xref: /openbmc/linux/mm/memory-failure.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
num_poisoned_pages_inc(unsigned long pfn)77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
num_poisoned_pages_sub(unsigned long pfn,long i)83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 	{ }
145 };
146 
147 /*
148  * Return values:
149  *   1:   the page is dissolved (if needed) and taken off from buddy,
150  *   0:   the page is dissolved (if needed) and not taken off from buddy,
151  *   < 0: failed to dissolve.
152  */
__page_handle_poison(struct page * page)153 static int __page_handle_poison(struct page *page)
154 {
155 	int ret;
156 
157 	/*
158 	 * zone_pcp_disable() can't be used here. It will
159 	 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
160 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
161 	 * optimization is enabled. This will break current lock dependency
162 	 * chain and leads to deadlock.
163 	 * Disabling pcp before dissolving the page was a deterministic
164 	 * approach because we made sure that those pages cannot end up in any
165 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
166 	 * but nothing guarantees that those pages do not get back to a PCP
167 	 * queue if we need to refill those.
168 	 */
169 	ret = dissolve_free_huge_page(page);
170 	if (!ret) {
171 		drain_all_pages(page_zone(page));
172 		ret = take_page_off_buddy(page);
173 	}
174 
175 	return ret;
176 }
177 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179 {
180 	if (hugepage_or_freepage) {
181 		/*
182 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
183 		 * returns 0 for non-hugetlb pages as well.
184 		 */
185 		if (__page_handle_poison(page) <= 0)
186 			/*
187 			 * We could fail to take off the target page from buddy
188 			 * for example due to racy page allocation, but that's
189 			 * acceptable because soft-offlined page is not broken
190 			 * and if someone really want to use it, they should
191 			 * take it.
192 			 */
193 			return false;
194 	}
195 
196 	SetPageHWPoison(page);
197 	if (release)
198 		put_page(page);
199 	page_ref_inc(page);
200 	num_poisoned_pages_inc(page_to_pfn(page));
201 
202 	return true;
203 }
204 
205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206 
207 u32 hwpoison_filter_enable = 0;
208 u32 hwpoison_filter_dev_major = ~0U;
209 u32 hwpoison_filter_dev_minor = ~0U;
210 u64 hwpoison_filter_flags_mask;
211 u64 hwpoison_filter_flags_value;
212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217 
hwpoison_filter_dev(struct page * p)218 static int hwpoison_filter_dev(struct page *p)
219 {
220 	struct address_space *mapping;
221 	dev_t dev;
222 
223 	if (hwpoison_filter_dev_major == ~0U &&
224 	    hwpoison_filter_dev_minor == ~0U)
225 		return 0;
226 
227 	mapping = page_mapping(p);
228 	if (mapping == NULL || mapping->host == NULL)
229 		return -EINVAL;
230 
231 	dev = mapping->host->i_sb->s_dev;
232 	if (hwpoison_filter_dev_major != ~0U &&
233 	    hwpoison_filter_dev_major != MAJOR(dev))
234 		return -EINVAL;
235 	if (hwpoison_filter_dev_minor != ~0U &&
236 	    hwpoison_filter_dev_minor != MINOR(dev))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
hwpoison_filter_flags(struct page * p)242 static int hwpoison_filter_flags(struct page *p)
243 {
244 	if (!hwpoison_filter_flags_mask)
245 		return 0;
246 
247 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 				    hwpoison_filter_flags_value)
249 		return 0;
250 	else
251 		return -EINVAL;
252 }
253 
254 /*
255  * This allows stress tests to limit test scope to a collection of tasks
256  * by putting them under some memcg. This prevents killing unrelated/important
257  * processes such as /sbin/init. Note that the target task may share clean
258  * pages with init (eg. libc text), which is harmless. If the target task
259  * share _dirty_ pages with another task B, the test scheme must make sure B
260  * is also included in the memcg. At last, due to race conditions this filter
261  * can only guarantee that the page either belongs to the memcg tasks, or is
262  * a freed page.
263  */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)267 static int hwpoison_filter_task(struct page *p)
268 {
269 	if (!hwpoison_filter_memcg)
270 		return 0;
271 
272 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 		return -EINVAL;
274 
275 	return 0;
276 }
277 #else
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280 
hwpoison_filter(struct page * p)281 int hwpoison_filter(struct page *p)
282 {
283 	if (!hwpoison_filter_enable)
284 		return 0;
285 
286 	if (hwpoison_filter_dev(p))
287 		return -EINVAL;
288 
289 	if (hwpoison_filter_flags(p))
290 		return -EINVAL;
291 
292 	if (hwpoison_filter_task(p))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 #else
hwpoison_filter(struct page * p)298 int hwpoison_filter(struct page *p)
299 {
300 	return 0;
301 }
302 #endif
303 
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305 
306 /*
307  * Kill all processes that have a poisoned page mapped and then isolate
308  * the page.
309  *
310  * General strategy:
311  * Find all processes having the page mapped and kill them.
312  * But we keep a page reference around so that the page is not
313  * actually freed yet.
314  * Then stash the page away
315  *
316  * There's no convenient way to get back to mapped processes
317  * from the VMAs. So do a brute-force search over all
318  * running processes.
319  *
320  * Remember that machine checks are not common (or rather
321  * if they are common you have other problems), so this shouldn't
322  * be a performance issue.
323  *
324  * Also there are some races possible while we get from the
325  * error detection to actually handle it.
326  */
327 
328 struct to_kill {
329 	struct list_head nd;
330 	struct task_struct *tsk;
331 	unsigned long addr;
332 	short size_shift;
333 };
334 
335 /*
336  * Send all the processes who have the page mapped a signal.
337  * ``action optional'' if they are not immediately affected by the error
338  * ``action required'' if error happened in current execution context
339  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 	struct task_struct *t = tk->tsk;
343 	short addr_lsb = tk->size_shift;
344 	int ret = 0;
345 
346 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 			pfn, t->comm, t->pid);
348 
349 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 		ret = force_sig_mceerr(BUS_MCEERR_AR,
351 				 (void __user *)tk->addr, addr_lsb);
352 	else
353 		/*
354 		 * Signal other processes sharing the page if they have
355 		 * PF_MCE_EARLY set.
356 		 * Don't use force here, it's convenient if the signal
357 		 * can be temporarily blocked.
358 		 * This could cause a loop when the user sets SIGBUS
359 		 * to SIG_IGN, but hopefully no one will do that?
360 		 */
361 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 				      addr_lsb, t);
363 	if (ret < 0)
364 		pr_info("Error sending signal to %s:%d: %d\n",
365 			t->comm, t->pid, ret);
366 	return ret;
367 }
368 
369 /*
370  * Unknown page type encountered. Try to check whether it can turn PageLRU by
371  * lru_add_drain_all.
372  */
shake_page(struct page * p)373 void shake_page(struct page *p)
374 {
375 	if (PageHuge(p))
376 		return;
377 	/*
378 	 * TODO: Could shrink slab caches here if a lightweight range-based
379 	 * shrinker will be available.
380 	 */
381 	if (PageSlab(p))
382 		return;
383 
384 	lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_page);
387 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
389 		unsigned long address)
390 {
391 	unsigned long ret = 0;
392 	pgd_t *pgd;
393 	p4d_t *p4d;
394 	pud_t *pud;
395 	pmd_t *pmd;
396 	pte_t *pte;
397 	pte_t ptent;
398 
399 	VM_BUG_ON_VMA(address == -EFAULT, vma);
400 	pgd = pgd_offset(vma->vm_mm, address);
401 	if (!pgd_present(*pgd))
402 		return 0;
403 	p4d = p4d_offset(pgd, address);
404 	if (!p4d_present(*p4d))
405 		return 0;
406 	pud = pud_offset(p4d, address);
407 	if (!pud_present(*pud))
408 		return 0;
409 	if (pud_devmap(*pud))
410 		return PUD_SHIFT;
411 	pmd = pmd_offset(pud, address);
412 	if (!pmd_present(*pmd))
413 		return 0;
414 	if (pmd_devmap(*pmd))
415 		return PMD_SHIFT;
416 	pte = pte_offset_map(pmd, address);
417 	if (!pte)
418 		return 0;
419 	ptent = ptep_get(pte);
420 	if (pte_present(ptent) && pte_devmap(ptent))
421 		ret = PAGE_SHIFT;
422 	pte_unmap(pte);
423 	return ret;
424 }
425 
426 /*
427  * Failure handling: if we can't find or can't kill a process there's
428  * not much we can do.	We just print a message and ignore otherwise.
429  */
430 
431 #define FSDAX_INVALID_PGOFF ULONG_MAX
432 
433 /*
434  * Schedule a process for later kill.
435  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
436  *
437  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
438  * filesystem with a memory failure handler has claimed the
439  * memory_failure event. In all other cases, page->index and
440  * page->mapping are sufficient for mapping the page back to its
441  * corresponding user virtual address.
442  */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr,pgoff_t fsdax_pgoff)443 static void __add_to_kill(struct task_struct *tsk, struct page *p,
444 			  struct vm_area_struct *vma, struct list_head *to_kill,
445 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446 {
447 	struct to_kill *tk;
448 
449 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
450 	if (!tk) {
451 		pr_err("Out of memory while machine check handling\n");
452 		return;
453 	}
454 
455 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
456 	if (is_zone_device_page(p)) {
457 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
458 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
459 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
460 	} else
461 		tk->size_shift = page_shift(compound_head(p));
462 
463 	/*
464 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
465 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
466 	 * so "tk->size_shift == 0" effectively checks no mapping on
467 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
468 	 * to a process' address space, it's possible not all N VMAs
469 	 * contain mappings for the page, but at least one VMA does.
470 	 * Only deliver SIGBUS with payload derived from the VMA that
471 	 * has a mapping for the page.
472 	 */
473 	if (tk->addr == -EFAULT) {
474 		pr_info("Unable to find user space address %lx in %s\n",
475 			page_to_pfn(p), tsk->comm);
476 	} else if (tk->size_shift == 0) {
477 		kfree(tk);
478 		return;
479 	}
480 
481 	get_task_struct(tsk);
482 	tk->tsk = tsk;
483 	list_add_tail(&tk->nd, to_kill);
484 }
485 
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
487 				  struct vm_area_struct *vma,
488 				  struct list_head *to_kill)
489 {
490 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491 }
492 
493 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)494 static bool task_in_to_kill_list(struct list_head *to_kill,
495 				 struct task_struct *tsk)
496 {
497 	struct to_kill *tk, *next;
498 
499 	list_for_each_entry_safe(tk, next, to_kill, nd) {
500 		if (tk->tsk == tsk)
501 			return true;
502 	}
503 
504 	return false;
505 }
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr)506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
507 		     struct vm_area_struct *vma, struct list_head *to_kill,
508 		     unsigned long ksm_addr)
509 {
510 	if (!task_in_to_kill_list(to_kill, tsk))
511 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512 }
513 #endif
514 /*
515  * Kill the processes that have been collected earlier.
516  *
517  * Only do anything when FORCEKILL is set, otherwise just free the
518  * list (this is used for clean pages which do not need killing)
519  * Also when FAIL is set do a force kill because something went
520  * wrong earlier.
521  */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
523 		unsigned long pfn, int flags)
524 {
525 	struct to_kill *tk, *next;
526 
527 	list_for_each_entry_safe(tk, next, to_kill, nd) {
528 		if (forcekill) {
529 			/*
530 			 * In case something went wrong with munmapping
531 			 * make sure the process doesn't catch the
532 			 * signal and then access the memory. Just kill it.
533 			 */
534 			if (fail || tk->addr == -EFAULT) {
535 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
536 				       pfn, tk->tsk->comm, tk->tsk->pid);
537 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
538 						 tk->tsk, PIDTYPE_PID);
539 			}
540 
541 			/*
542 			 * In theory the process could have mapped
543 			 * something else on the address in-between. We could
544 			 * check for that, but we need to tell the
545 			 * process anyways.
546 			 */
547 			else if (kill_proc(tk, pfn, flags) < 0)
548 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
549 				       pfn, tk->tsk->comm, tk->tsk->pid);
550 		}
551 		list_del(&tk->nd);
552 		put_task_struct(tk->tsk);
553 		kfree(tk);
554 	}
555 }
556 
557 /*
558  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
559  * on behalf of the thread group. Return task_struct of the (first found)
560  * dedicated thread if found, and return NULL otherwise.
561  *
562  * We already hold rcu lock in the caller, so we don't have to call
563  * rcu_read_lock/unlock() in this function.
564  */
find_early_kill_thread(struct task_struct * tsk)565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 {
567 	struct task_struct *t;
568 
569 	for_each_thread(tsk, t) {
570 		if (t->flags & PF_MCE_PROCESS) {
571 			if (t->flags & PF_MCE_EARLY)
572 				return t;
573 		} else {
574 			if (sysctl_memory_failure_early_kill)
575 				return t;
576 		}
577 	}
578 	return NULL;
579 }
580 
581 /*
582  * Determine whether a given process is "early kill" process which expects
583  * to be signaled when some page under the process is hwpoisoned.
584  * Return task_struct of the dedicated thread (main thread unless explicitly
585  * specified) if the process is "early kill" and otherwise returns NULL.
586  *
587  * Note that the above is true for Action Optional case. For Action Required
588  * case, it's only meaningful to the current thread which need to be signaled
589  * with SIGBUS, this error is Action Optional for other non current
590  * processes sharing the same error page,if the process is "early kill", the
591  * task_struct of the dedicated thread will also be returned.
592  */
task_early_kill(struct task_struct * tsk,int force_early)593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594 {
595 	if (!tsk->mm)
596 		return NULL;
597 	/*
598 	 * Comparing ->mm here because current task might represent
599 	 * a subthread, while tsk always points to the main thread.
600 	 */
601 	if (force_early && tsk->mm == current->mm)
602 		return current;
603 
604 	return find_early_kill_thread(tsk);
605 }
606 
607 /*
608  * Collect processes when the error hit an anonymous page.
609  */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)610 static void collect_procs_anon(struct folio *folio, struct page *page,
611 		struct list_head *to_kill, int force_early)
612 {
613 	struct vm_area_struct *vma;
614 	struct task_struct *tsk;
615 	struct anon_vma *av;
616 	pgoff_t pgoff;
617 
618 	av = folio_lock_anon_vma_read(folio, NULL);
619 	if (av == NULL)	/* Not actually mapped anymore */
620 		return;
621 
622 	pgoff = page_to_pgoff(page);
623 	rcu_read_lock();
624 	for_each_process(tsk) {
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 
628 		if (!t)
629 			continue;
630 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 					       pgoff, pgoff) {
632 			vma = vmac->vma;
633 			if (vma->vm_mm != t->mm)
634 				continue;
635 			if (!page_mapped_in_vma(page, vma))
636 				continue;
637 			add_to_kill_anon_file(t, page, vma, to_kill);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(struct folio *folio, struct page *page,
648 		struct list_head *to_kill, int force_early)
649 {
650 	struct vm_area_struct *vma;
651 	struct task_struct *tsk;
652 	struct address_space *mapping = folio->mapping;
653 	pgoff_t pgoff;
654 
655 	i_mmap_lock_read(mapping);
656 	rcu_read_lock();
657 	pgoff = page_to_pgoff(page);
658 	for_each_process(tsk) {
659 		struct task_struct *t = task_early_kill(tsk, force_early);
660 
661 		if (!t)
662 			continue;
663 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 				      pgoff) {
665 			/*
666 			 * Send early kill signal to tasks where a vma covers
667 			 * the page but the corrupted page is not necessarily
668 			 * mapped in its pte.
669 			 * Assume applications who requested early kill want
670 			 * to be informed of all such data corruptions.
671 			 */
672 			if (vma->vm_mm == t->mm)
673 				add_to_kill_anon_file(t, page, vma, to_kill);
674 		}
675 	}
676 	rcu_read_unlock();
677 	i_mmap_unlock_read(mapping);
678 }
679 
680 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
682 			      struct vm_area_struct *vma,
683 			      struct list_head *to_kill, pgoff_t pgoff)
684 {
685 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
686 }
687 
688 /*
689  * Collect processes when the error hit a fsdax page.
690  */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill)691 static void collect_procs_fsdax(struct page *page,
692 		struct address_space *mapping, pgoff_t pgoff,
693 		struct list_head *to_kill)
694 {
695 	struct vm_area_struct *vma;
696 	struct task_struct *tsk;
697 
698 	i_mmap_lock_read(mapping);
699 	rcu_read_lock();
700 	for_each_process(tsk) {
701 		struct task_struct *t = task_early_kill(tsk, true);
702 
703 		if (!t)
704 			continue;
705 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
706 			if (vma->vm_mm == t->mm)
707 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
708 		}
709 	}
710 	rcu_read_unlock();
711 	i_mmap_unlock_read(mapping);
712 }
713 #endif /* CONFIG_FS_DAX */
714 
715 /*
716  * Collect the processes who have the corrupted page mapped to kill.
717  */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)718 static void collect_procs(struct folio *folio, struct page *page,
719 		struct list_head *tokill, int force_early)
720 {
721 	if (!folio->mapping)
722 		return;
723 	if (unlikely(PageKsm(page)))
724 		collect_procs_ksm(page, tokill, force_early);
725 	else if (PageAnon(page))
726 		collect_procs_anon(folio, page, tokill, force_early);
727 	else
728 		collect_procs_file(folio, page, tokill, force_early);
729 }
730 
731 struct hwpoison_walk {
732 	struct to_kill tk;
733 	unsigned long pfn;
734 	int flags;
735 };
736 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)737 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
738 {
739 	tk->addr = addr;
740 	tk->size_shift = shift;
741 }
742 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)743 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
744 				unsigned long poisoned_pfn, struct to_kill *tk)
745 {
746 	unsigned long pfn = 0;
747 
748 	if (pte_present(pte)) {
749 		pfn = pte_pfn(pte);
750 	} else {
751 		swp_entry_t swp = pte_to_swp_entry(pte);
752 
753 		if (is_hwpoison_entry(swp))
754 			pfn = swp_offset_pfn(swp);
755 	}
756 
757 	if (!pfn || pfn != poisoned_pfn)
758 		return 0;
759 
760 	set_to_kill(tk, addr, shift);
761 	return 1;
762 }
763 
764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)765 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
766 				      struct hwpoison_walk *hwp)
767 {
768 	pmd_t pmd = *pmdp;
769 	unsigned long pfn;
770 	unsigned long hwpoison_vaddr;
771 
772 	if (!pmd_present(pmd))
773 		return 0;
774 	pfn = pmd_pfn(pmd);
775 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
776 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
777 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
778 		return 1;
779 	}
780 	return 0;
781 }
782 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)783 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
784 				      struct hwpoison_walk *hwp)
785 {
786 	return 0;
787 }
788 #endif
789 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)790 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
791 			      unsigned long end, struct mm_walk *walk)
792 {
793 	struct hwpoison_walk *hwp = walk->private;
794 	int ret = 0;
795 	pte_t *ptep, *mapped_pte;
796 	spinlock_t *ptl;
797 
798 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
799 	if (ptl) {
800 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
801 		spin_unlock(ptl);
802 		goto out;
803 	}
804 
805 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
806 						addr, &ptl);
807 	if (!ptep)
808 		goto out;
809 
810 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
811 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
812 					     hwp->pfn, &hwp->tk);
813 		if (ret == 1)
814 			break;
815 	}
816 	pte_unmap_unlock(mapped_pte, ptl);
817 out:
818 	cond_resched();
819 	return ret;
820 }
821 
822 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)823 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
824 			    unsigned long addr, unsigned long end,
825 			    struct mm_walk *walk)
826 {
827 	struct hwpoison_walk *hwp = walk->private;
828 	pte_t pte = huge_ptep_get(ptep);
829 	struct hstate *h = hstate_vma(walk->vma);
830 
831 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
832 				      hwp->pfn, &hwp->tk);
833 }
834 #else
835 #define hwpoison_hugetlb_range	NULL
836 #endif
837 
838 static const struct mm_walk_ops hwpoison_walk_ops = {
839 	.pmd_entry = hwpoison_pte_range,
840 	.hugetlb_entry = hwpoison_hugetlb_range,
841 	.walk_lock = PGWALK_RDLOCK,
842 };
843 
844 /*
845  * Sends SIGBUS to the current process with error info.
846  *
847  * This function is intended to handle "Action Required" MCEs on already
848  * hardware poisoned pages. They could happen, for example, when
849  * memory_failure() failed to unmap the error page at the first call, or
850  * when multiple local machine checks happened on different CPUs.
851  *
852  * MCE handler currently has no easy access to the error virtual address,
853  * so this function walks page table to find it. The returned virtual address
854  * is proper in most cases, but it could be wrong when the application
855  * process has multiple entries mapping the error page.
856  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)857 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
858 				  int flags)
859 {
860 	int ret;
861 	struct hwpoison_walk priv = {
862 		.pfn = pfn,
863 	};
864 	priv.tk.tsk = p;
865 
866 	if (!p->mm)
867 		return -EFAULT;
868 
869 	mmap_read_lock(p->mm);
870 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
871 			      (void *)&priv);
872 	/*
873 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
874 	 * succeeds or fails, then kill the process with SIGBUS.
875 	 * ret = 0 when poison page is a clean page and it's dropped, no
876 	 * SIGBUS is needed.
877 	 */
878 	if (ret == 1 && priv.tk.addr)
879 		kill_proc(&priv.tk, pfn, flags);
880 	mmap_read_unlock(p->mm);
881 
882 	return ret > 0 ? -EHWPOISON : 0;
883 }
884 
885 static const char *action_name[] = {
886 	[MF_IGNORED] = "Ignored",
887 	[MF_FAILED] = "Failed",
888 	[MF_DELAYED] = "Delayed",
889 	[MF_RECOVERED] = "Recovered",
890 };
891 
892 static const char * const action_page_types[] = {
893 	[MF_MSG_KERNEL]			= "reserved kernel page",
894 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
895 	[MF_MSG_SLAB]			= "kernel slab page",
896 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
897 	[MF_MSG_HUGE]			= "huge page",
898 	[MF_MSG_FREE_HUGE]		= "free huge page",
899 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
900 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
901 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
902 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
903 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
904 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
905 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
906 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
907 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
908 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
909 	[MF_MSG_BUDDY]			= "free buddy page",
910 	[MF_MSG_DAX]			= "dax page",
911 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
912 	[MF_MSG_UNKNOWN]		= "unknown page",
913 };
914 
915 /*
916  * XXX: It is possible that a page is isolated from LRU cache,
917  * and then kept in swap cache or failed to remove from page cache.
918  * The page count will stop it from being freed by unpoison.
919  * Stress tests should be aware of this memory leak problem.
920  */
delete_from_lru_cache(struct page * p)921 static int delete_from_lru_cache(struct page *p)
922 {
923 	if (isolate_lru_page(p)) {
924 		/*
925 		 * Clear sensible page flags, so that the buddy system won't
926 		 * complain when the page is unpoison-and-freed.
927 		 */
928 		ClearPageActive(p);
929 		ClearPageUnevictable(p);
930 
931 		/*
932 		 * Poisoned page might never drop its ref count to 0 so we have
933 		 * to uncharge it manually from its memcg.
934 		 */
935 		mem_cgroup_uncharge(page_folio(p));
936 
937 		/*
938 		 * drop the page count elevated by isolate_lru_page()
939 		 */
940 		put_page(p);
941 		return 0;
942 	}
943 	return -EIO;
944 }
945 
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)946 static int truncate_error_page(struct page *p, unsigned long pfn,
947 				struct address_space *mapping)
948 {
949 	int ret = MF_FAILED;
950 
951 	if (mapping->a_ops->error_remove_page) {
952 		struct folio *folio = page_folio(p);
953 		int err = mapping->a_ops->error_remove_page(mapping, p);
954 
955 		if (err != 0)
956 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
957 		else if (!filemap_release_folio(folio, GFP_NOIO))
958 			pr_info("%#lx: failed to release buffers\n", pfn);
959 		else
960 			ret = MF_RECOVERED;
961 	} else {
962 		/*
963 		 * If the file system doesn't support it just invalidate
964 		 * This fails on dirty or anything with private pages
965 		 */
966 		if (invalidate_inode_page(p))
967 			ret = MF_RECOVERED;
968 		else
969 			pr_info("%#lx: Failed to invalidate\n",	pfn);
970 	}
971 
972 	return ret;
973 }
974 
975 struct page_state {
976 	unsigned long mask;
977 	unsigned long res;
978 	enum mf_action_page_type type;
979 
980 	/* Callback ->action() has to unlock the relevant page inside it. */
981 	int (*action)(struct page_state *ps, struct page *p);
982 };
983 
984 /*
985  * Return true if page is still referenced by others, otherwise return
986  * false.
987  *
988  * The extra_pins is true when one extra refcount is expected.
989  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)990 static bool has_extra_refcount(struct page_state *ps, struct page *p,
991 			       bool extra_pins)
992 {
993 	int count = page_count(p) - 1;
994 
995 	if (extra_pins)
996 		count -= 1;
997 
998 	if (count > 0) {
999 		pr_err("%#lx: %s still referenced by %d users\n",
1000 		       page_to_pfn(p), action_page_types[ps->type], count);
1001 		return true;
1002 	}
1003 
1004 	return false;
1005 }
1006 
1007 /*
1008  * Error hit kernel page.
1009  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1010  * could be more sophisticated.
1011  */
me_kernel(struct page_state * ps,struct page * p)1012 static int me_kernel(struct page_state *ps, struct page *p)
1013 {
1014 	unlock_page(p);
1015 	return MF_IGNORED;
1016 }
1017 
1018 /*
1019  * Page in unknown state. Do nothing.
1020  */
me_unknown(struct page_state * ps,struct page * p)1021 static int me_unknown(struct page_state *ps, struct page *p)
1022 {
1023 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1024 	unlock_page(p);
1025 	return MF_FAILED;
1026 }
1027 
1028 /*
1029  * Clean (or cleaned) page cache page.
1030  */
me_pagecache_clean(struct page_state * ps,struct page * p)1031 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1032 {
1033 	int ret;
1034 	struct address_space *mapping;
1035 	bool extra_pins;
1036 
1037 	delete_from_lru_cache(p);
1038 
1039 	/*
1040 	 * For anonymous pages we're done the only reference left
1041 	 * should be the one m_f() holds.
1042 	 */
1043 	if (PageAnon(p)) {
1044 		ret = MF_RECOVERED;
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * Now truncate the page in the page cache. This is really
1050 	 * more like a "temporary hole punch"
1051 	 * Don't do this for block devices when someone else
1052 	 * has a reference, because it could be file system metadata
1053 	 * and that's not safe to truncate.
1054 	 */
1055 	mapping = page_mapping(p);
1056 	if (!mapping) {
1057 		/*
1058 		 * Page has been teared down in the meanwhile
1059 		 */
1060 		ret = MF_FAILED;
1061 		goto out;
1062 	}
1063 
1064 	/*
1065 	 * The shmem page is kept in page cache instead of truncating
1066 	 * so is expected to have an extra refcount after error-handling.
1067 	 */
1068 	extra_pins = shmem_mapping(mapping);
1069 
1070 	/*
1071 	 * Truncation is a bit tricky. Enable it per file system for now.
1072 	 *
1073 	 * Open: to take i_rwsem or not for this? Right now we don't.
1074 	 */
1075 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1076 	if (has_extra_refcount(ps, p, extra_pins))
1077 		ret = MF_FAILED;
1078 
1079 out:
1080 	unlock_page(p);
1081 
1082 	return ret;
1083 }
1084 
1085 /*
1086  * Dirty pagecache page
1087  * Issues: when the error hit a hole page the error is not properly
1088  * propagated.
1089  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1090 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1091 {
1092 	struct address_space *mapping = page_mapping(p);
1093 
1094 	SetPageError(p);
1095 	/* TBD: print more information about the file. */
1096 	if (mapping) {
1097 		/*
1098 		 * IO error will be reported by write(), fsync(), etc.
1099 		 * who check the mapping.
1100 		 * This way the application knows that something went
1101 		 * wrong with its dirty file data.
1102 		 *
1103 		 * There's one open issue:
1104 		 *
1105 		 * The EIO will be only reported on the next IO
1106 		 * operation and then cleared through the IO map.
1107 		 * Normally Linux has two mechanisms to pass IO error
1108 		 * first through the AS_EIO flag in the address space
1109 		 * and then through the PageError flag in the page.
1110 		 * Since we drop pages on memory failure handling the
1111 		 * only mechanism open to use is through AS_AIO.
1112 		 *
1113 		 * This has the disadvantage that it gets cleared on
1114 		 * the first operation that returns an error, while
1115 		 * the PageError bit is more sticky and only cleared
1116 		 * when the page is reread or dropped.  If an
1117 		 * application assumes it will always get error on
1118 		 * fsync, but does other operations on the fd before
1119 		 * and the page is dropped between then the error
1120 		 * will not be properly reported.
1121 		 *
1122 		 * This can already happen even without hwpoisoned
1123 		 * pages: first on metadata IO errors (which only
1124 		 * report through AS_EIO) or when the page is dropped
1125 		 * at the wrong time.
1126 		 *
1127 		 * So right now we assume that the application DTRT on
1128 		 * the first EIO, but we're not worse than other parts
1129 		 * of the kernel.
1130 		 */
1131 		mapping_set_error(mapping, -EIO);
1132 	}
1133 
1134 	return me_pagecache_clean(ps, p);
1135 }
1136 
1137 /*
1138  * Clean and dirty swap cache.
1139  *
1140  * Dirty swap cache page is tricky to handle. The page could live both in page
1141  * cache and swap cache(ie. page is freshly swapped in). So it could be
1142  * referenced concurrently by 2 types of PTEs:
1143  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145  * and then
1146  *      - clear dirty bit to prevent IO
1147  *      - remove from LRU
1148  *      - but keep in the swap cache, so that when we return to it on
1149  *        a later page fault, we know the application is accessing
1150  *        corrupted data and shall be killed (we installed simple
1151  *        interception code in do_swap_page to catch it).
1152  *
1153  * Clean swap cache pages can be directly isolated. A later page fault will
1154  * bring in the known good data from disk.
1155  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157 {
1158 	int ret;
1159 	bool extra_pins = false;
1160 
1161 	ClearPageDirty(p);
1162 	/* Trigger EIO in shmem: */
1163 	ClearPageUptodate(p);
1164 
1165 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1166 	unlock_page(p);
1167 
1168 	if (ret == MF_DELAYED)
1169 		extra_pins = true;
1170 
1171 	if (has_extra_refcount(ps, p, extra_pins))
1172 		ret = MF_FAILED;
1173 
1174 	return ret;
1175 }
1176 
me_swapcache_clean(struct page_state * ps,struct page * p)1177 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1178 {
1179 	struct folio *folio = page_folio(p);
1180 	int ret;
1181 
1182 	delete_from_swap_cache(folio);
1183 
1184 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1185 	folio_unlock(folio);
1186 
1187 	if (has_extra_refcount(ps, p, false))
1188 		ret = MF_FAILED;
1189 
1190 	return ret;
1191 }
1192 
1193 /*
1194  * Huge pages. Needs work.
1195  * Issues:
1196  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1197  *   To narrow down kill region to one page, we need to break up pmd.
1198  */
me_huge_page(struct page_state * ps,struct page * p)1199 static int me_huge_page(struct page_state *ps, struct page *p)
1200 {
1201 	struct folio *folio = page_folio(p);
1202 	int res;
1203 	struct address_space *mapping;
1204 	bool extra_pins = false;
1205 
1206 	mapping = folio_mapping(folio);
1207 	if (mapping) {
1208 		res = truncate_error_page(&folio->page, page_to_pfn(p), mapping);
1209 		/* The page is kept in page cache. */
1210 		extra_pins = true;
1211 		folio_unlock(folio);
1212 	} else {
1213 		folio_unlock(folio);
1214 		/*
1215 		 * migration entry prevents later access on error hugepage,
1216 		 * so we can free and dissolve it into buddy to save healthy
1217 		 * subpages.
1218 		 */
1219 		folio_put(folio);
1220 		if (__page_handle_poison(p) > 0) {
1221 			page_ref_inc(p);
1222 			res = MF_RECOVERED;
1223 		} else {
1224 			res = MF_FAILED;
1225 		}
1226 	}
1227 
1228 	if (has_extra_refcount(ps, p, extra_pins))
1229 		res = MF_FAILED;
1230 
1231 	return res;
1232 }
1233 
1234 /*
1235  * Various page states we can handle.
1236  *
1237  * A page state is defined by its current page->flags bits.
1238  * The table matches them in order and calls the right handler.
1239  *
1240  * This is quite tricky because we can access page at any time
1241  * in its live cycle, so all accesses have to be extremely careful.
1242  *
1243  * This is not complete. More states could be added.
1244  * For any missing state don't attempt recovery.
1245  */
1246 
1247 #define dirty		(1UL << PG_dirty)
1248 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1249 #define unevict		(1UL << PG_unevictable)
1250 #define mlock		(1UL << PG_mlocked)
1251 #define lru		(1UL << PG_lru)
1252 #define head		(1UL << PG_head)
1253 #define slab		(1UL << PG_slab)
1254 #define reserved	(1UL << PG_reserved)
1255 
1256 static struct page_state error_states[] = {
1257 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1258 	/*
1259 	 * free pages are specially detected outside this table:
1260 	 * PG_buddy pages only make a small fraction of all free pages.
1261 	 */
1262 
1263 	/*
1264 	 * Could in theory check if slab page is free or if we can drop
1265 	 * currently unused objects without touching them. But just
1266 	 * treat it as standard kernel for now.
1267 	 */
1268 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1269 
1270 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1271 
1272 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1273 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1274 
1275 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1276 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1277 
1278 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1279 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1280 
1281 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1282 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1283 
1284 	/*
1285 	 * Catchall entry: must be at end.
1286 	 */
1287 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1288 };
1289 
1290 #undef dirty
1291 #undef sc
1292 #undef unevict
1293 #undef mlock
1294 #undef lru
1295 #undef head
1296 #undef slab
1297 #undef reserved
1298 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1299 static void update_per_node_mf_stats(unsigned long pfn,
1300 				     enum mf_result result)
1301 {
1302 	int nid = MAX_NUMNODES;
1303 	struct memory_failure_stats *mf_stats = NULL;
1304 
1305 	nid = pfn_to_nid(pfn);
1306 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1307 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1308 		return;
1309 	}
1310 
1311 	mf_stats = &NODE_DATA(nid)->mf_stats;
1312 	switch (result) {
1313 	case MF_IGNORED:
1314 		++mf_stats->ignored;
1315 		break;
1316 	case MF_FAILED:
1317 		++mf_stats->failed;
1318 		break;
1319 	case MF_DELAYED:
1320 		++mf_stats->delayed;
1321 		break;
1322 	case MF_RECOVERED:
1323 		++mf_stats->recovered;
1324 		break;
1325 	default:
1326 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1327 		break;
1328 	}
1329 	++mf_stats->total;
1330 }
1331 
1332 /*
1333  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1334  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1335  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1336 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1337 			 enum mf_result result)
1338 {
1339 	trace_memory_failure_event(pfn, type, result);
1340 
1341 	num_poisoned_pages_inc(pfn);
1342 
1343 	update_per_node_mf_stats(pfn, result);
1344 
1345 	pr_err("%#lx: recovery action for %s: %s\n",
1346 		pfn, action_page_types[type], action_name[result]);
1347 
1348 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1349 }
1350 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1351 static int page_action(struct page_state *ps, struct page *p,
1352 			unsigned long pfn)
1353 {
1354 	int result;
1355 
1356 	/* page p should be unlocked after returning from ps->action().  */
1357 	result = ps->action(ps, p);
1358 
1359 	/* Could do more checks here if page looks ok */
1360 	/*
1361 	 * Could adjust zone counters here to correct for the missing page.
1362 	 */
1363 
1364 	return action_result(pfn, ps->type, result);
1365 }
1366 
PageHWPoisonTakenOff(struct page * page)1367 static inline bool PageHWPoisonTakenOff(struct page *page)
1368 {
1369 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1370 }
1371 
SetPageHWPoisonTakenOff(struct page * page)1372 void SetPageHWPoisonTakenOff(struct page *page)
1373 {
1374 	set_page_private(page, MAGIC_HWPOISON);
1375 }
1376 
ClearPageHWPoisonTakenOff(struct page * page)1377 void ClearPageHWPoisonTakenOff(struct page *page)
1378 {
1379 	if (PageHWPoison(page))
1380 		set_page_private(page, 0);
1381 }
1382 
1383 /*
1384  * Return true if a page type of a given page is supported by hwpoison
1385  * mechanism (while handling could fail), otherwise false.  This function
1386  * does not return true for hugetlb or device memory pages, so it's assumed
1387  * to be called only in the context where we never have such pages.
1388  */
HWPoisonHandlable(struct page * page,unsigned long flags)1389 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1390 {
1391 	/* Soft offline could migrate non-LRU movable pages */
1392 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1393 		return true;
1394 
1395 	return PageLRU(page) || is_free_buddy_page(page);
1396 }
1397 
__get_hwpoison_page(struct page * page,unsigned long flags)1398 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1399 {
1400 	struct folio *folio = page_folio(page);
1401 	int ret = 0;
1402 	bool hugetlb = false;
1403 
1404 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1405 	if (hugetlb) {
1406 		/* Make sure hugetlb demotion did not happen from under us. */
1407 		if (folio == page_folio(page))
1408 			return ret;
1409 		if (ret > 0) {
1410 			folio_put(folio);
1411 			folio = page_folio(page);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * This check prevents from calling folio_try_get() for any
1417 	 * unsupported type of folio in order to reduce the risk of unexpected
1418 	 * races caused by taking a folio refcount.
1419 	 */
1420 	if (!HWPoisonHandlable(&folio->page, flags))
1421 		return -EBUSY;
1422 
1423 	if (folio_try_get(folio)) {
1424 		if (folio == page_folio(page))
1425 			return 1;
1426 
1427 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1428 		folio_put(folio);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
get_any_page(struct page * p,unsigned long flags)1434 static int get_any_page(struct page *p, unsigned long flags)
1435 {
1436 	int ret = 0, pass = 0;
1437 	bool count_increased = false;
1438 
1439 	if (flags & MF_COUNT_INCREASED)
1440 		count_increased = true;
1441 
1442 try_again:
1443 	if (!count_increased) {
1444 		ret = __get_hwpoison_page(p, flags);
1445 		if (!ret) {
1446 			if (page_count(p)) {
1447 				/* We raced with an allocation, retry. */
1448 				if (pass++ < 3)
1449 					goto try_again;
1450 				ret = -EBUSY;
1451 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1452 				/* We raced with put_page, retry. */
1453 				if (pass++ < 3)
1454 					goto try_again;
1455 				ret = -EIO;
1456 			}
1457 			goto out;
1458 		} else if (ret == -EBUSY) {
1459 			/*
1460 			 * We raced with (possibly temporary) unhandlable
1461 			 * page, retry.
1462 			 */
1463 			if (pass++ < 3) {
1464 				shake_page(p);
1465 				goto try_again;
1466 			}
1467 			ret = -EIO;
1468 			goto out;
1469 		}
1470 	}
1471 
1472 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1473 		ret = 1;
1474 	} else {
1475 		/*
1476 		 * A page we cannot handle. Check whether we can turn
1477 		 * it into something we can handle.
1478 		 */
1479 		if (pass++ < 3) {
1480 			put_page(p);
1481 			shake_page(p);
1482 			count_increased = false;
1483 			goto try_again;
1484 		}
1485 		put_page(p);
1486 		ret = -EIO;
1487 	}
1488 out:
1489 	if (ret == -EIO)
1490 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1491 
1492 	return ret;
1493 }
1494 
__get_unpoison_page(struct page * page)1495 static int __get_unpoison_page(struct page *page)
1496 {
1497 	struct folio *folio = page_folio(page);
1498 	int ret = 0;
1499 	bool hugetlb = false;
1500 
1501 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1502 	if (hugetlb) {
1503 		/* Make sure hugetlb demotion did not happen from under us. */
1504 		if (folio == page_folio(page))
1505 			return ret;
1506 		if (ret > 0)
1507 			folio_put(folio);
1508 	}
1509 
1510 	/*
1511 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1512 	 * but also isolated from buddy freelist, so need to identify the
1513 	 * state and have to cancel both operations to unpoison.
1514 	 */
1515 	if (PageHWPoisonTakenOff(page))
1516 		return -EHWPOISON;
1517 
1518 	return get_page_unless_zero(page) ? 1 : 0;
1519 }
1520 
1521 /**
1522  * get_hwpoison_page() - Get refcount for memory error handling
1523  * @p:		Raw error page (hit by memory error)
1524  * @flags:	Flags controlling behavior of error handling
1525  *
1526  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1527  * error on it, after checking that the error page is in a well-defined state
1528  * (defined as a page-type we can successfully handle the memory error on it,
1529  * such as LRU page and hugetlb page).
1530  *
1531  * Memory error handling could be triggered at any time on any type of page,
1532  * so it's prone to race with typical memory management lifecycle (like
1533  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1534  * extra care for the error page's state (as done in __get_hwpoison_page()),
1535  * and has some retry logic in get_any_page().
1536  *
1537  * When called from unpoison_memory(), the caller should already ensure that
1538  * the given page has PG_hwpoison. So it's never reused for other page
1539  * allocations, and __get_unpoison_page() never races with them.
1540  *
1541  * Return: 0 on failure,
1542  *         1 on success for in-use pages in a well-defined state,
1543  *         -EIO for pages on which we can not handle memory errors,
1544  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1545  *         operations like allocation and free,
1546  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1547  */
get_hwpoison_page(struct page * p,unsigned long flags)1548 static int get_hwpoison_page(struct page *p, unsigned long flags)
1549 {
1550 	int ret;
1551 
1552 	zone_pcp_disable(page_zone(p));
1553 	if (flags & MF_UNPOISON)
1554 		ret = __get_unpoison_page(p);
1555 	else
1556 		ret = get_any_page(p, flags);
1557 	zone_pcp_enable(page_zone(p));
1558 
1559 	return ret;
1560 }
1561 
1562 /*
1563  * Do all that is necessary to remove user space mappings. Unmap
1564  * the pages and send SIGBUS to the processes if the data was dirty.
1565  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1566 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1567 				  int flags, struct page *hpage)
1568 {
1569 	struct folio *folio = page_folio(hpage);
1570 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1571 	struct address_space *mapping;
1572 	LIST_HEAD(tokill);
1573 	bool unmap_success;
1574 	int forcekill;
1575 	bool mlocked = PageMlocked(hpage);
1576 
1577 	/*
1578 	 * Here we are interested only in user-mapped pages, so skip any
1579 	 * other types of pages.
1580 	 */
1581 	if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1582 		return true;
1583 	if (!(PageLRU(hpage) || PageHuge(p)))
1584 		return true;
1585 
1586 	/*
1587 	 * This check implies we don't kill processes if their pages
1588 	 * are in the swap cache early. Those are always late kills.
1589 	 */
1590 	if (!page_mapped(p))
1591 		return true;
1592 
1593 	if (PageSwapCache(p)) {
1594 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1595 		ttu &= ~TTU_HWPOISON;
1596 	}
1597 
1598 	/*
1599 	 * Propagate the dirty bit from PTEs to struct page first, because we
1600 	 * need this to decide if we should kill or just drop the page.
1601 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1602 	 * be called inside page lock (it's recommended but not enforced).
1603 	 */
1604 	mapping = page_mapping(hpage);
1605 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1606 	    mapping_can_writeback(mapping)) {
1607 		if (page_mkclean(hpage)) {
1608 			SetPageDirty(hpage);
1609 		} else {
1610 			ttu &= ~TTU_HWPOISON;
1611 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1612 				pfn);
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * First collect all the processes that have the page
1618 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1619 	 * because ttu takes the rmap data structures down.
1620 	 */
1621 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1622 
1623 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1624 		/*
1625 		 * For hugetlb pages in shared mappings, try_to_unmap
1626 		 * could potentially call huge_pmd_unshare.  Because of
1627 		 * this, take semaphore in write mode here and set
1628 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1629 		 * at this higher level.
1630 		 */
1631 		mapping = hugetlb_page_mapping_lock_write(hpage);
1632 		if (mapping) {
1633 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1634 			i_mmap_unlock_write(mapping);
1635 		} else
1636 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1637 	} else {
1638 		try_to_unmap(folio, ttu);
1639 	}
1640 
1641 	unmap_success = !page_mapped(p);
1642 	if (!unmap_success)
1643 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1644 		       pfn, page_mapcount(p));
1645 
1646 	/*
1647 	 * try_to_unmap() might put mlocked page in lru cache, so call
1648 	 * shake_page() again to ensure that it's flushed.
1649 	 */
1650 	if (mlocked)
1651 		shake_page(hpage);
1652 
1653 	/*
1654 	 * Now that the dirty bit has been propagated to the
1655 	 * struct page and all unmaps done we can decide if
1656 	 * killing is needed or not.  Only kill when the page
1657 	 * was dirty or the process is not restartable,
1658 	 * otherwise the tokill list is merely
1659 	 * freed.  When there was a problem unmapping earlier
1660 	 * use a more force-full uncatchable kill to prevent
1661 	 * any accesses to the poisoned memory.
1662 	 */
1663 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1664 		    !unmap_success;
1665 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1666 
1667 	return unmap_success;
1668 }
1669 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1670 static int identify_page_state(unsigned long pfn, struct page *p,
1671 				unsigned long page_flags)
1672 {
1673 	struct page_state *ps;
1674 
1675 	/*
1676 	 * The first check uses the current page flags which may not have any
1677 	 * relevant information. The second check with the saved page flags is
1678 	 * carried out only if the first check can't determine the page status.
1679 	 */
1680 	for (ps = error_states;; ps++)
1681 		if ((p->flags & ps->mask) == ps->res)
1682 			break;
1683 
1684 	page_flags |= (p->flags & (1UL << PG_dirty));
1685 
1686 	if (!ps->mask)
1687 		for (ps = error_states;; ps++)
1688 			if ((page_flags & ps->mask) == ps->res)
1689 				break;
1690 	return page_action(ps, p, pfn);
1691 }
1692 
try_to_split_thp_page(struct page * page)1693 static int try_to_split_thp_page(struct page *page)
1694 {
1695 	int ret;
1696 
1697 	lock_page(page);
1698 	ret = split_huge_page(page);
1699 	unlock_page(page);
1700 
1701 	if (unlikely(ret))
1702 		put_page(page);
1703 
1704 	return ret;
1705 }
1706 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1707 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1708 		struct address_space *mapping, pgoff_t index, int flags)
1709 {
1710 	struct to_kill *tk;
1711 	unsigned long size = 0;
1712 
1713 	list_for_each_entry(tk, to_kill, nd)
1714 		if (tk->size_shift)
1715 			size = max(size, 1UL << tk->size_shift);
1716 
1717 	if (size) {
1718 		/*
1719 		 * Unmap the largest mapping to avoid breaking up device-dax
1720 		 * mappings which are constant size. The actual size of the
1721 		 * mapping being torn down is communicated in siginfo, see
1722 		 * kill_proc()
1723 		 */
1724 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1725 
1726 		unmap_mapping_range(mapping, start, size, 0);
1727 	}
1728 
1729 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1730 }
1731 
1732 /*
1733  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1734  * either do not claim or fails to claim a hwpoison event, or devdax.
1735  * The fsdax pages are initialized per base page, and the devdax pages
1736  * could be initialized either as base pages, or as compound pages with
1737  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1738  * hwpoison, such that, if a subpage of a compound page is poisoned,
1739  * simply mark the compound head page is by far sufficient.
1740  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1741 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1742 		struct dev_pagemap *pgmap)
1743 {
1744 	struct folio *folio = pfn_folio(pfn);
1745 	LIST_HEAD(to_kill);
1746 	dax_entry_t cookie;
1747 	int rc = 0;
1748 
1749 	/*
1750 	 * Prevent the inode from being freed while we are interrogating
1751 	 * the address_space, typically this would be handled by
1752 	 * lock_page(), but dax pages do not use the page lock. This
1753 	 * also prevents changes to the mapping of this pfn until
1754 	 * poison signaling is complete.
1755 	 */
1756 	cookie = dax_lock_folio(folio);
1757 	if (!cookie)
1758 		return -EBUSY;
1759 
1760 	if (hwpoison_filter(&folio->page)) {
1761 		rc = -EOPNOTSUPP;
1762 		goto unlock;
1763 	}
1764 
1765 	switch (pgmap->type) {
1766 	case MEMORY_DEVICE_PRIVATE:
1767 	case MEMORY_DEVICE_COHERENT:
1768 		/*
1769 		 * TODO: Handle device pages which may need coordination
1770 		 * with device-side memory.
1771 		 */
1772 		rc = -ENXIO;
1773 		goto unlock;
1774 	default:
1775 		break;
1776 	}
1777 
1778 	/*
1779 	 * Use this flag as an indication that the dax page has been
1780 	 * remapped UC to prevent speculative consumption of poison.
1781 	 */
1782 	SetPageHWPoison(&folio->page);
1783 
1784 	/*
1785 	 * Unlike System-RAM there is no possibility to swap in a
1786 	 * different physical page at a given virtual address, so all
1787 	 * userspace consumption of ZONE_DEVICE memory necessitates
1788 	 * SIGBUS (i.e. MF_MUST_KILL)
1789 	 */
1790 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1791 	collect_procs(folio, &folio->page, &to_kill, true);
1792 
1793 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1794 unlock:
1795 	dax_unlock_folio(folio, cookie);
1796 	return rc;
1797 }
1798 
1799 #ifdef CONFIG_FS_DAX
1800 /**
1801  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1802  * @mapping:	address_space of the file in use
1803  * @index:	start pgoff of the range within the file
1804  * @count:	length of the range, in unit of PAGE_SIZE
1805  * @mf_flags:	memory failure flags
1806  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1807 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1808 		unsigned long count, int mf_flags)
1809 {
1810 	LIST_HEAD(to_kill);
1811 	dax_entry_t cookie;
1812 	struct page *page;
1813 	size_t end = index + count;
1814 
1815 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1816 
1817 	for (; index < end; index++) {
1818 		page = NULL;
1819 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1820 		if (!cookie)
1821 			return -EBUSY;
1822 		if (!page)
1823 			goto unlock;
1824 
1825 		SetPageHWPoison(page);
1826 
1827 		collect_procs_fsdax(page, mapping, index, &to_kill);
1828 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1829 				index, mf_flags);
1830 unlock:
1831 		dax_unlock_mapping_entry(mapping, index, cookie);
1832 	}
1833 	return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1836 #endif /* CONFIG_FS_DAX */
1837 
1838 #ifdef CONFIG_HUGETLB_PAGE
1839 
1840 /*
1841  * Struct raw_hwp_page represents information about "raw error page",
1842  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1843  */
1844 struct raw_hwp_page {
1845 	struct llist_node node;
1846 	struct page *page;
1847 };
1848 
raw_hwp_list_head(struct folio * folio)1849 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1850 {
1851 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1852 }
1853 
is_raw_hwpoison_page_in_hugepage(struct page * page)1854 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1855 {
1856 	struct llist_head *raw_hwp_head;
1857 	struct raw_hwp_page *p;
1858 	struct folio *folio = page_folio(page);
1859 	bool ret = false;
1860 
1861 	if (!folio_test_hwpoison(folio))
1862 		return false;
1863 
1864 	if (!folio_test_hugetlb(folio))
1865 		return PageHWPoison(page);
1866 
1867 	/*
1868 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1869 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1870 	 */
1871 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1872 		return true;
1873 
1874 	mutex_lock(&mf_mutex);
1875 
1876 	raw_hwp_head = raw_hwp_list_head(folio);
1877 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1878 		if (page == p->page) {
1879 			ret = true;
1880 			break;
1881 		}
1882 	}
1883 
1884 	mutex_unlock(&mf_mutex);
1885 
1886 	return ret;
1887 }
1888 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1889 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1890 {
1891 	struct llist_node *head;
1892 	struct raw_hwp_page *p, *next;
1893 	unsigned long count = 0;
1894 
1895 	head = llist_del_all(raw_hwp_list_head(folio));
1896 	llist_for_each_entry_safe(p, next, head, node) {
1897 		if (move_flag)
1898 			SetPageHWPoison(p->page);
1899 		else
1900 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1901 		kfree(p);
1902 		count++;
1903 	}
1904 	return count;
1905 }
1906 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1907 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1908 {
1909 	struct llist_head *head;
1910 	struct raw_hwp_page *raw_hwp;
1911 	struct raw_hwp_page *p, *next;
1912 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1913 
1914 	/*
1915 	 * Once the hwpoison hugepage has lost reliable raw error info,
1916 	 * there is little meaning to keep additional error info precisely,
1917 	 * so skip to add additional raw error info.
1918 	 */
1919 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1920 		return -EHWPOISON;
1921 	head = raw_hwp_list_head(folio);
1922 	llist_for_each_entry_safe(p, next, head->first, node) {
1923 		if (p->page == page)
1924 			return -EHWPOISON;
1925 	}
1926 
1927 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1928 	if (raw_hwp) {
1929 		raw_hwp->page = page;
1930 		llist_add(&raw_hwp->node, head);
1931 		/* the first error event will be counted in action_result(). */
1932 		if (ret)
1933 			num_poisoned_pages_inc(page_to_pfn(page));
1934 	} else {
1935 		/*
1936 		 * Failed to save raw error info.  We no longer trace all
1937 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1938 		 * this hwpoisoned hugepage.
1939 		 */
1940 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1941 		/*
1942 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1943 		 * used any more, so free it.
1944 		 */
1945 		__folio_free_raw_hwp(folio, false);
1946 	}
1947 	return ret;
1948 }
1949 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1950 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1951 {
1952 	/*
1953 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1954 	 * pages for tail pages are required but they don't exist.
1955 	 */
1956 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1957 		return 0;
1958 
1959 	/*
1960 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1961 	 * definition.
1962 	 */
1963 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1964 		return 0;
1965 
1966 	return __folio_free_raw_hwp(folio, move_flag);
1967 }
1968 
folio_clear_hugetlb_hwpoison(struct folio * folio)1969 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1970 {
1971 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1972 		return;
1973 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1974 		return;
1975 	folio_clear_hwpoison(folio);
1976 	folio_free_raw_hwp(folio, true);
1977 }
1978 
1979 /*
1980  * Called from hugetlb code with hugetlb_lock held.
1981  *
1982  * Return values:
1983  *   0             - free hugepage
1984  *   1             - in-use hugepage
1985  *   2             - not a hugepage
1986  *   -EBUSY        - the hugepage is busy (try to retry)
1987  *   -EHWPOISON    - the hugepage is already hwpoisoned
1988  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1989 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1990 				 bool *migratable_cleared)
1991 {
1992 	struct page *page = pfn_to_page(pfn);
1993 	struct folio *folio = page_folio(page);
1994 	int ret = 2;	/* fallback to normal page handling */
1995 	bool count_increased = false;
1996 
1997 	if (!folio_test_hugetlb(folio))
1998 		goto out;
1999 
2000 	if (flags & MF_COUNT_INCREASED) {
2001 		ret = 1;
2002 		count_increased = true;
2003 	} else if (folio_test_hugetlb_freed(folio)) {
2004 		ret = 0;
2005 	} else if (folio_test_hugetlb_migratable(folio)) {
2006 		ret = folio_try_get(folio);
2007 		if (ret)
2008 			count_increased = true;
2009 	} else {
2010 		ret = -EBUSY;
2011 		if (!(flags & MF_NO_RETRY))
2012 			goto out;
2013 	}
2014 
2015 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2016 		ret = -EHWPOISON;
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2022 	 * from being migrated by memory hotremove.
2023 	 */
2024 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2025 		folio_clear_hugetlb_migratable(folio);
2026 		*migratable_cleared = true;
2027 	}
2028 
2029 	return ret;
2030 out:
2031 	if (count_increased)
2032 		folio_put(folio);
2033 	return ret;
2034 }
2035 
2036 /*
2037  * Taking refcount of hugetlb pages needs extra care about race conditions
2038  * with basic operations like hugepage allocation/free/demotion.
2039  * So some of prechecks for hwpoison (pinning, and testing/setting
2040  * PageHWPoison) should be done in single hugetlb_lock range.
2041  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2042 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2043 {
2044 	int res;
2045 	struct page *p = pfn_to_page(pfn);
2046 	struct folio *folio;
2047 	unsigned long page_flags;
2048 	bool migratable_cleared = false;
2049 
2050 	*hugetlb = 1;
2051 retry:
2052 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2053 	if (res == 2) { /* fallback to normal page handling */
2054 		*hugetlb = 0;
2055 		return 0;
2056 	} else if (res == -EHWPOISON) {
2057 		pr_err("%#lx: already hardware poisoned\n", pfn);
2058 		if (flags & MF_ACTION_REQUIRED) {
2059 			folio = page_folio(p);
2060 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2061 		}
2062 		return res;
2063 	} else if (res == -EBUSY) {
2064 		if (!(flags & MF_NO_RETRY)) {
2065 			flags |= MF_NO_RETRY;
2066 			goto retry;
2067 		}
2068 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2069 	}
2070 
2071 	folio = page_folio(p);
2072 	folio_lock(folio);
2073 
2074 	if (hwpoison_filter(p)) {
2075 		folio_clear_hugetlb_hwpoison(folio);
2076 		if (migratable_cleared)
2077 			folio_set_hugetlb_migratable(folio);
2078 		folio_unlock(folio);
2079 		if (res == 1)
2080 			folio_put(folio);
2081 		return -EOPNOTSUPP;
2082 	}
2083 
2084 	/*
2085 	 * Handling free hugepage.  The possible race with hugepage allocation
2086 	 * or demotion can be prevented by PageHWPoison flag.
2087 	 */
2088 	if (res == 0) {
2089 		folio_unlock(folio);
2090 		if (__page_handle_poison(p) > 0) {
2091 			page_ref_inc(p);
2092 			res = MF_RECOVERED;
2093 		} else {
2094 			res = MF_FAILED;
2095 		}
2096 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2097 	}
2098 
2099 	page_flags = folio->flags;
2100 
2101 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2102 		folio_unlock(folio);
2103 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2104 	}
2105 
2106 	return identify_page_state(pfn, p, page_flags);
2107 }
2108 
2109 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2110 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2111 {
2112 	return 0;
2113 }
2114 
folio_free_raw_hwp(struct folio * folio,bool flag)2115 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2116 {
2117 	return 0;
2118 }
2119 #endif	/* CONFIG_HUGETLB_PAGE */
2120 
2121 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2122 static void put_ref_page(unsigned long pfn, int flags)
2123 {
2124 	struct page *page;
2125 
2126 	if (!(flags & MF_COUNT_INCREASED))
2127 		return;
2128 
2129 	page = pfn_to_page(pfn);
2130 	if (page)
2131 		put_page(page);
2132 }
2133 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2134 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2135 		struct dev_pagemap *pgmap)
2136 {
2137 	int rc = -ENXIO;
2138 
2139 	/* device metadata space is not recoverable */
2140 	if (!pgmap_pfn_valid(pgmap, pfn))
2141 		goto out;
2142 
2143 	/*
2144 	 * Call driver's implementation to handle the memory failure, otherwise
2145 	 * fall back to generic handler.
2146 	 */
2147 	if (pgmap_has_memory_failure(pgmap)) {
2148 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2149 		/*
2150 		 * Fall back to generic handler too if operation is not
2151 		 * supported inside the driver/device/filesystem.
2152 		 */
2153 		if (rc != -EOPNOTSUPP)
2154 			goto out;
2155 	}
2156 
2157 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2158 out:
2159 	/* drop pgmap ref acquired in caller */
2160 	put_dev_pagemap(pgmap);
2161 	if (rc != -EOPNOTSUPP)
2162 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2163 	return rc;
2164 }
2165 
2166 /**
2167  * memory_failure - Handle memory failure of a page.
2168  * @pfn: Page Number of the corrupted page
2169  * @flags: fine tune action taken
2170  *
2171  * This function is called by the low level machine check code
2172  * of an architecture when it detects hardware memory corruption
2173  * of a page. It tries its best to recover, which includes
2174  * dropping pages, killing processes etc.
2175  *
2176  * The function is primarily of use for corruptions that
2177  * happen outside the current execution context (e.g. when
2178  * detected by a background scrubber)
2179  *
2180  * Must run in process context (e.g. a work queue) with interrupts
2181  * enabled and no spinlocks held.
2182  *
2183  * Return: 0 for successfully handled the memory error,
2184  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2185  *         < 0(except -EOPNOTSUPP) on failure.
2186  */
memory_failure(unsigned long pfn,int flags)2187 int memory_failure(unsigned long pfn, int flags)
2188 {
2189 	struct page *p;
2190 	struct page *hpage;
2191 	struct dev_pagemap *pgmap;
2192 	int res = 0;
2193 	unsigned long page_flags;
2194 	bool retry = true;
2195 	int hugetlb = 0;
2196 
2197 	if (!sysctl_memory_failure_recovery)
2198 		panic("Memory failure on page %lx", pfn);
2199 
2200 	mutex_lock(&mf_mutex);
2201 
2202 	if (!(flags & MF_SW_SIMULATED))
2203 		hw_memory_failure = true;
2204 
2205 	p = pfn_to_online_page(pfn);
2206 	if (!p) {
2207 		res = arch_memory_failure(pfn, flags);
2208 		if (res == 0)
2209 			goto unlock_mutex;
2210 
2211 		if (pfn_valid(pfn)) {
2212 			pgmap = get_dev_pagemap(pfn, NULL);
2213 			put_ref_page(pfn, flags);
2214 			if (pgmap) {
2215 				res = memory_failure_dev_pagemap(pfn, flags,
2216 								 pgmap);
2217 				goto unlock_mutex;
2218 			}
2219 		}
2220 		pr_err("%#lx: memory outside kernel control\n", pfn);
2221 		res = -ENXIO;
2222 		goto unlock_mutex;
2223 	}
2224 
2225 try_again:
2226 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2227 	if (hugetlb)
2228 		goto unlock_mutex;
2229 
2230 	if (TestSetPageHWPoison(p)) {
2231 		pr_err("%#lx: already hardware poisoned\n", pfn);
2232 		res = -EHWPOISON;
2233 		if (flags & MF_ACTION_REQUIRED)
2234 			res = kill_accessing_process(current, pfn, flags);
2235 		if (flags & MF_COUNT_INCREASED)
2236 			put_page(p);
2237 		goto unlock_mutex;
2238 	}
2239 
2240 	/*
2241 	 * We need/can do nothing about count=0 pages.
2242 	 * 1) it's a free page, and therefore in safe hand:
2243 	 *    check_new_page() will be the gate keeper.
2244 	 * 2) it's part of a non-compound high order page.
2245 	 *    Implies some kernel user: cannot stop them from
2246 	 *    R/W the page; let's pray that the page has been
2247 	 *    used and will be freed some time later.
2248 	 * In fact it's dangerous to directly bump up page count from 0,
2249 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2250 	 */
2251 	if (!(flags & MF_COUNT_INCREASED)) {
2252 		res = get_hwpoison_page(p, flags);
2253 		if (!res) {
2254 			if (is_free_buddy_page(p)) {
2255 				if (take_page_off_buddy(p)) {
2256 					page_ref_inc(p);
2257 					res = MF_RECOVERED;
2258 				} else {
2259 					/* We lost the race, try again */
2260 					if (retry) {
2261 						ClearPageHWPoison(p);
2262 						retry = false;
2263 						goto try_again;
2264 					}
2265 					res = MF_FAILED;
2266 				}
2267 				res = action_result(pfn, MF_MSG_BUDDY, res);
2268 			} else {
2269 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2270 			}
2271 			goto unlock_mutex;
2272 		} else if (res < 0) {
2273 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2274 			goto unlock_mutex;
2275 		}
2276 	}
2277 
2278 	hpage = compound_head(p);
2279 	if (PageTransHuge(hpage)) {
2280 		/*
2281 		 * The flag must be set after the refcount is bumped
2282 		 * otherwise it may race with THP split.
2283 		 * And the flag can't be set in get_hwpoison_page() since
2284 		 * it is called by soft offline too and it is just called
2285 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2286 		 * place.
2287 		 *
2288 		 * Don't need care about the above error handling paths for
2289 		 * get_hwpoison_page() since they handle either free page
2290 		 * or unhandlable page.  The refcount is bumped iff the
2291 		 * page is a valid handlable page.
2292 		 */
2293 		SetPageHasHWPoisoned(hpage);
2294 		if (try_to_split_thp_page(p) < 0) {
2295 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2296 			goto unlock_mutex;
2297 		}
2298 		VM_BUG_ON_PAGE(!page_count(p), p);
2299 	}
2300 
2301 	/*
2302 	 * We ignore non-LRU pages for good reasons.
2303 	 * - PG_locked is only well defined for LRU pages and a few others
2304 	 * - to avoid races with __SetPageLocked()
2305 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2306 	 * The check (unnecessarily) ignores LRU pages being isolated and
2307 	 * walked by the page reclaim code, however that's not a big loss.
2308 	 */
2309 	shake_page(p);
2310 
2311 	lock_page(p);
2312 
2313 	/*
2314 	 * We're only intended to deal with the non-Compound page here.
2315 	 * However, the page could have changed compound pages due to
2316 	 * race window. If this happens, we could try again to hopefully
2317 	 * handle the page next round.
2318 	 */
2319 	if (PageCompound(p)) {
2320 		if (retry) {
2321 			ClearPageHWPoison(p);
2322 			unlock_page(p);
2323 			put_page(p);
2324 			flags &= ~MF_COUNT_INCREASED;
2325 			retry = false;
2326 			goto try_again;
2327 		}
2328 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2329 		goto unlock_page;
2330 	}
2331 
2332 	/*
2333 	 * We use page flags to determine what action should be taken, but
2334 	 * the flags can be modified by the error containment action.  One
2335 	 * example is an mlocked page, where PG_mlocked is cleared by
2336 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2337 	 * correctly, we save a copy of the page flags at this time.
2338 	 */
2339 	page_flags = p->flags;
2340 
2341 	if (hwpoison_filter(p)) {
2342 		ClearPageHWPoison(p);
2343 		unlock_page(p);
2344 		put_page(p);
2345 		res = -EOPNOTSUPP;
2346 		goto unlock_mutex;
2347 	}
2348 
2349 	/*
2350 	 * __munlock_folio() may clear a writeback page's LRU flag without
2351 	 * page_lock. We need wait writeback completion for this page or it
2352 	 * may trigger vfs BUG while evict inode.
2353 	 */
2354 	if (!PageLRU(p) && !PageWriteback(p))
2355 		goto identify_page_state;
2356 
2357 	/*
2358 	 * It's very difficult to mess with pages currently under IO
2359 	 * and in many cases impossible, so we just avoid it here.
2360 	 */
2361 	wait_on_page_writeback(p);
2362 
2363 	/*
2364 	 * Now take care of user space mappings.
2365 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2366 	 */
2367 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2368 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2369 		goto unlock_page;
2370 	}
2371 
2372 	/*
2373 	 * Torn down by someone else?
2374 	 */
2375 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2376 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2377 		goto unlock_page;
2378 	}
2379 
2380 identify_page_state:
2381 	res = identify_page_state(pfn, p, page_flags);
2382 	mutex_unlock(&mf_mutex);
2383 	return res;
2384 unlock_page:
2385 	unlock_page(p);
2386 unlock_mutex:
2387 	mutex_unlock(&mf_mutex);
2388 	return res;
2389 }
2390 EXPORT_SYMBOL_GPL(memory_failure);
2391 
2392 #define MEMORY_FAILURE_FIFO_ORDER	4
2393 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2394 
2395 struct memory_failure_entry {
2396 	unsigned long pfn;
2397 	int flags;
2398 };
2399 
2400 struct memory_failure_cpu {
2401 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2402 		      MEMORY_FAILURE_FIFO_SIZE);
2403 	raw_spinlock_t lock;
2404 	struct work_struct work;
2405 };
2406 
2407 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2408 
2409 /**
2410  * memory_failure_queue - Schedule handling memory failure of a page.
2411  * @pfn: Page Number of the corrupted page
2412  * @flags: Flags for memory failure handling
2413  *
2414  * This function is called by the low level hardware error handler
2415  * when it detects hardware memory corruption of a page. It schedules
2416  * the recovering of error page, including dropping pages, killing
2417  * processes etc.
2418  *
2419  * The function is primarily of use for corruptions that
2420  * happen outside the current execution context (e.g. when
2421  * detected by a background scrubber)
2422  *
2423  * Can run in IRQ context.
2424  */
memory_failure_queue(unsigned long pfn,int flags)2425 void memory_failure_queue(unsigned long pfn, int flags)
2426 {
2427 	struct memory_failure_cpu *mf_cpu;
2428 	unsigned long proc_flags;
2429 	bool buffer_overflow;
2430 	struct memory_failure_entry entry = {
2431 		.pfn =		pfn,
2432 		.flags =	flags,
2433 	};
2434 
2435 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2436 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2437 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2438 	if (!buffer_overflow)
2439 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2440 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2441 	put_cpu_var(memory_failure_cpu);
2442 	if (buffer_overflow)
2443 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2444 		       pfn);
2445 }
2446 EXPORT_SYMBOL_GPL(memory_failure_queue);
2447 
memory_failure_work_func(struct work_struct * work)2448 static void memory_failure_work_func(struct work_struct *work)
2449 {
2450 	struct memory_failure_cpu *mf_cpu;
2451 	struct memory_failure_entry entry = { 0, };
2452 	unsigned long proc_flags;
2453 	int gotten;
2454 
2455 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2456 	for (;;) {
2457 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2458 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2459 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2460 		if (!gotten)
2461 			break;
2462 		if (entry.flags & MF_SOFT_OFFLINE)
2463 			soft_offline_page(entry.pfn, entry.flags);
2464 		else
2465 			memory_failure(entry.pfn, entry.flags);
2466 	}
2467 }
2468 
2469 /*
2470  * Process memory_failure work queued on the specified CPU.
2471  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2472  */
memory_failure_queue_kick(int cpu)2473 void memory_failure_queue_kick(int cpu)
2474 {
2475 	struct memory_failure_cpu *mf_cpu;
2476 
2477 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2478 	cancel_work_sync(&mf_cpu->work);
2479 	memory_failure_work_func(&mf_cpu->work);
2480 }
2481 
memory_failure_init(void)2482 static int __init memory_failure_init(void)
2483 {
2484 	struct memory_failure_cpu *mf_cpu;
2485 	int cpu;
2486 
2487 	for_each_possible_cpu(cpu) {
2488 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2489 		raw_spin_lock_init(&mf_cpu->lock);
2490 		INIT_KFIFO(mf_cpu->fifo);
2491 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2492 	}
2493 
2494 	register_sysctl_init("vm", memory_failure_table);
2495 
2496 	return 0;
2497 }
2498 core_initcall(memory_failure_init);
2499 
2500 #undef pr_fmt
2501 #define pr_fmt(fmt)	"" fmt
2502 #define unpoison_pr_info(fmt, pfn, rs)			\
2503 ({							\
2504 	if (__ratelimit(rs))				\
2505 		pr_info(fmt, pfn);			\
2506 })
2507 
2508 /**
2509  * unpoison_memory - Unpoison a previously poisoned page
2510  * @pfn: Page number of the to be unpoisoned page
2511  *
2512  * Software-unpoison a page that has been poisoned by
2513  * memory_failure() earlier.
2514  *
2515  * This is only done on the software-level, so it only works
2516  * for linux injected failures, not real hardware failures
2517  *
2518  * Returns 0 for success, otherwise -errno.
2519  */
unpoison_memory(unsigned long pfn)2520 int unpoison_memory(unsigned long pfn)
2521 {
2522 	struct folio *folio;
2523 	struct page *p;
2524 	int ret = -EBUSY, ghp;
2525 	unsigned long count = 1;
2526 	bool huge = false;
2527 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2528 					DEFAULT_RATELIMIT_BURST);
2529 
2530 	if (!pfn_valid(pfn))
2531 		return -ENXIO;
2532 
2533 	p = pfn_to_page(pfn);
2534 	folio = page_folio(p);
2535 
2536 	mutex_lock(&mf_mutex);
2537 
2538 	if (hw_memory_failure) {
2539 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2540 				 pfn, &unpoison_rs);
2541 		ret = -EOPNOTSUPP;
2542 		goto unlock_mutex;
2543 	}
2544 
2545 	if (is_huge_zero_page(&folio->page)) {
2546 		unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2547 				 pfn, &unpoison_rs);
2548 		ret = -EOPNOTSUPP;
2549 		goto unlock_mutex;
2550 	}
2551 
2552 	if (!PageHWPoison(p)) {
2553 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2554 				 pfn, &unpoison_rs);
2555 		goto unlock_mutex;
2556 	}
2557 
2558 	if (folio_ref_count(folio) > 1) {
2559 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2560 				 pfn, &unpoison_rs);
2561 		goto unlock_mutex;
2562 	}
2563 
2564 	if (folio_test_slab(folio) || PageTable(&folio->page) ||
2565 	    folio_test_reserved(folio) || PageOffline(&folio->page))
2566 		goto unlock_mutex;
2567 
2568 	/*
2569 	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2570 	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2571 	 */
2572 	if (folio_mapped(folio)) {
2573 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2574 				 pfn, &unpoison_rs);
2575 		goto unlock_mutex;
2576 	}
2577 
2578 	if (folio_mapping(folio)) {
2579 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2580 				 pfn, &unpoison_rs);
2581 		goto unlock_mutex;
2582 	}
2583 
2584 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2585 	if (!ghp) {
2586 		if (PageHuge(p)) {
2587 			huge = true;
2588 			count = folio_free_raw_hwp(folio, false);
2589 			if (count == 0)
2590 				goto unlock_mutex;
2591 		}
2592 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2593 	} else if (ghp < 0) {
2594 		if (ghp == -EHWPOISON) {
2595 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2596 		} else {
2597 			ret = ghp;
2598 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2599 					 pfn, &unpoison_rs);
2600 		}
2601 	} else {
2602 		if (PageHuge(p)) {
2603 			huge = true;
2604 			count = folio_free_raw_hwp(folio, false);
2605 			if (count == 0) {
2606 				folio_put(folio);
2607 				goto unlock_mutex;
2608 			}
2609 		}
2610 
2611 		folio_put(folio);
2612 		if (TestClearPageHWPoison(p)) {
2613 			folio_put(folio);
2614 			ret = 0;
2615 		}
2616 	}
2617 
2618 unlock_mutex:
2619 	mutex_unlock(&mf_mutex);
2620 	if (!ret) {
2621 		if (!huge)
2622 			num_poisoned_pages_sub(pfn, 1);
2623 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2624 				 page_to_pfn(p), &unpoison_rs);
2625 	}
2626 	return ret;
2627 }
2628 EXPORT_SYMBOL(unpoison_memory);
2629 
isolate_page(struct page * page,struct list_head * pagelist)2630 static bool isolate_page(struct page *page, struct list_head *pagelist)
2631 {
2632 	bool isolated = false;
2633 
2634 	if (PageHuge(page)) {
2635 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2636 	} else {
2637 		bool lru = !__PageMovable(page);
2638 
2639 		if (lru)
2640 			isolated = isolate_lru_page(page);
2641 		else
2642 			isolated = isolate_movable_page(page,
2643 							ISOLATE_UNEVICTABLE);
2644 
2645 		if (isolated) {
2646 			list_add(&page->lru, pagelist);
2647 			if (lru)
2648 				inc_node_page_state(page, NR_ISOLATED_ANON +
2649 						    page_is_file_lru(page));
2650 		}
2651 	}
2652 
2653 	/*
2654 	 * If we succeed to isolate the page, we grabbed another refcount on
2655 	 * the page, so we can safely drop the one we got from get_any_page().
2656 	 * If we failed to isolate the page, it means that we cannot go further
2657 	 * and we will return an error, so drop the reference we got from
2658 	 * get_any_page() as well.
2659 	 */
2660 	put_page(page);
2661 	return isolated;
2662 }
2663 
2664 /*
2665  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2666  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2667  * If the page is mapped, it migrates the contents over.
2668  */
soft_offline_in_use_page(struct page * page)2669 static int soft_offline_in_use_page(struct page *page)
2670 {
2671 	long ret = 0;
2672 	unsigned long pfn = page_to_pfn(page);
2673 	struct page *hpage = compound_head(page);
2674 	char const *msg_page[] = {"page", "hugepage"};
2675 	bool huge = PageHuge(page);
2676 	LIST_HEAD(pagelist);
2677 	struct migration_target_control mtc = {
2678 		.nid = NUMA_NO_NODE,
2679 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2680 	};
2681 
2682 	if (!huge && PageTransHuge(hpage)) {
2683 		if (try_to_split_thp_page(page)) {
2684 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2685 			return -EBUSY;
2686 		}
2687 		hpage = page;
2688 	}
2689 
2690 	lock_page(page);
2691 	if (!huge)
2692 		wait_on_page_writeback(page);
2693 	if (PageHWPoison(page)) {
2694 		unlock_page(page);
2695 		put_page(page);
2696 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2697 		return 0;
2698 	}
2699 
2700 	if (!huge && PageLRU(page) && !PageSwapCache(page))
2701 		/*
2702 		 * Try to invalidate first. This should work for
2703 		 * non dirty unmapped page cache pages.
2704 		 */
2705 		ret = invalidate_inode_page(page);
2706 	unlock_page(page);
2707 
2708 	if (ret) {
2709 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2710 		page_handle_poison(page, false, true);
2711 		return 0;
2712 	}
2713 
2714 	if (isolate_page(hpage, &pagelist)) {
2715 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2716 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2717 		if (!ret) {
2718 			bool release = !huge;
2719 
2720 			if (!page_handle_poison(page, huge, release))
2721 				ret = -EBUSY;
2722 		} else {
2723 			if (!list_empty(&pagelist))
2724 				putback_movable_pages(&pagelist);
2725 
2726 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2727 				pfn, msg_page[huge], ret, &page->flags);
2728 			if (ret > 0)
2729 				ret = -EBUSY;
2730 		}
2731 	} else {
2732 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2733 			pfn, msg_page[huge], page_count(page), &page->flags);
2734 		ret = -EBUSY;
2735 	}
2736 	return ret;
2737 }
2738 
2739 /**
2740  * soft_offline_page - Soft offline a page.
2741  * @pfn: pfn to soft-offline
2742  * @flags: flags. Same as memory_failure().
2743  *
2744  * Returns 0 on success
2745  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2746  *         < 0 otherwise negated errno.
2747  *
2748  * Soft offline a page, by migration or invalidation,
2749  * without killing anything. This is for the case when
2750  * a page is not corrupted yet (so it's still valid to access),
2751  * but has had a number of corrected errors and is better taken
2752  * out.
2753  *
2754  * The actual policy on when to do that is maintained by
2755  * user space.
2756  *
2757  * This should never impact any application or cause data loss,
2758  * however it might take some time.
2759  *
2760  * This is not a 100% solution for all memory, but tries to be
2761  * ``good enough'' for the majority of memory.
2762  */
soft_offline_page(unsigned long pfn,int flags)2763 int soft_offline_page(unsigned long pfn, int flags)
2764 {
2765 	int ret;
2766 	bool try_again = true;
2767 	struct page *page;
2768 
2769 	if (!pfn_valid(pfn)) {
2770 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2771 		return -ENXIO;
2772 	}
2773 
2774 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2775 	page = pfn_to_online_page(pfn);
2776 	if (!page) {
2777 		put_ref_page(pfn, flags);
2778 		return -EIO;
2779 	}
2780 
2781 	mutex_lock(&mf_mutex);
2782 
2783 	if (PageHWPoison(page)) {
2784 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2785 		put_ref_page(pfn, flags);
2786 		mutex_unlock(&mf_mutex);
2787 		return 0;
2788 	}
2789 
2790 retry:
2791 	get_online_mems();
2792 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2793 	put_online_mems();
2794 
2795 	if (hwpoison_filter(page)) {
2796 		if (ret > 0)
2797 			put_page(page);
2798 
2799 		mutex_unlock(&mf_mutex);
2800 		return -EOPNOTSUPP;
2801 	}
2802 
2803 	if (ret > 0) {
2804 		ret = soft_offline_in_use_page(page);
2805 	} else if (ret == 0) {
2806 		if (!page_handle_poison(page, true, false)) {
2807 			if (try_again) {
2808 				try_again = false;
2809 				flags &= ~MF_COUNT_INCREASED;
2810 				goto retry;
2811 			}
2812 			ret = -EBUSY;
2813 		}
2814 	}
2815 
2816 	mutex_unlock(&mf_mutex);
2817 
2818 	return ret;
2819 }
2820