1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6
7 Contact Information:
8 Intel Linux Wireless <ilw@linux.intel.com>
9 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10
11 Portions of this file are based on the sample_* files provided by Wireless
12 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
13 <jt@hpl.hp.com>
14
15 Portions of this file are based on the Host AP project,
16 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
17 <j@w1.fi>
18 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
19
20 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
21 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
22 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
23
24 ******************************************************************************/
25 /*
26
27 Initial driver on which this is based was developed by Janusz Gorycki,
28 Maciej Urbaniak, and Maciej Sosnowski.
29
30 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
31
32 Theory of Operation
33
34 Tx - Commands and Data
35
36 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
37 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
38 sent to the firmware as well as the length of the data.
39
40 The host writes to the TBD queue at the WRITE index. The WRITE index points
41 to the _next_ packet to be written and is advanced when after the TBD has been
42 filled.
43
44 The firmware pulls from the TBD queue at the READ index. The READ index points
45 to the currently being read entry, and is advanced once the firmware is
46 done with a packet.
47
48 When data is sent to the firmware, the first TBD is used to indicate to the
49 firmware if a Command or Data is being sent. If it is Command, all of the
50 command information is contained within the physical address referred to by the
51 TBD. If it is Data, the first TBD indicates the type of data packet, number
52 of fragments, etc. The next TBD then refers to the actual packet location.
53
54 The Tx flow cycle is as follows:
55
56 1) ipw2100_tx() is called by kernel with SKB to transmit
57 2) Packet is move from the tx_free_list and appended to the transmit pending
58 list (tx_pend_list)
59 3) work is scheduled to move pending packets into the shared circular queue.
60 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
61 to a physical address. That address is entered into a TBD. Two TBDs are
62 filled out. The first indicating a data packet, the second referring to the
63 actual payload data.
64 5) the packet is removed from tx_pend_list and placed on the end of the
65 firmware pending list (fw_pend_list)
66 6) firmware is notified that the WRITE index has
67 7) Once the firmware has processed the TBD, INTA is triggered.
68 8) For each Tx interrupt received from the firmware, the READ index is checked
69 to see which TBDs are done being processed.
70 9) For each TBD that has been processed, the ISR pulls the oldest packet
71 from the fw_pend_list.
72 10)The packet structure contained in the fw_pend_list is then used
73 to unmap the DMA address and to free the SKB originally passed to the driver
74 from the kernel.
75 11)The packet structure is placed onto the tx_free_list
76
77 The above steps are the same for commands, only the msg_free_list/msg_pend_list
78 are used instead of tx_free_list/tx_pend_list
79
80 ...
81
82 Critical Sections / Locking :
83
84 There are two locks utilized. The first is the low level lock (priv->low_lock)
85 that protects the following:
86
87 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
88
89 tx_free_list : Holds pre-allocated Tx buffers.
90 TAIL modified in __ipw2100_tx_process()
91 HEAD modified in ipw2100_tx()
92
93 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
94 TAIL modified ipw2100_tx()
95 HEAD modified by ipw2100_tx_send_data()
96
97 msg_free_list : Holds pre-allocated Msg (Command) buffers
98 TAIL modified in __ipw2100_tx_process()
99 HEAD modified in ipw2100_hw_send_command()
100
101 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
102 TAIL modified in ipw2100_hw_send_command()
103 HEAD modified in ipw2100_tx_send_commands()
104
105 The flow of data on the TX side is as follows:
106
107 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
108 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
109
110 The methods that work on the TBD ring are protected via priv->low_lock.
111
112 - The internal data state of the device itself
113 - Access to the firmware read/write indexes for the BD queues
114 and associated logic
115
116 All external entry functions are locked with the priv->action_lock to ensure
117 that only one external action is invoked at a time.
118
119
120 */
121
122 #include <linux/compiler.h>
123 #include <linux/errno.h>
124 #include <linux/if_arp.h>
125 #include <linux/in6.h>
126 #include <linux/in.h>
127 #include <linux/ip.h>
128 #include <linux/kernel.h>
129 #include <linux/kmod.h>
130 #include <linux/module.h>
131 #include <linux/netdevice.h>
132 #include <linux/ethtool.h>
133 #include <linux/pci.h>
134 #include <linux/dma-mapping.h>
135 #include <linux/proc_fs.h>
136 #include <linux/skbuff.h>
137 #include <linux/uaccess.h>
138 #include <asm/io.h>
139 #include <linux/fs.h>
140 #include <linux/mm.h>
141 #include <linux/slab.h>
142 #include <linux/unistd.h>
143 #include <linux/stringify.h>
144 #include <linux/tcp.h>
145 #include <linux/types.h>
146 #include <linux/time.h>
147 #include <linux/firmware.h>
148 #include <linux/acpi.h>
149 #include <linux/ctype.h>
150 #include <linux/pm_qos.h>
151
152 #include <net/lib80211.h>
153
154 #include "ipw2100.h"
155 #include "ipw.h"
156
157 #define IPW2100_VERSION "git-1.2.2"
158
159 #define DRV_NAME "ipw2100"
160 #define DRV_VERSION IPW2100_VERSION
161 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
162 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
163
164 static struct pm_qos_request ipw2100_pm_qos_req;
165
166 /* Debugging stuff */
167 #ifdef CONFIG_IPW2100_DEBUG
168 #define IPW2100_RX_DEBUG /* Reception debugging */
169 #endif
170
171 MODULE_DESCRIPTION(DRV_DESCRIPTION);
172 MODULE_VERSION(DRV_VERSION);
173 MODULE_AUTHOR(DRV_COPYRIGHT);
174 MODULE_LICENSE("GPL");
175
176 static int debug = 0;
177 static int network_mode = 0;
178 static int channel = 0;
179 static int associate = 0;
180 static int disable = 0;
181 #ifdef CONFIG_PM
182 static struct ipw2100_fw ipw2100_firmware;
183 #endif
184
185 #include <linux/moduleparam.h>
186 module_param(debug, int, 0444);
187 module_param_named(mode, network_mode, int, 0444);
188 module_param(channel, int, 0444);
189 module_param(associate, int, 0444);
190 module_param(disable, int, 0444);
191
192 MODULE_PARM_DESC(debug, "debug level");
193 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
194 MODULE_PARM_DESC(channel, "channel");
195 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
196 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
197
198 static u32 ipw2100_debug_level = IPW_DL_NONE;
199
200 #ifdef CONFIG_IPW2100_DEBUG
201 #define IPW_DEBUG(level, message...) \
202 do { \
203 if (ipw2100_debug_level & (level)) { \
204 printk(KERN_DEBUG "ipw2100: %s ", __func__); \
205 printk(message); \
206 } \
207 } while (0)
208 #else
209 #define IPW_DEBUG(level, message...) do {} while (0)
210 #endif /* CONFIG_IPW2100_DEBUG */
211
212 #ifdef CONFIG_IPW2100_DEBUG
213 static const char *command_types[] = {
214 "undefined",
215 "unused", /* HOST_ATTENTION */
216 "HOST_COMPLETE",
217 "unused", /* SLEEP */
218 "unused", /* HOST_POWER_DOWN */
219 "unused",
220 "SYSTEM_CONFIG",
221 "unused", /* SET_IMR */
222 "SSID",
223 "MANDATORY_BSSID",
224 "AUTHENTICATION_TYPE",
225 "ADAPTER_ADDRESS",
226 "PORT_TYPE",
227 "INTERNATIONAL_MODE",
228 "CHANNEL",
229 "RTS_THRESHOLD",
230 "FRAG_THRESHOLD",
231 "POWER_MODE",
232 "TX_RATES",
233 "BASIC_TX_RATES",
234 "WEP_KEY_INFO",
235 "unused",
236 "unused",
237 "unused",
238 "unused",
239 "WEP_KEY_INDEX",
240 "WEP_FLAGS",
241 "ADD_MULTICAST",
242 "CLEAR_ALL_MULTICAST",
243 "BEACON_INTERVAL",
244 "ATIM_WINDOW",
245 "CLEAR_STATISTICS",
246 "undefined",
247 "undefined",
248 "undefined",
249 "undefined",
250 "TX_POWER_INDEX",
251 "undefined",
252 "undefined",
253 "undefined",
254 "undefined",
255 "undefined",
256 "undefined",
257 "BROADCAST_SCAN",
258 "CARD_DISABLE",
259 "PREFERRED_BSSID",
260 "SET_SCAN_OPTIONS",
261 "SCAN_DWELL_TIME",
262 "SWEEP_TABLE",
263 "AP_OR_STATION_TABLE",
264 "GROUP_ORDINALS",
265 "SHORT_RETRY_LIMIT",
266 "LONG_RETRY_LIMIT",
267 "unused", /* SAVE_CALIBRATION */
268 "unused", /* RESTORE_CALIBRATION */
269 "undefined",
270 "undefined",
271 "undefined",
272 "HOST_PRE_POWER_DOWN",
273 "unused", /* HOST_INTERRUPT_COALESCING */
274 "undefined",
275 "CARD_DISABLE_PHY_OFF",
276 "MSDU_TX_RATES",
277 "undefined",
278 "SET_STATION_STAT_BITS",
279 "CLEAR_STATIONS_STAT_BITS",
280 "LEAP_ROGUE_MODE",
281 "SET_SECURITY_INFORMATION",
282 "DISASSOCIATION_BSSID",
283 "SET_WPA_ASS_IE"
284 };
285 #endif
286
287 static const long ipw2100_frequencies[] = {
288 2412, 2417, 2422, 2427,
289 2432, 2437, 2442, 2447,
290 2452, 2457, 2462, 2467,
291 2472, 2484
292 };
293
294 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
295
296 static struct ieee80211_rate ipw2100_bg_rates[] = {
297 { .bitrate = 10 },
298 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
299 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
300 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
301 };
302
303 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
304
305 /* Pre-decl until we get the code solid and then we can clean it up */
306 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
307 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
308 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
309
310 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
311 static void ipw2100_queues_free(struct ipw2100_priv *priv);
312 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
313
314 static int ipw2100_fw_download(struct ipw2100_priv *priv,
315 struct ipw2100_fw *fw);
316 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
319 size_t max);
320 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
321 size_t max);
322 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
323 struct ipw2100_fw *fw);
324 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
325 struct ipw2100_fw *fw);
326 static void ipw2100_wx_event_work(struct work_struct *work);
327 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
328 static const struct iw_handler_def ipw2100_wx_handler_def;
329
read_register(struct net_device * dev,u32 reg,u32 * val)330 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
331 {
332 struct ipw2100_priv *priv = libipw_priv(dev);
333
334 *val = ioread32(priv->ioaddr + reg);
335 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
336 }
337
write_register(struct net_device * dev,u32 reg,u32 val)338 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
339 {
340 struct ipw2100_priv *priv = libipw_priv(dev);
341
342 iowrite32(val, priv->ioaddr + reg);
343 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
344 }
345
read_register_word(struct net_device * dev,u32 reg,u16 * val)346 static inline void read_register_word(struct net_device *dev, u32 reg,
347 u16 * val)
348 {
349 struct ipw2100_priv *priv = libipw_priv(dev);
350
351 *val = ioread16(priv->ioaddr + reg);
352 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
353 }
354
read_register_byte(struct net_device * dev,u32 reg,u8 * val)355 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
356 {
357 struct ipw2100_priv *priv = libipw_priv(dev);
358
359 *val = ioread8(priv->ioaddr + reg);
360 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
361 }
362
write_register_word(struct net_device * dev,u32 reg,u16 val)363 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
364 {
365 struct ipw2100_priv *priv = libipw_priv(dev);
366
367 iowrite16(val, priv->ioaddr + reg);
368 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
369 }
370
write_register_byte(struct net_device * dev,u32 reg,u8 val)371 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
372 {
373 struct ipw2100_priv *priv = libipw_priv(dev);
374
375 iowrite8(val, priv->ioaddr + reg);
376 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
377 }
378
read_nic_dword(struct net_device * dev,u32 addr,u32 * val)379 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
380 {
381 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
382 addr & IPW_REG_INDIRECT_ADDR_MASK);
383 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
384 }
385
write_nic_dword(struct net_device * dev,u32 addr,u32 val)386 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
387 {
388 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
389 addr & IPW_REG_INDIRECT_ADDR_MASK);
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
391 }
392
read_nic_word(struct net_device * dev,u32 addr,u16 * val)393 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
394 {
395 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
396 addr & IPW_REG_INDIRECT_ADDR_MASK);
397 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
398 }
399
write_nic_word(struct net_device * dev,u32 addr,u16 val)400 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
401 {
402 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
403 addr & IPW_REG_INDIRECT_ADDR_MASK);
404 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
405 }
406
read_nic_byte(struct net_device * dev,u32 addr,u8 * val)407 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
408 {
409 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
410 addr & IPW_REG_INDIRECT_ADDR_MASK);
411 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
412 }
413
write_nic_byte(struct net_device * dev,u32 addr,u8 val)414 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
415 {
416 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
417 addr & IPW_REG_INDIRECT_ADDR_MASK);
418 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
419 }
420
write_nic_memory(struct net_device * dev,u32 addr,u32 len,const u8 * buf)421 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
422 const u8 * buf)
423 {
424 u32 aligned_addr;
425 u32 aligned_len;
426 u32 dif_len;
427 u32 i;
428
429 /* read first nibble byte by byte */
430 aligned_addr = addr & (~0x3);
431 dif_len = addr - aligned_addr;
432 if (dif_len) {
433 /* Start reading at aligned_addr + dif_len */
434 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
435 aligned_addr);
436 for (i = dif_len; i < 4; i++, buf++)
437 write_register_byte(dev,
438 IPW_REG_INDIRECT_ACCESS_DATA + i,
439 *buf);
440
441 len -= dif_len;
442 aligned_addr += 4;
443 }
444
445 /* read DWs through autoincrement registers */
446 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
447 aligned_len = len & (~0x3);
448 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
449 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
450
451 /* copy the last nibble */
452 dif_len = len - aligned_len;
453 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
454 for (i = 0; i < dif_len; i++, buf++)
455 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
456 *buf);
457 }
458
read_nic_memory(struct net_device * dev,u32 addr,u32 len,u8 * buf)459 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
460 u8 * buf)
461 {
462 u32 aligned_addr;
463 u32 aligned_len;
464 u32 dif_len;
465 u32 i;
466
467 /* read first nibble byte by byte */
468 aligned_addr = addr & (~0x3);
469 dif_len = addr - aligned_addr;
470 if (dif_len) {
471 /* Start reading at aligned_addr + dif_len */
472 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
473 aligned_addr);
474 for (i = dif_len; i < 4; i++, buf++)
475 read_register_byte(dev,
476 IPW_REG_INDIRECT_ACCESS_DATA + i,
477 buf);
478
479 len -= dif_len;
480 aligned_addr += 4;
481 }
482
483 /* read DWs through autoincrement registers */
484 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
485 aligned_len = len & (~0x3);
486 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
487 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
488
489 /* copy the last nibble */
490 dif_len = len - aligned_len;
491 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
492 for (i = 0; i < dif_len; i++, buf++)
493 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
494 }
495
ipw2100_hw_is_adapter_in_system(struct net_device * dev)496 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
497 {
498 u32 dbg;
499
500 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
501
502 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
503 }
504
ipw2100_get_ordinal(struct ipw2100_priv * priv,u32 ord,void * val,u32 * len)505 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
506 void *val, u32 * len)
507 {
508 struct ipw2100_ordinals *ordinals = &priv->ordinals;
509 u32 addr;
510 u32 field_info;
511 u16 field_len;
512 u16 field_count;
513 u32 total_length;
514
515 if (ordinals->table1_addr == 0) {
516 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
517 "before they have been loaded.\n");
518 return -EINVAL;
519 }
520
521 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
522 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
523 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
524
525 printk(KERN_WARNING DRV_NAME
526 ": ordinal buffer length too small, need %zd\n",
527 IPW_ORD_TAB_1_ENTRY_SIZE);
528
529 return -EINVAL;
530 }
531
532 read_nic_dword(priv->net_dev,
533 ordinals->table1_addr + (ord << 2), &addr);
534 read_nic_dword(priv->net_dev, addr, val);
535
536 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
537
538 return 0;
539 }
540
541 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
542
543 ord -= IPW_START_ORD_TAB_2;
544
545 /* get the address of statistic */
546 read_nic_dword(priv->net_dev,
547 ordinals->table2_addr + (ord << 3), &addr);
548
549 /* get the second DW of statistics ;
550 * two 16-bit words - first is length, second is count */
551 read_nic_dword(priv->net_dev,
552 ordinals->table2_addr + (ord << 3) + sizeof(u32),
553 &field_info);
554
555 /* get each entry length */
556 field_len = *((u16 *) & field_info);
557
558 /* get number of entries */
559 field_count = *(((u16 *) & field_info) + 1);
560
561 /* abort if no enough memory */
562 total_length = field_len * field_count;
563 if (total_length > *len) {
564 *len = total_length;
565 return -EINVAL;
566 }
567
568 *len = total_length;
569 if (!total_length)
570 return 0;
571
572 /* read the ordinal data from the SRAM */
573 read_nic_memory(priv->net_dev, addr, total_length, val);
574
575 return 0;
576 }
577
578 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
579 "in table 2\n", ord);
580
581 return -EINVAL;
582 }
583
ipw2100_set_ordinal(struct ipw2100_priv * priv,u32 ord,u32 * val,u32 * len)584 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
585 u32 * len)
586 {
587 struct ipw2100_ordinals *ordinals = &priv->ordinals;
588 u32 addr;
589
590 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
591 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
592 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
593 IPW_DEBUG_INFO("wrong size\n");
594 return -EINVAL;
595 }
596
597 read_nic_dword(priv->net_dev,
598 ordinals->table1_addr + (ord << 2), &addr);
599
600 write_nic_dword(priv->net_dev, addr, *val);
601
602 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
603
604 return 0;
605 }
606
607 IPW_DEBUG_INFO("wrong table\n");
608 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
609 return -EINVAL;
610
611 return -EINVAL;
612 }
613
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)614 static char *snprint_line(char *buf, size_t count,
615 const u8 * data, u32 len, u32 ofs)
616 {
617 int out, i, j, l;
618 char c;
619
620 out = scnprintf(buf, count, "%08X", ofs);
621
622 for (l = 0, i = 0; i < 2; i++) {
623 out += scnprintf(buf + out, count - out, " ");
624 for (j = 0; j < 8 && l < len; j++, l++)
625 out += scnprintf(buf + out, count - out, "%02X ",
626 data[(i * 8 + j)]);
627 for (; j < 8; j++)
628 out += scnprintf(buf + out, count - out, " ");
629 }
630
631 out += scnprintf(buf + out, count - out, " ");
632 for (l = 0, i = 0; i < 2; i++) {
633 out += scnprintf(buf + out, count - out, " ");
634 for (j = 0; j < 8 && l < len; j++, l++) {
635 c = data[(i * 8 + j)];
636 if (!isascii(c) || !isprint(c))
637 c = '.';
638
639 out += scnprintf(buf + out, count - out, "%c", c);
640 }
641
642 for (; j < 8; j++)
643 out += scnprintf(buf + out, count - out, " ");
644 }
645
646 return buf;
647 }
648
printk_buf(int level,const u8 * data,u32 len)649 static void printk_buf(int level, const u8 * data, u32 len)
650 {
651 char line[81];
652 u32 ofs = 0;
653 if (!(ipw2100_debug_level & level))
654 return;
655
656 while (len) {
657 printk(KERN_DEBUG "%s\n",
658 snprint_line(line, sizeof(line), &data[ofs],
659 min(len, 16U), ofs));
660 ofs += 16;
661 len -= min(len, 16U);
662 }
663 }
664
665 #define MAX_RESET_BACKOFF 10
666
schedule_reset(struct ipw2100_priv * priv)667 static void schedule_reset(struct ipw2100_priv *priv)
668 {
669 time64_t now = ktime_get_boottime_seconds();
670
671 /* If we haven't received a reset request within the backoff period,
672 * then we can reset the backoff interval so this reset occurs
673 * immediately */
674 if (priv->reset_backoff &&
675 (now - priv->last_reset > priv->reset_backoff))
676 priv->reset_backoff = 0;
677
678 priv->last_reset = now;
679
680 if (!(priv->status & STATUS_RESET_PENDING)) {
681 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%llds).\n",
682 priv->net_dev->name, priv->reset_backoff);
683 netif_carrier_off(priv->net_dev);
684 netif_stop_queue(priv->net_dev);
685 priv->status |= STATUS_RESET_PENDING;
686 if (priv->reset_backoff)
687 schedule_delayed_work(&priv->reset_work,
688 priv->reset_backoff * HZ);
689 else
690 schedule_delayed_work(&priv->reset_work, 0);
691
692 if (priv->reset_backoff < MAX_RESET_BACKOFF)
693 priv->reset_backoff++;
694
695 wake_up_interruptible(&priv->wait_command_queue);
696 } else
697 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
698 priv->net_dev->name);
699
700 }
701
702 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
ipw2100_hw_send_command(struct ipw2100_priv * priv,struct host_command * cmd)703 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
704 struct host_command *cmd)
705 {
706 struct list_head *element;
707 struct ipw2100_tx_packet *packet;
708 unsigned long flags;
709 int err = 0;
710
711 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
712 command_types[cmd->host_command], cmd->host_command,
713 cmd->host_command_length);
714 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
715 cmd->host_command_length);
716
717 spin_lock_irqsave(&priv->low_lock, flags);
718
719 if (priv->fatal_error) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware in fatal error condition.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (!(priv->status & STATUS_RUNNING)) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while hardware is not running.\n");
729 err = -EIO;
730 goto fail_unlock;
731 }
732
733 if (priv->status & STATUS_CMD_ACTIVE) {
734 IPW_DEBUG_INFO
735 ("Attempt to send command while another command is pending.\n");
736 err = -EBUSY;
737 goto fail_unlock;
738 }
739
740 if (list_empty(&priv->msg_free_list)) {
741 IPW_DEBUG_INFO("no available msg buffers\n");
742 goto fail_unlock;
743 }
744
745 priv->status |= STATUS_CMD_ACTIVE;
746 priv->messages_sent++;
747
748 element = priv->msg_free_list.next;
749
750 packet = list_entry(element, struct ipw2100_tx_packet, list);
751 packet->jiffy_start = jiffies;
752
753 /* initialize the firmware command packet */
754 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
755 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
756 packet->info.c_struct.cmd->host_command_len_reg =
757 cmd->host_command_length;
758 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
759
760 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
761 cmd->host_command_parameters,
762 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
763
764 list_del(element);
765 DEC_STAT(&priv->msg_free_stat);
766
767 list_add_tail(element, &priv->msg_pend_list);
768 INC_STAT(&priv->msg_pend_stat);
769
770 ipw2100_tx_send_commands(priv);
771 ipw2100_tx_send_data(priv);
772
773 spin_unlock_irqrestore(&priv->low_lock, flags);
774
775 /*
776 * We must wait for this command to complete before another
777 * command can be sent... but if we wait more than 3 seconds
778 * then there is a problem.
779 */
780
781 err =
782 wait_event_interruptible_timeout(priv->wait_command_queue,
783 !(priv->
784 status & STATUS_CMD_ACTIVE),
785 HOST_COMPLETE_TIMEOUT);
786
787 if (err == 0) {
788 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
789 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
790 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
791 priv->status &= ~STATUS_CMD_ACTIVE;
792 schedule_reset(priv);
793 return -EIO;
794 }
795
796 if (priv->fatal_error) {
797 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
798 priv->net_dev->name);
799 return -EIO;
800 }
801
802 /* !!!!! HACK TEST !!!!!
803 * When lots of debug trace statements are enabled, the driver
804 * doesn't seem to have as many firmware restart cycles...
805 *
806 * As a test, we're sticking in a 1/100s delay here */
807 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
808
809 return 0;
810
811 fail_unlock:
812 spin_unlock_irqrestore(&priv->low_lock, flags);
813
814 return err;
815 }
816
817 /*
818 * Verify the values and data access of the hardware
819 * No locks needed or used. No functions called.
820 */
ipw2100_verify(struct ipw2100_priv * priv)821 static int ipw2100_verify(struct ipw2100_priv *priv)
822 {
823 u32 data1, data2;
824 u32 address;
825
826 u32 val1 = 0x76543210;
827 u32 val2 = 0xFEDCBA98;
828
829 /* Domain 0 check - all values should be DOA_DEBUG */
830 for (address = IPW_REG_DOA_DEBUG_AREA_START;
831 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
832 read_register(priv->net_dev, address, &data1);
833 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
834 return -EIO;
835 }
836
837 /* Domain 1 check - use arbitrary read/write compare */
838 for (address = 0; address < 5; address++) {
839 /* The memory area is not used now */
840 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
841 val1);
842 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
843 val2);
844 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
845 &data1);
846 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
847 &data2);
848 if (val1 == data1 && val2 == data2)
849 return 0;
850 }
851
852 return -EIO;
853 }
854
855 /*
856 *
857 * Loop until the CARD_DISABLED bit is the same value as the
858 * supplied parameter
859 *
860 * TODO: See if it would be more efficient to do a wait/wake
861 * cycle and have the completion event trigger the wakeup
862 *
863 */
864 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
ipw2100_wait_for_card_state(struct ipw2100_priv * priv,int state)865 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
866 {
867 int i;
868 u32 card_state;
869 u32 len = sizeof(card_state);
870 int err;
871
872 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
873 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
874 &card_state, &len);
875 if (err) {
876 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
877 "failed.\n");
878 return 0;
879 }
880
881 /* We'll break out if either the HW state says it is
882 * in the state we want, or if HOST_COMPLETE command
883 * finishes */
884 if ((card_state == state) ||
885 ((priv->status & STATUS_ENABLED) ?
886 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
887 if (state == IPW_HW_STATE_ENABLED)
888 priv->status |= STATUS_ENABLED;
889 else
890 priv->status &= ~STATUS_ENABLED;
891
892 return 0;
893 }
894
895 udelay(50);
896 }
897
898 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
899 state ? "DISABLED" : "ENABLED");
900 return -EIO;
901 }
902
903 /*********************************************************************
904 Procedure : sw_reset_and_clock
905 Purpose : Asserts s/w reset, asserts clock initialization
906 and waits for clock stabilization
907 ********************************************************************/
sw_reset_and_clock(struct ipw2100_priv * priv)908 static int sw_reset_and_clock(struct ipw2100_priv *priv)
909 {
910 int i;
911 u32 r;
912
913 // assert s/w reset
914 write_register(priv->net_dev, IPW_REG_RESET_REG,
915 IPW_AUX_HOST_RESET_REG_SW_RESET);
916
917 // wait for clock stabilization
918 for (i = 0; i < 1000; i++) {
919 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
920
921 // check clock ready bit
922 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
923 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
924 break;
925 }
926
927 if (i == 1000)
928 return -EIO; // TODO: better error value
929
930 /* set "initialization complete" bit to move adapter to
931 * D0 state */
932 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
933 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
934
935 /* wait for clock stabilization */
936 for (i = 0; i < 10000; i++) {
937 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
938
939 /* check clock ready bit */
940 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
941 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
942 break;
943 }
944
945 if (i == 10000)
946 return -EIO; /* TODO: better error value */
947
948 /* set D0 standby bit */
949 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
950 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
951 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
952
953 return 0;
954 }
955
956 /*********************************************************************
957 Procedure : ipw2100_download_firmware
958 Purpose : Initiaze adapter after power on.
959 The sequence is:
960 1. assert s/w reset first!
961 2. awake clocks & wait for clock stabilization
962 3. hold ARC (don't ask me why...)
963 4. load Dino ucode and reset/clock init again
964 5. zero-out shared mem
965 6. download f/w
966 *******************************************************************/
ipw2100_download_firmware(struct ipw2100_priv * priv)967 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
968 {
969 u32 address;
970 int err;
971
972 #ifndef CONFIG_PM
973 /* Fetch the firmware and microcode */
974 struct ipw2100_fw ipw2100_firmware;
975 #endif
976
977 if (priv->fatal_error) {
978 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
979 "fatal error %d. Interface must be brought down.\n",
980 priv->net_dev->name, priv->fatal_error);
981 return -EINVAL;
982 }
983 #ifdef CONFIG_PM
984 if (!ipw2100_firmware.version) {
985 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
986 if (err) {
987 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
988 priv->net_dev->name, err);
989 priv->fatal_error = IPW2100_ERR_FW_LOAD;
990 goto fail;
991 }
992 }
993 #else
994 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
995 if (err) {
996 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
997 priv->net_dev->name, err);
998 priv->fatal_error = IPW2100_ERR_FW_LOAD;
999 goto fail;
1000 }
1001 #endif
1002 priv->firmware_version = ipw2100_firmware.version;
1003
1004 /* s/w reset and clock stabilization */
1005 err = sw_reset_and_clock(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 err = ipw2100_verify(priv);
1013 if (err) {
1014 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1015 priv->net_dev->name, err);
1016 goto fail;
1017 }
1018
1019 /* Hold ARC */
1020 write_nic_dword(priv->net_dev,
1021 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1022
1023 /* allow ARC to run */
1024 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1025
1026 /* load microcode */
1027 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1028 if (err) {
1029 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1030 priv->net_dev->name, err);
1031 goto fail;
1032 }
1033
1034 /* release ARC */
1035 write_nic_dword(priv->net_dev,
1036 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1037
1038 /* s/w reset and clock stabilization (again!!!) */
1039 err = sw_reset_and_clock(priv);
1040 if (err) {
1041 printk(KERN_ERR DRV_NAME
1042 ": %s: sw_reset_and_clock failed: %d\n",
1043 priv->net_dev->name, err);
1044 goto fail;
1045 }
1046
1047 /* load f/w */
1048 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1049 if (err) {
1050 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1051 priv->net_dev->name, err);
1052 goto fail;
1053 }
1054 #ifndef CONFIG_PM
1055 /*
1056 * When the .resume method of the driver is called, the other
1057 * part of the system, i.e. the ide driver could still stay in
1058 * the suspend stage. This prevents us from loading the firmware
1059 * from the disk. --YZ
1060 */
1061
1062 /* free any storage allocated for firmware image */
1063 ipw2100_release_firmware(priv, &ipw2100_firmware);
1064 #endif
1065
1066 /* zero out Domain 1 area indirectly (Si requirement) */
1067 for (address = IPW_HOST_FW_SHARED_AREA0;
1068 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1069 write_nic_dword(priv->net_dev, address, 0);
1070 for (address = IPW_HOST_FW_SHARED_AREA1;
1071 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1072 write_nic_dword(priv->net_dev, address, 0);
1073 for (address = IPW_HOST_FW_SHARED_AREA2;
1074 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1075 write_nic_dword(priv->net_dev, address, 0);
1076 for (address = IPW_HOST_FW_SHARED_AREA3;
1077 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1078 write_nic_dword(priv->net_dev, address, 0);
1079 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1080 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1081 write_nic_dword(priv->net_dev, address, 0);
1082
1083 return 0;
1084
1085 fail:
1086 ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 return err;
1088 }
1089
ipw2100_enable_interrupts(struct ipw2100_priv * priv)1090 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1091 {
1092 if (priv->status & STATUS_INT_ENABLED)
1093 return;
1094 priv->status |= STATUS_INT_ENABLED;
1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1096 }
1097
ipw2100_disable_interrupts(struct ipw2100_priv * priv)1098 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1099 {
1100 if (!(priv->status & STATUS_INT_ENABLED))
1101 return;
1102 priv->status &= ~STATUS_INT_ENABLED;
1103 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1104 }
1105
ipw2100_initialize_ordinals(struct ipw2100_priv * priv)1106 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1107 {
1108 struct ipw2100_ordinals *ord = &priv->ordinals;
1109
1110 IPW_DEBUG_INFO("enter\n");
1111
1112 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1113 &ord->table1_addr);
1114
1115 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1116 &ord->table2_addr);
1117
1118 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1119 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1120
1121 ord->table2_size &= 0x0000FFFF;
1122
1123 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1124 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1125 IPW_DEBUG_INFO("exit\n");
1126 }
1127
ipw2100_hw_set_gpio(struct ipw2100_priv * priv)1128 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1129 {
1130 u32 reg = 0;
1131 /*
1132 * Set GPIO 3 writable by FW; GPIO 1 writable
1133 * by driver and enable clock
1134 */
1135 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1136 IPW_BIT_GPIO_LED_OFF);
1137 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1138 }
1139
rf_kill_active(struct ipw2100_priv * priv)1140 static int rf_kill_active(struct ipw2100_priv *priv)
1141 {
1142 #define MAX_RF_KILL_CHECKS 5
1143 #define RF_KILL_CHECK_DELAY 40
1144
1145 unsigned short value = 0;
1146 u32 reg = 0;
1147 int i;
1148
1149 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1150 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1151 priv->status &= ~STATUS_RF_KILL_HW;
1152 return 0;
1153 }
1154
1155 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1156 udelay(RF_KILL_CHECK_DELAY);
1157 read_register(priv->net_dev, IPW_REG_GPIO, ®);
1158 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1159 }
1160
1161 if (value == 0) {
1162 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1163 priv->status |= STATUS_RF_KILL_HW;
1164 } else {
1165 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1166 priv->status &= ~STATUS_RF_KILL_HW;
1167 }
1168
1169 return (value == 0);
1170 }
1171
ipw2100_get_hw_features(struct ipw2100_priv * priv)1172 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1173 {
1174 u32 addr, len;
1175 u32 val;
1176
1177 /*
1178 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1179 */
1180 len = sizeof(addr);
1181 if (ipw2100_get_ordinal
1182 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1183 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1184 __LINE__);
1185 return -EIO;
1186 }
1187
1188 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1189
1190 /*
1191 * EEPROM version is the byte at offset 0xfd in firmware
1192 * We read 4 bytes, then shift out the byte we actually want */
1193 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1194 priv->eeprom_version = (val >> 24) & 0xFF;
1195 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1196
1197 /*
1198 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1199 *
1200 * notice that the EEPROM bit is reverse polarity, i.e.
1201 * bit = 0 signifies HW RF kill switch is supported
1202 * bit = 1 signifies HW RF kill switch is NOT supported
1203 */
1204 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1205 if (!((val >> 24) & 0x01))
1206 priv->hw_features |= HW_FEATURE_RFKILL;
1207
1208 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1209 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1210
1211 return 0;
1212 }
1213
1214 /*
1215 * Start firmware execution after power on and initialization
1216 * The sequence is:
1217 * 1. Release ARC
1218 * 2. Wait for f/w initialization completes;
1219 */
ipw2100_start_adapter(struct ipw2100_priv * priv)1220 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1221 {
1222 int i;
1223 u32 inta, inta_mask, gpio;
1224
1225 IPW_DEBUG_INFO("enter\n");
1226
1227 if (priv->status & STATUS_RUNNING)
1228 return 0;
1229
1230 /*
1231 * Initialize the hw - drive adapter to DO state by setting
1232 * init_done bit. Wait for clk_ready bit and Download
1233 * fw & dino ucode
1234 */
1235 if (ipw2100_download_firmware(priv)) {
1236 printk(KERN_ERR DRV_NAME
1237 ": %s: Failed to power on the adapter.\n",
1238 priv->net_dev->name);
1239 return -EIO;
1240 }
1241
1242 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1243 * in the firmware RBD and TBD ring queue */
1244 ipw2100_queues_initialize(priv);
1245
1246 ipw2100_hw_set_gpio(priv);
1247
1248 /* TODO -- Look at disabling interrupts here to make sure none
1249 * get fired during FW initialization */
1250
1251 /* Release ARC - clear reset bit */
1252 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1253
1254 /* wait for f/w initialization complete */
1255 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1256 i = 5000;
1257 do {
1258 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1259 /* Todo... wait for sync command ... */
1260
1261 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1262
1263 /* check "init done" bit */
1264 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1265 /* reset "init done" bit */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FW_INIT_DONE);
1268 break;
1269 }
1270
1271 /* check error conditions : we check these after the firmware
1272 * check so that if there is an error, the interrupt handler
1273 * will see it and the adapter will be reset */
1274 if (inta &
1275 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1276 /* clear error conditions */
1277 write_register(priv->net_dev, IPW_REG_INTA,
1278 IPW2100_INTA_FATAL_ERROR |
1279 IPW2100_INTA_PARITY_ERROR);
1280 }
1281 } while (--i);
1282
1283 /* Clear out any pending INTAs since we aren't supposed to have
1284 * interrupts enabled at this point... */
1285 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1286 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1287 inta &= IPW_INTERRUPT_MASK;
1288 /* Clear out any pending interrupts */
1289 if (inta & inta_mask)
1290 write_register(priv->net_dev, IPW_REG_INTA, inta);
1291
1292 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1293 i ? "SUCCESS" : "FAILED");
1294
1295 if (!i) {
1296 printk(KERN_WARNING DRV_NAME
1297 ": %s: Firmware did not initialize.\n",
1298 priv->net_dev->name);
1299 return -EIO;
1300 }
1301
1302 /* allow firmware to write to GPIO1 & GPIO3 */
1303 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1304
1305 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1306
1307 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1308
1309 /* Ready to receive commands */
1310 priv->status |= STATUS_RUNNING;
1311
1312 /* The adapter has been reset; we are not associated */
1313 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1314
1315 IPW_DEBUG_INFO("exit\n");
1316
1317 return 0;
1318 }
1319
ipw2100_reset_fatalerror(struct ipw2100_priv * priv)1320 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1321 {
1322 if (!priv->fatal_error)
1323 return;
1324
1325 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1326 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1327 priv->fatal_error = 0;
1328 }
1329
1330 /* NOTE: Our interrupt is disabled when this method is called */
ipw2100_power_cycle_adapter(struct ipw2100_priv * priv)1331 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1332 {
1333 u32 reg;
1334 int i;
1335
1336 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1337
1338 ipw2100_hw_set_gpio(priv);
1339
1340 /* Step 1. Stop Master Assert */
1341 write_register(priv->net_dev, IPW_REG_RESET_REG,
1342 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1343
1344 /* Step 2. Wait for stop Master Assert
1345 * (not more than 50us, otherwise ret error */
1346 i = 5;
1347 do {
1348 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1349 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1350
1351 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1352 break;
1353 } while (--i);
1354
1355 priv->status &= ~STATUS_RESET_PENDING;
1356
1357 if (!i) {
1358 IPW_DEBUG_INFO
1359 ("exit - waited too long for master assert stop\n");
1360 return -EIO;
1361 }
1362
1363 write_register(priv->net_dev, IPW_REG_RESET_REG,
1364 IPW_AUX_HOST_RESET_REG_SW_RESET);
1365
1366 /* Reset any fatal_error conditions */
1367 ipw2100_reset_fatalerror(priv);
1368
1369 /* At this point, the adapter is now stopped and disabled */
1370 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1371 STATUS_ASSOCIATED | STATUS_ENABLED);
1372
1373 return 0;
1374 }
1375
1376 /*
1377 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1378 *
1379 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1380 *
1381 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1382 * if STATUS_ASSN_LOST is sent.
1383 */
ipw2100_hw_phy_off(struct ipw2100_priv * priv)1384 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1385 {
1386
1387 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1388
1389 struct host_command cmd = {
1390 .host_command = CARD_DISABLE_PHY_OFF,
1391 .host_command_sequence = 0,
1392 .host_command_length = 0,
1393 };
1394 int err, i;
1395 u32 val1, val2;
1396
1397 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1398
1399 /* Turn off the radio */
1400 err = ipw2100_hw_send_command(priv, &cmd);
1401 if (err)
1402 return err;
1403
1404 for (i = 0; i < 2500; i++) {
1405 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1406 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1407
1408 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1409 (val2 & IPW2100_COMMAND_PHY_OFF))
1410 return 0;
1411
1412 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1413 }
1414
1415 return -EIO;
1416 }
1417
ipw2100_enable_adapter(struct ipw2100_priv * priv)1418 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1419 {
1420 struct host_command cmd = {
1421 .host_command = HOST_COMPLETE,
1422 .host_command_sequence = 0,
1423 .host_command_length = 0
1424 };
1425 int err = 0;
1426
1427 IPW_DEBUG_HC("HOST_COMPLETE\n");
1428
1429 if (priv->status & STATUS_ENABLED)
1430 return 0;
1431
1432 mutex_lock(&priv->adapter_mutex);
1433
1434 if (rf_kill_active(priv)) {
1435 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1436 goto fail_up;
1437 }
1438
1439 err = ipw2100_hw_send_command(priv, &cmd);
1440 if (err) {
1441 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1442 goto fail_up;
1443 }
1444
1445 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1446 if (err) {
1447 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1448 priv->net_dev->name);
1449 goto fail_up;
1450 }
1451
1452 if (priv->stop_hang_check) {
1453 priv->stop_hang_check = 0;
1454 schedule_delayed_work(&priv->hang_check, HZ / 2);
1455 }
1456
1457 fail_up:
1458 mutex_unlock(&priv->adapter_mutex);
1459 return err;
1460 }
1461
ipw2100_hw_stop_adapter(struct ipw2100_priv * priv)1462 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1463 {
1464 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1465
1466 struct host_command cmd = {
1467 .host_command = HOST_PRE_POWER_DOWN,
1468 .host_command_sequence = 0,
1469 .host_command_length = 0,
1470 };
1471 int err, i;
1472 u32 reg;
1473
1474 if (!(priv->status & STATUS_RUNNING))
1475 return 0;
1476
1477 priv->status |= STATUS_STOPPING;
1478
1479 /* We can only shut down the card if the firmware is operational. So,
1480 * if we haven't reset since a fatal_error, then we can not send the
1481 * shutdown commands. */
1482 if (!priv->fatal_error) {
1483 /* First, make sure the adapter is enabled so that the PHY_OFF
1484 * command can shut it down */
1485 ipw2100_enable_adapter(priv);
1486
1487 err = ipw2100_hw_phy_off(priv);
1488 if (err)
1489 printk(KERN_WARNING DRV_NAME
1490 ": Error disabling radio %d\n", err);
1491
1492 /*
1493 * If in D0-standby mode going directly to D3 may cause a
1494 * PCI bus violation. Therefore we must change out of the D0
1495 * state.
1496 *
1497 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1498 * hardware from going into standby mode and will transition
1499 * out of D0-standby if it is already in that state.
1500 *
1501 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1502 * driver upon completion. Once received, the driver can
1503 * proceed to the D3 state.
1504 *
1505 * Prepare for power down command to fw. This command would
1506 * take HW out of D0-standby and prepare it for D3 state.
1507 *
1508 * Currently FW does not support event notification for this
1509 * event. Therefore, skip waiting for it. Just wait a fixed
1510 * 100ms
1511 */
1512 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1513
1514 err = ipw2100_hw_send_command(priv, &cmd);
1515 if (err)
1516 printk(KERN_WARNING DRV_NAME ": "
1517 "%s: Power down command failed: Error %d\n",
1518 priv->net_dev->name, err);
1519 else
1520 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1521 }
1522
1523 priv->status &= ~STATUS_ENABLED;
1524
1525 /*
1526 * Set GPIO 3 writable by FW; GPIO 1 writable
1527 * by driver and enable clock
1528 */
1529 ipw2100_hw_set_gpio(priv);
1530
1531 /*
1532 * Power down adapter. Sequence:
1533 * 1. Stop master assert (RESET_REG[9]=1)
1534 * 2. Wait for stop master (RESET_REG[8]==1)
1535 * 3. S/w reset assert (RESET_REG[7] = 1)
1536 */
1537
1538 /* Stop master assert */
1539 write_register(priv->net_dev, IPW_REG_RESET_REG,
1540 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1541
1542 /* wait stop master not more than 50 usec.
1543 * Otherwise return error. */
1544 for (i = 5; i > 0; i--) {
1545 udelay(10);
1546
1547 /* Check master stop bit */
1548 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
1549
1550 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1551 break;
1552 }
1553
1554 if (i == 0)
1555 printk(KERN_WARNING DRV_NAME
1556 ": %s: Could now power down adapter.\n",
1557 priv->net_dev->name);
1558
1559 /* assert s/w reset */
1560 write_register(priv->net_dev, IPW_REG_RESET_REG,
1561 IPW_AUX_HOST_RESET_REG_SW_RESET);
1562
1563 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1564
1565 return 0;
1566 }
1567
ipw2100_disable_adapter(struct ipw2100_priv * priv)1568 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1569 {
1570 struct host_command cmd = {
1571 .host_command = CARD_DISABLE,
1572 .host_command_sequence = 0,
1573 .host_command_length = 0
1574 };
1575 int err = 0;
1576
1577 IPW_DEBUG_HC("CARD_DISABLE\n");
1578
1579 if (!(priv->status & STATUS_ENABLED))
1580 return 0;
1581
1582 /* Make sure we clear the associated state */
1583 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1584
1585 if (!priv->stop_hang_check) {
1586 priv->stop_hang_check = 1;
1587 cancel_delayed_work(&priv->hang_check);
1588 }
1589
1590 mutex_lock(&priv->adapter_mutex);
1591
1592 err = ipw2100_hw_send_command(priv, &cmd);
1593 if (err) {
1594 printk(KERN_WARNING DRV_NAME
1595 ": exit - failed to send CARD_DISABLE command\n");
1596 goto fail_up;
1597 }
1598
1599 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1600 if (err) {
1601 printk(KERN_WARNING DRV_NAME
1602 ": exit - card failed to change to DISABLED\n");
1603 goto fail_up;
1604 }
1605
1606 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1607
1608 fail_up:
1609 mutex_unlock(&priv->adapter_mutex);
1610 return err;
1611 }
1612
ipw2100_set_scan_options(struct ipw2100_priv * priv)1613 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1614 {
1615 struct host_command cmd = {
1616 .host_command = SET_SCAN_OPTIONS,
1617 .host_command_sequence = 0,
1618 .host_command_length = 8
1619 };
1620 int err;
1621
1622 IPW_DEBUG_INFO("enter\n");
1623
1624 IPW_DEBUG_SCAN("setting scan options\n");
1625
1626 cmd.host_command_parameters[0] = 0;
1627
1628 if (!(priv->config & CFG_ASSOCIATE))
1629 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1630 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1631 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1632 if (priv->config & CFG_PASSIVE_SCAN)
1633 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1634
1635 cmd.host_command_parameters[1] = priv->channel_mask;
1636
1637 err = ipw2100_hw_send_command(priv, &cmd);
1638
1639 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1640 cmd.host_command_parameters[0]);
1641
1642 return err;
1643 }
1644
ipw2100_start_scan(struct ipw2100_priv * priv)1645 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1646 {
1647 struct host_command cmd = {
1648 .host_command = BROADCAST_SCAN,
1649 .host_command_sequence = 0,
1650 .host_command_length = 4
1651 };
1652 int err;
1653
1654 IPW_DEBUG_HC("START_SCAN\n");
1655
1656 cmd.host_command_parameters[0] = 0;
1657
1658 /* No scanning if in monitor mode */
1659 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1660 return 1;
1661
1662 if (priv->status & STATUS_SCANNING) {
1663 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1664 return 0;
1665 }
1666
1667 IPW_DEBUG_INFO("enter\n");
1668
1669 /* Not clearing here; doing so makes iwlist always return nothing...
1670 *
1671 * We should modify the table logic to use aging tables vs. clearing
1672 * the table on each scan start.
1673 */
1674 IPW_DEBUG_SCAN("starting scan\n");
1675
1676 priv->status |= STATUS_SCANNING;
1677 err = ipw2100_hw_send_command(priv, &cmd);
1678 if (err)
1679 priv->status &= ~STATUS_SCANNING;
1680
1681 IPW_DEBUG_INFO("exit\n");
1682
1683 return err;
1684 }
1685
1686 static const struct libipw_geo ipw_geos[] = {
1687 { /* Restricted */
1688 "---",
1689 .bg_channels = 14,
1690 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1691 {2427, 4}, {2432, 5}, {2437, 6},
1692 {2442, 7}, {2447, 8}, {2452, 9},
1693 {2457, 10}, {2462, 11}, {2467, 12},
1694 {2472, 13}, {2484, 14}},
1695 },
1696 };
1697
ipw2100_up(struct ipw2100_priv * priv,int deferred)1698 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1699 {
1700 unsigned long flags;
1701 int err = 0;
1702 u32 lock;
1703 u32 ord_len = sizeof(lock);
1704
1705 /* Age scan list entries found before suspend */
1706 if (priv->suspend_time) {
1707 libipw_networks_age(priv->ieee, priv->suspend_time);
1708 priv->suspend_time = 0;
1709 }
1710
1711 /* Quiet if manually disabled. */
1712 if (priv->status & STATUS_RF_KILL_SW) {
1713 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1714 "switch\n", priv->net_dev->name);
1715 return 0;
1716 }
1717
1718 /* the ipw2100 hardware really doesn't want power management delays
1719 * longer than 175usec
1720 */
1721 cpu_latency_qos_update_request(&ipw2100_pm_qos_req, 175);
1722
1723 /* If the interrupt is enabled, turn it off... */
1724 spin_lock_irqsave(&priv->low_lock, flags);
1725 ipw2100_disable_interrupts(priv);
1726
1727 /* Reset any fatal_error conditions */
1728 ipw2100_reset_fatalerror(priv);
1729 spin_unlock_irqrestore(&priv->low_lock, flags);
1730
1731 if (priv->status & STATUS_POWERED ||
1732 (priv->status & STATUS_RESET_PENDING)) {
1733 /* Power cycle the card ... */
1734 err = ipw2100_power_cycle_adapter(priv);
1735 if (err) {
1736 printk(KERN_WARNING DRV_NAME
1737 ": %s: Could not cycle adapter.\n",
1738 priv->net_dev->name);
1739 goto exit;
1740 }
1741 } else
1742 priv->status |= STATUS_POWERED;
1743
1744 /* Load the firmware, start the clocks, etc. */
1745 err = ipw2100_start_adapter(priv);
1746 if (err) {
1747 printk(KERN_ERR DRV_NAME
1748 ": %s: Failed to start the firmware.\n",
1749 priv->net_dev->name);
1750 goto exit;
1751 }
1752
1753 ipw2100_initialize_ordinals(priv);
1754
1755 /* Determine capabilities of this particular HW configuration */
1756 err = ipw2100_get_hw_features(priv);
1757 if (err) {
1758 printk(KERN_ERR DRV_NAME
1759 ": %s: Failed to determine HW features.\n",
1760 priv->net_dev->name);
1761 goto exit;
1762 }
1763
1764 /* Initialize the geo */
1765 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1766 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1767
1768 lock = LOCK_NONE;
1769 err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1770 if (err) {
1771 printk(KERN_ERR DRV_NAME
1772 ": %s: Failed to clear ordinal lock.\n",
1773 priv->net_dev->name);
1774 goto exit;
1775 }
1776
1777 priv->status &= ~STATUS_SCANNING;
1778
1779 if (rf_kill_active(priv)) {
1780 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1781 priv->net_dev->name);
1782
1783 if (priv->stop_rf_kill) {
1784 priv->stop_rf_kill = 0;
1785 schedule_delayed_work(&priv->rf_kill,
1786 round_jiffies_relative(HZ));
1787 }
1788
1789 deferred = 1;
1790 }
1791
1792 /* Turn on the interrupt so that commands can be processed */
1793 ipw2100_enable_interrupts(priv);
1794
1795 /* Send all of the commands that must be sent prior to
1796 * HOST_COMPLETE */
1797 err = ipw2100_adapter_setup(priv);
1798 if (err) {
1799 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1800 priv->net_dev->name);
1801 goto exit;
1802 }
1803
1804 if (!deferred) {
1805 /* Enable the adapter - sends HOST_COMPLETE */
1806 err = ipw2100_enable_adapter(priv);
1807 if (err) {
1808 printk(KERN_ERR DRV_NAME ": "
1809 "%s: failed in call to enable adapter.\n",
1810 priv->net_dev->name);
1811 ipw2100_hw_stop_adapter(priv);
1812 goto exit;
1813 }
1814
1815 /* Start a scan . . . */
1816 ipw2100_set_scan_options(priv);
1817 ipw2100_start_scan(priv);
1818 }
1819
1820 exit:
1821 return err;
1822 }
1823
ipw2100_down(struct ipw2100_priv * priv)1824 static void ipw2100_down(struct ipw2100_priv *priv)
1825 {
1826 unsigned long flags;
1827 union iwreq_data wrqu = {
1828 .ap_addr = {
1829 .sa_family = ARPHRD_ETHER}
1830 };
1831 int associated = priv->status & STATUS_ASSOCIATED;
1832
1833 /* Kill the RF switch timer */
1834 if (!priv->stop_rf_kill) {
1835 priv->stop_rf_kill = 1;
1836 cancel_delayed_work(&priv->rf_kill);
1837 }
1838
1839 /* Kill the firmware hang check timer */
1840 if (!priv->stop_hang_check) {
1841 priv->stop_hang_check = 1;
1842 cancel_delayed_work(&priv->hang_check);
1843 }
1844
1845 /* Kill any pending resets */
1846 if (priv->status & STATUS_RESET_PENDING)
1847 cancel_delayed_work(&priv->reset_work);
1848
1849 /* Make sure the interrupt is on so that FW commands will be
1850 * processed correctly */
1851 spin_lock_irqsave(&priv->low_lock, flags);
1852 ipw2100_enable_interrupts(priv);
1853 spin_unlock_irqrestore(&priv->low_lock, flags);
1854
1855 if (ipw2100_hw_stop_adapter(priv))
1856 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1857 priv->net_dev->name);
1858
1859 /* Do not disable the interrupt until _after_ we disable
1860 * the adaptor. Otherwise the CARD_DISABLE command will never
1861 * be ack'd by the firmware */
1862 spin_lock_irqsave(&priv->low_lock, flags);
1863 ipw2100_disable_interrupts(priv);
1864 spin_unlock_irqrestore(&priv->low_lock, flags);
1865
1866 cpu_latency_qos_update_request(&ipw2100_pm_qos_req,
1867 PM_QOS_DEFAULT_VALUE);
1868
1869 /* We have to signal any supplicant if we are disassociating */
1870 if (associated)
1871 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874 netif_carrier_off(priv->net_dev);
1875 netif_stop_queue(priv->net_dev);
1876 }
1877
ipw2100_wdev_init(struct net_device * dev)1878 static int ipw2100_wdev_init(struct net_device *dev)
1879 {
1880 struct ipw2100_priv *priv = libipw_priv(dev);
1881 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1882 struct wireless_dev *wdev = &priv->ieee->wdev;
1883 int i;
1884
1885 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1886
1887 /* fill-out priv->ieee->bg_band */
1888 if (geo->bg_channels) {
1889 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1890
1891 bg_band->band = NL80211_BAND_2GHZ;
1892 bg_band->n_channels = geo->bg_channels;
1893 bg_band->channels = kcalloc(geo->bg_channels,
1894 sizeof(struct ieee80211_channel),
1895 GFP_KERNEL);
1896 if (!bg_band->channels) {
1897 ipw2100_down(priv);
1898 return -ENOMEM;
1899 }
1900 /* translate geo->bg to bg_band.channels */
1901 for (i = 0; i < geo->bg_channels; i++) {
1902 bg_band->channels[i].band = NL80211_BAND_2GHZ;
1903 bg_band->channels[i].center_freq = geo->bg[i].freq;
1904 bg_band->channels[i].hw_value = geo->bg[i].channel;
1905 bg_band->channels[i].max_power = geo->bg[i].max_power;
1906 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1907 bg_band->channels[i].flags |=
1908 IEEE80211_CHAN_NO_IR;
1909 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1910 bg_band->channels[i].flags |=
1911 IEEE80211_CHAN_NO_IR;
1912 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1913 bg_band->channels[i].flags |=
1914 IEEE80211_CHAN_RADAR;
1915 /* No equivalent for LIBIPW_CH_80211H_RULES,
1916 LIBIPW_CH_UNIFORM_SPREADING, or
1917 LIBIPW_CH_B_ONLY... */
1918 }
1919 /* point at bitrate info */
1920 bg_band->bitrates = ipw2100_bg_rates;
1921 bg_band->n_bitrates = RATE_COUNT;
1922
1923 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1924 }
1925
1926 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1927 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1928
1929 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1930 if (wiphy_register(wdev->wiphy))
1931 return -EIO;
1932 return 0;
1933 }
1934
ipw2100_reset_adapter(struct work_struct * work)1935 static void ipw2100_reset_adapter(struct work_struct *work)
1936 {
1937 struct ipw2100_priv *priv =
1938 container_of(work, struct ipw2100_priv, reset_work.work);
1939 unsigned long flags;
1940 union iwreq_data wrqu = {
1941 .ap_addr = {
1942 .sa_family = ARPHRD_ETHER}
1943 };
1944 int associated = priv->status & STATUS_ASSOCIATED;
1945
1946 spin_lock_irqsave(&priv->low_lock, flags);
1947 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1948 priv->resets++;
1949 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1950 priv->status |= STATUS_SECURITY_UPDATED;
1951
1952 /* Force a power cycle even if interface hasn't been opened
1953 * yet */
1954 cancel_delayed_work(&priv->reset_work);
1955 priv->status |= STATUS_RESET_PENDING;
1956 spin_unlock_irqrestore(&priv->low_lock, flags);
1957
1958 mutex_lock(&priv->action_mutex);
1959 /* stop timed checks so that they don't interfere with reset */
1960 priv->stop_hang_check = 1;
1961 cancel_delayed_work(&priv->hang_check);
1962
1963 /* We have to signal any supplicant if we are disassociating */
1964 if (associated)
1965 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1966
1967 ipw2100_up(priv, 0);
1968 mutex_unlock(&priv->action_mutex);
1969
1970 }
1971
isr_indicate_associated(struct ipw2100_priv * priv,u32 status)1972 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1973 {
1974
1975 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1976 int ret;
1977 unsigned int len, essid_len;
1978 char essid[IW_ESSID_MAX_SIZE];
1979 u32 txrate;
1980 u32 chan;
1981 char *txratename;
1982 u8 bssid[ETH_ALEN];
1983
1984 /*
1985 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1986 * an actual MAC of the AP. Seems like FW sets this
1987 * address too late. Read it later and expose through
1988 * /proc or schedule a later task to query and update
1989 */
1990
1991 essid_len = IW_ESSID_MAX_SIZE;
1992 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1993 essid, &essid_len);
1994 if (ret) {
1995 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1996 __LINE__);
1997 return;
1998 }
1999
2000 len = sizeof(u32);
2001 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2002 if (ret) {
2003 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2004 __LINE__);
2005 return;
2006 }
2007
2008 len = sizeof(u32);
2009 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2010 if (ret) {
2011 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2012 __LINE__);
2013 return;
2014 }
2015 len = ETH_ALEN;
2016 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2017 &len);
2018 if (ret) {
2019 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2020 __LINE__);
2021 return;
2022 }
2023 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2024
2025 switch (txrate) {
2026 case TX_RATE_1_MBIT:
2027 txratename = "1Mbps";
2028 break;
2029 case TX_RATE_2_MBIT:
2030 txratename = "2Mbsp";
2031 break;
2032 case TX_RATE_5_5_MBIT:
2033 txratename = "5.5Mbps";
2034 break;
2035 case TX_RATE_11_MBIT:
2036 txratename = "11Mbps";
2037 break;
2038 default:
2039 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2040 txratename = "unknown rate";
2041 break;
2042 }
2043
2044 IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2045 priv->net_dev->name, essid_len, essid,
2046 txratename, chan, bssid);
2047
2048 /* now we copy read ssid into dev */
2049 if (!(priv->config & CFG_STATIC_ESSID)) {
2050 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2051 memcpy(priv->essid, essid, priv->essid_len);
2052 }
2053 priv->channel = chan;
2054 memcpy(priv->bssid, bssid, ETH_ALEN);
2055
2056 priv->status |= STATUS_ASSOCIATING;
2057 priv->connect_start = ktime_get_boottime_seconds();
2058
2059 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2060 }
2061
ipw2100_set_essid(struct ipw2100_priv * priv,char * essid,int length,int batch_mode)2062 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2063 int length, int batch_mode)
2064 {
2065 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2066 struct host_command cmd = {
2067 .host_command = SSID,
2068 .host_command_sequence = 0,
2069 .host_command_length = ssid_len
2070 };
2071 int err;
2072
2073 IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2074
2075 if (ssid_len)
2076 memcpy(cmd.host_command_parameters, essid, ssid_len);
2077
2078 if (!batch_mode) {
2079 err = ipw2100_disable_adapter(priv);
2080 if (err)
2081 return err;
2082 }
2083
2084 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2085 * disable auto association -- so we cheat by setting a bogus SSID */
2086 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2087 int i;
2088 u8 *bogus = (u8 *) cmd.host_command_parameters;
2089 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2090 bogus[i] = 0x18 + i;
2091 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2092 }
2093
2094 /* NOTE: We always send the SSID command even if the provided ESSID is
2095 * the same as what we currently think is set. */
2096
2097 err = ipw2100_hw_send_command(priv, &cmd);
2098 if (!err) {
2099 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2100 memcpy(priv->essid, essid, ssid_len);
2101 priv->essid_len = ssid_len;
2102 }
2103
2104 if (!batch_mode) {
2105 if (ipw2100_enable_adapter(priv))
2106 err = -EIO;
2107 }
2108
2109 return err;
2110 }
2111
isr_indicate_association_lost(struct ipw2100_priv * priv,u32 status)2112 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2113 {
2114 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2115 "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2116 priv->bssid);
2117
2118 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2119
2120 if (priv->status & STATUS_STOPPING) {
2121 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2122 return;
2123 }
2124
2125 eth_zero_addr(priv->bssid);
2126 eth_zero_addr(priv->ieee->bssid);
2127
2128 netif_carrier_off(priv->net_dev);
2129 netif_stop_queue(priv->net_dev);
2130
2131 if (!(priv->status & STATUS_RUNNING))
2132 return;
2133
2134 if (priv->status & STATUS_SECURITY_UPDATED)
2135 schedule_delayed_work(&priv->security_work, 0);
2136
2137 schedule_delayed_work(&priv->wx_event_work, 0);
2138 }
2139
isr_indicate_rf_kill(struct ipw2100_priv * priv,u32 status)2140 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2141 {
2142 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2143 priv->net_dev->name);
2144
2145 /* RF_KILL is now enabled (else we wouldn't be here) */
2146 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2147 priv->status |= STATUS_RF_KILL_HW;
2148
2149 /* Make sure the RF Kill check timer is running */
2150 priv->stop_rf_kill = 0;
2151 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2152 }
2153
ipw2100_scan_event(struct work_struct * work)2154 static void ipw2100_scan_event(struct work_struct *work)
2155 {
2156 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2157 scan_event.work);
2158 union iwreq_data wrqu;
2159
2160 wrqu.data.length = 0;
2161 wrqu.data.flags = 0;
2162 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2163 }
2164
isr_scan_complete(struct ipw2100_priv * priv,u32 status)2165 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2166 {
2167 IPW_DEBUG_SCAN("scan complete\n");
2168 /* Age the scan results... */
2169 priv->ieee->scans++;
2170 priv->status &= ~STATUS_SCANNING;
2171
2172 /* Only userspace-requested scan completion events go out immediately */
2173 if (!priv->user_requested_scan) {
2174 schedule_delayed_work(&priv->scan_event,
2175 round_jiffies_relative(msecs_to_jiffies(4000)));
2176 } else {
2177 priv->user_requested_scan = 0;
2178 mod_delayed_work(system_wq, &priv->scan_event, 0);
2179 }
2180 }
2181
2182 #ifdef CONFIG_IPW2100_DEBUG
2183 #define IPW2100_HANDLER(v, f) { v, f, # v }
2184 struct ipw2100_status_indicator {
2185 int status;
2186 void (*cb) (struct ipw2100_priv * priv, u32 status);
2187 char *name;
2188 };
2189 #else
2190 #define IPW2100_HANDLER(v, f) { v, f }
2191 struct ipw2100_status_indicator {
2192 int status;
2193 void (*cb) (struct ipw2100_priv * priv, u32 status);
2194 };
2195 #endif /* CONFIG_IPW2100_DEBUG */
2196
isr_indicate_scanning(struct ipw2100_priv * priv,u32 status)2197 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2198 {
2199 IPW_DEBUG_SCAN("Scanning...\n");
2200 priv->status |= STATUS_SCANNING;
2201 }
2202
2203 static const struct ipw2100_status_indicator status_handlers[] = {
2204 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2205 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2206 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2207 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2208 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2209 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2210 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2211 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2212 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2213 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2214 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2215 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2216 IPW2100_HANDLER(-1, NULL)
2217 };
2218
isr_status_change(struct ipw2100_priv * priv,int status)2219 static void isr_status_change(struct ipw2100_priv *priv, int status)
2220 {
2221 int i;
2222
2223 if (status == IPW_STATE_SCANNING &&
2224 priv->status & STATUS_ASSOCIATED &&
2225 !(priv->status & STATUS_SCANNING)) {
2226 IPW_DEBUG_INFO("Scan detected while associated, with "
2227 "no scan request. Restarting firmware.\n");
2228
2229 /* Wake up any sleeping jobs */
2230 schedule_reset(priv);
2231 }
2232
2233 for (i = 0; status_handlers[i].status != -1; i++) {
2234 if (status == status_handlers[i].status) {
2235 IPW_DEBUG_NOTIF("Status change: %s\n",
2236 status_handlers[i].name);
2237 if (status_handlers[i].cb)
2238 status_handlers[i].cb(priv, status);
2239 priv->wstats.status = status;
2240 return;
2241 }
2242 }
2243
2244 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2245 }
2246
isr_rx_complete_command(struct ipw2100_priv * priv,struct ipw2100_cmd_header * cmd)2247 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2248 struct ipw2100_cmd_header *cmd)
2249 {
2250 #ifdef CONFIG_IPW2100_DEBUG
2251 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2252 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2253 command_types[cmd->host_command_reg],
2254 cmd->host_command_reg);
2255 }
2256 #endif
2257 if (cmd->host_command_reg == HOST_COMPLETE)
2258 priv->status |= STATUS_ENABLED;
2259
2260 if (cmd->host_command_reg == CARD_DISABLE)
2261 priv->status &= ~STATUS_ENABLED;
2262
2263 priv->status &= ~STATUS_CMD_ACTIVE;
2264
2265 wake_up_interruptible(&priv->wait_command_queue);
2266 }
2267
2268 #ifdef CONFIG_IPW2100_DEBUG
2269 static const char *frame_types[] = {
2270 "COMMAND_STATUS_VAL",
2271 "STATUS_CHANGE_VAL",
2272 "P80211_DATA_VAL",
2273 "P8023_DATA_VAL",
2274 "HOST_NOTIFICATION_VAL"
2275 };
2276 #endif
2277
ipw2100_alloc_skb(struct ipw2100_priv * priv,struct ipw2100_rx_packet * packet)2278 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2279 struct ipw2100_rx_packet *packet)
2280 {
2281 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2282 if (!packet->skb)
2283 return -ENOMEM;
2284
2285 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2286 packet->dma_addr = dma_map_single(&priv->pci_dev->dev,
2287 packet->skb->data,
2288 sizeof(struct ipw2100_rx),
2289 DMA_FROM_DEVICE);
2290 if (dma_mapping_error(&priv->pci_dev->dev, packet->dma_addr)) {
2291 dev_kfree_skb(packet->skb);
2292 return -ENOMEM;
2293 }
2294
2295 return 0;
2296 }
2297
2298 #define SEARCH_ERROR 0xffffffff
2299 #define SEARCH_FAIL 0xfffffffe
2300 #define SEARCH_SUCCESS 0xfffffff0
2301 #define SEARCH_DISCARD 0
2302 #define SEARCH_SNAPSHOT 1
2303
2304 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
ipw2100_snapshot_free(struct ipw2100_priv * priv)2305 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2306 {
2307 int i;
2308 if (!priv->snapshot[0])
2309 return;
2310 for (i = 0; i < 0x30; i++)
2311 kfree(priv->snapshot[i]);
2312 priv->snapshot[0] = NULL;
2313 }
2314
2315 #ifdef IPW2100_DEBUG_C3
ipw2100_snapshot_alloc(struct ipw2100_priv * priv)2316 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2317 {
2318 int i;
2319 if (priv->snapshot[0])
2320 return 1;
2321 for (i = 0; i < 0x30; i++) {
2322 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2323 if (!priv->snapshot[i]) {
2324 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2325 "buffer %d\n", priv->net_dev->name, i);
2326 while (i > 0)
2327 kfree(priv->snapshot[--i]);
2328 priv->snapshot[0] = NULL;
2329 return 0;
2330 }
2331 }
2332
2333 return 1;
2334 }
2335
ipw2100_match_buf(struct ipw2100_priv * priv,u8 * in_buf,size_t len,int mode)2336 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2337 size_t len, int mode)
2338 {
2339 u32 i, j;
2340 u32 tmp;
2341 u8 *s, *d;
2342 u32 ret;
2343
2344 s = in_buf;
2345 if (mode == SEARCH_SNAPSHOT) {
2346 if (!ipw2100_snapshot_alloc(priv))
2347 mode = SEARCH_DISCARD;
2348 }
2349
2350 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2351 read_nic_dword(priv->net_dev, i, &tmp);
2352 if (mode == SEARCH_SNAPSHOT)
2353 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2354 if (ret == SEARCH_FAIL) {
2355 d = (u8 *) & tmp;
2356 for (j = 0; j < 4; j++) {
2357 if (*s != *d) {
2358 s = in_buf;
2359 continue;
2360 }
2361
2362 s++;
2363 d++;
2364
2365 if ((s - in_buf) == len)
2366 ret = (i + j) - len + 1;
2367 }
2368 } else if (mode == SEARCH_DISCARD)
2369 return ret;
2370 }
2371
2372 return ret;
2373 }
2374 #endif
2375
2376 /*
2377 *
2378 * 0) Disconnect the SKB from the firmware (just unmap)
2379 * 1) Pack the ETH header into the SKB
2380 * 2) Pass the SKB to the network stack
2381 *
2382 * When packet is provided by the firmware, it contains the following:
2383 *
2384 * . libipw_hdr
2385 * . libipw_snap_hdr
2386 *
2387 * The size of the constructed ethernet
2388 *
2389 */
2390 #ifdef IPW2100_RX_DEBUG
2391 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2392 #endif
2393
ipw2100_corruption_detected(struct ipw2100_priv * priv,int i)2394 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2395 {
2396 #ifdef IPW2100_DEBUG_C3
2397 struct ipw2100_status *status = &priv->status_queue.drv[i];
2398 u32 match, reg;
2399 int j;
2400 #endif
2401
2402 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2403 i * sizeof(struct ipw2100_status));
2404
2405 #ifdef IPW2100_DEBUG_C3
2406 /* Halt the firmware so we can get a good image */
2407 write_register(priv->net_dev, IPW_REG_RESET_REG,
2408 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2409 j = 5;
2410 do {
2411 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2412 read_register(priv->net_dev, IPW_REG_RESET_REG, ®);
2413
2414 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2415 break;
2416 } while (j--);
2417
2418 match = ipw2100_match_buf(priv, (u8 *) status,
2419 sizeof(struct ipw2100_status),
2420 SEARCH_SNAPSHOT);
2421 if (match < SEARCH_SUCCESS)
2422 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2423 "offset 0x%06X, length %d:\n",
2424 priv->net_dev->name, match,
2425 sizeof(struct ipw2100_status));
2426 else
2427 IPW_DEBUG_INFO("%s: No DMA status match in "
2428 "Firmware.\n", priv->net_dev->name);
2429
2430 printk_buf((u8 *) priv->status_queue.drv,
2431 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2432 #endif
2433
2434 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2435 priv->net_dev->stats.rx_errors++;
2436 schedule_reset(priv);
2437 }
2438
isr_rx(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2439 static void isr_rx(struct ipw2100_priv *priv, int i,
2440 struct libipw_rx_stats *stats)
2441 {
2442 struct net_device *dev = priv->net_dev;
2443 struct ipw2100_status *status = &priv->status_queue.drv[i];
2444 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2445
2446 IPW_DEBUG_RX("Handler...\n");
2447
2448 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2449 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2450 " Dropping.\n",
2451 dev->name,
2452 status->frame_size, skb_tailroom(packet->skb));
2453 dev->stats.rx_errors++;
2454 return;
2455 }
2456
2457 if (unlikely(!netif_running(dev))) {
2458 dev->stats.rx_errors++;
2459 priv->wstats.discard.misc++;
2460 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2461 return;
2462 }
2463
2464 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2465 !(priv->status & STATUS_ASSOCIATED))) {
2466 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2467 priv->wstats.discard.misc++;
2468 return;
2469 }
2470
2471 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2472 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2473
2474 skb_put(packet->skb, status->frame_size);
2475
2476 #ifdef IPW2100_RX_DEBUG
2477 /* Make a copy of the frame so we can dump it to the logs if
2478 * libipw_rx fails */
2479 skb_copy_from_linear_data(packet->skb, packet_data,
2480 min_t(u32, status->frame_size,
2481 IPW_RX_NIC_BUFFER_LENGTH));
2482 #endif
2483
2484 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2485 #ifdef IPW2100_RX_DEBUG
2486 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2487 dev->name);
2488 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2489 #endif
2490 dev->stats.rx_errors++;
2491
2492 /* libipw_rx failed, so it didn't free the SKB */
2493 dev_kfree_skb_any(packet->skb);
2494 packet->skb = NULL;
2495 }
2496
2497 /* We need to allocate a new SKB and attach it to the RDB. */
2498 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2499 printk(KERN_WARNING DRV_NAME ": "
2500 "%s: Unable to allocate SKB onto RBD ring - disabling "
2501 "adapter.\n", dev->name);
2502 /* TODO: schedule adapter shutdown */
2503 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2504 }
2505
2506 /* Update the RDB entry */
2507 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2508 }
2509
2510 #ifdef CONFIG_IPW2100_MONITOR
2511
isr_rx_monitor(struct ipw2100_priv * priv,int i,struct libipw_rx_stats * stats)2512 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2513 struct libipw_rx_stats *stats)
2514 {
2515 struct net_device *dev = priv->net_dev;
2516 struct ipw2100_status *status = &priv->status_queue.drv[i];
2517 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2518
2519 /* Magic struct that slots into the radiotap header -- no reason
2520 * to build this manually element by element, we can write it much
2521 * more efficiently than we can parse it. ORDER MATTERS HERE */
2522 struct ipw_rt_hdr {
2523 struct ieee80211_radiotap_header_fixed rt_hdr;
2524 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2525 } *ipw_rt;
2526
2527 IPW_DEBUG_RX("Handler...\n");
2528
2529 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2530 sizeof(struct ipw_rt_hdr))) {
2531 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2532 " Dropping.\n",
2533 dev->name,
2534 status->frame_size,
2535 skb_tailroom(packet->skb));
2536 dev->stats.rx_errors++;
2537 return;
2538 }
2539
2540 if (unlikely(!netif_running(dev))) {
2541 dev->stats.rx_errors++;
2542 priv->wstats.discard.misc++;
2543 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2544 return;
2545 }
2546
2547 if (unlikely(priv->config & CFG_CRC_CHECK &&
2548 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2549 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2550 dev->stats.rx_errors++;
2551 return;
2552 }
2553
2554 dma_unmap_single(&priv->pci_dev->dev, packet->dma_addr,
2555 sizeof(struct ipw2100_rx), DMA_FROM_DEVICE);
2556 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2557 packet->skb->data, status->frame_size);
2558
2559 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2560
2561 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2562 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2563 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2564
2565 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2566
2567 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2568
2569 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2570
2571 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2572 dev->stats.rx_errors++;
2573
2574 /* libipw_rx failed, so it didn't free the SKB */
2575 dev_kfree_skb_any(packet->skb);
2576 packet->skb = NULL;
2577 }
2578
2579 /* We need to allocate a new SKB and attach it to the RDB. */
2580 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2581 IPW_DEBUG_WARNING(
2582 "%s: Unable to allocate SKB onto RBD ring - disabling "
2583 "adapter.\n", dev->name);
2584 /* TODO: schedule adapter shutdown */
2585 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2586 }
2587
2588 /* Update the RDB entry */
2589 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2590 }
2591
2592 #endif
2593
ipw2100_corruption_check(struct ipw2100_priv * priv,int i)2594 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2595 {
2596 struct ipw2100_status *status = &priv->status_queue.drv[i];
2597 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2598 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2599
2600 switch (frame_type) {
2601 case COMMAND_STATUS_VAL:
2602 return (status->frame_size != sizeof(u->rx_data.command));
2603 case STATUS_CHANGE_VAL:
2604 return (status->frame_size != sizeof(u->rx_data.status));
2605 case HOST_NOTIFICATION_VAL:
2606 return (status->frame_size < sizeof(u->rx_data.notification));
2607 case P80211_DATA_VAL:
2608 case P8023_DATA_VAL:
2609 #ifdef CONFIG_IPW2100_MONITOR
2610 return 0;
2611 #else
2612 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2613 case IEEE80211_FTYPE_MGMT:
2614 case IEEE80211_FTYPE_CTL:
2615 return 0;
2616 case IEEE80211_FTYPE_DATA:
2617 return (status->frame_size >
2618 IPW_MAX_802_11_PAYLOAD_LENGTH);
2619 }
2620 #endif
2621 }
2622
2623 return 1;
2624 }
2625
2626 /*
2627 * ipw2100 interrupts are disabled at this point, and the ISR
2628 * is the only code that calls this method. So, we do not need
2629 * to play with any locks.
2630 *
2631 * RX Queue works as follows:
2632 *
2633 * Read index - firmware places packet in entry identified by the
2634 * Read index and advances Read index. In this manner,
2635 * Read index will always point to the next packet to
2636 * be filled--but not yet valid.
2637 *
2638 * Write index - driver fills this entry with an unused RBD entry.
2639 * This entry has not filled by the firmware yet.
2640 *
2641 * In between the W and R indexes are the RBDs that have been received
2642 * but not yet processed.
2643 *
2644 * The process of handling packets will start at WRITE + 1 and advance
2645 * until it reaches the READ index.
2646 *
2647 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2648 *
2649 */
__ipw2100_rx_process(struct ipw2100_priv * priv)2650 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2651 {
2652 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2653 struct ipw2100_status_queue *sq = &priv->status_queue;
2654 struct ipw2100_rx_packet *packet;
2655 u16 frame_type;
2656 u32 r, w, i, s;
2657 struct ipw2100_rx *u;
2658 struct libipw_rx_stats stats = {
2659 .mac_time = jiffies,
2660 };
2661
2662 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2663 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2664
2665 if (r >= rxq->entries) {
2666 IPW_DEBUG_RX("exit - bad read index\n");
2667 return;
2668 }
2669
2670 i = (rxq->next + 1) % rxq->entries;
2671 s = i;
2672 while (i != r) {
2673 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2674 r, rxq->next, i); */
2675
2676 packet = &priv->rx_buffers[i];
2677
2678 /* Sync the DMA for the RX buffer so CPU is sure to get
2679 * the correct values */
2680 dma_sync_single_for_cpu(&priv->pci_dev->dev, packet->dma_addr,
2681 sizeof(struct ipw2100_rx),
2682 DMA_FROM_DEVICE);
2683
2684 if (unlikely(ipw2100_corruption_check(priv, i))) {
2685 ipw2100_corruption_detected(priv, i);
2686 goto increment;
2687 }
2688
2689 u = packet->rxp;
2690 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2691 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2692 stats.len = sq->drv[i].frame_size;
2693
2694 stats.mask = 0;
2695 if (stats.rssi != 0)
2696 stats.mask |= LIBIPW_STATMASK_RSSI;
2697 stats.freq = LIBIPW_24GHZ_BAND;
2698
2699 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2700 priv->net_dev->name, frame_types[frame_type],
2701 stats.len);
2702
2703 switch (frame_type) {
2704 case COMMAND_STATUS_VAL:
2705 /* Reset Rx watchdog */
2706 isr_rx_complete_command(priv, &u->rx_data.command);
2707 break;
2708
2709 case STATUS_CHANGE_VAL:
2710 isr_status_change(priv, u->rx_data.status);
2711 break;
2712
2713 case P80211_DATA_VAL:
2714 case P8023_DATA_VAL:
2715 #ifdef CONFIG_IPW2100_MONITOR
2716 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2717 isr_rx_monitor(priv, i, &stats);
2718 break;
2719 }
2720 #endif
2721 if (stats.len < sizeof(struct libipw_hdr_3addr))
2722 break;
2723 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2724 case IEEE80211_FTYPE_MGMT:
2725 libipw_rx_mgt(priv->ieee,
2726 &u->rx_data.header, &stats);
2727 break;
2728
2729 case IEEE80211_FTYPE_CTL:
2730 break;
2731
2732 case IEEE80211_FTYPE_DATA:
2733 isr_rx(priv, i, &stats);
2734 break;
2735
2736 }
2737 break;
2738 }
2739
2740 increment:
2741 /* clear status field associated with this RBD */
2742 rxq->drv[i].status.info.field = 0;
2743
2744 i = (i + 1) % rxq->entries;
2745 }
2746
2747 if (i != s) {
2748 /* backtrack one entry, wrapping to end if at 0 */
2749 rxq->next = (i ? i : rxq->entries) - 1;
2750
2751 write_register(priv->net_dev,
2752 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2753 }
2754 }
2755
2756 /*
2757 * __ipw2100_tx_process
2758 *
2759 * This routine will determine whether the next packet on
2760 * the fw_pend_list has been processed by the firmware yet.
2761 *
2762 * If not, then it does nothing and returns.
2763 *
2764 * If so, then it removes the item from the fw_pend_list, frees
2765 * any associated storage, and places the item back on the
2766 * free list of its source (either msg_free_list or tx_free_list)
2767 *
2768 * TX Queue works as follows:
2769 *
2770 * Read index - points to the next TBD that the firmware will
2771 * process. The firmware will read the data, and once
2772 * done processing, it will advance the Read index.
2773 *
2774 * Write index - driver fills this entry with an constructed TBD
2775 * entry. The Write index is not advanced until the
2776 * packet has been configured.
2777 *
2778 * In between the W and R indexes are the TBDs that have NOT been
2779 * processed. Lagging behind the R index are packets that have
2780 * been processed but have not been freed by the driver.
2781 *
2782 * In order to free old storage, an internal index will be maintained
2783 * that points to the next packet to be freed. When all used
2784 * packets have been freed, the oldest index will be the same as the
2785 * firmware's read index.
2786 *
2787 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2788 *
2789 * Because the TBD structure can not contain arbitrary data, the
2790 * driver must keep an internal queue of cached allocations such that
2791 * it can put that data back into the tx_free_list and msg_free_list
2792 * for use by future command and data packets.
2793 *
2794 */
__ipw2100_tx_process(struct ipw2100_priv * priv)2795 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2796 {
2797 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2798 struct ipw2100_bd *tbd;
2799 struct list_head *element;
2800 struct ipw2100_tx_packet *packet;
2801 int descriptors_used;
2802 int e, i;
2803 u32 r, w, frag_num = 0;
2804
2805 if (list_empty(&priv->fw_pend_list))
2806 return 0;
2807
2808 element = priv->fw_pend_list.next;
2809
2810 packet = list_entry(element, struct ipw2100_tx_packet, list);
2811 tbd = &txq->drv[packet->index];
2812
2813 /* Determine how many TBD entries must be finished... */
2814 switch (packet->type) {
2815 case COMMAND:
2816 /* COMMAND uses only one slot; don't advance */
2817 descriptors_used = 1;
2818 e = txq->oldest;
2819 break;
2820
2821 case DATA:
2822 /* DATA uses two slots; advance and loop position. */
2823 descriptors_used = tbd->num_fragments;
2824 frag_num = tbd->num_fragments - 1;
2825 e = txq->oldest + frag_num;
2826 e %= txq->entries;
2827 break;
2828
2829 default:
2830 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2831 priv->net_dev->name);
2832 return 0;
2833 }
2834
2835 /* if the last TBD is not done by NIC yet, then packet is
2836 * not ready to be released.
2837 *
2838 */
2839 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2840 &r);
2841 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2842 &w);
2843 if (w != txq->next)
2844 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2845 priv->net_dev->name);
2846
2847 /*
2848 * txq->next is the index of the last packet written txq->oldest is
2849 * the index of the r is the index of the next packet to be read by
2850 * firmware
2851 */
2852
2853 /*
2854 * Quick graphic to help you visualize the following
2855 * if / else statement
2856 *
2857 * ===>| s---->|===============
2858 * e>|
2859 * | a | b | c | d | e | f | g | h | i | j | k | l
2860 * r---->|
2861 * w
2862 *
2863 * w - updated by driver
2864 * r - updated by firmware
2865 * s - start of oldest BD entry (txq->oldest)
2866 * e - end of oldest BD entry
2867 *
2868 */
2869 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2870 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2871 return 0;
2872 }
2873
2874 list_del(element);
2875 DEC_STAT(&priv->fw_pend_stat);
2876
2877 #ifdef CONFIG_IPW2100_DEBUG
2878 {
2879 i = txq->oldest;
2880 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2881 &txq->drv[i],
2882 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2883 txq->drv[i].host_addr, txq->drv[i].buf_length);
2884
2885 if (packet->type == DATA) {
2886 i = (i + 1) % txq->entries;
2887
2888 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2889 &txq->drv[i],
2890 (u32) (txq->nic + i *
2891 sizeof(struct ipw2100_bd)),
2892 (u32) txq->drv[i].host_addr,
2893 txq->drv[i].buf_length);
2894 }
2895 }
2896 #endif
2897
2898 switch (packet->type) {
2899 case DATA:
2900 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2901 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2902 "Expecting DATA TBD but pulled "
2903 "something else: ids %d=%d.\n",
2904 priv->net_dev->name, txq->oldest, packet->index);
2905
2906 /* DATA packet; we have to unmap and free the SKB */
2907 for (i = 0; i < frag_num; i++) {
2908 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2909
2910 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2911 (packet->index + 1 + i) % txq->entries,
2912 tbd->host_addr, tbd->buf_length);
2913
2914 dma_unmap_single(&priv->pci_dev->dev, tbd->host_addr,
2915 tbd->buf_length, DMA_TO_DEVICE);
2916 }
2917
2918 libipw_txb_free(packet->info.d_struct.txb);
2919 packet->info.d_struct.txb = NULL;
2920
2921 list_add_tail(element, &priv->tx_free_list);
2922 INC_STAT(&priv->tx_free_stat);
2923
2924 /* We have a free slot in the Tx queue, so wake up the
2925 * transmit layer if it is stopped. */
2926 if (priv->status & STATUS_ASSOCIATED)
2927 netif_wake_queue(priv->net_dev);
2928
2929 /* A packet was processed by the hardware, so update the
2930 * watchdog */
2931 netif_trans_update(priv->net_dev);
2932
2933 break;
2934
2935 case COMMAND:
2936 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2937 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2938 "Expecting COMMAND TBD but pulled "
2939 "something else: ids %d=%d.\n",
2940 priv->net_dev->name, txq->oldest, packet->index);
2941
2942 #ifdef CONFIG_IPW2100_DEBUG
2943 if (packet->info.c_struct.cmd->host_command_reg <
2944 ARRAY_SIZE(command_types))
2945 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2946 command_types[packet->info.c_struct.cmd->
2947 host_command_reg],
2948 packet->info.c_struct.cmd->
2949 host_command_reg,
2950 packet->info.c_struct.cmd->cmd_status_reg);
2951 #endif
2952
2953 list_add_tail(element, &priv->msg_free_list);
2954 INC_STAT(&priv->msg_free_stat);
2955 break;
2956 }
2957
2958 /* advance oldest used TBD pointer to start of next entry */
2959 txq->oldest = (e + 1) % txq->entries;
2960 /* increase available TBDs number */
2961 txq->available += descriptors_used;
2962 SET_STAT(&priv->txq_stat, txq->available);
2963
2964 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2965 jiffies - packet->jiffy_start);
2966
2967 return (!list_empty(&priv->fw_pend_list));
2968 }
2969
__ipw2100_tx_complete(struct ipw2100_priv * priv)2970 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2971 {
2972 int i = 0;
2973
2974 while (__ipw2100_tx_process(priv) && i < 200)
2975 i++;
2976
2977 if (i == 200) {
2978 printk(KERN_WARNING DRV_NAME ": "
2979 "%s: Driver is running slow (%d iters).\n",
2980 priv->net_dev->name, i);
2981 }
2982 }
2983
ipw2100_tx_send_commands(struct ipw2100_priv * priv)2984 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2985 {
2986 struct list_head *element;
2987 struct ipw2100_tx_packet *packet;
2988 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2989 struct ipw2100_bd *tbd;
2990 int next = txq->next;
2991
2992 while (!list_empty(&priv->msg_pend_list)) {
2993 /* if there isn't enough space in TBD queue, then
2994 * don't stuff a new one in.
2995 * NOTE: 3 are needed as a command will take one,
2996 * and there is a minimum of 2 that must be
2997 * maintained between the r and w indexes
2998 */
2999 if (txq->available <= 3) {
3000 IPW_DEBUG_TX("no room in tx_queue\n");
3001 break;
3002 }
3003
3004 element = priv->msg_pend_list.next;
3005 list_del(element);
3006 DEC_STAT(&priv->msg_pend_stat);
3007
3008 packet = list_entry(element, struct ipw2100_tx_packet, list);
3009
3010 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3011 &txq->drv[txq->next],
3012 (u32) (txq->nic + txq->next *
3013 sizeof(struct ipw2100_bd)));
3014
3015 packet->index = txq->next;
3016
3017 tbd = &txq->drv[txq->next];
3018
3019 /* initialize TBD */
3020 tbd->host_addr = packet->info.c_struct.cmd_phys;
3021 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3022 /* not marking number of fragments causes problems
3023 * with f/w debug version */
3024 tbd->num_fragments = 1;
3025 tbd->status.info.field =
3026 IPW_BD_STATUS_TX_FRAME_COMMAND |
3027 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3028
3029 /* update TBD queue counters */
3030 txq->next++;
3031 txq->next %= txq->entries;
3032 txq->available--;
3033 DEC_STAT(&priv->txq_stat);
3034
3035 list_add_tail(element, &priv->fw_pend_list);
3036 INC_STAT(&priv->fw_pend_stat);
3037 }
3038
3039 if (txq->next != next) {
3040 /* kick off the DMA by notifying firmware the
3041 * write index has moved; make sure TBD stores are sync'd */
3042 wmb();
3043 write_register(priv->net_dev,
3044 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3045 txq->next);
3046 }
3047 }
3048
3049 /*
3050 * ipw2100_tx_send_data
3051 *
3052 */
ipw2100_tx_send_data(struct ipw2100_priv * priv)3053 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3054 {
3055 struct list_head *element;
3056 struct ipw2100_tx_packet *packet;
3057 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3058 struct ipw2100_bd *tbd;
3059 int next = txq->next;
3060 int i = 0;
3061 struct ipw2100_data_header *ipw_hdr;
3062 struct libipw_hdr_3addr *hdr;
3063
3064 while (!list_empty(&priv->tx_pend_list)) {
3065 /* if there isn't enough space in TBD queue, then
3066 * don't stuff a new one in.
3067 * NOTE: 4 are needed as a data will take two,
3068 * and there is a minimum of 2 that must be
3069 * maintained between the r and w indexes
3070 */
3071 element = priv->tx_pend_list.next;
3072 packet = list_entry(element, struct ipw2100_tx_packet, list);
3073
3074 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3075 IPW_MAX_BDS)) {
3076 /* TODO: Support merging buffers if more than
3077 * IPW_MAX_BDS are used */
3078 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3079 "Increase fragmentation level.\n",
3080 priv->net_dev->name);
3081 }
3082
3083 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3084 IPW_DEBUG_TX("no room in tx_queue\n");
3085 break;
3086 }
3087
3088 list_del(element);
3089 DEC_STAT(&priv->tx_pend_stat);
3090
3091 tbd = &txq->drv[txq->next];
3092
3093 packet->index = txq->next;
3094
3095 ipw_hdr = packet->info.d_struct.data;
3096 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3097 fragments[0]->data;
3098
3099 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3100 /* To DS: Addr1 = BSSID, Addr2 = SA,
3101 Addr3 = DA */
3102 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3103 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3104 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3105 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3106 Addr3 = BSSID */
3107 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3108 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3109 }
3110
3111 ipw_hdr->host_command_reg = SEND;
3112 ipw_hdr->host_command_reg1 = 0;
3113
3114 /* For now we only support host based encryption */
3115 ipw_hdr->needs_encryption = 0;
3116 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3117 if (packet->info.d_struct.txb->nr_frags > 1)
3118 ipw_hdr->fragment_size =
3119 packet->info.d_struct.txb->frag_size -
3120 LIBIPW_3ADDR_LEN;
3121 else
3122 ipw_hdr->fragment_size = 0;
3123
3124 tbd->host_addr = packet->info.d_struct.data_phys;
3125 tbd->buf_length = sizeof(struct ipw2100_data_header);
3126 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3127 tbd->status.info.field =
3128 IPW_BD_STATUS_TX_FRAME_802_3 |
3129 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3130 txq->next++;
3131 txq->next %= txq->entries;
3132
3133 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3134 packet->index, tbd->host_addr, tbd->buf_length);
3135 #ifdef CONFIG_IPW2100_DEBUG
3136 if (packet->info.d_struct.txb->nr_frags > 1)
3137 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3138 packet->info.d_struct.txb->nr_frags);
3139 #endif
3140
3141 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3142 tbd = &txq->drv[txq->next];
3143 if (i == packet->info.d_struct.txb->nr_frags - 1)
3144 tbd->status.info.field =
3145 IPW_BD_STATUS_TX_FRAME_802_3 |
3146 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3147 else
3148 tbd->status.info.field =
3149 IPW_BD_STATUS_TX_FRAME_802_3 |
3150 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3151
3152 tbd->buf_length = packet->info.d_struct.txb->
3153 fragments[i]->len - LIBIPW_3ADDR_LEN;
3154
3155 tbd->host_addr = dma_map_single(&priv->pci_dev->dev,
3156 packet->info.d_struct.
3157 txb->fragments[i]->data +
3158 LIBIPW_3ADDR_LEN,
3159 tbd->buf_length,
3160 DMA_TO_DEVICE);
3161 if (dma_mapping_error(&priv->pci_dev->dev, tbd->host_addr)) {
3162 IPW_DEBUG_TX("dma mapping error\n");
3163 break;
3164 }
3165
3166 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3167 txq->next, tbd->host_addr,
3168 tbd->buf_length);
3169
3170 dma_sync_single_for_device(&priv->pci_dev->dev,
3171 tbd->host_addr,
3172 tbd->buf_length,
3173 DMA_TO_DEVICE);
3174
3175 txq->next++;
3176 txq->next %= txq->entries;
3177 }
3178
3179 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3180 SET_STAT(&priv->txq_stat, txq->available);
3181
3182 list_add_tail(element, &priv->fw_pend_list);
3183 INC_STAT(&priv->fw_pend_stat);
3184 }
3185
3186 if (txq->next != next) {
3187 /* kick off the DMA by notifying firmware the
3188 * write index has moved; make sure TBD stores are sync'd */
3189 write_register(priv->net_dev,
3190 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3191 txq->next);
3192 }
3193 }
3194
ipw2100_irq_tasklet(struct tasklet_struct * t)3195 static void ipw2100_irq_tasklet(struct tasklet_struct *t)
3196 {
3197 struct ipw2100_priv *priv = from_tasklet(priv, t, irq_tasklet);
3198 struct net_device *dev = priv->net_dev;
3199 unsigned long flags;
3200 u32 inta, tmp;
3201
3202 spin_lock_irqsave(&priv->low_lock, flags);
3203 ipw2100_disable_interrupts(priv);
3204
3205 read_register(dev, IPW_REG_INTA, &inta);
3206
3207 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3208 (unsigned long)inta & IPW_INTERRUPT_MASK);
3209
3210 priv->in_isr++;
3211 priv->interrupts++;
3212
3213 /* We do not loop and keep polling for more interrupts as this
3214 * is frowned upon and doesn't play nicely with other potentially
3215 * chained IRQs */
3216 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3217 (unsigned long)inta & IPW_INTERRUPT_MASK);
3218
3219 if (inta & IPW2100_INTA_FATAL_ERROR) {
3220 printk(KERN_WARNING DRV_NAME
3221 ": Fatal interrupt. Scheduling firmware restart.\n");
3222 priv->inta_other++;
3223 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3224
3225 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3226 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3227 priv->net_dev->name, priv->fatal_error);
3228
3229 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3230 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3231 priv->net_dev->name, tmp);
3232
3233 /* Wake up any sleeping jobs */
3234 schedule_reset(priv);
3235 }
3236
3237 if (inta & IPW2100_INTA_PARITY_ERROR) {
3238 printk(KERN_ERR DRV_NAME
3239 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3240 priv->inta_other++;
3241 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3242 }
3243
3244 if (inta & IPW2100_INTA_RX_TRANSFER) {
3245 IPW_DEBUG_ISR("RX interrupt\n");
3246
3247 priv->rx_interrupts++;
3248
3249 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3250
3251 __ipw2100_rx_process(priv);
3252 __ipw2100_tx_complete(priv);
3253 }
3254
3255 if (inta & IPW2100_INTA_TX_TRANSFER) {
3256 IPW_DEBUG_ISR("TX interrupt\n");
3257
3258 priv->tx_interrupts++;
3259
3260 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3261
3262 __ipw2100_tx_complete(priv);
3263 ipw2100_tx_send_commands(priv);
3264 ipw2100_tx_send_data(priv);
3265 }
3266
3267 if (inta & IPW2100_INTA_TX_COMPLETE) {
3268 IPW_DEBUG_ISR("TX complete\n");
3269 priv->inta_other++;
3270 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3271
3272 __ipw2100_tx_complete(priv);
3273 }
3274
3275 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3276 /* ipw2100_handle_event(dev); */
3277 priv->inta_other++;
3278 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3279 }
3280
3281 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3282 IPW_DEBUG_ISR("FW init done interrupt\n");
3283 priv->inta_other++;
3284
3285 read_register(dev, IPW_REG_INTA, &tmp);
3286 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3287 IPW2100_INTA_PARITY_ERROR)) {
3288 write_register(dev, IPW_REG_INTA,
3289 IPW2100_INTA_FATAL_ERROR |
3290 IPW2100_INTA_PARITY_ERROR);
3291 }
3292
3293 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3294 }
3295
3296 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3297 IPW_DEBUG_ISR("Status change interrupt\n");
3298 priv->inta_other++;
3299 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3300 }
3301
3302 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3303 IPW_DEBUG_ISR("slave host mode interrupt\n");
3304 priv->inta_other++;
3305 write_register(dev, IPW_REG_INTA,
3306 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3307 }
3308
3309 priv->in_isr--;
3310 ipw2100_enable_interrupts(priv);
3311
3312 spin_unlock_irqrestore(&priv->low_lock, flags);
3313
3314 IPW_DEBUG_ISR("exit\n");
3315 }
3316
ipw2100_interrupt(int irq,void * data)3317 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3318 {
3319 struct ipw2100_priv *priv = data;
3320 u32 inta, inta_mask;
3321
3322 if (!data)
3323 return IRQ_NONE;
3324
3325 spin_lock(&priv->low_lock);
3326
3327 /* We check to see if we should be ignoring interrupts before
3328 * we touch the hardware. During ucode load if we try and handle
3329 * an interrupt we can cause keyboard problems as well as cause
3330 * the ucode to fail to initialize */
3331 if (!(priv->status & STATUS_INT_ENABLED)) {
3332 /* Shared IRQ */
3333 goto none;
3334 }
3335
3336 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3337 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3338
3339 if (inta == 0xFFFFFFFF) {
3340 /* Hardware disappeared */
3341 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3342 goto none;
3343 }
3344
3345 inta &= IPW_INTERRUPT_MASK;
3346
3347 if (!(inta & inta_mask)) {
3348 /* Shared interrupt */
3349 goto none;
3350 }
3351
3352 /* We disable the hardware interrupt here just to prevent unneeded
3353 * calls to be made. We disable this again within the actual
3354 * work tasklet, so if another part of the code re-enables the
3355 * interrupt, that is fine */
3356 ipw2100_disable_interrupts(priv);
3357
3358 tasklet_schedule(&priv->irq_tasklet);
3359 spin_unlock(&priv->low_lock);
3360
3361 return IRQ_HANDLED;
3362 none:
3363 spin_unlock(&priv->low_lock);
3364 return IRQ_NONE;
3365 }
3366
ipw2100_tx(struct libipw_txb * txb,struct net_device * dev,int pri)3367 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3368 struct net_device *dev, int pri)
3369 {
3370 struct ipw2100_priv *priv = libipw_priv(dev);
3371 struct list_head *element;
3372 struct ipw2100_tx_packet *packet;
3373 unsigned long flags;
3374
3375 spin_lock_irqsave(&priv->low_lock, flags);
3376
3377 if (!(priv->status & STATUS_ASSOCIATED)) {
3378 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3379 priv->net_dev->stats.tx_carrier_errors++;
3380 netif_stop_queue(dev);
3381 goto fail_unlock;
3382 }
3383
3384 if (list_empty(&priv->tx_free_list))
3385 goto fail_unlock;
3386
3387 element = priv->tx_free_list.next;
3388 packet = list_entry(element, struct ipw2100_tx_packet, list);
3389
3390 packet->info.d_struct.txb = txb;
3391
3392 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3393 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3394
3395 packet->jiffy_start = jiffies;
3396
3397 list_del(element);
3398 DEC_STAT(&priv->tx_free_stat);
3399
3400 list_add_tail(element, &priv->tx_pend_list);
3401 INC_STAT(&priv->tx_pend_stat);
3402
3403 ipw2100_tx_send_data(priv);
3404
3405 spin_unlock_irqrestore(&priv->low_lock, flags);
3406 return NETDEV_TX_OK;
3407
3408 fail_unlock:
3409 netif_stop_queue(dev);
3410 spin_unlock_irqrestore(&priv->low_lock, flags);
3411 return NETDEV_TX_BUSY;
3412 }
3413
ipw2100_msg_allocate(struct ipw2100_priv * priv)3414 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3415 {
3416 int i, j, err = -EINVAL;
3417 void *v;
3418 dma_addr_t p;
3419
3420 priv->msg_buffers =
3421 kmalloc_array(IPW_COMMAND_POOL_SIZE,
3422 sizeof(struct ipw2100_tx_packet),
3423 GFP_KERNEL);
3424 if (!priv->msg_buffers)
3425 return -ENOMEM;
3426
3427 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3428 v = dma_alloc_coherent(&priv->pci_dev->dev,
3429 sizeof(struct ipw2100_cmd_header), &p,
3430 GFP_KERNEL);
3431 if (!v) {
3432 printk(KERN_ERR DRV_NAME ": "
3433 "%s: PCI alloc failed for msg "
3434 "buffers.\n", priv->net_dev->name);
3435 err = -ENOMEM;
3436 break;
3437 }
3438
3439 priv->msg_buffers[i].type = COMMAND;
3440 priv->msg_buffers[i].info.c_struct.cmd =
3441 (struct ipw2100_cmd_header *)v;
3442 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3443 }
3444
3445 if (i == IPW_COMMAND_POOL_SIZE)
3446 return 0;
3447
3448 for (j = 0; j < i; j++) {
3449 dma_free_coherent(&priv->pci_dev->dev,
3450 sizeof(struct ipw2100_cmd_header),
3451 priv->msg_buffers[j].info.c_struct.cmd,
3452 priv->msg_buffers[j].info.c_struct.cmd_phys);
3453 }
3454
3455 kfree(priv->msg_buffers);
3456 priv->msg_buffers = NULL;
3457
3458 return err;
3459 }
3460
ipw2100_msg_initialize(struct ipw2100_priv * priv)3461 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3462 {
3463 int i;
3464
3465 INIT_LIST_HEAD(&priv->msg_free_list);
3466 INIT_LIST_HEAD(&priv->msg_pend_list);
3467
3468 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3469 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3470 SET_STAT(&priv->msg_free_stat, i);
3471
3472 return 0;
3473 }
3474
ipw2100_msg_free(struct ipw2100_priv * priv)3475 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3476 {
3477 int i;
3478
3479 if (!priv->msg_buffers)
3480 return;
3481
3482 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3483 dma_free_coherent(&priv->pci_dev->dev,
3484 sizeof(struct ipw2100_cmd_header),
3485 priv->msg_buffers[i].info.c_struct.cmd,
3486 priv->msg_buffers[i].info.c_struct.cmd_phys);
3487 }
3488
3489 kfree(priv->msg_buffers);
3490 priv->msg_buffers = NULL;
3491 }
3492
pci_show(struct device * d,struct device_attribute * attr,char * buf)3493 static ssize_t pci_show(struct device *d, struct device_attribute *attr,
3494 char *buf)
3495 {
3496 struct pci_dev *pci_dev = to_pci_dev(d);
3497 char *out = buf;
3498 int i, j;
3499 u32 val;
3500
3501 for (i = 0; i < 16; i++) {
3502 out += sprintf(out, "[%08X] ", i * 16);
3503 for (j = 0; j < 16; j += 4) {
3504 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3505 out += sprintf(out, "%08X ", val);
3506 }
3507 out += sprintf(out, "\n");
3508 }
3509
3510 return out - buf;
3511 }
3512
3513 static DEVICE_ATTR_RO(pci);
3514
cfg_show(struct device * d,struct device_attribute * attr,char * buf)3515 static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
3516 char *buf)
3517 {
3518 struct ipw2100_priv *p = dev_get_drvdata(d);
3519 return sprintf(buf, "0x%08x\n", (int)p->config);
3520 }
3521
3522 static DEVICE_ATTR_RO(cfg);
3523
status_show(struct device * d,struct device_attribute * attr,char * buf)3524 static ssize_t status_show(struct device *d, struct device_attribute *attr,
3525 char *buf)
3526 {
3527 struct ipw2100_priv *p = dev_get_drvdata(d);
3528 return sprintf(buf, "0x%08x\n", (int)p->status);
3529 }
3530
3531 static DEVICE_ATTR_RO(status);
3532
capability_show(struct device * d,struct device_attribute * attr,char * buf)3533 static ssize_t capability_show(struct device *d, struct device_attribute *attr,
3534 char *buf)
3535 {
3536 struct ipw2100_priv *p = dev_get_drvdata(d);
3537 return sprintf(buf, "0x%08x\n", (int)p->capability);
3538 }
3539
3540 static DEVICE_ATTR_RO(capability);
3541
3542 #define IPW2100_REG(x) { IPW_ ##x, #x }
3543 static const struct {
3544 u32 addr;
3545 const char *name;
3546 } hw_data[] = {
3547 IPW2100_REG(REG_GP_CNTRL),
3548 IPW2100_REG(REG_GPIO),
3549 IPW2100_REG(REG_INTA),
3550 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3551 #define IPW2100_NIC(x, s) { x, #x, s }
3552 static const struct {
3553 u32 addr;
3554 const char *name;
3555 size_t size;
3556 } nic_data[] = {
3557 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3558 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3559 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3560 static const struct {
3561 u8 index;
3562 const char *name;
3563 const char *desc;
3564 } ord_data[] = {
3565 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3566 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3567 "successful Host Tx's (MSDU)"),
3568 IPW2100_ORD(STAT_TX_DIR_DATA,
3569 "successful Directed Tx's (MSDU)"),
3570 IPW2100_ORD(STAT_TX_DIR_DATA1,
3571 "successful Directed Tx's (MSDU) @ 1MB"),
3572 IPW2100_ORD(STAT_TX_DIR_DATA2,
3573 "successful Directed Tx's (MSDU) @ 2MB"),
3574 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3575 "successful Directed Tx's (MSDU) @ 5_5MB"),
3576 IPW2100_ORD(STAT_TX_DIR_DATA11,
3577 "successful Directed Tx's (MSDU) @ 11MB"),
3578 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3579 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3580 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3581 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3582 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3583 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3584 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3585 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3586 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3587 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3588 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3589 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3590 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3591 IPW2100_ORD(STAT_TX_ASSN_RESP,
3592 "successful Association response Tx's"),
3593 IPW2100_ORD(STAT_TX_REASSN,
3594 "successful Reassociation Tx's"),
3595 IPW2100_ORD(STAT_TX_REASSN_RESP,
3596 "successful Reassociation response Tx's"),
3597 IPW2100_ORD(STAT_TX_PROBE,
3598 "probes successfully transmitted"),
3599 IPW2100_ORD(STAT_TX_PROBE_RESP,
3600 "probe responses successfully transmitted"),
3601 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3602 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3603 IPW2100_ORD(STAT_TX_DISASSN,
3604 "successful Disassociation TX"),
3605 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3606 IPW2100_ORD(STAT_TX_DEAUTH,
3607 "successful Deauthentication TX"),
3608 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3609 "Total successful Tx data bytes"),
3610 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3611 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3612 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3613 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3614 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3615 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3616 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3617 "times max tries in a hop failed"),
3618 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3619 "times disassociation failed"),
3620 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3621 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3622 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3623 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3624 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3625 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3626 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3627 "directed packets at 5.5MB"),
3628 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3629 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3630 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3631 "nondirected packets at 1MB"),
3632 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3633 "nondirected packets at 2MB"),
3634 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3635 "nondirected packets at 5.5MB"),
3636 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3637 "nondirected packets at 11MB"),
3638 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3639 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3640 "Rx CTS"),
3641 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3642 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3643 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3644 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3645 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3646 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3647 IPW2100_ORD(STAT_RX_REASSN_RESP,
3648 "Reassociation response Rx's"),
3649 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3650 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3651 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3652 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3653 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3654 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3655 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3656 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3657 "Total rx data bytes received"),
3658 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3659 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3660 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3661 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3662 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3663 IPW2100_ORD(STAT_RX_DUPLICATE1,
3664 "duplicate rx packets at 1MB"),
3665 IPW2100_ORD(STAT_RX_DUPLICATE2,
3666 "duplicate rx packets at 2MB"),
3667 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3668 "duplicate rx packets at 5.5MB"),
3669 IPW2100_ORD(STAT_RX_DUPLICATE11,
3670 "duplicate rx packets at 11MB"),
3671 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3672 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3673 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3674 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3675 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3676 "rx frames with invalid protocol"),
3677 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3678 IPW2100_ORD(STAT_RX_NO_BUFFER,
3679 "rx frames rejected due to no buffer"),
3680 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3681 "rx frames dropped due to missing fragment"),
3682 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3683 "rx frames dropped due to non-sequential fragment"),
3684 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3685 "rx frames dropped due to unmatched 1st frame"),
3686 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3687 "rx frames dropped due to uncompleted frame"),
3688 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3689 "ICV errors during decryption"),
3690 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3691 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3692 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3693 "poll response timeouts"),
3694 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3695 "timeouts waiting for last {broad,multi}cast pkt"),
3696 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3697 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3698 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3699 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3700 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3701 "current calculation of % missed beacons"),
3702 IPW2100_ORD(STAT_PERCENT_RETRIES,
3703 "current calculation of % missed tx retries"),
3704 IPW2100_ORD(ASSOCIATED_AP_PTR,
3705 "0 if not associated, else pointer to AP table entry"),
3706 IPW2100_ORD(AVAILABLE_AP_CNT,
3707 "AP's described in the AP table"),
3708 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3709 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3710 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3711 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3712 "failures due to response fail"),
3713 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3714 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3715 IPW2100_ORD(STAT_ROAM_INHIBIT,
3716 "times roaming was inhibited due to activity"),
3717 IPW2100_ORD(RSSI_AT_ASSN,
3718 "RSSI of associated AP at time of association"),
3719 IPW2100_ORD(STAT_ASSN_CAUSE1,
3720 "reassociation: no probe response or TX on hop"),
3721 IPW2100_ORD(STAT_ASSN_CAUSE2,
3722 "reassociation: poor tx/rx quality"),
3723 IPW2100_ORD(STAT_ASSN_CAUSE3,
3724 "reassociation: tx/rx quality (excessive AP load"),
3725 IPW2100_ORD(STAT_ASSN_CAUSE4,
3726 "reassociation: AP RSSI level"),
3727 IPW2100_ORD(STAT_ASSN_CAUSE5,
3728 "reassociations due to load leveling"),
3729 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3730 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3731 "times authentication response failed"),
3732 IPW2100_ORD(STATION_TABLE_CNT,
3733 "entries in association table"),
3734 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3735 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3736 IPW2100_ORD(COUNTRY_CODE,
3737 "IEEE country code as recv'd from beacon"),
3738 IPW2100_ORD(COUNTRY_CHANNELS,
3739 "channels supported by country"),
3740 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3741 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3742 IPW2100_ORD(ANTENNA_DIVERSITY,
3743 "TRUE if antenna diversity is disabled"),
3744 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3745 IPW2100_ORD(OUR_FREQ,
3746 "current radio freq lower digits - channel ID"),
3747 IPW2100_ORD(RTC_TIME, "current RTC time"),
3748 IPW2100_ORD(PORT_TYPE, "operating mode"),
3749 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3750 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3751 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3752 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3753 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3754 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3755 IPW2100_ORD(CAPABILITIES,
3756 "Management frame capability field"),
3757 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3758 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3759 IPW2100_ORD(RTS_THRESHOLD,
3760 "Min packet length for RTS handshaking"),
3761 IPW2100_ORD(INT_MODE, "International mode"),
3762 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3763 "protocol frag threshold"),
3764 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3765 "EEPROM offset in SRAM"),
3766 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3767 "EEPROM size in SRAM"),
3768 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3769 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3770 "EEPROM IBSS 11b channel set"),
3771 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3772 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3773 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3774 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3775 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3776
registers_show(struct device * d,struct device_attribute * attr,char * buf)3777 static ssize_t registers_show(struct device *d, struct device_attribute *attr,
3778 char *buf)
3779 {
3780 int i;
3781 struct ipw2100_priv *priv = dev_get_drvdata(d);
3782 struct net_device *dev = priv->net_dev;
3783 char *out = buf;
3784 u32 val = 0;
3785
3786 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3787
3788 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3789 read_register(dev, hw_data[i].addr, &val);
3790 out += sprintf(out, "%30s [%08X] : %08X\n",
3791 hw_data[i].name, hw_data[i].addr, val);
3792 }
3793
3794 return out - buf;
3795 }
3796
3797 static DEVICE_ATTR_RO(registers);
3798
hardware_show(struct device * d,struct device_attribute * attr,char * buf)3799 static ssize_t hardware_show(struct device *d, struct device_attribute *attr,
3800 char *buf)
3801 {
3802 struct ipw2100_priv *priv = dev_get_drvdata(d);
3803 struct net_device *dev = priv->net_dev;
3804 char *out = buf;
3805 int i;
3806
3807 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3808
3809 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3810 u8 tmp8;
3811 u16 tmp16;
3812 u32 tmp32;
3813
3814 switch (nic_data[i].size) {
3815 case 1:
3816 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3817 out += sprintf(out, "%30s [%08X] : %02X\n",
3818 nic_data[i].name, nic_data[i].addr,
3819 tmp8);
3820 break;
3821 case 2:
3822 read_nic_word(dev, nic_data[i].addr, &tmp16);
3823 out += sprintf(out, "%30s [%08X] : %04X\n",
3824 nic_data[i].name, nic_data[i].addr,
3825 tmp16);
3826 break;
3827 case 4:
3828 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3829 out += sprintf(out, "%30s [%08X] : %08X\n",
3830 nic_data[i].name, nic_data[i].addr,
3831 tmp32);
3832 break;
3833 }
3834 }
3835 return out - buf;
3836 }
3837
3838 static DEVICE_ATTR_RO(hardware);
3839
memory_show(struct device * d,struct device_attribute * attr,char * buf)3840 static ssize_t memory_show(struct device *d, struct device_attribute *attr,
3841 char *buf)
3842 {
3843 struct ipw2100_priv *priv = dev_get_drvdata(d);
3844 struct net_device *dev = priv->net_dev;
3845 static unsigned long loop = 0;
3846 int len = 0;
3847 u32 buffer[4];
3848 int i;
3849 char line[81];
3850
3851 if (loop >= 0x30000)
3852 loop = 0;
3853
3854 /* sysfs provides us PAGE_SIZE buffer */
3855 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3856
3857 if (priv->snapshot[0])
3858 for (i = 0; i < 4; i++)
3859 buffer[i] =
3860 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3861 else
3862 for (i = 0; i < 4; i++)
3863 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3864
3865 if (priv->dump_raw)
3866 len += sprintf(buf + len,
3867 "%c%c%c%c"
3868 "%c%c%c%c"
3869 "%c%c%c%c"
3870 "%c%c%c%c",
3871 ((u8 *) buffer)[0x0],
3872 ((u8 *) buffer)[0x1],
3873 ((u8 *) buffer)[0x2],
3874 ((u8 *) buffer)[0x3],
3875 ((u8 *) buffer)[0x4],
3876 ((u8 *) buffer)[0x5],
3877 ((u8 *) buffer)[0x6],
3878 ((u8 *) buffer)[0x7],
3879 ((u8 *) buffer)[0x8],
3880 ((u8 *) buffer)[0x9],
3881 ((u8 *) buffer)[0xa],
3882 ((u8 *) buffer)[0xb],
3883 ((u8 *) buffer)[0xc],
3884 ((u8 *) buffer)[0xd],
3885 ((u8 *) buffer)[0xe],
3886 ((u8 *) buffer)[0xf]);
3887 else
3888 len += sprintf(buf + len, "%s\n",
3889 snprint_line(line, sizeof(line),
3890 (u8 *) buffer, 16, loop));
3891 loop += 16;
3892 }
3893
3894 return len;
3895 }
3896
memory_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)3897 static ssize_t memory_store(struct device *d, struct device_attribute *attr,
3898 const char *buf, size_t count)
3899 {
3900 struct ipw2100_priv *priv = dev_get_drvdata(d);
3901 struct net_device *dev = priv->net_dev;
3902 const char *p = buf;
3903
3904 (void)dev; /* kill unused-var warning for debug-only code */
3905
3906 if (count < 1)
3907 return count;
3908
3909 if (p[0] == '1' ||
3910 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3911 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3912 dev->name);
3913 priv->dump_raw = 1;
3914
3915 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3916 tolower(p[1]) == 'f')) {
3917 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3918 dev->name);
3919 priv->dump_raw = 0;
3920
3921 } else if (tolower(p[0]) == 'r') {
3922 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3923 ipw2100_snapshot_free(priv);
3924
3925 } else
3926 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3927 "reset = clear memory snapshot\n", dev->name);
3928
3929 return count;
3930 }
3931
3932 static DEVICE_ATTR_RW(memory);
3933
ordinals_show(struct device * d,struct device_attribute * attr,char * buf)3934 static ssize_t ordinals_show(struct device *d, struct device_attribute *attr,
3935 char *buf)
3936 {
3937 struct ipw2100_priv *priv = dev_get_drvdata(d);
3938 u32 val = 0;
3939 int len = 0;
3940 u32 val_len;
3941 static int loop = 0;
3942
3943 if (priv->status & STATUS_RF_KILL_MASK)
3944 return 0;
3945
3946 if (loop >= ARRAY_SIZE(ord_data))
3947 loop = 0;
3948
3949 /* sysfs provides us PAGE_SIZE buffer */
3950 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3951 val_len = sizeof(u32);
3952
3953 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3954 &val_len))
3955 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3956 ord_data[loop].index,
3957 ord_data[loop].desc);
3958 else
3959 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3960 ord_data[loop].index, val,
3961 ord_data[loop].desc);
3962 loop++;
3963 }
3964
3965 return len;
3966 }
3967
3968 static DEVICE_ATTR_RO(ordinals);
3969
stats_show(struct device * d,struct device_attribute * attr,char * buf)3970 static ssize_t stats_show(struct device *d, struct device_attribute *attr,
3971 char *buf)
3972 {
3973 struct ipw2100_priv *priv = dev_get_drvdata(d);
3974 char *out = buf;
3975
3976 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3977 priv->interrupts, priv->tx_interrupts,
3978 priv->rx_interrupts, priv->inta_other);
3979 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3980 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3981 #ifdef CONFIG_IPW2100_DEBUG
3982 out += sprintf(out, "packet mismatch image: %s\n",
3983 priv->snapshot[0] ? "YES" : "NO");
3984 #endif
3985
3986 return out - buf;
3987 }
3988
3989 static DEVICE_ATTR_RO(stats);
3990
ipw2100_switch_mode(struct ipw2100_priv * priv,u32 mode)3991 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3992 {
3993 int err;
3994
3995 if (mode == priv->ieee->iw_mode)
3996 return 0;
3997
3998 err = ipw2100_disable_adapter(priv);
3999 if (err) {
4000 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4001 priv->net_dev->name, err);
4002 return err;
4003 }
4004
4005 switch (mode) {
4006 case IW_MODE_INFRA:
4007 priv->net_dev->type = ARPHRD_ETHER;
4008 break;
4009 case IW_MODE_ADHOC:
4010 priv->net_dev->type = ARPHRD_ETHER;
4011 break;
4012 #ifdef CONFIG_IPW2100_MONITOR
4013 case IW_MODE_MONITOR:
4014 priv->last_mode = priv->ieee->iw_mode;
4015 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4016 break;
4017 #endif /* CONFIG_IPW2100_MONITOR */
4018 }
4019
4020 priv->ieee->iw_mode = mode;
4021
4022 #ifdef CONFIG_PM
4023 /* Indicate ipw2100_download_firmware download firmware
4024 * from disk instead of memory. */
4025 ipw2100_firmware.version = 0;
4026 #endif
4027
4028 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4029 priv->reset_backoff = 0;
4030 schedule_reset(priv);
4031
4032 return 0;
4033 }
4034
internals_show(struct device * d,struct device_attribute * attr,char * buf)4035 static ssize_t internals_show(struct device *d, struct device_attribute *attr,
4036 char *buf)
4037 {
4038 struct ipw2100_priv *priv = dev_get_drvdata(d);
4039 int len = 0;
4040
4041 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4042
4043 if (priv->status & STATUS_ASSOCIATED)
4044 len += sprintf(buf + len, "connected: %llu\n",
4045 ktime_get_boottime_seconds() - priv->connect_start);
4046 else
4047 len += sprintf(buf + len, "not connected\n");
4048
4049 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4050 DUMP_VAR(status, "08lx");
4051 DUMP_VAR(config, "08lx");
4052 DUMP_VAR(capability, "08lx");
4053
4054 len +=
4055 sprintf(buf + len, "last_rtc: %lu\n",
4056 (unsigned long)priv->last_rtc);
4057
4058 DUMP_VAR(fatal_error, "d");
4059 DUMP_VAR(stop_hang_check, "d");
4060 DUMP_VAR(stop_rf_kill, "d");
4061 DUMP_VAR(messages_sent, "d");
4062
4063 DUMP_VAR(tx_pend_stat.value, "d");
4064 DUMP_VAR(tx_pend_stat.hi, "d");
4065
4066 DUMP_VAR(tx_free_stat.value, "d");
4067 DUMP_VAR(tx_free_stat.lo, "d");
4068
4069 DUMP_VAR(msg_free_stat.value, "d");
4070 DUMP_VAR(msg_free_stat.lo, "d");
4071
4072 DUMP_VAR(msg_pend_stat.value, "d");
4073 DUMP_VAR(msg_pend_stat.hi, "d");
4074
4075 DUMP_VAR(fw_pend_stat.value, "d");
4076 DUMP_VAR(fw_pend_stat.hi, "d");
4077
4078 DUMP_VAR(txq_stat.value, "d");
4079 DUMP_VAR(txq_stat.lo, "d");
4080
4081 DUMP_VAR(ieee->scans, "d");
4082 DUMP_VAR(reset_backoff, "lld");
4083
4084 return len;
4085 }
4086
4087 static DEVICE_ATTR_RO(internals);
4088
bssinfo_show(struct device * d,struct device_attribute * attr,char * buf)4089 static ssize_t bssinfo_show(struct device *d, struct device_attribute *attr,
4090 char *buf)
4091 {
4092 struct ipw2100_priv *priv = dev_get_drvdata(d);
4093 char essid[IW_ESSID_MAX_SIZE + 1];
4094 u8 bssid[ETH_ALEN];
4095 u32 chan = 0;
4096 char *out = buf;
4097 unsigned int length;
4098 int ret;
4099
4100 if (priv->status & STATUS_RF_KILL_MASK)
4101 return 0;
4102
4103 memset(essid, 0, sizeof(essid));
4104 memset(bssid, 0, sizeof(bssid));
4105
4106 length = IW_ESSID_MAX_SIZE;
4107 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4108 if (ret)
4109 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4110 __LINE__);
4111
4112 length = sizeof(bssid);
4113 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4114 bssid, &length);
4115 if (ret)
4116 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4117 __LINE__);
4118
4119 length = sizeof(u32);
4120 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4121 if (ret)
4122 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4123 __LINE__);
4124
4125 out += sprintf(out, "ESSID: %s\n", essid);
4126 out += sprintf(out, "BSSID: %pM\n", bssid);
4127 out += sprintf(out, "Channel: %d\n", chan);
4128
4129 return out - buf;
4130 }
4131
4132 static DEVICE_ATTR_RO(bssinfo);
4133
4134 #ifdef CONFIG_IPW2100_DEBUG
debug_level_show(struct device_driver * d,char * buf)4135 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4136 {
4137 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4138 }
4139
debug_level_store(struct device_driver * d,const char * buf,size_t count)4140 static ssize_t debug_level_store(struct device_driver *d,
4141 const char *buf, size_t count)
4142 {
4143 u32 val;
4144 int ret;
4145
4146 ret = kstrtou32(buf, 0, &val);
4147 if (ret)
4148 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4149 else
4150 ipw2100_debug_level = val;
4151
4152 return strnlen(buf, count);
4153 }
4154 static DRIVER_ATTR_RW(debug_level);
4155 #endif /* CONFIG_IPW2100_DEBUG */
4156
fatal_error_show(struct device * d,struct device_attribute * attr,char * buf)4157 static ssize_t fatal_error_show(struct device *d,
4158 struct device_attribute *attr, char *buf)
4159 {
4160 struct ipw2100_priv *priv = dev_get_drvdata(d);
4161 char *out = buf;
4162 int i;
4163
4164 if (priv->fatal_error)
4165 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4166 else
4167 out += sprintf(out, "0\n");
4168
4169 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4170 if (!priv->fatal_errors[(priv->fatal_index - i) %
4171 IPW2100_ERROR_QUEUE])
4172 continue;
4173
4174 out += sprintf(out, "%d. 0x%08X\n", i,
4175 priv->fatal_errors[(priv->fatal_index - i) %
4176 IPW2100_ERROR_QUEUE]);
4177 }
4178
4179 return out - buf;
4180 }
4181
fatal_error_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4182 static ssize_t fatal_error_store(struct device *d,
4183 struct device_attribute *attr, const char *buf,
4184 size_t count)
4185 {
4186 struct ipw2100_priv *priv = dev_get_drvdata(d);
4187 schedule_reset(priv);
4188 return count;
4189 }
4190
4191 static DEVICE_ATTR_RW(fatal_error);
4192
scan_age_show(struct device * d,struct device_attribute * attr,char * buf)4193 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
4194 char *buf)
4195 {
4196 struct ipw2100_priv *priv = dev_get_drvdata(d);
4197 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4198 }
4199
scan_age_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4200 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
4201 const char *buf, size_t count)
4202 {
4203 struct ipw2100_priv *priv = dev_get_drvdata(d);
4204 struct net_device *dev = priv->net_dev;
4205 unsigned long val;
4206 int ret;
4207
4208 (void)dev; /* kill unused-var warning for debug-only code */
4209
4210 IPW_DEBUG_INFO("enter\n");
4211
4212 ret = kstrtoul(buf, 0, &val);
4213 if (ret) {
4214 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4215 } else {
4216 priv->ieee->scan_age = val;
4217 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4218 }
4219
4220 IPW_DEBUG_INFO("exit\n");
4221 return strnlen(buf, count);
4222 }
4223
4224 static DEVICE_ATTR_RW(scan_age);
4225
rf_kill_show(struct device * d,struct device_attribute * attr,char * buf)4226 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
4227 char *buf)
4228 {
4229 /* 0 - RF kill not enabled
4230 1 - SW based RF kill active (sysfs)
4231 2 - HW based RF kill active
4232 3 - Both HW and SW baed RF kill active */
4233 struct ipw2100_priv *priv = dev_get_drvdata(d);
4234 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4235 (rf_kill_active(priv) ? 0x2 : 0x0);
4236 return sprintf(buf, "%i\n", val);
4237 }
4238
ipw_radio_kill_sw(struct ipw2100_priv * priv,int disable_radio)4239 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4240 {
4241 if ((disable_radio ? 1 : 0) ==
4242 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4243 return 0;
4244
4245 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4246 disable_radio ? "OFF" : "ON");
4247
4248 mutex_lock(&priv->action_mutex);
4249
4250 if (disable_radio) {
4251 priv->status |= STATUS_RF_KILL_SW;
4252 ipw2100_down(priv);
4253 } else {
4254 priv->status &= ~STATUS_RF_KILL_SW;
4255 if (rf_kill_active(priv)) {
4256 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4257 "disabled by HW switch\n");
4258 /* Make sure the RF_KILL check timer is running */
4259 priv->stop_rf_kill = 0;
4260 mod_delayed_work(system_wq, &priv->rf_kill,
4261 round_jiffies_relative(HZ));
4262 } else
4263 schedule_reset(priv);
4264 }
4265
4266 mutex_unlock(&priv->action_mutex);
4267 return 1;
4268 }
4269
rf_kill_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)4270 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
4271 const char *buf, size_t count)
4272 {
4273 struct ipw2100_priv *priv = dev_get_drvdata(d);
4274 ipw_radio_kill_sw(priv, buf[0] == '1');
4275 return count;
4276 }
4277
4278 static DEVICE_ATTR_RW(rf_kill);
4279
4280 static struct attribute *ipw2100_sysfs_entries[] = {
4281 &dev_attr_hardware.attr,
4282 &dev_attr_registers.attr,
4283 &dev_attr_ordinals.attr,
4284 &dev_attr_pci.attr,
4285 &dev_attr_stats.attr,
4286 &dev_attr_internals.attr,
4287 &dev_attr_bssinfo.attr,
4288 &dev_attr_memory.attr,
4289 &dev_attr_scan_age.attr,
4290 &dev_attr_fatal_error.attr,
4291 &dev_attr_rf_kill.attr,
4292 &dev_attr_cfg.attr,
4293 &dev_attr_status.attr,
4294 &dev_attr_capability.attr,
4295 NULL,
4296 };
4297
4298 static const struct attribute_group ipw2100_attribute_group = {
4299 .attrs = ipw2100_sysfs_entries,
4300 };
4301
status_queue_allocate(struct ipw2100_priv * priv,int entries)4302 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4303 {
4304 struct ipw2100_status_queue *q = &priv->status_queue;
4305
4306 IPW_DEBUG_INFO("enter\n");
4307
4308 q->size = entries * sizeof(struct ipw2100_status);
4309 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4310 GFP_KERNEL);
4311 if (!q->drv) {
4312 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4313 return -ENOMEM;
4314 }
4315
4316 IPW_DEBUG_INFO("exit\n");
4317
4318 return 0;
4319 }
4320
status_queue_free(struct ipw2100_priv * priv)4321 static void status_queue_free(struct ipw2100_priv *priv)
4322 {
4323 IPW_DEBUG_INFO("enter\n");
4324
4325 if (priv->status_queue.drv) {
4326 dma_free_coherent(&priv->pci_dev->dev,
4327 priv->status_queue.size,
4328 priv->status_queue.drv,
4329 priv->status_queue.nic);
4330 priv->status_queue.drv = NULL;
4331 }
4332
4333 IPW_DEBUG_INFO("exit\n");
4334 }
4335
bd_queue_allocate(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,int entries)4336 static int bd_queue_allocate(struct ipw2100_priv *priv,
4337 struct ipw2100_bd_queue *q, int entries)
4338 {
4339 IPW_DEBUG_INFO("enter\n");
4340
4341 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4342
4343 q->entries = entries;
4344 q->size = entries * sizeof(struct ipw2100_bd);
4345 q->drv = dma_alloc_coherent(&priv->pci_dev->dev, q->size, &q->nic,
4346 GFP_KERNEL);
4347 if (!q->drv) {
4348 IPW_DEBUG_INFO
4349 ("can't allocate shared memory for buffer descriptors\n");
4350 return -ENOMEM;
4351 }
4352
4353 IPW_DEBUG_INFO("exit\n");
4354
4355 return 0;
4356 }
4357
bd_queue_free(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q)4358 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4359 {
4360 IPW_DEBUG_INFO("enter\n");
4361
4362 if (!q)
4363 return;
4364
4365 if (q->drv) {
4366 dma_free_coherent(&priv->pci_dev->dev, q->size, q->drv,
4367 q->nic);
4368 q->drv = NULL;
4369 }
4370
4371 IPW_DEBUG_INFO("exit\n");
4372 }
4373
bd_queue_initialize(struct ipw2100_priv * priv,struct ipw2100_bd_queue * q,u32 base,u32 size,u32 r,u32 w)4374 static void bd_queue_initialize(struct ipw2100_priv *priv,
4375 struct ipw2100_bd_queue *q, u32 base, u32 size,
4376 u32 r, u32 w)
4377 {
4378 IPW_DEBUG_INFO("enter\n");
4379
4380 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4381 (u32) q->nic);
4382
4383 write_register(priv->net_dev, base, q->nic);
4384 write_register(priv->net_dev, size, q->entries);
4385 write_register(priv->net_dev, r, q->oldest);
4386 write_register(priv->net_dev, w, q->next);
4387
4388 IPW_DEBUG_INFO("exit\n");
4389 }
4390
ipw2100_kill_works(struct ipw2100_priv * priv)4391 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4392 {
4393 priv->stop_rf_kill = 1;
4394 priv->stop_hang_check = 1;
4395 cancel_delayed_work_sync(&priv->reset_work);
4396 cancel_delayed_work_sync(&priv->security_work);
4397 cancel_delayed_work_sync(&priv->wx_event_work);
4398 cancel_delayed_work_sync(&priv->hang_check);
4399 cancel_delayed_work_sync(&priv->rf_kill);
4400 cancel_delayed_work_sync(&priv->scan_event);
4401 }
4402
ipw2100_tx_allocate(struct ipw2100_priv * priv)4403 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4404 {
4405 int i, j, err;
4406 void *v;
4407 dma_addr_t p;
4408
4409 IPW_DEBUG_INFO("enter\n");
4410
4411 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4412 if (err) {
4413 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4414 priv->net_dev->name);
4415 return err;
4416 }
4417
4418 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4419 sizeof(struct ipw2100_tx_packet),
4420 GFP_KERNEL);
4421 if (!priv->tx_buffers) {
4422 bd_queue_free(priv, &priv->tx_queue);
4423 return -ENOMEM;
4424 }
4425
4426 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4427 v = dma_alloc_coherent(&priv->pci_dev->dev,
4428 sizeof(struct ipw2100_data_header), &p,
4429 GFP_KERNEL);
4430 if (!v) {
4431 printk(KERN_ERR DRV_NAME
4432 ": %s: PCI alloc failed for tx " "buffers.\n",
4433 priv->net_dev->name);
4434 err = -ENOMEM;
4435 break;
4436 }
4437
4438 priv->tx_buffers[i].type = DATA;
4439 priv->tx_buffers[i].info.d_struct.data =
4440 (struct ipw2100_data_header *)v;
4441 priv->tx_buffers[i].info.d_struct.data_phys = p;
4442 priv->tx_buffers[i].info.d_struct.txb = NULL;
4443 }
4444
4445 if (i == TX_PENDED_QUEUE_LENGTH)
4446 return 0;
4447
4448 for (j = 0; j < i; j++) {
4449 dma_free_coherent(&priv->pci_dev->dev,
4450 sizeof(struct ipw2100_data_header),
4451 priv->tx_buffers[j].info.d_struct.data,
4452 priv->tx_buffers[j].info.d_struct.data_phys);
4453 }
4454
4455 kfree(priv->tx_buffers);
4456 priv->tx_buffers = NULL;
4457
4458 return err;
4459 }
4460
ipw2100_tx_initialize(struct ipw2100_priv * priv)4461 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4462 {
4463 int i;
4464
4465 IPW_DEBUG_INFO("enter\n");
4466
4467 /*
4468 * reinitialize packet info lists
4469 */
4470 INIT_LIST_HEAD(&priv->fw_pend_list);
4471 INIT_STAT(&priv->fw_pend_stat);
4472
4473 /*
4474 * reinitialize lists
4475 */
4476 INIT_LIST_HEAD(&priv->tx_pend_list);
4477 INIT_LIST_HEAD(&priv->tx_free_list);
4478 INIT_STAT(&priv->tx_pend_stat);
4479 INIT_STAT(&priv->tx_free_stat);
4480
4481 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4482 /* We simply drop any SKBs that have been queued for
4483 * transmit */
4484 if (priv->tx_buffers[i].info.d_struct.txb) {
4485 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4486 txb);
4487 priv->tx_buffers[i].info.d_struct.txb = NULL;
4488 }
4489
4490 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4491 }
4492
4493 SET_STAT(&priv->tx_free_stat, i);
4494
4495 priv->tx_queue.oldest = 0;
4496 priv->tx_queue.available = priv->tx_queue.entries;
4497 priv->tx_queue.next = 0;
4498 INIT_STAT(&priv->txq_stat);
4499 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4500
4501 bd_queue_initialize(priv, &priv->tx_queue,
4502 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4503 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4504 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4505 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4506
4507 IPW_DEBUG_INFO("exit\n");
4508
4509 }
4510
ipw2100_tx_free(struct ipw2100_priv * priv)4511 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4512 {
4513 int i;
4514
4515 IPW_DEBUG_INFO("enter\n");
4516
4517 bd_queue_free(priv, &priv->tx_queue);
4518
4519 if (!priv->tx_buffers)
4520 return;
4521
4522 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4523 if (priv->tx_buffers[i].info.d_struct.txb) {
4524 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4525 txb);
4526 priv->tx_buffers[i].info.d_struct.txb = NULL;
4527 }
4528 if (priv->tx_buffers[i].info.d_struct.data)
4529 dma_free_coherent(&priv->pci_dev->dev,
4530 sizeof(struct ipw2100_data_header),
4531 priv->tx_buffers[i].info.d_struct.data,
4532 priv->tx_buffers[i].info.d_struct.data_phys);
4533 }
4534
4535 kfree(priv->tx_buffers);
4536 priv->tx_buffers = NULL;
4537
4538 IPW_DEBUG_INFO("exit\n");
4539 }
4540
ipw2100_rx_allocate(struct ipw2100_priv * priv)4541 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4542 {
4543 int i, j, err = -EINVAL;
4544
4545 IPW_DEBUG_INFO("enter\n");
4546
4547 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4548 if (err) {
4549 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4550 return err;
4551 }
4552
4553 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4554 if (err) {
4555 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4556 bd_queue_free(priv, &priv->rx_queue);
4557 return err;
4558 }
4559
4560 /*
4561 * allocate packets
4562 */
4563 priv->rx_buffers = kmalloc_array(RX_QUEUE_LENGTH,
4564 sizeof(struct ipw2100_rx_packet),
4565 GFP_KERNEL);
4566 if (!priv->rx_buffers) {
4567 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4568
4569 bd_queue_free(priv, &priv->rx_queue);
4570
4571 status_queue_free(priv);
4572
4573 return -ENOMEM;
4574 }
4575
4576 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4577 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4578
4579 err = ipw2100_alloc_skb(priv, packet);
4580 if (unlikely(err)) {
4581 err = -ENOMEM;
4582 break;
4583 }
4584
4585 /* The BD holds the cache aligned address */
4586 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4587 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4588 priv->status_queue.drv[i].status_fields = 0;
4589 }
4590
4591 if (i == RX_QUEUE_LENGTH)
4592 return 0;
4593
4594 for (j = 0; j < i; j++) {
4595 dma_unmap_single(&priv->pci_dev->dev,
4596 priv->rx_buffers[j].dma_addr,
4597 sizeof(struct ipw2100_rx_packet),
4598 DMA_FROM_DEVICE);
4599 dev_kfree_skb(priv->rx_buffers[j].skb);
4600 }
4601
4602 kfree(priv->rx_buffers);
4603 priv->rx_buffers = NULL;
4604
4605 bd_queue_free(priv, &priv->rx_queue);
4606
4607 status_queue_free(priv);
4608
4609 return err;
4610 }
4611
ipw2100_rx_initialize(struct ipw2100_priv * priv)4612 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4613 {
4614 IPW_DEBUG_INFO("enter\n");
4615
4616 priv->rx_queue.oldest = 0;
4617 priv->rx_queue.available = priv->rx_queue.entries - 1;
4618 priv->rx_queue.next = priv->rx_queue.entries - 1;
4619
4620 INIT_STAT(&priv->rxq_stat);
4621 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4622
4623 bd_queue_initialize(priv, &priv->rx_queue,
4624 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4625 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4626 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4627 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4628
4629 /* set up the status queue */
4630 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4631 priv->status_queue.nic);
4632
4633 IPW_DEBUG_INFO("exit\n");
4634 }
4635
ipw2100_rx_free(struct ipw2100_priv * priv)4636 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4637 {
4638 int i;
4639
4640 IPW_DEBUG_INFO("enter\n");
4641
4642 bd_queue_free(priv, &priv->rx_queue);
4643 status_queue_free(priv);
4644
4645 if (!priv->rx_buffers)
4646 return;
4647
4648 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4649 if (priv->rx_buffers[i].rxp) {
4650 dma_unmap_single(&priv->pci_dev->dev,
4651 priv->rx_buffers[i].dma_addr,
4652 sizeof(struct ipw2100_rx),
4653 DMA_FROM_DEVICE);
4654 dev_kfree_skb(priv->rx_buffers[i].skb);
4655 }
4656 }
4657
4658 kfree(priv->rx_buffers);
4659 priv->rx_buffers = NULL;
4660
4661 IPW_DEBUG_INFO("exit\n");
4662 }
4663
ipw2100_read_mac_address(struct ipw2100_priv * priv)4664 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4665 {
4666 u32 length = ETH_ALEN;
4667 u8 addr[ETH_ALEN];
4668
4669 int err;
4670
4671 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4672 if (err) {
4673 IPW_DEBUG_INFO("MAC address read failed\n");
4674 return -EIO;
4675 }
4676
4677 eth_hw_addr_set(priv->net_dev, addr);
4678 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4679
4680 return 0;
4681 }
4682
4683 /********************************************************************
4684 *
4685 * Firmware Commands
4686 *
4687 ********************************************************************/
4688
ipw2100_set_mac_address(struct ipw2100_priv * priv,int batch_mode)4689 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4690 {
4691 struct host_command cmd = {
4692 .host_command = ADAPTER_ADDRESS,
4693 .host_command_sequence = 0,
4694 .host_command_length = ETH_ALEN
4695 };
4696 int err;
4697
4698 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4699
4700 IPW_DEBUG_INFO("enter\n");
4701
4702 if (priv->config & CFG_CUSTOM_MAC) {
4703 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4704 eth_hw_addr_set(priv->net_dev, priv->mac_addr);
4705 } else
4706 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4707 ETH_ALEN);
4708
4709 err = ipw2100_hw_send_command(priv, &cmd);
4710
4711 IPW_DEBUG_INFO("exit\n");
4712 return err;
4713 }
4714
ipw2100_set_port_type(struct ipw2100_priv * priv,u32 port_type,int batch_mode)4715 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4716 int batch_mode)
4717 {
4718 struct host_command cmd = {
4719 .host_command = PORT_TYPE,
4720 .host_command_sequence = 0,
4721 .host_command_length = sizeof(u32)
4722 };
4723 int err;
4724
4725 switch (port_type) {
4726 case IW_MODE_INFRA:
4727 cmd.host_command_parameters[0] = IPW_BSS;
4728 break;
4729 case IW_MODE_ADHOC:
4730 cmd.host_command_parameters[0] = IPW_IBSS;
4731 break;
4732 }
4733
4734 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4735 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4736
4737 if (!batch_mode) {
4738 err = ipw2100_disable_adapter(priv);
4739 if (err) {
4740 printk(KERN_ERR DRV_NAME
4741 ": %s: Could not disable adapter %d\n",
4742 priv->net_dev->name, err);
4743 return err;
4744 }
4745 }
4746
4747 /* send cmd to firmware */
4748 err = ipw2100_hw_send_command(priv, &cmd);
4749
4750 if (!batch_mode)
4751 ipw2100_enable_adapter(priv);
4752
4753 return err;
4754 }
4755
ipw2100_set_channel(struct ipw2100_priv * priv,u32 channel,int batch_mode)4756 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4757 int batch_mode)
4758 {
4759 struct host_command cmd = {
4760 .host_command = CHANNEL,
4761 .host_command_sequence = 0,
4762 .host_command_length = sizeof(u32)
4763 };
4764 int err;
4765
4766 cmd.host_command_parameters[0] = channel;
4767
4768 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4769
4770 /* If BSS then we don't support channel selection */
4771 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4772 return 0;
4773
4774 if ((channel != 0) &&
4775 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4776 return -EINVAL;
4777
4778 if (!batch_mode) {
4779 err = ipw2100_disable_adapter(priv);
4780 if (err)
4781 return err;
4782 }
4783
4784 err = ipw2100_hw_send_command(priv, &cmd);
4785 if (err) {
4786 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4787 return err;
4788 }
4789
4790 if (channel)
4791 priv->config |= CFG_STATIC_CHANNEL;
4792 else
4793 priv->config &= ~CFG_STATIC_CHANNEL;
4794
4795 priv->channel = channel;
4796
4797 if (!batch_mode) {
4798 err = ipw2100_enable_adapter(priv);
4799 if (err)
4800 return err;
4801 }
4802
4803 return 0;
4804 }
4805
ipw2100_system_config(struct ipw2100_priv * priv,int batch_mode)4806 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4807 {
4808 struct host_command cmd = {
4809 .host_command = SYSTEM_CONFIG,
4810 .host_command_sequence = 0,
4811 .host_command_length = 12,
4812 };
4813 u32 ibss_mask, len = sizeof(u32);
4814 int err;
4815
4816 /* Set system configuration */
4817
4818 if (!batch_mode) {
4819 err = ipw2100_disable_adapter(priv);
4820 if (err)
4821 return err;
4822 }
4823
4824 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4825 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4826
4827 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4828 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4829
4830 if (!(priv->config & CFG_LONG_PREAMBLE))
4831 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4832
4833 err = ipw2100_get_ordinal(priv,
4834 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4835 &ibss_mask, &len);
4836 if (err)
4837 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4838
4839 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4840 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4841
4842 /* 11b only */
4843 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4844
4845 err = ipw2100_hw_send_command(priv, &cmd);
4846 if (err)
4847 return err;
4848
4849 /* If IPv6 is configured in the kernel then we don't want to filter out all
4850 * of the multicast packets as IPv6 needs some. */
4851 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4852 cmd.host_command = ADD_MULTICAST;
4853 cmd.host_command_sequence = 0;
4854 cmd.host_command_length = 0;
4855
4856 ipw2100_hw_send_command(priv, &cmd);
4857 #endif
4858 if (!batch_mode) {
4859 err = ipw2100_enable_adapter(priv);
4860 if (err)
4861 return err;
4862 }
4863
4864 return 0;
4865 }
4866
ipw2100_set_tx_rates(struct ipw2100_priv * priv,u32 rate,int batch_mode)4867 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4868 int batch_mode)
4869 {
4870 struct host_command cmd = {
4871 .host_command = BASIC_TX_RATES,
4872 .host_command_sequence = 0,
4873 .host_command_length = 4
4874 };
4875 int err;
4876
4877 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4878
4879 if (!batch_mode) {
4880 err = ipw2100_disable_adapter(priv);
4881 if (err)
4882 return err;
4883 }
4884
4885 /* Set BASIC TX Rate first */
4886 ipw2100_hw_send_command(priv, &cmd);
4887
4888 /* Set TX Rate */
4889 cmd.host_command = TX_RATES;
4890 ipw2100_hw_send_command(priv, &cmd);
4891
4892 /* Set MSDU TX Rate */
4893 cmd.host_command = MSDU_TX_RATES;
4894 ipw2100_hw_send_command(priv, &cmd);
4895
4896 if (!batch_mode) {
4897 err = ipw2100_enable_adapter(priv);
4898 if (err)
4899 return err;
4900 }
4901
4902 priv->tx_rates = rate;
4903
4904 return 0;
4905 }
4906
ipw2100_set_power_mode(struct ipw2100_priv * priv,int power_level)4907 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4908 {
4909 struct host_command cmd = {
4910 .host_command = POWER_MODE,
4911 .host_command_sequence = 0,
4912 .host_command_length = 4
4913 };
4914 int err;
4915
4916 cmd.host_command_parameters[0] = power_level;
4917
4918 err = ipw2100_hw_send_command(priv, &cmd);
4919 if (err)
4920 return err;
4921
4922 if (power_level == IPW_POWER_MODE_CAM)
4923 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4924 else
4925 priv->power_mode = IPW_POWER_ENABLED | power_level;
4926
4927 #ifdef IPW2100_TX_POWER
4928 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4929 /* Set beacon interval */
4930 cmd.host_command = TX_POWER_INDEX;
4931 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4932
4933 err = ipw2100_hw_send_command(priv, &cmd);
4934 if (err)
4935 return err;
4936 }
4937 #endif
4938
4939 return 0;
4940 }
4941
ipw2100_set_rts_threshold(struct ipw2100_priv * priv,u32 threshold)4942 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4943 {
4944 struct host_command cmd = {
4945 .host_command = RTS_THRESHOLD,
4946 .host_command_sequence = 0,
4947 .host_command_length = 4
4948 };
4949 int err;
4950
4951 if (threshold & RTS_DISABLED)
4952 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4953 else
4954 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4955
4956 err = ipw2100_hw_send_command(priv, &cmd);
4957 if (err)
4958 return err;
4959
4960 priv->rts_threshold = threshold;
4961
4962 return 0;
4963 }
4964
4965 #if 0
4966 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4967 u32 threshold, int batch_mode)
4968 {
4969 struct host_command cmd = {
4970 .host_command = FRAG_THRESHOLD,
4971 .host_command_sequence = 0,
4972 .host_command_length = 4,
4973 .host_command_parameters[0] = 0,
4974 };
4975 int err;
4976
4977 if (!batch_mode) {
4978 err = ipw2100_disable_adapter(priv);
4979 if (err)
4980 return err;
4981 }
4982
4983 if (threshold == 0)
4984 threshold = DEFAULT_FRAG_THRESHOLD;
4985 else {
4986 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4987 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4988 }
4989
4990 cmd.host_command_parameters[0] = threshold;
4991
4992 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4993
4994 err = ipw2100_hw_send_command(priv, &cmd);
4995
4996 if (!batch_mode)
4997 ipw2100_enable_adapter(priv);
4998
4999 if (!err)
5000 priv->frag_threshold = threshold;
5001
5002 return err;
5003 }
5004 #endif
5005
ipw2100_set_short_retry(struct ipw2100_priv * priv,u32 retry)5006 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5007 {
5008 struct host_command cmd = {
5009 .host_command = SHORT_RETRY_LIMIT,
5010 .host_command_sequence = 0,
5011 .host_command_length = 4
5012 };
5013 int err;
5014
5015 cmd.host_command_parameters[0] = retry;
5016
5017 err = ipw2100_hw_send_command(priv, &cmd);
5018 if (err)
5019 return err;
5020
5021 priv->short_retry_limit = retry;
5022
5023 return 0;
5024 }
5025
ipw2100_set_long_retry(struct ipw2100_priv * priv,u32 retry)5026 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5027 {
5028 struct host_command cmd = {
5029 .host_command = LONG_RETRY_LIMIT,
5030 .host_command_sequence = 0,
5031 .host_command_length = 4
5032 };
5033 int err;
5034
5035 cmd.host_command_parameters[0] = retry;
5036
5037 err = ipw2100_hw_send_command(priv, &cmd);
5038 if (err)
5039 return err;
5040
5041 priv->long_retry_limit = retry;
5042
5043 return 0;
5044 }
5045
ipw2100_set_mandatory_bssid(struct ipw2100_priv * priv,u8 * bssid,int batch_mode)5046 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5047 int batch_mode)
5048 {
5049 struct host_command cmd = {
5050 .host_command = MANDATORY_BSSID,
5051 .host_command_sequence = 0,
5052 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5053 };
5054 int err;
5055
5056 #ifdef CONFIG_IPW2100_DEBUG
5057 if (bssid != NULL)
5058 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5059 else
5060 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5061 #endif
5062 /* if BSSID is empty then we disable mandatory bssid mode */
5063 if (bssid != NULL)
5064 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5065
5066 if (!batch_mode) {
5067 err = ipw2100_disable_adapter(priv);
5068 if (err)
5069 return err;
5070 }
5071
5072 err = ipw2100_hw_send_command(priv, &cmd);
5073
5074 if (!batch_mode)
5075 ipw2100_enable_adapter(priv);
5076
5077 return err;
5078 }
5079
ipw2100_disassociate_bssid(struct ipw2100_priv * priv)5080 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5081 {
5082 struct host_command cmd = {
5083 .host_command = DISASSOCIATION_BSSID,
5084 .host_command_sequence = 0,
5085 .host_command_length = ETH_ALEN
5086 };
5087 int err;
5088
5089 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5090
5091 /* The Firmware currently ignores the BSSID and just disassociates from
5092 * the currently associated AP -- but in the off chance that a future
5093 * firmware does use the BSSID provided here, we go ahead and try and
5094 * set it to the currently associated AP's BSSID */
5095 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5096
5097 err = ipw2100_hw_send_command(priv, &cmd);
5098
5099 return err;
5100 }
5101
5102 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5103 struct ipw2100_wpa_assoc_frame *, int)
5104 __attribute__ ((unused));
5105
ipw2100_set_wpa_ie(struct ipw2100_priv * priv,struct ipw2100_wpa_assoc_frame * wpa_frame,int batch_mode)5106 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5107 struct ipw2100_wpa_assoc_frame *wpa_frame,
5108 int batch_mode)
5109 {
5110 struct host_command cmd = {
5111 .host_command = SET_WPA_IE,
5112 .host_command_sequence = 0,
5113 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5114 };
5115 int err;
5116
5117 IPW_DEBUG_HC("SET_WPA_IE\n");
5118
5119 if (!batch_mode) {
5120 err = ipw2100_disable_adapter(priv);
5121 if (err)
5122 return err;
5123 }
5124
5125 memcpy(cmd.host_command_parameters, wpa_frame,
5126 sizeof(struct ipw2100_wpa_assoc_frame));
5127
5128 err = ipw2100_hw_send_command(priv, &cmd);
5129
5130 if (!batch_mode) {
5131 if (ipw2100_enable_adapter(priv))
5132 err = -EIO;
5133 }
5134
5135 return err;
5136 }
5137
5138 struct security_info_params {
5139 u32 allowed_ciphers;
5140 u16 version;
5141 u8 auth_mode;
5142 u8 replay_counters_number;
5143 u8 unicast_using_group;
5144 } __packed;
5145
ipw2100_set_security_information(struct ipw2100_priv * priv,int auth_mode,int security_level,int unicast_using_group,int batch_mode)5146 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5147 int auth_mode,
5148 int security_level,
5149 int unicast_using_group,
5150 int batch_mode)
5151 {
5152 struct host_command cmd = {
5153 .host_command = SET_SECURITY_INFORMATION,
5154 .host_command_sequence = 0,
5155 .host_command_length = sizeof(struct security_info_params)
5156 };
5157 struct security_info_params *security =
5158 (struct security_info_params *)&cmd.host_command_parameters;
5159 int err;
5160 memset(security, 0, sizeof(*security));
5161
5162 /* If shared key AP authentication is turned on, then we need to
5163 * configure the firmware to try and use it.
5164 *
5165 * Actual data encryption/decryption is handled by the host. */
5166 security->auth_mode = auth_mode;
5167 security->unicast_using_group = unicast_using_group;
5168
5169 switch (security_level) {
5170 default:
5171 case SEC_LEVEL_0:
5172 security->allowed_ciphers = IPW_NONE_CIPHER;
5173 break;
5174 case SEC_LEVEL_1:
5175 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176 IPW_WEP104_CIPHER;
5177 break;
5178 case SEC_LEVEL_2:
5179 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5181 break;
5182 case SEC_LEVEL_2_CKIP:
5183 security->allowed_ciphers = IPW_WEP40_CIPHER |
5184 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5185 break;
5186 case SEC_LEVEL_3:
5187 security->allowed_ciphers = IPW_WEP40_CIPHER |
5188 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5189 break;
5190 }
5191
5192 IPW_DEBUG_HC
5193 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5194 security->auth_mode, security->allowed_ciphers, security_level);
5195
5196 security->replay_counters_number = 0;
5197
5198 if (!batch_mode) {
5199 err = ipw2100_disable_adapter(priv);
5200 if (err)
5201 return err;
5202 }
5203
5204 err = ipw2100_hw_send_command(priv, &cmd);
5205
5206 if (!batch_mode)
5207 ipw2100_enable_adapter(priv);
5208
5209 return err;
5210 }
5211
ipw2100_set_tx_power(struct ipw2100_priv * priv,u32 tx_power)5212 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5213 {
5214 struct host_command cmd = {
5215 .host_command = TX_POWER_INDEX,
5216 .host_command_sequence = 0,
5217 .host_command_length = 4
5218 };
5219 int err = 0;
5220 u32 tmp = tx_power;
5221
5222 if (tx_power != IPW_TX_POWER_DEFAULT)
5223 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5224 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5225
5226 cmd.host_command_parameters[0] = tmp;
5227
5228 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5229 err = ipw2100_hw_send_command(priv, &cmd);
5230 if (!err)
5231 priv->tx_power = tx_power;
5232
5233 return 0;
5234 }
5235
ipw2100_set_ibss_beacon_interval(struct ipw2100_priv * priv,u32 interval,int batch_mode)5236 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5237 u32 interval, int batch_mode)
5238 {
5239 struct host_command cmd = {
5240 .host_command = BEACON_INTERVAL,
5241 .host_command_sequence = 0,
5242 .host_command_length = 4
5243 };
5244 int err;
5245
5246 cmd.host_command_parameters[0] = interval;
5247
5248 IPW_DEBUG_INFO("enter\n");
5249
5250 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5251 if (!batch_mode) {
5252 err = ipw2100_disable_adapter(priv);
5253 if (err)
5254 return err;
5255 }
5256
5257 ipw2100_hw_send_command(priv, &cmd);
5258
5259 if (!batch_mode) {
5260 err = ipw2100_enable_adapter(priv);
5261 if (err)
5262 return err;
5263 }
5264 }
5265
5266 IPW_DEBUG_INFO("exit\n");
5267
5268 return 0;
5269 }
5270
ipw2100_queues_initialize(struct ipw2100_priv * priv)5271 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5272 {
5273 ipw2100_tx_initialize(priv);
5274 ipw2100_rx_initialize(priv);
5275 ipw2100_msg_initialize(priv);
5276 }
5277
ipw2100_queues_free(struct ipw2100_priv * priv)5278 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5279 {
5280 ipw2100_tx_free(priv);
5281 ipw2100_rx_free(priv);
5282 ipw2100_msg_free(priv);
5283 }
5284
ipw2100_queues_allocate(struct ipw2100_priv * priv)5285 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5286 {
5287 if (ipw2100_tx_allocate(priv) ||
5288 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5289 goto fail;
5290
5291 return 0;
5292
5293 fail:
5294 ipw2100_tx_free(priv);
5295 ipw2100_rx_free(priv);
5296 ipw2100_msg_free(priv);
5297 return -ENOMEM;
5298 }
5299
5300 #define IPW_PRIVACY_CAPABLE 0x0008
5301
ipw2100_set_wep_flags(struct ipw2100_priv * priv,u32 flags,int batch_mode)5302 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5303 int batch_mode)
5304 {
5305 struct host_command cmd = {
5306 .host_command = WEP_FLAGS,
5307 .host_command_sequence = 0,
5308 .host_command_length = 4
5309 };
5310 int err;
5311
5312 cmd.host_command_parameters[0] = flags;
5313
5314 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5315
5316 if (!batch_mode) {
5317 err = ipw2100_disable_adapter(priv);
5318 if (err) {
5319 printk(KERN_ERR DRV_NAME
5320 ": %s: Could not disable adapter %d\n",
5321 priv->net_dev->name, err);
5322 return err;
5323 }
5324 }
5325
5326 /* send cmd to firmware */
5327 err = ipw2100_hw_send_command(priv, &cmd);
5328
5329 if (!batch_mode)
5330 ipw2100_enable_adapter(priv);
5331
5332 return err;
5333 }
5334
5335 struct ipw2100_wep_key {
5336 u8 idx;
5337 u8 len;
5338 u8 key[13];
5339 };
5340
5341 /* Macros to ease up priting WEP keys */
5342 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5343 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5344 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5345 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5346
5347 /**
5348 * ipw2100_set_key() - Set a the wep key
5349 *
5350 * @priv: struct to work on
5351 * @idx: index of the key we want to set
5352 * @key: ptr to the key data to set
5353 * @len: length of the buffer at @key
5354 * @batch_mode: FIXME perform the operation in batch mode, not
5355 * disabling the device.
5356 *
5357 * @returns 0 if OK, < 0 errno code on error.
5358 *
5359 * Fill out a command structure with the new wep key, length an
5360 * index and send it down the wire.
5361 */
ipw2100_set_key(struct ipw2100_priv * priv,int idx,char * key,int len,int batch_mode)5362 static int ipw2100_set_key(struct ipw2100_priv *priv,
5363 int idx, char *key, int len, int batch_mode)
5364 {
5365 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5366 struct host_command cmd = {
5367 .host_command = WEP_KEY_INFO,
5368 .host_command_sequence = 0,
5369 .host_command_length = sizeof(struct ipw2100_wep_key),
5370 };
5371 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5372 int err;
5373
5374 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5375 idx, keylen, len);
5376
5377 /* NOTE: We don't check cached values in case the firmware was reset
5378 * or some other problem is occurring. If the user is setting the key,
5379 * then we push the change */
5380
5381 wep_key->idx = idx;
5382 wep_key->len = keylen;
5383
5384 if (keylen) {
5385 memcpy(wep_key->key, key, len);
5386 memset(wep_key->key + len, 0, keylen - len);
5387 }
5388
5389 /* Will be optimized out on debug not being configured in */
5390 if (keylen == 0)
5391 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5392 priv->net_dev->name, wep_key->idx);
5393 else if (keylen == 5)
5394 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5395 priv->net_dev->name, wep_key->idx, wep_key->len,
5396 WEP_STR_64(wep_key->key));
5397 else
5398 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5399 "\n",
5400 priv->net_dev->name, wep_key->idx, wep_key->len,
5401 WEP_STR_128(wep_key->key));
5402
5403 if (!batch_mode) {
5404 err = ipw2100_disable_adapter(priv);
5405 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5406 if (err) {
5407 printk(KERN_ERR DRV_NAME
5408 ": %s: Could not disable adapter %d\n",
5409 priv->net_dev->name, err);
5410 return err;
5411 }
5412 }
5413
5414 /* send cmd to firmware */
5415 err = ipw2100_hw_send_command(priv, &cmd);
5416
5417 if (!batch_mode) {
5418 int err2 = ipw2100_enable_adapter(priv);
5419 if (err == 0)
5420 err = err2;
5421 }
5422 return err;
5423 }
5424
ipw2100_set_key_index(struct ipw2100_priv * priv,int idx,int batch_mode)5425 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5426 int idx, int batch_mode)
5427 {
5428 struct host_command cmd = {
5429 .host_command = WEP_KEY_INDEX,
5430 .host_command_sequence = 0,
5431 .host_command_length = 4,
5432 .host_command_parameters = {idx},
5433 };
5434 int err;
5435
5436 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5437
5438 if (idx < 0 || idx > 3)
5439 return -EINVAL;
5440
5441 if (!batch_mode) {
5442 err = ipw2100_disable_adapter(priv);
5443 if (err) {
5444 printk(KERN_ERR DRV_NAME
5445 ": %s: Could not disable adapter %d\n",
5446 priv->net_dev->name, err);
5447 return err;
5448 }
5449 }
5450
5451 /* send cmd to firmware */
5452 err = ipw2100_hw_send_command(priv, &cmd);
5453
5454 if (!batch_mode)
5455 ipw2100_enable_adapter(priv);
5456
5457 return err;
5458 }
5459
ipw2100_configure_security(struct ipw2100_priv * priv,int batch_mode)5460 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5461 {
5462 int i, err, auth_mode, sec_level, use_group;
5463
5464 if (!(priv->status & STATUS_RUNNING))
5465 return 0;
5466
5467 if (!batch_mode) {
5468 err = ipw2100_disable_adapter(priv);
5469 if (err)
5470 return err;
5471 }
5472
5473 if (!priv->ieee->sec.enabled) {
5474 err =
5475 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5476 SEC_LEVEL_0, 0, 1);
5477 } else {
5478 auth_mode = IPW_AUTH_OPEN;
5479 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5480 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5481 auth_mode = IPW_AUTH_SHARED;
5482 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5483 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5484 }
5485
5486 sec_level = SEC_LEVEL_0;
5487 if (priv->ieee->sec.flags & SEC_LEVEL)
5488 sec_level = priv->ieee->sec.level;
5489
5490 use_group = 0;
5491 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5492 use_group = priv->ieee->sec.unicast_uses_group;
5493
5494 err =
5495 ipw2100_set_security_information(priv, auth_mode, sec_level,
5496 use_group, 1);
5497 }
5498
5499 if (err)
5500 goto exit;
5501
5502 if (priv->ieee->sec.enabled) {
5503 for (i = 0; i < 4; i++) {
5504 if (!(priv->ieee->sec.flags & (1 << i))) {
5505 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5506 priv->ieee->sec.key_sizes[i] = 0;
5507 } else {
5508 err = ipw2100_set_key(priv, i,
5509 priv->ieee->sec.keys[i],
5510 priv->ieee->sec.
5511 key_sizes[i], 1);
5512 if (err)
5513 goto exit;
5514 }
5515 }
5516
5517 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5518 }
5519
5520 /* Always enable privacy so the Host can filter WEP packets if
5521 * encrypted data is sent up */
5522 err =
5523 ipw2100_set_wep_flags(priv,
5524 priv->ieee->sec.
5525 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5526 if (err)
5527 goto exit;
5528
5529 priv->status &= ~STATUS_SECURITY_UPDATED;
5530
5531 exit:
5532 if (!batch_mode)
5533 ipw2100_enable_adapter(priv);
5534
5535 return err;
5536 }
5537
ipw2100_security_work(struct work_struct * work)5538 static void ipw2100_security_work(struct work_struct *work)
5539 {
5540 struct ipw2100_priv *priv =
5541 container_of(work, struct ipw2100_priv, security_work.work);
5542
5543 /* If we happen to have reconnected before we get a chance to
5544 * process this, then update the security settings--which causes
5545 * a disassociation to occur */
5546 if (!(priv->status & STATUS_ASSOCIATED) &&
5547 priv->status & STATUS_SECURITY_UPDATED)
5548 ipw2100_configure_security(priv, 0);
5549 }
5550
shim__set_security(struct net_device * dev,struct libipw_security * sec)5551 static void shim__set_security(struct net_device *dev,
5552 struct libipw_security *sec)
5553 {
5554 struct ipw2100_priv *priv = libipw_priv(dev);
5555 int i;
5556
5557 mutex_lock(&priv->action_mutex);
5558 if (!(priv->status & STATUS_INITIALIZED))
5559 goto done;
5560
5561 for (i = 0; i < 4; i++) {
5562 if (sec->flags & (1 << i)) {
5563 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5564 if (sec->key_sizes[i] == 0)
5565 priv->ieee->sec.flags &= ~(1 << i);
5566 else
5567 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5568 sec->key_sizes[i]);
5569 if (sec->level == SEC_LEVEL_1) {
5570 priv->ieee->sec.flags |= (1 << i);
5571 priv->status |= STATUS_SECURITY_UPDATED;
5572 } else
5573 priv->ieee->sec.flags &= ~(1 << i);
5574 }
5575 }
5576
5577 if ((sec->flags & SEC_ACTIVE_KEY) &&
5578 priv->ieee->sec.active_key != sec->active_key) {
5579 priv->ieee->sec.active_key = sec->active_key;
5580 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5581 priv->status |= STATUS_SECURITY_UPDATED;
5582 }
5583
5584 if ((sec->flags & SEC_AUTH_MODE) &&
5585 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5586 priv->ieee->sec.auth_mode = sec->auth_mode;
5587 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5588 priv->status |= STATUS_SECURITY_UPDATED;
5589 }
5590
5591 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5592 priv->ieee->sec.flags |= SEC_ENABLED;
5593 priv->ieee->sec.enabled = sec->enabled;
5594 priv->status |= STATUS_SECURITY_UPDATED;
5595 }
5596
5597 if (sec->flags & SEC_ENCRYPT)
5598 priv->ieee->sec.encrypt = sec->encrypt;
5599
5600 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5601 priv->ieee->sec.level = sec->level;
5602 priv->ieee->sec.flags |= SEC_LEVEL;
5603 priv->status |= STATUS_SECURITY_UPDATED;
5604 }
5605
5606 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5607 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5613 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5614 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5615 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5616
5617 /* As a temporary work around to enable WPA until we figure out why
5618 * wpa_supplicant toggles the security capability of the driver, which
5619 * forces a disassociation with force_update...
5620 *
5621 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5622 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5623 ipw2100_configure_security(priv, 0);
5624 done:
5625 mutex_unlock(&priv->action_mutex);
5626 }
5627
ipw2100_adapter_setup(struct ipw2100_priv * priv)5628 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5629 {
5630 int err;
5631 int batch_mode = 1;
5632 u8 *bssid;
5633
5634 IPW_DEBUG_INFO("enter\n");
5635
5636 err = ipw2100_disable_adapter(priv);
5637 if (err)
5638 return err;
5639 #ifdef CONFIG_IPW2100_MONITOR
5640 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5641 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5642 if (err)
5643 return err;
5644
5645 IPW_DEBUG_INFO("exit\n");
5646
5647 return 0;
5648 }
5649 #endif /* CONFIG_IPW2100_MONITOR */
5650
5651 err = ipw2100_read_mac_address(priv);
5652 if (err)
5653 return -EIO;
5654
5655 err = ipw2100_set_mac_address(priv, batch_mode);
5656 if (err)
5657 return err;
5658
5659 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5660 if (err)
5661 return err;
5662
5663 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5664 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5665 if (err)
5666 return err;
5667 }
5668
5669 err = ipw2100_system_config(priv, batch_mode);
5670 if (err)
5671 return err;
5672
5673 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5674 if (err)
5675 return err;
5676
5677 /* Default to power mode OFF */
5678 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5679 if (err)
5680 return err;
5681
5682 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5683 if (err)
5684 return err;
5685
5686 if (priv->config & CFG_STATIC_BSSID)
5687 bssid = priv->bssid;
5688 else
5689 bssid = NULL;
5690 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5691 if (err)
5692 return err;
5693
5694 if (priv->config & CFG_STATIC_ESSID)
5695 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5696 batch_mode);
5697 else
5698 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5699 if (err)
5700 return err;
5701
5702 err = ipw2100_configure_security(priv, batch_mode);
5703 if (err)
5704 return err;
5705
5706 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5707 err =
5708 ipw2100_set_ibss_beacon_interval(priv,
5709 priv->beacon_interval,
5710 batch_mode);
5711 if (err)
5712 return err;
5713
5714 err = ipw2100_set_tx_power(priv, priv->tx_power);
5715 if (err)
5716 return err;
5717 }
5718
5719 /*
5720 err = ipw2100_set_fragmentation_threshold(
5721 priv, priv->frag_threshold, batch_mode);
5722 if (err)
5723 return err;
5724 */
5725
5726 IPW_DEBUG_INFO("exit\n");
5727
5728 return 0;
5729 }
5730
5731 /*************************************************************************
5732 *
5733 * EXTERNALLY CALLED METHODS
5734 *
5735 *************************************************************************/
5736
5737 /* This method is called by the network layer -- not to be confused with
5738 * ipw2100_set_mac_address() declared above called by this driver (and this
5739 * method as well) to talk to the firmware */
ipw2100_set_address(struct net_device * dev,void * p)5740 static int ipw2100_set_address(struct net_device *dev, void *p)
5741 {
5742 struct ipw2100_priv *priv = libipw_priv(dev);
5743 struct sockaddr *addr = p;
5744 int err = 0;
5745
5746 if (!is_valid_ether_addr(addr->sa_data))
5747 return -EADDRNOTAVAIL;
5748
5749 mutex_lock(&priv->action_mutex);
5750
5751 priv->config |= CFG_CUSTOM_MAC;
5752 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5753
5754 err = ipw2100_set_mac_address(priv, 0);
5755 if (err)
5756 goto done;
5757
5758 priv->reset_backoff = 0;
5759 mutex_unlock(&priv->action_mutex);
5760 ipw2100_reset_adapter(&priv->reset_work.work);
5761 return 0;
5762
5763 done:
5764 mutex_unlock(&priv->action_mutex);
5765 return err;
5766 }
5767
ipw2100_open(struct net_device * dev)5768 static int ipw2100_open(struct net_device *dev)
5769 {
5770 struct ipw2100_priv *priv = libipw_priv(dev);
5771 unsigned long flags;
5772 IPW_DEBUG_INFO("dev->open\n");
5773
5774 spin_lock_irqsave(&priv->low_lock, flags);
5775 if (priv->status & STATUS_ASSOCIATED) {
5776 netif_carrier_on(dev);
5777 netif_start_queue(dev);
5778 }
5779 spin_unlock_irqrestore(&priv->low_lock, flags);
5780
5781 return 0;
5782 }
5783
ipw2100_close(struct net_device * dev)5784 static int ipw2100_close(struct net_device *dev)
5785 {
5786 struct ipw2100_priv *priv = libipw_priv(dev);
5787 unsigned long flags;
5788 struct list_head *element;
5789 struct ipw2100_tx_packet *packet;
5790
5791 IPW_DEBUG_INFO("enter\n");
5792
5793 spin_lock_irqsave(&priv->low_lock, flags);
5794
5795 if (priv->status & STATUS_ASSOCIATED)
5796 netif_carrier_off(dev);
5797 netif_stop_queue(dev);
5798
5799 /* Flush the TX queue ... */
5800 while (!list_empty(&priv->tx_pend_list)) {
5801 element = priv->tx_pend_list.next;
5802 packet = list_entry(element, struct ipw2100_tx_packet, list);
5803
5804 list_del(element);
5805 DEC_STAT(&priv->tx_pend_stat);
5806
5807 libipw_txb_free(packet->info.d_struct.txb);
5808 packet->info.d_struct.txb = NULL;
5809
5810 list_add_tail(element, &priv->tx_free_list);
5811 INC_STAT(&priv->tx_free_stat);
5812 }
5813 spin_unlock_irqrestore(&priv->low_lock, flags);
5814
5815 IPW_DEBUG_INFO("exit\n");
5816
5817 return 0;
5818 }
5819
5820 /*
5821 * TODO: Fix this function... its just wrong
5822 */
ipw2100_tx_timeout(struct net_device * dev,unsigned int txqueue)5823 static void ipw2100_tx_timeout(struct net_device *dev, unsigned int txqueue)
5824 {
5825 struct ipw2100_priv *priv = libipw_priv(dev);
5826
5827 dev->stats.tx_errors++;
5828
5829 #ifdef CONFIG_IPW2100_MONITOR
5830 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5831 return;
5832 #endif
5833
5834 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5835 dev->name);
5836 schedule_reset(priv);
5837 }
5838
ipw2100_wpa_enable(struct ipw2100_priv * priv,int value)5839 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5840 {
5841 /* This is called when wpa_supplicant loads and closes the driver
5842 * interface. */
5843 priv->ieee->wpa_enabled = value;
5844 return 0;
5845 }
5846
ipw2100_wpa_set_auth_algs(struct ipw2100_priv * priv,int value)5847 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5848 {
5849
5850 struct libipw_device *ieee = priv->ieee;
5851 struct libipw_security sec = {
5852 .flags = SEC_AUTH_MODE,
5853 };
5854 int ret = 0;
5855
5856 if (value & IW_AUTH_ALG_SHARED_KEY) {
5857 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5858 ieee->open_wep = 0;
5859 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5860 sec.auth_mode = WLAN_AUTH_OPEN;
5861 ieee->open_wep = 1;
5862 } else if (value & IW_AUTH_ALG_LEAP) {
5863 sec.auth_mode = WLAN_AUTH_LEAP;
5864 ieee->open_wep = 1;
5865 } else
5866 return -EINVAL;
5867
5868 if (ieee->set_security)
5869 ieee->set_security(ieee->dev, &sec);
5870 else
5871 ret = -EOPNOTSUPP;
5872
5873 return ret;
5874 }
5875
ipw2100_wpa_assoc_frame(struct ipw2100_priv * priv,char * wpa_ie,int wpa_ie_len)5876 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5877 char *wpa_ie, int wpa_ie_len)
5878 {
5879
5880 struct ipw2100_wpa_assoc_frame frame;
5881
5882 frame.fixed_ie_mask = 0;
5883
5884 /* copy WPA IE */
5885 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5886 frame.var_ie_len = wpa_ie_len;
5887
5888 /* make sure WPA is enabled */
5889 ipw2100_wpa_enable(priv, 1);
5890 ipw2100_set_wpa_ie(priv, &frame, 0);
5891 }
5892
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5893 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5894 struct ethtool_drvinfo *info)
5895 {
5896 struct ipw2100_priv *priv = libipw_priv(dev);
5897 char fw_ver[64], ucode_ver[64];
5898
5899 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5900 strscpy(info->version, DRV_VERSION, sizeof(info->version));
5901
5902 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5903 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5904
5905 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5906 fw_ver, priv->eeprom_version, ucode_ver);
5907
5908 strscpy(info->bus_info, pci_name(priv->pci_dev),
5909 sizeof(info->bus_info));
5910 }
5911
ipw2100_ethtool_get_link(struct net_device * dev)5912 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5913 {
5914 struct ipw2100_priv *priv = libipw_priv(dev);
5915 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5916 }
5917
5918 static const struct ethtool_ops ipw2100_ethtool_ops = {
5919 .get_link = ipw2100_ethtool_get_link,
5920 .get_drvinfo = ipw_ethtool_get_drvinfo,
5921 };
5922
ipw2100_hang_check(struct work_struct * work)5923 static void ipw2100_hang_check(struct work_struct *work)
5924 {
5925 struct ipw2100_priv *priv =
5926 container_of(work, struct ipw2100_priv, hang_check.work);
5927 unsigned long flags;
5928 u32 rtc = 0xa5a5a5a5;
5929 u32 len = sizeof(rtc);
5930 int restart = 0;
5931
5932 spin_lock_irqsave(&priv->low_lock, flags);
5933
5934 if (priv->fatal_error != 0) {
5935 /* If fatal_error is set then we need to restart */
5936 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5937 priv->net_dev->name);
5938
5939 restart = 1;
5940 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5941 (rtc == priv->last_rtc)) {
5942 /* Check if firmware is hung */
5943 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5944 priv->net_dev->name);
5945
5946 restart = 1;
5947 }
5948
5949 if (restart) {
5950 /* Kill timer */
5951 priv->stop_hang_check = 1;
5952 priv->hangs++;
5953
5954 /* Restart the NIC */
5955 schedule_reset(priv);
5956 }
5957
5958 priv->last_rtc = rtc;
5959
5960 if (!priv->stop_hang_check)
5961 schedule_delayed_work(&priv->hang_check, HZ / 2);
5962
5963 spin_unlock_irqrestore(&priv->low_lock, flags);
5964 }
5965
ipw2100_rf_kill(struct work_struct * work)5966 static void ipw2100_rf_kill(struct work_struct *work)
5967 {
5968 struct ipw2100_priv *priv =
5969 container_of(work, struct ipw2100_priv, rf_kill.work);
5970 unsigned long flags;
5971
5972 spin_lock_irqsave(&priv->low_lock, flags);
5973
5974 if (rf_kill_active(priv)) {
5975 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5976 if (!priv->stop_rf_kill)
5977 schedule_delayed_work(&priv->rf_kill,
5978 round_jiffies_relative(HZ));
5979 goto exit_unlock;
5980 }
5981
5982 /* RF Kill is now disabled, so bring the device back up */
5983
5984 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5985 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5986 "device\n");
5987 schedule_reset(priv);
5988 } else
5989 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5990 "enabled\n");
5991
5992 exit_unlock:
5993 spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
5996 static void ipw2100_irq_tasklet(struct tasklet_struct *t);
5997
5998 static const struct net_device_ops ipw2100_netdev_ops = {
5999 .ndo_open = ipw2100_open,
6000 .ndo_stop = ipw2100_close,
6001 .ndo_start_xmit = libipw_xmit,
6002 .ndo_tx_timeout = ipw2100_tx_timeout,
6003 .ndo_set_mac_address = ipw2100_set_address,
6004 .ndo_validate_addr = eth_validate_addr,
6005 };
6006
6007 /* Look into using netdev destructor to shutdown libipw? */
6008
ipw2100_alloc_device(struct pci_dev * pci_dev,void __iomem * ioaddr)6009 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6010 void __iomem * ioaddr)
6011 {
6012 struct ipw2100_priv *priv;
6013 struct net_device *dev;
6014
6015 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6016 if (!dev)
6017 return NULL;
6018 priv = libipw_priv(dev);
6019 priv->ieee = netdev_priv(dev);
6020 priv->pci_dev = pci_dev;
6021 priv->net_dev = dev;
6022 priv->ioaddr = ioaddr;
6023
6024 priv->ieee->hard_start_xmit = ipw2100_tx;
6025 priv->ieee->set_security = shim__set_security;
6026
6027 priv->ieee->perfect_rssi = -20;
6028 priv->ieee->worst_rssi = -85;
6029
6030 dev->netdev_ops = &ipw2100_netdev_ops;
6031 dev->ethtool_ops = &ipw2100_ethtool_ops;
6032 dev->wireless_handlers = &ipw2100_wx_handler_def;
6033 priv->wireless_data.libipw = priv->ieee;
6034 dev->wireless_data = &priv->wireless_data;
6035 dev->watchdog_timeo = 3 * HZ;
6036 dev->irq = 0;
6037 dev->min_mtu = 68;
6038 dev->max_mtu = LIBIPW_DATA_LEN;
6039
6040 /* NOTE: We don't use the wireless_handlers hook
6041 * in dev as the system will start throwing WX requests
6042 * to us before we're actually initialized and it just
6043 * ends up causing problems. So, we just handle
6044 * the WX extensions through the ipw2100_ioctl interface */
6045
6046 /* memset() puts everything to 0, so we only have explicitly set
6047 * those values that need to be something else */
6048
6049 /* If power management is turned on, default to AUTO mode */
6050 priv->power_mode = IPW_POWER_AUTO;
6051
6052 #ifdef CONFIG_IPW2100_MONITOR
6053 priv->config |= CFG_CRC_CHECK;
6054 #endif
6055 priv->ieee->wpa_enabled = 0;
6056 priv->ieee->drop_unencrypted = 0;
6057 priv->ieee->privacy_invoked = 0;
6058 priv->ieee->ieee802_1x = 1;
6059
6060 /* Set module parameters */
6061 switch (network_mode) {
6062 case 1:
6063 priv->ieee->iw_mode = IW_MODE_ADHOC;
6064 break;
6065 #ifdef CONFIG_IPW2100_MONITOR
6066 case 2:
6067 priv->ieee->iw_mode = IW_MODE_MONITOR;
6068 break;
6069 #endif
6070 default:
6071 case 0:
6072 priv->ieee->iw_mode = IW_MODE_INFRA;
6073 break;
6074 }
6075
6076 if (disable == 1)
6077 priv->status |= STATUS_RF_KILL_SW;
6078
6079 if (channel != 0 &&
6080 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6081 priv->config |= CFG_STATIC_CHANNEL;
6082 priv->channel = channel;
6083 }
6084
6085 if (associate)
6086 priv->config |= CFG_ASSOCIATE;
6087
6088 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6089 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6090 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6091 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6092 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6093 priv->tx_power = IPW_TX_POWER_DEFAULT;
6094 priv->tx_rates = DEFAULT_TX_RATES;
6095
6096 strcpy(priv->nick, "ipw2100");
6097
6098 spin_lock_init(&priv->low_lock);
6099 mutex_init(&priv->action_mutex);
6100 mutex_init(&priv->adapter_mutex);
6101
6102 init_waitqueue_head(&priv->wait_command_queue);
6103
6104 netif_carrier_off(dev);
6105
6106 INIT_LIST_HEAD(&priv->msg_free_list);
6107 INIT_LIST_HEAD(&priv->msg_pend_list);
6108 INIT_STAT(&priv->msg_free_stat);
6109 INIT_STAT(&priv->msg_pend_stat);
6110
6111 INIT_LIST_HEAD(&priv->tx_free_list);
6112 INIT_LIST_HEAD(&priv->tx_pend_list);
6113 INIT_STAT(&priv->tx_free_stat);
6114 INIT_STAT(&priv->tx_pend_stat);
6115
6116 INIT_LIST_HEAD(&priv->fw_pend_list);
6117 INIT_STAT(&priv->fw_pend_stat);
6118
6119 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6120 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6121 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6122 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6123 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6124 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6125
6126 tasklet_setup(&priv->irq_tasklet, ipw2100_irq_tasklet);
6127
6128 /* NOTE: We do not start the deferred work for status checks yet */
6129 priv->stop_rf_kill = 1;
6130 priv->stop_hang_check = 1;
6131
6132 return dev;
6133 }
6134
ipw2100_pci_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)6135 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6136 const struct pci_device_id *ent)
6137 {
6138 void __iomem *ioaddr;
6139 struct net_device *dev = NULL;
6140 struct ipw2100_priv *priv = NULL;
6141 int err = 0;
6142 int registered = 0;
6143 u32 val;
6144
6145 IPW_DEBUG_INFO("enter\n");
6146
6147 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6148 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6149 err = -ENODEV;
6150 goto out;
6151 }
6152
6153 ioaddr = pci_iomap(pci_dev, 0, 0);
6154 if (!ioaddr) {
6155 printk(KERN_WARNING DRV_NAME
6156 "Error calling ioremap.\n");
6157 err = -EIO;
6158 goto fail;
6159 }
6160
6161 /* allocate and initialize our net_device */
6162 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6163 if (!dev) {
6164 printk(KERN_WARNING DRV_NAME
6165 "Error calling ipw2100_alloc_device.\n");
6166 err = -ENOMEM;
6167 goto fail;
6168 }
6169
6170 /* set up PCI mappings for device */
6171 err = pci_enable_device(pci_dev);
6172 if (err) {
6173 printk(KERN_WARNING DRV_NAME
6174 "Error calling pci_enable_device.\n");
6175 return err;
6176 }
6177
6178 priv = libipw_priv(dev);
6179
6180 pci_set_master(pci_dev);
6181 pci_set_drvdata(pci_dev, priv);
6182
6183 err = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
6184 if (err) {
6185 printk(KERN_WARNING DRV_NAME
6186 "Error calling pci_set_dma_mask.\n");
6187 pci_disable_device(pci_dev);
6188 return err;
6189 }
6190
6191 err = pci_request_regions(pci_dev, DRV_NAME);
6192 if (err) {
6193 printk(KERN_WARNING DRV_NAME
6194 "Error calling pci_request_regions.\n");
6195 pci_disable_device(pci_dev);
6196 return err;
6197 }
6198
6199 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6200 * PCI Tx retries from interfering with C3 CPU state */
6201 pci_read_config_dword(pci_dev, 0x40, &val);
6202 if ((val & 0x0000ff00) != 0)
6203 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6204
6205 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6206 printk(KERN_WARNING DRV_NAME
6207 "Device not found via register read.\n");
6208 err = -ENODEV;
6209 goto fail;
6210 }
6211
6212 SET_NETDEV_DEV(dev, &pci_dev->dev);
6213
6214 /* Force interrupts to be shut off on the device */
6215 priv->status |= STATUS_INT_ENABLED;
6216 ipw2100_disable_interrupts(priv);
6217
6218 /* Allocate and initialize the Tx/Rx queues and lists */
6219 if (ipw2100_queues_allocate(priv)) {
6220 printk(KERN_WARNING DRV_NAME
6221 "Error calling ipw2100_queues_allocate.\n");
6222 err = -ENOMEM;
6223 goto fail;
6224 }
6225 ipw2100_queues_initialize(priv);
6226
6227 err = request_irq(pci_dev->irq,
6228 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6229 if (err) {
6230 printk(KERN_WARNING DRV_NAME
6231 "Error calling request_irq: %d.\n", pci_dev->irq);
6232 goto fail;
6233 }
6234 dev->irq = pci_dev->irq;
6235
6236 IPW_DEBUG_INFO("Attempting to register device...\n");
6237
6238 printk(KERN_INFO DRV_NAME
6239 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6240
6241 err = ipw2100_up(priv, 1);
6242 if (err)
6243 goto fail;
6244
6245 err = ipw2100_wdev_init(dev);
6246 if (err)
6247 goto fail;
6248 registered = 1;
6249
6250 /* Bring up the interface. Pre 0.46, after we registered the
6251 * network device we would call ipw2100_up. This introduced a race
6252 * condition with newer hotplug configurations (network was coming
6253 * up and making calls before the device was initialized).
6254 */
6255 err = register_netdev(dev);
6256 if (err) {
6257 printk(KERN_WARNING DRV_NAME
6258 "Error calling register_netdev.\n");
6259 goto fail;
6260 }
6261 registered = 2;
6262
6263 mutex_lock(&priv->action_mutex);
6264
6265 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6266
6267 /* perform this after register_netdev so that dev->name is set */
6268 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6269 if (err)
6270 goto fail_unlock;
6271
6272 /* If the RF Kill switch is disabled, go ahead and complete the
6273 * startup sequence */
6274 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275 /* Enable the adapter - sends HOST_COMPLETE */
6276 if (ipw2100_enable_adapter(priv)) {
6277 printk(KERN_WARNING DRV_NAME
6278 ": %s: failed in call to enable adapter.\n",
6279 priv->net_dev->name);
6280 ipw2100_hw_stop_adapter(priv);
6281 err = -EIO;
6282 goto fail_unlock;
6283 }
6284
6285 /* Start a scan . . . */
6286 ipw2100_set_scan_options(priv);
6287 ipw2100_start_scan(priv);
6288 }
6289
6290 IPW_DEBUG_INFO("exit\n");
6291
6292 priv->status |= STATUS_INITIALIZED;
6293
6294 mutex_unlock(&priv->action_mutex);
6295 out:
6296 return err;
6297
6298 fail_unlock:
6299 mutex_unlock(&priv->action_mutex);
6300 fail:
6301 if (dev) {
6302 if (registered >= 2)
6303 unregister_netdev(dev);
6304
6305 if (registered) {
6306 wiphy_unregister(priv->ieee->wdev.wiphy);
6307 kfree(priv->ieee->bg_band.channels);
6308 }
6309
6310 ipw2100_hw_stop_adapter(priv);
6311
6312 ipw2100_disable_interrupts(priv);
6313
6314 if (dev->irq)
6315 free_irq(dev->irq, priv);
6316
6317 ipw2100_kill_works(priv);
6318
6319 /* These are safe to call even if they weren't allocated */
6320 ipw2100_queues_free(priv);
6321 sysfs_remove_group(&pci_dev->dev.kobj,
6322 &ipw2100_attribute_group);
6323
6324 free_libipw(dev, 0);
6325 }
6326
6327 pci_iounmap(pci_dev, ioaddr);
6328
6329 pci_release_regions(pci_dev);
6330 pci_disable_device(pci_dev);
6331 goto out;
6332 }
6333
ipw2100_pci_remove_one(struct pci_dev * pci_dev)6334 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6335 {
6336 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6337 struct net_device *dev = priv->net_dev;
6338
6339 mutex_lock(&priv->action_mutex);
6340
6341 priv->status &= ~STATUS_INITIALIZED;
6342
6343 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6344
6345 #ifdef CONFIG_PM
6346 if (ipw2100_firmware.version)
6347 ipw2100_release_firmware(priv, &ipw2100_firmware);
6348 #endif
6349 /* Take down the hardware */
6350 ipw2100_down(priv);
6351
6352 /* Release the mutex so that the network subsystem can
6353 * complete any needed calls into the driver... */
6354 mutex_unlock(&priv->action_mutex);
6355
6356 /* Unregister the device first - this results in close()
6357 * being called if the device is open. If we free storage
6358 * first, then close() will crash.
6359 * FIXME: remove the comment above. */
6360 unregister_netdev(dev);
6361
6362 ipw2100_kill_works(priv);
6363
6364 ipw2100_queues_free(priv);
6365
6366 /* Free potential debugging firmware snapshot */
6367 ipw2100_snapshot_free(priv);
6368
6369 free_irq(dev->irq, priv);
6370
6371 pci_iounmap(pci_dev, priv->ioaddr);
6372
6373 /* wiphy_unregister needs to be here, before free_libipw */
6374 wiphy_unregister(priv->ieee->wdev.wiphy);
6375 kfree(priv->ieee->bg_band.channels);
6376 free_libipw(dev, 0);
6377
6378 pci_release_regions(pci_dev);
6379 pci_disable_device(pci_dev);
6380
6381 IPW_DEBUG_INFO("exit\n");
6382 }
6383
ipw2100_suspend(struct device * dev_d)6384 static int __maybe_unused ipw2100_suspend(struct device *dev_d)
6385 {
6386 struct ipw2100_priv *priv = dev_get_drvdata(dev_d);
6387 struct net_device *dev = priv->net_dev;
6388
6389 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6390
6391 mutex_lock(&priv->action_mutex);
6392 if (priv->status & STATUS_INITIALIZED) {
6393 /* Take down the device; powers it off, etc. */
6394 ipw2100_down(priv);
6395 }
6396
6397 /* Remove the PRESENT state of the device */
6398 netif_device_detach(dev);
6399
6400 priv->suspend_at = ktime_get_boottime_seconds();
6401
6402 mutex_unlock(&priv->action_mutex);
6403
6404 return 0;
6405 }
6406
ipw2100_resume(struct device * dev_d)6407 static int __maybe_unused ipw2100_resume(struct device *dev_d)
6408 {
6409 struct pci_dev *pci_dev = to_pci_dev(dev_d);
6410 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6411 struct net_device *dev = priv->net_dev;
6412 u32 val;
6413
6414 if (IPW2100_PM_DISABLED)
6415 return 0;
6416
6417 mutex_lock(&priv->action_mutex);
6418
6419 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6420
6421 /*
6422 * Suspend/Resume resets the PCI configuration space, so we have to
6423 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6424 * from interfering with C3 CPU state. pci_restore_state won't help
6425 * here since it only restores the first 64 bytes pci config header.
6426 */
6427 pci_read_config_dword(pci_dev, 0x40, &val);
6428 if ((val & 0x0000ff00) != 0)
6429 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6430
6431 /* Set the device back into the PRESENT state; this will also wake
6432 * the queue of needed */
6433 netif_device_attach(dev);
6434
6435 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
6436
6437 /* Bring the device back up */
6438 if (!(priv->status & STATUS_RF_KILL_SW))
6439 ipw2100_up(priv, 0);
6440
6441 mutex_unlock(&priv->action_mutex);
6442
6443 return 0;
6444 }
6445
ipw2100_shutdown(struct pci_dev * pci_dev)6446 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6447 {
6448 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449
6450 /* Take down the device; powers it off, etc. */
6451 ipw2100_down(priv);
6452
6453 pci_disable_device(pci_dev);
6454 }
6455
6456 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6457
6458 static const struct pci_device_id ipw2100_pci_id_table[] = {
6459 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6460 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6461 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6462 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6463 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6464 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6465 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6466 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6467 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6468 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6469 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6470 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6471 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6472
6473 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6474 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6476 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6477 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6478
6479 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6480 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6481 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6482 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6483 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6484 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6485 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6486
6487 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6488
6489 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6490 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6491 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6492 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6494 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6495 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6496
6497 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6498 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6499 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6502 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6503
6504 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6505 {0,},
6506 };
6507
6508 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6509
6510 static SIMPLE_DEV_PM_OPS(ipw2100_pm_ops, ipw2100_suspend, ipw2100_resume);
6511
6512 static struct pci_driver ipw2100_pci_driver = {
6513 .name = DRV_NAME,
6514 .id_table = ipw2100_pci_id_table,
6515 .probe = ipw2100_pci_init_one,
6516 .remove = ipw2100_pci_remove_one,
6517 .driver.pm = &ipw2100_pm_ops,
6518 .shutdown = ipw2100_shutdown,
6519 };
6520
6521 /*
6522 * Initialize the ipw2100 driver/module
6523 *
6524 * @returns 0 if ok, < 0 errno node con error.
6525 *
6526 * Note: we cannot init the /proc stuff until the PCI driver is there,
6527 * or we risk an unlikely race condition on someone accessing
6528 * uninitialized data in the PCI dev struct through /proc.
6529 */
ipw2100_init(void)6530 static int __init ipw2100_init(void)
6531 {
6532 int ret;
6533
6534 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6535 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6536
6537 cpu_latency_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
6538
6539 ret = pci_register_driver(&ipw2100_pci_driver);
6540 if (ret)
6541 goto out;
6542
6543 #ifdef CONFIG_IPW2100_DEBUG
6544 ipw2100_debug_level = debug;
6545 ret = driver_create_file(&ipw2100_pci_driver.driver,
6546 &driver_attr_debug_level);
6547 #endif
6548
6549 out:
6550 return ret;
6551 }
6552
6553 /*
6554 * Cleanup ipw2100 driver registration
6555 */
ipw2100_exit(void)6556 static void __exit ipw2100_exit(void)
6557 {
6558 /* FIXME: IPG: check that we have no instances of the devices open */
6559 #ifdef CONFIG_IPW2100_DEBUG
6560 driver_remove_file(&ipw2100_pci_driver.driver,
6561 &driver_attr_debug_level);
6562 #endif
6563 pci_unregister_driver(&ipw2100_pci_driver);
6564 cpu_latency_qos_remove_request(&ipw2100_pm_qos_req);
6565 }
6566
6567 module_init(ipw2100_init);
6568 module_exit(ipw2100_exit);
6569
ipw2100_wx_get_name(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6570 static int ipw2100_wx_get_name(struct net_device *dev,
6571 struct iw_request_info *info,
6572 union iwreq_data *wrqu, char *extra)
6573 {
6574 /*
6575 * This can be called at any time. No action lock required
6576 */
6577
6578 struct ipw2100_priv *priv = libipw_priv(dev);
6579 if (!(priv->status & STATUS_ASSOCIATED))
6580 strcpy(wrqu->name, "unassociated");
6581 else
6582 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6583
6584 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6585 return 0;
6586 }
6587
ipw2100_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6588 static int ipw2100_wx_set_freq(struct net_device *dev,
6589 struct iw_request_info *info,
6590 union iwreq_data *wrqu, char *extra)
6591 {
6592 struct ipw2100_priv *priv = libipw_priv(dev);
6593 struct iw_freq *fwrq = &wrqu->freq;
6594 int err = 0;
6595
6596 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6597 return -EOPNOTSUPP;
6598
6599 mutex_lock(&priv->action_mutex);
6600 if (!(priv->status & STATUS_INITIALIZED)) {
6601 err = -EIO;
6602 goto done;
6603 }
6604
6605 /* if setting by freq convert to channel */
6606 if (fwrq->e == 1) {
6607 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6608 int f = fwrq->m / 100000;
6609 int c = 0;
6610
6611 while ((c < REG_MAX_CHANNEL) &&
6612 (f != ipw2100_frequencies[c]))
6613 c++;
6614
6615 /* hack to fall through */
6616 fwrq->e = 0;
6617 fwrq->m = c + 1;
6618 }
6619 }
6620
6621 if (fwrq->e > 0 || fwrq->m > 1000) {
6622 err = -EOPNOTSUPP;
6623 goto done;
6624 } else { /* Set the channel */
6625 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6626 err = ipw2100_set_channel(priv, fwrq->m, 0);
6627 }
6628
6629 done:
6630 mutex_unlock(&priv->action_mutex);
6631 return err;
6632 }
6633
ipw2100_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6634 static int ipw2100_wx_get_freq(struct net_device *dev,
6635 struct iw_request_info *info,
6636 union iwreq_data *wrqu, char *extra)
6637 {
6638 /*
6639 * This can be called at any time. No action lock required
6640 */
6641
6642 struct ipw2100_priv *priv = libipw_priv(dev);
6643
6644 wrqu->freq.e = 0;
6645
6646 /* If we are associated, trying to associate, or have a statically
6647 * configured CHANNEL then return that; otherwise return ANY */
6648 if (priv->config & CFG_STATIC_CHANNEL ||
6649 priv->status & STATUS_ASSOCIATED)
6650 wrqu->freq.m = priv->channel;
6651 else
6652 wrqu->freq.m = 0;
6653
6654 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6655 return 0;
6656
6657 }
6658
ipw2100_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6659 static int ipw2100_wx_set_mode(struct net_device *dev,
6660 struct iw_request_info *info,
6661 union iwreq_data *wrqu, char *extra)
6662 {
6663 struct ipw2100_priv *priv = libipw_priv(dev);
6664 int err = 0;
6665
6666 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6667
6668 if (wrqu->mode == priv->ieee->iw_mode)
6669 return 0;
6670
6671 mutex_lock(&priv->action_mutex);
6672 if (!(priv->status & STATUS_INITIALIZED)) {
6673 err = -EIO;
6674 goto done;
6675 }
6676
6677 switch (wrqu->mode) {
6678 #ifdef CONFIG_IPW2100_MONITOR
6679 case IW_MODE_MONITOR:
6680 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6681 break;
6682 #endif /* CONFIG_IPW2100_MONITOR */
6683 case IW_MODE_ADHOC:
6684 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6685 break;
6686 case IW_MODE_INFRA:
6687 case IW_MODE_AUTO:
6688 default:
6689 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6690 break;
6691 }
6692
6693 done:
6694 mutex_unlock(&priv->action_mutex);
6695 return err;
6696 }
6697
ipw2100_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6698 static int ipw2100_wx_get_mode(struct net_device *dev,
6699 struct iw_request_info *info,
6700 union iwreq_data *wrqu, char *extra)
6701 {
6702 /*
6703 * This can be called at any time. No action lock required
6704 */
6705
6706 struct ipw2100_priv *priv = libipw_priv(dev);
6707
6708 wrqu->mode = priv->ieee->iw_mode;
6709 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6710
6711 return 0;
6712 }
6713
6714 #define POWER_MODES 5
6715
6716 /* Values are in microsecond */
6717 static const s32 timeout_duration[POWER_MODES] = {
6718 350000,
6719 250000,
6720 75000,
6721 37000,
6722 25000,
6723 };
6724
6725 static const s32 period_duration[POWER_MODES] = {
6726 400000,
6727 700000,
6728 1000000,
6729 1000000,
6730 1000000
6731 };
6732
ipw2100_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6733 static int ipw2100_wx_get_range(struct net_device *dev,
6734 struct iw_request_info *info,
6735 union iwreq_data *wrqu, char *extra)
6736 {
6737 /*
6738 * This can be called at any time. No action lock required
6739 */
6740
6741 struct ipw2100_priv *priv = libipw_priv(dev);
6742 struct iw_range *range = (struct iw_range *)extra;
6743 u16 val;
6744 int i, level;
6745
6746 wrqu->data.length = sizeof(*range);
6747 memset(range, 0, sizeof(*range));
6748
6749 /* Let's try to keep this struct in the same order as in
6750 * linux/include/wireless.h
6751 */
6752
6753 /* TODO: See what values we can set, and remove the ones we can't
6754 * set, or fill them with some default data.
6755 */
6756
6757 /* ~5 Mb/s real (802.11b) */
6758 range->throughput = 5 * 1000 * 1000;
6759
6760 // range->sensitivity; /* signal level threshold range */
6761
6762 range->max_qual.qual = 100;
6763 /* TODO: Find real max RSSI and stick here */
6764 range->max_qual.level = 0;
6765 range->max_qual.noise = 0;
6766 range->max_qual.updated = 7; /* Updated all three */
6767
6768 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6769 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6770 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6771 range->avg_qual.noise = 0;
6772 range->avg_qual.updated = 7; /* Updated all three */
6773
6774 range->num_bitrates = RATE_COUNT;
6775
6776 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6777 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6778 }
6779
6780 range->min_rts = MIN_RTS_THRESHOLD;
6781 range->max_rts = MAX_RTS_THRESHOLD;
6782 range->min_frag = MIN_FRAG_THRESHOLD;
6783 range->max_frag = MAX_FRAG_THRESHOLD;
6784
6785 range->min_pmp = period_duration[0]; /* Minimal PM period */
6786 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6787 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6788 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6789
6790 /* How to decode max/min PM period */
6791 range->pmp_flags = IW_POWER_PERIOD;
6792 /* How to decode max/min PM period */
6793 range->pmt_flags = IW_POWER_TIMEOUT;
6794 /* What PM options are supported */
6795 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6796
6797 range->encoding_size[0] = 5;
6798 range->encoding_size[1] = 13; /* Different token sizes */
6799 range->num_encoding_sizes = 2; /* Number of entry in the list */
6800 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6801 // range->encoding_login_index; /* token index for login token */
6802
6803 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6804 range->txpower_capa = IW_TXPOW_DBM;
6805 range->num_txpower = IW_MAX_TXPOWER;
6806 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6807 i < IW_MAX_TXPOWER;
6808 i++, level -=
6809 ((IPW_TX_POWER_MAX_DBM -
6810 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6811 range->txpower[i] = level / 16;
6812 } else {
6813 range->txpower_capa = 0;
6814 range->num_txpower = 0;
6815 }
6816
6817 /* Set the Wireless Extension versions */
6818 range->we_version_compiled = WIRELESS_EXT;
6819 range->we_version_source = 18;
6820
6821 // range->retry_capa; /* What retry options are supported */
6822 // range->retry_flags; /* How to decode max/min retry limit */
6823 // range->r_time_flags; /* How to decode max/min retry life */
6824 // range->min_retry; /* Minimal number of retries */
6825 // range->max_retry; /* Maximal number of retries */
6826 // range->min_r_time; /* Minimal retry lifetime */
6827 // range->max_r_time; /* Maximal retry lifetime */
6828
6829 range->num_channels = FREQ_COUNT;
6830
6831 val = 0;
6832 for (i = 0; i < FREQ_COUNT; i++) {
6833 // TODO: Include only legal frequencies for some countries
6834 // if (local->channel_mask & (1 << i)) {
6835 range->freq[val].i = i + 1;
6836 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6837 range->freq[val].e = 1;
6838 val++;
6839 // }
6840 if (val == IW_MAX_FREQUENCIES)
6841 break;
6842 }
6843 range->num_frequency = val;
6844
6845 /* Event capability (kernel + driver) */
6846 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6847 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6848 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6849
6850 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6851 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6852
6853 IPW_DEBUG_WX("GET Range\n");
6854
6855 return 0;
6856 }
6857
ipw2100_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6858 static int ipw2100_wx_set_wap(struct net_device *dev,
6859 struct iw_request_info *info,
6860 union iwreq_data *wrqu, char *extra)
6861 {
6862 struct ipw2100_priv *priv = libipw_priv(dev);
6863 int err = 0;
6864
6865 // sanity checks
6866 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6867 return -EINVAL;
6868
6869 mutex_lock(&priv->action_mutex);
6870 if (!(priv->status & STATUS_INITIALIZED)) {
6871 err = -EIO;
6872 goto done;
6873 }
6874
6875 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6876 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6877 /* we disable mandatory BSSID association */
6878 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6879 priv->config &= ~CFG_STATIC_BSSID;
6880 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6881 goto done;
6882 }
6883
6884 priv->config |= CFG_STATIC_BSSID;
6885 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6886
6887 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6888
6889 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6890
6891 done:
6892 mutex_unlock(&priv->action_mutex);
6893 return err;
6894 }
6895
ipw2100_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6896 static int ipw2100_wx_get_wap(struct net_device *dev,
6897 struct iw_request_info *info,
6898 union iwreq_data *wrqu, char *extra)
6899 {
6900 /*
6901 * This can be called at any time. No action lock required
6902 */
6903
6904 struct ipw2100_priv *priv = libipw_priv(dev);
6905
6906 /* If we are associated, trying to associate, or have a statically
6907 * configured BSSID then return that; otherwise return ANY */
6908 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6909 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6910 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6911 } else
6912 eth_zero_addr(wrqu->ap_addr.sa_data);
6913
6914 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6915 return 0;
6916 }
6917
ipw2100_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6918 static int ipw2100_wx_set_essid(struct net_device *dev,
6919 struct iw_request_info *info,
6920 union iwreq_data *wrqu, char *extra)
6921 {
6922 struct ipw2100_priv *priv = libipw_priv(dev);
6923 char *essid = ""; /* ANY */
6924 int length = 0;
6925 int err = 0;
6926
6927 mutex_lock(&priv->action_mutex);
6928 if (!(priv->status & STATUS_INITIALIZED)) {
6929 err = -EIO;
6930 goto done;
6931 }
6932
6933 if (wrqu->essid.flags && wrqu->essid.length) {
6934 length = wrqu->essid.length;
6935 essid = extra;
6936 }
6937
6938 if (length == 0) {
6939 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6940 priv->config &= ~CFG_STATIC_ESSID;
6941 err = ipw2100_set_essid(priv, NULL, 0, 0);
6942 goto done;
6943 }
6944
6945 length = min(length, IW_ESSID_MAX_SIZE);
6946
6947 priv->config |= CFG_STATIC_ESSID;
6948
6949 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6950 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6951 err = 0;
6952 goto done;
6953 }
6954
6955 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
6956
6957 priv->essid_len = length;
6958 memcpy(priv->essid, essid, priv->essid_len);
6959
6960 err = ipw2100_set_essid(priv, essid, length, 0);
6961
6962 done:
6963 mutex_unlock(&priv->action_mutex);
6964 return err;
6965 }
6966
ipw2100_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6967 static int ipw2100_wx_get_essid(struct net_device *dev,
6968 struct iw_request_info *info,
6969 union iwreq_data *wrqu, char *extra)
6970 {
6971 /*
6972 * This can be called at any time. No action lock required
6973 */
6974
6975 struct ipw2100_priv *priv = libipw_priv(dev);
6976
6977 /* If we are associated, trying to associate, or have a statically
6978 * configured ESSID then return that; otherwise return ANY */
6979 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6980 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
6981 priv->essid_len, priv->essid);
6982 memcpy(extra, priv->essid, priv->essid_len);
6983 wrqu->essid.length = priv->essid_len;
6984 wrqu->essid.flags = 1; /* active */
6985 } else {
6986 IPW_DEBUG_WX("Getting essid: ANY\n");
6987 wrqu->essid.length = 0;
6988 wrqu->essid.flags = 0; /* active */
6989 }
6990
6991 return 0;
6992 }
6993
ipw2100_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6994 static int ipw2100_wx_set_nick(struct net_device *dev,
6995 struct iw_request_info *info,
6996 union iwreq_data *wrqu, char *extra)
6997 {
6998 /*
6999 * This can be called at any time. No action lock required
7000 */
7001
7002 struct ipw2100_priv *priv = libipw_priv(dev);
7003
7004 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7005 return -E2BIG;
7006
7007 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7008 memset(priv->nick, 0, sizeof(priv->nick));
7009 memcpy(priv->nick, extra, wrqu->data.length);
7010
7011 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7012
7013 return 0;
7014 }
7015
ipw2100_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7016 static int ipw2100_wx_get_nick(struct net_device *dev,
7017 struct iw_request_info *info,
7018 union iwreq_data *wrqu, char *extra)
7019 {
7020 /*
7021 * This can be called at any time. No action lock required
7022 */
7023
7024 struct ipw2100_priv *priv = libipw_priv(dev);
7025
7026 wrqu->data.length = strlen(priv->nick);
7027 memcpy(extra, priv->nick, wrqu->data.length);
7028 wrqu->data.flags = 1; /* active */
7029
7030 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7031
7032 return 0;
7033 }
7034
ipw2100_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7035 static int ipw2100_wx_set_rate(struct net_device *dev,
7036 struct iw_request_info *info,
7037 union iwreq_data *wrqu, char *extra)
7038 {
7039 struct ipw2100_priv *priv = libipw_priv(dev);
7040 u32 target_rate = wrqu->bitrate.value;
7041 u32 rate;
7042 int err = 0;
7043
7044 mutex_lock(&priv->action_mutex);
7045 if (!(priv->status & STATUS_INITIALIZED)) {
7046 err = -EIO;
7047 goto done;
7048 }
7049
7050 rate = 0;
7051
7052 if (target_rate == 1000000 ||
7053 (!wrqu->bitrate.fixed && target_rate > 1000000))
7054 rate |= TX_RATE_1_MBIT;
7055 if (target_rate == 2000000 ||
7056 (!wrqu->bitrate.fixed && target_rate > 2000000))
7057 rate |= TX_RATE_2_MBIT;
7058 if (target_rate == 5500000 ||
7059 (!wrqu->bitrate.fixed && target_rate > 5500000))
7060 rate |= TX_RATE_5_5_MBIT;
7061 if (target_rate == 11000000 ||
7062 (!wrqu->bitrate.fixed && target_rate > 11000000))
7063 rate |= TX_RATE_11_MBIT;
7064 if (rate == 0)
7065 rate = DEFAULT_TX_RATES;
7066
7067 err = ipw2100_set_tx_rates(priv, rate, 0);
7068
7069 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7070 done:
7071 mutex_unlock(&priv->action_mutex);
7072 return err;
7073 }
7074
ipw2100_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7075 static int ipw2100_wx_get_rate(struct net_device *dev,
7076 struct iw_request_info *info,
7077 union iwreq_data *wrqu, char *extra)
7078 {
7079 struct ipw2100_priv *priv = libipw_priv(dev);
7080 int val;
7081 unsigned int len = sizeof(val);
7082 int err = 0;
7083
7084 if (!(priv->status & STATUS_ENABLED) ||
7085 priv->status & STATUS_RF_KILL_MASK ||
7086 !(priv->status & STATUS_ASSOCIATED)) {
7087 wrqu->bitrate.value = 0;
7088 return 0;
7089 }
7090
7091 mutex_lock(&priv->action_mutex);
7092 if (!(priv->status & STATUS_INITIALIZED)) {
7093 err = -EIO;
7094 goto done;
7095 }
7096
7097 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7098 if (err) {
7099 IPW_DEBUG_WX("failed querying ordinals.\n");
7100 goto done;
7101 }
7102
7103 switch (val & TX_RATE_MASK) {
7104 case TX_RATE_1_MBIT:
7105 wrqu->bitrate.value = 1000000;
7106 break;
7107 case TX_RATE_2_MBIT:
7108 wrqu->bitrate.value = 2000000;
7109 break;
7110 case TX_RATE_5_5_MBIT:
7111 wrqu->bitrate.value = 5500000;
7112 break;
7113 case TX_RATE_11_MBIT:
7114 wrqu->bitrate.value = 11000000;
7115 break;
7116 default:
7117 wrqu->bitrate.value = 0;
7118 }
7119
7120 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7121
7122 done:
7123 mutex_unlock(&priv->action_mutex);
7124 return err;
7125 }
7126
ipw2100_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7127 static int ipw2100_wx_set_rts(struct net_device *dev,
7128 struct iw_request_info *info,
7129 union iwreq_data *wrqu, char *extra)
7130 {
7131 struct ipw2100_priv *priv = libipw_priv(dev);
7132 int value, err;
7133
7134 /* Auto RTS not yet supported */
7135 if (wrqu->rts.fixed == 0)
7136 return -EINVAL;
7137
7138 mutex_lock(&priv->action_mutex);
7139 if (!(priv->status & STATUS_INITIALIZED)) {
7140 err = -EIO;
7141 goto done;
7142 }
7143
7144 if (wrqu->rts.disabled)
7145 value = priv->rts_threshold | RTS_DISABLED;
7146 else {
7147 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7148 err = -EINVAL;
7149 goto done;
7150 }
7151 value = wrqu->rts.value;
7152 }
7153
7154 err = ipw2100_set_rts_threshold(priv, value);
7155
7156 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7157 done:
7158 mutex_unlock(&priv->action_mutex);
7159 return err;
7160 }
7161
ipw2100_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7162 static int ipw2100_wx_get_rts(struct net_device *dev,
7163 struct iw_request_info *info,
7164 union iwreq_data *wrqu, char *extra)
7165 {
7166 /*
7167 * This can be called at any time. No action lock required
7168 */
7169
7170 struct ipw2100_priv *priv = libipw_priv(dev);
7171
7172 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7173 wrqu->rts.fixed = 1; /* no auto select */
7174
7175 /* If RTS is set to the default value, then it is disabled */
7176 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7177
7178 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7179
7180 return 0;
7181 }
7182
ipw2100_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7183 static int ipw2100_wx_set_txpow(struct net_device *dev,
7184 struct iw_request_info *info,
7185 union iwreq_data *wrqu, char *extra)
7186 {
7187 struct ipw2100_priv *priv = libipw_priv(dev);
7188 int err = 0, value;
7189
7190 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7191 return -EINPROGRESS;
7192
7193 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7194 return 0;
7195
7196 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7197 return -EINVAL;
7198
7199 if (wrqu->txpower.fixed == 0)
7200 value = IPW_TX_POWER_DEFAULT;
7201 else {
7202 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7203 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7204 return -EINVAL;
7205
7206 value = wrqu->txpower.value;
7207 }
7208
7209 mutex_lock(&priv->action_mutex);
7210 if (!(priv->status & STATUS_INITIALIZED)) {
7211 err = -EIO;
7212 goto done;
7213 }
7214
7215 err = ipw2100_set_tx_power(priv, value);
7216
7217 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7218
7219 done:
7220 mutex_unlock(&priv->action_mutex);
7221 return err;
7222 }
7223
ipw2100_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7224 static int ipw2100_wx_get_txpow(struct net_device *dev,
7225 struct iw_request_info *info,
7226 union iwreq_data *wrqu, char *extra)
7227 {
7228 /*
7229 * This can be called at any time. No action lock required
7230 */
7231
7232 struct ipw2100_priv *priv = libipw_priv(dev);
7233
7234 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7235
7236 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7237 wrqu->txpower.fixed = 0;
7238 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7239 } else {
7240 wrqu->txpower.fixed = 1;
7241 wrqu->txpower.value = priv->tx_power;
7242 }
7243
7244 wrqu->txpower.flags = IW_TXPOW_DBM;
7245
7246 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7247
7248 return 0;
7249 }
7250
ipw2100_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7251 static int ipw2100_wx_set_frag(struct net_device *dev,
7252 struct iw_request_info *info,
7253 union iwreq_data *wrqu, char *extra)
7254 {
7255 /*
7256 * This can be called at any time. No action lock required
7257 */
7258
7259 struct ipw2100_priv *priv = libipw_priv(dev);
7260
7261 if (!wrqu->frag.fixed)
7262 return -EINVAL;
7263
7264 if (wrqu->frag.disabled) {
7265 priv->frag_threshold |= FRAG_DISABLED;
7266 priv->ieee->fts = DEFAULT_FTS;
7267 } else {
7268 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7269 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7270 return -EINVAL;
7271
7272 priv->ieee->fts = wrqu->frag.value & ~0x1;
7273 priv->frag_threshold = priv->ieee->fts;
7274 }
7275
7276 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7277
7278 return 0;
7279 }
7280
ipw2100_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7281 static int ipw2100_wx_get_frag(struct net_device *dev,
7282 struct iw_request_info *info,
7283 union iwreq_data *wrqu, char *extra)
7284 {
7285 /*
7286 * This can be called at any time. No action lock required
7287 */
7288
7289 struct ipw2100_priv *priv = libipw_priv(dev);
7290 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7291 wrqu->frag.fixed = 0; /* no auto select */
7292 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7293
7294 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7295
7296 return 0;
7297 }
7298
ipw2100_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7299 static int ipw2100_wx_set_retry(struct net_device *dev,
7300 struct iw_request_info *info,
7301 union iwreq_data *wrqu, char *extra)
7302 {
7303 struct ipw2100_priv *priv = libipw_priv(dev);
7304 int err = 0;
7305
7306 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7307 return -EINVAL;
7308
7309 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7310 return 0;
7311
7312 mutex_lock(&priv->action_mutex);
7313 if (!(priv->status & STATUS_INITIALIZED)) {
7314 err = -EIO;
7315 goto done;
7316 }
7317
7318 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7319 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7320 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7321 wrqu->retry.value);
7322 goto done;
7323 }
7324
7325 if (wrqu->retry.flags & IW_RETRY_LONG) {
7326 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7327 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7328 wrqu->retry.value);
7329 goto done;
7330 }
7331
7332 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7333 if (!err)
7334 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7335
7336 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7337
7338 done:
7339 mutex_unlock(&priv->action_mutex);
7340 return err;
7341 }
7342
ipw2100_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7343 static int ipw2100_wx_get_retry(struct net_device *dev,
7344 struct iw_request_info *info,
7345 union iwreq_data *wrqu, char *extra)
7346 {
7347 /*
7348 * This can be called at any time. No action lock required
7349 */
7350
7351 struct ipw2100_priv *priv = libipw_priv(dev);
7352
7353 wrqu->retry.disabled = 0; /* can't be disabled */
7354
7355 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7356 return -EINVAL;
7357
7358 if (wrqu->retry.flags & IW_RETRY_LONG) {
7359 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7360 wrqu->retry.value = priv->long_retry_limit;
7361 } else {
7362 wrqu->retry.flags =
7363 (priv->short_retry_limit !=
7364 priv->long_retry_limit) ?
7365 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7366
7367 wrqu->retry.value = priv->short_retry_limit;
7368 }
7369
7370 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7371
7372 return 0;
7373 }
7374
ipw2100_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7375 static int ipw2100_wx_set_scan(struct net_device *dev,
7376 struct iw_request_info *info,
7377 union iwreq_data *wrqu, char *extra)
7378 {
7379 struct ipw2100_priv *priv = libipw_priv(dev);
7380 int err = 0;
7381
7382 mutex_lock(&priv->action_mutex);
7383 if (!(priv->status & STATUS_INITIALIZED)) {
7384 err = -EIO;
7385 goto done;
7386 }
7387
7388 IPW_DEBUG_WX("Initiating scan...\n");
7389
7390 priv->user_requested_scan = 1;
7391 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7392 IPW_DEBUG_WX("Start scan failed.\n");
7393
7394 /* TODO: Mark a scan as pending so when hardware initialized
7395 * a scan starts */
7396 }
7397
7398 done:
7399 mutex_unlock(&priv->action_mutex);
7400 return err;
7401 }
7402
ipw2100_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7403 static int ipw2100_wx_get_scan(struct net_device *dev,
7404 struct iw_request_info *info,
7405 union iwreq_data *wrqu, char *extra)
7406 {
7407 /*
7408 * This can be called at any time. No action lock required
7409 */
7410
7411 struct ipw2100_priv *priv = libipw_priv(dev);
7412 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7413 }
7414
7415 /*
7416 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7417 */
ipw2100_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7418 static int ipw2100_wx_set_encode(struct net_device *dev,
7419 struct iw_request_info *info,
7420 union iwreq_data *wrqu, char *key)
7421 {
7422 /*
7423 * No check of STATUS_INITIALIZED required
7424 */
7425
7426 struct ipw2100_priv *priv = libipw_priv(dev);
7427 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7428 }
7429
ipw2100_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)7430 static int ipw2100_wx_get_encode(struct net_device *dev,
7431 struct iw_request_info *info,
7432 union iwreq_data *wrqu, char *key)
7433 {
7434 /*
7435 * This can be called at any time. No action lock required
7436 */
7437
7438 struct ipw2100_priv *priv = libipw_priv(dev);
7439 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7440 }
7441
ipw2100_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7442 static int ipw2100_wx_set_power(struct net_device *dev,
7443 struct iw_request_info *info,
7444 union iwreq_data *wrqu, char *extra)
7445 {
7446 struct ipw2100_priv *priv = libipw_priv(dev);
7447 int err = 0;
7448
7449 mutex_lock(&priv->action_mutex);
7450 if (!(priv->status & STATUS_INITIALIZED)) {
7451 err = -EIO;
7452 goto done;
7453 }
7454
7455 if (wrqu->power.disabled) {
7456 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7457 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7458 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7459 goto done;
7460 }
7461
7462 switch (wrqu->power.flags & IW_POWER_MODE) {
7463 case IW_POWER_ON: /* If not specified */
7464 case IW_POWER_MODE: /* If set all mask */
7465 case IW_POWER_ALL_R: /* If explicitly state all */
7466 break;
7467 default: /* Otherwise we don't support it */
7468 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7469 wrqu->power.flags);
7470 err = -EOPNOTSUPP;
7471 goto done;
7472 }
7473
7474 /* If the user hasn't specified a power management mode yet, default
7475 * to BATTERY */
7476 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7477 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7478
7479 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7480
7481 done:
7482 mutex_unlock(&priv->action_mutex);
7483 return err;
7484
7485 }
7486
ipw2100_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7487 static int ipw2100_wx_get_power(struct net_device *dev,
7488 struct iw_request_info *info,
7489 union iwreq_data *wrqu, char *extra)
7490 {
7491 /*
7492 * This can be called at any time. No action lock required
7493 */
7494
7495 struct ipw2100_priv *priv = libipw_priv(dev);
7496
7497 if (!(priv->power_mode & IPW_POWER_ENABLED))
7498 wrqu->power.disabled = 1;
7499 else {
7500 wrqu->power.disabled = 0;
7501 wrqu->power.flags = 0;
7502 }
7503
7504 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7505
7506 return 0;
7507 }
7508
7509 /*
7510 * WE-18 WPA support
7511 */
7512
7513 /* SIOCSIWGENIE */
ipw2100_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7514 static int ipw2100_wx_set_genie(struct net_device *dev,
7515 struct iw_request_info *info,
7516 union iwreq_data *wrqu, char *extra)
7517 {
7518
7519 struct ipw2100_priv *priv = libipw_priv(dev);
7520 struct libipw_device *ieee = priv->ieee;
7521 u8 *buf;
7522
7523 if (!ieee->wpa_enabled)
7524 return -EOPNOTSUPP;
7525
7526 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7527 (wrqu->data.length && extra == NULL))
7528 return -EINVAL;
7529
7530 if (wrqu->data.length) {
7531 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7532 if (buf == NULL)
7533 return -ENOMEM;
7534
7535 kfree(ieee->wpa_ie);
7536 ieee->wpa_ie = buf;
7537 ieee->wpa_ie_len = wrqu->data.length;
7538 } else {
7539 kfree(ieee->wpa_ie);
7540 ieee->wpa_ie = NULL;
7541 ieee->wpa_ie_len = 0;
7542 }
7543
7544 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7545
7546 return 0;
7547 }
7548
7549 /* SIOCGIWGENIE */
ipw2100_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7550 static int ipw2100_wx_get_genie(struct net_device *dev,
7551 struct iw_request_info *info,
7552 union iwreq_data *wrqu, char *extra)
7553 {
7554 struct ipw2100_priv *priv = libipw_priv(dev);
7555 struct libipw_device *ieee = priv->ieee;
7556
7557 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7558 wrqu->data.length = 0;
7559 return 0;
7560 }
7561
7562 if (wrqu->data.length < ieee->wpa_ie_len)
7563 return -E2BIG;
7564
7565 wrqu->data.length = ieee->wpa_ie_len;
7566 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7567
7568 return 0;
7569 }
7570
7571 /* SIOCSIWAUTH */
ipw2100_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7572 static int ipw2100_wx_set_auth(struct net_device *dev,
7573 struct iw_request_info *info,
7574 union iwreq_data *wrqu, char *extra)
7575 {
7576 struct ipw2100_priv *priv = libipw_priv(dev);
7577 struct libipw_device *ieee = priv->ieee;
7578 struct iw_param *param = &wrqu->param;
7579 struct lib80211_crypt_data *crypt;
7580 unsigned long flags;
7581 int ret = 0;
7582
7583 switch (param->flags & IW_AUTH_INDEX) {
7584 case IW_AUTH_WPA_VERSION:
7585 case IW_AUTH_CIPHER_PAIRWISE:
7586 case IW_AUTH_CIPHER_GROUP:
7587 case IW_AUTH_KEY_MGMT:
7588 /*
7589 * ipw2200 does not use these parameters
7590 */
7591 break;
7592
7593 case IW_AUTH_TKIP_COUNTERMEASURES:
7594 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7595 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7596 break;
7597
7598 flags = crypt->ops->get_flags(crypt->priv);
7599
7600 if (param->value)
7601 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7602 else
7603 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7604
7605 crypt->ops->set_flags(flags, crypt->priv);
7606
7607 break;
7608
7609 case IW_AUTH_DROP_UNENCRYPTED:{
7610 /* HACK:
7611 *
7612 * wpa_supplicant calls set_wpa_enabled when the driver
7613 * is loaded and unloaded, regardless of if WPA is being
7614 * used. No other calls are made which can be used to
7615 * determine if encryption will be used or not prior to
7616 * association being expected. If encryption is not being
7617 * used, drop_unencrypted is set to false, else true -- we
7618 * can use this to determine if the CAP_PRIVACY_ON bit should
7619 * be set.
7620 */
7621 struct libipw_security sec = {
7622 .flags = SEC_ENABLED,
7623 .enabled = param->value,
7624 };
7625 priv->ieee->drop_unencrypted = param->value;
7626 /* We only change SEC_LEVEL for open mode. Others
7627 * are set by ipw_wpa_set_encryption.
7628 */
7629 if (!param->value) {
7630 sec.flags |= SEC_LEVEL;
7631 sec.level = SEC_LEVEL_0;
7632 } else {
7633 sec.flags |= SEC_LEVEL;
7634 sec.level = SEC_LEVEL_1;
7635 }
7636 if (priv->ieee->set_security)
7637 priv->ieee->set_security(priv->ieee->dev, &sec);
7638 break;
7639 }
7640
7641 case IW_AUTH_80211_AUTH_ALG:
7642 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7643 break;
7644
7645 case IW_AUTH_WPA_ENABLED:
7646 ret = ipw2100_wpa_enable(priv, param->value);
7647 break;
7648
7649 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7650 ieee->ieee802_1x = param->value;
7651 break;
7652
7653 //case IW_AUTH_ROAMING_CONTROL:
7654 case IW_AUTH_PRIVACY_INVOKED:
7655 ieee->privacy_invoked = param->value;
7656 break;
7657
7658 default:
7659 return -EOPNOTSUPP;
7660 }
7661 return ret;
7662 }
7663
7664 /* SIOCGIWAUTH */
ipw2100_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7665 static int ipw2100_wx_get_auth(struct net_device *dev,
7666 struct iw_request_info *info,
7667 union iwreq_data *wrqu, char *extra)
7668 {
7669 struct ipw2100_priv *priv = libipw_priv(dev);
7670 struct libipw_device *ieee = priv->ieee;
7671 struct lib80211_crypt_data *crypt;
7672 struct iw_param *param = &wrqu->param;
7673
7674 switch (param->flags & IW_AUTH_INDEX) {
7675 case IW_AUTH_WPA_VERSION:
7676 case IW_AUTH_CIPHER_PAIRWISE:
7677 case IW_AUTH_CIPHER_GROUP:
7678 case IW_AUTH_KEY_MGMT:
7679 /*
7680 * wpa_supplicant will control these internally
7681 */
7682 break;
7683
7684 case IW_AUTH_TKIP_COUNTERMEASURES:
7685 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7686 if (!crypt || !crypt->ops->get_flags) {
7687 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7688 "crypt not set!\n");
7689 break;
7690 }
7691
7692 param->value = (crypt->ops->get_flags(crypt->priv) &
7693 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7694
7695 break;
7696
7697 case IW_AUTH_DROP_UNENCRYPTED:
7698 param->value = ieee->drop_unencrypted;
7699 break;
7700
7701 case IW_AUTH_80211_AUTH_ALG:
7702 param->value = priv->ieee->sec.auth_mode;
7703 break;
7704
7705 case IW_AUTH_WPA_ENABLED:
7706 param->value = ieee->wpa_enabled;
7707 break;
7708
7709 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7710 param->value = ieee->ieee802_1x;
7711 break;
7712
7713 case IW_AUTH_ROAMING_CONTROL:
7714 case IW_AUTH_PRIVACY_INVOKED:
7715 param->value = ieee->privacy_invoked;
7716 break;
7717
7718 default:
7719 return -EOPNOTSUPP;
7720 }
7721 return 0;
7722 }
7723
7724 /* SIOCSIWENCODEEXT */
ipw2100_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7725 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7726 struct iw_request_info *info,
7727 union iwreq_data *wrqu, char *extra)
7728 {
7729 struct ipw2100_priv *priv = libipw_priv(dev);
7730 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7731 }
7732
7733 /* SIOCGIWENCODEEXT */
ipw2100_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7734 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7735 struct iw_request_info *info,
7736 union iwreq_data *wrqu, char *extra)
7737 {
7738 struct ipw2100_priv *priv = libipw_priv(dev);
7739 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7740 }
7741
7742 /* SIOCSIWMLME */
ipw2100_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7743 static int ipw2100_wx_set_mlme(struct net_device *dev,
7744 struct iw_request_info *info,
7745 union iwreq_data *wrqu, char *extra)
7746 {
7747 struct ipw2100_priv *priv = libipw_priv(dev);
7748 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7749
7750 switch (mlme->cmd) {
7751 case IW_MLME_DEAUTH:
7752 // silently ignore
7753 break;
7754
7755 case IW_MLME_DISASSOC:
7756 ipw2100_disassociate_bssid(priv);
7757 break;
7758
7759 default:
7760 return -EOPNOTSUPP;
7761 }
7762 return 0;
7763 }
7764
7765 /*
7766 *
7767 * IWPRIV handlers
7768 *
7769 */
7770 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_promisc(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7771 static int ipw2100_wx_set_promisc(struct net_device *dev,
7772 struct iw_request_info *info,
7773 union iwreq_data *wrqu, char *extra)
7774 {
7775 struct ipw2100_priv *priv = libipw_priv(dev);
7776 int *parms = (int *)extra;
7777 int enable = (parms[0] > 0);
7778 int err = 0;
7779
7780 mutex_lock(&priv->action_mutex);
7781 if (!(priv->status & STATUS_INITIALIZED)) {
7782 err = -EIO;
7783 goto done;
7784 }
7785
7786 if (enable) {
7787 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7788 err = ipw2100_set_channel(priv, parms[1], 0);
7789 goto done;
7790 }
7791 priv->channel = parms[1];
7792 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7793 } else {
7794 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7795 err = ipw2100_switch_mode(priv, priv->last_mode);
7796 }
7797 done:
7798 mutex_unlock(&priv->action_mutex);
7799 return err;
7800 }
7801
ipw2100_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7802 static int ipw2100_wx_reset(struct net_device *dev,
7803 struct iw_request_info *info,
7804 union iwreq_data *wrqu, char *extra)
7805 {
7806 struct ipw2100_priv *priv = libipw_priv(dev);
7807 if (priv->status & STATUS_INITIALIZED)
7808 schedule_reset(priv);
7809 return 0;
7810 }
7811
7812 #endif
7813
ipw2100_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7814 static int ipw2100_wx_set_powermode(struct net_device *dev,
7815 struct iw_request_info *info,
7816 union iwreq_data *wrqu, char *extra)
7817 {
7818 struct ipw2100_priv *priv = libipw_priv(dev);
7819 int err = 0, mode = *(int *)extra;
7820
7821 mutex_lock(&priv->action_mutex);
7822 if (!(priv->status & STATUS_INITIALIZED)) {
7823 err = -EIO;
7824 goto done;
7825 }
7826
7827 if ((mode < 0) || (mode > POWER_MODES))
7828 mode = IPW_POWER_AUTO;
7829
7830 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7831 err = ipw2100_set_power_mode(priv, mode);
7832 done:
7833 mutex_unlock(&priv->action_mutex);
7834 return err;
7835 }
7836
7837 #define MAX_POWER_STRING 80
ipw2100_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7838 static int ipw2100_wx_get_powermode(struct net_device *dev,
7839 struct iw_request_info *info,
7840 union iwreq_data *wrqu, char *extra)
7841 {
7842 /*
7843 * This can be called at any time. No action lock required
7844 */
7845
7846 struct ipw2100_priv *priv = libipw_priv(dev);
7847 int level = IPW_POWER_LEVEL(priv->power_mode);
7848 s32 timeout, period;
7849
7850 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7851 snprintf(extra, MAX_POWER_STRING,
7852 "Power save level: %d (Off)", level);
7853 } else {
7854 switch (level) {
7855 case IPW_POWER_MODE_CAM:
7856 snprintf(extra, MAX_POWER_STRING,
7857 "Power save level: %d (None)", level);
7858 break;
7859 case IPW_POWER_AUTO:
7860 snprintf(extra, MAX_POWER_STRING,
7861 "Power save level: %d (Auto)", level);
7862 break;
7863 default:
7864 timeout = timeout_duration[level - 1] / 1000;
7865 period = period_duration[level - 1] / 1000;
7866 snprintf(extra, MAX_POWER_STRING,
7867 "Power save level: %d "
7868 "(Timeout %dms, Period %dms)",
7869 level, timeout, period);
7870 }
7871 }
7872
7873 wrqu->data.length = strlen(extra) + 1;
7874
7875 return 0;
7876 }
7877
ipw2100_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7878 static int ipw2100_wx_set_preamble(struct net_device *dev,
7879 struct iw_request_info *info,
7880 union iwreq_data *wrqu, char *extra)
7881 {
7882 struct ipw2100_priv *priv = libipw_priv(dev);
7883 int err, mode = *(int *)extra;
7884
7885 mutex_lock(&priv->action_mutex);
7886 if (!(priv->status & STATUS_INITIALIZED)) {
7887 err = -EIO;
7888 goto done;
7889 }
7890
7891 if (mode == 1)
7892 priv->config |= CFG_LONG_PREAMBLE;
7893 else if (mode == 0)
7894 priv->config &= ~CFG_LONG_PREAMBLE;
7895 else {
7896 err = -EINVAL;
7897 goto done;
7898 }
7899
7900 err = ipw2100_system_config(priv, 0);
7901
7902 done:
7903 mutex_unlock(&priv->action_mutex);
7904 return err;
7905 }
7906
ipw2100_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7907 static int ipw2100_wx_get_preamble(struct net_device *dev,
7908 struct iw_request_info *info,
7909 union iwreq_data *wrqu, char *extra)
7910 {
7911 /*
7912 * This can be called at any time. No action lock required
7913 */
7914
7915 struct ipw2100_priv *priv = libipw_priv(dev);
7916
7917 if (priv->config & CFG_LONG_PREAMBLE)
7918 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7919 else
7920 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7921
7922 return 0;
7923 }
7924
7925 #ifdef CONFIG_IPW2100_MONITOR
ipw2100_wx_set_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7926 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7927 struct iw_request_info *info,
7928 union iwreq_data *wrqu, char *extra)
7929 {
7930 struct ipw2100_priv *priv = libipw_priv(dev);
7931 int err, mode = *(int *)extra;
7932
7933 mutex_lock(&priv->action_mutex);
7934 if (!(priv->status & STATUS_INITIALIZED)) {
7935 err = -EIO;
7936 goto done;
7937 }
7938
7939 if (mode == 1)
7940 priv->config |= CFG_CRC_CHECK;
7941 else if (mode == 0)
7942 priv->config &= ~CFG_CRC_CHECK;
7943 else {
7944 err = -EINVAL;
7945 goto done;
7946 }
7947 err = 0;
7948
7949 done:
7950 mutex_unlock(&priv->action_mutex);
7951 return err;
7952 }
7953
ipw2100_wx_get_crc_check(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)7954 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7955 struct iw_request_info *info,
7956 union iwreq_data *wrqu, char *extra)
7957 {
7958 /*
7959 * This can be called at any time. No action lock required
7960 */
7961
7962 struct ipw2100_priv *priv = libipw_priv(dev);
7963
7964 if (priv->config & CFG_CRC_CHECK)
7965 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7966 else
7967 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7968
7969 return 0;
7970 }
7971 #endif /* CONFIG_IPW2100_MONITOR */
7972
7973 static iw_handler ipw2100_wx_handlers[] = {
7974 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
7975 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
7976 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
7977 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
7978 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
7979 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
7980 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
7981 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
7982 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
7983 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
7984 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
7985 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
7986 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
7987 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
7988 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
7989 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
7990 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
7991 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
7992 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
7993 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
7994 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
7995 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
7996 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
7997 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
7998 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
7999 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8000 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8001 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8002 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8003 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8004 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8005 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8006 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8007 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8008 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8009 };
8010
8011 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8012 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8013 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8014 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8015 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8016 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8017 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8018 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8019
8020 static const struct iw_priv_args ipw2100_private_args[] = {
8021
8022 #ifdef CONFIG_IPW2100_MONITOR
8023 {
8024 IPW2100_PRIV_SET_MONITOR,
8025 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8026 {
8027 IPW2100_PRIV_RESET,
8028 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8029 #endif /* CONFIG_IPW2100_MONITOR */
8030
8031 {
8032 IPW2100_PRIV_SET_POWER,
8033 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8034 {
8035 IPW2100_PRIV_GET_POWER,
8036 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8037 "get_power"},
8038 {
8039 IPW2100_PRIV_SET_LONGPREAMBLE,
8040 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8041 {
8042 IPW2100_PRIV_GET_LONGPREAMBLE,
8043 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8044 #ifdef CONFIG_IPW2100_MONITOR
8045 {
8046 IPW2100_PRIV_SET_CRC_CHECK,
8047 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8048 {
8049 IPW2100_PRIV_GET_CRC_CHECK,
8050 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8051 #endif /* CONFIG_IPW2100_MONITOR */
8052 };
8053
8054 static iw_handler ipw2100_private_handler[] = {
8055 #ifdef CONFIG_IPW2100_MONITOR
8056 ipw2100_wx_set_promisc,
8057 ipw2100_wx_reset,
8058 #else /* CONFIG_IPW2100_MONITOR */
8059 NULL,
8060 NULL,
8061 #endif /* CONFIG_IPW2100_MONITOR */
8062 ipw2100_wx_set_powermode,
8063 ipw2100_wx_get_powermode,
8064 ipw2100_wx_set_preamble,
8065 ipw2100_wx_get_preamble,
8066 #ifdef CONFIG_IPW2100_MONITOR
8067 ipw2100_wx_set_crc_check,
8068 ipw2100_wx_get_crc_check,
8069 #else /* CONFIG_IPW2100_MONITOR */
8070 NULL,
8071 NULL,
8072 #endif /* CONFIG_IPW2100_MONITOR */
8073 };
8074
8075 /*
8076 * Get wireless statistics.
8077 * Called by /proc/net/wireless
8078 * Also called by SIOCGIWSTATS
8079 */
ipw2100_wx_wireless_stats(struct net_device * dev)8080 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8081 {
8082 enum {
8083 POOR = 30,
8084 FAIR = 60,
8085 GOOD = 80,
8086 VERY_GOOD = 90,
8087 EXCELLENT = 95,
8088 PERFECT = 100
8089 };
8090 int rssi_qual;
8091 int tx_qual;
8092 int beacon_qual;
8093 int quality;
8094
8095 struct ipw2100_priv *priv = libipw_priv(dev);
8096 struct iw_statistics *wstats;
8097 u32 rssi, tx_retries, missed_beacons, tx_failures;
8098 u32 ord_len = sizeof(u32);
8099
8100 if (!priv)
8101 return (struct iw_statistics *)NULL;
8102
8103 wstats = &priv->wstats;
8104
8105 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8106 * ipw2100_wx_wireless_stats seems to be called before fw is
8107 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8108 * and associated; if not associcated, the values are all meaningless
8109 * anyway, so set them all to NULL and INVALID */
8110 if (!(priv->status & STATUS_ASSOCIATED)) {
8111 wstats->miss.beacon = 0;
8112 wstats->discard.retries = 0;
8113 wstats->qual.qual = 0;
8114 wstats->qual.level = 0;
8115 wstats->qual.noise = 0;
8116 wstats->qual.updated = 7;
8117 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8118 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8119 return wstats;
8120 }
8121
8122 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8123 &missed_beacons, &ord_len))
8124 goto fail_get_ordinal;
8125
8126 /* If we don't have a connection the quality and level is 0 */
8127 if (!(priv->status & STATUS_ASSOCIATED)) {
8128 wstats->qual.qual = 0;
8129 wstats->qual.level = 0;
8130 } else {
8131 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8132 &rssi, &ord_len))
8133 goto fail_get_ordinal;
8134 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8135 if (rssi < 10)
8136 rssi_qual = rssi * POOR / 10;
8137 else if (rssi < 15)
8138 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8139 else if (rssi < 20)
8140 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8141 else if (rssi < 30)
8142 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8143 10 + GOOD;
8144 else
8145 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8146 10 + VERY_GOOD;
8147
8148 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8149 &tx_retries, &ord_len))
8150 goto fail_get_ordinal;
8151
8152 if (tx_retries > 75)
8153 tx_qual = (90 - tx_retries) * POOR / 15;
8154 else if (tx_retries > 70)
8155 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8156 else if (tx_retries > 65)
8157 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8158 else if (tx_retries > 50)
8159 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8160 15 + GOOD;
8161 else
8162 tx_qual = (50 - tx_retries) *
8163 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8164
8165 if (missed_beacons > 50)
8166 beacon_qual = (60 - missed_beacons) * POOR / 10;
8167 else if (missed_beacons > 40)
8168 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8169 10 + POOR;
8170 else if (missed_beacons > 32)
8171 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8172 18 + FAIR;
8173 else if (missed_beacons > 20)
8174 beacon_qual = (32 - missed_beacons) *
8175 (VERY_GOOD - GOOD) / 20 + GOOD;
8176 else
8177 beacon_qual = (20 - missed_beacons) *
8178 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8179
8180 quality = min(tx_qual, rssi_qual);
8181 quality = min(beacon_qual, quality);
8182
8183 #ifdef CONFIG_IPW2100_DEBUG
8184 if (beacon_qual == quality)
8185 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8186 else if (tx_qual == quality)
8187 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8188 else if (quality != 100)
8189 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8190 else
8191 IPW_DEBUG_WX("Quality not clamped.\n");
8192 #endif
8193
8194 wstats->qual.qual = quality;
8195 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8196 }
8197
8198 wstats->qual.noise = 0;
8199 wstats->qual.updated = 7;
8200 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8201
8202 /* FIXME: this is percent and not a # */
8203 wstats->miss.beacon = missed_beacons;
8204
8205 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8206 &tx_failures, &ord_len))
8207 goto fail_get_ordinal;
8208 wstats->discard.retries = tx_failures;
8209
8210 return wstats;
8211
8212 fail_get_ordinal:
8213 IPW_DEBUG_WX("failed querying ordinals.\n");
8214
8215 return (struct iw_statistics *)NULL;
8216 }
8217
8218 static const struct iw_handler_def ipw2100_wx_handler_def = {
8219 .standard = ipw2100_wx_handlers,
8220 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8221 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8222 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8223 .private = (iw_handler *) ipw2100_private_handler,
8224 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8225 .get_wireless_stats = ipw2100_wx_wireless_stats,
8226 };
8227
ipw2100_wx_event_work(struct work_struct * work)8228 static void ipw2100_wx_event_work(struct work_struct *work)
8229 {
8230 struct ipw2100_priv *priv =
8231 container_of(work, struct ipw2100_priv, wx_event_work.work);
8232 union iwreq_data wrqu;
8233 unsigned int len = ETH_ALEN;
8234
8235 if (priv->status & STATUS_STOPPING)
8236 return;
8237
8238 mutex_lock(&priv->action_mutex);
8239
8240 IPW_DEBUG_WX("enter\n");
8241
8242 mutex_unlock(&priv->action_mutex);
8243
8244 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8245
8246 /* Fetch BSSID from the hardware */
8247 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8248 priv->status & STATUS_RF_KILL_MASK ||
8249 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8250 &priv->bssid, &len)) {
8251 eth_zero_addr(wrqu.ap_addr.sa_data);
8252 } else {
8253 /* We now have the BSSID, so can finish setting to the full
8254 * associated state */
8255 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8256 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8257 priv->status &= ~STATUS_ASSOCIATING;
8258 priv->status |= STATUS_ASSOCIATED;
8259 netif_carrier_on(priv->net_dev);
8260 netif_wake_queue(priv->net_dev);
8261 }
8262
8263 if (!(priv->status & STATUS_ASSOCIATED)) {
8264 IPW_DEBUG_WX("Configuring ESSID\n");
8265 mutex_lock(&priv->action_mutex);
8266 /* This is a disassociation event, so kick the firmware to
8267 * look for another AP */
8268 if (priv->config & CFG_STATIC_ESSID)
8269 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8270 0);
8271 else
8272 ipw2100_set_essid(priv, NULL, 0, 0);
8273 mutex_unlock(&priv->action_mutex);
8274 }
8275
8276 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8277 }
8278
8279 #define IPW2100_FW_MAJOR_VERSION 1
8280 #define IPW2100_FW_MINOR_VERSION 3
8281
8282 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8283 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8284
8285 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8286 IPW2100_FW_MAJOR_VERSION)
8287
8288 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8289 "." __stringify(IPW2100_FW_MINOR_VERSION)
8290
8291 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8292
8293 /*
8294
8295 BINARY FIRMWARE HEADER FORMAT
8296
8297 offset length desc
8298 0 2 version
8299 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8300 4 4 fw_len
8301 8 4 uc_len
8302 C fw_len firmware data
8303 12 + fw_len uc_len microcode data
8304
8305 */
8306
8307 struct ipw2100_fw_header {
8308 short version;
8309 short mode;
8310 unsigned int fw_size;
8311 unsigned int uc_size;
8312 } __packed;
8313
ipw2100_mod_firmware_load(struct ipw2100_fw * fw)8314 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8315 {
8316 struct ipw2100_fw_header *h =
8317 (struct ipw2100_fw_header *)fw->fw_entry->data;
8318
8319 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8320 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8321 "(detected version id of %u). "
8322 "See Documentation/networking/device_drivers/wifi/intel/ipw2100.rst\n",
8323 h->version);
8324 return 1;
8325 }
8326
8327 fw->version = h->version;
8328 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8329 fw->fw.size = h->fw_size;
8330 fw->uc.data = fw->fw.data + h->fw_size;
8331 fw->uc.size = h->uc_size;
8332
8333 return 0;
8334 }
8335
ipw2100_get_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8336 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8337 struct ipw2100_fw *fw)
8338 {
8339 char *fw_name;
8340 int rc;
8341
8342 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8343 priv->net_dev->name);
8344
8345 switch (priv->ieee->iw_mode) {
8346 case IW_MODE_ADHOC:
8347 fw_name = IPW2100_FW_NAME("-i");
8348 break;
8349 #ifdef CONFIG_IPW2100_MONITOR
8350 case IW_MODE_MONITOR:
8351 fw_name = IPW2100_FW_NAME("-p");
8352 break;
8353 #endif
8354 case IW_MODE_INFRA:
8355 default:
8356 fw_name = IPW2100_FW_NAME("");
8357 break;
8358 }
8359
8360 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8361
8362 if (rc < 0) {
8363 printk(KERN_ERR DRV_NAME ": "
8364 "%s: Firmware '%s' not available or load failed.\n",
8365 priv->net_dev->name, fw_name);
8366 return rc;
8367 }
8368 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8369 fw->fw_entry->size);
8370
8371 ipw2100_mod_firmware_load(fw);
8372
8373 return 0;
8374 }
8375
8376 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8377 #ifdef CONFIG_IPW2100_MONITOR
8378 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8379 #endif
8380 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8381
ipw2100_release_firmware(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8382 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8383 struct ipw2100_fw *fw)
8384 {
8385 fw->version = 0;
8386 release_firmware(fw->fw_entry);
8387 fw->fw_entry = NULL;
8388 }
8389
ipw2100_get_fwversion(struct ipw2100_priv * priv,char * buf,size_t max)8390 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8391 size_t max)
8392 {
8393 char ver[MAX_FW_VERSION_LEN];
8394 u32 len = MAX_FW_VERSION_LEN;
8395 u32 tmp;
8396 int i;
8397 /* firmware version is an ascii string (max len of 14) */
8398 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8399 return -EIO;
8400 tmp = max;
8401 if (len >= max)
8402 len = max - 1;
8403 for (i = 0; i < len; i++)
8404 buf[i] = ver[i];
8405 buf[i] = '\0';
8406 return tmp;
8407 }
8408
ipw2100_get_ucodeversion(struct ipw2100_priv * priv,char * buf,size_t max)8409 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8410 size_t max)
8411 {
8412 u32 ver;
8413 u32 len = sizeof(ver);
8414 /* microcode version is a 32 bit integer */
8415 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8416 return -EIO;
8417 return snprintf(buf, max, "%08X", ver);
8418 }
8419
8420 /*
8421 * On exit, the firmware will have been freed from the fw list
8422 */
ipw2100_fw_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8423 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8424 {
8425 /* firmware is constructed of N contiguous entries, each entry is
8426 * structured as:
8427 *
8428 * offset sie desc
8429 * 0 4 address to write to
8430 * 4 2 length of data run
8431 * 6 length data
8432 */
8433 unsigned int addr;
8434 unsigned short len;
8435
8436 const unsigned char *firmware_data = fw->fw.data;
8437 unsigned int firmware_data_left = fw->fw.size;
8438
8439 while (firmware_data_left > 0) {
8440 addr = *(u32 *) (firmware_data);
8441 firmware_data += 4;
8442 firmware_data_left -= 4;
8443
8444 len = *(u16 *) (firmware_data);
8445 firmware_data += 2;
8446 firmware_data_left -= 2;
8447
8448 if (len > 32) {
8449 printk(KERN_ERR DRV_NAME ": "
8450 "Invalid firmware run-length of %d bytes\n",
8451 len);
8452 return -EINVAL;
8453 }
8454
8455 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8456 firmware_data += len;
8457 firmware_data_left -= len;
8458 }
8459
8460 return 0;
8461 }
8462
8463 struct symbol_alive_response {
8464 u8 cmd_id;
8465 u8 seq_num;
8466 u8 ucode_rev;
8467 u8 eeprom_valid;
8468 u16 valid_flags;
8469 u8 IEEE_addr[6];
8470 u16 flags;
8471 u16 pcb_rev;
8472 u16 clock_settle_time; // 1us LSB
8473 u16 powerup_settle_time; // 1us LSB
8474 u16 hop_settle_time; // 1us LSB
8475 u8 date[3]; // month, day, year
8476 u8 time[2]; // hours, minutes
8477 u8 ucode_valid;
8478 };
8479
ipw2100_ucode_download(struct ipw2100_priv * priv,struct ipw2100_fw * fw)8480 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8481 struct ipw2100_fw *fw)
8482 {
8483 struct net_device *dev = priv->net_dev;
8484 const unsigned char *microcode_data = fw->uc.data;
8485 unsigned int microcode_data_left = fw->uc.size;
8486 void __iomem *reg = priv->ioaddr;
8487
8488 struct symbol_alive_response response;
8489 int i, j;
8490 u8 data;
8491
8492 /* Symbol control */
8493 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8494 readl(reg);
8495 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8496 readl(reg);
8497
8498 /* HW config */
8499 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8500 readl(reg);
8501 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8502 readl(reg);
8503
8504 /* EN_CS_ACCESS bit to reset control store pointer */
8505 write_nic_byte(dev, 0x210000, 0x40);
8506 readl(reg);
8507 write_nic_byte(dev, 0x210000, 0x0);
8508 readl(reg);
8509 write_nic_byte(dev, 0x210000, 0x40);
8510 readl(reg);
8511
8512 /* copy microcode from buffer into Symbol */
8513
8514 while (microcode_data_left > 0) {
8515 write_nic_byte(dev, 0x210010, *microcode_data++);
8516 write_nic_byte(dev, 0x210010, *microcode_data++);
8517 microcode_data_left -= 2;
8518 }
8519
8520 /* EN_CS_ACCESS bit to reset the control store pointer */
8521 write_nic_byte(dev, 0x210000, 0x0);
8522 readl(reg);
8523
8524 /* Enable System (Reg 0)
8525 * first enable causes garbage in RX FIFO */
8526 write_nic_byte(dev, 0x210000, 0x0);
8527 readl(reg);
8528 write_nic_byte(dev, 0x210000, 0x80);
8529 readl(reg);
8530
8531 /* Reset External Baseband Reg */
8532 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8533 readl(reg);
8534 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8535 readl(reg);
8536
8537 /* HW Config (Reg 5) */
8538 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8539 readl(reg);
8540 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8541 readl(reg);
8542
8543 /* Enable System (Reg 0)
8544 * second enable should be OK */
8545 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8546 readl(reg);
8547 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8548
8549 /* check Symbol is enabled - upped this from 5 as it wasn't always
8550 * catching the update */
8551 for (i = 0; i < 10; i++) {
8552 udelay(10);
8553
8554 /* check Dino is enabled bit */
8555 read_nic_byte(dev, 0x210000, &data);
8556 if (data & 0x1)
8557 break;
8558 }
8559
8560 if (i == 10) {
8561 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8562 dev->name);
8563 return -EIO;
8564 }
8565
8566 /* Get Symbol alive response */
8567 for (i = 0; i < 30; i++) {
8568 /* Read alive response structure */
8569 for (j = 0;
8570 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8571 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8572
8573 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8574 break;
8575 udelay(10);
8576 }
8577
8578 if (i == 30) {
8579 printk(KERN_ERR DRV_NAME
8580 ": %s: No response from Symbol - hw not alive\n",
8581 dev->name);
8582 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8583 return -EIO;
8584 }
8585
8586 return 0;
8587 }
8588