1 /*
2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3 *
4 * Copyright (c) 2020 Wind River Systems, Inc.
5 *
6 * Author:
7 * Bin Meng <bin.meng@windriver.com>
8 *
9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10 *
11 * 0) CLINT (Core Level Interruptor)
12 * 1) PLIC (Platform Level Interrupt Controller)
13 * 2) eNVM (Embedded Non-Volatile Memory)
14 * 3) MMUARTs (Multi-Mode UART)
15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16 * 5) SiFive Platform DMA (Direct Memory Access Controller)
17 * 6) GEM (Gigabit Ethernet MAC Controller)
18 * 7) DMC (DDR Memory Controller)
19 * 8) IOSCB modules
20 *
21 * This board currently generates devicetree dynamically that indicates at least
22 * two harts and up to five harts.
23 *
24 * This program is free software; you can redistribute it and/or modify it
25 * under the terms and conditions of the GNU General Public License,
26 * version 2 or later, as published by the Free Software Foundation.
27 *
28 * This program is distributed in the hope it will be useful, but WITHOUT
29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
31 * more details.
32 *
33 * You should have received a copy of the GNU General Public License along with
34 * this program. If not, see <http://www.gnu.org/licenses/>.
35 */
36
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
56
57 /*
58 * The BIOS image used by this machine is called Hart Software Services (HSS).
59 * See https://github.com/polarfire-soc/hart-software-services
60 */
61 #define BIOS_FILENAME "hss.bin"
62 #define RESET_VECTOR 0x20220000
63
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
66
67 /* GEM version */
68 #define GEM_REVISION 0x0107010c
69
70 /*
71 * The complete description of the whole PolarFire SoC memory map is scattered
72 * in different documents. There are several places to look at for memory maps:
73 *
74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76 * https://www.microsemi.com/document-portal/doc_download/
77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78 * describes the whole picture of the PolarFire SoC memory map.
79 *
80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81 * https://www.microsemi.com/document-portal/doc_download/
82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84 * describes the complete integrated peripherals memory map
85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86 * describes the complete IOSCB modules memory maps
87 */
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
103 [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
104 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
105 [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
106 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
107 [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
108 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
109 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
110 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
111 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
112 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
113 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
114 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
115 [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
116 [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
117 [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
118 [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
119 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
120 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
121 [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
122 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
123 [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
124 [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
125 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
126 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
127 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
128 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
129 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
130 [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
131 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
132 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
133 [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
134 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
135 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
136 [MICROCHIP_PFSOC_FABRIC_FIC0] = { 0x2000000000, 0x1000000000 },
137 [MICROCHIP_PFSOC_FABRIC_FIC1] = { 0x3000000000, 0x1000000000 },
138 [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
139 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
140 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
141 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
142 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
143
144 };
145
microchip_pfsoc_soc_instance_init(Object * obj)146 static void microchip_pfsoc_soc_instance_init(Object *obj)
147 {
148 MachineState *ms = MACHINE(qdev_get_machine());
149 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
150
151 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
152 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
153
154 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
155 TYPE_RISCV_HART_ARRAY);
156 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
157 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
158 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
159 TYPE_RISCV_CPU_SIFIVE_E51);
160 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
161
162 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
163 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
164
165 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
166 TYPE_RISCV_HART_ARRAY);
167 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
168 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
169 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
170 TYPE_RISCV_CPU_SIFIVE_U54);
171 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
172
173 object_initialize_child(obj, "dma-controller", &s->dma,
174 TYPE_SIFIVE_PDMA);
175
176 object_initialize_child(obj, "sysreg", &s->sysreg,
177 TYPE_MCHP_PFSOC_SYSREG);
178
179 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
180 TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
181 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
182 TYPE_MCHP_PFSOC_DDR_CFG);
183
184 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
185 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
186
187 object_initialize_child(obj, "sd-controller", &s->sdhci,
188 TYPE_CADENCE_SDHCI);
189
190 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
191 }
192
microchip_pfsoc_soc_realize(DeviceState * dev,Error ** errp)193 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
194 {
195 MachineState *ms = MACHINE(qdev_get_machine());
196 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
197 const MemMapEntry *memmap = microchip_pfsoc_memmap;
198 MemoryRegion *system_memory = get_system_memory();
199 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
200 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
201 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
202 MemoryRegion *envm_data = g_new(MemoryRegion, 1);
203 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
204 char *plic_hart_config;
205 int i;
206
207 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
208 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
209 /*
210 * The cluster must be realized after the RISC-V hart array container,
211 * as the container's CPU object is only created on realize, and the
212 * CPU must exist and have been parented into the cluster before the
213 * cluster is realized.
214 */
215 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
216 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
217
218 /* Reserved Memory at address 0 */
219 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
220 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
221 memory_region_add_subregion(system_memory,
222 memmap[MICROCHIP_PFSOC_RSVD0].base,
223 rsvd0_mem);
224
225 /* E51 DTIM */
226 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
227 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
228 memory_region_add_subregion(system_memory,
229 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
230 e51_dtim_mem);
231
232 /* Bus Error Units */
233 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
234 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
235 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
236 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
237 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
238 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
239 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
240 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
241 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
242 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
243 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
244 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
245 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
246 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
247 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
248
249 /* CLINT */
250 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
251 0, ms->smp.cpus, false);
252 riscv_aclint_mtimer_create(
253 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
254 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
255 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
256 CLINT_TIMEBASE_FREQ, false);
257
258 /* L2 cache controller */
259 create_unimplemented_device("microchip.pfsoc.l2cc",
260 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
261
262 /*
263 * Add L2-LIM at reset size.
264 * This should be reduced in size as the L2 Cache Controller WayEnable
265 * register is incremented. Unfortunately I don't see a nice (or any) way
266 * to handle reducing or blocking out the L2 LIM while still allowing it
267 * be re returned to all enabled after a reset. For the time being, just
268 * leave it enabled all the time. This won't break anything, but will be
269 * too generous to misbehaving guests.
270 */
271 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
272 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
273 memory_region_add_subregion(system_memory,
274 memmap[MICROCHIP_PFSOC_L2LIM].base,
275 l2lim_mem);
276
277 /* create PLIC hart topology configuration string */
278 plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
279
280 /* PLIC */
281 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
282 plic_hart_config, ms->smp.cpus, 0,
283 MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
284 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
285 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
286 MICROCHIP_PFSOC_PLIC_PENDING_BASE,
287 MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
288 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
289 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
290 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
291 memmap[MICROCHIP_PFSOC_PLIC].size);
292 g_free(plic_hart_config);
293
294 /* DMA */
295 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
296 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
297 memmap[MICROCHIP_PFSOC_DMA].base);
298 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
299 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
300 qdev_get_gpio_in(DEVICE(s->plic),
301 MICROCHIP_PFSOC_DMA_IRQ0 + i));
302 }
303
304 /* SYSREG */
305 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
306 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
307 memmap[MICROCHIP_PFSOC_SYSREG].base);
308 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0,
309 qdev_get_gpio_in(DEVICE(s->plic),
310 MICROCHIP_PFSOC_MAILBOX_IRQ));
311
312 /* AXISW */
313 create_unimplemented_device("microchip.pfsoc.axisw",
314 memmap[MICROCHIP_PFSOC_AXISW].base,
315 memmap[MICROCHIP_PFSOC_AXISW].size);
316
317 /* MPUCFG */
318 create_unimplemented_device("microchip.pfsoc.mpucfg",
319 memmap[MICROCHIP_PFSOC_MPUCFG].base,
320 memmap[MICROCHIP_PFSOC_MPUCFG].size);
321
322 /* FMETER */
323 create_unimplemented_device("microchip.pfsoc.fmeter",
324 memmap[MICROCHIP_PFSOC_FMETER].base,
325 memmap[MICROCHIP_PFSOC_FMETER].size);
326
327 /* DDR SGMII PHY */
328 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
329 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
330 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
331
332 /* DDR CFG */
333 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
334 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
335 memmap[MICROCHIP_PFSOC_DDR_CFG].base);
336
337 /* SDHCI */
338 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
339 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
340 memmap[MICROCHIP_PFSOC_EMMC_SD].base);
341 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
342 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
343
344 /* MMUARTs */
345 s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
346 memmap[MICROCHIP_PFSOC_MMUART0].base,
347 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
348 serial_hd(0));
349 s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
350 memmap[MICROCHIP_PFSOC_MMUART1].base,
351 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
352 serial_hd(1));
353 s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
354 memmap[MICROCHIP_PFSOC_MMUART2].base,
355 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
356 serial_hd(2));
357 s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
358 memmap[MICROCHIP_PFSOC_MMUART3].base,
359 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
360 serial_hd(3));
361 s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
362 memmap[MICROCHIP_PFSOC_MMUART4].base,
363 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
364 serial_hd(4));
365
366 /* Watchdogs */
367 create_unimplemented_device("microchip.pfsoc.watchdog0",
368 memmap[MICROCHIP_PFSOC_WDOG0].base,
369 memmap[MICROCHIP_PFSOC_WDOG0].size);
370 create_unimplemented_device("microchip.pfsoc.watchdog1",
371 memmap[MICROCHIP_PFSOC_WDOG1].base,
372 memmap[MICROCHIP_PFSOC_WDOG1].size);
373 create_unimplemented_device("microchip.pfsoc.watchdog2",
374 memmap[MICROCHIP_PFSOC_WDOG2].base,
375 memmap[MICROCHIP_PFSOC_WDOG2].size);
376 create_unimplemented_device("microchip.pfsoc.watchdog3",
377 memmap[MICROCHIP_PFSOC_WDOG3].base,
378 memmap[MICROCHIP_PFSOC_WDOG3].size);
379 create_unimplemented_device("microchip.pfsoc.watchdog4",
380 memmap[MICROCHIP_PFSOC_WDOG4].base,
381 memmap[MICROCHIP_PFSOC_WDOG4].size);
382
383 /* SPI */
384 create_unimplemented_device("microchip.pfsoc.spi0",
385 memmap[MICROCHIP_PFSOC_SPI0].base,
386 memmap[MICROCHIP_PFSOC_SPI0].size);
387 create_unimplemented_device("microchip.pfsoc.spi1",
388 memmap[MICROCHIP_PFSOC_SPI1].base,
389 memmap[MICROCHIP_PFSOC_SPI1].size);
390
391 /* I2C */
392 create_unimplemented_device("microchip.pfsoc.i2c0",
393 memmap[MICROCHIP_PFSOC_I2C0].base,
394 memmap[MICROCHIP_PFSOC_I2C0].size);
395 create_unimplemented_device("microchip.pfsoc.i2c1",
396 memmap[MICROCHIP_PFSOC_I2C1].base,
397 memmap[MICROCHIP_PFSOC_I2C1].size);
398
399 /* CAN */
400 create_unimplemented_device("microchip.pfsoc.can0",
401 memmap[MICROCHIP_PFSOC_CAN0].base,
402 memmap[MICROCHIP_PFSOC_CAN0].size);
403 create_unimplemented_device("microchip.pfsoc.can1",
404 memmap[MICROCHIP_PFSOC_CAN1].base,
405 memmap[MICROCHIP_PFSOC_CAN1].size);
406
407 /* USB */
408 create_unimplemented_device("microchip.pfsoc.usb",
409 memmap[MICROCHIP_PFSOC_USB].base,
410 memmap[MICROCHIP_PFSOC_USB].size);
411
412 /* GEMs */
413 qemu_configure_nic_device(DEVICE(&s->gem0), true, NULL);
414 qemu_configure_nic_device(DEVICE(&s->gem1), true, NULL);
415
416 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
417 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
418 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
419 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
420 memmap[MICROCHIP_PFSOC_GEM0].base);
421 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
422 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
423
424 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
425 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
426 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
427 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
428 memmap[MICROCHIP_PFSOC_GEM1].base);
429 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
430 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
431
432 /* GPIOs */
433 create_unimplemented_device("microchip.pfsoc.gpio0",
434 memmap[MICROCHIP_PFSOC_GPIO0].base,
435 memmap[MICROCHIP_PFSOC_GPIO0].size);
436 create_unimplemented_device("microchip.pfsoc.gpio1",
437 memmap[MICROCHIP_PFSOC_GPIO1].base,
438 memmap[MICROCHIP_PFSOC_GPIO1].size);
439 create_unimplemented_device("microchip.pfsoc.gpio2",
440 memmap[MICROCHIP_PFSOC_GPIO2].base,
441 memmap[MICROCHIP_PFSOC_GPIO2].size);
442
443 /* eNVM */
444 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
445 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
446 &error_fatal);
447 memory_region_add_subregion(system_memory,
448 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
449 envm_data);
450
451 /* IOSCB */
452 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
453 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
454 memmap[MICROCHIP_PFSOC_IOSCB].base);
455 sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0,
456 qdev_get_gpio_in(DEVICE(s->plic),
457 MICROCHIP_PFSOC_MAILBOX_IRQ));
458
459 /* FPGA Fabric */
460 create_unimplemented_device("microchip.pfsoc.fabricfic3",
461 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
462 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
463 /* FPGA Fabric */
464 create_unimplemented_device("microchip.pfsoc.fabricfic0",
465 memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base,
466 memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size);
467 /* FPGA Fabric */
468 create_unimplemented_device("microchip.pfsoc.fabricfic1",
469 memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base,
470 memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size);
471
472 /* QSPI Flash */
473 memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
474 "microchip.pfsoc.qspi_xip",
475 memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
476 &error_fatal);
477 memory_region_add_subregion(system_memory,
478 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
479 qspi_xip_mem);
480 }
481
microchip_pfsoc_soc_class_init(ObjectClass * oc,void * data)482 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
483 {
484 DeviceClass *dc = DEVICE_CLASS(oc);
485
486 dc->realize = microchip_pfsoc_soc_realize;
487 /* Reason: Uses serial_hds in realize function, thus can't be used twice */
488 dc->user_creatable = false;
489 }
490
491 static const TypeInfo microchip_pfsoc_soc_type_info = {
492 .name = TYPE_MICROCHIP_PFSOC,
493 .parent = TYPE_DEVICE,
494 .instance_size = sizeof(MicrochipPFSoCState),
495 .instance_init = microchip_pfsoc_soc_instance_init,
496 .class_init = microchip_pfsoc_soc_class_init,
497 };
498
microchip_pfsoc_soc_register_types(void)499 static void microchip_pfsoc_soc_register_types(void)
500 {
501 type_register_static(µchip_pfsoc_soc_type_info);
502 }
503
type_init(microchip_pfsoc_soc_register_types)504 type_init(microchip_pfsoc_soc_register_types)
505
506 static void microchip_icicle_kit_machine_init(MachineState *machine)
507 {
508 MachineClass *mc = MACHINE_GET_CLASS(machine);
509 const MemMapEntry *memmap = microchip_pfsoc_memmap;
510 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
511 MemoryRegion *system_memory = get_system_memory();
512 MemoryRegion *mem_low = g_new(MemoryRegion, 1);
513 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
514 MemoryRegion *mem_high = g_new(MemoryRegion, 1);
515 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
516 uint64_t mem_low_size, mem_high_size;
517 hwaddr firmware_load_addr;
518 const char *firmware_name;
519 bool kernel_as_payload = false;
520 target_ulong firmware_end_addr, kernel_start_addr;
521 uint64_t kernel_entry;
522 uint32_t fdt_load_addr;
523 DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
524
525 /* Sanity check on RAM size */
526 if (machine->ram_size < mc->default_ram_size) {
527 char *sz = size_to_str(mc->default_ram_size);
528 error_report("Invalid RAM size, should be bigger than %s", sz);
529 g_free(sz);
530 exit(EXIT_FAILURE);
531 }
532
533 /* Initialize SoC */
534 object_initialize_child(OBJECT(machine), "soc", &s->soc,
535 TYPE_MICROCHIP_PFSOC);
536 qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
537
538 /* Split RAM into low and high regions using aliases to machine->ram */
539 mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
540 mem_high_size = machine->ram_size - mem_low_size;
541 memory_region_init_alias(mem_low, NULL,
542 "microchip.icicle.kit.ram_low", machine->ram,
543 0, mem_low_size);
544 memory_region_init_alias(mem_high, NULL,
545 "microchip.icicle.kit.ram_high", machine->ram,
546 mem_low_size, mem_high_size);
547
548 /* Register RAM */
549 memory_region_add_subregion(system_memory,
550 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
551 mem_low);
552 memory_region_add_subregion(system_memory,
553 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
554 mem_high);
555
556 /* Create aliases for the low and high RAM regions */
557 memory_region_init_alias(mem_low_alias, NULL,
558 "microchip.icicle.kit.ram_low.alias",
559 mem_low, 0, mem_low_size);
560 memory_region_add_subregion(system_memory,
561 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
562 mem_low_alias);
563 memory_region_init_alias(mem_high_alias, NULL,
564 "microchip.icicle.kit.ram_high.alias",
565 mem_high, 0, mem_high_size);
566 memory_region_add_subregion(system_memory,
567 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
568 mem_high_alias);
569
570 /* Attach an SD card */
571 if (dinfo) {
572 CadenceSDHCIState *sdhci = &(s->soc.sdhci);
573 DeviceState *card = qdev_new(TYPE_SD_CARD);
574
575 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
576 &error_fatal);
577 qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
578 }
579
580 /*
581 * We follow the following table to select which payload we execute.
582 *
583 * -bios | -kernel | payload
584 * -------+------------+--------
585 * N | N | HSS
586 * Y | don't care | HSS
587 * N | Y | kernel
588 *
589 * This ensures backwards compatibility with how we used to expose -bios
590 * to users but allows them to run through direct kernel booting as well.
591 *
592 * When -kernel is used for direct boot, -dtb must be present to provide
593 * a valid device tree for the board, as we don't generate device tree.
594 */
595
596 if (machine->kernel_filename && machine->dtb) {
597 int fdt_size;
598 machine->fdt = load_device_tree(machine->dtb, &fdt_size);
599 if (!machine->fdt) {
600 error_report("load_device_tree() failed");
601 exit(1);
602 }
603
604 firmware_name = RISCV64_BIOS_BIN;
605 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
606 kernel_as_payload = true;
607 }
608
609 if (!kernel_as_payload) {
610 firmware_name = BIOS_FILENAME;
611 firmware_load_addr = RESET_VECTOR;
612 }
613
614 /* Load the firmware */
615 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
616 &firmware_load_addr, NULL);
617
618 if (kernel_as_payload) {
619 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
620 firmware_end_addr);
621
622 kernel_entry = riscv_load_kernel(machine, &s->soc.u_cpus,
623 kernel_start_addr, true, NULL);
624
625 /* Compute the fdt load address in dram */
626 fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
627 memmap[MICROCHIP_PFSOC_DRAM_LO].size,
628 machine);
629 riscv_load_fdt(fdt_load_addr, machine->fdt);
630
631 /* Load the reset vector */
632 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
633 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
634 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
635 kernel_entry, fdt_load_addr);
636 }
637 }
638
microchip_icicle_kit_machine_class_init(ObjectClass * oc,void * data)639 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
640 {
641 MachineClass *mc = MACHINE_CLASS(oc);
642
643 mc->desc = "Microchip PolarFire SoC Icicle Kit";
644 mc->init = microchip_icicle_kit_machine_init;
645 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
646 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
647 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
648 mc->default_cpus = mc->min_cpus;
649 mc->default_ram_id = "microchip.icicle.kit.ram";
650
651 /*
652 * Map 513 MiB high memory, the minimum required high memory size, because
653 * HSS will do memory test against the high memory address range regardless
654 * of physical memory installed.
655 *
656 * See memory_tests() in mss_ddr.c in the HSS source code.
657 */
658 mc->default_ram_size = 1537 * MiB;
659 }
660
661 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
662 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
663 .parent = TYPE_MACHINE,
664 .class_init = microchip_icicle_kit_machine_class_init,
665 .instance_size = sizeof(MicrochipIcicleKitState),
666 };
667
microchip_icicle_kit_machine_init_register_types(void)668 static void microchip_icicle_kit_machine_init_register_types(void)
669 {
670 type_register_static(µchip_icicle_kit_machine_typeinfo);
671 }
672
673 type_init(microchip_icicle_kit_machine_init_register_types)
674