = to_sci_port(port);
1721 
1722 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1723 	if (s->chan_rx) {
1724 		u16 scr = serial_port_in(port, SCSCR);
1725 		u16 ssr = serial_port_in(port, SCxSR);
1726 
1727 		/* Disable future Rx interrupts */
1728 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB ||
1729 		    s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1730 			disable_irq_nosync(s->irqs[SCIx_RXI_IRQ]);
1731 			if (s->cfg->regtype == SCIx_RZ_SCIFA_REGTYPE) {
1732 				scif_set_rtrg(port, 1);
1733 				scr |= SCSCR_RIE;
1734 			} else {
1735 				scr |= SCSCR_RDRQE;
1736 			}
1737 		} else {
1738 			if (sci_dma_rx_submit(s, false) < 0)
1739 				goto handle_pio;
1740 
1741 			scr &= ~SCSCR_RIE;
1742 		}
1743 		serial_port_out(port, SCSCR, scr);
1744 		/* Clear current interrupt */
1745 		serial_port_out(port, SCxSR,
1746 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1747 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1748 			jiffies, s->rx_timeout);
1749 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1750 
1751 		return IRQ_HANDLED;
1752 	}
1753 
1754 handle_pio:
1755 #endif
1756 
1757 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1758 		if (!scif_rtrg_enabled(port))
1759 			scif_set_rtrg(port, s->rx_trigger);
1760 
1761 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1762 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1763 	}
1764 
1765 	/* I think sci_receive_chars has to be called irrespective
1766 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1767 	 * to be disabled?
1768 	 */
1769 	sci_receive_chars(port);
1770 
1771 	return IRQ_HANDLED;
1772 }
1773 
sci_tx_interrupt(int irq,void * ptr)1774 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1775 {
1776 	struct uart_port *port = ptr;
1777 	unsigned long flags;
1778 
1779 	spin_lock_irqsave(&port->lock, flags);
1780 	sci_transmit_chars(port);
1781 	spin_unlock_irqrestore(&port->lock, flags);
1782 
1783 	return IRQ_HANDLED;
1784 }
1785 
sci_tx_end_interrupt(int irq,void * ptr)1786 static irqreturn_t sci_tx_end_interrupt(int irq, void *ptr)
1787 {
1788 	struct uart_port *port = ptr;
1789 	unsigned long flags;
1790 	unsigned short ctrl;
1791 
1792 	if (port->type != PORT_SCI)
1793 		return sci_tx_interrupt(irq, ptr);
1794 
1795 	spin_lock_irqsave(&port->lock, flags);
1796 	ctrl = serial_port_in(port, SCSCR);
1797 	ctrl &= ~(SCSCR_TE | SCSCR_TEIE);
1798 	serial_port_out(port, SCSCR, ctrl);
1799 	spin_unlock_irqrestore(&port->lock, flags);
1800 
1801 	return IRQ_HANDLED;
1802 }
1803 
sci_br_interrupt(int irq,void * ptr)1804 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1805 {
1806 	struct uart_port *port = ptr;
1807 
1808 	/* Handle BREAKs */
1809 	sci_handle_breaks(port);
1810 
1811 	/* drop invalid character received before break was detected */
1812 	serial_port_in(port, SCxRDR);
1813 
1814 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1815 
1816 	return IRQ_HANDLED;
1817 }
1818 
sci_er_interrupt(int irq,void * ptr)1819 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1820 {
1821 	struct uart_port *port = ptr;
1822 	struct sci_port *s = to_sci_port(port);
1823 
1824 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1825 		/* Break and Error interrupts are muxed */
1826 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1827 
1828 		/* Break Interrupt */
1829 		if (ssr_status & SCxSR_BRK(port))
1830 			sci_br_interrupt(irq, ptr);
1831 
1832 		/* Break only? */
1833 		if (!(ssr_status & SCxSR_ERRORS(port)))
1834 			return IRQ_HANDLED;
1835 	}
1836 
1837 	/* Handle errors */
1838 	if (port->type == PORT_SCI) {
1839 		if (sci_handle_errors(port)) {
1840 			/* discard character in rx buffer */
1841 			serial_port_in(port, SCxSR);
1842 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1843 		}
1844 	} else {
1845 		sci_handle_fifo_overrun(port);
1846 		if (!s->chan_rx)
1847 			sci_receive_chars(port);
1848 	}
1849 
1850 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1851 
1852 	/* Kick the transmission */
1853 	if (!s->chan_tx)
1854 		sci_tx_interrupt(irq, ptr);
1855 
1856 	return IRQ_HANDLED;
1857 }
1858 
sci_mpxed_interrupt(int irq,void * ptr)1859 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1860 {
1861 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1862 	struct uart_port *port = ptr;
1863 	struct sci_port *s = to_sci_port(port);
1864 	irqreturn_t ret = IRQ_NONE;
1865 
1866 	ssr_status = serial_port_in(port, SCxSR);
1867 	scr_status = serial_port_in(port, SCSCR);
1868 	if (s->params->overrun_reg == SCxSR)
1869 		orer_status = ssr_status;
1870 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1871 		orer_status = serial_port_in(port, s->params->overrun_reg);
1872 
1873 	err_enabled = scr_status & port_rx_irq_mask(port);
1874 
1875 	/* Tx Interrupt */
1876 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1877 	    !s->chan_tx)
1878 		ret = sci_tx_interrupt(irq, ptr);
1879 
1880 	/*
1881 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1882 	 * DR flags
1883 	 */
1884 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1885 	    (scr_status & SCSCR_RIE))
1886 		ret = sci_rx_interrupt(irq, ptr);
1887 
1888 	/* Error Interrupt */
1889 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1890 		ret = sci_er_interrupt(irq, ptr);
1891 
1892 	/* Break Interrupt */
1893 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1894 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1895 		ret = sci_br_interrupt(irq, ptr);
1896 
1897 	/* Overrun Interrupt */
1898 	if (orer_status & s->params->overrun_mask) {
1899 		sci_handle_fifo_overrun(port);
1900 		ret = IRQ_HANDLED;
1901 	}
1902 
1903 	return ret;
1904 }
1905 
1906 static const struct sci_irq_desc {
1907 	const char	*desc;
1908 	irq_handler_t	handler;
1909 } sci_irq_desc[] = {
1910 	/*
1911 	 * Split out handlers, the default case.
1912 	 */
1913 	[SCIx_ERI_IRQ] = {
1914 		.desc = "rx err",
1915 		.handler = sci_er_interrupt,
1916 	},
1917 
1918 	[SCIx_RXI_IRQ] = {
1919 		.desc = "rx full",
1920 		.handler = sci_rx_interrupt,
1921 	},
1922 
1923 	[SCIx_TXI_IRQ] = {
1924 		.desc = "tx empty",
1925 		.handler = sci_tx_interrupt,
1926 	},
1927 
1928 	[SCIx_BRI_IRQ] = {
1929 		.desc = "break",
1930 		.handler = sci_br_interrupt,
1931 	},
1932 
1933 	[SCIx_DRI_IRQ] = {
1934 		.desc = "rx ready",
1935 		.handler = sci_rx_interrupt,
1936 	},
1937 
1938 	[SCIx_TEI_IRQ] = {
1939 		.desc = "tx end",
1940 		.handler = sci_tx_end_interrupt,
1941 	},
1942 
1943 	/*
1944 	 * Special muxed handler.
1945 	 */
1946 	[SCIx_MUX_IRQ] = {
1947 		.desc = "mux",
1948 		.handler = sci_mpxed_interrupt,
1949 	},
1950 };
1951 
sci_request_irq(struct sci_port * port)1952 static int sci_request_irq(struct sci_port *port)
1953 {
1954 	struct uart_port *up = &port->port;
1955 	int i, j, w, ret = 0;
1956 
1957 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1958 		const struct sci_irq_desc *desc;
1959 		int irq;
1960 
1961 		/* Check if already registered (muxed) */
1962 		for (w = 0; w < i; w++)
1963 			if (port->irqs[w] == port->irqs[i])
1964 				w = i + 1;
1965 		if (w > i)
1966 			continue;
1967 
1968 		if (SCIx_IRQ_IS_MUXED(port)) {
1969 			i = SCIx_MUX_IRQ;
1970 			irq = up->irq;
1971 		} else {
1972 			irq = port->irqs[i];
1973 
1974 			/*
1975 			 * Certain port types won't support all of the
1976 			 * available interrupt sources.
1977 			 */
1978 			if (unlikely(irq < 0))
1979 				continue;
1980 		}
1981 
1982 		desc = sci_irq_desc + i;
1983 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1984 					    dev_name(up->dev), desc->desc);
1985 		if (!port->irqstr[j]) {
1986 			ret = -ENOMEM;
1987 			goto out_nomem;
1988 		}
1989 
1990 		ret = request_irq(irq, desc->handler, up->irqflags,
1991 				  port->irqstr[j], port);
1992 		if (unlikely(ret)) {
1993 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1994 			goto out_noirq;
1995 		}
1996 	}
1997 
1998 	return 0;
1999 
2000 out_noirq:
2001 	while (--i >= 0)
2002 		free_irq(port->irqs[i], port);
2003 
2004 out_nomem:
2005 	while (--j >= 0)
2006 		kfree(port->irqstr[j]);
2007 
2008 	return ret;
2009 }
2010 
sci_free_irq(struct sci_port * port)2011 static void sci_free_irq(struct sci_port *port)
2012 {
2013 	int i, j;
2014 
2015 	/*
2016 	 * Intentionally in reverse order so we iterate over the muxed
2017 	 * IRQ first.
2018 	 */
2019 	for (i = 0; i < SCIx_NR_IRQS; i++) {
2020 		int irq = port->irqs[i];
2021 
2022 		/*
2023 		 * Certain port types won't support all of the available
2024 		 * interrupt sources.
2025 		 */
2026 		if (unlikely(irq < 0))
2027 			continue;
2028 
2029 		/* Check if already freed (irq was muxed) */
2030 		for (j = 0; j < i; j++)
2031 			if (port->irqs[j] == irq)
2032 				j = i + 1;
2033 		if (j > i)
2034 			continue;
2035 
2036 		free_irq(port->irqs[i], port);
2037 		kfree(port->irqstr[i]);
2038 
2039 		if (SCIx_IRQ_IS_MUXED(port)) {
2040 			/* If there's only one IRQ, we're done. */
2041 			return;
2042 		}
2043 	}
2044 }
2045 
sci_tx_empty(struct uart_port * port)2046 static unsigned int sci_tx_empty(struct uart_port *port)
2047 {
2048 	unsigned short status = serial_port_in(port, SCxSR);
2049 	unsigned short in_tx_fifo = sci_txfill(port);
2050 
2051 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2052 }
2053 
sci_set_rts(struct uart_port * port,bool state)2054 static void sci_set_rts(struct uart_port *port, bool state)
2055 {
2056 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2057 		u16 data = serial_port_in(port, SCPDR);
2058 
2059 		/* Active low */
2060 		if (state)
2061 			data &= ~SCPDR_RTSD;
2062 		else
2063 			data |= SCPDR_RTSD;
2064 		serial_port_out(port, SCPDR, data);
2065 
2066 		/* RTS# is output */
2067 		serial_port_out(port, SCPCR,
2068 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2069 	} else if (sci_getreg(port, SCSPTR)->size) {
2070 		u16 ctrl = serial_port_in(port, SCSPTR);
2071 
2072 		/* Active low */
2073 		if (state)
2074 			ctrl &= ~SCSPTR_RTSDT;
2075 		else
2076 			ctrl |= SCSPTR_RTSDT;
2077 		serial_port_out(port, SCSPTR, ctrl);
2078 	}
2079 }
2080 
sci_get_cts(struct uart_port * port)2081 static bool sci_get_cts(struct uart_port *port)
2082 {
2083 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2084 		/* Active low */
2085 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2086 	} else if (sci_getreg(port, SCSPTR)->size) {
2087 		/* Active low */
2088 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2089 	}
2090 
2091 	return true;
2092 }
2093 
2094 /*
2095  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2096  * CTS/RTS is supported in hardware by at least one port and controlled
2097  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2098  * handled via the ->init_pins() op, which is a bit of a one-way street,
2099  * lacking any ability to defer pin control -- this will later be
2100  * converted over to the GPIO framework).
2101  *
2102  * Other modes (such as loopback) are supported generically on certain
2103  * port types, but not others. For these it's sufficient to test for the
2104  * existence of the support register and simply ignore the port type.
2105  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2106 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2107 {
2108 	struct sci_port *s = to_sci_port(port);
2109 
2110 	if (mctrl & TIOCM_LOOP) {
2111 		const struct plat_sci_reg *reg;
2112 
2113 		/*
2114 		 * Standard loopback mode for SCFCR ports.
2115 		 */
2116 		reg = sci_getreg(port, SCFCR);
2117 		if (reg->size)
2118 			serial_port_out(port, SCFCR,
2119 					serial_port_in(port, SCFCR) |
2120 					SCFCR_LOOP);
2121 	}
2122 
2123 	mctrl_gpio_set(s->gpios, mctrl);
2124 
2125 	if (!s->has_rtscts)
2126 		return;
2127 
2128 	if (!(mctrl & TIOCM_RTS)) {
2129 		/* Disable Auto RTS */
2130 		serial_port_out(port, SCFCR,
2131 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2132 
2133 		/* Clear RTS */
2134 		sci_set_rts(port, 0);
2135 	} else if (s->autorts) {
2136 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2137 			/* Enable RTS# pin function */
2138 			serial_port_out(port, SCPCR,
2139 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2140 		}
2141 
2142 		/* Enable Auto RTS */
2143 		serial_port_out(port, SCFCR,
2144 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2145 	} else {
2146 		/* Set RTS */
2147 		sci_set_rts(port, 1);
2148 	}
2149 }
2150 
sci_get_mctrl(struct uart_port * port)2151 static unsigned int sci_get_mctrl(struct uart_port *port)
2152 {
2153 	struct sci_port *s = to_sci_port(port);
2154 	struct mctrl_gpios *gpios = s->gpios;
2155 	unsigned int mctrl = 0;
2156 
2157 	mctrl_gpio_get(gpios, &mctrl);
2158 
2159 	/*
2160 	 * CTS/RTS is handled in hardware when supported, while nothing
2161 	 * else is wired up.
2162 	 */
2163 	if (s->autorts) {
2164 		if (sci_get_cts(port))
2165 			mctrl |= TIOCM_CTS;
2166 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2167 		mctrl |= TIOCM_CTS;
2168 	}
2169 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2170 		mctrl |= TIOCM_DSR;
2171 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2172 		mctrl |= TIOCM_CAR;
2173 
2174 	return mctrl;
2175 }
2176 
sci_enable_ms(struct uart_port * port)2177 static void sci_enable_ms(struct uart_port *port)
2178 {
2179 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2180 }
2181 
sci_break_ctl(struct uart_port * port,int break_state)2182 static void sci_break_ctl(struct uart_port *port, int break_state)
2183 {
2184 	unsigned short scscr, scsptr;
2185 	unsigned long flags;
2186 
2187 	/* check whether the port has SCSPTR */
2188 	if (!sci_getreg(port, SCSPTR)->size) {
2189 		/*
2190 		 * Not supported by hardware. Most parts couple break and rx
2191 		 * interrupts together, with break detection always enabled.
2192 		 */
2193 		return;
2194 	}
2195 
2196 	spin_lock_irqsave(&port->lock, flags);
2197 	scsptr = serial_port_in(port, SCSPTR);
2198 	scscr = serial_port_in(port, SCSCR);
2199 
2200 	if (break_state == -1) {
2201 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2202 		scscr &= ~SCSCR_TE;
2203 	} else {
2204 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2205 		scscr |= SCSCR_TE;
2206 	}
2207 
2208 	serial_port_out(port, SCSPTR, scsptr);
2209 	serial_port_out(port, SCSCR, scscr);
2210 	spin_unlock_irqrestore(&port->lock, flags);
2211 }
2212 
sci_startup(struct uart_port * port)2213 static int sci_startup(struct uart_port *port)
2214 {
2215 	struct sci_port *s = to_sci_port(port);
2216 	int ret;
2217 
2218 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2219 
2220 	sci_request_dma(port);
2221 
2222 	ret = sci_request_irq(s);
2223 	if (unlikely(ret < 0)) {
2224 		sci_free_dma(port);
2225 		return ret;
2226 	}
2227 
2228 	return 0;
2229 }
2230 
sci_shutdown(struct uart_port * port)2231 static void sci_shutdown(struct uart_port *port)
2232 {
2233 	struct sci_port *s = to_sci_port(port);
2234 	unsigned long flags;
2235 	u16 scr;
2236 
2237 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2238 
2239 	s->autorts = false;
2240 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2241 
2242 	spin_lock_irqsave(&port->lock, flags);
2243 	sci_stop_rx(port);
2244 	sci_stop_tx(port);
2245 	/*
2246 	 * Stop RX and TX, disable related interrupts, keep clock source
2247 	 * and HSCIF TOT bits
2248 	 */
2249 	scr = serial_port_in(port, SCSCR);
2250 	serial_port_out(port, SCSCR, scr &
2251 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2252 	spin_unlock_irqrestore(&port->lock, flags);
2253 
2254 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2255 	if (s->chan_rx_saved) {
2256 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2257 			port->line);
2258 		hrtimer_cancel(&s->rx_timer);
2259 	}
2260 #endif
2261 
2262 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2263 		del_timer_sync(&s->rx_fifo_timer);
2264 	sci_free_irq(s);
2265 	sci_free_dma(port);
2266 }
2267 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2268 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2269 			unsigned int *srr)
2270 {
2271 	unsigned long freq = s->clk_rates[SCI_SCK];
2272 	int err, min_err = INT_MAX;
2273 	unsigned int sr;
2274 
2275 	if (s->port.type != PORT_HSCIF)
2276 		freq *= 2;
2277 
2278 	for_each_sr(sr, s) {
2279 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2280 		if (abs(err) >= abs(min_err))
2281 			continue;
2282 
2283 		min_err = err;
2284 		*srr = sr - 1;
2285 
2286 		if (!err)
2287 			break;
2288 	}
2289 
2290 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2291 		*srr + 1);
2292 	return min_err;
2293 }
2294 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2295 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2296 			unsigned long freq, unsigned int *dlr,
2297 			unsigned int *srr)
2298 {
2299 	int err, min_err = INT_MAX;
2300 	unsigned int sr, dl;
2301 
2302 	if (s->port.type != PORT_HSCIF)
2303 		freq *= 2;
2304 
2305 	for_each_sr(sr, s) {
2306 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2307 		dl = clamp(dl, 1U, 65535U);
2308 
2309 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2310 		if (abs(err) >= abs(min_err))
2311 			continue;
2312 
2313 		min_err = err;
2314 		*dlr = dl;
2315 		*srr = sr - 1;
2316 
2317 		if (!err)
2318 			break;
2319 	}
2320 
2321 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2322 		min_err, *dlr, *srr + 1);
2323 	return min_err;
2324 }
2325 
2326 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2327 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2328 			  unsigned int *brr, unsigned int *srr,
2329 			  unsigned int *cks)
2330 {
2331 	unsigned long freq = s->clk_rates[SCI_FCK];
2332 	unsigned int sr, br, prediv, scrate, c;
2333 	int err, min_err = INT_MAX;
2334 
2335 	if (s->port.type != PORT_HSCIF)
2336 		freq *= 2;
2337 
2338 	/*
2339 	 * Find the combination of sample rate and clock select with the
2340 	 * smallest deviation from the desired baud rate.
2341 	 * Prefer high sample rates to maximise the receive margin.
2342 	 *
2343 	 * M: Receive margin (%)
2344 	 * N: Ratio of bit rate to clock (N = sampling rate)
2345 	 * D: Clock duty (D = 0 to 1.0)
2346 	 * L: Frame length (L = 9 to 12)
2347 	 * F: Absolute value of clock frequency deviation
2348 	 *
2349 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2350 	 *      (|D - 0.5| / N * (1 + F))|
2351 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2352 	 */
2353 	for_each_sr(sr, s) {
2354 		for (c = 0; c <= 3; c++) {
2355 			/* integerized formulas from HSCIF documentation */
2356 			prediv = sr << (2 * c + 1);
2357 
2358 			/*
2359 			 * We need to calculate:
2360 			 *
2361 			 *     br = freq / (prediv * bps) clamped to [1..256]
2362 			 *     err = freq / (br * prediv) - bps
2363 			 *
2364 			 * Watch out for overflow when calculating the desired
2365 			 * sampling clock rate!
2366 			 */
2367 			if (bps > UINT_MAX / prediv)
2368 				break;
2369 
2370 			scrate = prediv * bps;
2371 			br = DIV_ROUND_CLOSEST(freq, scrate);
2372 			br = clamp(br, 1U, 256U);
2373 
2374 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2375 			if (abs(err) >= abs(min_err))
2376 				continue;
2377 
2378 			min_err = err;
2379 			*brr = br - 1;
2380 			*srr = sr - 1;
2381 			*cks = c;
2382 
2383 			if (!err)
2384 				goto found;
2385 		}
2386 	}
2387 
2388 found:
2389 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2390 		min_err, *brr, *srr + 1, *cks);
2391 	return min_err;
2392 }
2393 
sci_reset(struct uart_port * port)2394 static void sci_reset(struct uart_port *port)
2395 {
2396 	const struct plat_sci_reg *reg;
2397 	unsigned int status;
2398 	struct sci_port *s = to_sci_port(port);
2399 
2400 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2401 
2402 	reg = sci_getreg(port, SCFCR);
2403 	if (reg->size)
2404 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2405 
2406 	sci_clear_SCxSR(port,
2407 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2408 			SCxSR_BREAK_CLEAR(port));
2409 	if (sci_getreg(port, SCLSR)->size) {
2410 		status = serial_port_in(port, SCLSR);
2411 		status &= ~(SCLSR_TO | SCLSR_ORER);
2412 		serial_port_out(port, SCLSR, status);
2413 	}
2414 
2415 	if (s->rx_trigger > 1) {
2416 		if (s->rx_fifo_timeout) {
2417 			scif_set_rtrg(port, 1);
2418 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2419 		} else {
2420 			if (port->type == PORT_SCIFA ||
2421 			    port->type == PORT_SCIFB)
2422 				scif_set_rtrg(port, 1);
2423 			else
2424 				scif_set_rtrg(port, s->rx_trigger);
2425 		}
2426 	}
2427 }
2428 
sci_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2429 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2430 		            const struct ktermios *old)
2431 {
2432 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2433 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2434 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2435 	struct sci_port *s = to_sci_port(port);
2436 	const struct plat_sci_reg *reg;
2437 	int min_err = INT_MAX, err;
2438 	unsigned long max_freq = 0;
2439 	int best_clk = -1;
2440 	unsigned long flags;
2441 
2442 	if ((termios->c_cflag & CSIZE) == CS7) {
2443 		smr_val |= SCSMR_CHR;
2444 	} else {
2445 		termios->c_cflag &= ~CSIZE;
2446 		termios->c_cflag |= CS8;
2447 	}
2448 	if (termios->c_cflag & PARENB)
2449 		smr_val |= SCSMR_PE;
2450 	if (termios->c_cflag & PARODD)
2451 		smr_val |= SCSMR_PE | SCSMR_ODD;
2452 	if (termios->c_cflag & CSTOPB)
2453 		smr_val |= SCSMR_STOP;
2454 
2455 	/*
2456 	 * earlyprintk comes here early on with port->uartclk set to zero.
2457 	 * the clock framework is not up and running at this point so here
2458 	 * we assume that 115200 is the maximum baud rate. please note that
2459 	 * the baud rate is not programmed during earlyprintk - it is assumed
2460 	 * that the previous boot loader has enabled required clocks and
2461 	 * setup the baud rate generator hardware for us already.
2462 	 */
2463 	if (!port->uartclk) {
2464 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2465 		goto done;
2466 	}
2467 
2468 	for (i = 0; i < SCI_NUM_CLKS; i++)
2469 		max_freq = max(max_freq, s->clk_rates[i]);
2470 
2471 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2472 	if (!baud)
2473 		goto done;
2474 
2475 	/*
2476 	 * There can be multiple sources for the sampling clock.  Find the one
2477 	 * that gives us the smallest deviation from the desired baud rate.
2478 	 */
2479 
2480 	/* Optional Undivided External Clock */
2481 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2482 	    port->type != PORT_SCIFB) {
2483 		err = sci_sck_calc(s, baud, &srr1);
2484 		if (abs(err) < abs(min_err)) {
2485 			best_clk = SCI_SCK;
2486 			scr_val = SCSCR_CKE1;
2487 			sccks = SCCKS_CKS;
2488 			min_err = err;
2489 			srr = srr1;
2490 			if (!err)
2491 				goto done;
2492 		}
2493 	}
2494 
2495 	/* Optional BRG Frequency Divided External Clock */
2496 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2497 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2498 				   &srr1);
2499 		if (abs(err) < abs(min_err)) {
2500 			best_clk = SCI_SCIF_CLK;
2501 			scr_val = SCSCR_CKE1;
2502 			sccks = 0;
2503 			min_err = err;
2504 			dl = dl1;
2505 			srr = srr1;
2506 			if (!err)
2507 				goto done;
2508 		}
2509 	}
2510 
2511 	/* Optional BRG Frequency Divided Internal Clock */
2512 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2513 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2514 				   &srr1);
2515 		if (abs(err) < abs(min_err)) {
2516 			best_clk = SCI_BRG_INT;
2517 			scr_val = SCSCR_CKE1;
2518 			sccks = SCCKS_XIN;
2519 			min_err = err;
2520 			dl = dl1;
2521 			srr = srr1;
2522 			if (!min_err)
2523 				goto done;
2524 		}
2525 	}
2526 
2527 	/* Divided Functional Clock using standard Bit Rate Register */
2528 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2529 	if (abs(err) < abs(min_err)) {
2530 		best_clk = SCI_FCK;
2531 		scr_val = 0;
2532 		min_err = err;
2533 		brr = brr1;
2534 		srr = srr1;
2535 		cks = cks1;
2536 	}
2537 
2538 done:
2539 	if (best_clk >= 0)
2540 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2541 			s->clks[best_clk], baud, min_err);
2542 
2543 	sci_port_enable(s);
2544 
2545 	/*
2546 	 * Program the optional External Baud Rate Generator (BRG) first.
2547 	 * It controls the mux to select (H)SCK or frequency divided clock.
2548 	 */
2549 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2550 		serial_port_out(port, SCDL, dl);
2551 		serial_port_out(port, SCCKS, sccks);
2552 	}
2553 
2554 	spin_lock_irqsave(&port->lock, flags);
2555 
2556 	sci_reset(port);
2557 
2558 	uart_update_timeout(port, termios->c_cflag, baud);
2559 
2560 	/* byte size and parity */
2561 	bits = tty_get_frame_size(termios->c_cflag);
2562 
2563 	if (sci_getreg(port, SEMR)->size)
2564 		serial_port_out(port, SEMR, 0);
2565 
2566 	if (best_clk >= 0) {
2567 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2568 			switch (srr + 1) {
2569 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2570 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2571 			case 11: smr_val |= SCSMR_SRC_11; break;
2572 			case 13: smr_val |= SCSMR_SRC_13; break;
2573 			case 16: smr_val |= SCSMR_SRC_16; break;
2574 			case 17: smr_val |= SCSMR_SRC_17; break;
2575 			case 19: smr_val |= SCSMR_SRC_19; break;
2576 			case 27: smr_val |= SCSMR_SRC_27; break;
2577 			}
2578 		smr_val |= cks;
2579 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2580 		serial_port_out(port, SCSMR, smr_val);
2581 		serial_port_out(port, SCBRR, brr);
2582 		if (sci_getreg(port, HSSRR)->size) {
2583 			unsigned int hssrr = srr | HSCIF_SRE;
2584 			/* Calculate deviation from intended rate at the
2585 			 * center of the last stop bit in sampling clocks.
2586 			 */
2587 			int last_stop = bits * 2 - 1;
2588 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2589 							  (int)(srr + 1),
2590 							  2 * (int)baud);
2591 
2592 			if (abs(deviation) >= 2) {
2593 				/* At least two sampling clocks off at the
2594 				 * last stop bit; we can increase the error
2595 				 * margin by shifting the sampling point.
2596 				 */
2597 				int shift = clamp(deviation / 2, -8, 7);
2598 
2599 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2600 					 HSCIF_SRHP_MASK;
2601 				hssrr |= HSCIF_SRDE;
2602 			}
2603 			serial_port_out(port, HSSRR, hssrr);
2604 		}
2605 
2606 		/* Wait one bit interval */
2607 		udelay((1000000 + (baud - 1)) / baud);
2608 	} else {
2609 		/* Don't touch the bit rate configuration */
2610 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2611 		smr_val |= serial_port_in(port, SCSMR) &
2612 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2613 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2614 		serial_port_out(port, SCSMR, smr_val);
2615 	}
2616 
2617 	sci_init_pins(port, termios->c_cflag);
2618 
2619 	port->status &= ~UPSTAT_AUTOCTS;
2620 	s->autorts = false;
2621 	reg = sci_getreg(port, SCFCR);
2622 	if (reg->size) {
2623 		unsigned short ctrl = serial_port_in(port, SCFCR);
2624 
2625 		if ((port->flags & UPF_HARD_FLOW) &&
2626 		    (termios->c_cflag & CRTSCTS)) {
2627 			/* There is no CTS interrupt to restart the hardware */
2628 			port->status |= UPSTAT_AUTOCTS;
2629 			/* MCE is enabled when RTS is raised */
2630 			s->autorts = true;
2631 		}
2632 
2633 		/*
2634 		 * As we've done a sci_reset() above, ensure we don't
2635 		 * interfere with the FIFOs while toggling MCE. As the
2636 		 * reset values could still be set, simply mask them out.
2637 		 */
2638 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2639 
2640 		serial_port_out(port, SCFCR, ctrl);
2641 	}
2642 	if (port->flags & UPF_HARD_FLOW) {
2643 		/* Refresh (Auto) RTS */
2644 		sci_set_mctrl(port, port->mctrl);
2645 	}
2646 
2647 	/*
2648 	 * For SCI, TE (transmit enable) must be set after setting TIE
2649 	 * (transmit interrupt enable) or in the same instruction to
2650 	 * start the transmitting process. So skip setting TE here for SCI.
2651 	 */
2652 	if (port->type != PORT_SCI)
2653 		scr_val |= SCSCR_TE;
2654 	scr_val |= SCSCR_RE | (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2655 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2656 	if ((srr + 1 == 5) &&
2657 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2658 		/*
2659 		 * In asynchronous mode, when the sampling rate is 1/5, first
2660 		 * received data may become invalid on some SCIFA and SCIFB.
2661 		 * To avoid this problem wait more than 1 serial data time (1
2662 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2663 		 */
2664 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2665 	}
2666 
2667 	/* Calculate delay for 2 DMA buffers (4 FIFO). */
2668 	s->rx_frame = (10000 * bits) / (baud / 100);
2669 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2670 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2671 #endif
2672 
2673 	if ((termios->c_cflag & CREAD) != 0)
2674 		sci_start_rx(port);
2675 
2676 	spin_unlock_irqrestore(&port->lock, flags);
2677 
2678 	sci_port_disable(s);
2679 
2680 	if (UART_ENABLE_MS(port, termios->c_cflag))
2681 		sci_enable_ms(port);
2682 }
2683 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2684 static void sci_pm(struct uart_port *port, unsigned int state,
2685 		   unsigned int oldstate)
2686 {
2687 	struct sci_port *sci_port = to_sci_port(port);
2688 
2689 	switch (state) {
2690 	case UART_PM_STATE_OFF:
2691 		sci_port_disable(sci_port);
2692 		break;
2693 	default:
2694 		sci_port_enable(sci_port);
2695 		break;
2696 	}
2697 }
2698 
sci_type(struct uart_port * port)2699 static const char *sci_type(struct uart_port *port)
2700 {
2701 	switch (port->type) {
2702 	case PORT_IRDA:
2703 		return "irda";
2704 	case PORT_SCI:
2705 		return "sci";
2706 	case PORT_SCIF:
2707 		return "scif";
2708 	case PORT_SCIFA:
2709 		return "scifa";
2710 	case PORT_SCIFB:
2711 		return "scifb";
2712 	case PORT_HSCIF:
2713 		return "hscif";
2714 	}
2715 
2716 	return NULL;
2717 }
2718 
sci_remap_port(struct uart_port * port)2719 static int sci_remap_port(struct uart_port *port)
2720 {
2721 	struct sci_port *sport = to_sci_port(port);
2722 
2723 	/*
2724 	 * Nothing to do if there's already an established membase.
2725 	 */
2726 	if (port->membase)
2727 		return 0;
2728 
2729 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2730 		port->membase = ioremap(port->mapbase, sport->reg_size);
2731 		if (unlikely(!port->membase)) {
2732 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2733 			return -ENXIO;
2734 		}
2735 	} else {
2736 		/*
2737 		 * For the simple (and majority of) cases where we don't
2738 		 * need to do any remapping, just cast the cookie
2739 		 * directly.
2740 		 */
2741 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
sci_release_port(struct uart_port * port)2747 static void sci_release_port(struct uart_port *port)
2748 {
2749 	struct sci_port *sport = to_sci_port(port);
2750 
2751 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2752 		iounmap(port->membase);
2753 		port->membase = NULL;
2754 	}
2755 
2756 	release_mem_region(port->mapbase, sport->reg_size);
2757 }
2758 
sci_request_port(struct uart_port * port)2759 static int sci_request_port(struct uart_port *port)
2760 {
2761 	struct resource *res;
2762 	struct sci_port *sport = to_sci_port(port);
2763 	int ret;
2764 
2765 	res = request_mem_region(port->mapbase, sport->reg_size,
2766 				 dev_name(port->dev));
2767 	if (unlikely(res == NULL)) {
2768 		dev_err(port->dev, "request_mem_region failed.");
2769 		return -EBUSY;
2770 	}
2771 
2772 	ret = sci_remap_port(port);
2773 	if (unlikely(ret != 0)) {
2774 		release_resource(res);
2775 		return ret;
2776 	}
2777 
2778 	return 0;
2779 }
2780 
sci_config_port(struct uart_port * port,int flags)2781 static void sci_config_port(struct uart_port *port, int flags)
2782 {
2783 	if (flags & UART_CONFIG_TYPE) {
2784 		struct sci_port *sport = to_sci_port(port);
2785 
2786 		port->type = sport->cfg->type;
2787 		sci_request_port(port);
2788 	}
2789 }
2790 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2791 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2792 {
2793 	if (ser->baud_base < 2400)
2794 		/* No paper tape reader for Mitch.. */
2795 		return -EINVAL;
2796 
2797 	return 0;
2798 }
2799 
2800 static const struct uart_ops sci_uart_ops = {
2801 	.tx_empty	= sci_tx_empty,
2802 	.set_mctrl	= sci_set_mctrl,
2803 	.get_mctrl	= sci_get_mctrl,
2804 	.start_tx	= sci_start_tx,
2805 	.stop_tx	= sci_stop_tx,
2806 	.stop_rx	= sci_stop_rx,
2807 	.enable_ms	= sci_enable_ms,
2808 	.break_ctl	= sci_break_ctl,
2809 	.startup	= sci_startup,
2810 	.shutdown	= sci_shutdown,
2811 	.flush_buffer	= sci_flush_buffer,
2812 	.set_termios	= sci_set_termios,
2813 	.pm		= sci_pm,
2814 	.type		= sci_type,
2815 	.release_port	= sci_release_port,
2816 	.request_port	= sci_request_port,
2817 	.config_port	= sci_config_port,
2818 	.verify_port	= sci_verify_port,
2819 #ifdef CONFIG_CONSOLE_POLL
2820 	.poll_get_char	= sci_poll_get_char,
2821 	.poll_put_char	= sci_poll_put_char,
2822 #endif
2823 };
2824 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2825 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2826 {
2827 	const char *clk_names[] = {
2828 		[SCI_FCK] = "fck",
2829 		[SCI_SCK] = "sck",
2830 		[SCI_BRG_INT] = "brg_int",
2831 		[SCI_SCIF_CLK] = "scif_clk",
2832 	};
2833 	struct clk *clk;
2834 	unsigned int i;
2835 
2836 	if (sci_port->cfg->type == PORT_HSCIF)
2837 		clk_names[SCI_SCK] = "hsck";
2838 
2839 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2840 		clk = devm_clk_get_optional(dev, clk_names[i]);
2841 		if (IS_ERR(clk))
2842 			return PTR_ERR(clk);
2843 
2844 		if (!clk && i == SCI_FCK) {
2845 			/*
2846 			 * Not all SH platforms declare a clock lookup entry
2847 			 * for SCI devices, in which case we need to get the
2848 			 * global "peripheral_clk" clock.
2849 			 */
2850 			clk = devm_clk_get(dev, "peripheral_clk");
2851 			if (IS_ERR(clk))
2852 				return dev_err_probe(dev, PTR_ERR(clk),
2853 						     "failed to get %s\n",
2854 						     clk_names[i]);
2855 		}
2856 
2857 		if (!clk)
2858 			dev_dbg(dev, "failed to get %s\n", clk_names[i]);
2859 		else
2860 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2861 				clk, clk_get_rate(clk));
2862 		sci_port->clks[i] = clk;
2863 	}
2864 	return 0;
2865 }
2866 
2867 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg)2868 sci_probe_regmap(const struct plat_sci_port *cfg)
2869 {
2870 	unsigned int regtype;
2871 
2872 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2873 		return &sci_port_params[cfg->regtype];
2874 
2875 	switch (cfg->type) {
2876 	case PORT_SCI:
2877 		regtype = SCIx_SCI_REGTYPE;
2878 		break;
2879 	case PORT_IRDA:
2880 		regtype = SCIx_IRDA_REGTYPE;
2881 		break;
2882 	case PORT_SCIFA:
2883 		regtype = SCIx_SCIFA_REGTYPE;
2884 		break;
2885 	case PORT_SCIFB:
2886 		regtype = SCIx_SCIFB_REGTYPE;
2887 		break;
2888 	case PORT_SCIF:
2889 		/*
2890 		 * The SH-4 is a bit of a misnomer here, although that's
2891 		 * where this particular port layout originated. This
2892 		 * configuration (or some slight variation thereof)
2893 		 * remains the dominant model for all SCIFs.
2894 		 */
2895 		regtype = SCIx_SH4_SCIF_REGTYPE;
2896 		break;
2897 	case PORT_HSCIF:
2898 		regtype = SCIx_HSCIF_REGTYPE;
2899 		break;
2900 	default:
2901 		pr_err("Can't probe register map for given port\n");
2902 		return NULL;
2903 	}
2904 
2905 	return &sci_port_params[regtype];
2906 }
2907 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)2908 static int sci_init_single(struct platform_device *dev,
2909 			   struct sci_port *sci_port, unsigned int index,
2910 			   const struct plat_sci_port *p, bool early)
2911 {
2912 	struct uart_port *port = &sci_port->port;
2913 	const struct resource *res;
2914 	unsigned int i;
2915 	int ret;
2916 
2917 	sci_port->cfg	= p;
2918 
2919 	port->ops	= &sci_uart_ops;
2920 	port->iotype	= UPIO_MEM;
2921 	port->line	= index;
2922 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2923 
2924 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2925 	if (res == NULL)
2926 		return -ENOMEM;
2927 
2928 	port->mapbase = res->start;
2929 	sci_port->reg_size = resource_size(res);
2930 
2931 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2932 		if (i)
2933 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2934 		else
2935 			sci_port->irqs[i] = platform_get_irq(dev, i);
2936 	}
2937 
2938 	/*
2939 	 * The fourth interrupt on SCI port is transmit end interrupt, so
2940 	 * shuffle the interrupts.
2941 	 */
2942 	if (p->type == PORT_SCI)
2943 		swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2944 
2945 	/* The SCI generates several interrupts. They can be muxed together or
2946 	 * connected to different interrupt lines. In the muxed case only one
2947 	 * interrupt resource is specified as there is only one interrupt ID.
2948 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2949 	 * from the SCI, however those signals might have their own individual
2950 	 * interrupt ID numbers, or muxed together with another interrupt.
2951 	 */
2952 	if (sci_port->irqs[0] < 0)
2953 		return -ENXIO;
2954 
2955 	if (sci_port->irqs[1] < 0)
2956 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2957 			sci_port->irqs[i] = sci_port->irqs[0];
2958 
2959 	sci_port->params = sci_probe_regmap(p);
2960 	if (unlikely(sci_port->params == NULL))
2961 		return -EINVAL;
2962 
2963 	switch (p->type) {
2964 	case PORT_SCIFB:
2965 		sci_port->rx_trigger = 48;
2966 		break;
2967 	case PORT_HSCIF:
2968 		sci_port->rx_trigger = 64;
2969 		break;
2970 	case PORT_SCIFA:
2971 		sci_port->rx_trigger = 32;
2972 		break;
2973 	case PORT_SCIF:
2974 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2975 			/* RX triggering not implemented for this IP */
2976 			sci_port->rx_trigger = 1;
2977 		else
2978 			sci_port->rx_trigger = 8;
2979 		break;
2980 	default:
2981 		sci_port->rx_trigger = 1;
2982 		break;
2983 	}
2984 
2985 	sci_port->rx_fifo_timeout = 0;
2986 	sci_port->hscif_tot = 0;
2987 
2988 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2989 	 * match the SoC datasheet, this should be investigated. Let platform
2990 	 * data override the sampling rate for now.
2991 	 */
2992 	sci_port->sampling_rate_mask = p->sampling_rate
2993 				     ? SCI_SR(p->sampling_rate)
2994 				     : sci_port->params->sampling_rate_mask;
2995 
2996 	if (!early) {
2997 		ret = sci_init_clocks(sci_port, &dev->dev);
2998 		if (ret < 0)
2999 			return ret;
3000 
3001 		port->dev = &dev->dev;
3002 
3003 		pm_runtime_enable(&dev->dev);
3004 	}
3005 
3006 	port->type		= p->type;
3007 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3008 	port->fifosize		= sci_port->params->fifosize;
3009 
3010 	if (port->type == PORT_SCI && !dev->dev.of_node) {
3011 		if (sci_port->reg_size >= 0x20)
3012 			port->regshift = 2;
3013 		else
3014 			port->regshift = 1;
3015 	}
3016 
3017 	/*
3018 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3019 	 * for the multi-IRQ ports, which is where we are primarily
3020 	 * concerned with the shutdown path synchronization.
3021 	 *
3022 	 * For the muxed case there's nothing more to do.
3023 	 */
3024 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3025 	port->irqflags		= 0;
3026 
3027 	port->serial_in		= sci_serial_in;
3028 	port->serial_out	= sci_serial_out;
3029 
3030 	return 0;
3031 }
3032 
sci_cleanup_single(struct sci_port * port)3033 static void sci_cleanup_single(struct sci_port *port)
3034 {
3035 	pm_runtime_disable(port->port.dev);
3036 }
3037 
3038 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3039     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,unsigned char ch)3040 static void serial_console_putchar(struct uart_port *port, unsigned char ch)
3041 {
3042 	sci_poll_put_char(port, ch);
3043 }
3044 
3045 /*
3046  *	Print a string to the serial port trying not to disturb
3047  *	any possible real use of the port...
3048  */
serial_console_write(struct console * co,const char * s,unsigned count)3049 static void serial_console_write(struct console *co, const char *s,
3050 				 unsigned count)
3051 {
3052 	struct sci_port *sci_port = &sci_ports[co->index];
3053 	struct uart_port *port = &sci_port->port;
3054 	unsigned short bits, ctrl, ctrl_temp;
3055 	unsigned long flags;
3056 	int locked = 1;
3057 
3058 	if (port->sysrq)
3059 		locked = 0;
3060 	else if (oops_in_progress)
3061 		locked = spin_trylock_irqsave(&port->lock, flags);
3062 	else
3063 		spin_lock_irqsave(&port->lock, flags);
3064 
3065 	/* first save SCSCR then disable interrupts, keep clock source */
3066 	ctrl = serial_port_in(port, SCSCR);
3067 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3068 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3069 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3070 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3071 
3072 	uart_console_write(port, s, count, serial_console_putchar);
3073 
3074 	/* wait until fifo is empty and last bit has been transmitted */
3075 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3076 	while ((serial_port_in(port, SCxSR) & bits) != bits)
3077 		cpu_relax();
3078 
3079 	/* restore the SCSCR */
3080 	serial_port_out(port, SCSCR, ctrl);
3081 
3082 	if (locked)
3083 		spin_unlock_irqrestore(&port->lock, flags);
3084 }
3085 
serial_console_setup(struct console * co,char * options)3086 static int serial_console_setup(struct console *co, char *options)
3087 {
3088 	struct sci_port *sci_port;
3089 	struct uart_port *port;
3090 	int baud = 115200;
3091 	int bits = 8;
3092 	int parity = 'n';
3093 	int flow = 'n';
3094 	int ret;
3095 
3096 	/*
3097 	 * Refuse to handle any bogus ports.
3098 	 */
3099 	if (co->index < 0 || co->index >= SCI_NPORTS)
3100 		return -ENODEV;
3101 
3102 	sci_port = &sci_ports[co->index];
3103 	port = &sci_port->port;
3104 
3105 	/*
3106 	 * Refuse to handle uninitialized ports.
3107 	 */
3108 	if (!port->ops)
3109 		return -ENODEV;
3110 
3111 	ret = sci_remap_port(port);
3112 	if (unlikely(ret != 0))
3113 		return ret;
3114 
3115 	if (options)
3116 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3117 
3118 	return uart_set_options(port, co, baud, parity, bits, flow);
3119 }
3120 
3121 static struct console serial_console = {
3122 	.name		= "ttySC",
3123 	.device		= uart_console_device,
3124 	.write		= serial_console_write,
3125 	.setup		= serial_console_setup,
3126 	.flags		= CON_PRINTBUFFER,
3127 	.index		= -1,
3128 	.data		= &sci_uart_driver,
3129 };
3130 
3131 #ifdef CONFIG_SUPERH
3132 static char early_serial_buf[32];
3133 
early_serial_console_setup(struct console * co,char * options)3134 static int early_serial_console_setup(struct console *co, char *options)
3135 {
3136 	/*
3137 	 * This early console is always registered using the earlyprintk=
3138 	 * parameter, which does not call add_preferred_console(). Thus
3139 	 * @options is always NULL and the options for this early console
3140 	 * are passed using a custom buffer.
3141 	 */
3142 	WARN_ON(options);
3143 
3144 	return serial_console_setup(co, early_serial_buf);
3145 }
3146 
3147 static struct console early_serial_console = {
3148 	.name           = "early_ttySC",
3149 	.write          = serial_console_write,
3150 	.setup		= early_serial_console_setup,
3151 	.flags          = CON_PRINTBUFFER,
3152 	.index		= -1,
3153 };
3154 
sci_probe_earlyprintk(struct platform_device * pdev)3155 static int sci_probe_earlyprintk(struct platform_device *pdev)
3156 {
3157 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3158 
3159 	if (early_serial_console.data)
3160 		return -EEXIST;
3161 
3162 	early_serial_console.index = pdev->id;
3163 
3164 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3165 
3166 	if (!strstr(early_serial_buf, "keep"))
3167 		early_serial_console.flags |= CON_BOOT;
3168 
3169 	register_console(&early_serial_console);
3170 	return 0;
3171 }
3172 #endif
3173 
3174 #define SCI_CONSOLE	(&serial_console)
3175 
3176 #else
sci_probe_earlyprintk(struct platform_device * pdev)3177 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3178 {
3179 	return -EINVAL;
3180 }
3181 
3182 #define SCI_CONSOLE	NULL
3183 
3184 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3185 
3186 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3187 
3188 static DEFINE_MUTEX(sci_uart_registration_lock);
3189 static struct uart_driver sci_uart_driver = {
3190 	.owner		= THIS_MODULE,
3191 	.driver_name	= "sci",
3192 	.dev_name	= "ttySC",
3193 	.major		= SCI_MAJOR,
3194 	.minor		= SCI_MINOR_START,
3195 	.nr		= SCI_NPORTS,
3196 	.cons		= SCI_CONSOLE,
3197 };
3198 
sci_remove(struct platform_device * dev)3199 static int sci_remove(struct platform_device *dev)
3200 {
3201 	struct sci_port *port = platform_get_drvdata(dev);
3202 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3203 
3204 	sci_ports_in_use &= ~BIT(port->port.line);
3205 	uart_remove_one_port(&sci_uart_driver, &port->port);
3206 
3207 	sci_cleanup_single(port);
3208 
3209 	if (port->port.fifosize > 1)
3210 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3211 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3212 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3213 
3214 	return 0;
3215 }
3216 
3217 
3218 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3219 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3220 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3221 
3222 static const struct of_device_id of_sci_match[] __maybe_unused = {
3223 	/* SoC-specific types */
3224 	{
3225 		.compatible = "renesas,scif-r7s72100",
3226 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3227 	},
3228 	{
3229 		.compatible = "renesas,scif-r7s9210",
3230 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3231 	},
3232 	{
3233 		.compatible = "renesas,scif-r9a07g044",
3234 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3235 	},
3236 	/* Family-specific types */
3237 	{
3238 		.compatible = "renesas,rcar-gen1-scif",
3239 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3240 	}, {
3241 		.compatible = "renesas,rcar-gen2-scif",
3242 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3243 	}, {
3244 		.compatible = "renesas,rcar-gen3-scif",
3245 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3246 	}, {
3247 		.compatible = "renesas,rcar-gen4-scif",
3248 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3249 	},
3250 	/* Generic types */
3251 	{
3252 		.compatible = "renesas,scif",
3253 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3254 	}, {
3255 		.compatible = "renesas,scifa",
3256 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3257 	}, {
3258 		.compatible = "renesas,scifb",
3259 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3260 	}, {
3261 		.compatible = "renesas,hscif",
3262 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3263 	}, {
3264 		.compatible = "renesas,sci",
3265 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3266 	}, {
3267 		/* Terminator */
3268 	},
3269 };
3270 MODULE_DEVICE_TABLE(of, of_sci_match);
3271 
sci_reset_control_assert(void * data)3272 static void sci_reset_control_assert(void *data)
3273 {
3274 	reset_control_assert(data);
3275 }
3276 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3277 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3278 					  unsigned int *dev_id)
3279 {
3280 	struct device_node *np = pdev->dev.of_node;
3281 	struct reset_control *rstc;
3282 	struct plat_sci_port *p;
3283 	struct sci_port *sp;
3284 	const void *data;
3285 	int id, ret;
3286 
3287 	if (!IS_ENABLED(CONFIG_OF) || !np)
3288 		return ERR_PTR(-EINVAL);
3289 
3290 	data = of_device_get_match_data(&pdev->dev);
3291 
3292 	rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
3293 	if (IS_ERR(rstc))
3294 		return ERR_PTR(dev_err_probe(&pdev->dev, PTR_ERR(rstc),
3295 					     "failed to get reset ctrl\n"));
3296 
3297 	ret = reset_control_deassert(rstc);
3298 	if (ret) {
3299 		dev_err(&pdev->dev, "failed to deassert reset %d\n", ret);
3300 		return ERR_PTR(ret);
3301 	}
3302 
3303 	ret = devm_add_action_or_reset(&pdev->dev, sci_reset_control_assert, rstc);
3304 	if (ret) {
3305 		dev_err(&pdev->dev, "failed to register assert devm action, %d\n",
3306 			ret);
3307 		return ERR_PTR(ret);
3308 	}
3309 
3310 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3311 	if (!p)
3312 		return ERR_PTR(-ENOMEM);
3313 
3314 	/* Get the line number from the aliases node. */
3315 	id = of_alias_get_id(np, "serial");
3316 	if (id < 0 && ~sci_ports_in_use)
3317 		id = ffz(sci_ports_in_use);
3318 	if (id < 0) {
3319 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3320 		return ERR_PTR(-EINVAL);
3321 	}
3322 	if (id >= ARRAY_SIZE(sci_ports)) {
3323 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3324 		return ERR_PTR(-EINVAL);
3325 	}
3326 
3327 	sp = &sci_ports[id];
3328 	*dev_id = id;
3329 
3330 	p->type = SCI_OF_TYPE(data);
3331 	p->regtype = SCI_OF_REGTYPE(data);
3332 
3333 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3334 
3335 	return p;
3336 }
3337 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport)3338 static int sci_probe_single(struct platform_device *dev,
3339 				      unsigned int index,
3340 				      struct plat_sci_port *p,
3341 				      struct sci_port *sciport)
3342 {
3343 	int ret;
3344 
3345 	/* Sanity check */
3346 	if (unlikely(index >= SCI_NPORTS)) {
3347 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3348 			   index+1, SCI_NPORTS);
3349 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3350 		return -EINVAL;
3351 	}
3352 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3353 	if (sci_ports_in_use & BIT(index))
3354 		return -EBUSY;
3355 
3356 	mutex_lock(&sci_uart_registration_lock);
3357 	if (!sci_uart_driver.state) {
3358 		ret = uart_register_driver(&sci_uart_driver);
3359 		if (ret) {
3360 			mutex_unlock(&sci_uart_registration_lock);
3361 			return ret;
3362 		}
3363 	}
3364 	mutex_unlock(&sci_uart_registration_lock);
3365 
3366 	ret = sci_init_single(dev, sciport, index, p, false);
3367 	if (ret)
3368 		return ret;
3369 
3370 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3371 	if (IS_ERR(sciport->gpios))
3372 		return PTR_ERR(sciport->gpios);
3373 
3374 	if (sciport->has_rtscts) {
3375 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3376 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3377 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3378 			return -EINVAL;
3379 		}
3380 		sciport->port.flags |= UPF_HARD_FLOW;
3381 	}
3382 
3383 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3384 	if (ret) {
3385 		sci_cleanup_single(sciport);
3386 		return ret;
3387 	}
3388 
3389 	return 0;
3390 }
3391 
sci_probe(struct platform_device * dev)3392 static int sci_probe(struct platform_device *dev)
3393 {
3394 	struct plat_sci_port *p;
3395 	struct resource *res;
3396 	struct sci_port *sp;
3397 	unsigned int dev_id;
3398 	int ret;
3399 
3400 	/*
3401 	 * If we've come here via earlyprintk initialization, head off to
3402 	 * the special early probe. We don't have sufficient device state
3403 	 * to make it beyond this yet.
3404 	 */
3405 #ifdef CONFIG_SUPERH
3406 	if (is_sh_early_platform_device(dev))
3407 		return sci_probe_earlyprintk(dev);
3408 #endif
3409 
3410 	if (dev->dev.of_node) {
3411 		p = sci_parse_dt(dev, &dev_id);
3412 		if (IS_ERR(p))
3413 			return PTR_ERR(p);
3414 	} else {
3415 		p = dev->dev.platform_data;
3416 		if (p == NULL) {
3417 			dev_err(&dev->dev, "no platform data supplied\n");
3418 			return -EINVAL;
3419 		}
3420 
3421 		dev_id = dev->id;
3422 	}
3423 
3424 	sp = &sci_ports[dev_id];
3425 
3426 	/*
3427 	 * In case:
3428 	 * - the probed port alias is zero (as the one used by earlycon), and
3429 	 * - the earlycon is still active (e.g., "earlycon keep_bootcon" in
3430 	 *   bootargs)
3431 	 *
3432 	 * defer the probe of this serial. This is a debug scenario and the user
3433 	 * must be aware of it.
3434 	 *
3435 	 * Except when the probed port is the same as the earlycon port.
3436 	 */
3437 
3438 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
3439 	if (!res)
3440 		return -ENODEV;
3441 
3442 	if (sci_uart_earlycon && sp == &sci_ports[0] && sp->port.mapbase != res->start)
3443 		return dev_err_probe(&dev->dev, -EBUSY, "sci_port[0] is used by earlycon!\n");
3444 
3445 	platform_set_drvdata(dev, sp);
3446 
3447 	ret = sci_probe_single(dev, dev_id, p, sp);
3448 	if (ret)
3449 		return ret;
3450 
3451 	if (sp->port.fifosize > 1) {
3452 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3453 		if (ret)
3454 			return ret;
3455 	}
3456 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3457 	    sp->port.type == PORT_HSCIF) {
3458 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3459 		if (ret) {
3460 			if (sp->port.fifosize > 1) {
3461 				device_remove_file(&dev->dev,
3462 						   &dev_attr_rx_fifo_trigger);
3463 			}
3464 			return ret;
3465 		}
3466 	}
3467 
3468 #ifdef CONFIG_SH_STANDARD_BIOS
3469 	sh_bios_gdb_detach();
3470 #endif
3471 
3472 	sci_ports_in_use |= BIT(dev_id);
3473 	return 0;
3474 }
3475 
sci_suspend(struct device * dev)3476 static __maybe_unused int sci_suspend(struct device *dev)
3477 {
3478 	struct sci_port *sport = dev_get_drvdata(dev);
3479 
3480 	if (sport)
3481 		uart_suspend_port(&sci_uart_driver, &sport->port);
3482 
3483 	return 0;
3484 }
3485 
sci_resume(struct device * dev)3486 static __maybe_unused int sci_resume(struct device *dev)
3487 {
3488 	struct sci_port *sport = dev_get_drvdata(dev);
3489 
3490 	if (sport)
3491 		uart_resume_port(&sci_uart_driver, &sport->port);
3492 
3493 	return 0;
3494 }
3495 
3496 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3497 
3498 static struct platform_driver sci_driver = {
3499 	.probe		= sci_probe,
3500 	.remove		= sci_remove,
3501 	.driver		= {
3502 		.name	= "sh-sci",
3503 		.pm	= &sci_dev_pm_ops,
3504 		.of_match_table = of_match_ptr(of_sci_match),
3505 	},
3506 };
3507 
sci_init(void)3508 static int __init sci_init(void)
3509 {
3510 	pr_info("%s\n", banner);
3511 
3512 	return platform_driver_register(&sci_driver);
3513 }
3514 
sci_exit(void)3515 static void __exit sci_exit(void)
3516 {
3517 	platform_driver_unregister(&sci_driver);
3518 
3519 	if (sci_uart_driver.state)
3520 		uart_unregister_driver(&sci_uart_driver);
3521 }
3522 
3523 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3524 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3525 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3526 #endif
3527 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3528 static struct plat_sci_port port_cfg;
3529 
early_console_setup(struct earlycon_device * device,int type)3530 static int __init early_console_setup(struct earlycon_device *device,
3531 				      int type)
3532 {
3533 	if (!device->port.membase)
3534 		return -ENODEV;
3535 
3536 	device->port.serial_in = sci_serial_in;
3537 	device->port.serial_out	= sci_serial_out;
3538 	device->port.type = type;
3539 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3540 	port_cfg.type = type;
3541 	sci_ports[0].cfg = &port_cfg;
3542 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3543 	sci_uart_earlycon = true;
3544 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3545 	sci_serial_out(&sci_ports[0].port, SCSCR,
3546 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3547 
3548 	device->con->write = serial_console_write;
3549 	return 0;
3550 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3551 static int __init sci_early_console_setup(struct earlycon_device *device,
3552 					  const char *opt)
3553 {
3554 	return early_console_setup(device, PORT_SCI);
3555 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3556 static int __init scif_early_console_setup(struct earlycon_device *device,
3557 					  const char *opt)
3558 {
3559 	return early_console_setup(device, PORT_SCIF);
3560 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3561 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3562 					  const char *opt)
3563 {
3564 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3565 	return early_console_setup(device, PORT_SCIF);
3566 }
3567 
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3568 static int __init scifa_early_console_setup(struct earlycon_device *device,
3569 					  const char *opt)
3570 {
3571 	return early_console_setup(device, PORT_SCIFA);
3572 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3573 static int __init scifb_early_console_setup(struct earlycon_device *device,
3574 					  const char *opt)
3575 {
3576 	return early_console_setup(device, PORT_SCIFB);
3577 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3578 static int __init hscif_early_console_setup(struct earlycon_device *device,
3579 					  const char *opt)
3580 {
3581 	return early_console_setup(device, PORT_HSCIF);
3582 }
3583 
3584 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3585 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3586 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3587 OF_EARLYCON_DECLARE(scif, "renesas,scif-r9a07g044", rzscifa_early_console_setup);
3588 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3589 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3590 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3591 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3592 
3593 module_init(sci_init);
3594 module_exit(sci_exit);
3595 
3596 MODULE_LICENSE("GPL");
3597 MODULE_ALIAS("platform:sh-sci");
3598 MODULE_AUTHOR("Paul Mundt");
3599 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3600