1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72
73 static bool hw_memory_failure __read_mostly = false;
74
75 static DEFINE_MUTEX(mf_mutex);
76
num_poisoned_pages_inc(unsigned long pfn)77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
81 }
82
num_poisoned_pages_sub(unsigned long pfn,long i)83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 atomic_long_sub(i, &num_poisoned_pages);
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
88 }
89
90 /**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94 #define MF_ATTR_RO(_name) \
95 static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98 { \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102 } \
103 static DEVICE_ATTR_RO(_name)
104
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110
111 static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118 };
119
120 const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123 };
124
125 static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
144 { }
145 };
146
147 /*
148 * Return values:
149 * 1: the page is dissolved (if needed) and taken off from buddy,
150 * 0: the page is dissolved (if needed) and not taken off from buddy,
151 * < 0: failed to dissolve.
152 */
__page_handle_poison(struct page * page)153 static int __page_handle_poison(struct page *page)
154 {
155 int ret;
156
157 /*
158 * zone_pcp_disable() can't be used here. It will
159 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
160 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
161 * optimization is enabled. This will break current lock dependency
162 * chain and leads to deadlock.
163 * Disabling pcp before dissolving the page was a deterministic
164 * approach because we made sure that those pages cannot end up in any
165 * PCP list. Draining PCP lists expels those pages to the buddy system,
166 * but nothing guarantees that those pages do not get back to a PCP
167 * queue if we need to refill those.
168 */
169 ret = dissolve_free_huge_page(page);
170 if (!ret) {
171 drain_all_pages(page_zone(page));
172 ret = take_page_off_buddy(page);
173 }
174
175 return ret;
176 }
177
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
179 {
180 if (hugepage_or_freepage) {
181 /*
182 * Doing this check for free pages is also fine since dissolve_free_huge_page
183 * returns 0 for non-hugetlb pages as well.
184 */
185 if (__page_handle_poison(page) <= 0)
186 /*
187 * We could fail to take off the target page from buddy
188 * for example due to racy page allocation, but that's
189 * acceptable because soft-offlined page is not broken
190 * and if someone really want to use it, they should
191 * take it.
192 */
193 return false;
194 }
195
196 SetPageHWPoison(page);
197 if (release)
198 put_page(page);
199 page_ref_inc(page);
200 num_poisoned_pages_inc(page_to_pfn(page));
201
202 return true;
203 }
204
205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
206
207 u32 hwpoison_filter_enable = 0;
208 u32 hwpoison_filter_dev_major = ~0U;
209 u32 hwpoison_filter_dev_minor = ~0U;
210 u64 hwpoison_filter_flags_mask;
211 u64 hwpoison_filter_flags_value;
212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
217
hwpoison_filter_dev(struct page * p)218 static int hwpoison_filter_dev(struct page *p)
219 {
220 struct address_space *mapping;
221 dev_t dev;
222
223 if (hwpoison_filter_dev_major == ~0U &&
224 hwpoison_filter_dev_minor == ~0U)
225 return 0;
226
227 mapping = page_mapping(p);
228 if (mapping == NULL || mapping->host == NULL)
229 return -EINVAL;
230
231 dev = mapping->host->i_sb->s_dev;
232 if (hwpoison_filter_dev_major != ~0U &&
233 hwpoison_filter_dev_major != MAJOR(dev))
234 return -EINVAL;
235 if (hwpoison_filter_dev_minor != ~0U &&
236 hwpoison_filter_dev_minor != MINOR(dev))
237 return -EINVAL;
238
239 return 0;
240 }
241
hwpoison_filter_flags(struct page * p)242 static int hwpoison_filter_flags(struct page *p)
243 {
244 if (!hwpoison_filter_flags_mask)
245 return 0;
246
247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 hwpoison_filter_flags_value)
249 return 0;
250 else
251 return -EINVAL;
252 }
253
254 /*
255 * This allows stress tests to limit test scope to a collection of tasks
256 * by putting them under some memcg. This prevents killing unrelated/important
257 * processes such as /sbin/init. Note that the target task may share clean
258 * pages with init (eg. libc text), which is harmless. If the target task
259 * share _dirty_ pages with another task B, the test scheme must make sure B
260 * is also included in the memcg. At last, due to race conditions this filter
261 * can only guarantee that the page either belongs to the memcg tasks, or is
262 * a freed page.
263 */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)267 static int hwpoison_filter_task(struct page *p)
268 {
269 if (!hwpoison_filter_memcg)
270 return 0;
271
272 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 return -EINVAL;
274
275 return 0;
276 }
277 #else
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280
hwpoison_filter(struct page * p)281 int hwpoison_filter(struct page *p)
282 {
283 if (!hwpoison_filter_enable)
284 return 0;
285
286 if (hwpoison_filter_dev(p))
287 return -EINVAL;
288
289 if (hwpoison_filter_flags(p))
290 return -EINVAL;
291
292 if (hwpoison_filter_task(p))
293 return -EINVAL;
294
295 return 0;
296 }
297 #else
hwpoison_filter(struct page * p)298 int hwpoison_filter(struct page *p)
299 {
300 return 0;
301 }
302 #endif
303
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305
306 /*
307 * Kill all processes that have a poisoned page mapped and then isolate
308 * the page.
309 *
310 * General strategy:
311 * Find all processes having the page mapped and kill them.
312 * But we keep a page reference around so that the page is not
313 * actually freed yet.
314 * Then stash the page away
315 *
316 * There's no convenient way to get back to mapped processes
317 * from the VMAs. So do a brute-force search over all
318 * running processes.
319 *
320 * Remember that machine checks are not common (or rather
321 * if they are common you have other problems), so this shouldn't
322 * be a performance issue.
323 *
324 * Also there are some races possible while we get from the
325 * error detection to actually handle it.
326 */
327
328 struct to_kill {
329 struct list_head nd;
330 struct task_struct *tsk;
331 unsigned long addr;
332 short size_shift;
333 };
334
335 /*
336 * Send all the processes who have the page mapped a signal.
337 * ``action optional'' if they are not immediately affected by the error
338 * ``action required'' if error happened in current execution context
339 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 struct task_struct *t = tk->tsk;
343 short addr_lsb = tk->size_shift;
344 int ret = 0;
345
346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 pfn, t->comm, t->pid);
348
349 if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 ret = force_sig_mceerr(BUS_MCEERR_AR,
351 (void __user *)tk->addr, addr_lsb);
352 else
353 /*
354 * Signal other processes sharing the page if they have
355 * PF_MCE_EARLY set.
356 * Don't use force here, it's convenient if the signal
357 * can be temporarily blocked.
358 * This could cause a loop when the user sets SIGBUS
359 * to SIG_IGN, but hopefully no one will do that?
360 */
361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 addr_lsb, t);
363 if (ret < 0)
364 pr_info("Error sending signal to %s:%d: %d\n",
365 t->comm, t->pid, ret);
366 return ret;
367 }
368
369 /*
370 * Unknown page type encountered. Try to check whether it can turn PageLRU by
371 * lru_add_drain_all.
372 */
shake_page(struct page * p)373 void shake_page(struct page *p)
374 {
375 if (PageHuge(p))
376 return;
377 /*
378 * TODO: Could shrink slab caches here if a lightweight range-based
379 * shrinker will be available.
380 */
381 if (PageSlab(p))
382 return;
383
384 lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_page);
387
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
389 unsigned long address)
390 {
391 unsigned long ret = 0;
392 pgd_t *pgd;
393 p4d_t *p4d;
394 pud_t *pud;
395 pmd_t *pmd;
396 pte_t *pte;
397 pte_t ptent;
398
399 VM_BUG_ON_VMA(address == -EFAULT, vma);
400 pgd = pgd_offset(vma->vm_mm, address);
401 if (!pgd_present(*pgd))
402 return 0;
403 p4d = p4d_offset(pgd, address);
404 if (!p4d_present(*p4d))
405 return 0;
406 pud = pud_offset(p4d, address);
407 if (!pud_present(*pud))
408 return 0;
409 if (pud_devmap(*pud))
410 return PUD_SHIFT;
411 pmd = pmd_offset(pud, address);
412 if (!pmd_present(*pmd))
413 return 0;
414 if (pmd_devmap(*pmd))
415 return PMD_SHIFT;
416 pte = pte_offset_map(pmd, address);
417 if (!pte)
418 return 0;
419 ptent = ptep_get(pte);
420 if (pte_present(ptent) && pte_devmap(ptent))
421 ret = PAGE_SHIFT;
422 pte_unmap(pte);
423 return ret;
424 }
425
426 /*
427 * Failure handling: if we can't find or can't kill a process there's
428 * not much we can do. We just print a message and ignore otherwise.
429 */
430
431 #define FSDAX_INVALID_PGOFF ULONG_MAX
432
433 /*
434 * Schedule a process for later kill.
435 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
436 *
437 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
438 * filesystem with a memory failure handler has claimed the
439 * memory_failure event. In all other cases, page->index and
440 * page->mapping are sufficient for mapping the page back to its
441 * corresponding user virtual address.
442 */
__add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr,pgoff_t fsdax_pgoff)443 static void __add_to_kill(struct task_struct *tsk, struct page *p,
444 struct vm_area_struct *vma, struct list_head *to_kill,
445 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
446 {
447 struct to_kill *tk;
448
449 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
450 if (!tk) {
451 pr_err("Out of memory while machine check handling\n");
452 return;
453 }
454
455 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
456 if (is_zone_device_page(p)) {
457 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
458 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
459 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
460 } else
461 tk->size_shift = page_shift(compound_head(p));
462
463 /*
464 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
465 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
466 * so "tk->size_shift == 0" effectively checks no mapping on
467 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
468 * to a process' address space, it's possible not all N VMAs
469 * contain mappings for the page, but at least one VMA does.
470 * Only deliver SIGBUS with payload derived from the VMA that
471 * has a mapping for the page.
472 */
473 if (tk->addr == -EFAULT) {
474 pr_info("Unable to find user space address %lx in %s\n",
475 page_to_pfn(p), tsk->comm);
476 } else if (tk->size_shift == 0) {
477 kfree(tk);
478 return;
479 }
480
481 get_task_struct(tsk);
482 tk->tsk = tsk;
483 list_add_tail(&tk->nd, to_kill);
484 }
485
add_to_kill_anon_file(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill)486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
487 struct vm_area_struct *vma,
488 struct list_head *to_kill)
489 {
490 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
491 }
492
493 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)494 static bool task_in_to_kill_list(struct list_head *to_kill,
495 struct task_struct *tsk)
496 {
497 struct to_kill *tk, *next;
498
499 list_for_each_entry_safe(tk, next, to_kill, nd) {
500 if (tk->tsk == tsk)
501 return true;
502 }
503
504 return false;
505 }
add_to_kill_ksm(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long ksm_addr)506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
507 struct vm_area_struct *vma, struct list_head *to_kill,
508 unsigned long ksm_addr)
509 {
510 if (!task_in_to_kill_list(to_kill, tsk))
511 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
512 }
513 #endif
514 /*
515 * Kill the processes that have been collected earlier.
516 *
517 * Only do anything when FORCEKILL is set, otherwise just free the
518 * list (this is used for clean pages which do not need killing)
519 * Also when FAIL is set do a force kill because something went
520 * wrong earlier.
521 */
kill_procs(struct list_head * to_kill,int forcekill,bool fail,unsigned long pfn,int flags)522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
523 unsigned long pfn, int flags)
524 {
525 struct to_kill *tk, *next;
526
527 list_for_each_entry_safe(tk, next, to_kill, nd) {
528 if (forcekill) {
529 /*
530 * In case something went wrong with munmapping
531 * make sure the process doesn't catch the
532 * signal and then access the memory. Just kill it.
533 */
534 if (fail || tk->addr == -EFAULT) {
535 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
536 pfn, tk->tsk->comm, tk->tsk->pid);
537 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
538 tk->tsk, PIDTYPE_PID);
539 }
540
541 /*
542 * In theory the process could have mapped
543 * something else on the address in-between. We could
544 * check for that, but we need to tell the
545 * process anyways.
546 */
547 else if (kill_proc(tk, pfn, flags) < 0)
548 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
549 pfn, tk->tsk->comm, tk->tsk->pid);
550 }
551 list_del(&tk->nd);
552 put_task_struct(tk->tsk);
553 kfree(tk);
554 }
555 }
556
557 /*
558 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
559 * on behalf of the thread group. Return task_struct of the (first found)
560 * dedicated thread if found, and return NULL otherwise.
561 *
562 * We already hold rcu lock in the caller, so we don't have to call
563 * rcu_read_lock/unlock() in this function.
564 */
find_early_kill_thread(struct task_struct * tsk)565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 {
567 struct task_struct *t;
568
569 for_each_thread(tsk, t) {
570 if (t->flags & PF_MCE_PROCESS) {
571 if (t->flags & PF_MCE_EARLY)
572 return t;
573 } else {
574 if (sysctl_memory_failure_early_kill)
575 return t;
576 }
577 }
578 return NULL;
579 }
580
581 /*
582 * Determine whether a given process is "early kill" process which expects
583 * to be signaled when some page under the process is hwpoisoned.
584 * Return task_struct of the dedicated thread (main thread unless explicitly
585 * specified) if the process is "early kill" and otherwise returns NULL.
586 *
587 * Note that the above is true for Action Optional case. For Action Required
588 * case, it's only meaningful to the current thread which need to be signaled
589 * with SIGBUS, this error is Action Optional for other non current
590 * processes sharing the same error page,if the process is "early kill", the
591 * task_struct of the dedicated thread will also be returned.
592 */
task_early_kill(struct task_struct * tsk,int force_early)593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594 {
595 if (!tsk->mm)
596 return NULL;
597 /*
598 * Comparing ->mm here because current task might represent
599 * a subthread, while tsk always points to the main thread.
600 */
601 if (force_early && tsk->mm == current->mm)
602 return current;
603
604 return find_early_kill_thread(tsk);
605 }
606
607 /*
608 * Collect processes when the error hit an anonymous page.
609 */
collect_procs_anon(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)610 static void collect_procs_anon(struct folio *folio, struct page *page,
611 struct list_head *to_kill, int force_early)
612 {
613 struct vm_area_struct *vma;
614 struct task_struct *tsk;
615 struct anon_vma *av;
616 pgoff_t pgoff;
617
618 av = folio_lock_anon_vma_read(folio, NULL);
619 if (av == NULL) /* Not actually mapped anymore */
620 return;
621
622 pgoff = page_to_pgoff(page);
623 rcu_read_lock();
624 for_each_process(tsk) {
625 struct anon_vma_chain *vmac;
626 struct task_struct *t = task_early_kill(tsk, force_early);
627
628 if (!t)
629 continue;
630 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
631 pgoff, pgoff) {
632 vma = vmac->vma;
633 if (vma->vm_mm != t->mm)
634 continue;
635 if (!page_mapped_in_vma(page, vma))
636 continue;
637 add_to_kill_anon_file(t, page, vma, to_kill);
638 }
639 }
640 rcu_read_unlock();
641 anon_vma_unlock_read(av);
642 }
643
644 /*
645 * Collect processes when the error hit a file mapped page.
646 */
collect_procs_file(struct folio * folio,struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(struct folio *folio, struct page *page,
648 struct list_head *to_kill, int force_early)
649 {
650 struct vm_area_struct *vma;
651 struct task_struct *tsk;
652 struct address_space *mapping = folio->mapping;
653 pgoff_t pgoff;
654
655 i_mmap_lock_read(mapping);
656 rcu_read_lock();
657 pgoff = page_to_pgoff(page);
658 for_each_process(tsk) {
659 struct task_struct *t = task_early_kill(tsk, force_early);
660
661 if (!t)
662 continue;
663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
664 pgoff) {
665 /*
666 * Send early kill signal to tasks where a vma covers
667 * the page but the corrupted page is not necessarily
668 * mapped in its pte.
669 * Assume applications who requested early kill want
670 * to be informed of all such data corruptions.
671 */
672 if (vma->vm_mm == t->mm)
673 add_to_kill_anon_file(t, page, vma, to_kill);
674 }
675 }
676 rcu_read_unlock();
677 i_mmap_unlock_read(mapping);
678 }
679
680 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
682 struct vm_area_struct *vma,
683 struct list_head *to_kill, pgoff_t pgoff)
684 {
685 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
686 }
687
688 /*
689 * Collect processes when the error hit a fsdax page.
690 */
collect_procs_fsdax(struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill)691 static void collect_procs_fsdax(struct page *page,
692 struct address_space *mapping, pgoff_t pgoff,
693 struct list_head *to_kill)
694 {
695 struct vm_area_struct *vma;
696 struct task_struct *tsk;
697
698 i_mmap_lock_read(mapping);
699 rcu_read_lock();
700 for_each_process(tsk) {
701 struct task_struct *t = task_early_kill(tsk, true);
702
703 if (!t)
704 continue;
705 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
706 if (vma->vm_mm == t->mm)
707 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
708 }
709 }
710 rcu_read_unlock();
711 i_mmap_unlock_read(mapping);
712 }
713 #endif /* CONFIG_FS_DAX */
714
715 /*
716 * Collect the processes who have the corrupted page mapped to kill.
717 */
collect_procs(struct folio * folio,struct page * page,struct list_head * tokill,int force_early)718 static void collect_procs(struct folio *folio, struct page *page,
719 struct list_head *tokill, int force_early)
720 {
721 if (!folio->mapping)
722 return;
723 if (unlikely(PageKsm(page)))
724 collect_procs_ksm(page, tokill, force_early);
725 else if (PageAnon(page))
726 collect_procs_anon(folio, page, tokill, force_early);
727 else
728 collect_procs_file(folio, page, tokill, force_early);
729 }
730
731 struct hwpoison_walk {
732 struct to_kill tk;
733 unsigned long pfn;
734 int flags;
735 };
736
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)737 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
738 {
739 tk->addr = addr;
740 tk->size_shift = shift;
741 }
742
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)743 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
744 unsigned long poisoned_pfn, struct to_kill *tk)
745 {
746 unsigned long pfn = 0;
747
748 if (pte_present(pte)) {
749 pfn = pte_pfn(pte);
750 } else {
751 swp_entry_t swp = pte_to_swp_entry(pte);
752
753 if (is_hwpoison_entry(swp))
754 pfn = swp_offset_pfn(swp);
755 }
756
757 if (!pfn || pfn != poisoned_pfn)
758 return 0;
759
760 set_to_kill(tk, addr, shift);
761 return 1;
762 }
763
764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)765 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
766 struct hwpoison_walk *hwp)
767 {
768 pmd_t pmd = *pmdp;
769 unsigned long pfn;
770 unsigned long hwpoison_vaddr;
771
772 if (!pmd_present(pmd))
773 return 0;
774 pfn = pmd_pfn(pmd);
775 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
776 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
777 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
778 return 1;
779 }
780 return 0;
781 }
782 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)783 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
784 struct hwpoison_walk *hwp)
785 {
786 return 0;
787 }
788 #endif
789
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)790 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
791 unsigned long end, struct mm_walk *walk)
792 {
793 struct hwpoison_walk *hwp = walk->private;
794 int ret = 0;
795 pte_t *ptep, *mapped_pte;
796 spinlock_t *ptl;
797
798 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
799 if (ptl) {
800 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
801 spin_unlock(ptl);
802 goto out;
803 }
804
805 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
806 addr, &ptl);
807 if (!ptep)
808 goto out;
809
810 for (; addr != end; ptep++, addr += PAGE_SIZE) {
811 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
812 hwp->pfn, &hwp->tk);
813 if (ret == 1)
814 break;
815 }
816 pte_unmap_unlock(mapped_pte, ptl);
817 out:
818 cond_resched();
819 return ret;
820 }
821
822 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)823 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
824 unsigned long addr, unsigned long end,
825 struct mm_walk *walk)
826 {
827 struct hwpoison_walk *hwp = walk->private;
828 pte_t pte = huge_ptep_get(ptep);
829 struct hstate *h = hstate_vma(walk->vma);
830
831 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
832 hwp->pfn, &hwp->tk);
833 }
834 #else
835 #define hwpoison_hugetlb_range NULL
836 #endif
837
838 static const struct mm_walk_ops hwpoison_walk_ops = {
839 .pmd_entry = hwpoison_pte_range,
840 .hugetlb_entry = hwpoison_hugetlb_range,
841 .walk_lock = PGWALK_RDLOCK,
842 };
843
844 /*
845 * Sends SIGBUS to the current process with error info.
846 *
847 * This function is intended to handle "Action Required" MCEs on already
848 * hardware poisoned pages. They could happen, for example, when
849 * memory_failure() failed to unmap the error page at the first call, or
850 * when multiple local machine checks happened on different CPUs.
851 *
852 * MCE handler currently has no easy access to the error virtual address,
853 * so this function walks page table to find it. The returned virtual address
854 * is proper in most cases, but it could be wrong when the application
855 * process has multiple entries mapping the error page.
856 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)857 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
858 int flags)
859 {
860 int ret;
861 struct hwpoison_walk priv = {
862 .pfn = pfn,
863 };
864 priv.tk.tsk = p;
865
866 if (!p->mm)
867 return -EFAULT;
868
869 mmap_read_lock(p->mm);
870 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
871 (void *)&priv);
872 /*
873 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
874 * succeeds or fails, then kill the process with SIGBUS.
875 * ret = 0 when poison page is a clean page and it's dropped, no
876 * SIGBUS is needed.
877 */
878 if (ret == 1 && priv.tk.addr)
879 kill_proc(&priv.tk, pfn, flags);
880 mmap_read_unlock(p->mm);
881
882 return ret > 0 ? -EHWPOISON : 0;
883 }
884
885 static const char *action_name[] = {
886 [MF_IGNORED] = "Ignored",
887 [MF_FAILED] = "Failed",
888 [MF_DELAYED] = "Delayed",
889 [MF_RECOVERED] = "Recovered",
890 };
891
892 static const char * const action_page_types[] = {
893 [MF_MSG_KERNEL] = "reserved kernel page",
894 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
895 [MF_MSG_SLAB] = "kernel slab page",
896 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
897 [MF_MSG_HUGE] = "huge page",
898 [MF_MSG_FREE_HUGE] = "free huge page",
899 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
900 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
901 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
902 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
903 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
904 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
905 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
906 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
907 [MF_MSG_CLEAN_LRU] = "clean LRU page",
908 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
909 [MF_MSG_BUDDY] = "free buddy page",
910 [MF_MSG_DAX] = "dax page",
911 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
912 [MF_MSG_UNKNOWN] = "unknown page",
913 };
914
915 /*
916 * XXX: It is possible that a page is isolated from LRU cache,
917 * and then kept in swap cache or failed to remove from page cache.
918 * The page count will stop it from being freed by unpoison.
919 * Stress tests should be aware of this memory leak problem.
920 */
delete_from_lru_cache(struct page * p)921 static int delete_from_lru_cache(struct page *p)
922 {
923 if (isolate_lru_page(p)) {
924 /*
925 * Clear sensible page flags, so that the buddy system won't
926 * complain when the page is unpoison-and-freed.
927 */
928 ClearPageActive(p);
929 ClearPageUnevictable(p);
930
931 /*
932 * Poisoned page might never drop its ref count to 0 so we have
933 * to uncharge it manually from its memcg.
934 */
935 mem_cgroup_uncharge(page_folio(p));
936
937 /*
938 * drop the page count elevated by isolate_lru_page()
939 */
940 put_page(p);
941 return 0;
942 }
943 return -EIO;
944 }
945
truncate_error_page(struct page * p,unsigned long pfn,struct address_space * mapping)946 static int truncate_error_page(struct page *p, unsigned long pfn,
947 struct address_space *mapping)
948 {
949 int ret = MF_FAILED;
950
951 if (mapping->a_ops->error_remove_page) {
952 struct folio *folio = page_folio(p);
953 int err = mapping->a_ops->error_remove_page(mapping, p);
954
955 if (err != 0)
956 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
957 else if (!filemap_release_folio(folio, GFP_NOIO))
958 pr_info("%#lx: failed to release buffers\n", pfn);
959 else
960 ret = MF_RECOVERED;
961 } else {
962 /*
963 * If the file system doesn't support it just invalidate
964 * This fails on dirty or anything with private pages
965 */
966 if (invalidate_inode_page(p))
967 ret = MF_RECOVERED;
968 else
969 pr_info("%#lx: Failed to invalidate\n", pfn);
970 }
971
972 return ret;
973 }
974
975 struct page_state {
976 unsigned long mask;
977 unsigned long res;
978 enum mf_action_page_type type;
979
980 /* Callback ->action() has to unlock the relevant page inside it. */
981 int (*action)(struct page_state *ps, struct page *p);
982 };
983
984 /*
985 * Return true if page is still referenced by others, otherwise return
986 * false.
987 *
988 * The extra_pins is true when one extra refcount is expected.
989 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)990 static bool has_extra_refcount(struct page_state *ps, struct page *p,
991 bool extra_pins)
992 {
993 int count = page_count(p) - 1;
994
995 if (extra_pins)
996 count -= 1;
997
998 if (count > 0) {
999 pr_err("%#lx: %s still referenced by %d users\n",
1000 page_to_pfn(p), action_page_types[ps->type], count);
1001 return true;
1002 }
1003
1004 return false;
1005 }
1006
1007 /*
1008 * Error hit kernel page.
1009 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1010 * could be more sophisticated.
1011 */
me_kernel(struct page_state * ps,struct page * p)1012 static int me_kernel(struct page_state *ps, struct page *p)
1013 {
1014 unlock_page(p);
1015 return MF_IGNORED;
1016 }
1017
1018 /*
1019 * Page in unknown state. Do nothing.
1020 */
me_unknown(struct page_state * ps,struct page * p)1021 static int me_unknown(struct page_state *ps, struct page *p)
1022 {
1023 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1024 unlock_page(p);
1025 return MF_FAILED;
1026 }
1027
1028 /*
1029 * Clean (or cleaned) page cache page.
1030 */
me_pagecache_clean(struct page_state * ps,struct page * p)1031 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1032 {
1033 int ret;
1034 struct address_space *mapping;
1035 bool extra_pins;
1036
1037 delete_from_lru_cache(p);
1038
1039 /*
1040 * For anonymous pages we're done the only reference left
1041 * should be the one m_f() holds.
1042 */
1043 if (PageAnon(p)) {
1044 ret = MF_RECOVERED;
1045 goto out;
1046 }
1047
1048 /*
1049 * Now truncate the page in the page cache. This is really
1050 * more like a "temporary hole punch"
1051 * Don't do this for block devices when someone else
1052 * has a reference, because it could be file system metadata
1053 * and that's not safe to truncate.
1054 */
1055 mapping = page_mapping(p);
1056 if (!mapping) {
1057 /*
1058 * Page has been teared down in the meanwhile
1059 */
1060 ret = MF_FAILED;
1061 goto out;
1062 }
1063
1064 /*
1065 * The shmem page is kept in page cache instead of truncating
1066 * so is expected to have an extra refcount after error-handling.
1067 */
1068 extra_pins = shmem_mapping(mapping);
1069
1070 /*
1071 * Truncation is a bit tricky. Enable it per file system for now.
1072 *
1073 * Open: to take i_rwsem or not for this? Right now we don't.
1074 */
1075 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1076 if (has_extra_refcount(ps, p, extra_pins))
1077 ret = MF_FAILED;
1078
1079 out:
1080 unlock_page(p);
1081
1082 return ret;
1083 }
1084
1085 /*
1086 * Dirty pagecache page
1087 * Issues: when the error hit a hole page the error is not properly
1088 * propagated.
1089 */
me_pagecache_dirty(struct page_state * ps,struct page * p)1090 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1091 {
1092 struct address_space *mapping = page_mapping(p);
1093
1094 SetPageError(p);
1095 /* TBD: print more information about the file. */
1096 if (mapping) {
1097 /*
1098 * IO error will be reported by write(), fsync(), etc.
1099 * who check the mapping.
1100 * This way the application knows that something went
1101 * wrong with its dirty file data.
1102 *
1103 * There's one open issue:
1104 *
1105 * The EIO will be only reported on the next IO
1106 * operation and then cleared through the IO map.
1107 * Normally Linux has two mechanisms to pass IO error
1108 * first through the AS_EIO flag in the address space
1109 * and then through the PageError flag in the page.
1110 * Since we drop pages on memory failure handling the
1111 * only mechanism open to use is through AS_AIO.
1112 *
1113 * This has the disadvantage that it gets cleared on
1114 * the first operation that returns an error, while
1115 * the PageError bit is more sticky and only cleared
1116 * when the page is reread or dropped. If an
1117 * application assumes it will always get error on
1118 * fsync, but does other operations on the fd before
1119 * and the page is dropped between then the error
1120 * will not be properly reported.
1121 *
1122 * This can already happen even without hwpoisoned
1123 * pages: first on metadata IO errors (which only
1124 * report through AS_EIO) or when the page is dropped
1125 * at the wrong time.
1126 *
1127 * So right now we assume that the application DTRT on
1128 * the first EIO, but we're not worse than other parts
1129 * of the kernel.
1130 */
1131 mapping_set_error(mapping, -EIO);
1132 }
1133
1134 return me_pagecache_clean(ps, p);
1135 }
1136
1137 /*
1138 * Clean and dirty swap cache.
1139 *
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * cache and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145 * and then
1146 * - clear dirty bit to prevent IO
1147 * - remove from LRU
1148 * - but keep in the swap cache, so that when we return to it on
1149 * a later page fault, we know the application is accessing
1150 * corrupted data and shall be killed (we installed simple
1151 * interception code in do_swap_page to catch it).
1152 *
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1155 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157 {
1158 int ret;
1159 bool extra_pins = false;
1160
1161 ClearPageDirty(p);
1162 /* Trigger EIO in shmem: */
1163 ClearPageUptodate(p);
1164
1165 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1166 unlock_page(p);
1167
1168 if (ret == MF_DELAYED)
1169 extra_pins = true;
1170
1171 if (has_extra_refcount(ps, p, extra_pins))
1172 ret = MF_FAILED;
1173
1174 return ret;
1175 }
1176
me_swapcache_clean(struct page_state * ps,struct page * p)1177 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1178 {
1179 struct folio *folio = page_folio(p);
1180 int ret;
1181
1182 delete_from_swap_cache(folio);
1183
1184 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1185 folio_unlock(folio);
1186
1187 if (has_extra_refcount(ps, p, false))
1188 ret = MF_FAILED;
1189
1190 return ret;
1191 }
1192
1193 /*
1194 * Huge pages. Needs work.
1195 * Issues:
1196 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1197 * To narrow down kill region to one page, we need to break up pmd.
1198 */
me_huge_page(struct page_state * ps,struct page * p)1199 static int me_huge_page(struct page_state *ps, struct page *p)
1200 {
1201 struct folio *folio = page_folio(p);
1202 int res;
1203 struct address_space *mapping;
1204 bool extra_pins = false;
1205
1206 mapping = folio_mapping(folio);
1207 if (mapping) {
1208 res = truncate_error_page(&folio->page, page_to_pfn(p), mapping);
1209 /* The page is kept in page cache. */
1210 extra_pins = true;
1211 folio_unlock(folio);
1212 } else {
1213 folio_unlock(folio);
1214 /*
1215 * migration entry prevents later access on error hugepage,
1216 * so we can free and dissolve it into buddy to save healthy
1217 * subpages.
1218 */
1219 folio_put(folio);
1220 if (__page_handle_poison(p) > 0) {
1221 page_ref_inc(p);
1222 res = MF_RECOVERED;
1223 } else {
1224 res = MF_FAILED;
1225 }
1226 }
1227
1228 if (has_extra_refcount(ps, p, extra_pins))
1229 res = MF_FAILED;
1230
1231 return res;
1232 }
1233
1234 /*
1235 * Various page states we can handle.
1236 *
1237 * A page state is defined by its current page->flags bits.
1238 * The table matches them in order and calls the right handler.
1239 *
1240 * This is quite tricky because we can access page at any time
1241 * in its live cycle, so all accesses have to be extremely careful.
1242 *
1243 * This is not complete. More states could be added.
1244 * For any missing state don't attempt recovery.
1245 */
1246
1247 #define dirty (1UL << PG_dirty)
1248 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1249 #define unevict (1UL << PG_unevictable)
1250 #define mlock (1UL << PG_mlocked)
1251 #define lru (1UL << PG_lru)
1252 #define head (1UL << PG_head)
1253 #define slab (1UL << PG_slab)
1254 #define reserved (1UL << PG_reserved)
1255
1256 static struct page_state error_states[] = {
1257 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1258 /*
1259 * free pages are specially detected outside this table:
1260 * PG_buddy pages only make a small fraction of all free pages.
1261 */
1262
1263 /*
1264 * Could in theory check if slab page is free or if we can drop
1265 * currently unused objects without touching them. But just
1266 * treat it as standard kernel for now.
1267 */
1268 { slab, slab, MF_MSG_SLAB, me_kernel },
1269
1270 { head, head, MF_MSG_HUGE, me_huge_page },
1271
1272 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1273 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1274
1275 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1276 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1277
1278 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1279 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1280
1281 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1282 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1283
1284 /*
1285 * Catchall entry: must be at end.
1286 */
1287 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1288 };
1289
1290 #undef dirty
1291 #undef sc
1292 #undef unevict
1293 #undef mlock
1294 #undef lru
1295 #undef head
1296 #undef slab
1297 #undef reserved
1298
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1299 static void update_per_node_mf_stats(unsigned long pfn,
1300 enum mf_result result)
1301 {
1302 int nid = MAX_NUMNODES;
1303 struct memory_failure_stats *mf_stats = NULL;
1304
1305 nid = pfn_to_nid(pfn);
1306 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1307 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1308 return;
1309 }
1310
1311 mf_stats = &NODE_DATA(nid)->mf_stats;
1312 switch (result) {
1313 case MF_IGNORED:
1314 ++mf_stats->ignored;
1315 break;
1316 case MF_FAILED:
1317 ++mf_stats->failed;
1318 break;
1319 case MF_DELAYED:
1320 ++mf_stats->delayed;
1321 break;
1322 case MF_RECOVERED:
1323 ++mf_stats->recovered;
1324 break;
1325 default:
1326 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1327 break;
1328 }
1329 ++mf_stats->total;
1330 }
1331
1332 /*
1333 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1334 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1335 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1336 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1337 enum mf_result result)
1338 {
1339 trace_memory_failure_event(pfn, type, result);
1340
1341 num_poisoned_pages_inc(pfn);
1342
1343 update_per_node_mf_stats(pfn, result);
1344
1345 pr_err("%#lx: recovery action for %s: %s\n",
1346 pfn, action_page_types[type], action_name[result]);
1347
1348 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1349 }
1350
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1351 static int page_action(struct page_state *ps, struct page *p,
1352 unsigned long pfn)
1353 {
1354 int result;
1355
1356 /* page p should be unlocked after returning from ps->action(). */
1357 result = ps->action(ps, p);
1358
1359 /* Could do more checks here if page looks ok */
1360 /*
1361 * Could adjust zone counters here to correct for the missing page.
1362 */
1363
1364 return action_result(pfn, ps->type, result);
1365 }
1366
PageHWPoisonTakenOff(struct page * page)1367 static inline bool PageHWPoisonTakenOff(struct page *page)
1368 {
1369 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1370 }
1371
SetPageHWPoisonTakenOff(struct page * page)1372 void SetPageHWPoisonTakenOff(struct page *page)
1373 {
1374 set_page_private(page, MAGIC_HWPOISON);
1375 }
1376
ClearPageHWPoisonTakenOff(struct page * page)1377 void ClearPageHWPoisonTakenOff(struct page *page)
1378 {
1379 if (PageHWPoison(page))
1380 set_page_private(page, 0);
1381 }
1382
1383 /*
1384 * Return true if a page type of a given page is supported by hwpoison
1385 * mechanism (while handling could fail), otherwise false. This function
1386 * does not return true for hugetlb or device memory pages, so it's assumed
1387 * to be called only in the context where we never have such pages.
1388 */
HWPoisonHandlable(struct page * page,unsigned long flags)1389 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1390 {
1391 /* Soft offline could migrate non-LRU movable pages */
1392 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1393 return true;
1394
1395 return PageLRU(page) || is_free_buddy_page(page);
1396 }
1397
__get_hwpoison_page(struct page * page,unsigned long flags)1398 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1399 {
1400 struct folio *folio = page_folio(page);
1401 int ret = 0;
1402 bool hugetlb = false;
1403
1404 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1405 if (hugetlb) {
1406 /* Make sure hugetlb demotion did not happen from under us. */
1407 if (folio == page_folio(page))
1408 return ret;
1409 if (ret > 0) {
1410 folio_put(folio);
1411 folio = page_folio(page);
1412 }
1413 }
1414
1415 /*
1416 * This check prevents from calling folio_try_get() for any
1417 * unsupported type of folio in order to reduce the risk of unexpected
1418 * races caused by taking a folio refcount.
1419 */
1420 if (!HWPoisonHandlable(&folio->page, flags))
1421 return -EBUSY;
1422
1423 if (folio_try_get(folio)) {
1424 if (folio == page_folio(page))
1425 return 1;
1426
1427 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1428 folio_put(folio);
1429 }
1430
1431 return 0;
1432 }
1433
get_any_page(struct page * p,unsigned long flags)1434 static int get_any_page(struct page *p, unsigned long flags)
1435 {
1436 int ret = 0, pass = 0;
1437 bool count_increased = false;
1438
1439 if (flags & MF_COUNT_INCREASED)
1440 count_increased = true;
1441
1442 try_again:
1443 if (!count_increased) {
1444 ret = __get_hwpoison_page(p, flags);
1445 if (!ret) {
1446 if (page_count(p)) {
1447 /* We raced with an allocation, retry. */
1448 if (pass++ < 3)
1449 goto try_again;
1450 ret = -EBUSY;
1451 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1452 /* We raced with put_page, retry. */
1453 if (pass++ < 3)
1454 goto try_again;
1455 ret = -EIO;
1456 }
1457 goto out;
1458 } else if (ret == -EBUSY) {
1459 /*
1460 * We raced with (possibly temporary) unhandlable
1461 * page, retry.
1462 */
1463 if (pass++ < 3) {
1464 shake_page(p);
1465 goto try_again;
1466 }
1467 ret = -EIO;
1468 goto out;
1469 }
1470 }
1471
1472 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1473 ret = 1;
1474 } else {
1475 /*
1476 * A page we cannot handle. Check whether we can turn
1477 * it into something we can handle.
1478 */
1479 if (pass++ < 3) {
1480 put_page(p);
1481 shake_page(p);
1482 count_increased = false;
1483 goto try_again;
1484 }
1485 put_page(p);
1486 ret = -EIO;
1487 }
1488 out:
1489 if (ret == -EIO)
1490 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1491
1492 return ret;
1493 }
1494
__get_unpoison_page(struct page * page)1495 static int __get_unpoison_page(struct page *page)
1496 {
1497 struct folio *folio = page_folio(page);
1498 int ret = 0;
1499 bool hugetlb = false;
1500
1501 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1502 if (hugetlb) {
1503 /* Make sure hugetlb demotion did not happen from under us. */
1504 if (folio == page_folio(page))
1505 return ret;
1506 if (ret > 0)
1507 folio_put(folio);
1508 }
1509
1510 /*
1511 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1512 * but also isolated from buddy freelist, so need to identify the
1513 * state and have to cancel both operations to unpoison.
1514 */
1515 if (PageHWPoisonTakenOff(page))
1516 return -EHWPOISON;
1517
1518 return get_page_unless_zero(page) ? 1 : 0;
1519 }
1520
1521 /**
1522 * get_hwpoison_page() - Get refcount for memory error handling
1523 * @p: Raw error page (hit by memory error)
1524 * @flags: Flags controlling behavior of error handling
1525 *
1526 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1527 * error on it, after checking that the error page is in a well-defined state
1528 * (defined as a page-type we can successfully handle the memory error on it,
1529 * such as LRU page and hugetlb page).
1530 *
1531 * Memory error handling could be triggered at any time on any type of page,
1532 * so it's prone to race with typical memory management lifecycle (like
1533 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1534 * extra care for the error page's state (as done in __get_hwpoison_page()),
1535 * and has some retry logic in get_any_page().
1536 *
1537 * When called from unpoison_memory(), the caller should already ensure that
1538 * the given page has PG_hwpoison. So it's never reused for other page
1539 * allocations, and __get_unpoison_page() never races with them.
1540 *
1541 * Return: 0 on failure,
1542 * 1 on success for in-use pages in a well-defined state,
1543 * -EIO for pages on which we can not handle memory errors,
1544 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1545 * operations like allocation and free,
1546 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1547 */
get_hwpoison_page(struct page * p,unsigned long flags)1548 static int get_hwpoison_page(struct page *p, unsigned long flags)
1549 {
1550 int ret;
1551
1552 zone_pcp_disable(page_zone(p));
1553 if (flags & MF_UNPOISON)
1554 ret = __get_unpoison_page(p);
1555 else
1556 ret = get_any_page(p, flags);
1557 zone_pcp_enable(page_zone(p));
1558
1559 return ret;
1560 }
1561
1562 /*
1563 * Do all that is necessary to remove user space mappings. Unmap
1564 * the pages and send SIGBUS to the processes if the data was dirty.
1565 */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int flags,struct page * hpage)1566 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1567 int flags, struct page *hpage)
1568 {
1569 struct folio *folio = page_folio(hpage);
1570 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1571 struct address_space *mapping;
1572 LIST_HEAD(tokill);
1573 bool unmap_success;
1574 int forcekill;
1575 bool mlocked = PageMlocked(hpage);
1576
1577 /*
1578 * Here we are interested only in user-mapped pages, so skip any
1579 * other types of pages.
1580 */
1581 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1582 return true;
1583 if (!(PageLRU(hpage) || PageHuge(p)))
1584 return true;
1585
1586 /*
1587 * This check implies we don't kill processes if their pages
1588 * are in the swap cache early. Those are always late kills.
1589 */
1590 if (!page_mapped(p))
1591 return true;
1592
1593 if (PageSwapCache(p)) {
1594 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1595 ttu &= ~TTU_HWPOISON;
1596 }
1597
1598 /*
1599 * Propagate the dirty bit from PTEs to struct page first, because we
1600 * need this to decide if we should kill or just drop the page.
1601 * XXX: the dirty test could be racy: set_page_dirty() may not always
1602 * be called inside page lock (it's recommended but not enforced).
1603 */
1604 mapping = page_mapping(hpage);
1605 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1606 mapping_can_writeback(mapping)) {
1607 if (page_mkclean(hpage)) {
1608 SetPageDirty(hpage);
1609 } else {
1610 ttu &= ~TTU_HWPOISON;
1611 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1612 pfn);
1613 }
1614 }
1615
1616 /*
1617 * First collect all the processes that have the page
1618 * mapped in dirty form. This has to be done before try_to_unmap,
1619 * because ttu takes the rmap data structures down.
1620 */
1621 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1622
1623 if (PageHuge(hpage) && !PageAnon(hpage)) {
1624 /*
1625 * For hugetlb pages in shared mappings, try_to_unmap
1626 * could potentially call huge_pmd_unshare. Because of
1627 * this, take semaphore in write mode here and set
1628 * TTU_RMAP_LOCKED to indicate we have taken the lock
1629 * at this higher level.
1630 */
1631 mapping = hugetlb_page_mapping_lock_write(hpage);
1632 if (mapping) {
1633 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1634 i_mmap_unlock_write(mapping);
1635 } else
1636 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1637 } else {
1638 try_to_unmap(folio, ttu);
1639 }
1640
1641 unmap_success = !page_mapped(p);
1642 if (!unmap_success)
1643 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1644 pfn, page_mapcount(p));
1645
1646 /*
1647 * try_to_unmap() might put mlocked page in lru cache, so call
1648 * shake_page() again to ensure that it's flushed.
1649 */
1650 if (mlocked)
1651 shake_page(hpage);
1652
1653 /*
1654 * Now that the dirty bit has been propagated to the
1655 * struct page and all unmaps done we can decide if
1656 * killing is needed or not. Only kill when the page
1657 * was dirty or the process is not restartable,
1658 * otherwise the tokill list is merely
1659 * freed. When there was a problem unmapping earlier
1660 * use a more force-full uncatchable kill to prevent
1661 * any accesses to the poisoned memory.
1662 */
1663 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1664 !unmap_success;
1665 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1666
1667 return unmap_success;
1668 }
1669
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1670 static int identify_page_state(unsigned long pfn, struct page *p,
1671 unsigned long page_flags)
1672 {
1673 struct page_state *ps;
1674
1675 /*
1676 * The first check uses the current page flags which may not have any
1677 * relevant information. The second check with the saved page flags is
1678 * carried out only if the first check can't determine the page status.
1679 */
1680 for (ps = error_states;; ps++)
1681 if ((p->flags & ps->mask) == ps->res)
1682 break;
1683
1684 page_flags |= (p->flags & (1UL << PG_dirty));
1685
1686 if (!ps->mask)
1687 for (ps = error_states;; ps++)
1688 if ((page_flags & ps->mask) == ps->res)
1689 break;
1690 return page_action(ps, p, pfn);
1691 }
1692
try_to_split_thp_page(struct page * page)1693 static int try_to_split_thp_page(struct page *page)
1694 {
1695 int ret;
1696
1697 lock_page(page);
1698 ret = split_huge_page(page);
1699 unlock_page(page);
1700
1701 if (unlikely(ret))
1702 put_page(page);
1703
1704 return ret;
1705 }
1706
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1707 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1708 struct address_space *mapping, pgoff_t index, int flags)
1709 {
1710 struct to_kill *tk;
1711 unsigned long size = 0;
1712
1713 list_for_each_entry(tk, to_kill, nd)
1714 if (tk->size_shift)
1715 size = max(size, 1UL << tk->size_shift);
1716
1717 if (size) {
1718 /*
1719 * Unmap the largest mapping to avoid breaking up device-dax
1720 * mappings which are constant size. The actual size of the
1721 * mapping being torn down is communicated in siginfo, see
1722 * kill_proc()
1723 */
1724 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1725
1726 unmap_mapping_range(mapping, start, size, 0);
1727 }
1728
1729 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1730 }
1731
1732 /*
1733 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1734 * either do not claim or fails to claim a hwpoison event, or devdax.
1735 * The fsdax pages are initialized per base page, and the devdax pages
1736 * could be initialized either as base pages, or as compound pages with
1737 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1738 * hwpoison, such that, if a subpage of a compound page is poisoned,
1739 * simply mark the compound head page is by far sufficient.
1740 */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1741 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1742 struct dev_pagemap *pgmap)
1743 {
1744 struct folio *folio = pfn_folio(pfn);
1745 LIST_HEAD(to_kill);
1746 dax_entry_t cookie;
1747 int rc = 0;
1748
1749 /*
1750 * Prevent the inode from being freed while we are interrogating
1751 * the address_space, typically this would be handled by
1752 * lock_page(), but dax pages do not use the page lock. This
1753 * also prevents changes to the mapping of this pfn until
1754 * poison signaling is complete.
1755 */
1756 cookie = dax_lock_folio(folio);
1757 if (!cookie)
1758 return -EBUSY;
1759
1760 if (hwpoison_filter(&folio->page)) {
1761 rc = -EOPNOTSUPP;
1762 goto unlock;
1763 }
1764
1765 switch (pgmap->type) {
1766 case MEMORY_DEVICE_PRIVATE:
1767 case MEMORY_DEVICE_COHERENT:
1768 /*
1769 * TODO: Handle device pages which may need coordination
1770 * with device-side memory.
1771 */
1772 rc = -ENXIO;
1773 goto unlock;
1774 default:
1775 break;
1776 }
1777
1778 /*
1779 * Use this flag as an indication that the dax page has been
1780 * remapped UC to prevent speculative consumption of poison.
1781 */
1782 SetPageHWPoison(&folio->page);
1783
1784 /*
1785 * Unlike System-RAM there is no possibility to swap in a
1786 * different physical page at a given virtual address, so all
1787 * userspace consumption of ZONE_DEVICE memory necessitates
1788 * SIGBUS (i.e. MF_MUST_KILL)
1789 */
1790 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1791 collect_procs(folio, &folio->page, &to_kill, true);
1792
1793 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1794 unlock:
1795 dax_unlock_folio(folio, cookie);
1796 return rc;
1797 }
1798
1799 #ifdef CONFIG_FS_DAX
1800 /**
1801 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1802 * @mapping: address_space of the file in use
1803 * @index: start pgoff of the range within the file
1804 * @count: length of the range, in unit of PAGE_SIZE
1805 * @mf_flags: memory failure flags
1806 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1807 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1808 unsigned long count, int mf_flags)
1809 {
1810 LIST_HEAD(to_kill);
1811 dax_entry_t cookie;
1812 struct page *page;
1813 size_t end = index + count;
1814
1815 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1816
1817 for (; index < end; index++) {
1818 page = NULL;
1819 cookie = dax_lock_mapping_entry(mapping, index, &page);
1820 if (!cookie)
1821 return -EBUSY;
1822 if (!page)
1823 goto unlock;
1824
1825 SetPageHWPoison(page);
1826
1827 collect_procs_fsdax(page, mapping, index, &to_kill);
1828 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1829 index, mf_flags);
1830 unlock:
1831 dax_unlock_mapping_entry(mapping, index, cookie);
1832 }
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1836 #endif /* CONFIG_FS_DAX */
1837
1838 #ifdef CONFIG_HUGETLB_PAGE
1839
1840 /*
1841 * Struct raw_hwp_page represents information about "raw error page",
1842 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1843 */
1844 struct raw_hwp_page {
1845 struct llist_node node;
1846 struct page *page;
1847 };
1848
raw_hwp_list_head(struct folio * folio)1849 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1850 {
1851 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1852 }
1853
is_raw_hwpoison_page_in_hugepage(struct page * page)1854 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1855 {
1856 struct llist_head *raw_hwp_head;
1857 struct raw_hwp_page *p;
1858 struct folio *folio = page_folio(page);
1859 bool ret = false;
1860
1861 if (!folio_test_hwpoison(folio))
1862 return false;
1863
1864 if (!folio_test_hugetlb(folio))
1865 return PageHWPoison(page);
1866
1867 /*
1868 * When RawHwpUnreliable is set, kernel lost track of which subpages
1869 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1870 */
1871 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1872 return true;
1873
1874 mutex_lock(&mf_mutex);
1875
1876 raw_hwp_head = raw_hwp_list_head(folio);
1877 llist_for_each_entry(p, raw_hwp_head->first, node) {
1878 if (page == p->page) {
1879 ret = true;
1880 break;
1881 }
1882 }
1883
1884 mutex_unlock(&mf_mutex);
1885
1886 return ret;
1887 }
1888
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1889 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1890 {
1891 struct llist_node *head;
1892 struct raw_hwp_page *p, *next;
1893 unsigned long count = 0;
1894
1895 head = llist_del_all(raw_hwp_list_head(folio));
1896 llist_for_each_entry_safe(p, next, head, node) {
1897 if (move_flag)
1898 SetPageHWPoison(p->page);
1899 else
1900 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1901 kfree(p);
1902 count++;
1903 }
1904 return count;
1905 }
1906
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1907 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1908 {
1909 struct llist_head *head;
1910 struct raw_hwp_page *raw_hwp;
1911 struct raw_hwp_page *p, *next;
1912 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1913
1914 /*
1915 * Once the hwpoison hugepage has lost reliable raw error info,
1916 * there is little meaning to keep additional error info precisely,
1917 * so skip to add additional raw error info.
1918 */
1919 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1920 return -EHWPOISON;
1921 head = raw_hwp_list_head(folio);
1922 llist_for_each_entry_safe(p, next, head->first, node) {
1923 if (p->page == page)
1924 return -EHWPOISON;
1925 }
1926
1927 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1928 if (raw_hwp) {
1929 raw_hwp->page = page;
1930 llist_add(&raw_hwp->node, head);
1931 /* the first error event will be counted in action_result(). */
1932 if (ret)
1933 num_poisoned_pages_inc(page_to_pfn(page));
1934 } else {
1935 /*
1936 * Failed to save raw error info. We no longer trace all
1937 * hwpoisoned subpages, and we need refuse to free/dissolve
1938 * this hwpoisoned hugepage.
1939 */
1940 folio_set_hugetlb_raw_hwp_unreliable(folio);
1941 /*
1942 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1943 * used any more, so free it.
1944 */
1945 __folio_free_raw_hwp(folio, false);
1946 }
1947 return ret;
1948 }
1949
folio_free_raw_hwp(struct folio * folio,bool move_flag)1950 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1951 {
1952 /*
1953 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1954 * pages for tail pages are required but they don't exist.
1955 */
1956 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1957 return 0;
1958
1959 /*
1960 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1961 * definition.
1962 */
1963 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1964 return 0;
1965
1966 return __folio_free_raw_hwp(folio, move_flag);
1967 }
1968
folio_clear_hugetlb_hwpoison(struct folio * folio)1969 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1970 {
1971 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1972 return;
1973 if (folio_test_hugetlb_vmemmap_optimized(folio))
1974 return;
1975 folio_clear_hwpoison(folio);
1976 folio_free_raw_hwp(folio, true);
1977 }
1978
1979 /*
1980 * Called from hugetlb code with hugetlb_lock held.
1981 *
1982 * Return values:
1983 * 0 - free hugepage
1984 * 1 - in-use hugepage
1985 * 2 - not a hugepage
1986 * -EBUSY - the hugepage is busy (try to retry)
1987 * -EHWPOISON - the hugepage is already hwpoisoned
1988 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)1989 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1990 bool *migratable_cleared)
1991 {
1992 struct page *page = pfn_to_page(pfn);
1993 struct folio *folio = page_folio(page);
1994 int ret = 2; /* fallback to normal page handling */
1995 bool count_increased = false;
1996
1997 if (!folio_test_hugetlb(folio))
1998 goto out;
1999
2000 if (flags & MF_COUNT_INCREASED) {
2001 ret = 1;
2002 count_increased = true;
2003 } else if (folio_test_hugetlb_freed(folio)) {
2004 ret = 0;
2005 } else if (folio_test_hugetlb_migratable(folio)) {
2006 ret = folio_try_get(folio);
2007 if (ret)
2008 count_increased = true;
2009 } else {
2010 ret = -EBUSY;
2011 if (!(flags & MF_NO_RETRY))
2012 goto out;
2013 }
2014
2015 if (folio_set_hugetlb_hwpoison(folio, page)) {
2016 ret = -EHWPOISON;
2017 goto out;
2018 }
2019
2020 /*
2021 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2022 * from being migrated by memory hotremove.
2023 */
2024 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2025 folio_clear_hugetlb_migratable(folio);
2026 *migratable_cleared = true;
2027 }
2028
2029 return ret;
2030 out:
2031 if (count_increased)
2032 folio_put(folio);
2033 return ret;
2034 }
2035
2036 /*
2037 * Taking refcount of hugetlb pages needs extra care about race conditions
2038 * with basic operations like hugepage allocation/free/demotion.
2039 * So some of prechecks for hwpoison (pinning, and testing/setting
2040 * PageHWPoison) should be done in single hugetlb_lock range.
2041 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2042 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2043 {
2044 int res;
2045 struct page *p = pfn_to_page(pfn);
2046 struct folio *folio;
2047 unsigned long page_flags;
2048 bool migratable_cleared = false;
2049
2050 *hugetlb = 1;
2051 retry:
2052 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2053 if (res == 2) { /* fallback to normal page handling */
2054 *hugetlb = 0;
2055 return 0;
2056 } else if (res == -EHWPOISON) {
2057 pr_err("%#lx: already hardware poisoned\n", pfn);
2058 if (flags & MF_ACTION_REQUIRED) {
2059 folio = page_folio(p);
2060 res = kill_accessing_process(current, folio_pfn(folio), flags);
2061 }
2062 return res;
2063 } else if (res == -EBUSY) {
2064 if (!(flags & MF_NO_RETRY)) {
2065 flags |= MF_NO_RETRY;
2066 goto retry;
2067 }
2068 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2069 }
2070
2071 folio = page_folio(p);
2072 folio_lock(folio);
2073
2074 if (hwpoison_filter(p)) {
2075 folio_clear_hugetlb_hwpoison(folio);
2076 if (migratable_cleared)
2077 folio_set_hugetlb_migratable(folio);
2078 folio_unlock(folio);
2079 if (res == 1)
2080 folio_put(folio);
2081 return -EOPNOTSUPP;
2082 }
2083
2084 /*
2085 * Handling free hugepage. The possible race with hugepage allocation
2086 * or demotion can be prevented by PageHWPoison flag.
2087 */
2088 if (res == 0) {
2089 folio_unlock(folio);
2090 if (__page_handle_poison(p) > 0) {
2091 page_ref_inc(p);
2092 res = MF_RECOVERED;
2093 } else {
2094 res = MF_FAILED;
2095 }
2096 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2097 }
2098
2099 page_flags = folio->flags;
2100
2101 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2102 folio_unlock(folio);
2103 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2104 }
2105
2106 return identify_page_state(pfn, p, page_flags);
2107 }
2108
2109 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2110 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2111 {
2112 return 0;
2113 }
2114
folio_free_raw_hwp(struct folio * folio,bool flag)2115 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2116 {
2117 return 0;
2118 }
2119 #endif /* CONFIG_HUGETLB_PAGE */
2120
2121 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2122 static void put_ref_page(unsigned long pfn, int flags)
2123 {
2124 struct page *page;
2125
2126 if (!(flags & MF_COUNT_INCREASED))
2127 return;
2128
2129 page = pfn_to_page(pfn);
2130 if (page)
2131 put_page(page);
2132 }
2133
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2134 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2135 struct dev_pagemap *pgmap)
2136 {
2137 int rc = -ENXIO;
2138
2139 /* device metadata space is not recoverable */
2140 if (!pgmap_pfn_valid(pgmap, pfn))
2141 goto out;
2142
2143 /*
2144 * Call driver's implementation to handle the memory failure, otherwise
2145 * fall back to generic handler.
2146 */
2147 if (pgmap_has_memory_failure(pgmap)) {
2148 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2149 /*
2150 * Fall back to generic handler too if operation is not
2151 * supported inside the driver/device/filesystem.
2152 */
2153 if (rc != -EOPNOTSUPP)
2154 goto out;
2155 }
2156
2157 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2158 out:
2159 /* drop pgmap ref acquired in caller */
2160 put_dev_pagemap(pgmap);
2161 if (rc != -EOPNOTSUPP)
2162 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2163 return rc;
2164 }
2165
2166 /**
2167 * memory_failure - Handle memory failure of a page.
2168 * @pfn: Page Number of the corrupted page
2169 * @flags: fine tune action taken
2170 *
2171 * This function is called by the low level machine check code
2172 * of an architecture when it detects hardware memory corruption
2173 * of a page. It tries its best to recover, which includes
2174 * dropping pages, killing processes etc.
2175 *
2176 * The function is primarily of use for corruptions that
2177 * happen outside the current execution context (e.g. when
2178 * detected by a background scrubber)
2179 *
2180 * Must run in process context (e.g. a work queue) with interrupts
2181 * enabled and no spinlocks held.
2182 *
2183 * Return: 0 for successfully handled the memory error,
2184 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2185 * < 0(except -EOPNOTSUPP) on failure.
2186 */
memory_failure(unsigned long pfn,int flags)2187 int memory_failure(unsigned long pfn, int flags)
2188 {
2189 struct page *p;
2190 struct page *hpage;
2191 struct dev_pagemap *pgmap;
2192 int res = 0;
2193 unsigned long page_flags;
2194 bool retry = true;
2195 int hugetlb = 0;
2196
2197 if (!sysctl_memory_failure_recovery)
2198 panic("Memory failure on page %lx", pfn);
2199
2200 mutex_lock(&mf_mutex);
2201
2202 if (!(flags & MF_SW_SIMULATED))
2203 hw_memory_failure = true;
2204
2205 p = pfn_to_online_page(pfn);
2206 if (!p) {
2207 res = arch_memory_failure(pfn, flags);
2208 if (res == 0)
2209 goto unlock_mutex;
2210
2211 if (pfn_valid(pfn)) {
2212 pgmap = get_dev_pagemap(pfn, NULL);
2213 put_ref_page(pfn, flags);
2214 if (pgmap) {
2215 res = memory_failure_dev_pagemap(pfn, flags,
2216 pgmap);
2217 goto unlock_mutex;
2218 }
2219 }
2220 pr_err("%#lx: memory outside kernel control\n", pfn);
2221 res = -ENXIO;
2222 goto unlock_mutex;
2223 }
2224
2225 try_again:
2226 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2227 if (hugetlb)
2228 goto unlock_mutex;
2229
2230 if (TestSetPageHWPoison(p)) {
2231 pr_err("%#lx: already hardware poisoned\n", pfn);
2232 res = -EHWPOISON;
2233 if (flags & MF_ACTION_REQUIRED)
2234 res = kill_accessing_process(current, pfn, flags);
2235 if (flags & MF_COUNT_INCREASED)
2236 put_page(p);
2237 goto unlock_mutex;
2238 }
2239
2240 /*
2241 * We need/can do nothing about count=0 pages.
2242 * 1) it's a free page, and therefore in safe hand:
2243 * check_new_page() will be the gate keeper.
2244 * 2) it's part of a non-compound high order page.
2245 * Implies some kernel user: cannot stop them from
2246 * R/W the page; let's pray that the page has been
2247 * used and will be freed some time later.
2248 * In fact it's dangerous to directly bump up page count from 0,
2249 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2250 */
2251 if (!(flags & MF_COUNT_INCREASED)) {
2252 res = get_hwpoison_page(p, flags);
2253 if (!res) {
2254 if (is_free_buddy_page(p)) {
2255 if (take_page_off_buddy(p)) {
2256 page_ref_inc(p);
2257 res = MF_RECOVERED;
2258 } else {
2259 /* We lost the race, try again */
2260 if (retry) {
2261 ClearPageHWPoison(p);
2262 retry = false;
2263 goto try_again;
2264 }
2265 res = MF_FAILED;
2266 }
2267 res = action_result(pfn, MF_MSG_BUDDY, res);
2268 } else {
2269 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2270 }
2271 goto unlock_mutex;
2272 } else if (res < 0) {
2273 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2274 goto unlock_mutex;
2275 }
2276 }
2277
2278 hpage = compound_head(p);
2279 if (PageTransHuge(hpage)) {
2280 /*
2281 * The flag must be set after the refcount is bumped
2282 * otherwise it may race with THP split.
2283 * And the flag can't be set in get_hwpoison_page() since
2284 * it is called by soft offline too and it is just called
2285 * for !MF_COUNT_INCREASED. So here seems to be the best
2286 * place.
2287 *
2288 * Don't need care about the above error handling paths for
2289 * get_hwpoison_page() since they handle either free page
2290 * or unhandlable page. The refcount is bumped iff the
2291 * page is a valid handlable page.
2292 */
2293 SetPageHasHWPoisoned(hpage);
2294 if (try_to_split_thp_page(p) < 0) {
2295 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2296 goto unlock_mutex;
2297 }
2298 VM_BUG_ON_PAGE(!page_count(p), p);
2299 }
2300
2301 /*
2302 * We ignore non-LRU pages for good reasons.
2303 * - PG_locked is only well defined for LRU pages and a few others
2304 * - to avoid races with __SetPageLocked()
2305 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2306 * The check (unnecessarily) ignores LRU pages being isolated and
2307 * walked by the page reclaim code, however that's not a big loss.
2308 */
2309 shake_page(p);
2310
2311 lock_page(p);
2312
2313 /*
2314 * We're only intended to deal with the non-Compound page here.
2315 * However, the page could have changed compound pages due to
2316 * race window. If this happens, we could try again to hopefully
2317 * handle the page next round.
2318 */
2319 if (PageCompound(p)) {
2320 if (retry) {
2321 ClearPageHWPoison(p);
2322 unlock_page(p);
2323 put_page(p);
2324 flags &= ~MF_COUNT_INCREASED;
2325 retry = false;
2326 goto try_again;
2327 }
2328 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2329 goto unlock_page;
2330 }
2331
2332 /*
2333 * We use page flags to determine what action should be taken, but
2334 * the flags can be modified by the error containment action. One
2335 * example is an mlocked page, where PG_mlocked is cleared by
2336 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2337 * correctly, we save a copy of the page flags at this time.
2338 */
2339 page_flags = p->flags;
2340
2341 if (hwpoison_filter(p)) {
2342 ClearPageHWPoison(p);
2343 unlock_page(p);
2344 put_page(p);
2345 res = -EOPNOTSUPP;
2346 goto unlock_mutex;
2347 }
2348
2349 /*
2350 * __munlock_folio() may clear a writeback page's LRU flag without
2351 * page_lock. We need wait writeback completion for this page or it
2352 * may trigger vfs BUG while evict inode.
2353 */
2354 if (!PageLRU(p) && !PageWriteback(p))
2355 goto identify_page_state;
2356
2357 /*
2358 * It's very difficult to mess with pages currently under IO
2359 * and in many cases impossible, so we just avoid it here.
2360 */
2361 wait_on_page_writeback(p);
2362
2363 /*
2364 * Now take care of user space mappings.
2365 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2366 */
2367 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2368 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2369 goto unlock_page;
2370 }
2371
2372 /*
2373 * Torn down by someone else?
2374 */
2375 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2376 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2377 goto unlock_page;
2378 }
2379
2380 identify_page_state:
2381 res = identify_page_state(pfn, p, page_flags);
2382 mutex_unlock(&mf_mutex);
2383 return res;
2384 unlock_page:
2385 unlock_page(p);
2386 unlock_mutex:
2387 mutex_unlock(&mf_mutex);
2388 return res;
2389 }
2390 EXPORT_SYMBOL_GPL(memory_failure);
2391
2392 #define MEMORY_FAILURE_FIFO_ORDER 4
2393 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2394
2395 struct memory_failure_entry {
2396 unsigned long pfn;
2397 int flags;
2398 };
2399
2400 struct memory_failure_cpu {
2401 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2402 MEMORY_FAILURE_FIFO_SIZE);
2403 raw_spinlock_t lock;
2404 struct work_struct work;
2405 };
2406
2407 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2408
2409 /**
2410 * memory_failure_queue - Schedule handling memory failure of a page.
2411 * @pfn: Page Number of the corrupted page
2412 * @flags: Flags for memory failure handling
2413 *
2414 * This function is called by the low level hardware error handler
2415 * when it detects hardware memory corruption of a page. It schedules
2416 * the recovering of error page, including dropping pages, killing
2417 * processes etc.
2418 *
2419 * The function is primarily of use for corruptions that
2420 * happen outside the current execution context (e.g. when
2421 * detected by a background scrubber)
2422 *
2423 * Can run in IRQ context.
2424 */
memory_failure_queue(unsigned long pfn,int flags)2425 void memory_failure_queue(unsigned long pfn, int flags)
2426 {
2427 struct memory_failure_cpu *mf_cpu;
2428 unsigned long proc_flags;
2429 bool buffer_overflow;
2430 struct memory_failure_entry entry = {
2431 .pfn = pfn,
2432 .flags = flags,
2433 };
2434
2435 mf_cpu = &get_cpu_var(memory_failure_cpu);
2436 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2437 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2438 if (!buffer_overflow)
2439 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2440 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2441 put_cpu_var(memory_failure_cpu);
2442 if (buffer_overflow)
2443 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2444 pfn);
2445 }
2446 EXPORT_SYMBOL_GPL(memory_failure_queue);
2447
memory_failure_work_func(struct work_struct * work)2448 static void memory_failure_work_func(struct work_struct *work)
2449 {
2450 struct memory_failure_cpu *mf_cpu;
2451 struct memory_failure_entry entry = { 0, };
2452 unsigned long proc_flags;
2453 int gotten;
2454
2455 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2456 for (;;) {
2457 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2458 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2459 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2460 if (!gotten)
2461 break;
2462 if (entry.flags & MF_SOFT_OFFLINE)
2463 soft_offline_page(entry.pfn, entry.flags);
2464 else
2465 memory_failure(entry.pfn, entry.flags);
2466 }
2467 }
2468
2469 /*
2470 * Process memory_failure work queued on the specified CPU.
2471 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2472 */
memory_failure_queue_kick(int cpu)2473 void memory_failure_queue_kick(int cpu)
2474 {
2475 struct memory_failure_cpu *mf_cpu;
2476
2477 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2478 cancel_work_sync(&mf_cpu->work);
2479 memory_failure_work_func(&mf_cpu->work);
2480 }
2481
memory_failure_init(void)2482 static int __init memory_failure_init(void)
2483 {
2484 struct memory_failure_cpu *mf_cpu;
2485 int cpu;
2486
2487 for_each_possible_cpu(cpu) {
2488 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2489 raw_spin_lock_init(&mf_cpu->lock);
2490 INIT_KFIFO(mf_cpu->fifo);
2491 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2492 }
2493
2494 register_sysctl_init("vm", memory_failure_table);
2495
2496 return 0;
2497 }
2498 core_initcall(memory_failure_init);
2499
2500 #undef pr_fmt
2501 #define pr_fmt(fmt) "" fmt
2502 #define unpoison_pr_info(fmt, pfn, rs) \
2503 ({ \
2504 if (__ratelimit(rs)) \
2505 pr_info(fmt, pfn); \
2506 })
2507
2508 /**
2509 * unpoison_memory - Unpoison a previously poisoned page
2510 * @pfn: Page number of the to be unpoisoned page
2511 *
2512 * Software-unpoison a page that has been poisoned by
2513 * memory_failure() earlier.
2514 *
2515 * This is only done on the software-level, so it only works
2516 * for linux injected failures, not real hardware failures
2517 *
2518 * Returns 0 for success, otherwise -errno.
2519 */
unpoison_memory(unsigned long pfn)2520 int unpoison_memory(unsigned long pfn)
2521 {
2522 struct folio *folio;
2523 struct page *p;
2524 int ret = -EBUSY, ghp;
2525 unsigned long count = 1;
2526 bool huge = false;
2527 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2528 DEFAULT_RATELIMIT_BURST);
2529
2530 if (!pfn_valid(pfn))
2531 return -ENXIO;
2532
2533 p = pfn_to_page(pfn);
2534 folio = page_folio(p);
2535
2536 mutex_lock(&mf_mutex);
2537
2538 if (hw_memory_failure) {
2539 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2540 pfn, &unpoison_rs);
2541 ret = -EOPNOTSUPP;
2542 goto unlock_mutex;
2543 }
2544
2545 if (is_huge_zero_page(&folio->page)) {
2546 unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2547 pfn, &unpoison_rs);
2548 ret = -EOPNOTSUPP;
2549 goto unlock_mutex;
2550 }
2551
2552 if (!PageHWPoison(p)) {
2553 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2554 pfn, &unpoison_rs);
2555 goto unlock_mutex;
2556 }
2557
2558 if (folio_ref_count(folio) > 1) {
2559 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2560 pfn, &unpoison_rs);
2561 goto unlock_mutex;
2562 }
2563
2564 if (folio_test_slab(folio) || PageTable(&folio->page) ||
2565 folio_test_reserved(folio) || PageOffline(&folio->page))
2566 goto unlock_mutex;
2567
2568 /*
2569 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2570 * in folio_mapped() has to be done after folio_test_slab() is checked.
2571 */
2572 if (folio_mapped(folio)) {
2573 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2574 pfn, &unpoison_rs);
2575 goto unlock_mutex;
2576 }
2577
2578 if (folio_mapping(folio)) {
2579 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2580 pfn, &unpoison_rs);
2581 goto unlock_mutex;
2582 }
2583
2584 ghp = get_hwpoison_page(p, MF_UNPOISON);
2585 if (!ghp) {
2586 if (PageHuge(p)) {
2587 huge = true;
2588 count = folio_free_raw_hwp(folio, false);
2589 if (count == 0)
2590 goto unlock_mutex;
2591 }
2592 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2593 } else if (ghp < 0) {
2594 if (ghp == -EHWPOISON) {
2595 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2596 } else {
2597 ret = ghp;
2598 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2599 pfn, &unpoison_rs);
2600 }
2601 } else {
2602 if (PageHuge(p)) {
2603 huge = true;
2604 count = folio_free_raw_hwp(folio, false);
2605 if (count == 0) {
2606 folio_put(folio);
2607 goto unlock_mutex;
2608 }
2609 }
2610
2611 folio_put(folio);
2612 if (TestClearPageHWPoison(p)) {
2613 folio_put(folio);
2614 ret = 0;
2615 }
2616 }
2617
2618 unlock_mutex:
2619 mutex_unlock(&mf_mutex);
2620 if (!ret) {
2621 if (!huge)
2622 num_poisoned_pages_sub(pfn, 1);
2623 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2624 page_to_pfn(p), &unpoison_rs);
2625 }
2626 return ret;
2627 }
2628 EXPORT_SYMBOL(unpoison_memory);
2629
isolate_page(struct page * page,struct list_head * pagelist)2630 static bool isolate_page(struct page *page, struct list_head *pagelist)
2631 {
2632 bool isolated = false;
2633
2634 if (PageHuge(page)) {
2635 isolated = isolate_hugetlb(page_folio(page), pagelist);
2636 } else {
2637 bool lru = !__PageMovable(page);
2638
2639 if (lru)
2640 isolated = isolate_lru_page(page);
2641 else
2642 isolated = isolate_movable_page(page,
2643 ISOLATE_UNEVICTABLE);
2644
2645 if (isolated) {
2646 list_add(&page->lru, pagelist);
2647 if (lru)
2648 inc_node_page_state(page, NR_ISOLATED_ANON +
2649 page_is_file_lru(page));
2650 }
2651 }
2652
2653 /*
2654 * If we succeed to isolate the page, we grabbed another refcount on
2655 * the page, so we can safely drop the one we got from get_any_page().
2656 * If we failed to isolate the page, it means that we cannot go further
2657 * and we will return an error, so drop the reference we got from
2658 * get_any_page() as well.
2659 */
2660 put_page(page);
2661 return isolated;
2662 }
2663
2664 /*
2665 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2666 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2667 * If the page is mapped, it migrates the contents over.
2668 */
soft_offline_in_use_page(struct page * page)2669 static int soft_offline_in_use_page(struct page *page)
2670 {
2671 long ret = 0;
2672 unsigned long pfn = page_to_pfn(page);
2673 struct page *hpage = compound_head(page);
2674 char const *msg_page[] = {"page", "hugepage"};
2675 bool huge = PageHuge(page);
2676 LIST_HEAD(pagelist);
2677 struct migration_target_control mtc = {
2678 .nid = NUMA_NO_NODE,
2679 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2680 };
2681
2682 if (!huge && PageTransHuge(hpage)) {
2683 if (try_to_split_thp_page(page)) {
2684 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2685 return -EBUSY;
2686 }
2687 hpage = page;
2688 }
2689
2690 lock_page(page);
2691 if (!huge)
2692 wait_on_page_writeback(page);
2693 if (PageHWPoison(page)) {
2694 unlock_page(page);
2695 put_page(page);
2696 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2697 return 0;
2698 }
2699
2700 if (!huge && PageLRU(page) && !PageSwapCache(page))
2701 /*
2702 * Try to invalidate first. This should work for
2703 * non dirty unmapped page cache pages.
2704 */
2705 ret = invalidate_inode_page(page);
2706 unlock_page(page);
2707
2708 if (ret) {
2709 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2710 page_handle_poison(page, false, true);
2711 return 0;
2712 }
2713
2714 if (isolate_page(hpage, &pagelist)) {
2715 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2716 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2717 if (!ret) {
2718 bool release = !huge;
2719
2720 if (!page_handle_poison(page, huge, release))
2721 ret = -EBUSY;
2722 } else {
2723 if (!list_empty(&pagelist))
2724 putback_movable_pages(&pagelist);
2725
2726 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2727 pfn, msg_page[huge], ret, &page->flags);
2728 if (ret > 0)
2729 ret = -EBUSY;
2730 }
2731 } else {
2732 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2733 pfn, msg_page[huge], page_count(page), &page->flags);
2734 ret = -EBUSY;
2735 }
2736 return ret;
2737 }
2738
2739 /**
2740 * soft_offline_page - Soft offline a page.
2741 * @pfn: pfn to soft-offline
2742 * @flags: flags. Same as memory_failure().
2743 *
2744 * Returns 0 on success
2745 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2746 * < 0 otherwise negated errno.
2747 *
2748 * Soft offline a page, by migration or invalidation,
2749 * without killing anything. This is for the case when
2750 * a page is not corrupted yet (so it's still valid to access),
2751 * but has had a number of corrected errors and is better taken
2752 * out.
2753 *
2754 * The actual policy on when to do that is maintained by
2755 * user space.
2756 *
2757 * This should never impact any application or cause data loss,
2758 * however it might take some time.
2759 *
2760 * This is not a 100% solution for all memory, but tries to be
2761 * ``good enough'' for the majority of memory.
2762 */
soft_offline_page(unsigned long pfn,int flags)2763 int soft_offline_page(unsigned long pfn, int flags)
2764 {
2765 int ret;
2766 bool try_again = true;
2767 struct page *page;
2768
2769 if (!pfn_valid(pfn)) {
2770 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2771 return -ENXIO;
2772 }
2773
2774 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2775 page = pfn_to_online_page(pfn);
2776 if (!page) {
2777 put_ref_page(pfn, flags);
2778 return -EIO;
2779 }
2780
2781 mutex_lock(&mf_mutex);
2782
2783 if (PageHWPoison(page)) {
2784 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2785 put_ref_page(pfn, flags);
2786 mutex_unlock(&mf_mutex);
2787 return 0;
2788 }
2789
2790 retry:
2791 get_online_mems();
2792 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2793 put_online_mems();
2794
2795 if (hwpoison_filter(page)) {
2796 if (ret > 0)
2797 put_page(page);
2798
2799 mutex_unlock(&mf_mutex);
2800 return -EOPNOTSUPP;
2801 }
2802
2803 if (ret > 0) {
2804 ret = soft_offline_in_use_page(page);
2805 } else if (ret == 0) {
2806 if (!page_handle_poison(page, true, false)) {
2807 if (try_again) {
2808 try_again = false;
2809 flags &= ~MF_COUNT_INCREASED;
2810 goto retry;
2811 }
2812 ret = -EBUSY;
2813 }
2814 }
2815
2816 mutex_unlock(&mf_mutex);
2817
2818 return ret;
2819 }
2820