1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
34 * use_far_sets (stored in bit 17 of layout )
35 * use_far_sets_bugfixed (stored in bit 18 of layout )
36 *
37 * The data to be stored is divided into chunks using chunksize. Each device
38 * is divided into far_copies sections. In each section, chunks are laid out
39 * in a style similar to raid0, but near_copies copies of each chunk is stored
40 * (each on a different drive). The starting device for each section is offset
41 * near_copies from the starting device of the previous section. Thus there
42 * are (near_copies * far_copies) of each chunk, and each is on a different
43 * drive. near_copies and far_copies must be at least one, and their product
44 * is at most raid_disks.
45 *
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of being very far
48 * apart on disk, there are adjacent stripes.
49 *
50 * The far and offset algorithms are handled slightly differently if
51 * 'use_far_sets' is true. In this case, the array's devices are grouped into
52 * sets that are (near_copies * far_copies) in size. The far copied stripes
53 * are still shifted by 'near_copies' devices, but this shifting stays confined
54 * to the set rather than the entire array. This is done to improve the number
55 * of device combinations that can fail without causing the array to fail.
56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57 * on a device):
58 * A B C D A B C D E
59 * ... ...
60 * D A B C E A B C D
61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62 * [A B] [C D] [A B] [C D E]
63 * |...| |...| |...| | ... |
64 * [B A] [D C] [B A] [E C D]
65 */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...) \
78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 do { \
85 write_sequnlock_irq(&(conf)->resync_lock); \
86 cmd; \
87 } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
get_resync_r10bio(struct bio * bio)101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 return get_resync_pages(bio)->raid_bio;
104 }
105
r10bio_pool_alloc(gfp_t gfp_flags,void * data)106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 struct r10conf *conf = data;
109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111 /* allocate a r10bio with room for raid_disks entries in the
112 * bios array */
113 return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 struct r10bio *r10_bio;
135 struct bio *bio;
136 int j;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
139
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 if (!r10_bio)
142 return NULL;
143
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 nalloc = conf->copies; /* resync */
147 else
148 nalloc = 2; /* recovery */
149
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
152 nalloc_rp = nalloc;
153 else
154 nalloc_rp = nalloc * 2;
155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 if (!rps)
157 goto out_free_r10bio;
158
159 /*
160 * Allocate bios.
161 */
162 for (j = nalloc ; j-- ; ) {
163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 if (!bio)
165 goto out_free_bio;
166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 r10_bio->devs[j].bio = bio;
168 if (!conf->have_replacement)
169 continue;
170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 if (!bio)
172 goto out_free_bio;
173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 r10_bio->devs[j].repl_bio = bio;
175 }
176 /*
177 * Allocate RESYNC_PAGES data pages and attach them
178 * where needed.
179 */
180 for (j = 0; j < nalloc; j++) {
181 struct bio *rbio = r10_bio->devs[j].repl_bio;
182 struct resync_pages *rp, *rp_repl;
183
184 rp = &rps[j];
185 if (rbio)
186 rp_repl = &rps[nalloc + j];
187
188 bio = r10_bio->devs[j].bio;
189
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
193 goto out_free_pages;
194 } else {
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
197 }
198
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
201 if (rbio) {
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
204 }
205 }
206
207 return r10_bio;
208
209 out_free_pages:
210 while (--j >= 0)
211 resync_free_pages(&rps[j]);
212
213 j = 0;
214 out_free_bio:
215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
219 if (r10_bio->devs[j].repl_bio)
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
222 }
223 kfree(rps);
224 out_free_r10bio:
225 rbio_pool_free(r10_bio, conf);
226 return NULL;
227 }
228
r10buf_pool_free(void * __r10_bio,void * data)229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 struct r10conf *conf = data;
232 struct r10bio *r10bio = __r10_bio;
233 int j;
234 struct resync_pages *rp = NULL;
235
236 for (j = conf->copies; j--; ) {
237 struct bio *bio = r10bio->devs[j].bio;
238
239 if (bio) {
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
242 bio_uninit(bio);
243 kfree(bio);
244 }
245
246 bio = r10bio->devs[j].repl_bio;
247 if (bio) {
248 bio_uninit(bio);
249 kfree(bio);
250 }
251 }
252
253 /* resync pages array stored in the 1st bio's .bi_private */
254 kfree(rp);
255
256 rbio_pool_free(r10bio, conf);
257 }
258
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 int i;
262
263 for (i = 0; i < conf->geo.raid_disks; i++) {
264 struct bio **bio = & r10_bio->devs[i].bio;
265 if (!BIO_SPECIAL(*bio))
266 bio_put(*bio);
267 *bio = NULL;
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 bio_put(*bio);
271 *bio = NULL;
272 }
273 }
274
free_r10bio(struct r10bio * r10_bio)275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 struct r10conf *conf = r10_bio->mddev->private;
278
279 put_all_bios(conf, r10_bio);
280 mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
put_buf(struct r10bio * r10_bio)283 static void put_buf(struct r10bio *r10_bio)
284 {
285 struct r10conf *conf = r10_bio->mddev->private;
286
287 mempool_free(r10_bio, &conf->r10buf_pool);
288
289 lower_barrier(conf);
290 }
291
wake_up_barrier(struct r10conf * conf)292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
296 }
297
reschedule_retry(struct r10bio * r10_bio)298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 unsigned long flags;
301 struct mddev *mddev = r10_bio->mddev;
302 struct r10conf *conf = mddev->private;
303
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
306 conf->nr_queued ++;
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
311
312 md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
raid_end_bio_io(struct r10bio * r10_bio)320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 struct bio *bio = r10_bio->master_bio;
323 struct r10conf *conf = r10_bio->mddev->private;
324
325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 bio->bi_status = BLK_STS_IOERR;
327
328 bio_endio(bio);
329 /*
330 * Wake up any possible resync thread that waits for the device
331 * to go idle.
332 */
333 allow_barrier(conf);
334
335 free_r10bio(r10_bio);
336 }
337
338 /*
339 * Update disk head position estimator based on IRQ completion info.
340 */
update_head_pos(int slot,struct r10bio * r10_bio)341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343 struct r10conf *conf = r10_bio->mddev->private;
344
345 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348
349 /*
350 * Find the disk number which triggered given bio
351 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 struct bio *bio, int *slotp, int *replp)
354 {
355 int slot;
356 int repl = 0;
357
358 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 if (r10_bio->devs[slot].bio == bio)
360 break;
361 if (r10_bio->devs[slot].repl_bio == bio) {
362 repl = 1;
363 break;
364 }
365 }
366
367 update_head_pos(slot, r10_bio);
368
369 if (slotp)
370 *slotp = slot;
371 if (replp)
372 *replp = repl;
373 return r10_bio->devs[slot].devnum;
374 }
375
raid10_end_read_request(struct bio * bio)376 static void raid10_end_read_request(struct bio *bio)
377 {
378 int uptodate = !bio->bi_status;
379 struct r10bio *r10_bio = bio->bi_private;
380 int slot;
381 struct md_rdev *rdev;
382 struct r10conf *conf = r10_bio->mddev->private;
383
384 slot = r10_bio->read_slot;
385 rdev = r10_bio->devs[slot].rdev;
386 /*
387 * this branch is our 'one mirror IO has finished' event handler:
388 */
389 update_head_pos(slot, r10_bio);
390
391 if (uptodate) {
392 /*
393 * Set R10BIO_Uptodate in our master bio, so that
394 * we will return a good error code to the higher
395 * levels even if IO on some other mirrored buffer fails.
396 *
397 * The 'master' represents the composite IO operation to
398 * user-side. So if something waits for IO, then it will
399 * wait for the 'master' bio.
400 */
401 set_bit(R10BIO_Uptodate, &r10_bio->state);
402 } else {
403 /* If all other devices that store this block have
404 * failed, we want to return the error upwards rather
405 * than fail the last device. Here we redefine
406 * "uptodate" to mean "Don't want to retry"
407 */
408 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409 rdev->raid_disk))
410 uptodate = 1;
411 }
412 if (uptodate) {
413 raid_end_bio_io(r10_bio);
414 rdev_dec_pending(rdev, conf->mddev);
415 } else {
416 /*
417 * oops, read error - keep the refcount on the rdev
418 */
419 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420 mdname(conf->mddev),
421 rdev->bdev,
422 (unsigned long long)r10_bio->sector);
423 set_bit(R10BIO_ReadError, &r10_bio->state);
424 reschedule_retry(r10_bio);
425 }
426 }
427
close_write(struct r10bio * r10_bio)428 static void close_write(struct r10bio *r10_bio)
429 {
430 md_write_end(r10_bio->mddev);
431 }
432
one_write_done(struct r10bio * r10_bio)433 static void one_write_done(struct r10bio *r10_bio)
434 {
435 if (atomic_dec_and_test(&r10_bio->remaining)) {
436 if (test_bit(R10BIO_WriteError, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else {
439 close_write(r10_bio);
440 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
441 reschedule_retry(r10_bio);
442 else
443 raid_end_bio_io(r10_bio);
444 }
445 }
446 }
447
raid10_end_write_request(struct bio * bio)448 static void raid10_end_write_request(struct bio *bio)
449 {
450 struct r10bio *r10_bio = bio->bi_private;
451 int dev;
452 int dec_rdev = 1;
453 struct r10conf *conf = r10_bio->mddev->private;
454 int slot, repl;
455 struct md_rdev *rdev = NULL;
456 struct bio *to_put = NULL;
457 bool discard_error;
458
459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
460
461 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
462
463 if (repl)
464 rdev = conf->mirrors[dev].replacement;
465 if (!rdev) {
466 smp_rmb();
467 repl = 0;
468 rdev = conf->mirrors[dev].rdev;
469 }
470 /*
471 * this branch is our 'one mirror IO has finished' event handler:
472 */
473 if (bio->bi_status && !discard_error) {
474 if (repl)
475 /* Never record new bad blocks to replacement,
476 * just fail it.
477 */
478 md_error(rdev->mddev, rdev);
479 else {
480 set_bit(WriteErrorSeen, &rdev->flags);
481 if (!test_and_set_bit(WantReplacement, &rdev->flags))
482 set_bit(MD_RECOVERY_NEEDED,
483 &rdev->mddev->recovery);
484
485 dec_rdev = 0;
486 if (test_bit(FailFast, &rdev->flags) &&
487 (bio->bi_opf & MD_FAILFAST)) {
488 md_error(rdev->mddev, rdev);
489 }
490
491 /*
492 * When the device is faulty, it is not necessary to
493 * handle write error.
494 */
495 if (!test_bit(Faulty, &rdev->flags))
496 set_bit(R10BIO_WriteError, &r10_bio->state);
497 else {
498 /* Fail the request */
499 r10_bio->devs[slot].bio = NULL;
500 to_put = bio;
501 dec_rdev = 1;
502 }
503 }
504 } else {
505 /*
506 * Set R10BIO_Uptodate in our master bio, so that
507 * we will return a good error code for to the higher
508 * levels even if IO on some other mirrored buffer fails.
509 *
510 * The 'master' represents the composite IO operation to
511 * user-side. So if something waits for IO, then it will
512 * wait for the 'master' bio.
513 */
514 sector_t first_bad;
515 int bad_sectors;
516
517 /*
518 * Do not set R10BIO_Uptodate if the current device is
519 * rebuilding or Faulty. This is because we cannot use
520 * such device for properly reading the data back (we could
521 * potentially use it, if the current write would have felt
522 * before rdev->recovery_offset, but for simplicity we don't
523 * check this here.
524 */
525 if (test_bit(In_sync, &rdev->flags) &&
526 !test_bit(Faulty, &rdev->flags))
527 set_bit(R10BIO_Uptodate, &r10_bio->state);
528
529 /* Maybe we can clear some bad blocks. */
530 if (is_badblock(rdev,
531 r10_bio->devs[slot].addr,
532 r10_bio->sectors,
533 &first_bad, &bad_sectors) && !discard_error) {
534 bio_put(bio);
535 if (repl)
536 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537 else
538 r10_bio->devs[slot].bio = IO_MADE_GOOD;
539 dec_rdev = 0;
540 set_bit(R10BIO_MadeGood, &r10_bio->state);
541 }
542 }
543
544 /*
545 *
546 * Let's see if all mirrored write operations have finished
547 * already.
548 */
549 one_write_done(r10_bio);
550 if (dec_rdev)
551 rdev_dec_pending(rdev, conf->mddev);
552 if (to_put)
553 bio_put(to_put);
554 }
555
556 /*
557 * RAID10 layout manager
558 * As well as the chunksize and raid_disks count, there are two
559 * parameters: near_copies and far_copies.
560 * near_copies * far_copies must be <= raid_disks.
561 * Normally one of these will be 1.
562 * If both are 1, we get raid0.
563 * If near_copies == raid_disks, we get raid1.
564 *
565 * Chunks are laid out in raid0 style with near_copies copies of the
566 * first chunk, followed by near_copies copies of the next chunk and
567 * so on.
568 * If far_copies > 1, then after 1/far_copies of the array has been assigned
569 * as described above, we start again with a device offset of near_copies.
570 * So we effectively have another copy of the whole array further down all
571 * the drives, but with blocks on different drives.
572 * With this layout, and block is never stored twice on the one device.
573 *
574 * raid10_find_phys finds the sector offset of a given virtual sector
575 * on each device that it is on.
576 *
577 * raid10_find_virt does the reverse mapping, from a device and a
578 * sector offset to a virtual address
579 */
580
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)581 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582 {
583 int n,f;
584 sector_t sector;
585 sector_t chunk;
586 sector_t stripe;
587 int dev;
588 int slot = 0;
589 int last_far_set_start, last_far_set_size;
590
591 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592 last_far_set_start *= geo->far_set_size;
593
594 last_far_set_size = geo->far_set_size;
595 last_far_set_size += (geo->raid_disks % geo->far_set_size);
596
597 /* now calculate first sector/dev */
598 chunk = r10bio->sector >> geo->chunk_shift;
599 sector = r10bio->sector & geo->chunk_mask;
600
601 chunk *= geo->near_copies;
602 stripe = chunk;
603 dev = sector_div(stripe, geo->raid_disks);
604 if (geo->far_offset)
605 stripe *= geo->far_copies;
606
607 sector += stripe << geo->chunk_shift;
608
609 /* and calculate all the others */
610 for (n = 0; n < geo->near_copies; n++) {
611 int d = dev;
612 int set;
613 sector_t s = sector;
614 r10bio->devs[slot].devnum = d;
615 r10bio->devs[slot].addr = s;
616 slot++;
617
618 for (f = 1; f < geo->far_copies; f++) {
619 set = d / geo->far_set_size;
620 d += geo->near_copies;
621
622 if ((geo->raid_disks % geo->far_set_size) &&
623 (d > last_far_set_start)) {
624 d -= last_far_set_start;
625 d %= last_far_set_size;
626 d += last_far_set_start;
627 } else {
628 d %= geo->far_set_size;
629 d += geo->far_set_size * set;
630 }
631 s += geo->stride;
632 r10bio->devs[slot].devnum = d;
633 r10bio->devs[slot].addr = s;
634 slot++;
635 }
636 dev++;
637 if (dev >= geo->raid_disks) {
638 dev = 0;
639 sector += (geo->chunk_mask + 1);
640 }
641 }
642 }
643
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)644 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645 {
646 struct geom *geo = &conf->geo;
647
648 if (conf->reshape_progress != MaxSector &&
649 ((r10bio->sector >= conf->reshape_progress) !=
650 conf->mddev->reshape_backwards)) {
651 set_bit(R10BIO_Previous, &r10bio->state);
652 geo = &conf->prev;
653 } else
654 clear_bit(R10BIO_Previous, &r10bio->state);
655
656 __raid10_find_phys(geo, r10bio);
657 }
658
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)659 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660 {
661 sector_t offset, chunk, vchunk;
662 /* Never use conf->prev as this is only called during resync
663 * or recovery, so reshape isn't happening
664 */
665 struct geom *geo = &conf->geo;
666 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667 int far_set_size = geo->far_set_size;
668 int last_far_set_start;
669
670 if (geo->raid_disks % geo->far_set_size) {
671 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672 last_far_set_start *= geo->far_set_size;
673
674 if (dev >= last_far_set_start) {
675 far_set_size = geo->far_set_size;
676 far_set_size += (geo->raid_disks % geo->far_set_size);
677 far_set_start = last_far_set_start;
678 }
679 }
680
681 offset = sector & geo->chunk_mask;
682 if (geo->far_offset) {
683 int fc;
684 chunk = sector >> geo->chunk_shift;
685 fc = sector_div(chunk, geo->far_copies);
686 dev -= fc * geo->near_copies;
687 if (dev < far_set_start)
688 dev += far_set_size;
689 } else {
690 while (sector >= geo->stride) {
691 sector -= geo->stride;
692 if (dev < (geo->near_copies + far_set_start))
693 dev += far_set_size - geo->near_copies;
694 else
695 dev -= geo->near_copies;
696 }
697 chunk = sector >> geo->chunk_shift;
698 }
699 vchunk = chunk * geo->raid_disks + dev;
700 sector_div(vchunk, geo->near_copies);
701 return (vchunk << geo->chunk_shift) + offset;
702 }
703
704 /*
705 * This routine returns the disk from which the requested read should
706 * be done. There is a per-array 'next expected sequential IO' sector
707 * number - if this matches on the next IO then we use the last disk.
708 * There is also a per-disk 'last know head position' sector that is
709 * maintained from IRQ contexts, both the normal and the resync IO
710 * completion handlers update this position correctly. If there is no
711 * perfect sequential match then we pick the disk whose head is closest.
712 *
713 * If there are 2 mirrors in the same 2 devices, performance degrades
714 * because position is mirror, not device based.
715 *
716 * The rdev for the device selected will have nr_pending incremented.
717 */
718
719 /*
720 * FIXME: possibly should rethink readbalancing and do it differently
721 * depending on near_copies / far_copies geometry.
722 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)723 static struct md_rdev *read_balance(struct r10conf *conf,
724 struct r10bio *r10_bio,
725 int *max_sectors)
726 {
727 const sector_t this_sector = r10_bio->sector;
728 int disk, slot;
729 int sectors = r10_bio->sectors;
730 int best_good_sectors;
731 sector_t new_distance, best_dist;
732 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733 int do_balance;
734 int best_dist_slot, best_pending_slot;
735 bool has_nonrot_disk = false;
736 unsigned int min_pending;
737 struct geom *geo = &conf->geo;
738
739 raid10_find_phys(conf, r10_bio);
740 rcu_read_lock();
741 best_dist_slot = -1;
742 min_pending = UINT_MAX;
743 best_dist_rdev = NULL;
744 best_pending_rdev = NULL;
745 best_dist = MaxSector;
746 best_good_sectors = 0;
747 do_balance = 1;
748 clear_bit(R10BIO_FailFast, &r10_bio->state);
749 /*
750 * Check if we can balance. We can balance on the whole
751 * device if no resync is going on (recovery is ok), or below
752 * the resync window. We take the first readable disk when
753 * above the resync window.
754 */
755 if ((conf->mddev->recovery_cp < MaxSector
756 && (this_sector + sectors >= conf->next_resync)) ||
757 (mddev_is_clustered(conf->mddev) &&
758 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
759 this_sector + sectors)))
760 do_balance = 0;
761
762 for (slot = 0; slot < conf->copies ; slot++) {
763 sector_t first_bad;
764 int bad_sectors;
765 sector_t dev_sector;
766 unsigned int pending;
767 bool nonrot;
768
769 if (r10_bio->devs[slot].bio == IO_BLOCKED)
770 continue;
771 disk = r10_bio->devs[slot].devnum;
772 rdev = rcu_dereference(conf->mirrors[disk].replacement);
773 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
774 r10_bio->devs[slot].addr + sectors >
775 rdev->recovery_offset) {
776 /*
777 * Read replacement first to prevent reading both rdev
778 * and replacement as NULL during replacement replace
779 * rdev.
780 */
781 smp_mb();
782 rdev = rcu_dereference(conf->mirrors[disk].rdev);
783 }
784 if (rdev == NULL ||
785 test_bit(Faulty, &rdev->flags))
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 continue;
790
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
801 */
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
812 best_dist_slot = slot;
813 best_dist_rdev = rdev;
814 }
815 if (!do_balance)
816 /* Must read from here */
817 break;
818 }
819 continue;
820 } else
821 best_good_sectors = sectors;
822
823 if (!do_balance)
824 break;
825
826 nonrot = bdev_nonrot(rdev->bdev);
827 has_nonrot_disk |= nonrot;
828 pending = atomic_read(&rdev->nr_pending);
829 if (min_pending > pending && nonrot) {
830 min_pending = pending;
831 best_pending_slot = slot;
832 best_pending_rdev = rdev;
833 }
834
835 if (best_dist_slot >= 0)
836 /* At least 2 disks to choose from so failfast is OK */
837 set_bit(R10BIO_FailFast, &r10_bio->state);
838 /* This optimisation is debatable, and completely destroys
839 * sequential read speed for 'far copies' arrays. So only
840 * keep it for 'near' arrays, and review those later.
841 */
842 if (geo->near_copies > 1 && !pending)
843 new_distance = 0;
844
845 /* for far > 1 always use the lowest address */
846 else if (geo->far_copies > 1)
847 new_distance = r10_bio->devs[slot].addr;
848 else
849 new_distance = abs(r10_bio->devs[slot].addr -
850 conf->mirrors[disk].head_position);
851
852 if (new_distance < best_dist) {
853 best_dist = new_distance;
854 best_dist_slot = slot;
855 best_dist_rdev = rdev;
856 }
857 }
858 if (slot >= conf->copies) {
859 if (has_nonrot_disk) {
860 slot = best_pending_slot;
861 rdev = best_pending_rdev;
862 } else {
863 slot = best_dist_slot;
864 rdev = best_dist_rdev;
865 }
866 }
867
868 if (slot >= 0) {
869 atomic_inc(&rdev->nr_pending);
870 r10_bio->read_slot = slot;
871 } else
872 rdev = NULL;
873 rcu_read_unlock();
874 *max_sectors = best_good_sectors;
875
876 return rdev;
877 }
878
flush_pending_writes(struct r10conf * conf)879 static void flush_pending_writes(struct r10conf *conf)
880 {
881 /* Any writes that have been queued but are awaiting
882 * bitmap updates get flushed here.
883 */
884 spin_lock_irq(&conf->device_lock);
885
886 if (conf->pending_bio_list.head) {
887 struct blk_plug plug;
888 struct bio *bio;
889
890 bio = bio_list_get(&conf->pending_bio_list);
891 spin_unlock_irq(&conf->device_lock);
892
893 /*
894 * As this is called in a wait_event() loop (see freeze_array),
895 * current->state might be TASK_UNINTERRUPTIBLE which will
896 * cause a warning when we prepare to wait again. As it is
897 * rare that this path is taken, it is perfectly safe to force
898 * us to go around the wait_event() loop again, so the warning
899 * is a false-positive. Silence the warning by resetting
900 * thread state
901 */
902 __set_current_state(TASK_RUNNING);
903
904 blk_start_plug(&plug);
905 raid1_prepare_flush_writes(conf->mddev->bitmap);
906 wake_up(&conf->wait_barrier);
907
908 while (bio) { /* submit pending writes */
909 struct bio *next = bio->bi_next;
910
911 raid1_submit_write(bio);
912 bio = next;
913 cond_resched();
914 }
915 blk_finish_plug(&plug);
916 } else
917 spin_unlock_irq(&conf->device_lock);
918 }
919
920 /* Barriers....
921 * Sometimes we need to suspend IO while we do something else,
922 * either some resync/recovery, or reconfigure the array.
923 * To do this we raise a 'barrier'.
924 * The 'barrier' is a counter that can be raised multiple times
925 * to count how many activities are happening which preclude
926 * normal IO.
927 * We can only raise the barrier if there is no pending IO.
928 * i.e. if nr_pending == 0.
929 * We choose only to raise the barrier if no-one is waiting for the
930 * barrier to go down. This means that as soon as an IO request
931 * is ready, no other operations which require a barrier will start
932 * until the IO request has had a chance.
933 *
934 * So: regular IO calls 'wait_barrier'. When that returns there
935 * is no backgroup IO happening, It must arrange to call
936 * allow_barrier when it has finished its IO.
937 * backgroup IO calls must call raise_barrier. Once that returns
938 * there is no normal IO happeing. It must arrange to call
939 * lower_barrier when the particular background IO completes.
940 */
941
raise_barrier(struct r10conf * conf,int force)942 static void raise_barrier(struct r10conf *conf, int force)
943 {
944 write_seqlock_irq(&conf->resync_lock);
945
946 if (WARN_ON_ONCE(force && !conf->barrier))
947 force = false;
948
949 /* Wait until no block IO is waiting (unless 'force') */
950 wait_event_barrier(conf, force || !conf->nr_waiting);
951
952 /* block any new IO from starting */
953 WRITE_ONCE(conf->barrier, conf->barrier + 1);
954
955 /* Now wait for all pending IO to complete */
956 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
957 conf->barrier < RESYNC_DEPTH);
958
959 write_sequnlock_irq(&conf->resync_lock);
960 }
961
lower_barrier(struct r10conf * conf)962 static void lower_barrier(struct r10conf *conf)
963 {
964 unsigned long flags;
965
966 write_seqlock_irqsave(&conf->resync_lock, flags);
967 WRITE_ONCE(conf->barrier, conf->barrier - 1);
968 write_sequnlock_irqrestore(&conf->resync_lock, flags);
969 wake_up(&conf->wait_barrier);
970 }
971
stop_waiting_barrier(struct r10conf * conf)972 static bool stop_waiting_barrier(struct r10conf *conf)
973 {
974 struct bio_list *bio_list = current->bio_list;
975 struct md_thread *thread;
976
977 /* barrier is dropped */
978 if (!conf->barrier)
979 return true;
980
981 /*
982 * If there are already pending requests (preventing the barrier from
983 * rising completely), and the pre-process bio queue isn't empty, then
984 * don't wait, as we need to empty that queue to get the nr_pending
985 * count down.
986 */
987 if (atomic_read(&conf->nr_pending) && bio_list &&
988 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
989 return true;
990
991 /* daemon thread must exist while handling io */
992 thread = rcu_dereference_protected(conf->mddev->thread, true);
993 /*
994 * move on if io is issued from raid10d(), nr_pending is not released
995 * from original io(see handle_read_error()). All raise barrier is
996 * blocked until this io is done.
997 */
998 if (thread->tsk == current) {
999 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1000 return true;
1001 }
1002
1003 return false;
1004 }
1005
wait_barrier_nolock(struct r10conf * conf)1006 static bool wait_barrier_nolock(struct r10conf *conf)
1007 {
1008 unsigned int seq = read_seqbegin(&conf->resync_lock);
1009
1010 if (READ_ONCE(conf->barrier))
1011 return false;
1012
1013 atomic_inc(&conf->nr_pending);
1014 if (!read_seqretry(&conf->resync_lock, seq))
1015 return true;
1016
1017 if (atomic_dec_and_test(&conf->nr_pending))
1018 wake_up_barrier(conf);
1019
1020 return false;
1021 }
1022
wait_barrier(struct r10conf * conf,bool nowait)1023 static bool wait_barrier(struct r10conf *conf, bool nowait)
1024 {
1025 bool ret = true;
1026
1027 if (wait_barrier_nolock(conf))
1028 return true;
1029
1030 write_seqlock_irq(&conf->resync_lock);
1031 if (conf->barrier) {
1032 /* Return false when nowait flag is set */
1033 if (nowait) {
1034 ret = false;
1035 } else {
1036 conf->nr_waiting++;
1037 raid10_log(conf->mddev, "wait barrier");
1038 wait_event_barrier(conf, stop_waiting_barrier(conf));
1039 conf->nr_waiting--;
1040 }
1041 if (!conf->nr_waiting)
1042 wake_up(&conf->wait_barrier);
1043 }
1044 /* Only increment nr_pending when we wait */
1045 if (ret)
1046 atomic_inc(&conf->nr_pending);
1047 write_sequnlock_irq(&conf->resync_lock);
1048 return ret;
1049 }
1050
allow_barrier(struct r10conf * conf)1051 static void allow_barrier(struct r10conf *conf)
1052 {
1053 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1054 (conf->array_freeze_pending))
1055 wake_up_barrier(conf);
1056 }
1057
freeze_array(struct r10conf * conf,int extra)1058 static void freeze_array(struct r10conf *conf, int extra)
1059 {
1060 /* stop syncio and normal IO and wait for everything to
1061 * go quiet.
1062 * We increment barrier and nr_waiting, and then
1063 * wait until nr_pending match nr_queued+extra
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (extra)
1069 * must match the number of pending IOs (nr_pending) before
1070 * we continue.
1071 */
1072 write_seqlock_irq(&conf->resync_lock);
1073 conf->array_freeze_pending++;
1074 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1075 conf->nr_waiting++;
1076 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1077 conf->nr_queued + extra, flush_pending_writes(conf));
1078 conf->array_freeze_pending--;
1079 write_sequnlock_irq(&conf->resync_lock);
1080 }
1081
unfreeze_array(struct r10conf * conf)1082 static void unfreeze_array(struct r10conf *conf)
1083 {
1084 /* reverse the effect of the freeze */
1085 write_seqlock_irq(&conf->resync_lock);
1086 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1087 conf->nr_waiting--;
1088 wake_up(&conf->wait_barrier);
1089 write_sequnlock_irq(&conf->resync_lock);
1090 }
1091
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1092 static sector_t choose_data_offset(struct r10bio *r10_bio,
1093 struct md_rdev *rdev)
1094 {
1095 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1096 test_bit(R10BIO_Previous, &r10_bio->state))
1097 return rdev->data_offset;
1098 else
1099 return rdev->new_data_offset;
1100 }
1101
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1102 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1103 {
1104 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1105 struct mddev *mddev = plug->cb.data;
1106 struct r10conf *conf = mddev->private;
1107 struct bio *bio;
1108
1109 if (from_schedule) {
1110 spin_lock_irq(&conf->device_lock);
1111 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1112 spin_unlock_irq(&conf->device_lock);
1113 wake_up_barrier(conf);
1114 md_wakeup_thread(mddev->thread);
1115 kfree(plug);
1116 return;
1117 }
1118
1119 /* we aren't scheduling, so we can do the write-out directly. */
1120 bio = bio_list_get(&plug->pending);
1121 raid1_prepare_flush_writes(mddev->bitmap);
1122 wake_up_barrier(conf);
1123
1124 while (bio) { /* submit pending writes */
1125 struct bio *next = bio->bi_next;
1126
1127 raid1_submit_write(bio);
1128 bio = next;
1129 cond_resched();
1130 }
1131 kfree(plug);
1132 }
1133
1134 /*
1135 * 1. Register the new request and wait if the reconstruction thread has put
1136 * up a bar for new requests. Continue immediately if no resync is active
1137 * currently.
1138 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1139 */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1140 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1141 struct bio *bio, sector_t sectors)
1142 {
1143 /* Bail out if REQ_NOWAIT is set for the bio */
1144 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1145 bio_wouldblock_error(bio);
1146 return false;
1147 }
1148 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1149 bio->bi_iter.bi_sector < conf->reshape_progress &&
1150 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1151 allow_barrier(conf);
1152 if (bio->bi_opf & REQ_NOWAIT) {
1153 bio_wouldblock_error(bio);
1154 return false;
1155 }
1156 raid10_log(conf->mddev, "wait reshape");
1157 wait_event(conf->wait_barrier,
1158 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1159 conf->reshape_progress >= bio->bi_iter.bi_sector +
1160 sectors);
1161 wait_barrier(conf, false);
1162 }
1163 return true;
1164 }
1165
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio,bool io_accounting)1166 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1167 struct r10bio *r10_bio, bool io_accounting)
1168 {
1169 struct r10conf *conf = mddev->private;
1170 struct bio *read_bio;
1171 const enum req_op op = bio_op(bio);
1172 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1173 int max_sectors;
1174 struct md_rdev *rdev;
1175 char b[BDEVNAME_SIZE];
1176 int slot = r10_bio->read_slot;
1177 struct md_rdev *err_rdev = NULL;
1178 gfp_t gfp = GFP_NOIO;
1179
1180 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1181 /*
1182 * This is an error retry, but we cannot
1183 * safely dereference the rdev in the r10_bio,
1184 * we must use the one in conf.
1185 * If it has already been disconnected (unlikely)
1186 * we lose the device name in error messages.
1187 */
1188 int disk;
1189 /*
1190 * As we are blocking raid10, it is a little safer to
1191 * use __GFP_HIGH.
1192 */
1193 gfp = GFP_NOIO | __GFP_HIGH;
1194
1195 rcu_read_lock();
1196 disk = r10_bio->devs[slot].devnum;
1197 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1198 if (err_rdev)
1199 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1200 else {
1201 strcpy(b, "???");
1202 /* This never gets dereferenced */
1203 err_rdev = r10_bio->devs[slot].rdev;
1204 }
1205 rcu_read_unlock();
1206 }
1207
1208 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1209 return;
1210 rdev = read_balance(conf, r10_bio, &max_sectors);
1211 if (!rdev) {
1212 if (err_rdev) {
1213 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1214 mdname(mddev), b,
1215 (unsigned long long)r10_bio->sector);
1216 }
1217 raid_end_bio_io(r10_bio);
1218 return;
1219 }
1220 if (err_rdev)
1221 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1222 mdname(mddev),
1223 rdev->bdev,
1224 (unsigned long long)r10_bio->sector);
1225 if (max_sectors < bio_sectors(bio)) {
1226 struct bio *split = bio_split(bio, max_sectors,
1227 gfp, &conf->bio_split);
1228 bio_chain(split, bio);
1229 allow_barrier(conf);
1230 submit_bio_noacct(bio);
1231 wait_barrier(conf, false);
1232 bio = split;
1233 r10_bio->master_bio = bio;
1234 r10_bio->sectors = max_sectors;
1235 }
1236 slot = r10_bio->read_slot;
1237
1238 if (io_accounting) {
1239 md_account_bio(mddev, &bio);
1240 r10_bio->master_bio = bio;
1241 }
1242 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1243
1244 r10_bio->devs[slot].bio = read_bio;
1245 r10_bio->devs[slot].rdev = rdev;
1246
1247 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1248 choose_data_offset(r10_bio, rdev);
1249 read_bio->bi_end_io = raid10_end_read_request;
1250 read_bio->bi_opf = op | do_sync;
1251 if (test_bit(FailFast, &rdev->flags) &&
1252 test_bit(R10BIO_FailFast, &r10_bio->state))
1253 read_bio->bi_opf |= MD_FAILFAST;
1254 read_bio->bi_private = r10_bio;
1255
1256 if (mddev->gendisk)
1257 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1258 r10_bio->sector);
1259 submit_bio_noacct(read_bio);
1260 return;
1261 }
1262
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1263 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1264 struct bio *bio, bool replacement,
1265 int n_copy)
1266 {
1267 const enum req_op op = bio_op(bio);
1268 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1269 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1270 unsigned long flags;
1271 struct r10conf *conf = mddev->private;
1272 struct md_rdev *rdev;
1273 int devnum = r10_bio->devs[n_copy].devnum;
1274 struct bio *mbio;
1275
1276 if (replacement) {
1277 rdev = conf->mirrors[devnum].replacement;
1278 if (rdev == NULL) {
1279 /* Replacement just got moved to main 'rdev' */
1280 smp_mb();
1281 rdev = conf->mirrors[devnum].rdev;
1282 }
1283 } else
1284 rdev = conf->mirrors[devnum].rdev;
1285
1286 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1287 if (replacement)
1288 r10_bio->devs[n_copy].repl_bio = mbio;
1289 else
1290 r10_bio->devs[n_copy].bio = mbio;
1291
1292 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1293 choose_data_offset(r10_bio, rdev));
1294 mbio->bi_end_io = raid10_end_write_request;
1295 mbio->bi_opf = op | do_sync | do_fua;
1296 if (!replacement && test_bit(FailFast,
1297 &conf->mirrors[devnum].rdev->flags)
1298 && enough(conf, devnum))
1299 mbio->bi_opf |= MD_FAILFAST;
1300 mbio->bi_private = r10_bio;
1301
1302 if (conf->mddev->gendisk)
1303 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1304 r10_bio->sector);
1305 /* flush_pending_writes() needs access to the rdev so...*/
1306 mbio->bi_bdev = (void *)rdev;
1307
1308 atomic_inc(&r10_bio->remaining);
1309
1310 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1311 spin_lock_irqsave(&conf->device_lock, flags);
1312 bio_list_add(&conf->pending_bio_list, mbio);
1313 spin_unlock_irqrestore(&conf->device_lock, flags);
1314 md_wakeup_thread(mddev->thread);
1315 }
1316 }
1317
dereference_rdev_and_rrdev(struct raid10_info * mirror,struct md_rdev ** prrdev)1318 static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
1319 struct md_rdev **prrdev)
1320 {
1321 struct md_rdev *rdev, *rrdev;
1322
1323 rrdev = rcu_dereference(mirror->replacement);
1324 /*
1325 * Read replacement first to prevent reading both rdev and
1326 * replacement as NULL during replacement replace rdev.
1327 */
1328 smp_mb();
1329 rdev = rcu_dereference(mirror->rdev);
1330 if (rdev == rrdev)
1331 rrdev = NULL;
1332
1333 *prrdev = rrdev;
1334 return rdev;
1335 }
1336
wait_blocked_dev(struct mddev * mddev,struct r10bio * r10_bio)1337 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1338 {
1339 int i;
1340 struct r10conf *conf = mddev->private;
1341 struct md_rdev *blocked_rdev;
1342
1343 retry_wait:
1344 blocked_rdev = NULL;
1345 rcu_read_lock();
1346 for (i = 0; i < conf->copies; i++) {
1347 struct md_rdev *rdev, *rrdev;
1348
1349 rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
1350 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1351 atomic_inc(&rdev->nr_pending);
1352 blocked_rdev = rdev;
1353 break;
1354 }
1355 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1356 atomic_inc(&rrdev->nr_pending);
1357 blocked_rdev = rrdev;
1358 break;
1359 }
1360
1361 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1362 sector_t first_bad;
1363 sector_t dev_sector = r10_bio->devs[i].addr;
1364 int bad_sectors;
1365 int is_bad;
1366
1367 /*
1368 * Discard request doesn't care the write result
1369 * so it doesn't need to wait blocked disk here.
1370 */
1371 if (!r10_bio->sectors)
1372 continue;
1373
1374 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1375 &first_bad, &bad_sectors);
1376 if (is_bad < 0) {
1377 /*
1378 * Mustn't write here until the bad block
1379 * is acknowledged
1380 */
1381 atomic_inc(&rdev->nr_pending);
1382 set_bit(BlockedBadBlocks, &rdev->flags);
1383 blocked_rdev = rdev;
1384 break;
1385 }
1386 }
1387 }
1388 rcu_read_unlock();
1389
1390 if (unlikely(blocked_rdev)) {
1391 /* Have to wait for this device to get unblocked, then retry */
1392 allow_barrier(conf);
1393 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1394 __func__, blocked_rdev->raid_disk);
1395 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1396 wait_barrier(conf, false);
1397 goto retry_wait;
1398 }
1399 }
1400
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1401 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1402 struct r10bio *r10_bio)
1403 {
1404 struct r10conf *conf = mddev->private;
1405 int i;
1406 sector_t sectors;
1407 int max_sectors;
1408
1409 if ((mddev_is_clustered(mddev) &&
1410 md_cluster_ops->area_resyncing(mddev, WRITE,
1411 bio->bi_iter.bi_sector,
1412 bio_end_sector(bio)))) {
1413 DEFINE_WAIT(w);
1414 /* Bail out if REQ_NOWAIT is set for the bio */
1415 if (bio->bi_opf & REQ_NOWAIT) {
1416 bio_wouldblock_error(bio);
1417 return;
1418 }
1419 for (;;) {
1420 prepare_to_wait(&conf->wait_barrier,
1421 &w, TASK_IDLE);
1422 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1423 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1424 break;
1425 schedule();
1426 }
1427 finish_wait(&conf->wait_barrier, &w);
1428 }
1429
1430 sectors = r10_bio->sectors;
1431 if (!regular_request_wait(mddev, conf, bio, sectors))
1432 return;
1433 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1434 (mddev->reshape_backwards
1435 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1436 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1437 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1438 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1439 /* Need to update reshape_position in metadata */
1440 mddev->reshape_position = conf->reshape_progress;
1441 set_mask_bits(&mddev->sb_flags, 0,
1442 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1443 md_wakeup_thread(mddev->thread);
1444 if (bio->bi_opf & REQ_NOWAIT) {
1445 allow_barrier(conf);
1446 bio_wouldblock_error(bio);
1447 return;
1448 }
1449 raid10_log(conf->mddev, "wait reshape metadata");
1450 wait_event(mddev->sb_wait,
1451 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1452
1453 conf->reshape_safe = mddev->reshape_position;
1454 }
1455
1456 /* first select target devices under rcu_lock and
1457 * inc refcount on their rdev. Record them by setting
1458 * bios[x] to bio
1459 * If there are known/acknowledged bad blocks on any device
1460 * on which we have seen a write error, we want to avoid
1461 * writing to those blocks. This potentially requires several
1462 * writes to write around the bad blocks. Each set of writes
1463 * gets its own r10_bio with a set of bios attached.
1464 */
1465
1466 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1467 raid10_find_phys(conf, r10_bio);
1468
1469 wait_blocked_dev(mddev, r10_bio);
1470
1471 rcu_read_lock();
1472 max_sectors = r10_bio->sectors;
1473
1474 for (i = 0; i < conf->copies; i++) {
1475 int d = r10_bio->devs[i].devnum;
1476 struct md_rdev *rdev, *rrdev;
1477
1478 rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
1479 if (rdev && (test_bit(Faulty, &rdev->flags)))
1480 rdev = NULL;
1481 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1482 rrdev = NULL;
1483
1484 r10_bio->devs[i].bio = NULL;
1485 r10_bio->devs[i].repl_bio = NULL;
1486
1487 if (!rdev && !rrdev)
1488 continue;
1489 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1490 sector_t first_bad;
1491 sector_t dev_sector = r10_bio->devs[i].addr;
1492 int bad_sectors;
1493 int is_bad;
1494
1495 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1496 &first_bad, &bad_sectors);
1497 if (is_bad && first_bad <= dev_sector) {
1498 /* Cannot write here at all */
1499 bad_sectors -= (dev_sector - first_bad);
1500 if (bad_sectors < max_sectors)
1501 /* Mustn't write more than bad_sectors
1502 * to other devices yet
1503 */
1504 max_sectors = bad_sectors;
1505 continue;
1506 }
1507 if (is_bad) {
1508 int good_sectors = first_bad - dev_sector;
1509 if (good_sectors < max_sectors)
1510 max_sectors = good_sectors;
1511 }
1512 }
1513 if (rdev) {
1514 r10_bio->devs[i].bio = bio;
1515 atomic_inc(&rdev->nr_pending);
1516 }
1517 if (rrdev) {
1518 r10_bio->devs[i].repl_bio = bio;
1519 atomic_inc(&rrdev->nr_pending);
1520 }
1521 }
1522 rcu_read_unlock();
1523
1524 if (max_sectors < r10_bio->sectors)
1525 r10_bio->sectors = max_sectors;
1526
1527 if (r10_bio->sectors < bio_sectors(bio)) {
1528 struct bio *split = bio_split(bio, r10_bio->sectors,
1529 GFP_NOIO, &conf->bio_split);
1530 bio_chain(split, bio);
1531 allow_barrier(conf);
1532 submit_bio_noacct(bio);
1533 wait_barrier(conf, false);
1534 bio = split;
1535 r10_bio->master_bio = bio;
1536 }
1537
1538 md_account_bio(mddev, &bio);
1539 r10_bio->master_bio = bio;
1540 atomic_set(&r10_bio->remaining, 1);
1541
1542 for (i = 0; i < conf->copies; i++) {
1543 if (r10_bio->devs[i].bio)
1544 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1545 if (r10_bio->devs[i].repl_bio)
1546 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1547 }
1548 one_write_done(r10_bio);
1549 }
1550
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1551 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1552 {
1553 struct r10conf *conf = mddev->private;
1554 struct r10bio *r10_bio;
1555
1556 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1557
1558 r10_bio->master_bio = bio;
1559 r10_bio->sectors = sectors;
1560
1561 r10_bio->mddev = mddev;
1562 r10_bio->sector = bio->bi_iter.bi_sector;
1563 r10_bio->state = 0;
1564 r10_bio->read_slot = -1;
1565 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1566 conf->geo.raid_disks);
1567
1568 if (bio_data_dir(bio) == READ)
1569 raid10_read_request(mddev, bio, r10_bio, true);
1570 else
1571 raid10_write_request(mddev, bio, r10_bio);
1572 }
1573
raid_end_discard_bio(struct r10bio * r10bio)1574 static void raid_end_discard_bio(struct r10bio *r10bio)
1575 {
1576 struct r10conf *conf = r10bio->mddev->private;
1577 struct r10bio *first_r10bio;
1578
1579 while (atomic_dec_and_test(&r10bio->remaining)) {
1580
1581 allow_barrier(conf);
1582
1583 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1584 first_r10bio = (struct r10bio *)r10bio->master_bio;
1585 free_r10bio(r10bio);
1586 r10bio = first_r10bio;
1587 } else {
1588 md_write_end(r10bio->mddev);
1589 bio_endio(r10bio->master_bio);
1590 free_r10bio(r10bio);
1591 break;
1592 }
1593 }
1594 }
1595
raid10_end_discard_request(struct bio * bio)1596 static void raid10_end_discard_request(struct bio *bio)
1597 {
1598 struct r10bio *r10_bio = bio->bi_private;
1599 struct r10conf *conf = r10_bio->mddev->private;
1600 struct md_rdev *rdev = NULL;
1601 int dev;
1602 int slot, repl;
1603
1604 /*
1605 * We don't care the return value of discard bio
1606 */
1607 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1608 set_bit(R10BIO_Uptodate, &r10_bio->state);
1609
1610 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1611 if (repl)
1612 rdev = conf->mirrors[dev].replacement;
1613 if (!rdev) {
1614 /*
1615 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1616 * replacement before setting replacement to NULL. It can read
1617 * rdev first without barrier protect even replacement is NULL
1618 */
1619 smp_rmb();
1620 rdev = conf->mirrors[dev].rdev;
1621 }
1622
1623 raid_end_discard_bio(r10_bio);
1624 rdev_dec_pending(rdev, conf->mddev);
1625 }
1626
1627 /*
1628 * There are some limitations to handle discard bio
1629 * 1st, the discard size is bigger than stripe_size*2.
1630 * 2st, if the discard bio spans reshape progress, we use the old way to
1631 * handle discard bio
1632 */
raid10_handle_discard(struct mddev * mddev,struct bio * bio)1633 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1634 {
1635 struct r10conf *conf = mddev->private;
1636 struct geom *geo = &conf->geo;
1637 int far_copies = geo->far_copies;
1638 bool first_copy = true;
1639 struct r10bio *r10_bio, *first_r10bio;
1640 struct bio *split;
1641 int disk;
1642 sector_t chunk;
1643 unsigned int stripe_size;
1644 unsigned int stripe_data_disks;
1645 sector_t split_size;
1646 sector_t bio_start, bio_end;
1647 sector_t first_stripe_index, last_stripe_index;
1648 sector_t start_disk_offset;
1649 unsigned int start_disk_index;
1650 sector_t end_disk_offset;
1651 unsigned int end_disk_index;
1652 unsigned int remainder;
1653
1654 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1655 return -EAGAIN;
1656
1657 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1658 bio_wouldblock_error(bio);
1659 return 0;
1660 }
1661 wait_barrier(conf, false);
1662
1663 /*
1664 * Check reshape again to avoid reshape happens after checking
1665 * MD_RECOVERY_RESHAPE and before wait_barrier
1666 */
1667 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1668 goto out;
1669
1670 if (geo->near_copies)
1671 stripe_data_disks = geo->raid_disks / geo->near_copies +
1672 geo->raid_disks % geo->near_copies;
1673 else
1674 stripe_data_disks = geo->raid_disks;
1675
1676 stripe_size = stripe_data_disks << geo->chunk_shift;
1677
1678 bio_start = bio->bi_iter.bi_sector;
1679 bio_end = bio_end_sector(bio);
1680
1681 /*
1682 * Maybe one discard bio is smaller than strip size or across one
1683 * stripe and discard region is larger than one stripe size. For far
1684 * offset layout, if the discard region is not aligned with stripe
1685 * size, there is hole when we submit discard bio to member disk.
1686 * For simplicity, we only handle discard bio which discard region
1687 * is bigger than stripe_size * 2
1688 */
1689 if (bio_sectors(bio) < stripe_size*2)
1690 goto out;
1691
1692 /*
1693 * Keep bio aligned with strip size.
1694 */
1695 div_u64_rem(bio_start, stripe_size, &remainder);
1696 if (remainder) {
1697 split_size = stripe_size - remainder;
1698 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1699 bio_chain(split, bio);
1700 allow_barrier(conf);
1701 /* Resend the fist split part */
1702 submit_bio_noacct(split);
1703 wait_barrier(conf, false);
1704 }
1705 div_u64_rem(bio_end, stripe_size, &remainder);
1706 if (remainder) {
1707 split_size = bio_sectors(bio) - remainder;
1708 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1709 bio_chain(split, bio);
1710 allow_barrier(conf);
1711 /* Resend the second split part */
1712 submit_bio_noacct(bio);
1713 bio = split;
1714 wait_barrier(conf, false);
1715 }
1716
1717 bio_start = bio->bi_iter.bi_sector;
1718 bio_end = bio_end_sector(bio);
1719
1720 /*
1721 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1722 * One stripe contains the chunks from all member disk (one chunk from
1723 * one disk at the same HBA address). For layout detail, see 'man md 4'
1724 */
1725 chunk = bio_start >> geo->chunk_shift;
1726 chunk *= geo->near_copies;
1727 first_stripe_index = chunk;
1728 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1729 if (geo->far_offset)
1730 first_stripe_index *= geo->far_copies;
1731 start_disk_offset = (bio_start & geo->chunk_mask) +
1732 (first_stripe_index << geo->chunk_shift);
1733
1734 chunk = bio_end >> geo->chunk_shift;
1735 chunk *= geo->near_copies;
1736 last_stripe_index = chunk;
1737 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1738 if (geo->far_offset)
1739 last_stripe_index *= geo->far_copies;
1740 end_disk_offset = (bio_end & geo->chunk_mask) +
1741 (last_stripe_index << geo->chunk_shift);
1742
1743 retry_discard:
1744 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1745 r10_bio->mddev = mddev;
1746 r10_bio->state = 0;
1747 r10_bio->sectors = 0;
1748 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1749 wait_blocked_dev(mddev, r10_bio);
1750
1751 /*
1752 * For far layout it needs more than one r10bio to cover all regions.
1753 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1754 * to record the discard bio. Other r10bio->master_bio record the first
1755 * r10bio. The first r10bio only release after all other r10bios finish.
1756 * The discard bio returns only first r10bio finishes
1757 */
1758 if (first_copy) {
1759 md_account_bio(mddev, &bio);
1760 r10_bio->master_bio = bio;
1761 set_bit(R10BIO_Discard, &r10_bio->state);
1762 first_copy = false;
1763 first_r10bio = r10_bio;
1764 } else
1765 r10_bio->master_bio = (struct bio *)first_r10bio;
1766
1767 /*
1768 * first select target devices under rcu_lock and
1769 * inc refcount on their rdev. Record them by setting
1770 * bios[x] to bio
1771 */
1772 rcu_read_lock();
1773 for (disk = 0; disk < geo->raid_disks; disk++) {
1774 struct md_rdev *rdev, *rrdev;
1775
1776 rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
1777 r10_bio->devs[disk].bio = NULL;
1778 r10_bio->devs[disk].repl_bio = NULL;
1779
1780 if (rdev && (test_bit(Faulty, &rdev->flags)))
1781 rdev = NULL;
1782 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1783 rrdev = NULL;
1784 if (!rdev && !rrdev)
1785 continue;
1786
1787 if (rdev) {
1788 r10_bio->devs[disk].bio = bio;
1789 atomic_inc(&rdev->nr_pending);
1790 }
1791 if (rrdev) {
1792 r10_bio->devs[disk].repl_bio = bio;
1793 atomic_inc(&rrdev->nr_pending);
1794 }
1795 }
1796 rcu_read_unlock();
1797
1798 atomic_set(&r10_bio->remaining, 1);
1799 for (disk = 0; disk < geo->raid_disks; disk++) {
1800 sector_t dev_start, dev_end;
1801 struct bio *mbio, *rbio = NULL;
1802
1803 /*
1804 * Now start to calculate the start and end address for each disk.
1805 * The space between dev_start and dev_end is the discard region.
1806 *
1807 * For dev_start, it needs to consider three conditions:
1808 * 1st, the disk is before start_disk, you can imagine the disk in
1809 * the next stripe. So the dev_start is the start address of next
1810 * stripe.
1811 * 2st, the disk is after start_disk, it means the disk is at the
1812 * same stripe of first disk
1813 * 3st, the first disk itself, we can use start_disk_offset directly
1814 */
1815 if (disk < start_disk_index)
1816 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1817 else if (disk > start_disk_index)
1818 dev_start = first_stripe_index * mddev->chunk_sectors;
1819 else
1820 dev_start = start_disk_offset;
1821
1822 if (disk < end_disk_index)
1823 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1824 else if (disk > end_disk_index)
1825 dev_end = last_stripe_index * mddev->chunk_sectors;
1826 else
1827 dev_end = end_disk_offset;
1828
1829 /*
1830 * It only handles discard bio which size is >= stripe size, so
1831 * dev_end > dev_start all the time.
1832 * It doesn't need to use rcu lock to get rdev here. We already
1833 * add rdev->nr_pending in the first loop.
1834 */
1835 if (r10_bio->devs[disk].bio) {
1836 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1837 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1838 &mddev->bio_set);
1839 mbio->bi_end_io = raid10_end_discard_request;
1840 mbio->bi_private = r10_bio;
1841 r10_bio->devs[disk].bio = mbio;
1842 r10_bio->devs[disk].devnum = disk;
1843 atomic_inc(&r10_bio->remaining);
1844 md_submit_discard_bio(mddev, rdev, mbio,
1845 dev_start + choose_data_offset(r10_bio, rdev),
1846 dev_end - dev_start);
1847 bio_endio(mbio);
1848 }
1849 if (r10_bio->devs[disk].repl_bio) {
1850 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1851 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1852 &mddev->bio_set);
1853 rbio->bi_end_io = raid10_end_discard_request;
1854 rbio->bi_private = r10_bio;
1855 r10_bio->devs[disk].repl_bio = rbio;
1856 r10_bio->devs[disk].devnum = disk;
1857 atomic_inc(&r10_bio->remaining);
1858 md_submit_discard_bio(mddev, rrdev, rbio,
1859 dev_start + choose_data_offset(r10_bio, rrdev),
1860 dev_end - dev_start);
1861 bio_endio(rbio);
1862 }
1863 }
1864
1865 if (!geo->far_offset && --far_copies) {
1866 first_stripe_index += geo->stride >> geo->chunk_shift;
1867 start_disk_offset += geo->stride;
1868 last_stripe_index += geo->stride >> geo->chunk_shift;
1869 end_disk_offset += geo->stride;
1870 atomic_inc(&first_r10bio->remaining);
1871 raid_end_discard_bio(r10_bio);
1872 wait_barrier(conf, false);
1873 goto retry_discard;
1874 }
1875
1876 raid_end_discard_bio(r10_bio);
1877
1878 return 0;
1879 out:
1880 allow_barrier(conf);
1881 return -EAGAIN;
1882 }
1883
raid10_make_request(struct mddev * mddev,struct bio * bio)1884 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1885 {
1886 struct r10conf *conf = mddev->private;
1887 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1888 int chunk_sects = chunk_mask + 1;
1889 int sectors = bio_sectors(bio);
1890
1891 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1892 && md_flush_request(mddev, bio))
1893 return true;
1894
1895 if (!md_write_start(mddev, bio))
1896 return false;
1897
1898 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1899 if (!raid10_handle_discard(mddev, bio))
1900 return true;
1901
1902 /*
1903 * If this request crosses a chunk boundary, we need to split
1904 * it.
1905 */
1906 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1907 sectors > chunk_sects
1908 && (conf->geo.near_copies < conf->geo.raid_disks
1909 || conf->prev.near_copies <
1910 conf->prev.raid_disks)))
1911 sectors = chunk_sects -
1912 (bio->bi_iter.bi_sector &
1913 (chunk_sects - 1));
1914 __make_request(mddev, bio, sectors);
1915
1916 /* In case raid10d snuck in to freeze_array */
1917 wake_up_barrier(conf);
1918 return true;
1919 }
1920
raid10_status(struct seq_file * seq,struct mddev * mddev)1921 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1922 {
1923 struct r10conf *conf = mddev->private;
1924 int i;
1925
1926 if (conf->geo.near_copies < conf->geo.raid_disks)
1927 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1928 if (conf->geo.near_copies > 1)
1929 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1930 if (conf->geo.far_copies > 1) {
1931 if (conf->geo.far_offset)
1932 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1933 else
1934 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1935 if (conf->geo.far_set_size != conf->geo.raid_disks)
1936 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1937 }
1938 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1939 conf->geo.raid_disks - mddev->degraded);
1940 rcu_read_lock();
1941 for (i = 0; i < conf->geo.raid_disks; i++) {
1942 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1943 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1944 }
1945 rcu_read_unlock();
1946 seq_printf(seq, "]");
1947 }
1948
1949 /* check if there are enough drives for
1950 * every block to appear on atleast one.
1951 * Don't consider the device numbered 'ignore'
1952 * as we might be about to remove it.
1953 */
_enough(struct r10conf * conf,int previous,int ignore)1954 static int _enough(struct r10conf *conf, int previous, int ignore)
1955 {
1956 int first = 0;
1957 int has_enough = 0;
1958 int disks, ncopies;
1959 if (previous) {
1960 disks = conf->prev.raid_disks;
1961 ncopies = conf->prev.near_copies;
1962 } else {
1963 disks = conf->geo.raid_disks;
1964 ncopies = conf->geo.near_copies;
1965 }
1966
1967 rcu_read_lock();
1968 do {
1969 int n = conf->copies;
1970 int cnt = 0;
1971 int this = first;
1972 while (n--) {
1973 struct md_rdev *rdev;
1974 if (this != ignore &&
1975 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1976 test_bit(In_sync, &rdev->flags))
1977 cnt++;
1978 this = (this+1) % disks;
1979 }
1980 if (cnt == 0)
1981 goto out;
1982 first = (first + ncopies) % disks;
1983 } while (first != 0);
1984 has_enough = 1;
1985 out:
1986 rcu_read_unlock();
1987 return has_enough;
1988 }
1989
enough(struct r10conf * conf,int ignore)1990 static int enough(struct r10conf *conf, int ignore)
1991 {
1992 /* when calling 'enough', both 'prev' and 'geo' must
1993 * be stable.
1994 * This is ensured if ->reconfig_mutex or ->device_lock
1995 * is held.
1996 */
1997 return _enough(conf, 0, ignore) &&
1998 _enough(conf, 1, ignore);
1999 }
2000
2001 /**
2002 * raid10_error() - RAID10 error handler.
2003 * @mddev: affected md device.
2004 * @rdev: member device to fail.
2005 *
2006 * The routine acknowledges &rdev failure and determines new @mddev state.
2007 * If it failed, then:
2008 * - &MD_BROKEN flag is set in &mddev->flags.
2009 * Otherwise, it must be degraded:
2010 * - recovery is interrupted.
2011 * - &mddev->degraded is bumped.
2012 *
2013 * @rdev is marked as &Faulty excluding case when array is failed and
2014 * &mddev->fail_last_dev is off.
2015 */
raid10_error(struct mddev * mddev,struct md_rdev * rdev)2016 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2017 {
2018 struct r10conf *conf = mddev->private;
2019 unsigned long flags;
2020
2021 spin_lock_irqsave(&conf->device_lock, flags);
2022
2023 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2024 set_bit(MD_BROKEN, &mddev->flags);
2025
2026 if (!mddev->fail_last_dev) {
2027 spin_unlock_irqrestore(&conf->device_lock, flags);
2028 return;
2029 }
2030 }
2031 if (test_and_clear_bit(In_sync, &rdev->flags))
2032 mddev->degraded++;
2033
2034 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2035 set_bit(Blocked, &rdev->flags);
2036 set_bit(Faulty, &rdev->flags);
2037 set_mask_bits(&mddev->sb_flags, 0,
2038 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2039 spin_unlock_irqrestore(&conf->device_lock, flags);
2040 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2041 "md/raid10:%s: Operation continuing on %d devices.\n",
2042 mdname(mddev), rdev->bdev,
2043 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2044 }
2045
print_conf(struct r10conf * conf)2046 static void print_conf(struct r10conf *conf)
2047 {
2048 int i;
2049 struct md_rdev *rdev;
2050
2051 pr_debug("RAID10 conf printout:\n");
2052 if (!conf) {
2053 pr_debug("(!conf)\n");
2054 return;
2055 }
2056 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2057 conf->geo.raid_disks);
2058
2059 /* This is only called with ->reconfix_mutex held, so
2060 * rcu protection of rdev is not needed */
2061 for (i = 0; i < conf->geo.raid_disks; i++) {
2062 rdev = conf->mirrors[i].rdev;
2063 if (rdev)
2064 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2065 i, !test_bit(In_sync, &rdev->flags),
2066 !test_bit(Faulty, &rdev->flags),
2067 rdev->bdev);
2068 }
2069 }
2070
close_sync(struct r10conf * conf)2071 static void close_sync(struct r10conf *conf)
2072 {
2073 wait_barrier(conf, false);
2074 allow_barrier(conf);
2075
2076 mempool_exit(&conf->r10buf_pool);
2077 }
2078
raid10_spare_active(struct mddev * mddev)2079 static int raid10_spare_active(struct mddev *mddev)
2080 {
2081 int i;
2082 struct r10conf *conf = mddev->private;
2083 struct raid10_info *tmp;
2084 int count = 0;
2085 unsigned long flags;
2086
2087 /*
2088 * Find all non-in_sync disks within the RAID10 configuration
2089 * and mark them in_sync
2090 */
2091 for (i = 0; i < conf->geo.raid_disks; i++) {
2092 tmp = conf->mirrors + i;
2093 if (tmp->replacement
2094 && tmp->replacement->recovery_offset == MaxSector
2095 && !test_bit(Faulty, &tmp->replacement->flags)
2096 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2097 /* Replacement has just become active */
2098 if (!tmp->rdev
2099 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2100 count++;
2101 if (tmp->rdev) {
2102 /* Replaced device not technically faulty,
2103 * but we need to be sure it gets removed
2104 * and never re-added.
2105 */
2106 set_bit(Faulty, &tmp->rdev->flags);
2107 sysfs_notify_dirent_safe(
2108 tmp->rdev->sysfs_state);
2109 }
2110 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2111 } else if (tmp->rdev
2112 && tmp->rdev->recovery_offset == MaxSector
2113 && !test_bit(Faulty, &tmp->rdev->flags)
2114 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2115 count++;
2116 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2117 }
2118 }
2119 spin_lock_irqsave(&conf->device_lock, flags);
2120 mddev->degraded -= count;
2121 spin_unlock_irqrestore(&conf->device_lock, flags);
2122
2123 print_conf(conf);
2124 return count;
2125 }
2126
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)2127 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2128 {
2129 struct r10conf *conf = mddev->private;
2130 int err = -EEXIST;
2131 int mirror, repl_slot = -1;
2132 int first = 0;
2133 int last = conf->geo.raid_disks - 1;
2134 struct raid10_info *p;
2135
2136 if (mddev->recovery_cp < MaxSector)
2137 /* only hot-add to in-sync arrays, as recovery is
2138 * very different from resync
2139 */
2140 return -EBUSY;
2141 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2142 return -EINVAL;
2143
2144 if (md_integrity_add_rdev(rdev, mddev))
2145 return -ENXIO;
2146
2147 if (rdev->raid_disk >= 0)
2148 first = last = rdev->raid_disk;
2149
2150 if (rdev->saved_raid_disk >= first &&
2151 rdev->saved_raid_disk < conf->geo.raid_disks &&
2152 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2153 mirror = rdev->saved_raid_disk;
2154 else
2155 mirror = first;
2156 for ( ; mirror <= last ; mirror++) {
2157 p = &conf->mirrors[mirror];
2158 if (p->recovery_disabled == mddev->recovery_disabled)
2159 continue;
2160 if (p->rdev) {
2161 if (test_bit(WantReplacement, &p->rdev->flags) &&
2162 p->replacement == NULL && repl_slot < 0)
2163 repl_slot = mirror;
2164 continue;
2165 }
2166
2167 if (mddev->gendisk)
2168 disk_stack_limits(mddev->gendisk, rdev->bdev,
2169 rdev->data_offset << 9);
2170
2171 p->head_position = 0;
2172 p->recovery_disabled = mddev->recovery_disabled - 1;
2173 rdev->raid_disk = mirror;
2174 err = 0;
2175 if (rdev->saved_raid_disk != mirror)
2176 conf->fullsync = 1;
2177 rcu_assign_pointer(p->rdev, rdev);
2178 break;
2179 }
2180
2181 if (err && repl_slot >= 0) {
2182 p = &conf->mirrors[repl_slot];
2183 clear_bit(In_sync, &rdev->flags);
2184 set_bit(Replacement, &rdev->flags);
2185 rdev->raid_disk = repl_slot;
2186 err = 0;
2187 if (mddev->gendisk)
2188 disk_stack_limits(mddev->gendisk, rdev->bdev,
2189 rdev->data_offset << 9);
2190 conf->fullsync = 1;
2191 rcu_assign_pointer(p->replacement, rdev);
2192 }
2193
2194 print_conf(conf);
2195 return err;
2196 }
2197
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)2198 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2199 {
2200 struct r10conf *conf = mddev->private;
2201 int err = 0;
2202 int number = rdev->raid_disk;
2203 struct md_rdev **rdevp;
2204 struct raid10_info *p;
2205
2206 print_conf(conf);
2207 if (unlikely(number >= mddev->raid_disks))
2208 return 0;
2209 p = conf->mirrors + number;
2210 if (rdev == p->rdev)
2211 rdevp = &p->rdev;
2212 else if (rdev == p->replacement)
2213 rdevp = &p->replacement;
2214 else
2215 return 0;
2216
2217 if (test_bit(In_sync, &rdev->flags) ||
2218 atomic_read(&rdev->nr_pending)) {
2219 err = -EBUSY;
2220 goto abort;
2221 }
2222 /* Only remove non-faulty devices if recovery
2223 * is not possible.
2224 */
2225 if (!test_bit(Faulty, &rdev->flags) &&
2226 mddev->recovery_disabled != p->recovery_disabled &&
2227 (!p->replacement || p->replacement == rdev) &&
2228 number < conf->geo.raid_disks &&
2229 enough(conf, -1)) {
2230 err = -EBUSY;
2231 goto abort;
2232 }
2233 *rdevp = NULL;
2234 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2235 synchronize_rcu();
2236 if (atomic_read(&rdev->nr_pending)) {
2237 /* lost the race, try later */
2238 err = -EBUSY;
2239 *rdevp = rdev;
2240 goto abort;
2241 }
2242 }
2243 if (p->replacement) {
2244 /* We must have just cleared 'rdev' */
2245 p->rdev = p->replacement;
2246 clear_bit(Replacement, &p->replacement->flags);
2247 smp_mb(); /* Make sure other CPUs may see both as identical
2248 * but will never see neither -- if they are careful.
2249 */
2250 p->replacement = NULL;
2251 }
2252
2253 clear_bit(WantReplacement, &rdev->flags);
2254 err = md_integrity_register(mddev);
2255
2256 abort:
2257
2258 print_conf(conf);
2259 return err;
2260 }
2261
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)2262 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2263 {
2264 struct r10conf *conf = r10_bio->mddev->private;
2265
2266 if (!bio->bi_status)
2267 set_bit(R10BIO_Uptodate, &r10_bio->state);
2268 else
2269 /* The write handler will notice the lack of
2270 * R10BIO_Uptodate and record any errors etc
2271 */
2272 atomic_add(r10_bio->sectors,
2273 &conf->mirrors[d].rdev->corrected_errors);
2274
2275 /* for reconstruct, we always reschedule after a read.
2276 * for resync, only after all reads
2277 */
2278 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2279 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2280 atomic_dec_and_test(&r10_bio->remaining)) {
2281 /* we have read all the blocks,
2282 * do the comparison in process context in raid10d
2283 */
2284 reschedule_retry(r10_bio);
2285 }
2286 }
2287
end_sync_read(struct bio * bio)2288 static void end_sync_read(struct bio *bio)
2289 {
2290 struct r10bio *r10_bio = get_resync_r10bio(bio);
2291 struct r10conf *conf = r10_bio->mddev->private;
2292 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2293
2294 __end_sync_read(r10_bio, bio, d);
2295 }
2296
end_reshape_read(struct bio * bio)2297 static void end_reshape_read(struct bio *bio)
2298 {
2299 /* reshape read bio isn't allocated from r10buf_pool */
2300 struct r10bio *r10_bio = bio->bi_private;
2301
2302 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2303 }
2304
end_sync_request(struct r10bio * r10_bio)2305 static void end_sync_request(struct r10bio *r10_bio)
2306 {
2307 struct mddev *mddev = r10_bio->mddev;
2308
2309 while (atomic_dec_and_test(&r10_bio->remaining)) {
2310 if (r10_bio->master_bio == NULL) {
2311 /* the primary of several recovery bios */
2312 sector_t s = r10_bio->sectors;
2313 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2314 test_bit(R10BIO_WriteError, &r10_bio->state))
2315 reschedule_retry(r10_bio);
2316 else
2317 put_buf(r10_bio);
2318 md_done_sync(mddev, s, 1);
2319 break;
2320 } else {
2321 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2322 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2323 test_bit(R10BIO_WriteError, &r10_bio->state))
2324 reschedule_retry(r10_bio);
2325 else
2326 put_buf(r10_bio);
2327 r10_bio = r10_bio2;
2328 }
2329 }
2330 }
2331
end_sync_write(struct bio * bio)2332 static void end_sync_write(struct bio *bio)
2333 {
2334 struct r10bio *r10_bio = get_resync_r10bio(bio);
2335 struct mddev *mddev = r10_bio->mddev;
2336 struct r10conf *conf = mddev->private;
2337 int d;
2338 sector_t first_bad;
2339 int bad_sectors;
2340 int slot;
2341 int repl;
2342 struct md_rdev *rdev = NULL;
2343
2344 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2345 if (repl)
2346 rdev = conf->mirrors[d].replacement;
2347 else
2348 rdev = conf->mirrors[d].rdev;
2349
2350 if (bio->bi_status) {
2351 if (repl)
2352 md_error(mddev, rdev);
2353 else {
2354 set_bit(WriteErrorSeen, &rdev->flags);
2355 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2356 set_bit(MD_RECOVERY_NEEDED,
2357 &rdev->mddev->recovery);
2358 set_bit(R10BIO_WriteError, &r10_bio->state);
2359 }
2360 } else if (is_badblock(rdev,
2361 r10_bio->devs[slot].addr,
2362 r10_bio->sectors,
2363 &first_bad, &bad_sectors))
2364 set_bit(R10BIO_MadeGood, &r10_bio->state);
2365
2366 rdev_dec_pending(rdev, mddev);
2367
2368 end_sync_request(r10_bio);
2369 }
2370
2371 /*
2372 * Note: sync and recover and handled very differently for raid10
2373 * This code is for resync.
2374 * For resync, we read through virtual addresses and read all blocks.
2375 * If there is any error, we schedule a write. The lowest numbered
2376 * drive is authoritative.
2377 * However requests come for physical address, so we need to map.
2378 * For every physical address there are raid_disks/copies virtual addresses,
2379 * which is always are least one, but is not necessarly an integer.
2380 * This means that a physical address can span multiple chunks, so we may
2381 * have to submit multiple io requests for a single sync request.
2382 */
2383 /*
2384 * We check if all blocks are in-sync and only write to blocks that
2385 * aren't in sync
2386 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2387 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2388 {
2389 struct r10conf *conf = mddev->private;
2390 int i, first;
2391 struct bio *tbio, *fbio;
2392 int vcnt;
2393 struct page **tpages, **fpages;
2394
2395 atomic_set(&r10_bio->remaining, 1);
2396
2397 /* find the first device with a block */
2398 for (i=0; i<conf->copies; i++)
2399 if (!r10_bio->devs[i].bio->bi_status)
2400 break;
2401
2402 if (i == conf->copies)
2403 goto done;
2404
2405 first = i;
2406 fbio = r10_bio->devs[i].bio;
2407 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2408 fbio->bi_iter.bi_idx = 0;
2409 fpages = get_resync_pages(fbio)->pages;
2410
2411 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2412 /* now find blocks with errors */
2413 for (i=0 ; i < conf->copies ; i++) {
2414 int j, d;
2415 struct md_rdev *rdev;
2416 struct resync_pages *rp;
2417
2418 tbio = r10_bio->devs[i].bio;
2419
2420 if (tbio->bi_end_io != end_sync_read)
2421 continue;
2422 if (i == first)
2423 continue;
2424
2425 tpages = get_resync_pages(tbio)->pages;
2426 d = r10_bio->devs[i].devnum;
2427 rdev = conf->mirrors[d].rdev;
2428 if (!r10_bio->devs[i].bio->bi_status) {
2429 /* We know that the bi_io_vec layout is the same for
2430 * both 'first' and 'i', so we just compare them.
2431 * All vec entries are PAGE_SIZE;
2432 */
2433 int sectors = r10_bio->sectors;
2434 for (j = 0; j < vcnt; j++) {
2435 int len = PAGE_SIZE;
2436 if (sectors < (len / 512))
2437 len = sectors * 512;
2438 if (memcmp(page_address(fpages[j]),
2439 page_address(tpages[j]),
2440 len))
2441 break;
2442 sectors -= len/512;
2443 }
2444 if (j == vcnt)
2445 continue;
2446 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2447 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2448 /* Don't fix anything. */
2449 continue;
2450 } else if (test_bit(FailFast, &rdev->flags)) {
2451 /* Just give up on this device */
2452 md_error(rdev->mddev, rdev);
2453 continue;
2454 }
2455 /* Ok, we need to write this bio, either to correct an
2456 * inconsistency or to correct an unreadable block.
2457 * First we need to fixup bv_offset, bv_len and
2458 * bi_vecs, as the read request might have corrupted these
2459 */
2460 rp = get_resync_pages(tbio);
2461 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2462
2463 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2464
2465 rp->raid_bio = r10_bio;
2466 tbio->bi_private = rp;
2467 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2468 tbio->bi_end_io = end_sync_write;
2469
2470 bio_copy_data(tbio, fbio);
2471
2472 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2473 atomic_inc(&r10_bio->remaining);
2474 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2475
2476 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2477 tbio->bi_opf |= MD_FAILFAST;
2478 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2479 submit_bio_noacct(tbio);
2480 }
2481
2482 /* Now write out to any replacement devices
2483 * that are active
2484 */
2485 for (i = 0; i < conf->copies; i++) {
2486 int d;
2487
2488 tbio = r10_bio->devs[i].repl_bio;
2489 if (!tbio || !tbio->bi_end_io)
2490 continue;
2491 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2492 && r10_bio->devs[i].bio != fbio)
2493 bio_copy_data(tbio, fbio);
2494 d = r10_bio->devs[i].devnum;
2495 atomic_inc(&r10_bio->remaining);
2496 md_sync_acct(conf->mirrors[d].replacement->bdev,
2497 bio_sectors(tbio));
2498 submit_bio_noacct(tbio);
2499 }
2500
2501 done:
2502 if (atomic_dec_and_test(&r10_bio->remaining)) {
2503 md_done_sync(mddev, r10_bio->sectors, 1);
2504 put_buf(r10_bio);
2505 }
2506 }
2507
2508 /*
2509 * Now for the recovery code.
2510 * Recovery happens across physical sectors.
2511 * We recover all non-is_sync drives by finding the virtual address of
2512 * each, and then choose a working drive that also has that virt address.
2513 * There is a separate r10_bio for each non-in_sync drive.
2514 * Only the first two slots are in use. The first for reading,
2515 * The second for writing.
2516 *
2517 */
fix_recovery_read_error(struct r10bio * r10_bio)2518 static void fix_recovery_read_error(struct r10bio *r10_bio)
2519 {
2520 /* We got a read error during recovery.
2521 * We repeat the read in smaller page-sized sections.
2522 * If a read succeeds, write it to the new device or record
2523 * a bad block if we cannot.
2524 * If a read fails, record a bad block on both old and
2525 * new devices.
2526 */
2527 struct mddev *mddev = r10_bio->mddev;
2528 struct r10conf *conf = mddev->private;
2529 struct bio *bio = r10_bio->devs[0].bio;
2530 sector_t sect = 0;
2531 int sectors = r10_bio->sectors;
2532 int idx = 0;
2533 int dr = r10_bio->devs[0].devnum;
2534 int dw = r10_bio->devs[1].devnum;
2535 struct page **pages = get_resync_pages(bio)->pages;
2536
2537 while (sectors) {
2538 int s = sectors;
2539 struct md_rdev *rdev;
2540 sector_t addr;
2541 int ok;
2542
2543 if (s > (PAGE_SIZE>>9))
2544 s = PAGE_SIZE >> 9;
2545
2546 rdev = conf->mirrors[dr].rdev;
2547 addr = r10_bio->devs[0].addr + sect,
2548 ok = sync_page_io(rdev,
2549 addr,
2550 s << 9,
2551 pages[idx],
2552 REQ_OP_READ, false);
2553 if (ok) {
2554 rdev = conf->mirrors[dw].rdev;
2555 addr = r10_bio->devs[1].addr + sect;
2556 ok = sync_page_io(rdev,
2557 addr,
2558 s << 9,
2559 pages[idx],
2560 REQ_OP_WRITE, false);
2561 if (!ok) {
2562 set_bit(WriteErrorSeen, &rdev->flags);
2563 if (!test_and_set_bit(WantReplacement,
2564 &rdev->flags))
2565 set_bit(MD_RECOVERY_NEEDED,
2566 &rdev->mddev->recovery);
2567 }
2568 }
2569 if (!ok) {
2570 /* We don't worry if we cannot set a bad block -
2571 * it really is bad so there is no loss in not
2572 * recording it yet
2573 */
2574 rdev_set_badblocks(rdev, addr, s, 0);
2575
2576 if (rdev != conf->mirrors[dw].rdev) {
2577 /* need bad block on destination too */
2578 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2579 addr = r10_bio->devs[1].addr + sect;
2580 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2581 if (!ok) {
2582 /* just abort the recovery */
2583 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2584 mdname(mddev));
2585
2586 conf->mirrors[dw].recovery_disabled
2587 = mddev->recovery_disabled;
2588 set_bit(MD_RECOVERY_INTR,
2589 &mddev->recovery);
2590 break;
2591 }
2592 }
2593 }
2594
2595 sectors -= s;
2596 sect += s;
2597 idx++;
2598 }
2599 }
2600
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2601 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2602 {
2603 struct r10conf *conf = mddev->private;
2604 int d;
2605 struct bio *wbio = r10_bio->devs[1].bio;
2606 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2607
2608 /* Need to test wbio2->bi_end_io before we call
2609 * submit_bio_noacct as if the former is NULL,
2610 * the latter is free to free wbio2.
2611 */
2612 if (wbio2 && !wbio2->bi_end_io)
2613 wbio2 = NULL;
2614
2615 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2616 fix_recovery_read_error(r10_bio);
2617 if (wbio->bi_end_io)
2618 end_sync_request(r10_bio);
2619 if (wbio2)
2620 end_sync_request(r10_bio);
2621 return;
2622 }
2623
2624 /*
2625 * share the pages with the first bio
2626 * and submit the write request
2627 */
2628 d = r10_bio->devs[1].devnum;
2629 if (wbio->bi_end_io) {
2630 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2631 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2632 submit_bio_noacct(wbio);
2633 }
2634 if (wbio2) {
2635 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2636 md_sync_acct(conf->mirrors[d].replacement->bdev,
2637 bio_sectors(wbio2));
2638 submit_bio_noacct(wbio2);
2639 }
2640 }
2641
2642 /*
2643 * Used by fix_read_error() to decay the per rdev read_errors.
2644 * We halve the read error count for every hour that has elapsed
2645 * since the last recorded read error.
2646 *
2647 */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2648 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2649 {
2650 long cur_time_mon;
2651 unsigned long hours_since_last;
2652 unsigned int read_errors = atomic_read(&rdev->read_errors);
2653
2654 cur_time_mon = ktime_get_seconds();
2655
2656 if (rdev->last_read_error == 0) {
2657 /* first time we've seen a read error */
2658 rdev->last_read_error = cur_time_mon;
2659 return;
2660 }
2661
2662 hours_since_last = (long)(cur_time_mon -
2663 rdev->last_read_error) / 3600;
2664
2665 rdev->last_read_error = cur_time_mon;
2666
2667 /*
2668 * if hours_since_last is > the number of bits in read_errors
2669 * just set read errors to 0. We do this to avoid
2670 * overflowing the shift of read_errors by hours_since_last.
2671 */
2672 if (hours_since_last >= 8 * sizeof(read_errors))
2673 atomic_set(&rdev->read_errors, 0);
2674 else
2675 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2676 }
2677
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,enum req_op op)2678 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2679 int sectors, struct page *page, enum req_op op)
2680 {
2681 sector_t first_bad;
2682 int bad_sectors;
2683
2684 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2685 && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2686 return -1;
2687 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2688 /* success */
2689 return 1;
2690 if (op == REQ_OP_WRITE) {
2691 set_bit(WriteErrorSeen, &rdev->flags);
2692 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2693 set_bit(MD_RECOVERY_NEEDED,
2694 &rdev->mddev->recovery);
2695 }
2696 /* need to record an error - either for the block or the device */
2697 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2698 md_error(rdev->mddev, rdev);
2699 return 0;
2700 }
2701
2702 /*
2703 * This is a kernel thread which:
2704 *
2705 * 1. Retries failed read operations on working mirrors.
2706 * 2. Updates the raid superblock when problems encounter.
2707 * 3. Performs writes following reads for array synchronising.
2708 */
2709
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2710 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2711 {
2712 int sect = 0; /* Offset from r10_bio->sector */
2713 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2714 struct md_rdev *rdev;
2715 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2716 int d = r10_bio->devs[slot].devnum;
2717
2718 /* still own a reference to this rdev, so it cannot
2719 * have been cleared recently.
2720 */
2721 rdev = conf->mirrors[d].rdev;
2722
2723 if (test_bit(Faulty, &rdev->flags))
2724 /* drive has already been failed, just ignore any
2725 more fix_read_error() attempts */
2726 return;
2727
2728 check_decay_read_errors(mddev, rdev);
2729 atomic_inc(&rdev->read_errors);
2730 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2731 pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2732 mdname(mddev), rdev->bdev,
2733 atomic_read(&rdev->read_errors), max_read_errors);
2734 pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2735 mdname(mddev), rdev->bdev);
2736 md_error(mddev, rdev);
2737 r10_bio->devs[slot].bio = IO_BLOCKED;
2738 return;
2739 }
2740
2741 while(sectors) {
2742 int s = sectors;
2743 int sl = slot;
2744 int success = 0;
2745 int start;
2746
2747 if (s > (PAGE_SIZE>>9))
2748 s = PAGE_SIZE >> 9;
2749
2750 rcu_read_lock();
2751 do {
2752 sector_t first_bad;
2753 int bad_sectors;
2754
2755 d = r10_bio->devs[sl].devnum;
2756 rdev = rcu_dereference(conf->mirrors[d].rdev);
2757 if (rdev &&
2758 test_bit(In_sync, &rdev->flags) &&
2759 !test_bit(Faulty, &rdev->flags) &&
2760 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2761 &first_bad, &bad_sectors) == 0) {
2762 atomic_inc(&rdev->nr_pending);
2763 rcu_read_unlock();
2764 success = sync_page_io(rdev,
2765 r10_bio->devs[sl].addr +
2766 sect,
2767 s<<9,
2768 conf->tmppage,
2769 REQ_OP_READ, false);
2770 rdev_dec_pending(rdev, mddev);
2771 rcu_read_lock();
2772 if (success)
2773 break;
2774 }
2775 sl++;
2776 if (sl == conf->copies)
2777 sl = 0;
2778 } while (sl != slot);
2779 rcu_read_unlock();
2780
2781 if (!success) {
2782 /* Cannot read from anywhere, just mark the block
2783 * as bad on the first device to discourage future
2784 * reads.
2785 */
2786 int dn = r10_bio->devs[slot].devnum;
2787 rdev = conf->mirrors[dn].rdev;
2788
2789 if (!rdev_set_badblocks(
2790 rdev,
2791 r10_bio->devs[slot].addr
2792 + sect,
2793 s, 0)) {
2794 md_error(mddev, rdev);
2795 r10_bio->devs[slot].bio
2796 = IO_BLOCKED;
2797 }
2798 break;
2799 }
2800
2801 start = sl;
2802 /* write it back and re-read */
2803 rcu_read_lock();
2804 while (sl != slot) {
2805 if (sl==0)
2806 sl = conf->copies;
2807 sl--;
2808 d = r10_bio->devs[sl].devnum;
2809 rdev = rcu_dereference(conf->mirrors[d].rdev);
2810 if (!rdev ||
2811 test_bit(Faulty, &rdev->flags) ||
2812 !test_bit(In_sync, &rdev->flags))
2813 continue;
2814
2815 atomic_inc(&rdev->nr_pending);
2816 rcu_read_unlock();
2817 if (r10_sync_page_io(rdev,
2818 r10_bio->devs[sl].addr +
2819 sect,
2820 s, conf->tmppage, REQ_OP_WRITE)
2821 == 0) {
2822 /* Well, this device is dead */
2823 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2824 mdname(mddev), s,
2825 (unsigned long long)(
2826 sect +
2827 choose_data_offset(r10_bio,
2828 rdev)),
2829 rdev->bdev);
2830 pr_notice("md/raid10:%s: %pg: failing drive\n",
2831 mdname(mddev),
2832 rdev->bdev);
2833 }
2834 rdev_dec_pending(rdev, mddev);
2835 rcu_read_lock();
2836 }
2837 sl = start;
2838 while (sl != slot) {
2839 if (sl==0)
2840 sl = conf->copies;
2841 sl--;
2842 d = r10_bio->devs[sl].devnum;
2843 rdev = rcu_dereference(conf->mirrors[d].rdev);
2844 if (!rdev ||
2845 test_bit(Faulty, &rdev->flags) ||
2846 !test_bit(In_sync, &rdev->flags))
2847 continue;
2848
2849 atomic_inc(&rdev->nr_pending);
2850 rcu_read_unlock();
2851 switch (r10_sync_page_io(rdev,
2852 r10_bio->devs[sl].addr +
2853 sect,
2854 s, conf->tmppage, REQ_OP_READ)) {
2855 case 0:
2856 /* Well, this device is dead */
2857 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2858 mdname(mddev), s,
2859 (unsigned long long)(
2860 sect +
2861 choose_data_offset(r10_bio, rdev)),
2862 rdev->bdev);
2863 pr_notice("md/raid10:%s: %pg: failing drive\n",
2864 mdname(mddev),
2865 rdev->bdev);
2866 break;
2867 case 1:
2868 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2869 mdname(mddev), s,
2870 (unsigned long long)(
2871 sect +
2872 choose_data_offset(r10_bio, rdev)),
2873 rdev->bdev);
2874 atomic_add(s, &rdev->corrected_errors);
2875 }
2876
2877 rdev_dec_pending(rdev, mddev);
2878 rcu_read_lock();
2879 }
2880 rcu_read_unlock();
2881
2882 sectors -= s;
2883 sect += s;
2884 }
2885 }
2886
narrow_write_error(struct r10bio * r10_bio,int i)2887 static int narrow_write_error(struct r10bio *r10_bio, int i)
2888 {
2889 struct bio *bio = r10_bio->master_bio;
2890 struct mddev *mddev = r10_bio->mddev;
2891 struct r10conf *conf = mddev->private;
2892 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2893 /* bio has the data to be written to slot 'i' where
2894 * we just recently had a write error.
2895 * We repeatedly clone the bio and trim down to one block,
2896 * then try the write. Where the write fails we record
2897 * a bad block.
2898 * It is conceivable that the bio doesn't exactly align with
2899 * blocks. We must handle this.
2900 *
2901 * We currently own a reference to the rdev.
2902 */
2903
2904 int block_sectors;
2905 sector_t sector;
2906 int sectors;
2907 int sect_to_write = r10_bio->sectors;
2908 int ok = 1;
2909
2910 if (rdev->badblocks.shift < 0)
2911 return 0;
2912
2913 block_sectors = roundup(1 << rdev->badblocks.shift,
2914 bdev_logical_block_size(rdev->bdev) >> 9);
2915 sector = r10_bio->sector;
2916 sectors = ((r10_bio->sector + block_sectors)
2917 & ~(sector_t)(block_sectors - 1))
2918 - sector;
2919
2920 while (sect_to_write) {
2921 struct bio *wbio;
2922 sector_t wsector;
2923 if (sectors > sect_to_write)
2924 sectors = sect_to_write;
2925 /* Write at 'sector' for 'sectors' */
2926 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2927 &mddev->bio_set);
2928 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2929 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2930 wbio->bi_iter.bi_sector = wsector +
2931 choose_data_offset(r10_bio, rdev);
2932 wbio->bi_opf = REQ_OP_WRITE;
2933
2934 if (submit_bio_wait(wbio) < 0)
2935 /* Failure! */
2936 ok = rdev_set_badblocks(rdev, wsector,
2937 sectors, 0)
2938 && ok;
2939
2940 bio_put(wbio);
2941 sect_to_write -= sectors;
2942 sector += sectors;
2943 sectors = block_sectors;
2944 }
2945 return ok;
2946 }
2947
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2948 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2949 {
2950 int slot = r10_bio->read_slot;
2951 struct bio *bio;
2952 struct r10conf *conf = mddev->private;
2953 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2954
2955 /* we got a read error. Maybe the drive is bad. Maybe just
2956 * the block and we can fix it.
2957 * We freeze all other IO, and try reading the block from
2958 * other devices. When we find one, we re-write
2959 * and check it that fixes the read error.
2960 * This is all done synchronously while the array is
2961 * frozen.
2962 */
2963 bio = r10_bio->devs[slot].bio;
2964 bio_put(bio);
2965 r10_bio->devs[slot].bio = NULL;
2966
2967 if (mddev->ro)
2968 r10_bio->devs[slot].bio = IO_BLOCKED;
2969 else if (!test_bit(FailFast, &rdev->flags)) {
2970 freeze_array(conf, 1);
2971 fix_read_error(conf, mddev, r10_bio);
2972 unfreeze_array(conf);
2973 } else
2974 md_error(mddev, rdev);
2975
2976 rdev_dec_pending(rdev, mddev);
2977 r10_bio->state = 0;
2978 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2979 /*
2980 * allow_barrier after re-submit to ensure no sync io
2981 * can be issued while regular io pending.
2982 */
2983 allow_barrier(conf);
2984 }
2985
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2986 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2987 {
2988 /* Some sort of write request has finished and it
2989 * succeeded in writing where we thought there was a
2990 * bad block. So forget the bad block.
2991 * Or possibly if failed and we need to record
2992 * a bad block.
2993 */
2994 int m;
2995 struct md_rdev *rdev;
2996
2997 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2998 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2999 for (m = 0; m < conf->copies; m++) {
3000 int dev = r10_bio->devs[m].devnum;
3001 rdev = conf->mirrors[dev].rdev;
3002 if (r10_bio->devs[m].bio == NULL ||
3003 r10_bio->devs[m].bio->bi_end_io == NULL)
3004 continue;
3005 if (!r10_bio->devs[m].bio->bi_status) {
3006 rdev_clear_badblocks(
3007 rdev,
3008 r10_bio->devs[m].addr,
3009 r10_bio->sectors, 0);
3010 } else {
3011 if (!rdev_set_badblocks(
3012 rdev,
3013 r10_bio->devs[m].addr,
3014 r10_bio->sectors, 0))
3015 md_error(conf->mddev, rdev);
3016 }
3017 rdev = conf->mirrors[dev].replacement;
3018 if (r10_bio->devs[m].repl_bio == NULL ||
3019 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3020 continue;
3021
3022 if (!r10_bio->devs[m].repl_bio->bi_status) {
3023 rdev_clear_badblocks(
3024 rdev,
3025 r10_bio->devs[m].addr,
3026 r10_bio->sectors, 0);
3027 } else {
3028 if (!rdev_set_badblocks(
3029 rdev,
3030 r10_bio->devs[m].addr,
3031 r10_bio->sectors, 0))
3032 md_error(conf->mddev, rdev);
3033 }
3034 }
3035 put_buf(r10_bio);
3036 } else {
3037 bool fail = false;
3038 for (m = 0; m < conf->copies; m++) {
3039 int dev = r10_bio->devs[m].devnum;
3040 struct bio *bio = r10_bio->devs[m].bio;
3041 rdev = conf->mirrors[dev].rdev;
3042 if (bio == IO_MADE_GOOD) {
3043 rdev_clear_badblocks(
3044 rdev,
3045 r10_bio->devs[m].addr,
3046 r10_bio->sectors, 0);
3047 rdev_dec_pending(rdev, conf->mddev);
3048 } else if (bio != NULL && bio->bi_status) {
3049 fail = true;
3050 if (!narrow_write_error(r10_bio, m))
3051 md_error(conf->mddev, rdev);
3052 rdev_dec_pending(rdev, conf->mddev);
3053 }
3054 bio = r10_bio->devs[m].repl_bio;
3055 rdev = conf->mirrors[dev].replacement;
3056 if (rdev && bio == IO_MADE_GOOD) {
3057 rdev_clear_badblocks(
3058 rdev,
3059 r10_bio->devs[m].addr,
3060 r10_bio->sectors, 0);
3061 rdev_dec_pending(rdev, conf->mddev);
3062 }
3063 }
3064 if (fail) {
3065 spin_lock_irq(&conf->device_lock);
3066 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3067 conf->nr_queued++;
3068 spin_unlock_irq(&conf->device_lock);
3069 /*
3070 * In case freeze_array() is waiting for condition
3071 * nr_pending == nr_queued + extra to be true.
3072 */
3073 wake_up(&conf->wait_barrier);
3074 md_wakeup_thread(conf->mddev->thread);
3075 } else {
3076 if (test_bit(R10BIO_WriteError,
3077 &r10_bio->state))
3078 close_write(r10_bio);
3079 raid_end_bio_io(r10_bio);
3080 }
3081 }
3082 }
3083
raid10d(struct md_thread * thread)3084 static void raid10d(struct md_thread *thread)
3085 {
3086 struct mddev *mddev = thread->mddev;
3087 struct r10bio *r10_bio;
3088 unsigned long flags;
3089 struct r10conf *conf = mddev->private;
3090 struct list_head *head = &conf->retry_list;
3091 struct blk_plug plug;
3092
3093 md_check_recovery(mddev);
3094
3095 if (!list_empty_careful(&conf->bio_end_io_list) &&
3096 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3097 LIST_HEAD(tmp);
3098 spin_lock_irqsave(&conf->device_lock, flags);
3099 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3100 while (!list_empty(&conf->bio_end_io_list)) {
3101 list_move(conf->bio_end_io_list.prev, &tmp);
3102 conf->nr_queued--;
3103 }
3104 }
3105 spin_unlock_irqrestore(&conf->device_lock, flags);
3106 while (!list_empty(&tmp)) {
3107 r10_bio = list_first_entry(&tmp, struct r10bio,
3108 retry_list);
3109 list_del(&r10_bio->retry_list);
3110
3111 if (test_bit(R10BIO_WriteError,
3112 &r10_bio->state))
3113 close_write(r10_bio);
3114 raid_end_bio_io(r10_bio);
3115 }
3116 }
3117
3118 blk_start_plug(&plug);
3119 for (;;) {
3120
3121 flush_pending_writes(conf);
3122
3123 spin_lock_irqsave(&conf->device_lock, flags);
3124 if (list_empty(head)) {
3125 spin_unlock_irqrestore(&conf->device_lock, flags);
3126 break;
3127 }
3128 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3129 list_del(head->prev);
3130 conf->nr_queued--;
3131 spin_unlock_irqrestore(&conf->device_lock, flags);
3132
3133 mddev = r10_bio->mddev;
3134 conf = mddev->private;
3135 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3136 test_bit(R10BIO_WriteError, &r10_bio->state))
3137 handle_write_completed(conf, r10_bio);
3138 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3139 reshape_request_write(mddev, r10_bio);
3140 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3141 sync_request_write(mddev, r10_bio);
3142 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3143 recovery_request_write(mddev, r10_bio);
3144 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3145 handle_read_error(mddev, r10_bio);
3146 else
3147 WARN_ON_ONCE(1);
3148
3149 cond_resched();
3150 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3151 md_check_recovery(mddev);
3152 }
3153 blk_finish_plug(&plug);
3154 }
3155
init_resync(struct r10conf * conf)3156 static int init_resync(struct r10conf *conf)
3157 {
3158 int ret, buffs, i;
3159
3160 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3161 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3162 conf->have_replacement = 0;
3163 for (i = 0; i < conf->geo.raid_disks; i++)
3164 if (conf->mirrors[i].replacement)
3165 conf->have_replacement = 1;
3166 ret = mempool_init(&conf->r10buf_pool, buffs,
3167 r10buf_pool_alloc, r10buf_pool_free, conf);
3168 if (ret)
3169 return ret;
3170 conf->next_resync = 0;
3171 return 0;
3172 }
3173
raid10_alloc_init_r10buf(struct r10conf * conf)3174 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3175 {
3176 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3177 struct rsync_pages *rp;
3178 struct bio *bio;
3179 int nalloc;
3180 int i;
3181
3182 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3183 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3184 nalloc = conf->copies; /* resync */
3185 else
3186 nalloc = 2; /* recovery */
3187
3188 for (i = 0; i < nalloc; i++) {
3189 bio = r10bio->devs[i].bio;
3190 rp = bio->bi_private;
3191 bio_reset(bio, NULL, 0);
3192 bio->bi_private = rp;
3193 bio = r10bio->devs[i].repl_bio;
3194 if (bio) {
3195 rp = bio->bi_private;
3196 bio_reset(bio, NULL, 0);
3197 bio->bi_private = rp;
3198 }
3199 }
3200 return r10bio;
3201 }
3202
3203 /*
3204 * Set cluster_sync_high since we need other nodes to add the
3205 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3206 */
raid10_set_cluster_sync_high(struct r10conf * conf)3207 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3208 {
3209 sector_t window_size;
3210 int extra_chunk, chunks;
3211
3212 /*
3213 * First, here we define "stripe" as a unit which across
3214 * all member devices one time, so we get chunks by use
3215 * raid_disks / near_copies. Otherwise, if near_copies is
3216 * close to raid_disks, then resync window could increases
3217 * linearly with the increase of raid_disks, which means
3218 * we will suspend a really large IO window while it is not
3219 * necessary. If raid_disks is not divisible by near_copies,
3220 * an extra chunk is needed to ensure the whole "stripe" is
3221 * covered.
3222 */
3223
3224 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3225 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3226 extra_chunk = 0;
3227 else
3228 extra_chunk = 1;
3229 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3230
3231 /*
3232 * At least use a 32M window to align with raid1's resync window
3233 */
3234 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3235 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3236
3237 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3238 }
3239
3240 /*
3241 * perform a "sync" on one "block"
3242 *
3243 * We need to make sure that no normal I/O request - particularly write
3244 * requests - conflict with active sync requests.
3245 *
3246 * This is achieved by tracking pending requests and a 'barrier' concept
3247 * that can be installed to exclude normal IO requests.
3248 *
3249 * Resync and recovery are handled very differently.
3250 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3251 *
3252 * For resync, we iterate over virtual addresses, read all copies,
3253 * and update if there are differences. If only one copy is live,
3254 * skip it.
3255 * For recovery, we iterate over physical addresses, read a good
3256 * value for each non-in_sync drive, and over-write.
3257 *
3258 * So, for recovery we may have several outstanding complex requests for a
3259 * given address, one for each out-of-sync device. We model this by allocating
3260 * a number of r10_bio structures, one for each out-of-sync device.
3261 * As we setup these structures, we collect all bio's together into a list
3262 * which we then process collectively to add pages, and then process again
3263 * to pass to submit_bio_noacct.
3264 *
3265 * The r10_bio structures are linked using a borrowed master_bio pointer.
3266 * This link is counted in ->remaining. When the r10_bio that points to NULL
3267 * has its remaining count decremented to 0, the whole complex operation
3268 * is complete.
3269 *
3270 */
3271
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)3272 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3273 int *skipped)
3274 {
3275 struct r10conf *conf = mddev->private;
3276 struct r10bio *r10_bio;
3277 struct bio *biolist = NULL, *bio;
3278 sector_t max_sector, nr_sectors;
3279 int i;
3280 int max_sync;
3281 sector_t sync_blocks;
3282 sector_t sectors_skipped = 0;
3283 int chunks_skipped = 0;
3284 sector_t chunk_mask = conf->geo.chunk_mask;
3285 int page_idx = 0;
3286 int error_disk = -1;
3287
3288 /*
3289 * Allow skipping a full rebuild for incremental assembly
3290 * of a clean array, like RAID1 does.
3291 */
3292 if (mddev->bitmap == NULL &&
3293 mddev->recovery_cp == MaxSector &&
3294 mddev->reshape_position == MaxSector &&
3295 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3296 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3297 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3298 conf->fullsync == 0) {
3299 *skipped = 1;
3300 return mddev->dev_sectors - sector_nr;
3301 }
3302
3303 if (!mempool_initialized(&conf->r10buf_pool))
3304 if (init_resync(conf))
3305 return 0;
3306
3307 skipped:
3308 max_sector = mddev->dev_sectors;
3309 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3310 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3311 max_sector = mddev->resync_max_sectors;
3312 if (sector_nr >= max_sector) {
3313 conf->cluster_sync_low = 0;
3314 conf->cluster_sync_high = 0;
3315
3316 /* If we aborted, we need to abort the
3317 * sync on the 'current' bitmap chucks (there can
3318 * be several when recovering multiple devices).
3319 * as we may have started syncing it but not finished.
3320 * We can find the current address in
3321 * mddev->curr_resync, but for recovery,
3322 * we need to convert that to several
3323 * virtual addresses.
3324 */
3325 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3326 end_reshape(conf);
3327 close_sync(conf);
3328 return 0;
3329 }
3330
3331 if (mddev->curr_resync < max_sector) { /* aborted */
3332 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3333 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3334 &sync_blocks, 1);
3335 else for (i = 0; i < conf->geo.raid_disks; i++) {
3336 sector_t sect =
3337 raid10_find_virt(conf, mddev->curr_resync, i);
3338 md_bitmap_end_sync(mddev->bitmap, sect,
3339 &sync_blocks, 1);
3340 }
3341 } else {
3342 /* completed sync */
3343 if ((!mddev->bitmap || conf->fullsync)
3344 && conf->have_replacement
3345 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3346 /* Completed a full sync so the replacements
3347 * are now fully recovered.
3348 */
3349 rcu_read_lock();
3350 for (i = 0; i < conf->geo.raid_disks; i++) {
3351 struct md_rdev *rdev =
3352 rcu_dereference(conf->mirrors[i].replacement);
3353 if (rdev)
3354 rdev->recovery_offset = MaxSector;
3355 }
3356 rcu_read_unlock();
3357 }
3358 conf->fullsync = 0;
3359 }
3360 md_bitmap_close_sync(mddev->bitmap);
3361 close_sync(conf);
3362 *skipped = 1;
3363 return sectors_skipped;
3364 }
3365
3366 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3367 return reshape_request(mddev, sector_nr, skipped);
3368
3369 if (chunks_skipped >= conf->geo.raid_disks) {
3370 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3371 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3372 if (error_disk >= 0 &&
3373 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3374 /*
3375 * recovery fails, set mirrors.recovery_disabled,
3376 * device shouldn't be added to there.
3377 */
3378 conf->mirrors[error_disk].recovery_disabled =
3379 mddev->recovery_disabled;
3380 return 0;
3381 }
3382 /*
3383 * if there has been nothing to do on any drive,
3384 * then there is nothing to do at all.
3385 */
3386 *skipped = 1;
3387 return (max_sector - sector_nr) + sectors_skipped;
3388 }
3389
3390 if (max_sector > mddev->resync_max)
3391 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3392
3393 /* make sure whole request will fit in a chunk - if chunks
3394 * are meaningful
3395 */
3396 if (conf->geo.near_copies < conf->geo.raid_disks &&
3397 max_sector > (sector_nr | chunk_mask))
3398 max_sector = (sector_nr | chunk_mask) + 1;
3399
3400 /*
3401 * If there is non-resync activity waiting for a turn, then let it
3402 * though before starting on this new sync request.
3403 */
3404 if (conf->nr_waiting)
3405 schedule_timeout_uninterruptible(1);
3406
3407 /* Again, very different code for resync and recovery.
3408 * Both must result in an r10bio with a list of bios that
3409 * have bi_end_io, bi_sector, bi_bdev set,
3410 * and bi_private set to the r10bio.
3411 * For recovery, we may actually create several r10bios
3412 * with 2 bios in each, that correspond to the bios in the main one.
3413 * In this case, the subordinate r10bios link back through a
3414 * borrowed master_bio pointer, and the counter in the master
3415 * includes a ref from each subordinate.
3416 */
3417 /* First, we decide what to do and set ->bi_end_io
3418 * To end_sync_read if we want to read, and
3419 * end_sync_write if we will want to write.
3420 */
3421
3422 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3423 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3424 /* recovery... the complicated one */
3425 int j;
3426 r10_bio = NULL;
3427
3428 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3429 int still_degraded;
3430 struct r10bio *rb2;
3431 sector_t sect;
3432 int must_sync;
3433 int any_working;
3434 struct raid10_info *mirror = &conf->mirrors[i];
3435 struct md_rdev *mrdev, *mreplace;
3436
3437 rcu_read_lock();
3438 mrdev = rcu_dereference(mirror->rdev);
3439 mreplace = rcu_dereference(mirror->replacement);
3440
3441 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3442 test_bit(In_sync, &mrdev->flags)))
3443 mrdev = NULL;
3444 if (mreplace && test_bit(Faulty, &mreplace->flags))
3445 mreplace = NULL;
3446
3447 if (!mrdev && !mreplace) {
3448 rcu_read_unlock();
3449 continue;
3450 }
3451
3452 still_degraded = 0;
3453 /* want to reconstruct this device */
3454 rb2 = r10_bio;
3455 sect = raid10_find_virt(conf, sector_nr, i);
3456 if (sect >= mddev->resync_max_sectors) {
3457 /* last stripe is not complete - don't
3458 * try to recover this sector.
3459 */
3460 rcu_read_unlock();
3461 continue;
3462 }
3463 /* Unless we are doing a full sync, or a replacement
3464 * we only need to recover the block if it is set in
3465 * the bitmap
3466 */
3467 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3468 &sync_blocks, 1);
3469 if (sync_blocks < max_sync)
3470 max_sync = sync_blocks;
3471 if (!must_sync &&
3472 mreplace == NULL &&
3473 !conf->fullsync) {
3474 /* yep, skip the sync_blocks here, but don't assume
3475 * that there will never be anything to do here
3476 */
3477 chunks_skipped = -1;
3478 rcu_read_unlock();
3479 continue;
3480 }
3481 if (mrdev)
3482 atomic_inc(&mrdev->nr_pending);
3483 if (mreplace)
3484 atomic_inc(&mreplace->nr_pending);
3485 rcu_read_unlock();
3486
3487 r10_bio = raid10_alloc_init_r10buf(conf);
3488 r10_bio->state = 0;
3489 raise_barrier(conf, rb2 != NULL);
3490 atomic_set(&r10_bio->remaining, 0);
3491
3492 r10_bio->master_bio = (struct bio*)rb2;
3493 if (rb2)
3494 atomic_inc(&rb2->remaining);
3495 r10_bio->mddev = mddev;
3496 set_bit(R10BIO_IsRecover, &r10_bio->state);
3497 r10_bio->sector = sect;
3498
3499 raid10_find_phys(conf, r10_bio);
3500
3501 /* Need to check if the array will still be
3502 * degraded
3503 */
3504 rcu_read_lock();
3505 for (j = 0; j < conf->geo.raid_disks; j++) {
3506 struct md_rdev *rdev = rcu_dereference(
3507 conf->mirrors[j].rdev);
3508 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3509 still_degraded = 1;
3510 break;
3511 }
3512 }
3513
3514 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3515 &sync_blocks, still_degraded);
3516
3517 any_working = 0;
3518 for (j=0; j<conf->copies;j++) {
3519 int k;
3520 int d = r10_bio->devs[j].devnum;
3521 sector_t from_addr, to_addr;
3522 struct md_rdev *rdev =
3523 rcu_dereference(conf->mirrors[d].rdev);
3524 sector_t sector, first_bad;
3525 int bad_sectors;
3526 if (!rdev ||
3527 !test_bit(In_sync, &rdev->flags))
3528 continue;
3529 /* This is where we read from */
3530 any_working = 1;
3531 sector = r10_bio->devs[j].addr;
3532
3533 if (is_badblock(rdev, sector, max_sync,
3534 &first_bad, &bad_sectors)) {
3535 if (first_bad > sector)
3536 max_sync = first_bad - sector;
3537 else {
3538 bad_sectors -= (sector
3539 - first_bad);
3540 if (max_sync > bad_sectors)
3541 max_sync = bad_sectors;
3542 continue;
3543 }
3544 }
3545 bio = r10_bio->devs[0].bio;
3546 bio->bi_next = biolist;
3547 biolist = bio;
3548 bio->bi_end_io = end_sync_read;
3549 bio->bi_opf = REQ_OP_READ;
3550 if (test_bit(FailFast, &rdev->flags))
3551 bio->bi_opf |= MD_FAILFAST;
3552 from_addr = r10_bio->devs[j].addr;
3553 bio->bi_iter.bi_sector = from_addr +
3554 rdev->data_offset;
3555 bio_set_dev(bio, rdev->bdev);
3556 atomic_inc(&rdev->nr_pending);
3557 /* and we write to 'i' (if not in_sync) */
3558
3559 for (k=0; k<conf->copies; k++)
3560 if (r10_bio->devs[k].devnum == i)
3561 break;
3562 BUG_ON(k == conf->copies);
3563 to_addr = r10_bio->devs[k].addr;
3564 r10_bio->devs[0].devnum = d;
3565 r10_bio->devs[0].addr = from_addr;
3566 r10_bio->devs[1].devnum = i;
3567 r10_bio->devs[1].addr = to_addr;
3568
3569 if (mrdev) {
3570 bio = r10_bio->devs[1].bio;
3571 bio->bi_next = biolist;
3572 biolist = bio;
3573 bio->bi_end_io = end_sync_write;
3574 bio->bi_opf = REQ_OP_WRITE;
3575 bio->bi_iter.bi_sector = to_addr
3576 + mrdev->data_offset;
3577 bio_set_dev(bio, mrdev->bdev);
3578 atomic_inc(&r10_bio->remaining);
3579 } else
3580 r10_bio->devs[1].bio->bi_end_io = NULL;
3581
3582 /* and maybe write to replacement */
3583 bio = r10_bio->devs[1].repl_bio;
3584 if (bio)
3585 bio->bi_end_io = NULL;
3586 /* Note: if replace is not NULL, then bio
3587 * cannot be NULL as r10buf_pool_alloc will
3588 * have allocated it.
3589 */
3590 if (!mreplace)
3591 break;
3592 bio->bi_next = biolist;
3593 biolist = bio;
3594 bio->bi_end_io = end_sync_write;
3595 bio->bi_opf = REQ_OP_WRITE;
3596 bio->bi_iter.bi_sector = to_addr +
3597 mreplace->data_offset;
3598 bio_set_dev(bio, mreplace->bdev);
3599 atomic_inc(&r10_bio->remaining);
3600 break;
3601 }
3602 rcu_read_unlock();
3603 if (j == conf->copies) {
3604 /* Cannot recover, so abort the recovery or
3605 * record a bad block */
3606 if (any_working) {
3607 /* problem is that there are bad blocks
3608 * on other device(s)
3609 */
3610 int k;
3611 for (k = 0; k < conf->copies; k++)
3612 if (r10_bio->devs[k].devnum == i)
3613 break;
3614 if (mrdev && !test_bit(In_sync,
3615 &mrdev->flags)
3616 && !rdev_set_badblocks(
3617 mrdev,
3618 r10_bio->devs[k].addr,
3619 max_sync, 0))
3620 any_working = 0;
3621 if (mreplace &&
3622 !rdev_set_badblocks(
3623 mreplace,
3624 r10_bio->devs[k].addr,
3625 max_sync, 0))
3626 any_working = 0;
3627 }
3628 if (!any_working) {
3629 if (!test_and_set_bit(MD_RECOVERY_INTR,
3630 &mddev->recovery))
3631 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3632 mdname(mddev));
3633 mirror->recovery_disabled
3634 = mddev->recovery_disabled;
3635 } else {
3636 error_disk = i;
3637 }
3638 put_buf(r10_bio);
3639 if (rb2)
3640 atomic_dec(&rb2->remaining);
3641 r10_bio = rb2;
3642 if (mrdev)
3643 rdev_dec_pending(mrdev, mddev);
3644 if (mreplace)
3645 rdev_dec_pending(mreplace, mddev);
3646 break;
3647 }
3648 if (mrdev)
3649 rdev_dec_pending(mrdev, mddev);
3650 if (mreplace)
3651 rdev_dec_pending(mreplace, mddev);
3652 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3653 /* Only want this if there is elsewhere to
3654 * read from. 'j' is currently the first
3655 * readable copy.
3656 */
3657 int targets = 1;
3658 for (; j < conf->copies; j++) {
3659 int d = r10_bio->devs[j].devnum;
3660 if (conf->mirrors[d].rdev &&
3661 test_bit(In_sync,
3662 &conf->mirrors[d].rdev->flags))
3663 targets++;
3664 }
3665 if (targets == 1)
3666 r10_bio->devs[0].bio->bi_opf
3667 &= ~MD_FAILFAST;
3668 }
3669 }
3670 if (biolist == NULL) {
3671 while (r10_bio) {
3672 struct r10bio *rb2 = r10_bio;
3673 r10_bio = (struct r10bio*) rb2->master_bio;
3674 rb2->master_bio = NULL;
3675 put_buf(rb2);
3676 }
3677 goto giveup;
3678 }
3679 } else {
3680 /* resync. Schedule a read for every block at this virt offset */
3681 int count = 0;
3682
3683 /*
3684 * Since curr_resync_completed could probably not update in
3685 * time, and we will set cluster_sync_low based on it.
3686 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3687 * safety reason, which ensures curr_resync_completed is
3688 * updated in bitmap_cond_end_sync.
3689 */
3690 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3691 mddev_is_clustered(mddev) &&
3692 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3693
3694 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3695 &sync_blocks, mddev->degraded) &&
3696 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3697 &mddev->recovery)) {
3698 /* We can skip this block */
3699 *skipped = 1;
3700 return sync_blocks + sectors_skipped;
3701 }
3702 if (sync_blocks < max_sync)
3703 max_sync = sync_blocks;
3704 r10_bio = raid10_alloc_init_r10buf(conf);
3705 r10_bio->state = 0;
3706
3707 r10_bio->mddev = mddev;
3708 atomic_set(&r10_bio->remaining, 0);
3709 raise_barrier(conf, 0);
3710 conf->next_resync = sector_nr;
3711
3712 r10_bio->master_bio = NULL;
3713 r10_bio->sector = sector_nr;
3714 set_bit(R10BIO_IsSync, &r10_bio->state);
3715 raid10_find_phys(conf, r10_bio);
3716 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3717
3718 for (i = 0; i < conf->copies; i++) {
3719 int d = r10_bio->devs[i].devnum;
3720 sector_t first_bad, sector;
3721 int bad_sectors;
3722 struct md_rdev *rdev;
3723
3724 if (r10_bio->devs[i].repl_bio)
3725 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3726
3727 bio = r10_bio->devs[i].bio;
3728 bio->bi_status = BLK_STS_IOERR;
3729 rcu_read_lock();
3730 rdev = rcu_dereference(conf->mirrors[d].rdev);
3731 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3732 rcu_read_unlock();
3733 continue;
3734 }
3735 sector = r10_bio->devs[i].addr;
3736 if (is_badblock(rdev, sector, max_sync,
3737 &first_bad, &bad_sectors)) {
3738 if (first_bad > sector)
3739 max_sync = first_bad - sector;
3740 else {
3741 bad_sectors -= (sector - first_bad);
3742 if (max_sync > bad_sectors)
3743 max_sync = bad_sectors;
3744 rcu_read_unlock();
3745 continue;
3746 }
3747 }
3748 atomic_inc(&rdev->nr_pending);
3749 atomic_inc(&r10_bio->remaining);
3750 bio->bi_next = biolist;
3751 biolist = bio;
3752 bio->bi_end_io = end_sync_read;
3753 bio->bi_opf = REQ_OP_READ;
3754 if (test_bit(FailFast, &rdev->flags))
3755 bio->bi_opf |= MD_FAILFAST;
3756 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3757 bio_set_dev(bio, rdev->bdev);
3758 count++;
3759
3760 rdev = rcu_dereference(conf->mirrors[d].replacement);
3761 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3762 rcu_read_unlock();
3763 continue;
3764 }
3765 atomic_inc(&rdev->nr_pending);
3766
3767 /* Need to set up for writing to the replacement */
3768 bio = r10_bio->devs[i].repl_bio;
3769 bio->bi_status = BLK_STS_IOERR;
3770
3771 sector = r10_bio->devs[i].addr;
3772 bio->bi_next = biolist;
3773 biolist = bio;
3774 bio->bi_end_io = end_sync_write;
3775 bio->bi_opf = REQ_OP_WRITE;
3776 if (test_bit(FailFast, &rdev->flags))
3777 bio->bi_opf |= MD_FAILFAST;
3778 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3779 bio_set_dev(bio, rdev->bdev);
3780 count++;
3781 rcu_read_unlock();
3782 }
3783
3784 if (count < 2) {
3785 for (i=0; i<conf->copies; i++) {
3786 int d = r10_bio->devs[i].devnum;
3787 if (r10_bio->devs[i].bio->bi_end_io)
3788 rdev_dec_pending(conf->mirrors[d].rdev,
3789 mddev);
3790 if (r10_bio->devs[i].repl_bio &&
3791 r10_bio->devs[i].repl_bio->bi_end_io)
3792 rdev_dec_pending(
3793 conf->mirrors[d].replacement,
3794 mddev);
3795 }
3796 put_buf(r10_bio);
3797 biolist = NULL;
3798 goto giveup;
3799 }
3800 }
3801
3802 nr_sectors = 0;
3803 if (sector_nr + max_sync < max_sector)
3804 max_sector = sector_nr + max_sync;
3805 do {
3806 struct page *page;
3807 int len = PAGE_SIZE;
3808 if (sector_nr + (len>>9) > max_sector)
3809 len = (max_sector - sector_nr) << 9;
3810 if (len == 0)
3811 break;
3812 for (bio= biolist ; bio ; bio=bio->bi_next) {
3813 struct resync_pages *rp = get_resync_pages(bio);
3814 page = resync_fetch_page(rp, page_idx);
3815 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3816 bio->bi_status = BLK_STS_RESOURCE;
3817 bio_endio(bio);
3818 goto giveup;
3819 }
3820 }
3821 nr_sectors += len>>9;
3822 sector_nr += len>>9;
3823 } while (++page_idx < RESYNC_PAGES);
3824 r10_bio->sectors = nr_sectors;
3825
3826 if (mddev_is_clustered(mddev) &&
3827 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3828 /* It is resync not recovery */
3829 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3830 conf->cluster_sync_low = mddev->curr_resync_completed;
3831 raid10_set_cluster_sync_high(conf);
3832 /* Send resync message */
3833 md_cluster_ops->resync_info_update(mddev,
3834 conf->cluster_sync_low,
3835 conf->cluster_sync_high);
3836 }
3837 } else if (mddev_is_clustered(mddev)) {
3838 /* This is recovery not resync */
3839 sector_t sect_va1, sect_va2;
3840 bool broadcast_msg = false;
3841
3842 for (i = 0; i < conf->geo.raid_disks; i++) {
3843 /*
3844 * sector_nr is a device address for recovery, so we
3845 * need translate it to array address before compare
3846 * with cluster_sync_high.
3847 */
3848 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3849
3850 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3851 broadcast_msg = true;
3852 /*
3853 * curr_resync_completed is similar as
3854 * sector_nr, so make the translation too.
3855 */
3856 sect_va2 = raid10_find_virt(conf,
3857 mddev->curr_resync_completed, i);
3858
3859 if (conf->cluster_sync_low == 0 ||
3860 conf->cluster_sync_low > sect_va2)
3861 conf->cluster_sync_low = sect_va2;
3862 }
3863 }
3864 if (broadcast_msg) {
3865 raid10_set_cluster_sync_high(conf);
3866 md_cluster_ops->resync_info_update(mddev,
3867 conf->cluster_sync_low,
3868 conf->cluster_sync_high);
3869 }
3870 }
3871
3872 while (biolist) {
3873 bio = biolist;
3874 biolist = biolist->bi_next;
3875
3876 bio->bi_next = NULL;
3877 r10_bio = get_resync_r10bio(bio);
3878 r10_bio->sectors = nr_sectors;
3879
3880 if (bio->bi_end_io == end_sync_read) {
3881 md_sync_acct_bio(bio, nr_sectors);
3882 bio->bi_status = 0;
3883 submit_bio_noacct(bio);
3884 }
3885 }
3886
3887 if (sectors_skipped)
3888 /* pretend they weren't skipped, it makes
3889 * no important difference in this case
3890 */
3891 md_done_sync(mddev, sectors_skipped, 1);
3892
3893 return sectors_skipped + nr_sectors;
3894 giveup:
3895 /* There is nowhere to write, so all non-sync
3896 * drives must be failed or in resync, all drives
3897 * have a bad block, so try the next chunk...
3898 */
3899 if (sector_nr + max_sync < max_sector)
3900 max_sector = sector_nr + max_sync;
3901
3902 sectors_skipped += (max_sector - sector_nr);
3903 chunks_skipped ++;
3904 sector_nr = max_sector;
3905 goto skipped;
3906 }
3907
3908 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3909 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3910 {
3911 sector_t size;
3912 struct r10conf *conf = mddev->private;
3913
3914 if (!raid_disks)
3915 raid_disks = min(conf->geo.raid_disks,
3916 conf->prev.raid_disks);
3917 if (!sectors)
3918 sectors = conf->dev_sectors;
3919
3920 size = sectors >> conf->geo.chunk_shift;
3921 sector_div(size, conf->geo.far_copies);
3922 size = size * raid_disks;
3923 sector_div(size, conf->geo.near_copies);
3924
3925 return size << conf->geo.chunk_shift;
3926 }
3927
calc_sectors(struct r10conf * conf,sector_t size)3928 static void calc_sectors(struct r10conf *conf, sector_t size)
3929 {
3930 /* Calculate the number of sectors-per-device that will
3931 * actually be used, and set conf->dev_sectors and
3932 * conf->stride
3933 */
3934
3935 size = size >> conf->geo.chunk_shift;
3936 sector_div(size, conf->geo.far_copies);
3937 size = size * conf->geo.raid_disks;
3938 sector_div(size, conf->geo.near_copies);
3939 /* 'size' is now the number of chunks in the array */
3940 /* calculate "used chunks per device" */
3941 size = size * conf->copies;
3942
3943 /* We need to round up when dividing by raid_disks to
3944 * get the stride size.
3945 */
3946 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3947
3948 conf->dev_sectors = size << conf->geo.chunk_shift;
3949
3950 if (conf->geo.far_offset)
3951 conf->geo.stride = 1 << conf->geo.chunk_shift;
3952 else {
3953 sector_div(size, conf->geo.far_copies);
3954 conf->geo.stride = size << conf->geo.chunk_shift;
3955 }
3956 }
3957
3958 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3959 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3960 {
3961 int nc, fc, fo;
3962 int layout, chunk, disks;
3963 switch (new) {
3964 case geo_old:
3965 layout = mddev->layout;
3966 chunk = mddev->chunk_sectors;
3967 disks = mddev->raid_disks - mddev->delta_disks;
3968 break;
3969 case geo_new:
3970 layout = mddev->new_layout;
3971 chunk = mddev->new_chunk_sectors;
3972 disks = mddev->raid_disks;
3973 break;
3974 default: /* avoid 'may be unused' warnings */
3975 case geo_start: /* new when starting reshape - raid_disks not
3976 * updated yet. */
3977 layout = mddev->new_layout;
3978 chunk = mddev->new_chunk_sectors;
3979 disks = mddev->raid_disks + mddev->delta_disks;
3980 break;
3981 }
3982 if (layout >> 19)
3983 return -1;
3984 if (chunk < (PAGE_SIZE >> 9) ||
3985 !is_power_of_2(chunk))
3986 return -2;
3987 nc = layout & 255;
3988 fc = (layout >> 8) & 255;
3989 fo = layout & (1<<16);
3990 geo->raid_disks = disks;
3991 geo->near_copies = nc;
3992 geo->far_copies = fc;
3993 geo->far_offset = fo;
3994 switch (layout >> 17) {
3995 case 0: /* original layout. simple but not always optimal */
3996 geo->far_set_size = disks;
3997 break;
3998 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3999 * actually using this, but leave code here just in case.*/
4000 geo->far_set_size = disks/fc;
4001 WARN(geo->far_set_size < fc,
4002 "This RAID10 layout does not provide data safety - please backup and create new array\n");
4003 break;
4004 case 2: /* "improved" layout fixed to match documentation */
4005 geo->far_set_size = fc * nc;
4006 break;
4007 default: /* Not a valid layout */
4008 return -1;
4009 }
4010 geo->chunk_mask = chunk - 1;
4011 geo->chunk_shift = ffz(~chunk);
4012 return nc*fc;
4013 }
4014
raid10_free_conf(struct r10conf * conf)4015 static void raid10_free_conf(struct r10conf *conf)
4016 {
4017 if (!conf)
4018 return;
4019
4020 mempool_exit(&conf->r10bio_pool);
4021 kfree(conf->mirrors);
4022 kfree(conf->mirrors_old);
4023 kfree(conf->mirrors_new);
4024 safe_put_page(conf->tmppage);
4025 bioset_exit(&conf->bio_split);
4026 kfree(conf);
4027 }
4028
setup_conf(struct mddev * mddev)4029 static struct r10conf *setup_conf(struct mddev *mddev)
4030 {
4031 struct r10conf *conf = NULL;
4032 int err = -EINVAL;
4033 struct geom geo;
4034 int copies;
4035
4036 copies = setup_geo(&geo, mddev, geo_new);
4037
4038 if (copies == -2) {
4039 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4040 mdname(mddev), PAGE_SIZE);
4041 goto out;
4042 }
4043
4044 if (copies < 2 || copies > mddev->raid_disks) {
4045 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4046 mdname(mddev), mddev->new_layout);
4047 goto out;
4048 }
4049
4050 err = -ENOMEM;
4051 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4052 if (!conf)
4053 goto out;
4054
4055 /* FIXME calc properly */
4056 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4057 sizeof(struct raid10_info),
4058 GFP_KERNEL);
4059 if (!conf->mirrors)
4060 goto out;
4061
4062 conf->tmppage = alloc_page(GFP_KERNEL);
4063 if (!conf->tmppage)
4064 goto out;
4065
4066 conf->geo = geo;
4067 conf->copies = copies;
4068 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4069 rbio_pool_free, conf);
4070 if (err)
4071 goto out;
4072
4073 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4074 if (err)
4075 goto out;
4076
4077 calc_sectors(conf, mddev->dev_sectors);
4078 if (mddev->reshape_position == MaxSector) {
4079 conf->prev = conf->geo;
4080 conf->reshape_progress = MaxSector;
4081 } else {
4082 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4083 err = -EINVAL;
4084 goto out;
4085 }
4086 conf->reshape_progress = mddev->reshape_position;
4087 if (conf->prev.far_offset)
4088 conf->prev.stride = 1 << conf->prev.chunk_shift;
4089 else
4090 /* far_copies must be 1 */
4091 conf->prev.stride = conf->dev_sectors;
4092 }
4093 conf->reshape_safe = conf->reshape_progress;
4094 spin_lock_init(&conf->device_lock);
4095 INIT_LIST_HEAD(&conf->retry_list);
4096 INIT_LIST_HEAD(&conf->bio_end_io_list);
4097
4098 seqlock_init(&conf->resync_lock);
4099 init_waitqueue_head(&conf->wait_barrier);
4100 atomic_set(&conf->nr_pending, 0);
4101
4102 err = -ENOMEM;
4103 rcu_assign_pointer(conf->thread,
4104 md_register_thread(raid10d, mddev, "raid10"));
4105 if (!conf->thread)
4106 goto out;
4107
4108 conf->mddev = mddev;
4109 return conf;
4110
4111 out:
4112 raid10_free_conf(conf);
4113 return ERR_PTR(err);
4114 }
4115
raid10_set_io_opt(struct r10conf * conf)4116 static void raid10_set_io_opt(struct r10conf *conf)
4117 {
4118 int raid_disks = conf->geo.raid_disks;
4119
4120 if (!(conf->geo.raid_disks % conf->geo.near_copies))
4121 raid_disks /= conf->geo.near_copies;
4122 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4123 raid_disks);
4124 }
4125
raid10_run(struct mddev * mddev)4126 static int raid10_run(struct mddev *mddev)
4127 {
4128 struct r10conf *conf;
4129 int i, disk_idx;
4130 struct raid10_info *disk;
4131 struct md_rdev *rdev;
4132 sector_t size;
4133 sector_t min_offset_diff = 0;
4134 int first = 1;
4135
4136 if (mddev_init_writes_pending(mddev) < 0)
4137 return -ENOMEM;
4138
4139 if (mddev->private == NULL) {
4140 conf = setup_conf(mddev);
4141 if (IS_ERR(conf))
4142 return PTR_ERR(conf);
4143 mddev->private = conf;
4144 }
4145 conf = mddev->private;
4146 if (!conf)
4147 goto out;
4148
4149 rcu_assign_pointer(mddev->thread, conf->thread);
4150 rcu_assign_pointer(conf->thread, NULL);
4151
4152 if (mddev_is_clustered(conf->mddev)) {
4153 int fc, fo;
4154
4155 fc = (mddev->layout >> 8) & 255;
4156 fo = mddev->layout & (1<<16);
4157 if (fc > 1 || fo > 0) {
4158 pr_err("only near layout is supported by clustered"
4159 " raid10\n");
4160 goto out_free_conf;
4161 }
4162 }
4163
4164 if (mddev->queue) {
4165 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4166 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4167 raid10_set_io_opt(conf);
4168 }
4169
4170 rdev_for_each(rdev, mddev) {
4171 long long diff;
4172
4173 disk_idx = rdev->raid_disk;
4174 if (disk_idx < 0)
4175 continue;
4176 if (disk_idx >= conf->geo.raid_disks &&
4177 disk_idx >= conf->prev.raid_disks)
4178 continue;
4179 disk = conf->mirrors + disk_idx;
4180
4181 if (test_bit(Replacement, &rdev->flags)) {
4182 if (disk->replacement)
4183 goto out_free_conf;
4184 disk->replacement = rdev;
4185 } else {
4186 if (disk->rdev)
4187 goto out_free_conf;
4188 disk->rdev = rdev;
4189 }
4190 diff = (rdev->new_data_offset - rdev->data_offset);
4191 if (!mddev->reshape_backwards)
4192 diff = -diff;
4193 if (diff < 0)
4194 diff = 0;
4195 if (first || diff < min_offset_diff)
4196 min_offset_diff = diff;
4197
4198 if (mddev->gendisk)
4199 disk_stack_limits(mddev->gendisk, rdev->bdev,
4200 rdev->data_offset << 9);
4201
4202 disk->head_position = 0;
4203 first = 0;
4204 }
4205
4206 /* need to check that every block has at least one working mirror */
4207 if (!enough(conf, -1)) {
4208 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4209 mdname(mddev));
4210 goto out_free_conf;
4211 }
4212
4213 if (conf->reshape_progress != MaxSector) {
4214 /* must ensure that shape change is supported */
4215 if (conf->geo.far_copies != 1 &&
4216 conf->geo.far_offset == 0)
4217 goto out_free_conf;
4218 if (conf->prev.far_copies != 1 &&
4219 conf->prev.far_offset == 0)
4220 goto out_free_conf;
4221 }
4222
4223 mddev->degraded = 0;
4224 for (i = 0;
4225 i < conf->geo.raid_disks
4226 || i < conf->prev.raid_disks;
4227 i++) {
4228
4229 disk = conf->mirrors + i;
4230
4231 if (!disk->rdev && disk->replacement) {
4232 /* The replacement is all we have - use it */
4233 disk->rdev = disk->replacement;
4234 disk->replacement = NULL;
4235 clear_bit(Replacement, &disk->rdev->flags);
4236 }
4237
4238 if (!disk->rdev ||
4239 !test_bit(In_sync, &disk->rdev->flags)) {
4240 disk->head_position = 0;
4241 mddev->degraded++;
4242 if (disk->rdev &&
4243 disk->rdev->saved_raid_disk < 0)
4244 conf->fullsync = 1;
4245 }
4246
4247 if (disk->replacement &&
4248 !test_bit(In_sync, &disk->replacement->flags) &&
4249 disk->replacement->saved_raid_disk < 0) {
4250 conf->fullsync = 1;
4251 }
4252
4253 disk->recovery_disabled = mddev->recovery_disabled - 1;
4254 }
4255
4256 if (mddev->recovery_cp != MaxSector)
4257 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4258 mdname(mddev));
4259 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4260 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4261 conf->geo.raid_disks);
4262 /*
4263 * Ok, everything is just fine now
4264 */
4265 mddev->dev_sectors = conf->dev_sectors;
4266 size = raid10_size(mddev, 0, 0);
4267 md_set_array_sectors(mddev, size);
4268 mddev->resync_max_sectors = size;
4269 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4270
4271 if (md_integrity_register(mddev))
4272 goto out_free_conf;
4273
4274 if (conf->reshape_progress != MaxSector) {
4275 unsigned long before_length, after_length;
4276
4277 before_length = ((1 << conf->prev.chunk_shift) *
4278 conf->prev.far_copies);
4279 after_length = ((1 << conf->geo.chunk_shift) *
4280 conf->geo.far_copies);
4281
4282 if (max(before_length, after_length) > min_offset_diff) {
4283 /* This cannot work */
4284 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4285 goto out_free_conf;
4286 }
4287 conf->offset_diff = min_offset_diff;
4288
4289 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4290 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4291 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4292 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4293 rcu_assign_pointer(mddev->sync_thread,
4294 md_register_thread(md_do_sync, mddev, "reshape"));
4295 if (!mddev->sync_thread)
4296 goto out_free_conf;
4297 }
4298
4299 return 0;
4300
4301 out_free_conf:
4302 md_unregister_thread(mddev, &mddev->thread);
4303 raid10_free_conf(conf);
4304 mddev->private = NULL;
4305 out:
4306 return -EIO;
4307 }
4308
raid10_free(struct mddev * mddev,void * priv)4309 static void raid10_free(struct mddev *mddev, void *priv)
4310 {
4311 raid10_free_conf(priv);
4312 }
4313
raid10_quiesce(struct mddev * mddev,int quiesce)4314 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4315 {
4316 struct r10conf *conf = mddev->private;
4317
4318 if (quiesce)
4319 raise_barrier(conf, 0);
4320 else
4321 lower_barrier(conf);
4322 }
4323
raid10_resize(struct mddev * mddev,sector_t sectors)4324 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4325 {
4326 /* Resize of 'far' arrays is not supported.
4327 * For 'near' and 'offset' arrays we can set the
4328 * number of sectors used to be an appropriate multiple
4329 * of the chunk size.
4330 * For 'offset', this is far_copies*chunksize.
4331 * For 'near' the multiplier is the LCM of
4332 * near_copies and raid_disks.
4333 * So if far_copies > 1 && !far_offset, fail.
4334 * Else find LCM(raid_disks, near_copy)*far_copies and
4335 * multiply by chunk_size. Then round to this number.
4336 * This is mostly done by raid10_size()
4337 */
4338 struct r10conf *conf = mddev->private;
4339 sector_t oldsize, size;
4340
4341 if (mddev->reshape_position != MaxSector)
4342 return -EBUSY;
4343
4344 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4345 return -EINVAL;
4346
4347 oldsize = raid10_size(mddev, 0, 0);
4348 size = raid10_size(mddev, sectors, 0);
4349 if (mddev->external_size &&
4350 mddev->array_sectors > size)
4351 return -EINVAL;
4352 if (mddev->bitmap) {
4353 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4354 if (ret)
4355 return ret;
4356 }
4357 md_set_array_sectors(mddev, size);
4358 if (sectors > mddev->dev_sectors &&
4359 mddev->recovery_cp > oldsize) {
4360 mddev->recovery_cp = oldsize;
4361 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4362 }
4363 calc_sectors(conf, sectors);
4364 mddev->dev_sectors = conf->dev_sectors;
4365 mddev->resync_max_sectors = size;
4366 return 0;
4367 }
4368
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)4369 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4370 {
4371 struct md_rdev *rdev;
4372 struct r10conf *conf;
4373
4374 if (mddev->degraded > 0) {
4375 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4376 mdname(mddev));
4377 return ERR_PTR(-EINVAL);
4378 }
4379 sector_div(size, devs);
4380
4381 /* Set new parameters */
4382 mddev->new_level = 10;
4383 /* new layout: far_copies = 1, near_copies = 2 */
4384 mddev->new_layout = (1<<8) + 2;
4385 mddev->new_chunk_sectors = mddev->chunk_sectors;
4386 mddev->delta_disks = mddev->raid_disks;
4387 mddev->raid_disks *= 2;
4388 /* make sure it will be not marked as dirty */
4389 mddev->recovery_cp = MaxSector;
4390 mddev->dev_sectors = size;
4391
4392 conf = setup_conf(mddev);
4393 if (!IS_ERR(conf)) {
4394 rdev_for_each(rdev, mddev)
4395 if (rdev->raid_disk >= 0) {
4396 rdev->new_raid_disk = rdev->raid_disk * 2;
4397 rdev->sectors = size;
4398 }
4399 }
4400
4401 return conf;
4402 }
4403
raid10_takeover(struct mddev * mddev)4404 static void *raid10_takeover(struct mddev *mddev)
4405 {
4406 struct r0conf *raid0_conf;
4407
4408 /* raid10 can take over:
4409 * raid0 - providing it has only two drives
4410 */
4411 if (mddev->level == 0) {
4412 /* for raid0 takeover only one zone is supported */
4413 raid0_conf = mddev->private;
4414 if (raid0_conf->nr_strip_zones > 1) {
4415 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4416 mdname(mddev));
4417 return ERR_PTR(-EINVAL);
4418 }
4419 return raid10_takeover_raid0(mddev,
4420 raid0_conf->strip_zone->zone_end,
4421 raid0_conf->strip_zone->nb_dev);
4422 }
4423 return ERR_PTR(-EINVAL);
4424 }
4425
raid10_check_reshape(struct mddev * mddev)4426 static int raid10_check_reshape(struct mddev *mddev)
4427 {
4428 /* Called when there is a request to change
4429 * - layout (to ->new_layout)
4430 * - chunk size (to ->new_chunk_sectors)
4431 * - raid_disks (by delta_disks)
4432 * or when trying to restart a reshape that was ongoing.
4433 *
4434 * We need to validate the request and possibly allocate
4435 * space if that might be an issue later.
4436 *
4437 * Currently we reject any reshape of a 'far' mode array,
4438 * allow chunk size to change if new is generally acceptable,
4439 * allow raid_disks to increase, and allow
4440 * a switch between 'near' mode and 'offset' mode.
4441 */
4442 struct r10conf *conf = mddev->private;
4443 struct geom geo;
4444
4445 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4446 return -EINVAL;
4447
4448 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4449 /* mustn't change number of copies */
4450 return -EINVAL;
4451 if (geo.far_copies > 1 && !geo.far_offset)
4452 /* Cannot switch to 'far' mode */
4453 return -EINVAL;
4454
4455 if (mddev->array_sectors & geo.chunk_mask)
4456 /* not factor of array size */
4457 return -EINVAL;
4458
4459 if (!enough(conf, -1))
4460 return -EINVAL;
4461
4462 kfree(conf->mirrors_new);
4463 conf->mirrors_new = NULL;
4464 if (mddev->delta_disks > 0) {
4465 /* allocate new 'mirrors' list */
4466 conf->mirrors_new =
4467 kcalloc(mddev->raid_disks + mddev->delta_disks,
4468 sizeof(struct raid10_info),
4469 GFP_KERNEL);
4470 if (!conf->mirrors_new)
4471 return -ENOMEM;
4472 }
4473 return 0;
4474 }
4475
4476 /*
4477 * Need to check if array has failed when deciding whether to:
4478 * - start an array
4479 * - remove non-faulty devices
4480 * - add a spare
4481 * - allow a reshape
4482 * This determination is simple when no reshape is happening.
4483 * However if there is a reshape, we need to carefully check
4484 * both the before and after sections.
4485 * This is because some failed devices may only affect one
4486 * of the two sections, and some non-in_sync devices may
4487 * be insync in the section most affected by failed devices.
4488 */
calc_degraded(struct r10conf * conf)4489 static int calc_degraded(struct r10conf *conf)
4490 {
4491 int degraded, degraded2;
4492 int i;
4493
4494 rcu_read_lock();
4495 degraded = 0;
4496 /* 'prev' section first */
4497 for (i = 0; i < conf->prev.raid_disks; i++) {
4498 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4499 if (!rdev || test_bit(Faulty, &rdev->flags))
4500 degraded++;
4501 else if (!test_bit(In_sync, &rdev->flags))
4502 /* When we can reduce the number of devices in
4503 * an array, this might not contribute to
4504 * 'degraded'. It does now.
4505 */
4506 degraded++;
4507 }
4508 rcu_read_unlock();
4509 if (conf->geo.raid_disks == conf->prev.raid_disks)
4510 return degraded;
4511 rcu_read_lock();
4512 degraded2 = 0;
4513 for (i = 0; i < conf->geo.raid_disks; i++) {
4514 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4515 if (!rdev || test_bit(Faulty, &rdev->flags))
4516 degraded2++;
4517 else if (!test_bit(In_sync, &rdev->flags)) {
4518 /* If reshape is increasing the number of devices,
4519 * this section has already been recovered, so
4520 * it doesn't contribute to degraded.
4521 * else it does.
4522 */
4523 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4524 degraded2++;
4525 }
4526 }
4527 rcu_read_unlock();
4528 if (degraded2 > degraded)
4529 return degraded2;
4530 return degraded;
4531 }
4532
raid10_start_reshape(struct mddev * mddev)4533 static int raid10_start_reshape(struct mddev *mddev)
4534 {
4535 /* A 'reshape' has been requested. This commits
4536 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4537 * This also checks if there are enough spares and adds them
4538 * to the array.
4539 * We currently require enough spares to make the final
4540 * array non-degraded. We also require that the difference
4541 * between old and new data_offset - on each device - is
4542 * enough that we never risk over-writing.
4543 */
4544
4545 unsigned long before_length, after_length;
4546 sector_t min_offset_diff = 0;
4547 int first = 1;
4548 struct geom new;
4549 struct r10conf *conf = mddev->private;
4550 struct md_rdev *rdev;
4551 int spares = 0;
4552 int ret;
4553
4554 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4555 return -EBUSY;
4556
4557 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4558 return -EINVAL;
4559
4560 before_length = ((1 << conf->prev.chunk_shift) *
4561 conf->prev.far_copies);
4562 after_length = ((1 << conf->geo.chunk_shift) *
4563 conf->geo.far_copies);
4564
4565 rdev_for_each(rdev, mddev) {
4566 if (!test_bit(In_sync, &rdev->flags)
4567 && !test_bit(Faulty, &rdev->flags))
4568 spares++;
4569 if (rdev->raid_disk >= 0) {
4570 long long diff = (rdev->new_data_offset
4571 - rdev->data_offset);
4572 if (!mddev->reshape_backwards)
4573 diff = -diff;
4574 if (diff < 0)
4575 diff = 0;
4576 if (first || diff < min_offset_diff)
4577 min_offset_diff = diff;
4578 first = 0;
4579 }
4580 }
4581
4582 if (max(before_length, after_length) > min_offset_diff)
4583 return -EINVAL;
4584
4585 if (spares < mddev->delta_disks)
4586 return -EINVAL;
4587
4588 conf->offset_diff = min_offset_diff;
4589 spin_lock_irq(&conf->device_lock);
4590 if (conf->mirrors_new) {
4591 memcpy(conf->mirrors_new, conf->mirrors,
4592 sizeof(struct raid10_info)*conf->prev.raid_disks);
4593 smp_mb();
4594 kfree(conf->mirrors_old);
4595 conf->mirrors_old = conf->mirrors;
4596 conf->mirrors = conf->mirrors_new;
4597 conf->mirrors_new = NULL;
4598 }
4599 setup_geo(&conf->geo, mddev, geo_start);
4600 smp_mb();
4601 if (mddev->reshape_backwards) {
4602 sector_t size = raid10_size(mddev, 0, 0);
4603 if (size < mddev->array_sectors) {
4604 spin_unlock_irq(&conf->device_lock);
4605 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4606 mdname(mddev));
4607 return -EINVAL;
4608 }
4609 mddev->resync_max_sectors = size;
4610 conf->reshape_progress = size;
4611 } else
4612 conf->reshape_progress = 0;
4613 conf->reshape_safe = conf->reshape_progress;
4614 spin_unlock_irq(&conf->device_lock);
4615
4616 if (mddev->delta_disks && mddev->bitmap) {
4617 struct mdp_superblock_1 *sb = NULL;
4618 sector_t oldsize, newsize;
4619
4620 oldsize = raid10_size(mddev, 0, 0);
4621 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4622
4623 if (!mddev_is_clustered(mddev)) {
4624 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4625 if (ret)
4626 goto abort;
4627 else
4628 goto out;
4629 }
4630
4631 rdev_for_each(rdev, mddev) {
4632 if (rdev->raid_disk > -1 &&
4633 !test_bit(Faulty, &rdev->flags))
4634 sb = page_address(rdev->sb_page);
4635 }
4636
4637 /*
4638 * some node is already performing reshape, and no need to
4639 * call md_bitmap_resize again since it should be called when
4640 * receiving BITMAP_RESIZE msg
4641 */
4642 if ((sb && (le32_to_cpu(sb->feature_map) &
4643 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4644 goto out;
4645
4646 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4647 if (ret)
4648 goto abort;
4649
4650 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4651 if (ret) {
4652 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4653 goto abort;
4654 }
4655 }
4656 out:
4657 if (mddev->delta_disks > 0) {
4658 rdev_for_each(rdev, mddev)
4659 if (rdev->raid_disk < 0 &&
4660 !test_bit(Faulty, &rdev->flags)) {
4661 if (raid10_add_disk(mddev, rdev) == 0) {
4662 if (rdev->raid_disk >=
4663 conf->prev.raid_disks)
4664 set_bit(In_sync, &rdev->flags);
4665 else
4666 rdev->recovery_offset = 0;
4667
4668 /* Failure here is OK */
4669 sysfs_link_rdev(mddev, rdev);
4670 }
4671 } else if (rdev->raid_disk >= conf->prev.raid_disks
4672 && !test_bit(Faulty, &rdev->flags)) {
4673 /* This is a spare that was manually added */
4674 set_bit(In_sync, &rdev->flags);
4675 }
4676 }
4677 /* When a reshape changes the number of devices,
4678 * ->degraded is measured against the larger of the
4679 * pre and post numbers.
4680 */
4681 spin_lock_irq(&conf->device_lock);
4682 mddev->degraded = calc_degraded(conf);
4683 spin_unlock_irq(&conf->device_lock);
4684 mddev->raid_disks = conf->geo.raid_disks;
4685 mddev->reshape_position = conf->reshape_progress;
4686 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4687
4688 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4689 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4690 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4691 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4692 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4693
4694 rcu_assign_pointer(mddev->sync_thread,
4695 md_register_thread(md_do_sync, mddev, "reshape"));
4696 if (!mddev->sync_thread) {
4697 ret = -EAGAIN;
4698 goto abort;
4699 }
4700 conf->reshape_checkpoint = jiffies;
4701 md_wakeup_thread(mddev->sync_thread);
4702 md_new_event();
4703 return 0;
4704
4705 abort:
4706 mddev->recovery = 0;
4707 spin_lock_irq(&conf->device_lock);
4708 conf->geo = conf->prev;
4709 mddev->raid_disks = conf->geo.raid_disks;
4710 rdev_for_each(rdev, mddev)
4711 rdev->new_data_offset = rdev->data_offset;
4712 smp_wmb();
4713 conf->reshape_progress = MaxSector;
4714 conf->reshape_safe = MaxSector;
4715 mddev->reshape_position = MaxSector;
4716 spin_unlock_irq(&conf->device_lock);
4717 return ret;
4718 }
4719
4720 /* Calculate the last device-address that could contain
4721 * any block from the chunk that includes the array-address 's'
4722 * and report the next address.
4723 * i.e. the address returned will be chunk-aligned and after
4724 * any data that is in the chunk containing 's'.
4725 */
last_dev_address(sector_t s,struct geom * geo)4726 static sector_t last_dev_address(sector_t s, struct geom *geo)
4727 {
4728 s = (s | geo->chunk_mask) + 1;
4729 s >>= geo->chunk_shift;
4730 s *= geo->near_copies;
4731 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4732 s *= geo->far_copies;
4733 s <<= geo->chunk_shift;
4734 return s;
4735 }
4736
4737 /* Calculate the first device-address that could contain
4738 * any block from the chunk that includes the array-address 's'.
4739 * This too will be the start of a chunk
4740 */
first_dev_address(sector_t s,struct geom * geo)4741 static sector_t first_dev_address(sector_t s, struct geom *geo)
4742 {
4743 s >>= geo->chunk_shift;
4744 s *= geo->near_copies;
4745 sector_div(s, geo->raid_disks);
4746 s *= geo->far_copies;
4747 s <<= geo->chunk_shift;
4748 return s;
4749 }
4750
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4751 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4752 int *skipped)
4753 {
4754 /* We simply copy at most one chunk (smallest of old and new)
4755 * at a time, possibly less if that exceeds RESYNC_PAGES,
4756 * or we hit a bad block or something.
4757 * This might mean we pause for normal IO in the middle of
4758 * a chunk, but that is not a problem as mddev->reshape_position
4759 * can record any location.
4760 *
4761 * If we will want to write to a location that isn't
4762 * yet recorded as 'safe' (i.e. in metadata on disk) then
4763 * we need to flush all reshape requests and update the metadata.
4764 *
4765 * When reshaping forwards (e.g. to more devices), we interpret
4766 * 'safe' as the earliest block which might not have been copied
4767 * down yet. We divide this by previous stripe size and multiply
4768 * by previous stripe length to get lowest device offset that we
4769 * cannot write to yet.
4770 * We interpret 'sector_nr' as an address that we want to write to.
4771 * From this we use last_device_address() to find where we might
4772 * write to, and first_device_address on the 'safe' position.
4773 * If this 'next' write position is after the 'safe' position,
4774 * we must update the metadata to increase the 'safe' position.
4775 *
4776 * When reshaping backwards, we round in the opposite direction
4777 * and perform the reverse test: next write position must not be
4778 * less than current safe position.
4779 *
4780 * In all this the minimum difference in data offsets
4781 * (conf->offset_diff - always positive) allows a bit of slack,
4782 * so next can be after 'safe', but not by more than offset_diff
4783 *
4784 * We need to prepare all the bios here before we start any IO
4785 * to ensure the size we choose is acceptable to all devices.
4786 * The means one for each copy for write-out and an extra one for
4787 * read-in.
4788 * We store the read-in bio in ->master_bio and the others in
4789 * ->devs[x].bio and ->devs[x].repl_bio.
4790 */
4791 struct r10conf *conf = mddev->private;
4792 struct r10bio *r10_bio;
4793 sector_t next, safe, last;
4794 int max_sectors;
4795 int nr_sectors;
4796 int s;
4797 struct md_rdev *rdev;
4798 int need_flush = 0;
4799 struct bio *blist;
4800 struct bio *bio, *read_bio;
4801 int sectors_done = 0;
4802 struct page **pages;
4803
4804 if (sector_nr == 0) {
4805 /* If restarting in the middle, skip the initial sectors */
4806 if (mddev->reshape_backwards &&
4807 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4808 sector_nr = (raid10_size(mddev, 0, 0)
4809 - conf->reshape_progress);
4810 } else if (!mddev->reshape_backwards &&
4811 conf->reshape_progress > 0)
4812 sector_nr = conf->reshape_progress;
4813 if (sector_nr) {
4814 mddev->curr_resync_completed = sector_nr;
4815 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4816 *skipped = 1;
4817 return sector_nr;
4818 }
4819 }
4820
4821 /* We don't use sector_nr to track where we are up to
4822 * as that doesn't work well for ->reshape_backwards.
4823 * So just use ->reshape_progress.
4824 */
4825 if (mddev->reshape_backwards) {
4826 /* 'next' is the earliest device address that we might
4827 * write to for this chunk in the new layout
4828 */
4829 next = first_dev_address(conf->reshape_progress - 1,
4830 &conf->geo);
4831
4832 /* 'safe' is the last device address that we might read from
4833 * in the old layout after a restart
4834 */
4835 safe = last_dev_address(conf->reshape_safe - 1,
4836 &conf->prev);
4837
4838 if (next + conf->offset_diff < safe)
4839 need_flush = 1;
4840
4841 last = conf->reshape_progress - 1;
4842 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4843 & conf->prev.chunk_mask);
4844 if (sector_nr + RESYNC_SECTORS < last)
4845 sector_nr = last + 1 - RESYNC_SECTORS;
4846 } else {
4847 /* 'next' is after the last device address that we
4848 * might write to for this chunk in the new layout
4849 */
4850 next = last_dev_address(conf->reshape_progress, &conf->geo);
4851
4852 /* 'safe' is the earliest device address that we might
4853 * read from in the old layout after a restart
4854 */
4855 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4856
4857 /* Need to update metadata if 'next' might be beyond 'safe'
4858 * as that would possibly corrupt data
4859 */
4860 if (next > safe + conf->offset_diff)
4861 need_flush = 1;
4862
4863 sector_nr = conf->reshape_progress;
4864 last = sector_nr | (conf->geo.chunk_mask
4865 & conf->prev.chunk_mask);
4866
4867 if (sector_nr + RESYNC_SECTORS <= last)
4868 last = sector_nr + RESYNC_SECTORS - 1;
4869 }
4870
4871 if (need_flush ||
4872 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4873 /* Need to update reshape_position in metadata */
4874 wait_barrier(conf, false);
4875 mddev->reshape_position = conf->reshape_progress;
4876 if (mddev->reshape_backwards)
4877 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4878 - conf->reshape_progress;
4879 else
4880 mddev->curr_resync_completed = conf->reshape_progress;
4881 conf->reshape_checkpoint = jiffies;
4882 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4883 md_wakeup_thread(mddev->thread);
4884 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4885 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4886 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4887 allow_barrier(conf);
4888 return sectors_done;
4889 }
4890 conf->reshape_safe = mddev->reshape_position;
4891 allow_barrier(conf);
4892 }
4893
4894 raise_barrier(conf, 0);
4895 read_more:
4896 /* Now schedule reads for blocks from sector_nr to last */
4897 r10_bio = raid10_alloc_init_r10buf(conf);
4898 r10_bio->state = 0;
4899 raise_barrier(conf, 1);
4900 atomic_set(&r10_bio->remaining, 0);
4901 r10_bio->mddev = mddev;
4902 r10_bio->sector = sector_nr;
4903 set_bit(R10BIO_IsReshape, &r10_bio->state);
4904 r10_bio->sectors = last - sector_nr + 1;
4905 rdev = read_balance(conf, r10_bio, &max_sectors);
4906 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4907
4908 if (!rdev) {
4909 /* Cannot read from here, so need to record bad blocks
4910 * on all the target devices.
4911 */
4912 // FIXME
4913 mempool_free(r10_bio, &conf->r10buf_pool);
4914 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4915 return sectors_done;
4916 }
4917
4918 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4919 GFP_KERNEL, &mddev->bio_set);
4920 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4921 + rdev->data_offset);
4922 read_bio->bi_private = r10_bio;
4923 read_bio->bi_end_io = end_reshape_read;
4924 r10_bio->master_bio = read_bio;
4925 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4926
4927 /*
4928 * Broadcast RESYNC message to other nodes, so all nodes would not
4929 * write to the region to avoid conflict.
4930 */
4931 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4932 struct mdp_superblock_1 *sb = NULL;
4933 int sb_reshape_pos = 0;
4934
4935 conf->cluster_sync_low = sector_nr;
4936 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4937 sb = page_address(rdev->sb_page);
4938 if (sb) {
4939 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4940 /*
4941 * Set cluster_sync_low again if next address for array
4942 * reshape is less than cluster_sync_low. Since we can't
4943 * update cluster_sync_low until it has finished reshape.
4944 */
4945 if (sb_reshape_pos < conf->cluster_sync_low)
4946 conf->cluster_sync_low = sb_reshape_pos;
4947 }
4948
4949 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4950 conf->cluster_sync_high);
4951 }
4952
4953 /* Now find the locations in the new layout */
4954 __raid10_find_phys(&conf->geo, r10_bio);
4955
4956 blist = read_bio;
4957 read_bio->bi_next = NULL;
4958
4959 rcu_read_lock();
4960 for (s = 0; s < conf->copies*2; s++) {
4961 struct bio *b;
4962 int d = r10_bio->devs[s/2].devnum;
4963 struct md_rdev *rdev2;
4964 if (s&1) {
4965 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4966 b = r10_bio->devs[s/2].repl_bio;
4967 } else {
4968 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4969 b = r10_bio->devs[s/2].bio;
4970 }
4971 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4972 continue;
4973
4974 bio_set_dev(b, rdev2->bdev);
4975 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4976 rdev2->new_data_offset;
4977 b->bi_end_io = end_reshape_write;
4978 b->bi_opf = REQ_OP_WRITE;
4979 b->bi_next = blist;
4980 blist = b;
4981 }
4982
4983 /* Now add as many pages as possible to all of these bios. */
4984
4985 nr_sectors = 0;
4986 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4987 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4988 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4989 int len = (max_sectors - s) << 9;
4990 if (len > PAGE_SIZE)
4991 len = PAGE_SIZE;
4992 for (bio = blist; bio ; bio = bio->bi_next) {
4993 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4994 bio->bi_status = BLK_STS_RESOURCE;
4995 bio_endio(bio);
4996 return sectors_done;
4997 }
4998 }
4999 sector_nr += len >> 9;
5000 nr_sectors += len >> 9;
5001 }
5002 rcu_read_unlock();
5003 r10_bio->sectors = nr_sectors;
5004
5005 /* Now submit the read */
5006 md_sync_acct_bio(read_bio, r10_bio->sectors);
5007 atomic_inc(&r10_bio->remaining);
5008 read_bio->bi_next = NULL;
5009 submit_bio_noacct(read_bio);
5010 sectors_done += nr_sectors;
5011 if (sector_nr <= last)
5012 goto read_more;
5013
5014 lower_barrier(conf);
5015
5016 /* Now that we have done the whole section we can
5017 * update reshape_progress
5018 */
5019 if (mddev->reshape_backwards)
5020 conf->reshape_progress -= sectors_done;
5021 else
5022 conf->reshape_progress += sectors_done;
5023
5024 return sectors_done;
5025 }
5026
5027 static void end_reshape_request(struct r10bio *r10_bio);
5028 static int handle_reshape_read_error(struct mddev *mddev,
5029 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)5030 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5031 {
5032 /* Reshape read completed. Hopefully we have a block
5033 * to write out.
5034 * If we got a read error then we do sync 1-page reads from
5035 * elsewhere until we find the data - or give up.
5036 */
5037 struct r10conf *conf = mddev->private;
5038 int s;
5039
5040 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5041 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5042 /* Reshape has been aborted */
5043 md_done_sync(mddev, r10_bio->sectors, 0);
5044 return;
5045 }
5046
5047 /* We definitely have the data in the pages, schedule the
5048 * writes.
5049 */
5050 atomic_set(&r10_bio->remaining, 1);
5051 for (s = 0; s < conf->copies*2; s++) {
5052 struct bio *b;
5053 int d = r10_bio->devs[s/2].devnum;
5054 struct md_rdev *rdev;
5055 rcu_read_lock();
5056 if (s&1) {
5057 rdev = rcu_dereference(conf->mirrors[d].replacement);
5058 b = r10_bio->devs[s/2].repl_bio;
5059 } else {
5060 rdev = rcu_dereference(conf->mirrors[d].rdev);
5061 b = r10_bio->devs[s/2].bio;
5062 }
5063 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5064 rcu_read_unlock();
5065 continue;
5066 }
5067 atomic_inc(&rdev->nr_pending);
5068 rcu_read_unlock();
5069 md_sync_acct_bio(b, r10_bio->sectors);
5070 atomic_inc(&r10_bio->remaining);
5071 b->bi_next = NULL;
5072 submit_bio_noacct(b);
5073 }
5074 end_reshape_request(r10_bio);
5075 }
5076
end_reshape(struct r10conf * conf)5077 static void end_reshape(struct r10conf *conf)
5078 {
5079 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5080 return;
5081
5082 spin_lock_irq(&conf->device_lock);
5083 conf->prev = conf->geo;
5084 md_finish_reshape(conf->mddev);
5085 smp_wmb();
5086 conf->reshape_progress = MaxSector;
5087 conf->reshape_safe = MaxSector;
5088 spin_unlock_irq(&conf->device_lock);
5089
5090 if (conf->mddev->queue)
5091 raid10_set_io_opt(conf);
5092 conf->fullsync = 0;
5093 }
5094
raid10_update_reshape_pos(struct mddev * mddev)5095 static void raid10_update_reshape_pos(struct mddev *mddev)
5096 {
5097 struct r10conf *conf = mddev->private;
5098 sector_t lo, hi;
5099
5100 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5101 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5102 || mddev->reshape_position == MaxSector)
5103 conf->reshape_progress = mddev->reshape_position;
5104 else
5105 WARN_ON_ONCE(1);
5106 }
5107
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)5108 static int handle_reshape_read_error(struct mddev *mddev,
5109 struct r10bio *r10_bio)
5110 {
5111 /* Use sync reads to get the blocks from somewhere else */
5112 int sectors = r10_bio->sectors;
5113 struct r10conf *conf = mddev->private;
5114 struct r10bio *r10b;
5115 int slot = 0;
5116 int idx = 0;
5117 struct page **pages;
5118
5119 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5120 if (!r10b) {
5121 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5122 return -ENOMEM;
5123 }
5124
5125 /* reshape IOs share pages from .devs[0].bio */
5126 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5127
5128 r10b->sector = r10_bio->sector;
5129 __raid10_find_phys(&conf->prev, r10b);
5130
5131 while (sectors) {
5132 int s = sectors;
5133 int success = 0;
5134 int first_slot = slot;
5135
5136 if (s > (PAGE_SIZE >> 9))
5137 s = PAGE_SIZE >> 9;
5138
5139 rcu_read_lock();
5140 while (!success) {
5141 int d = r10b->devs[slot].devnum;
5142 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5143 sector_t addr;
5144 if (rdev == NULL ||
5145 test_bit(Faulty, &rdev->flags) ||
5146 !test_bit(In_sync, &rdev->flags))
5147 goto failed;
5148
5149 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5150 atomic_inc(&rdev->nr_pending);
5151 rcu_read_unlock();
5152 success = sync_page_io(rdev,
5153 addr,
5154 s << 9,
5155 pages[idx],
5156 REQ_OP_READ, false);
5157 rdev_dec_pending(rdev, mddev);
5158 rcu_read_lock();
5159 if (success)
5160 break;
5161 failed:
5162 slot++;
5163 if (slot >= conf->copies)
5164 slot = 0;
5165 if (slot == first_slot)
5166 break;
5167 }
5168 rcu_read_unlock();
5169 if (!success) {
5170 /* couldn't read this block, must give up */
5171 set_bit(MD_RECOVERY_INTR,
5172 &mddev->recovery);
5173 kfree(r10b);
5174 return -EIO;
5175 }
5176 sectors -= s;
5177 idx++;
5178 }
5179 kfree(r10b);
5180 return 0;
5181 }
5182
end_reshape_write(struct bio * bio)5183 static void end_reshape_write(struct bio *bio)
5184 {
5185 struct r10bio *r10_bio = get_resync_r10bio(bio);
5186 struct mddev *mddev = r10_bio->mddev;
5187 struct r10conf *conf = mddev->private;
5188 int d;
5189 int slot;
5190 int repl;
5191 struct md_rdev *rdev = NULL;
5192
5193 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5194 if (repl)
5195 rdev = conf->mirrors[d].replacement;
5196 if (!rdev) {
5197 smp_mb();
5198 rdev = conf->mirrors[d].rdev;
5199 }
5200
5201 if (bio->bi_status) {
5202 /* FIXME should record badblock */
5203 md_error(mddev, rdev);
5204 }
5205
5206 rdev_dec_pending(rdev, mddev);
5207 end_reshape_request(r10_bio);
5208 }
5209
end_reshape_request(struct r10bio * r10_bio)5210 static void end_reshape_request(struct r10bio *r10_bio)
5211 {
5212 if (!atomic_dec_and_test(&r10_bio->remaining))
5213 return;
5214 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5215 bio_put(r10_bio->master_bio);
5216 put_buf(r10_bio);
5217 }
5218
raid10_finish_reshape(struct mddev * mddev)5219 static void raid10_finish_reshape(struct mddev *mddev)
5220 {
5221 struct r10conf *conf = mddev->private;
5222
5223 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5224 return;
5225
5226 if (mddev->delta_disks > 0) {
5227 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5228 mddev->recovery_cp = mddev->resync_max_sectors;
5229 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5230 }
5231 mddev->resync_max_sectors = mddev->array_sectors;
5232 } else {
5233 int d;
5234 rcu_read_lock();
5235 for (d = conf->geo.raid_disks ;
5236 d < conf->geo.raid_disks - mddev->delta_disks;
5237 d++) {
5238 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5239 if (rdev)
5240 clear_bit(In_sync, &rdev->flags);
5241 rdev = rcu_dereference(conf->mirrors[d].replacement);
5242 if (rdev)
5243 clear_bit(In_sync, &rdev->flags);
5244 }
5245 rcu_read_unlock();
5246 }
5247 mddev->layout = mddev->new_layout;
5248 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5249 mddev->reshape_position = MaxSector;
5250 mddev->delta_disks = 0;
5251 mddev->reshape_backwards = 0;
5252 }
5253
5254 static struct md_personality raid10_personality =
5255 {
5256 .name = "raid10",
5257 .level = 10,
5258 .owner = THIS_MODULE,
5259 .make_request = raid10_make_request,
5260 .run = raid10_run,
5261 .free = raid10_free,
5262 .status = raid10_status,
5263 .error_handler = raid10_error,
5264 .hot_add_disk = raid10_add_disk,
5265 .hot_remove_disk= raid10_remove_disk,
5266 .spare_active = raid10_spare_active,
5267 .sync_request = raid10_sync_request,
5268 .quiesce = raid10_quiesce,
5269 .size = raid10_size,
5270 .resize = raid10_resize,
5271 .takeover = raid10_takeover,
5272 .check_reshape = raid10_check_reshape,
5273 .start_reshape = raid10_start_reshape,
5274 .finish_reshape = raid10_finish_reshape,
5275 .update_reshape_pos = raid10_update_reshape_pos,
5276 };
5277
raid_init(void)5278 static int __init raid_init(void)
5279 {
5280 return register_md_personality(&raid10_personality);
5281 }
5282
raid_exit(void)5283 static void raid_exit(void)
5284 {
5285 unregister_md_personality(&raid10_personality);
5286 }
5287
5288 module_init(raid_init);
5289 module_exit(raid_exit);
5290 MODULE_LICENSE("GPL");
5291 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5292 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5293 MODULE_ALIAS("md-raid10");
5294 MODULE_ALIAS("md-level-10");
5295