xref: /openbmc/linux/drivers/md/raid1.c (revision aeddf9a2731de8235b2b433533d06ee7dc73d233)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
check_and_add_serial(struct md_rdev * rdev,struct r1bio * r1_bio,struct serial_info * si,int idx)59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
wait_for_serialization(struct md_rdev * rdev,struct r1bio * r1_bio)82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
remove_serial(struct md_rdev * rdev,sector_t lo,sector_t hi)96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
get_resync_r1bio(struct bio * bio)125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
r1bio_pool_alloc(gfp_t gfp_flags,void * data)130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
r1buf_pool_alloc(gfp_t gfp_flags,void * data)146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 		if (!bio)
170 			goto out_free_bio;
171 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 		r1_bio->bios[j] = bio;
173 	}
174 	/*
175 	 * Allocate RESYNC_PAGES data pages and attach them to
176 	 * the first bio.
177 	 * If this is a user-requested check/repair, allocate
178 	 * RESYNC_PAGES for each bio.
179 	 */
180 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 		need_pages = pi->raid_disks;
182 	else
183 		need_pages = 1;
184 	for (j = 0; j < pi->raid_disks; j++) {
185 		struct resync_pages *rp = &rps[j];
186 
187 		bio = r1_bio->bios[j];
188 
189 		if (j < need_pages) {
190 			if (resync_alloc_pages(rp, gfp_flags))
191 				goto out_free_pages;
192 		} else {
193 			memcpy(rp, &rps[0], sizeof(*rp));
194 			resync_get_all_pages(rp);
195 		}
196 
197 		rp->raid_bio = r1_bio;
198 		bio->bi_private = rp;
199 	}
200 
201 	r1_bio->master_bio = NULL;
202 
203 	return r1_bio;
204 
205 out_free_pages:
206 	while (--j >= 0)
207 		resync_free_pages(&rps[j]);
208 
209 out_free_bio:
210 	while (++j < pi->raid_disks) {
211 		bio_uninit(r1_bio->bios[j]);
212 		kfree(r1_bio->bios[j]);
213 	}
214 	kfree(rps);
215 
216 out_free_r1bio:
217 	rbio_pool_free(r1_bio, data);
218 	return NULL;
219 }
220 
r1buf_pool_free(void * __r1_bio,void * data)221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 	struct pool_info *pi = data;
224 	int i;
225 	struct r1bio *r1bio = __r1_bio;
226 	struct resync_pages *rp = NULL;
227 
228 	for (i = pi->raid_disks; i--; ) {
229 		rp = get_resync_pages(r1bio->bios[i]);
230 		resync_free_pages(rp);
231 		bio_uninit(r1bio->bios[i]);
232 		kfree(r1bio->bios[i]);
233 	}
234 
235 	/* resync pages array stored in the 1st bio's .bi_private */
236 	kfree(rp);
237 
238 	rbio_pool_free(r1bio, data);
239 }
240 
put_all_bios(struct r1conf * conf,struct r1bio * r1_bio)241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->raid_disks * 2; i++) {
246 		struct bio **bio = r1_bio->bios + i;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
free_r1bio(struct r1bio * r1_bio)253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 	struct r1conf *conf = r1_bio->mddev->private;
256 
257 	put_all_bios(conf, r1_bio);
258 	mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260 
put_buf(struct r1bio * r1_bio)261 static void put_buf(struct r1bio *r1_bio)
262 {
263 	struct r1conf *conf = r1_bio->mddev->private;
264 	sector_t sect = r1_bio->sector;
265 	int i;
266 
267 	for (i = 0; i < conf->raid_disks * 2; i++) {
268 		struct bio *bio = r1_bio->bios[i];
269 		if (bio->bi_end_io)
270 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 	}
272 
273 	mempool_free(r1_bio, &conf->r1buf_pool);
274 
275 	lower_barrier(conf, sect);
276 }
277 
reschedule_retry(struct r1bio * r1_bio)278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 	unsigned long flags;
281 	struct mddev *mddev = r1_bio->mddev;
282 	struct r1conf *conf = mddev->private;
283 	int idx;
284 
285 	idx = sector_to_idx(r1_bio->sector);
286 	spin_lock_irqsave(&conf->device_lock, flags);
287 	list_add(&r1_bio->retry_list, &conf->retry_list);
288 	atomic_inc(&conf->nr_queued[idx]);
289 	spin_unlock_irqrestore(&conf->device_lock, flags);
290 
291 	wake_up(&conf->wait_barrier);
292 	md_wakeup_thread(mddev->thread);
293 }
294 
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
call_bio_endio(struct r1bio * r1_bio)300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 	struct bio *bio = r1_bio->master_bio;
303 
304 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	bio_endio(bio);
308 }
309 
raid_end_bio_io(struct r1bio * r1_bio)310 static void raid_end_bio_io(struct r1bio *r1_bio)
311 {
312 	struct bio *bio = r1_bio->master_bio;
313 	struct r1conf *conf = r1_bio->mddev->private;
314 	sector_t sector = r1_bio->sector;
315 
316 	/* if nobody has done the final endio yet, do it now */
317 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
318 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 			 (unsigned long long) bio->bi_iter.bi_sector,
321 			 (unsigned long long) bio_end_sector(bio) - 1);
322 
323 		call_bio_endio(r1_bio);
324 	}
325 
326 	free_r1bio(r1_bio);
327 	/*
328 	 * Wake up any possible resync thread that waits for the device
329 	 * to go idle.  All I/Os, even write-behind writes, are done.
330 	 */
331 	allow_barrier(conf, sector);
332 }
333 
334 /*
335  * Update disk head position estimator based on IRQ completion info.
336  */
update_head_pos(int disk,struct r1bio * r1_bio)337 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338 {
339 	struct r1conf *conf = r1_bio->mddev->private;
340 
341 	conf->mirrors[disk].head_position =
342 		r1_bio->sector + (r1_bio->sectors);
343 }
344 
345 /*
346  * Find the disk number which triggered given bio
347  */
find_bio_disk(struct r1bio * r1_bio,struct bio * bio)348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349 {
350 	int mirror;
351 	struct r1conf *conf = r1_bio->mddev->private;
352 	int raid_disks = conf->raid_disks;
353 
354 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
355 		if (r1_bio->bios[mirror] == bio)
356 			break;
357 
358 	BUG_ON(mirror == raid_disks * 2);
359 	update_head_pos(mirror, r1_bio);
360 
361 	return mirror;
362 }
363 
raid1_end_read_request(struct bio * bio)364 static void raid1_end_read_request(struct bio *bio)
365 {
366 	int uptodate = !bio->bi_status;
367 	struct r1bio *r1_bio = bio->bi_private;
368 	struct r1conf *conf = r1_bio->mddev->private;
369 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370 
371 	/*
372 	 * this branch is our 'one mirror IO has finished' event handler:
373 	 */
374 	update_head_pos(r1_bio->read_disk, r1_bio);
375 
376 	if (uptodate)
377 		set_bit(R1BIO_Uptodate, &r1_bio->state);
378 	else if (test_bit(FailFast, &rdev->flags) &&
379 		 test_bit(R1BIO_FailFast, &r1_bio->state))
380 		/* This was a fail-fast read so we definitely
381 		 * want to retry */
382 		;
383 	else {
384 		/* If all other devices have failed, we want to return
385 		 * the error upwards rather than fail the last device.
386 		 * Here we redefine "uptodate" to mean "Don't want to retry"
387 		 */
388 		unsigned long flags;
389 		spin_lock_irqsave(&conf->device_lock, flags);
390 		if (r1_bio->mddev->degraded == conf->raid_disks ||
391 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392 		     test_bit(In_sync, &rdev->flags)))
393 			uptodate = 1;
394 		spin_unlock_irqrestore(&conf->device_lock, flags);
395 	}
396 
397 	if (uptodate) {
398 		raid_end_bio_io(r1_bio);
399 		rdev_dec_pending(rdev, conf->mddev);
400 	} else {
401 		/*
402 		 * oops, read error:
403 		 */
404 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 				   mdname(conf->mddev),
406 				   rdev->bdev,
407 				   (unsigned long long)r1_bio->sector);
408 		set_bit(R1BIO_ReadError, &r1_bio->state);
409 		reschedule_retry(r1_bio);
410 		/* don't drop the reference on read_disk yet */
411 	}
412 }
413 
close_write(struct r1bio * r1_bio)414 static void close_write(struct r1bio *r1_bio)
415 {
416 	/* it really is the end of this request */
417 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 		bio_free_pages(r1_bio->behind_master_bio);
419 		bio_put(r1_bio->behind_master_bio);
420 		r1_bio->behind_master_bio = NULL;
421 	}
422 	/* clear the bitmap if all writes complete successfully */
423 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
424 			   r1_bio->sectors,
425 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
426 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
427 	md_write_end(r1_bio->mddev);
428 }
429 
r1_bio_write_done(struct r1bio * r1_bio)430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 	if (!atomic_dec_and_test(&r1_bio->remaining))
433 		return;
434 
435 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 		reschedule_retry(r1_bio);
437 	else {
438 		close_write(r1_bio);
439 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 			reschedule_retry(r1_bio);
441 		else
442 			raid_end_bio_io(r1_bio);
443 	}
444 }
445 
raid1_end_write_request(struct bio * bio)446 static void raid1_end_write_request(struct bio *bio)
447 {
448 	struct r1bio *r1_bio = bio->bi_private;
449 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 	struct r1conf *conf = r1_bio->mddev->private;
451 	struct bio *to_put = NULL;
452 	int mirror = find_bio_disk(r1_bio, bio);
453 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 	bool discard_error;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 
458 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !discard_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Fail the request */
484 			set_bit(R1BIO_Degraded, &r1_bio->state);
485 			/* Finished with this branch */
486 			r1_bio->bios[mirror] = NULL;
487 			to_put = bio;
488 		}
489 	} else {
490 		/*
491 		 * Set R1BIO_Uptodate in our master bio, so that we
492 		 * will return a good error code for to the higher
493 		 * levels even if IO on some other mirrored buffer
494 		 * fails.
495 		 *
496 		 * The 'master' represents the composite IO operation
497 		 * to user-side. So if something waits for IO, then it
498 		 * will wait for the 'master' bio.
499 		 */
500 		sector_t first_bad;
501 		int bad_sectors;
502 
503 		r1_bio->bios[mirror] = NULL;
504 		to_put = bio;
505 		/*
506 		 * Do not set R1BIO_Uptodate if the current device is
507 		 * rebuilding or Faulty. This is because we cannot use
508 		 * such device for properly reading the data back (we could
509 		 * potentially use it, if the current write would have felt
510 		 * before rdev->recovery_offset, but for simplicity we don't
511 		 * check this here.
512 		 */
513 		if (test_bit(In_sync, &rdev->flags) &&
514 		    !test_bit(Faulty, &rdev->flags))
515 			set_bit(R1BIO_Uptodate, &r1_bio->state);
516 
517 		/* Maybe we can clear some bad blocks. */
518 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519 				&first_bad, &bad_sectors) && !discard_error) {
520 			r1_bio->bios[mirror] = IO_MADE_GOOD;
521 			set_bit(R1BIO_MadeGood, &r1_bio->state);
522 		}
523 	}
524 
525 	if (behind) {
526 		if (test_bit(CollisionCheck, &rdev->flags))
527 			remove_serial(rdev, lo, hi);
528 		if (test_bit(WriteMostly, &rdev->flags))
529 			atomic_dec(&r1_bio->behind_remaining);
530 
531 		/*
532 		 * In behind mode, we ACK the master bio once the I/O
533 		 * has safely reached all non-writemostly
534 		 * disks. Setting the Returned bit ensures that this
535 		 * gets done only once -- we don't ever want to return
536 		 * -EIO here, instead we'll wait
537 		 */
538 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 			/* Maybe we can return now */
541 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 				struct bio *mbio = r1_bio->master_bio;
543 				pr_debug("raid1: behind end write sectors"
544 					 " %llu-%llu\n",
545 					 (unsigned long long) mbio->bi_iter.bi_sector,
546 					 (unsigned long long) bio_end_sector(mbio) - 1);
547 				call_bio_endio(r1_bio);
548 			}
549 		}
550 	} else if (rdev->mddev->serialize_policy)
551 		remove_serial(rdev, lo, hi);
552 	if (r1_bio->bios[mirror] == NULL)
553 		rdev_dec_pending(rdev, conf->mddev);
554 
555 	/*
556 	 * Let's see if all mirrored write operations have finished
557 	 * already.
558 	 */
559 	r1_bio_write_done(r1_bio);
560 
561 	if (to_put)
562 		bio_put(to_put);
563 }
564 
align_to_barrier_unit_end(sector_t start_sector,sector_t sectors)565 static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 					  sector_t sectors)
567 {
568 	sector_t len;
569 
570 	WARN_ON(sectors == 0);
571 	/*
572 	 * len is the number of sectors from start_sector to end of the
573 	 * barrier unit which start_sector belongs to.
574 	 */
575 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 	      start_sector;
577 
578 	if (len > sectors)
579 		len = sectors;
580 
581 	return len;
582 }
583 
584 /*
585  * This routine returns the disk from which the requested read should
586  * be done. There is a per-array 'next expected sequential IO' sector
587  * number - if this matches on the next IO then we use the last disk.
588  * There is also a per-disk 'last know head position' sector that is
589  * maintained from IRQ contexts, both the normal and the resync IO
590  * completion handlers update this position correctly. If there is no
591  * perfect sequential match then we pick the disk whose head is closest.
592  *
593  * If there are 2 mirrors in the same 2 devices, performance degrades
594  * because position is mirror, not device based.
595  *
596  * The rdev for the device selected will have nr_pending incremented.
597  */
read_balance(struct r1conf * conf,struct r1bio * r1_bio,int * max_sectors)598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599 {
600 	const sector_t this_sector = r1_bio->sector;
601 	int sectors;
602 	int best_good_sectors;
603 	int best_disk, best_dist_disk, best_pending_disk;
604 	int has_nonrot_disk;
605 	int disk;
606 	sector_t best_dist;
607 	unsigned int min_pending;
608 	struct md_rdev *rdev;
609 	int choose_first;
610 	int choose_next_idle;
611 
612 	rcu_read_lock();
613 	/*
614 	 * Check if we can balance. We can balance on the whole
615 	 * device if no resync is going on, or below the resync window.
616 	 * We take the first readable disk when above the resync window.
617 	 */
618  retry:
619 	sectors = r1_bio->sectors;
620 	best_disk = -1;
621 	best_dist_disk = -1;
622 	best_dist = MaxSector;
623 	best_pending_disk = -1;
624 	min_pending = UINT_MAX;
625 	best_good_sectors = 0;
626 	has_nonrot_disk = 0;
627 	choose_next_idle = 0;
628 	clear_bit(R1BIO_FailFast, &r1_bio->state);
629 
630 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 	    (mddev_is_clustered(conf->mddev) &&
632 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 		    this_sector + sectors)))
634 		choose_first = 1;
635 	else
636 		choose_first = 0;
637 
638 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639 		sector_t dist;
640 		sector_t first_bad;
641 		int bad_sectors;
642 		unsigned int pending;
643 		bool nonrot;
644 
645 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 		if (r1_bio->bios[disk] == IO_BLOCKED
647 		    || rdev == NULL
648 		    || test_bit(Faulty, &rdev->flags))
649 			continue;
650 		if (!test_bit(In_sync, &rdev->flags) &&
651 		    rdev->recovery_offset < this_sector + sectors)
652 			continue;
653 		if (test_bit(WriteMostly, &rdev->flags)) {
654 			/* Don't balance among write-mostly, just
655 			 * use the first as a last resort */
656 			if (best_dist_disk < 0) {
657 				if (is_badblock(rdev, this_sector, sectors,
658 						&first_bad, &bad_sectors)) {
659 					if (first_bad <= this_sector)
660 						/* Cannot use this */
661 						continue;
662 					best_good_sectors = first_bad - this_sector;
663 				} else
664 					best_good_sectors = sectors;
665 				best_dist_disk = disk;
666 				best_pending_disk = disk;
667 			}
668 			continue;
669 		}
670 		/* This is a reasonable device to use.  It might
671 		 * even be best.
672 		 */
673 		if (is_badblock(rdev, this_sector, sectors,
674 				&first_bad, &bad_sectors)) {
675 			if (best_dist < MaxSector)
676 				/* already have a better device */
677 				continue;
678 			if (first_bad <= this_sector) {
679 				/* cannot read here. If this is the 'primary'
680 				 * device, then we must not read beyond
681 				 * bad_sectors from another device..
682 				 */
683 				bad_sectors -= (this_sector - first_bad);
684 				if (choose_first && sectors > bad_sectors)
685 					sectors = bad_sectors;
686 				if (best_good_sectors > sectors)
687 					best_good_sectors = sectors;
688 
689 			} else {
690 				sector_t good_sectors = first_bad - this_sector;
691 				if (good_sectors > best_good_sectors) {
692 					best_good_sectors = good_sectors;
693 					best_disk = disk;
694 				}
695 				if (choose_first)
696 					break;
697 			}
698 			continue;
699 		} else {
700 			if ((sectors > best_good_sectors) && (best_disk >= 0))
701 				best_disk = -1;
702 			best_good_sectors = sectors;
703 		}
704 
705 		if (best_disk >= 0)
706 			/* At least two disks to choose from so failfast is OK */
707 			set_bit(R1BIO_FailFast, &r1_bio->state);
708 
709 		nonrot = bdev_nonrot(rdev->bdev);
710 		has_nonrot_disk |= nonrot;
711 		pending = atomic_read(&rdev->nr_pending);
712 		dist = abs(this_sector - conf->mirrors[disk].head_position);
713 		if (choose_first) {
714 			best_disk = disk;
715 			break;
716 		}
717 		/* Don't change to another disk for sequential reads */
718 		if (conf->mirrors[disk].next_seq_sect == this_sector
719 		    || dist == 0) {
720 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 			struct raid1_info *mirror = &conf->mirrors[disk];
722 
723 			best_disk = disk;
724 			/*
725 			 * If buffered sequential IO size exceeds optimal
726 			 * iosize, check if there is idle disk. If yes, choose
727 			 * the idle disk. read_balance could already choose an
728 			 * idle disk before noticing it's a sequential IO in
729 			 * this disk. This doesn't matter because this disk
730 			 * will idle, next time it will be utilized after the
731 			 * first disk has IO size exceeds optimal iosize. In
732 			 * this way, iosize of the first disk will be optimal
733 			 * iosize at least. iosize of the second disk might be
734 			 * small, but not a big deal since when the second disk
735 			 * starts IO, the first disk is likely still busy.
736 			 */
737 			if (nonrot && opt_iosize > 0 &&
738 			    mirror->seq_start != MaxSector &&
739 			    mirror->next_seq_sect > opt_iosize &&
740 			    mirror->next_seq_sect - opt_iosize >=
741 			    mirror->seq_start) {
742 				choose_next_idle = 1;
743 				continue;
744 			}
745 			break;
746 		}
747 
748 		if (choose_next_idle)
749 			continue;
750 
751 		if (min_pending > pending) {
752 			min_pending = pending;
753 			best_pending_disk = disk;
754 		}
755 
756 		if (dist < best_dist) {
757 			best_dist = dist;
758 			best_dist_disk = disk;
759 		}
760 	}
761 
762 	/*
763 	 * If all disks are rotational, choose the closest disk. If any disk is
764 	 * non-rotational, choose the disk with less pending request even the
765 	 * disk is rotational, which might/might not be optimal for raids with
766 	 * mixed ratation/non-rotational disks depending on workload.
767 	 */
768 	if (best_disk == -1) {
769 		if (has_nonrot_disk || min_pending == 0)
770 			best_disk = best_pending_disk;
771 		else
772 			best_disk = best_dist_disk;
773 	}
774 
775 	if (best_disk >= 0) {
776 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777 		if (!rdev)
778 			goto retry;
779 		atomic_inc(&rdev->nr_pending);
780 		sectors = best_good_sectors;
781 
782 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 			conf->mirrors[best_disk].seq_start = this_sector;
784 
785 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786 	}
787 	rcu_read_unlock();
788 	*max_sectors = sectors;
789 
790 	return best_disk;
791 }
792 
wake_up_barrier(struct r1conf * conf)793 static void wake_up_barrier(struct r1conf *conf)
794 {
795 	if (wq_has_sleeper(&conf->wait_barrier))
796 		wake_up(&conf->wait_barrier);
797 }
798 
flush_bio_list(struct r1conf * conf,struct bio * bio)799 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800 {
801 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
802 	raid1_prepare_flush_writes(conf->mddev->bitmap);
803 	wake_up_barrier(conf);
804 
805 	while (bio) { /* submit pending writes */
806 		struct bio *next = bio->bi_next;
807 
808 		raid1_submit_write(bio);
809 		bio = next;
810 		cond_resched();
811 	}
812 }
813 
flush_pending_writes(struct r1conf * conf)814 static void flush_pending_writes(struct r1conf *conf)
815 {
816 	/* Any writes that have been queued but are awaiting
817 	 * bitmap updates get flushed here.
818 	 */
819 	spin_lock_irq(&conf->device_lock);
820 
821 	if (conf->pending_bio_list.head) {
822 		struct blk_plug plug;
823 		struct bio *bio;
824 
825 		bio = bio_list_get(&conf->pending_bio_list);
826 		spin_unlock_irq(&conf->device_lock);
827 
828 		/*
829 		 * As this is called in a wait_event() loop (see freeze_array),
830 		 * current->state might be TASK_UNINTERRUPTIBLE which will
831 		 * cause a warning when we prepare to wait again.  As it is
832 		 * rare that this path is taken, it is perfectly safe to force
833 		 * us to go around the wait_event() loop again, so the warning
834 		 * is a false-positive.  Silence the warning by resetting
835 		 * thread state
836 		 */
837 		__set_current_state(TASK_RUNNING);
838 		blk_start_plug(&plug);
839 		flush_bio_list(conf, bio);
840 		blk_finish_plug(&plug);
841 	} else
842 		spin_unlock_irq(&conf->device_lock);
843 }
844 
845 /* Barriers....
846  * Sometimes we need to suspend IO while we do something else,
847  * either some resync/recovery, or reconfigure the array.
848  * To do this we raise a 'barrier'.
849  * The 'barrier' is a counter that can be raised multiple times
850  * to count how many activities are happening which preclude
851  * normal IO.
852  * We can only raise the barrier if there is no pending IO.
853  * i.e. if nr_pending == 0.
854  * We choose only to raise the barrier if no-one is waiting for the
855  * barrier to go down.  This means that as soon as an IO request
856  * is ready, no other operations which require a barrier will start
857  * until the IO request has had a chance.
858  *
859  * So: regular IO calls 'wait_barrier'.  When that returns there
860  *    is no backgroup IO happening,  It must arrange to call
861  *    allow_barrier when it has finished its IO.
862  * backgroup IO calls must call raise_barrier.  Once that returns
863  *    there is no normal IO happeing.  It must arrange to call
864  *    lower_barrier when the particular background IO completes.
865  *
866  * If resync/recovery is interrupted, returns -EINTR;
867  * Otherwise, returns 0.
868  */
raise_barrier(struct r1conf * conf,sector_t sector_nr)869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870 {
871 	int idx = sector_to_idx(sector_nr);
872 
873 	spin_lock_irq(&conf->resync_lock);
874 
875 	/* Wait until no block IO is waiting */
876 	wait_event_lock_irq(conf->wait_barrier,
877 			    !atomic_read(&conf->nr_waiting[idx]),
878 			    conf->resync_lock);
879 
880 	/* block any new IO from starting */
881 	atomic_inc(&conf->barrier[idx]);
882 	/*
883 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 	 * be fetched before conf->barrier[idx] is increased. Otherwise
888 	 * there will be a race between raise_barrier() and _wait_barrier().
889 	 */
890 	smp_mb__after_atomic();
891 
892 	/* For these conditions we must wait:
893 	 * A: while the array is in frozen state
894 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 	 *    existing in corresponding I/O barrier bucket.
896 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 	 *    max resync count which allowed on current I/O barrier bucket.
898 	 */
899 	wait_event_lock_irq(conf->wait_barrier,
900 			    (!conf->array_frozen &&
901 			     !atomic_read(&conf->nr_pending[idx]) &&
902 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904 			    conf->resync_lock);
905 
906 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 		atomic_dec(&conf->barrier[idx]);
908 		spin_unlock_irq(&conf->resync_lock);
909 		wake_up(&conf->wait_barrier);
910 		return -EINTR;
911 	}
912 
913 	atomic_inc(&conf->nr_sync_pending);
914 	spin_unlock_irq(&conf->resync_lock);
915 
916 	return 0;
917 }
918 
lower_barrier(struct r1conf * conf,sector_t sector_nr)919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920 {
921 	int idx = sector_to_idx(sector_nr);
922 
923 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924 
925 	atomic_dec(&conf->barrier[idx]);
926 	atomic_dec(&conf->nr_sync_pending);
927 	wake_up(&conf->wait_barrier);
928 }
929 
_wait_barrier(struct r1conf * conf,int idx,bool nowait)930 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
931 {
932 	bool ret = true;
933 
934 	/*
935 	 * We need to increase conf->nr_pending[idx] very early here,
936 	 * then raise_barrier() can be blocked when it waits for
937 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 	 * conf->resync_lock when there is no barrier raised in same
939 	 * barrier unit bucket. Also if the array is frozen, I/O
940 	 * should be blocked until array is unfrozen.
941 	 */
942 	atomic_inc(&conf->nr_pending[idx]);
943 	/*
944 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 	 * will be a race between _wait_barrier() and raise_barrier().
950 	 */
951 	smp_mb__after_atomic();
952 
953 	/*
954 	 * Don't worry about checking two atomic_t variables at same time
955 	 * here. If during we check conf->barrier[idx], the array is
956 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 	 * 0, it is safe to return and make the I/O continue. Because the
958 	 * array is frozen, all I/O returned here will eventually complete
959 	 * or be queued, no race will happen. See code comment in
960 	 * frozen_array().
961 	 */
962 	if (!READ_ONCE(conf->array_frozen) &&
963 	    !atomic_read(&conf->barrier[idx]))
964 		return ret;
965 
966 	/*
967 	 * After holding conf->resync_lock, conf->nr_pending[idx]
968 	 * should be decreased before waiting for barrier to drop.
969 	 * Otherwise, we may encounter a race condition because
970 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 	 * to be 0 at same time.
972 	 */
973 	spin_lock_irq(&conf->resync_lock);
974 	atomic_inc(&conf->nr_waiting[idx]);
975 	atomic_dec(&conf->nr_pending[idx]);
976 	/*
977 	 * In case freeze_array() is waiting for
978 	 * get_unqueued_pending() == extra
979 	 */
980 	wake_up_barrier(conf);
981 	/* Wait for the barrier in same barrier unit bucket to drop. */
982 
983 	/* Return false when nowait flag is set */
984 	if (nowait) {
985 		ret = false;
986 	} else {
987 		wait_event_lock_irq(conf->wait_barrier,
988 				!conf->array_frozen &&
989 				!atomic_read(&conf->barrier[idx]),
990 				conf->resync_lock);
991 		atomic_inc(&conf->nr_pending[idx]);
992 	}
993 
994 	atomic_dec(&conf->nr_waiting[idx]);
995 	spin_unlock_irq(&conf->resync_lock);
996 	return ret;
997 }
998 
wait_read_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)999 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1000 {
1001 	int idx = sector_to_idx(sector_nr);
1002 	bool ret = true;
1003 
1004 	/*
1005 	 * Very similar to _wait_barrier(). The difference is, for read
1006 	 * I/O we don't need wait for sync I/O, but if the whole array
1007 	 * is frozen, the read I/O still has to wait until the array is
1008 	 * unfrozen. Since there is no ordering requirement with
1009 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010 	 */
1011 	atomic_inc(&conf->nr_pending[idx]);
1012 
1013 	if (!READ_ONCE(conf->array_frozen))
1014 		return ret;
1015 
1016 	spin_lock_irq(&conf->resync_lock);
1017 	atomic_inc(&conf->nr_waiting[idx]);
1018 	atomic_dec(&conf->nr_pending[idx]);
1019 	/*
1020 	 * In case freeze_array() is waiting for
1021 	 * get_unqueued_pending() == extra
1022 	 */
1023 	wake_up_barrier(conf);
1024 	/* Wait for array to be unfrozen */
1025 
1026 	/* Return false when nowait flag is set */
1027 	if (nowait) {
1028 		/* Return false when nowait flag is set */
1029 		ret = false;
1030 	} else {
1031 		wait_event_lock_irq(conf->wait_barrier,
1032 				!conf->array_frozen,
1033 				conf->resync_lock);
1034 		atomic_inc(&conf->nr_pending[idx]);
1035 	}
1036 
1037 	atomic_dec(&conf->nr_waiting[idx]);
1038 	spin_unlock_irq(&conf->resync_lock);
1039 	return ret;
1040 }
1041 
wait_barrier(struct r1conf * conf,sector_t sector_nr,bool nowait)1042 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1043 {
1044 	int idx = sector_to_idx(sector_nr);
1045 
1046 	return _wait_barrier(conf, idx, nowait);
1047 }
1048 
_allow_barrier(struct r1conf * conf,int idx)1049 static void _allow_barrier(struct r1conf *conf, int idx)
1050 {
1051 	atomic_dec(&conf->nr_pending[idx]);
1052 	wake_up_barrier(conf);
1053 }
1054 
allow_barrier(struct r1conf * conf,sector_t sector_nr)1055 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056 {
1057 	int idx = sector_to_idx(sector_nr);
1058 
1059 	_allow_barrier(conf, idx);
1060 }
1061 
1062 /* conf->resync_lock should be held */
get_unqueued_pending(struct r1conf * conf)1063 static int get_unqueued_pending(struct r1conf *conf)
1064 {
1065 	int idx, ret;
1066 
1067 	ret = atomic_read(&conf->nr_sync_pending);
1068 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1069 		ret += atomic_read(&conf->nr_pending[idx]) -
1070 			atomic_read(&conf->nr_queued[idx]);
1071 
1072 	return ret;
1073 }
1074 
freeze_array(struct r1conf * conf,int extra)1075 static void freeze_array(struct r1conf *conf, int extra)
1076 {
1077 	/* Stop sync I/O and normal I/O and wait for everything to
1078 	 * go quiet.
1079 	 * This is called in two situations:
1080 	 * 1) management command handlers (reshape, remove disk, quiesce).
1081 	 * 2) one normal I/O request failed.
1082 
1083 	 * After array_frozen is set to 1, new sync IO will be blocked at
1084 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1085 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1086 	 * queued. When everything goes quite, there are only queued I/Os left.
1087 
1088 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1089 	 * barrier bucket index which this I/O request hits. When all sync and
1090 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1091 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1092 	 * in handle_read_error(), we may call freeze_array() before trying to
1093 	 * fix the read error. In this case, the error read I/O is not queued,
1094 	 * so get_unqueued_pending() == 1.
1095 	 *
1096 	 * Therefore before this function returns, we need to wait until
1097 	 * get_unqueued_pendings(conf) gets equal to extra. For
1098 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1099 	 */
1100 	spin_lock_irq(&conf->resync_lock);
1101 	conf->array_frozen = 1;
1102 	raid1_log(conf->mddev, "wait freeze");
1103 	wait_event_lock_irq_cmd(
1104 		conf->wait_barrier,
1105 		get_unqueued_pending(conf) == extra,
1106 		conf->resync_lock,
1107 		flush_pending_writes(conf));
1108 	spin_unlock_irq(&conf->resync_lock);
1109 }
unfreeze_array(struct r1conf * conf)1110 static void unfreeze_array(struct r1conf *conf)
1111 {
1112 	/* reverse the effect of the freeze */
1113 	spin_lock_irq(&conf->resync_lock);
1114 	conf->array_frozen = 0;
1115 	spin_unlock_irq(&conf->resync_lock);
1116 	wake_up(&conf->wait_barrier);
1117 }
1118 
alloc_behind_master_bio(struct r1bio * r1_bio,struct bio * bio)1119 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1120 					   struct bio *bio)
1121 {
1122 	int size = bio->bi_iter.bi_size;
1123 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124 	int i = 0;
1125 	struct bio *behind_bio = NULL;
1126 
1127 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1128 				      &r1_bio->mddev->bio_set);
1129 	if (!behind_bio)
1130 		return;
1131 
1132 	/* discard op, we don't support writezero/writesame yet */
1133 	if (!bio_has_data(bio)) {
1134 		behind_bio->bi_iter.bi_size = size;
1135 		goto skip_copy;
1136 	}
1137 
1138 	while (i < vcnt && size) {
1139 		struct page *page;
1140 		int len = min_t(int, PAGE_SIZE, size);
1141 
1142 		page = alloc_page(GFP_NOIO);
1143 		if (unlikely(!page))
1144 			goto free_pages;
1145 
1146 		if (!bio_add_page(behind_bio, page, len, 0)) {
1147 			put_page(page);
1148 			goto free_pages;
1149 		}
1150 
1151 		size -= len;
1152 		i++;
1153 	}
1154 
1155 	bio_copy_data(behind_bio, bio);
1156 skip_copy:
1157 	r1_bio->behind_master_bio = behind_bio;
1158 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1159 
1160 	return;
1161 
1162 free_pages:
1163 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164 		 bio->bi_iter.bi_size);
1165 	bio_free_pages(behind_bio);
1166 	bio_put(behind_bio);
1167 }
1168 
raid1_unplug(struct blk_plug_cb * cb,bool from_schedule)1169 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1170 {
1171 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1172 						  cb);
1173 	struct mddev *mddev = plug->cb.data;
1174 	struct r1conf *conf = mddev->private;
1175 	struct bio *bio;
1176 
1177 	if (from_schedule) {
1178 		spin_lock_irq(&conf->device_lock);
1179 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1180 		spin_unlock_irq(&conf->device_lock);
1181 		wake_up_barrier(conf);
1182 		md_wakeup_thread(mddev->thread);
1183 		kfree(plug);
1184 		return;
1185 	}
1186 
1187 	/* we aren't scheduling, so we can do the write-out directly. */
1188 	bio = bio_list_get(&plug->pending);
1189 	flush_bio_list(conf, bio);
1190 	kfree(plug);
1191 }
1192 
init_r1bio(struct r1bio * r1_bio,struct mddev * mddev,struct bio * bio)1193 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1194 {
1195 	r1_bio->master_bio = bio;
1196 	r1_bio->sectors = bio_sectors(bio);
1197 	r1_bio->state = 0;
1198 	r1_bio->mddev = mddev;
1199 	r1_bio->sector = bio->bi_iter.bi_sector;
1200 }
1201 
1202 static inline struct r1bio *
alloc_r1bio(struct mddev * mddev,struct bio * bio)1203 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1204 {
1205 	struct r1conf *conf = mddev->private;
1206 	struct r1bio *r1_bio;
1207 
1208 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1209 	/* Ensure no bio records IO_BLOCKED */
1210 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1211 	init_r1bio(r1_bio, mddev, bio);
1212 	return r1_bio;
1213 }
1214 
raid1_read_request(struct mddev * mddev,struct bio * bio,int max_read_sectors,struct r1bio * r1_bio)1215 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1216 			       int max_read_sectors, struct r1bio *r1_bio)
1217 {
1218 	struct r1conf *conf = mddev->private;
1219 	struct raid1_info *mirror;
1220 	struct bio *read_bio;
1221 	struct bitmap *bitmap = mddev->bitmap;
1222 	const enum req_op op = bio_op(bio);
1223 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1224 	int max_sectors;
1225 	int rdisk;
1226 	bool r1bio_existed = !!r1_bio;
1227 	char b[BDEVNAME_SIZE];
1228 
1229 	/*
1230 	 * If r1_bio is set, we are blocking the raid1d thread
1231 	 * so there is a tiny risk of deadlock.  So ask for
1232 	 * emergency memory if needed.
1233 	 */
1234 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1235 
1236 	if (r1bio_existed) {
1237 		/* Need to get the block device name carefully */
1238 		struct md_rdev *rdev;
1239 		rcu_read_lock();
1240 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1241 		if (rdev)
1242 			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1243 		else
1244 			strcpy(b, "???");
1245 		rcu_read_unlock();
1246 	}
1247 
1248 	/*
1249 	 * Still need barrier for READ in case that whole
1250 	 * array is frozen.
1251 	 */
1252 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1253 				bio->bi_opf & REQ_NOWAIT)) {
1254 		bio_wouldblock_error(bio);
1255 		return;
1256 	}
1257 
1258 	if (!r1_bio)
1259 		r1_bio = alloc_r1bio(mddev, bio);
1260 	else
1261 		init_r1bio(r1_bio, mddev, bio);
1262 	r1_bio->sectors = max_read_sectors;
1263 
1264 	/*
1265 	 * make_request() can abort the operation when read-ahead is being
1266 	 * used and no empty request is available.
1267 	 */
1268 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1269 
1270 	if (rdisk < 0) {
1271 		/* couldn't find anywhere to read from */
1272 		if (r1bio_existed) {
1273 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1274 					    mdname(mddev),
1275 					    b,
1276 					    (unsigned long long)r1_bio->sector);
1277 		}
1278 		raid_end_bio_io(r1_bio);
1279 		return;
1280 	}
1281 	mirror = conf->mirrors + rdisk;
1282 
1283 	if (r1bio_existed)
1284 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1285 				    mdname(mddev),
1286 				    (unsigned long long)r1_bio->sector,
1287 				    mirror->rdev->bdev);
1288 
1289 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1290 	    bitmap) {
1291 		/*
1292 		 * Reading from a write-mostly device must take care not to
1293 		 * over-take any writes that are 'behind'
1294 		 */
1295 		raid1_log(mddev, "wait behind writes");
1296 		wait_event(bitmap->behind_wait,
1297 			   atomic_read(&bitmap->behind_writes) == 0);
1298 	}
1299 
1300 	if (max_sectors < bio_sectors(bio)) {
1301 		struct bio *split = bio_split(bio, max_sectors,
1302 					      gfp, &conf->bio_split);
1303 		bio_chain(split, bio);
1304 		submit_bio_noacct(bio);
1305 		bio = split;
1306 		r1_bio->master_bio = bio;
1307 		r1_bio->sectors = max_sectors;
1308 	}
1309 
1310 	r1_bio->read_disk = rdisk;
1311 	if (!r1bio_existed) {
1312 		md_account_bio(mddev, &bio);
1313 		r1_bio->master_bio = bio;
1314 	}
1315 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1316 				   &mddev->bio_set);
1317 
1318 	r1_bio->bios[rdisk] = read_bio;
1319 
1320 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1321 		mirror->rdev->data_offset;
1322 	read_bio->bi_end_io = raid1_end_read_request;
1323 	read_bio->bi_opf = op | do_sync;
1324 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1325 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1326 	        read_bio->bi_opf |= MD_FAILFAST;
1327 	read_bio->bi_private = r1_bio;
1328 
1329 	if (mddev->gendisk)
1330 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1331 				      r1_bio->sector);
1332 
1333 	submit_bio_noacct(read_bio);
1334 }
1335 
raid1_write_request(struct mddev * mddev,struct bio * bio,int max_write_sectors)1336 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1337 				int max_write_sectors)
1338 {
1339 	struct r1conf *conf = mddev->private;
1340 	struct r1bio *r1_bio;
1341 	int i, disks;
1342 	struct bitmap *bitmap = mddev->bitmap;
1343 	unsigned long flags;
1344 	struct md_rdev *blocked_rdev;
1345 	int first_clone;
1346 	int max_sectors;
1347 	bool write_behind = false;
1348 
1349 	if (mddev_is_clustered(mddev) &&
1350 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1351 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1352 
1353 		DEFINE_WAIT(w);
1354 		if (bio->bi_opf & REQ_NOWAIT) {
1355 			bio_wouldblock_error(bio);
1356 			return;
1357 		}
1358 		for (;;) {
1359 			prepare_to_wait(&conf->wait_barrier,
1360 					&w, TASK_IDLE);
1361 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1362 							bio->bi_iter.bi_sector,
1363 							bio_end_sector(bio)))
1364 				break;
1365 			schedule();
1366 		}
1367 		finish_wait(&conf->wait_barrier, &w);
1368 	}
1369 
1370 	/*
1371 	 * Register the new request and wait if the reconstruction
1372 	 * thread has put up a bar for new requests.
1373 	 * Continue immediately if no resync is active currently.
1374 	 */
1375 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1376 				bio->bi_opf & REQ_NOWAIT)) {
1377 		bio_wouldblock_error(bio);
1378 		return;
1379 	}
1380 
1381  retry_write:
1382 	r1_bio = alloc_r1bio(mddev, bio);
1383 	r1_bio->sectors = max_write_sectors;
1384 
1385 	/* first select target devices under rcu_lock and
1386 	 * inc refcount on their rdev.  Record them by setting
1387 	 * bios[x] to bio
1388 	 * If there are known/acknowledged bad blocks on any device on
1389 	 * which we have seen a write error, we want to avoid writing those
1390 	 * blocks.
1391 	 * This potentially requires several writes to write around
1392 	 * the bad blocks.  Each set of writes gets it's own r1bio
1393 	 * with a set of bios attached.
1394 	 */
1395 
1396 	disks = conf->raid_disks * 2;
1397 	blocked_rdev = NULL;
1398 	rcu_read_lock();
1399 	max_sectors = r1_bio->sectors;
1400 	for (i = 0;  i < disks; i++) {
1401 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1402 
1403 		/*
1404 		 * The write-behind io is only attempted on drives marked as
1405 		 * write-mostly, which means we could allocate write behind
1406 		 * bio later.
1407 		 */
1408 		if (rdev && test_bit(WriteMostly, &rdev->flags))
1409 			write_behind = true;
1410 
1411 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1412 			atomic_inc(&rdev->nr_pending);
1413 			blocked_rdev = rdev;
1414 			break;
1415 		}
1416 		r1_bio->bios[i] = NULL;
1417 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1418 			if (i < conf->raid_disks)
1419 				set_bit(R1BIO_Degraded, &r1_bio->state);
1420 			continue;
1421 		}
1422 
1423 		atomic_inc(&rdev->nr_pending);
1424 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1425 			sector_t first_bad;
1426 			int bad_sectors;
1427 			int is_bad;
1428 
1429 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1430 					     &first_bad, &bad_sectors);
1431 			if (is_bad < 0) {
1432 				/* mustn't write here until the bad block is
1433 				 * acknowledged*/
1434 				set_bit(BlockedBadBlocks, &rdev->flags);
1435 				blocked_rdev = rdev;
1436 				break;
1437 			}
1438 			if (is_bad && first_bad <= r1_bio->sector) {
1439 				/* Cannot write here at all */
1440 				bad_sectors -= (r1_bio->sector - first_bad);
1441 				if (bad_sectors < max_sectors)
1442 					/* mustn't write more than bad_sectors
1443 					 * to other devices yet
1444 					 */
1445 					max_sectors = bad_sectors;
1446 				rdev_dec_pending(rdev, mddev);
1447 				/* We don't set R1BIO_Degraded as that
1448 				 * only applies if the disk is
1449 				 * missing, so it might be re-added,
1450 				 * and we want to know to recover this
1451 				 * chunk.
1452 				 * In this case the device is here,
1453 				 * and the fact that this chunk is not
1454 				 * in-sync is recorded in the bad
1455 				 * block log
1456 				 */
1457 				continue;
1458 			}
1459 			if (is_bad) {
1460 				int good_sectors = first_bad - r1_bio->sector;
1461 				if (good_sectors < max_sectors)
1462 					max_sectors = good_sectors;
1463 			}
1464 		}
1465 		r1_bio->bios[i] = bio;
1466 	}
1467 	rcu_read_unlock();
1468 
1469 	if (unlikely(blocked_rdev)) {
1470 		/* Wait for this device to become unblocked */
1471 		int j;
1472 
1473 		for (j = 0; j < i; j++)
1474 			if (r1_bio->bios[j])
1475 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1476 		mempool_free(r1_bio, &conf->r1bio_pool);
1477 		allow_barrier(conf, bio->bi_iter.bi_sector);
1478 
1479 		if (bio->bi_opf & REQ_NOWAIT) {
1480 			bio_wouldblock_error(bio);
1481 			return;
1482 		}
1483 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1484 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1485 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1486 		goto retry_write;
1487 	}
1488 
1489 	/*
1490 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1491 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1492 	 * at a time and thus needs a new bio that can fit the whole payload
1493 	 * this bio in page sized chunks.
1494 	 */
1495 	if (write_behind && bitmap)
1496 		max_sectors = min_t(int, max_sectors,
1497 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1498 	if (max_sectors < bio_sectors(bio)) {
1499 		struct bio *split = bio_split(bio, max_sectors,
1500 					      GFP_NOIO, &conf->bio_split);
1501 		bio_chain(split, bio);
1502 		submit_bio_noacct(bio);
1503 		bio = split;
1504 		r1_bio->master_bio = bio;
1505 		r1_bio->sectors = max_sectors;
1506 	}
1507 
1508 	md_account_bio(mddev, &bio);
1509 	r1_bio->master_bio = bio;
1510 	atomic_set(&r1_bio->remaining, 1);
1511 	atomic_set(&r1_bio->behind_remaining, 0);
1512 
1513 	first_clone = 1;
1514 
1515 	for (i = 0; i < disks; i++) {
1516 		struct bio *mbio = NULL;
1517 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1518 		if (!r1_bio->bios[i])
1519 			continue;
1520 
1521 		if (first_clone) {
1522 			/* do behind I/O ?
1523 			 * Not if there are too many, or cannot
1524 			 * allocate memory, or a reader on WriteMostly
1525 			 * is waiting for behind writes to flush */
1526 			if (bitmap && write_behind &&
1527 			    (atomic_read(&bitmap->behind_writes)
1528 			     < mddev->bitmap_info.max_write_behind) &&
1529 			    !waitqueue_active(&bitmap->behind_wait)) {
1530 				alloc_behind_master_bio(r1_bio, bio);
1531 			}
1532 
1533 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1534 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1535 			first_clone = 0;
1536 		}
1537 
1538 		if (r1_bio->behind_master_bio) {
1539 			mbio = bio_alloc_clone(rdev->bdev,
1540 					       r1_bio->behind_master_bio,
1541 					       GFP_NOIO, &mddev->bio_set);
1542 			if (test_bit(CollisionCheck, &rdev->flags))
1543 				wait_for_serialization(rdev, r1_bio);
1544 			if (test_bit(WriteMostly, &rdev->flags))
1545 				atomic_inc(&r1_bio->behind_remaining);
1546 		} else {
1547 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1548 					       &mddev->bio_set);
1549 
1550 			if (mddev->serialize_policy)
1551 				wait_for_serialization(rdev, r1_bio);
1552 		}
1553 
1554 		r1_bio->bios[i] = mbio;
1555 
1556 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1557 		mbio->bi_end_io	= raid1_end_write_request;
1558 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1559 		if (test_bit(FailFast, &rdev->flags) &&
1560 		    !test_bit(WriteMostly, &rdev->flags) &&
1561 		    conf->raid_disks - mddev->degraded > 1)
1562 			mbio->bi_opf |= MD_FAILFAST;
1563 		mbio->bi_private = r1_bio;
1564 
1565 		atomic_inc(&r1_bio->remaining);
1566 
1567 		if (mddev->gendisk)
1568 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1569 					      r1_bio->sector);
1570 		/* flush_pending_writes() needs access to the rdev so...*/
1571 		mbio->bi_bdev = (void *)rdev;
1572 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1573 			spin_lock_irqsave(&conf->device_lock, flags);
1574 			bio_list_add(&conf->pending_bio_list, mbio);
1575 			spin_unlock_irqrestore(&conf->device_lock, flags);
1576 			md_wakeup_thread(mddev->thread);
1577 		}
1578 	}
1579 
1580 	r1_bio_write_done(r1_bio);
1581 
1582 	/* In case raid1d snuck in to freeze_array */
1583 	wake_up_barrier(conf);
1584 }
1585 
raid1_make_request(struct mddev * mddev,struct bio * bio)1586 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1587 {
1588 	sector_t sectors;
1589 
1590 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1591 	    && md_flush_request(mddev, bio))
1592 		return true;
1593 
1594 	/*
1595 	 * There is a limit to the maximum size, but
1596 	 * the read/write handler might find a lower limit
1597 	 * due to bad blocks.  To avoid multiple splits,
1598 	 * we pass the maximum number of sectors down
1599 	 * and let the lower level perform the split.
1600 	 */
1601 	sectors = align_to_barrier_unit_end(
1602 		bio->bi_iter.bi_sector, bio_sectors(bio));
1603 
1604 	if (bio_data_dir(bio) == READ)
1605 		raid1_read_request(mddev, bio, sectors, NULL);
1606 	else {
1607 		if (!md_write_start(mddev,bio))
1608 			return false;
1609 		raid1_write_request(mddev, bio, sectors);
1610 	}
1611 	return true;
1612 }
1613 
raid1_status(struct seq_file * seq,struct mddev * mddev)1614 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1615 {
1616 	struct r1conf *conf = mddev->private;
1617 	int i;
1618 
1619 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1620 		   conf->raid_disks - mddev->degraded);
1621 	rcu_read_lock();
1622 	for (i = 0; i < conf->raid_disks; i++) {
1623 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1624 		seq_printf(seq, "%s",
1625 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1626 	}
1627 	rcu_read_unlock();
1628 	seq_printf(seq, "]");
1629 }
1630 
1631 /**
1632  * raid1_error() - RAID1 error handler.
1633  * @mddev: affected md device.
1634  * @rdev: member device to fail.
1635  *
1636  * The routine acknowledges &rdev failure and determines new @mddev state.
1637  * If it failed, then:
1638  *	- &MD_BROKEN flag is set in &mddev->flags.
1639  *	- recovery is disabled.
1640  * Otherwise, it must be degraded:
1641  *	- recovery is interrupted.
1642  *	- &mddev->degraded is bumped.
1643  *
1644  * @rdev is marked as &Faulty excluding case when array is failed and
1645  * &mddev->fail_last_dev is off.
1646  */
raid1_error(struct mddev * mddev,struct md_rdev * rdev)1647 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649 	struct r1conf *conf = mddev->private;
1650 	unsigned long flags;
1651 
1652 	spin_lock_irqsave(&conf->device_lock, flags);
1653 
1654 	if (test_bit(In_sync, &rdev->flags) &&
1655 	    (conf->raid_disks - mddev->degraded) == 1) {
1656 		set_bit(MD_BROKEN, &mddev->flags);
1657 
1658 		if (!mddev->fail_last_dev) {
1659 			conf->recovery_disabled = mddev->recovery_disabled;
1660 			spin_unlock_irqrestore(&conf->device_lock, flags);
1661 			return;
1662 		}
1663 	}
1664 	set_bit(Blocked, &rdev->flags);
1665 	if (test_and_clear_bit(In_sync, &rdev->flags))
1666 		mddev->degraded++;
1667 	set_bit(Faulty, &rdev->flags);
1668 	spin_unlock_irqrestore(&conf->device_lock, flags);
1669 	/*
1670 	 * if recovery is running, make sure it aborts.
1671 	 */
1672 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1673 	set_mask_bits(&mddev->sb_flags, 0,
1674 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1675 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1676 		"md/raid1:%s: Operation continuing on %d devices.\n",
1677 		mdname(mddev), rdev->bdev,
1678 		mdname(mddev), conf->raid_disks - mddev->degraded);
1679 }
1680 
print_conf(struct r1conf * conf)1681 static void print_conf(struct r1conf *conf)
1682 {
1683 	int i;
1684 
1685 	pr_debug("RAID1 conf printout:\n");
1686 	if (!conf) {
1687 		pr_debug("(!conf)\n");
1688 		return;
1689 	}
1690 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1691 		 conf->raid_disks);
1692 
1693 	rcu_read_lock();
1694 	for (i = 0; i < conf->raid_disks; i++) {
1695 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1696 		if (rdev)
1697 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1698 				 i, !test_bit(In_sync, &rdev->flags),
1699 				 !test_bit(Faulty, &rdev->flags),
1700 				 rdev->bdev);
1701 	}
1702 	rcu_read_unlock();
1703 }
1704 
close_sync(struct r1conf * conf)1705 static void close_sync(struct r1conf *conf)
1706 {
1707 	int idx;
1708 
1709 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1710 		_wait_barrier(conf, idx, false);
1711 		_allow_barrier(conf, idx);
1712 	}
1713 
1714 	mempool_exit(&conf->r1buf_pool);
1715 }
1716 
raid1_spare_active(struct mddev * mddev)1717 static int raid1_spare_active(struct mddev *mddev)
1718 {
1719 	int i;
1720 	struct r1conf *conf = mddev->private;
1721 	int count = 0;
1722 	unsigned long flags;
1723 
1724 	/*
1725 	 * Find all failed disks within the RAID1 configuration
1726 	 * and mark them readable.
1727 	 * Called under mddev lock, so rcu protection not needed.
1728 	 * device_lock used to avoid races with raid1_end_read_request
1729 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1730 	 */
1731 	spin_lock_irqsave(&conf->device_lock, flags);
1732 	for (i = 0; i < conf->raid_disks; i++) {
1733 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1734 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1735 		if (repl
1736 		    && !test_bit(Candidate, &repl->flags)
1737 		    && repl->recovery_offset == MaxSector
1738 		    && !test_bit(Faulty, &repl->flags)
1739 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1740 			/* replacement has just become active */
1741 			if (!rdev ||
1742 			    !test_and_clear_bit(In_sync, &rdev->flags))
1743 				count++;
1744 			if (rdev) {
1745 				/* Replaced device not technically
1746 				 * faulty, but we need to be sure
1747 				 * it gets removed and never re-added
1748 				 */
1749 				set_bit(Faulty, &rdev->flags);
1750 				sysfs_notify_dirent_safe(
1751 					rdev->sysfs_state);
1752 			}
1753 		}
1754 		if (rdev
1755 		    && rdev->recovery_offset == MaxSector
1756 		    && !test_bit(Faulty, &rdev->flags)
1757 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1758 			count++;
1759 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1760 		}
1761 	}
1762 	mddev->degraded -= count;
1763 	spin_unlock_irqrestore(&conf->device_lock, flags);
1764 
1765 	print_conf(conf);
1766 	return count;
1767 }
1768 
raid1_add_disk(struct mddev * mddev,struct md_rdev * rdev)1769 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1770 {
1771 	struct r1conf *conf = mddev->private;
1772 	int err = -EEXIST;
1773 	int mirror = 0, repl_slot = -1;
1774 	struct raid1_info *p;
1775 	int first = 0;
1776 	int last = conf->raid_disks - 1;
1777 
1778 	if (mddev->recovery_disabled == conf->recovery_disabled)
1779 		return -EBUSY;
1780 
1781 	if (md_integrity_add_rdev(rdev, mddev))
1782 		return -ENXIO;
1783 
1784 	if (rdev->raid_disk >= 0)
1785 		first = last = rdev->raid_disk;
1786 
1787 	/*
1788 	 * find the disk ... but prefer rdev->saved_raid_disk
1789 	 * if possible.
1790 	 */
1791 	if (rdev->saved_raid_disk >= 0 &&
1792 	    rdev->saved_raid_disk >= first &&
1793 	    rdev->saved_raid_disk < conf->raid_disks &&
1794 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1795 		first = last = rdev->saved_raid_disk;
1796 
1797 	for (mirror = first; mirror <= last; mirror++) {
1798 		p = conf->mirrors + mirror;
1799 		if (!p->rdev) {
1800 			if (mddev->gendisk)
1801 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1802 						  rdev->data_offset << 9);
1803 
1804 			p->head_position = 0;
1805 			rdev->raid_disk = mirror;
1806 			err = 0;
1807 			/* As all devices are equivalent, we don't need a full recovery
1808 			 * if this was recently any drive of the array
1809 			 */
1810 			if (rdev->saved_raid_disk < 0)
1811 				conf->fullsync = 1;
1812 			rcu_assign_pointer(p->rdev, rdev);
1813 			break;
1814 		}
1815 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1816 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1817 			repl_slot = mirror;
1818 	}
1819 
1820 	if (err && repl_slot >= 0) {
1821 		/* Add this device as a replacement */
1822 		p = conf->mirrors + repl_slot;
1823 		clear_bit(In_sync, &rdev->flags);
1824 		set_bit(Replacement, &rdev->flags);
1825 		rdev->raid_disk = repl_slot;
1826 		err = 0;
1827 		conf->fullsync = 1;
1828 		rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1829 	}
1830 
1831 	print_conf(conf);
1832 	return err;
1833 }
1834 
raid1_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1835 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1836 {
1837 	struct r1conf *conf = mddev->private;
1838 	int err = 0;
1839 	int number = rdev->raid_disk;
1840 	struct raid1_info *p = conf->mirrors + number;
1841 
1842 	if (unlikely(number >= conf->raid_disks))
1843 		goto abort;
1844 
1845 	if (rdev != p->rdev)
1846 		p = conf->mirrors + conf->raid_disks + number;
1847 
1848 	print_conf(conf);
1849 	if (rdev == p->rdev) {
1850 		if (test_bit(In_sync, &rdev->flags) ||
1851 		    atomic_read(&rdev->nr_pending)) {
1852 			err = -EBUSY;
1853 			goto abort;
1854 		}
1855 		/* Only remove non-faulty devices if recovery
1856 		 * is not possible.
1857 		 */
1858 		if (!test_bit(Faulty, &rdev->flags) &&
1859 		    mddev->recovery_disabled != conf->recovery_disabled &&
1860 		    mddev->degraded < conf->raid_disks) {
1861 			err = -EBUSY;
1862 			goto abort;
1863 		}
1864 		p->rdev = NULL;
1865 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1866 			synchronize_rcu();
1867 			if (atomic_read(&rdev->nr_pending)) {
1868 				/* lost the race, try later */
1869 				err = -EBUSY;
1870 				p->rdev = rdev;
1871 				goto abort;
1872 			}
1873 		}
1874 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1875 			/* We just removed a device that is being replaced.
1876 			 * Move down the replacement.  We drain all IO before
1877 			 * doing this to avoid confusion.
1878 			 */
1879 			struct md_rdev *repl =
1880 				conf->mirrors[conf->raid_disks + number].rdev;
1881 			freeze_array(conf, 0);
1882 			if (atomic_read(&repl->nr_pending)) {
1883 				/* It means that some queued IO of retry_list
1884 				 * hold repl. Thus, we cannot set replacement
1885 				 * as NULL, avoiding rdev NULL pointer
1886 				 * dereference in sync_request_write and
1887 				 * handle_write_finished.
1888 				 */
1889 				err = -EBUSY;
1890 				unfreeze_array(conf);
1891 				goto abort;
1892 			}
1893 			clear_bit(Replacement, &repl->flags);
1894 			p->rdev = repl;
1895 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1896 			unfreeze_array(conf);
1897 		}
1898 
1899 		clear_bit(WantReplacement, &rdev->flags);
1900 		err = md_integrity_register(mddev);
1901 	}
1902 abort:
1903 
1904 	print_conf(conf);
1905 	return err;
1906 }
1907 
end_sync_read(struct bio * bio)1908 static void end_sync_read(struct bio *bio)
1909 {
1910 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1911 
1912 	update_head_pos(r1_bio->read_disk, r1_bio);
1913 
1914 	/*
1915 	 * we have read a block, now it needs to be re-written,
1916 	 * or re-read if the read failed.
1917 	 * We don't do much here, just schedule handling by raid1d
1918 	 */
1919 	if (!bio->bi_status)
1920 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1921 
1922 	if (atomic_dec_and_test(&r1_bio->remaining))
1923 		reschedule_retry(r1_bio);
1924 }
1925 
abort_sync_write(struct mddev * mddev,struct r1bio * r1_bio)1926 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1927 {
1928 	sector_t sync_blocks = 0;
1929 	sector_t s = r1_bio->sector;
1930 	long sectors_to_go = r1_bio->sectors;
1931 
1932 	/* make sure these bits don't get cleared. */
1933 	do {
1934 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1935 		s += sync_blocks;
1936 		sectors_to_go -= sync_blocks;
1937 	} while (sectors_to_go > 0);
1938 }
1939 
put_sync_write_buf(struct r1bio * r1_bio,int uptodate)1940 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1941 {
1942 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1943 		struct mddev *mddev = r1_bio->mddev;
1944 		int s = r1_bio->sectors;
1945 
1946 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1947 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1948 			reschedule_retry(r1_bio);
1949 		else {
1950 			put_buf(r1_bio);
1951 			md_done_sync(mddev, s, uptodate);
1952 		}
1953 	}
1954 }
1955 
end_sync_write(struct bio * bio)1956 static void end_sync_write(struct bio *bio)
1957 {
1958 	int uptodate = !bio->bi_status;
1959 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1960 	struct mddev *mddev = r1_bio->mddev;
1961 	struct r1conf *conf = mddev->private;
1962 	sector_t first_bad;
1963 	int bad_sectors;
1964 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1965 
1966 	if (!uptodate) {
1967 		abort_sync_write(mddev, r1_bio);
1968 		set_bit(WriteErrorSeen, &rdev->flags);
1969 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1970 			set_bit(MD_RECOVERY_NEEDED, &
1971 				mddev->recovery);
1972 		set_bit(R1BIO_WriteError, &r1_bio->state);
1973 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1974 			       &first_bad, &bad_sectors) &&
1975 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1976 				r1_bio->sector,
1977 				r1_bio->sectors,
1978 				&first_bad, &bad_sectors)
1979 		)
1980 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1981 
1982 	put_sync_write_buf(r1_bio, uptodate);
1983 }
1984 
r1_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,blk_opf_t rw)1985 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1986 			   int sectors, struct page *page, blk_opf_t rw)
1987 {
1988 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1989 		/* success */
1990 		return 1;
1991 	if (rw == REQ_OP_WRITE) {
1992 		set_bit(WriteErrorSeen, &rdev->flags);
1993 		if (!test_and_set_bit(WantReplacement,
1994 				      &rdev->flags))
1995 			set_bit(MD_RECOVERY_NEEDED, &
1996 				rdev->mddev->recovery);
1997 	}
1998 	/* need to record an error - either for the block or the device */
1999 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2000 		md_error(rdev->mddev, rdev);
2001 	return 0;
2002 }
2003 
fix_sync_read_error(struct r1bio * r1_bio)2004 static int fix_sync_read_error(struct r1bio *r1_bio)
2005 {
2006 	/* Try some synchronous reads of other devices to get
2007 	 * good data, much like with normal read errors.  Only
2008 	 * read into the pages we already have so we don't
2009 	 * need to re-issue the read request.
2010 	 * We don't need to freeze the array, because being in an
2011 	 * active sync request, there is no normal IO, and
2012 	 * no overlapping syncs.
2013 	 * We don't need to check is_badblock() again as we
2014 	 * made sure that anything with a bad block in range
2015 	 * will have bi_end_io clear.
2016 	 */
2017 	struct mddev *mddev = r1_bio->mddev;
2018 	struct r1conf *conf = mddev->private;
2019 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2020 	struct page **pages = get_resync_pages(bio)->pages;
2021 	sector_t sect = r1_bio->sector;
2022 	int sectors = r1_bio->sectors;
2023 	int idx = 0;
2024 	struct md_rdev *rdev;
2025 
2026 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2027 	if (test_bit(FailFast, &rdev->flags)) {
2028 		/* Don't try recovering from here - just fail it
2029 		 * ... unless it is the last working device of course */
2030 		md_error(mddev, rdev);
2031 		if (test_bit(Faulty, &rdev->flags))
2032 			/* Don't try to read from here, but make sure
2033 			 * put_buf does it's thing
2034 			 */
2035 			bio->bi_end_io = end_sync_write;
2036 	}
2037 
2038 	while(sectors) {
2039 		int s = sectors;
2040 		int d = r1_bio->read_disk;
2041 		int success = 0;
2042 		int start;
2043 
2044 		if (s > (PAGE_SIZE>>9))
2045 			s = PAGE_SIZE >> 9;
2046 		do {
2047 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2048 				/* No rcu protection needed here devices
2049 				 * can only be removed when no resync is
2050 				 * active, and resync is currently active
2051 				 */
2052 				rdev = conf->mirrors[d].rdev;
2053 				if (sync_page_io(rdev, sect, s<<9,
2054 						 pages[idx],
2055 						 REQ_OP_READ, false)) {
2056 					success = 1;
2057 					break;
2058 				}
2059 			}
2060 			d++;
2061 			if (d == conf->raid_disks * 2)
2062 				d = 0;
2063 		} while (!success && d != r1_bio->read_disk);
2064 
2065 		if (!success) {
2066 			int abort = 0;
2067 			/* Cannot read from anywhere, this block is lost.
2068 			 * Record a bad block on each device.  If that doesn't
2069 			 * work just disable and interrupt the recovery.
2070 			 * Don't fail devices as that won't really help.
2071 			 */
2072 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2073 					    mdname(mddev), bio->bi_bdev,
2074 					    (unsigned long long)r1_bio->sector);
2075 			for (d = 0; d < conf->raid_disks * 2; d++) {
2076 				rdev = conf->mirrors[d].rdev;
2077 				if (!rdev || test_bit(Faulty, &rdev->flags))
2078 					continue;
2079 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2080 					abort = 1;
2081 			}
2082 			if (abort) {
2083 				conf->recovery_disabled =
2084 					mddev->recovery_disabled;
2085 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2086 				md_done_sync(mddev, r1_bio->sectors, 0);
2087 				put_buf(r1_bio);
2088 				return 0;
2089 			}
2090 			/* Try next page */
2091 			sectors -= s;
2092 			sect += s;
2093 			idx++;
2094 			continue;
2095 		}
2096 
2097 		start = d;
2098 		/* write it back and re-read */
2099 		while (d != r1_bio->read_disk) {
2100 			if (d == 0)
2101 				d = conf->raid_disks * 2;
2102 			d--;
2103 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2104 				continue;
2105 			rdev = conf->mirrors[d].rdev;
2106 			if (r1_sync_page_io(rdev, sect, s,
2107 					    pages[idx],
2108 					    REQ_OP_WRITE) == 0) {
2109 				r1_bio->bios[d]->bi_end_io = NULL;
2110 				rdev_dec_pending(rdev, mddev);
2111 			}
2112 		}
2113 		d = start;
2114 		while (d != r1_bio->read_disk) {
2115 			if (d == 0)
2116 				d = conf->raid_disks * 2;
2117 			d--;
2118 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2119 				continue;
2120 			rdev = conf->mirrors[d].rdev;
2121 			if (r1_sync_page_io(rdev, sect, s,
2122 					    pages[idx],
2123 					    REQ_OP_READ) != 0)
2124 				atomic_add(s, &rdev->corrected_errors);
2125 		}
2126 		sectors -= s;
2127 		sect += s;
2128 		idx ++;
2129 	}
2130 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2131 	bio->bi_status = 0;
2132 	return 1;
2133 }
2134 
process_checks(struct r1bio * r1_bio)2135 static void process_checks(struct r1bio *r1_bio)
2136 {
2137 	/* We have read all readable devices.  If we haven't
2138 	 * got the block, then there is no hope left.
2139 	 * If we have, then we want to do a comparison
2140 	 * and skip the write if everything is the same.
2141 	 * If any blocks failed to read, then we need to
2142 	 * attempt an over-write
2143 	 */
2144 	struct mddev *mddev = r1_bio->mddev;
2145 	struct r1conf *conf = mddev->private;
2146 	int primary;
2147 	int i;
2148 	int vcnt;
2149 
2150 	/* Fix variable parts of all bios */
2151 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2152 	for (i = 0; i < conf->raid_disks * 2; i++) {
2153 		blk_status_t status;
2154 		struct bio *b = r1_bio->bios[i];
2155 		struct resync_pages *rp = get_resync_pages(b);
2156 		if (b->bi_end_io != end_sync_read)
2157 			continue;
2158 		/* fixup the bio for reuse, but preserve errno */
2159 		status = b->bi_status;
2160 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2161 		b->bi_status = status;
2162 		b->bi_iter.bi_sector = r1_bio->sector +
2163 			conf->mirrors[i].rdev->data_offset;
2164 		b->bi_end_io = end_sync_read;
2165 		rp->raid_bio = r1_bio;
2166 		b->bi_private = rp;
2167 
2168 		/* initialize bvec table again */
2169 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2170 	}
2171 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2172 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2173 		    !r1_bio->bios[primary]->bi_status) {
2174 			r1_bio->bios[primary]->bi_end_io = NULL;
2175 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2176 			break;
2177 		}
2178 	r1_bio->read_disk = primary;
2179 	for (i = 0; i < conf->raid_disks * 2; i++) {
2180 		int j = 0;
2181 		struct bio *pbio = r1_bio->bios[primary];
2182 		struct bio *sbio = r1_bio->bios[i];
2183 		blk_status_t status = sbio->bi_status;
2184 		struct page **ppages = get_resync_pages(pbio)->pages;
2185 		struct page **spages = get_resync_pages(sbio)->pages;
2186 		struct bio_vec *bi;
2187 		int page_len[RESYNC_PAGES] = { 0 };
2188 		struct bvec_iter_all iter_all;
2189 
2190 		if (sbio->bi_end_io != end_sync_read)
2191 			continue;
2192 		/* Now we can 'fixup' the error value */
2193 		sbio->bi_status = 0;
2194 
2195 		bio_for_each_segment_all(bi, sbio, iter_all)
2196 			page_len[j++] = bi->bv_len;
2197 
2198 		if (!status) {
2199 			for (j = vcnt; j-- ; ) {
2200 				if (memcmp(page_address(ppages[j]),
2201 					   page_address(spages[j]),
2202 					   page_len[j]))
2203 					break;
2204 			}
2205 		} else
2206 			j = 0;
2207 		if (j >= 0)
2208 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2209 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2210 			      && !status)) {
2211 			/* No need to write to this device. */
2212 			sbio->bi_end_io = NULL;
2213 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2214 			continue;
2215 		}
2216 
2217 		bio_copy_data(sbio, pbio);
2218 	}
2219 }
2220 
sync_request_write(struct mddev * mddev,struct r1bio * r1_bio)2221 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2222 {
2223 	struct r1conf *conf = mddev->private;
2224 	int i;
2225 	int disks = conf->raid_disks * 2;
2226 	struct bio *wbio;
2227 
2228 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2229 		/* ouch - failed to read all of that. */
2230 		if (!fix_sync_read_error(r1_bio))
2231 			return;
2232 
2233 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2234 		process_checks(r1_bio);
2235 
2236 	/*
2237 	 * schedule writes
2238 	 */
2239 	atomic_set(&r1_bio->remaining, 1);
2240 	for (i = 0; i < disks ; i++) {
2241 		wbio = r1_bio->bios[i];
2242 		if (wbio->bi_end_io == NULL ||
2243 		    (wbio->bi_end_io == end_sync_read &&
2244 		     (i == r1_bio->read_disk ||
2245 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2246 			continue;
2247 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2248 			abort_sync_write(mddev, r1_bio);
2249 			continue;
2250 		}
2251 
2252 		wbio->bi_opf = REQ_OP_WRITE;
2253 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2254 			wbio->bi_opf |= MD_FAILFAST;
2255 
2256 		wbio->bi_end_io = end_sync_write;
2257 		atomic_inc(&r1_bio->remaining);
2258 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2259 
2260 		submit_bio_noacct(wbio);
2261 	}
2262 
2263 	put_sync_write_buf(r1_bio, 1);
2264 }
2265 
2266 /*
2267  * This is a kernel thread which:
2268  *
2269  *	1.	Retries failed read operations on working mirrors.
2270  *	2.	Updates the raid superblock when problems encounter.
2271  *	3.	Performs writes following reads for array synchronising.
2272  */
2273 
fix_read_error(struct r1conf * conf,int read_disk,sector_t sect,int sectors)2274 static void fix_read_error(struct r1conf *conf, int read_disk,
2275 			   sector_t sect, int sectors)
2276 {
2277 	struct mddev *mddev = conf->mddev;
2278 	while(sectors) {
2279 		int s = sectors;
2280 		int d = read_disk;
2281 		int success = 0;
2282 		int start;
2283 		struct md_rdev *rdev;
2284 
2285 		if (s > (PAGE_SIZE>>9))
2286 			s = PAGE_SIZE >> 9;
2287 
2288 		do {
2289 			sector_t first_bad;
2290 			int bad_sectors;
2291 
2292 			rcu_read_lock();
2293 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2294 			if (rdev &&
2295 			    (test_bit(In_sync, &rdev->flags) ||
2296 			     (!test_bit(Faulty, &rdev->flags) &&
2297 			      rdev->recovery_offset >= sect + s)) &&
2298 			    is_badblock(rdev, sect, s,
2299 					&first_bad, &bad_sectors) == 0) {
2300 				atomic_inc(&rdev->nr_pending);
2301 				rcu_read_unlock();
2302 				if (sync_page_io(rdev, sect, s<<9,
2303 					 conf->tmppage, REQ_OP_READ, false))
2304 					success = 1;
2305 				rdev_dec_pending(rdev, mddev);
2306 				if (success)
2307 					break;
2308 			} else
2309 				rcu_read_unlock();
2310 			d++;
2311 			if (d == conf->raid_disks * 2)
2312 				d = 0;
2313 		} while (d != read_disk);
2314 
2315 		if (!success) {
2316 			/* Cannot read from anywhere - mark it bad */
2317 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2318 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2319 				md_error(mddev, rdev);
2320 			break;
2321 		}
2322 		/* write it back and re-read */
2323 		start = d;
2324 		while (d != read_disk) {
2325 			if (d==0)
2326 				d = conf->raid_disks * 2;
2327 			d--;
2328 			rcu_read_lock();
2329 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2330 			if (rdev &&
2331 			    !test_bit(Faulty, &rdev->flags)) {
2332 				atomic_inc(&rdev->nr_pending);
2333 				rcu_read_unlock();
2334 				r1_sync_page_io(rdev, sect, s,
2335 						conf->tmppage, REQ_OP_WRITE);
2336 				rdev_dec_pending(rdev, mddev);
2337 			} else
2338 				rcu_read_unlock();
2339 		}
2340 		d = start;
2341 		while (d != read_disk) {
2342 			if (d==0)
2343 				d = conf->raid_disks * 2;
2344 			d--;
2345 			rcu_read_lock();
2346 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2347 			if (rdev &&
2348 			    !test_bit(Faulty, &rdev->flags)) {
2349 				atomic_inc(&rdev->nr_pending);
2350 				rcu_read_unlock();
2351 				if (r1_sync_page_io(rdev, sect, s,
2352 						conf->tmppage, REQ_OP_READ)) {
2353 					atomic_add(s, &rdev->corrected_errors);
2354 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2355 						mdname(mddev), s,
2356 						(unsigned long long)(sect +
2357 								     rdev->data_offset),
2358 						rdev->bdev);
2359 				}
2360 				rdev_dec_pending(rdev, mddev);
2361 			} else
2362 				rcu_read_unlock();
2363 		}
2364 		sectors -= s;
2365 		sect += s;
2366 	}
2367 }
2368 
narrow_write_error(struct r1bio * r1_bio,int i)2369 static int narrow_write_error(struct r1bio *r1_bio, int i)
2370 {
2371 	struct mddev *mddev = r1_bio->mddev;
2372 	struct r1conf *conf = mddev->private;
2373 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2374 
2375 	/* bio has the data to be written to device 'i' where
2376 	 * we just recently had a write error.
2377 	 * We repeatedly clone the bio and trim down to one block,
2378 	 * then try the write.  Where the write fails we record
2379 	 * a bad block.
2380 	 * It is conceivable that the bio doesn't exactly align with
2381 	 * blocks.  We must handle this somehow.
2382 	 *
2383 	 * We currently own a reference on the rdev.
2384 	 */
2385 
2386 	int block_sectors;
2387 	sector_t sector;
2388 	int sectors;
2389 	int sect_to_write = r1_bio->sectors;
2390 	int ok = 1;
2391 
2392 	if (rdev->badblocks.shift < 0)
2393 		return 0;
2394 
2395 	block_sectors = roundup(1 << rdev->badblocks.shift,
2396 				bdev_logical_block_size(rdev->bdev) >> 9);
2397 	sector = r1_bio->sector;
2398 	sectors = ((sector + block_sectors)
2399 		   & ~(sector_t)(block_sectors - 1))
2400 		- sector;
2401 
2402 	while (sect_to_write) {
2403 		struct bio *wbio;
2404 		if (sectors > sect_to_write)
2405 			sectors = sect_to_write;
2406 		/* Write at 'sector' for 'sectors'*/
2407 
2408 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2409 			wbio = bio_alloc_clone(rdev->bdev,
2410 					       r1_bio->behind_master_bio,
2411 					       GFP_NOIO, &mddev->bio_set);
2412 		} else {
2413 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2414 					       GFP_NOIO, &mddev->bio_set);
2415 		}
2416 
2417 		wbio->bi_opf = REQ_OP_WRITE;
2418 		wbio->bi_iter.bi_sector = r1_bio->sector;
2419 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2420 
2421 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2422 		wbio->bi_iter.bi_sector += rdev->data_offset;
2423 
2424 		if (submit_bio_wait(wbio) < 0)
2425 			/* failure! */
2426 			ok = rdev_set_badblocks(rdev, sector,
2427 						sectors, 0)
2428 				&& ok;
2429 
2430 		bio_put(wbio);
2431 		sect_to_write -= sectors;
2432 		sector += sectors;
2433 		sectors = block_sectors;
2434 	}
2435 	return ok;
2436 }
2437 
handle_sync_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2438 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2439 {
2440 	int m;
2441 	int s = r1_bio->sectors;
2442 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2443 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2444 		struct bio *bio = r1_bio->bios[m];
2445 		if (bio->bi_end_io == NULL)
2446 			continue;
2447 		if (!bio->bi_status &&
2448 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2449 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2450 		}
2451 		if (bio->bi_status &&
2452 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2453 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2454 				md_error(conf->mddev, rdev);
2455 		}
2456 	}
2457 	put_buf(r1_bio);
2458 	md_done_sync(conf->mddev, s, 1);
2459 }
2460 
handle_write_finished(struct r1conf * conf,struct r1bio * r1_bio)2461 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463 	int m, idx;
2464 	bool fail = false;
2465 
2466 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2467 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2468 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2469 			rdev_clear_badblocks(rdev,
2470 					     r1_bio->sector,
2471 					     r1_bio->sectors, 0);
2472 			rdev_dec_pending(rdev, conf->mddev);
2473 		} else if (r1_bio->bios[m] != NULL) {
2474 			/* This drive got a write error.  We need to
2475 			 * narrow down and record precise write
2476 			 * errors.
2477 			 */
2478 			fail = true;
2479 			if (!narrow_write_error(r1_bio, m)) {
2480 				md_error(conf->mddev,
2481 					 conf->mirrors[m].rdev);
2482 				/* an I/O failed, we can't clear the bitmap */
2483 				set_bit(R1BIO_Degraded, &r1_bio->state);
2484 			}
2485 			rdev_dec_pending(conf->mirrors[m].rdev,
2486 					 conf->mddev);
2487 		}
2488 	if (fail) {
2489 		spin_lock_irq(&conf->device_lock);
2490 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2491 		idx = sector_to_idx(r1_bio->sector);
2492 		atomic_inc(&conf->nr_queued[idx]);
2493 		spin_unlock_irq(&conf->device_lock);
2494 		/*
2495 		 * In case freeze_array() is waiting for condition
2496 		 * get_unqueued_pending() == extra to be true.
2497 		 */
2498 		wake_up(&conf->wait_barrier);
2499 		md_wakeup_thread(conf->mddev->thread);
2500 	} else {
2501 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2502 			close_write(r1_bio);
2503 		raid_end_bio_io(r1_bio);
2504 	}
2505 }
2506 
handle_read_error(struct r1conf * conf,struct r1bio * r1_bio)2507 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2508 {
2509 	struct mddev *mddev = conf->mddev;
2510 	struct bio *bio;
2511 	struct md_rdev *rdev;
2512 	sector_t sector;
2513 
2514 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2515 	/* we got a read error. Maybe the drive is bad.  Maybe just
2516 	 * the block and we can fix it.
2517 	 * We freeze all other IO, and try reading the block from
2518 	 * other devices.  When we find one, we re-write
2519 	 * and check it that fixes the read error.
2520 	 * This is all done synchronously while the array is
2521 	 * frozen
2522 	 */
2523 
2524 	bio = r1_bio->bios[r1_bio->read_disk];
2525 	bio_put(bio);
2526 	r1_bio->bios[r1_bio->read_disk] = NULL;
2527 
2528 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2529 	if (mddev->ro == 0
2530 	    && !test_bit(FailFast, &rdev->flags)) {
2531 		freeze_array(conf, 1);
2532 		fix_read_error(conf, r1_bio->read_disk,
2533 			       r1_bio->sector, r1_bio->sectors);
2534 		unfreeze_array(conf);
2535 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2536 		md_error(mddev, rdev);
2537 	} else {
2538 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2539 	}
2540 
2541 	rdev_dec_pending(rdev, conf->mddev);
2542 	sector = r1_bio->sector;
2543 	bio = r1_bio->master_bio;
2544 
2545 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2546 	r1_bio->state = 0;
2547 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2548 	allow_barrier(conf, sector);
2549 }
2550 
raid1d(struct md_thread * thread)2551 static void raid1d(struct md_thread *thread)
2552 {
2553 	struct mddev *mddev = thread->mddev;
2554 	struct r1bio *r1_bio;
2555 	unsigned long flags;
2556 	struct r1conf *conf = mddev->private;
2557 	struct list_head *head = &conf->retry_list;
2558 	struct blk_plug plug;
2559 	int idx;
2560 
2561 	md_check_recovery(mddev);
2562 
2563 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2564 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2565 		LIST_HEAD(tmp);
2566 		spin_lock_irqsave(&conf->device_lock, flags);
2567 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2568 			list_splice_init(&conf->bio_end_io_list, &tmp);
2569 		spin_unlock_irqrestore(&conf->device_lock, flags);
2570 		while (!list_empty(&tmp)) {
2571 			r1_bio = list_first_entry(&tmp, struct r1bio,
2572 						  retry_list);
2573 			list_del(&r1_bio->retry_list);
2574 			idx = sector_to_idx(r1_bio->sector);
2575 			atomic_dec(&conf->nr_queued[idx]);
2576 			if (mddev->degraded)
2577 				set_bit(R1BIO_Degraded, &r1_bio->state);
2578 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2579 				close_write(r1_bio);
2580 			raid_end_bio_io(r1_bio);
2581 		}
2582 	}
2583 
2584 	blk_start_plug(&plug);
2585 	for (;;) {
2586 
2587 		flush_pending_writes(conf);
2588 
2589 		spin_lock_irqsave(&conf->device_lock, flags);
2590 		if (list_empty(head)) {
2591 			spin_unlock_irqrestore(&conf->device_lock, flags);
2592 			break;
2593 		}
2594 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2595 		list_del(head->prev);
2596 		idx = sector_to_idx(r1_bio->sector);
2597 		atomic_dec(&conf->nr_queued[idx]);
2598 		spin_unlock_irqrestore(&conf->device_lock, flags);
2599 
2600 		mddev = r1_bio->mddev;
2601 		conf = mddev->private;
2602 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2603 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2604 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2605 				handle_sync_write_finished(conf, r1_bio);
2606 			else
2607 				sync_request_write(mddev, r1_bio);
2608 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2609 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2610 			handle_write_finished(conf, r1_bio);
2611 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2612 			handle_read_error(conf, r1_bio);
2613 		else
2614 			WARN_ON_ONCE(1);
2615 
2616 		cond_resched();
2617 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2618 			md_check_recovery(mddev);
2619 	}
2620 	blk_finish_plug(&plug);
2621 }
2622 
init_resync(struct r1conf * conf)2623 static int init_resync(struct r1conf *conf)
2624 {
2625 	int buffs;
2626 
2627 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2628 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2629 
2630 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2631 			    r1buf_pool_free, conf->poolinfo);
2632 }
2633 
raid1_alloc_init_r1buf(struct r1conf * conf)2634 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2635 {
2636 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2637 	struct resync_pages *rps;
2638 	struct bio *bio;
2639 	int i;
2640 
2641 	for (i = conf->poolinfo->raid_disks; i--; ) {
2642 		bio = r1bio->bios[i];
2643 		rps = bio->bi_private;
2644 		bio_reset(bio, NULL, 0);
2645 		bio->bi_private = rps;
2646 	}
2647 	r1bio->master_bio = NULL;
2648 	return r1bio;
2649 }
2650 
2651 /*
2652  * perform a "sync" on one "block"
2653  *
2654  * We need to make sure that no normal I/O request - particularly write
2655  * requests - conflict with active sync requests.
2656  *
2657  * This is achieved by tracking pending requests and a 'barrier' concept
2658  * that can be installed to exclude normal IO requests.
2659  */
2660 
raid1_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2661 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2662 				   int *skipped)
2663 {
2664 	struct r1conf *conf = mddev->private;
2665 	struct r1bio *r1_bio;
2666 	struct bio *bio;
2667 	sector_t max_sector, nr_sectors;
2668 	int disk = -1;
2669 	int i;
2670 	int wonly = -1;
2671 	int write_targets = 0, read_targets = 0;
2672 	sector_t sync_blocks;
2673 	int still_degraded = 0;
2674 	int good_sectors = RESYNC_SECTORS;
2675 	int min_bad = 0; /* number of sectors that are bad in all devices */
2676 	int idx = sector_to_idx(sector_nr);
2677 	int page_idx = 0;
2678 
2679 	if (!mempool_initialized(&conf->r1buf_pool))
2680 		if (init_resync(conf))
2681 			return 0;
2682 
2683 	max_sector = mddev->dev_sectors;
2684 	if (sector_nr >= max_sector) {
2685 		/* If we aborted, we need to abort the
2686 		 * sync on the 'current' bitmap chunk (there will
2687 		 * only be one in raid1 resync.
2688 		 * We can find the current addess in mddev->curr_resync
2689 		 */
2690 		if (mddev->curr_resync < max_sector) /* aborted */
2691 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2692 					   &sync_blocks, 1);
2693 		else /* completed sync */
2694 			conf->fullsync = 0;
2695 
2696 		md_bitmap_close_sync(mddev->bitmap);
2697 		close_sync(conf);
2698 
2699 		if (mddev_is_clustered(mddev)) {
2700 			conf->cluster_sync_low = 0;
2701 			conf->cluster_sync_high = 0;
2702 		}
2703 		return 0;
2704 	}
2705 
2706 	if (mddev->bitmap == NULL &&
2707 	    mddev->recovery_cp == MaxSector &&
2708 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2709 	    conf->fullsync == 0) {
2710 		*skipped = 1;
2711 		return max_sector - sector_nr;
2712 	}
2713 	/* before building a request, check if we can skip these blocks..
2714 	 * This call the bitmap_start_sync doesn't actually record anything
2715 	 */
2716 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2717 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2718 		/* We can skip this block, and probably several more */
2719 		*skipped = 1;
2720 		return sync_blocks;
2721 	}
2722 
2723 	/*
2724 	 * If there is non-resync activity waiting for a turn, then let it
2725 	 * though before starting on this new sync request.
2726 	 */
2727 	if (atomic_read(&conf->nr_waiting[idx]))
2728 		schedule_timeout_uninterruptible(1);
2729 
2730 	/* we are incrementing sector_nr below. To be safe, we check against
2731 	 * sector_nr + two times RESYNC_SECTORS
2732 	 */
2733 
2734 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2735 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2736 
2737 
2738 	if (raise_barrier(conf, sector_nr))
2739 		return 0;
2740 
2741 	r1_bio = raid1_alloc_init_r1buf(conf);
2742 
2743 	rcu_read_lock();
2744 	/*
2745 	 * If we get a correctably read error during resync or recovery,
2746 	 * we might want to read from a different device.  So we
2747 	 * flag all drives that could conceivably be read from for READ,
2748 	 * and any others (which will be non-In_sync devices) for WRITE.
2749 	 * If a read fails, we try reading from something else for which READ
2750 	 * is OK.
2751 	 */
2752 
2753 	r1_bio->mddev = mddev;
2754 	r1_bio->sector = sector_nr;
2755 	r1_bio->state = 0;
2756 	set_bit(R1BIO_IsSync, &r1_bio->state);
2757 	/* make sure good_sectors won't go across barrier unit boundary */
2758 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2759 
2760 	for (i = 0; i < conf->raid_disks * 2; i++) {
2761 		struct md_rdev *rdev;
2762 		bio = r1_bio->bios[i];
2763 
2764 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2765 		if (rdev == NULL ||
2766 		    test_bit(Faulty, &rdev->flags)) {
2767 			if (i < conf->raid_disks)
2768 				still_degraded = 1;
2769 		} else if (!test_bit(In_sync, &rdev->flags)) {
2770 			bio->bi_opf = REQ_OP_WRITE;
2771 			bio->bi_end_io = end_sync_write;
2772 			write_targets ++;
2773 		} else {
2774 			/* may need to read from here */
2775 			sector_t first_bad = MaxSector;
2776 			int bad_sectors;
2777 
2778 			if (is_badblock(rdev, sector_nr, good_sectors,
2779 					&first_bad, &bad_sectors)) {
2780 				if (first_bad > sector_nr)
2781 					good_sectors = first_bad - sector_nr;
2782 				else {
2783 					bad_sectors -= (sector_nr - first_bad);
2784 					if (min_bad == 0 ||
2785 					    min_bad > bad_sectors)
2786 						min_bad = bad_sectors;
2787 				}
2788 			}
2789 			if (sector_nr < first_bad) {
2790 				if (test_bit(WriteMostly, &rdev->flags)) {
2791 					if (wonly < 0)
2792 						wonly = i;
2793 				} else {
2794 					if (disk < 0)
2795 						disk = i;
2796 				}
2797 				bio->bi_opf = REQ_OP_READ;
2798 				bio->bi_end_io = end_sync_read;
2799 				read_targets++;
2800 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2801 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2802 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2803 				/*
2804 				 * The device is suitable for reading (InSync),
2805 				 * but has bad block(s) here. Let's try to correct them,
2806 				 * if we are doing resync or repair. Otherwise, leave
2807 				 * this device alone for this sync request.
2808 				 */
2809 				bio->bi_opf = REQ_OP_WRITE;
2810 				bio->bi_end_io = end_sync_write;
2811 				write_targets++;
2812 			}
2813 		}
2814 		if (rdev && bio->bi_end_io) {
2815 			atomic_inc(&rdev->nr_pending);
2816 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2817 			bio_set_dev(bio, rdev->bdev);
2818 			if (test_bit(FailFast, &rdev->flags))
2819 				bio->bi_opf |= MD_FAILFAST;
2820 		}
2821 	}
2822 	rcu_read_unlock();
2823 	if (disk < 0)
2824 		disk = wonly;
2825 	r1_bio->read_disk = disk;
2826 
2827 	if (read_targets == 0 && min_bad > 0) {
2828 		/* These sectors are bad on all InSync devices, so we
2829 		 * need to mark them bad on all write targets
2830 		 */
2831 		int ok = 1;
2832 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2833 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2834 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2835 				ok = rdev_set_badblocks(rdev, sector_nr,
2836 							min_bad, 0
2837 					) && ok;
2838 			}
2839 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2840 		*skipped = 1;
2841 		put_buf(r1_bio);
2842 
2843 		if (!ok) {
2844 			/* Cannot record the badblocks, so need to
2845 			 * abort the resync.
2846 			 * If there are multiple read targets, could just
2847 			 * fail the really bad ones ???
2848 			 */
2849 			conf->recovery_disabled = mddev->recovery_disabled;
2850 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2851 			return 0;
2852 		} else
2853 			return min_bad;
2854 
2855 	}
2856 	if (min_bad > 0 && min_bad < good_sectors) {
2857 		/* only resync enough to reach the next bad->good
2858 		 * transition */
2859 		good_sectors = min_bad;
2860 	}
2861 
2862 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2863 		/* extra read targets are also write targets */
2864 		write_targets += read_targets-1;
2865 
2866 	if (write_targets == 0 || read_targets == 0) {
2867 		/* There is nowhere to write, so all non-sync
2868 		 * drives must be failed - so we are finished
2869 		 */
2870 		sector_t rv;
2871 		if (min_bad > 0)
2872 			max_sector = sector_nr + min_bad;
2873 		rv = max_sector - sector_nr;
2874 		*skipped = 1;
2875 		put_buf(r1_bio);
2876 		return rv;
2877 	}
2878 
2879 	if (max_sector > mddev->resync_max)
2880 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2881 	if (max_sector > sector_nr + good_sectors)
2882 		max_sector = sector_nr + good_sectors;
2883 	nr_sectors = 0;
2884 	sync_blocks = 0;
2885 	do {
2886 		struct page *page;
2887 		int len = PAGE_SIZE;
2888 		if (sector_nr + (len>>9) > max_sector)
2889 			len = (max_sector - sector_nr) << 9;
2890 		if (len == 0)
2891 			break;
2892 		if (sync_blocks == 0) {
2893 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2894 						  &sync_blocks, still_degraded) &&
2895 			    !conf->fullsync &&
2896 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2897 				break;
2898 			if ((len >> 9) > sync_blocks)
2899 				len = sync_blocks<<9;
2900 		}
2901 
2902 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2903 			struct resync_pages *rp;
2904 
2905 			bio = r1_bio->bios[i];
2906 			rp = get_resync_pages(bio);
2907 			if (bio->bi_end_io) {
2908 				page = resync_fetch_page(rp, page_idx);
2909 
2910 				/*
2911 				 * won't fail because the vec table is big
2912 				 * enough to hold all these pages
2913 				 */
2914 				__bio_add_page(bio, page, len, 0);
2915 			}
2916 		}
2917 		nr_sectors += len>>9;
2918 		sector_nr += len>>9;
2919 		sync_blocks -= (len>>9);
2920 	} while (++page_idx < RESYNC_PAGES);
2921 
2922 	r1_bio->sectors = nr_sectors;
2923 
2924 	if (mddev_is_clustered(mddev) &&
2925 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2926 		conf->cluster_sync_low = mddev->curr_resync_completed;
2927 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2928 		/* Send resync message */
2929 		md_cluster_ops->resync_info_update(mddev,
2930 				conf->cluster_sync_low,
2931 				conf->cluster_sync_high);
2932 	}
2933 
2934 	/* For a user-requested sync, we read all readable devices and do a
2935 	 * compare
2936 	 */
2937 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2938 		atomic_set(&r1_bio->remaining, read_targets);
2939 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2940 			bio = r1_bio->bios[i];
2941 			if (bio->bi_end_io == end_sync_read) {
2942 				read_targets--;
2943 				md_sync_acct_bio(bio, nr_sectors);
2944 				if (read_targets == 1)
2945 					bio->bi_opf &= ~MD_FAILFAST;
2946 				submit_bio_noacct(bio);
2947 			}
2948 		}
2949 	} else {
2950 		atomic_set(&r1_bio->remaining, 1);
2951 		bio = r1_bio->bios[r1_bio->read_disk];
2952 		md_sync_acct_bio(bio, nr_sectors);
2953 		if (read_targets == 1)
2954 			bio->bi_opf &= ~MD_FAILFAST;
2955 		submit_bio_noacct(bio);
2956 	}
2957 	return nr_sectors;
2958 }
2959 
raid1_size(struct mddev * mddev,sector_t sectors,int raid_disks)2960 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2961 {
2962 	if (sectors)
2963 		return sectors;
2964 
2965 	return mddev->dev_sectors;
2966 }
2967 
setup_conf(struct mddev * mddev)2968 static struct r1conf *setup_conf(struct mddev *mddev)
2969 {
2970 	struct r1conf *conf;
2971 	int i;
2972 	struct raid1_info *disk;
2973 	struct md_rdev *rdev;
2974 	int err = -ENOMEM;
2975 
2976 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2977 	if (!conf)
2978 		goto abort;
2979 
2980 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2981 				   sizeof(atomic_t), GFP_KERNEL);
2982 	if (!conf->nr_pending)
2983 		goto abort;
2984 
2985 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2986 				   sizeof(atomic_t), GFP_KERNEL);
2987 	if (!conf->nr_waiting)
2988 		goto abort;
2989 
2990 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2991 				  sizeof(atomic_t), GFP_KERNEL);
2992 	if (!conf->nr_queued)
2993 		goto abort;
2994 
2995 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2996 				sizeof(atomic_t), GFP_KERNEL);
2997 	if (!conf->barrier)
2998 		goto abort;
2999 
3000 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3001 					    mddev->raid_disks, 2),
3002 				GFP_KERNEL);
3003 	if (!conf->mirrors)
3004 		goto abort;
3005 
3006 	conf->tmppage = alloc_page(GFP_KERNEL);
3007 	if (!conf->tmppage)
3008 		goto abort;
3009 
3010 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3011 	if (!conf->poolinfo)
3012 		goto abort;
3013 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3014 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3015 			   rbio_pool_free, conf->poolinfo);
3016 	if (err)
3017 		goto abort;
3018 
3019 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3020 	if (err)
3021 		goto abort;
3022 
3023 	conf->poolinfo->mddev = mddev;
3024 
3025 	err = -EINVAL;
3026 	spin_lock_init(&conf->device_lock);
3027 	rdev_for_each(rdev, mddev) {
3028 		int disk_idx = rdev->raid_disk;
3029 		if (disk_idx >= mddev->raid_disks
3030 		    || disk_idx < 0)
3031 			continue;
3032 		if (test_bit(Replacement, &rdev->flags))
3033 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3034 		else
3035 			disk = conf->mirrors + disk_idx;
3036 
3037 		if (disk->rdev)
3038 			goto abort;
3039 		disk->rdev = rdev;
3040 		disk->head_position = 0;
3041 		disk->seq_start = MaxSector;
3042 	}
3043 	conf->raid_disks = mddev->raid_disks;
3044 	conf->mddev = mddev;
3045 	INIT_LIST_HEAD(&conf->retry_list);
3046 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3047 
3048 	spin_lock_init(&conf->resync_lock);
3049 	init_waitqueue_head(&conf->wait_barrier);
3050 
3051 	bio_list_init(&conf->pending_bio_list);
3052 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3053 
3054 	err = -EIO;
3055 	for (i = 0; i < conf->raid_disks * 2; i++) {
3056 
3057 		disk = conf->mirrors + i;
3058 
3059 		if (i < conf->raid_disks &&
3060 		    disk[conf->raid_disks].rdev) {
3061 			/* This slot has a replacement. */
3062 			if (!disk->rdev) {
3063 				/* No original, just make the replacement
3064 				 * a recovering spare
3065 				 */
3066 				disk->rdev =
3067 					disk[conf->raid_disks].rdev;
3068 				disk[conf->raid_disks].rdev = NULL;
3069 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3070 				/* Original is not in_sync - bad */
3071 				goto abort;
3072 		}
3073 
3074 		if (!disk->rdev ||
3075 		    !test_bit(In_sync, &disk->rdev->flags)) {
3076 			disk->head_position = 0;
3077 			if (disk->rdev &&
3078 			    (disk->rdev->saved_raid_disk < 0))
3079 				conf->fullsync = 1;
3080 		}
3081 	}
3082 
3083 	err = -ENOMEM;
3084 	rcu_assign_pointer(conf->thread,
3085 			   md_register_thread(raid1d, mddev, "raid1"));
3086 	if (!conf->thread)
3087 		goto abort;
3088 
3089 	return conf;
3090 
3091  abort:
3092 	if (conf) {
3093 		mempool_exit(&conf->r1bio_pool);
3094 		kfree(conf->mirrors);
3095 		safe_put_page(conf->tmppage);
3096 		kfree(conf->poolinfo);
3097 		kfree(conf->nr_pending);
3098 		kfree(conf->nr_waiting);
3099 		kfree(conf->nr_queued);
3100 		kfree(conf->barrier);
3101 		bioset_exit(&conf->bio_split);
3102 		kfree(conf);
3103 	}
3104 	return ERR_PTR(err);
3105 }
3106 
3107 static void raid1_free(struct mddev *mddev, void *priv);
raid1_run(struct mddev * mddev)3108 static int raid1_run(struct mddev *mddev)
3109 {
3110 	struct r1conf *conf;
3111 	int i;
3112 	struct md_rdev *rdev;
3113 	int ret;
3114 
3115 	if (mddev->level != 1) {
3116 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3117 			mdname(mddev), mddev->level);
3118 		return -EIO;
3119 	}
3120 	if (mddev->reshape_position != MaxSector) {
3121 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3122 			mdname(mddev));
3123 		return -EIO;
3124 	}
3125 	if (mddev_init_writes_pending(mddev) < 0)
3126 		return -ENOMEM;
3127 	/*
3128 	 * copy the already verified devices into our private RAID1
3129 	 * bookkeeping area. [whatever we allocate in run(),
3130 	 * should be freed in raid1_free()]
3131 	 */
3132 	if (mddev->private == NULL)
3133 		conf = setup_conf(mddev);
3134 	else
3135 		conf = mddev->private;
3136 
3137 	if (IS_ERR(conf))
3138 		return PTR_ERR(conf);
3139 
3140 	if (mddev->queue)
3141 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3142 
3143 	rdev_for_each(rdev, mddev) {
3144 		if (!mddev->gendisk)
3145 			continue;
3146 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3147 				  rdev->data_offset << 9);
3148 	}
3149 
3150 	mddev->degraded = 0;
3151 	for (i = 0; i < conf->raid_disks; i++)
3152 		if (conf->mirrors[i].rdev == NULL ||
3153 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3154 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3155 			mddev->degraded++;
3156 	/*
3157 	 * RAID1 needs at least one disk in active
3158 	 */
3159 	if (conf->raid_disks - mddev->degraded < 1) {
3160 		md_unregister_thread(mddev, &conf->thread);
3161 		ret = -EINVAL;
3162 		goto abort;
3163 	}
3164 
3165 	if (conf->raid_disks - mddev->degraded == 1)
3166 		mddev->recovery_cp = MaxSector;
3167 
3168 	if (mddev->recovery_cp != MaxSector)
3169 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3170 			mdname(mddev));
3171 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3172 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3173 		mddev->raid_disks);
3174 
3175 	/*
3176 	 * Ok, everything is just fine now
3177 	 */
3178 	rcu_assign_pointer(mddev->thread, conf->thread);
3179 	rcu_assign_pointer(conf->thread, NULL);
3180 	mddev->private = conf;
3181 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3182 
3183 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3184 
3185 	ret = md_integrity_register(mddev);
3186 	if (ret) {
3187 		md_unregister_thread(mddev, &mddev->thread);
3188 		goto abort;
3189 	}
3190 	return 0;
3191 
3192 abort:
3193 	raid1_free(mddev, conf);
3194 	return ret;
3195 }
3196 
raid1_free(struct mddev * mddev,void * priv)3197 static void raid1_free(struct mddev *mddev, void *priv)
3198 {
3199 	struct r1conf *conf = priv;
3200 
3201 	mempool_exit(&conf->r1bio_pool);
3202 	kfree(conf->mirrors);
3203 	safe_put_page(conf->tmppage);
3204 	kfree(conf->poolinfo);
3205 	kfree(conf->nr_pending);
3206 	kfree(conf->nr_waiting);
3207 	kfree(conf->nr_queued);
3208 	kfree(conf->barrier);
3209 	bioset_exit(&conf->bio_split);
3210 	kfree(conf);
3211 }
3212 
raid1_resize(struct mddev * mddev,sector_t sectors)3213 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3214 {
3215 	/* no resync is happening, and there is enough space
3216 	 * on all devices, so we can resize.
3217 	 * We need to make sure resync covers any new space.
3218 	 * If the array is shrinking we should possibly wait until
3219 	 * any io in the removed space completes, but it hardly seems
3220 	 * worth it.
3221 	 */
3222 	sector_t newsize = raid1_size(mddev, sectors, 0);
3223 	if (mddev->external_size &&
3224 	    mddev->array_sectors > newsize)
3225 		return -EINVAL;
3226 	if (mddev->bitmap) {
3227 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3228 		if (ret)
3229 			return ret;
3230 	}
3231 	md_set_array_sectors(mddev, newsize);
3232 	if (sectors > mddev->dev_sectors &&
3233 	    mddev->recovery_cp > mddev->dev_sectors) {
3234 		mddev->recovery_cp = mddev->dev_sectors;
3235 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3236 	}
3237 	mddev->dev_sectors = sectors;
3238 	mddev->resync_max_sectors = sectors;
3239 	return 0;
3240 }
3241 
raid1_reshape(struct mddev * mddev)3242 static int raid1_reshape(struct mddev *mddev)
3243 {
3244 	/* We need to:
3245 	 * 1/ resize the r1bio_pool
3246 	 * 2/ resize conf->mirrors
3247 	 *
3248 	 * We allocate a new r1bio_pool if we can.
3249 	 * Then raise a device barrier and wait until all IO stops.
3250 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3251 	 *
3252 	 * At the same time, we "pack" the devices so that all the missing
3253 	 * devices have the higher raid_disk numbers.
3254 	 */
3255 	mempool_t newpool, oldpool;
3256 	struct pool_info *newpoolinfo;
3257 	struct raid1_info *newmirrors;
3258 	struct r1conf *conf = mddev->private;
3259 	int cnt, raid_disks;
3260 	unsigned long flags;
3261 	int d, d2;
3262 	int ret;
3263 
3264 	memset(&newpool, 0, sizeof(newpool));
3265 	memset(&oldpool, 0, sizeof(oldpool));
3266 
3267 	/* Cannot change chunk_size, layout, or level */
3268 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3269 	    mddev->layout != mddev->new_layout ||
3270 	    mddev->level != mddev->new_level) {
3271 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3272 		mddev->new_layout = mddev->layout;
3273 		mddev->new_level = mddev->level;
3274 		return -EINVAL;
3275 	}
3276 
3277 	if (!mddev_is_clustered(mddev))
3278 		md_allow_write(mddev);
3279 
3280 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3281 
3282 	if (raid_disks < conf->raid_disks) {
3283 		cnt=0;
3284 		for (d= 0; d < conf->raid_disks; d++)
3285 			if (conf->mirrors[d].rdev)
3286 				cnt++;
3287 		if (cnt > raid_disks)
3288 			return -EBUSY;
3289 	}
3290 
3291 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3292 	if (!newpoolinfo)
3293 		return -ENOMEM;
3294 	newpoolinfo->mddev = mddev;
3295 	newpoolinfo->raid_disks = raid_disks * 2;
3296 
3297 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3298 			   rbio_pool_free, newpoolinfo);
3299 	if (ret) {
3300 		kfree(newpoolinfo);
3301 		return ret;
3302 	}
3303 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3304 					 raid_disks, 2),
3305 			     GFP_KERNEL);
3306 	if (!newmirrors) {
3307 		kfree(newpoolinfo);
3308 		mempool_exit(&newpool);
3309 		return -ENOMEM;
3310 	}
3311 
3312 	freeze_array(conf, 0);
3313 
3314 	/* ok, everything is stopped */
3315 	oldpool = conf->r1bio_pool;
3316 	conf->r1bio_pool = newpool;
3317 
3318 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3319 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3320 		if (rdev && rdev->raid_disk != d2) {
3321 			sysfs_unlink_rdev(mddev, rdev);
3322 			rdev->raid_disk = d2;
3323 			sysfs_unlink_rdev(mddev, rdev);
3324 			if (sysfs_link_rdev(mddev, rdev))
3325 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3326 					mdname(mddev), rdev->raid_disk);
3327 		}
3328 		if (rdev)
3329 			newmirrors[d2++].rdev = rdev;
3330 	}
3331 	kfree(conf->mirrors);
3332 	conf->mirrors = newmirrors;
3333 	kfree(conf->poolinfo);
3334 	conf->poolinfo = newpoolinfo;
3335 
3336 	spin_lock_irqsave(&conf->device_lock, flags);
3337 	mddev->degraded += (raid_disks - conf->raid_disks);
3338 	spin_unlock_irqrestore(&conf->device_lock, flags);
3339 	conf->raid_disks = mddev->raid_disks = raid_disks;
3340 	mddev->delta_disks = 0;
3341 
3342 	unfreeze_array(conf);
3343 
3344 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3345 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346 	md_wakeup_thread(mddev->thread);
3347 
3348 	mempool_exit(&oldpool);
3349 	return 0;
3350 }
3351 
raid1_quiesce(struct mddev * mddev,int quiesce)3352 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3353 {
3354 	struct r1conf *conf = mddev->private;
3355 
3356 	if (quiesce)
3357 		freeze_array(conf, 0);
3358 	else
3359 		unfreeze_array(conf);
3360 }
3361 
raid1_takeover(struct mddev * mddev)3362 static void *raid1_takeover(struct mddev *mddev)
3363 {
3364 	/* raid1 can take over:
3365 	 *  raid5 with 2 devices, any layout or chunk size
3366 	 */
3367 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3368 		struct r1conf *conf;
3369 		mddev->new_level = 1;
3370 		mddev->new_layout = 0;
3371 		mddev->new_chunk_sectors = 0;
3372 		conf = setup_conf(mddev);
3373 		if (!IS_ERR(conf)) {
3374 			/* Array must appear to be quiesced */
3375 			conf->array_frozen = 1;
3376 			mddev_clear_unsupported_flags(mddev,
3377 				UNSUPPORTED_MDDEV_FLAGS);
3378 		}
3379 		return conf;
3380 	}
3381 	return ERR_PTR(-EINVAL);
3382 }
3383 
3384 static struct md_personality raid1_personality =
3385 {
3386 	.name		= "raid1",
3387 	.level		= 1,
3388 	.owner		= THIS_MODULE,
3389 	.make_request	= raid1_make_request,
3390 	.run		= raid1_run,
3391 	.free		= raid1_free,
3392 	.status		= raid1_status,
3393 	.error_handler	= raid1_error,
3394 	.hot_add_disk	= raid1_add_disk,
3395 	.hot_remove_disk= raid1_remove_disk,
3396 	.spare_active	= raid1_spare_active,
3397 	.sync_request	= raid1_sync_request,
3398 	.resize		= raid1_resize,
3399 	.size		= raid1_size,
3400 	.check_reshape	= raid1_reshape,
3401 	.quiesce	= raid1_quiesce,
3402 	.takeover	= raid1_takeover,
3403 };
3404 
raid_init(void)3405 static int __init raid_init(void)
3406 {
3407 	return register_md_personality(&raid1_personality);
3408 }
3409 
raid_exit(void)3410 static void raid_exit(void)
3411 {
3412 	unregister_md_personality(&raid1_personality);
3413 }
3414 
3415 module_init(raid_init);
3416 module_exit(raid_exit);
3417 MODULE_LICENSE("GPL");
3418 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3419 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3420 MODULE_ALIAS("md-raid1");
3421 MODULE_ALIAS("md-level-1");
3422