1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25
26 static DEFINE_SPINLOCK(dbg_lock);
27
get_key_fmt(int fmt)28 static const char *get_key_fmt(int fmt)
29 {
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36 }
37
get_key_hash(int hash)38 static const char *get_key_hash(int hash)
39 {
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48 }
49
get_key_type(int type)50 static const char *get_key_type(int type)
51 {
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66 }
67
get_dent_type(int type)68 static const char *get_dent_type(int type)
69 {
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88 }
89
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92 {
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127 }
128
dbg_ntype(int type)129 const char *dbg_ntype(int type)
130 {
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161 }
162
dbg_gtype(int type)163 static const char *dbg_gtype(int type)
164 {
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175 }
176
dbg_cstate(int cmt_state)177 const char *dbg_cstate(int cmt_state)
178 {
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195 }
196
dbg_jhead(int jhead)197 const char *dbg_jhead(int jhead)
198 {
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209 }
210
dump_ch(const struct ubifs_ch * ch)211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222 }
223
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int)inode->i_atime.tv_sec,
241 (unsigned int)inode->i_atime.tv_nsec);
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int)inode->i_mtime.tv_sec,
244 (unsigned int)inode->i_mtime.tv_nsec);
245 pr_err("\tctime %u.%u\n",
246 (unsigned int) inode_get_ctime(inode).tv_sec,
247 (unsigned int) inode_get_ctime(inode).tv_nsec);
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292 }
293
ubifs_dump_node(const struct ubifs_info * c,const void * node,int node_len)294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 int i, n, type, safe_len, max_node_len, min_node_len;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 /* Skip dumping unknown type node */
310 type = ch->node_type;
311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 pr_err("node type %d was not recognized\n", type);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 if (c->ranges[type].max_len == 0) {
320 max_node_len = min_node_len = c->ranges[type].len;
321 } else {
322 max_node_len = c->ranges[type].max_len;
323 min_node_len = c->ranges[type].min_len;
324 }
325 safe_len = le32_to_cpu(ch->len);
326 safe_len = safe_len > 0 ? safe_len : 0;
327 safe_len = min3(safe_len, max_node_len, node_len);
328 if (safe_len < min_node_len) {
329 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 safe_len, dbg_ntype(type),
331 safe_len > UBIFS_CH_SZ ?
332 safe_len - (int)UBIFS_CH_SZ : 0);
333 if (safe_len > UBIFS_CH_SZ)
334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 (void *)node + UBIFS_CH_SZ,
336 safe_len - UBIFS_CH_SZ, 0);
337 goto out_unlock;
338 }
339 if (safe_len != le32_to_cpu(ch->len))
340 pr_err("\ttruncated node length %d\n", safe_len);
341
342 switch (type) {
343 case UBIFS_PAD_NODE:
344 {
345 const struct ubifs_pad_node *pad = node;
346
347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
348 break;
349 }
350 case UBIFS_SB_NODE:
351 {
352 const struct ubifs_sb_node *sup = node;
353 unsigned int sup_flags = le32_to_cpu(sup->flags);
354
355 pr_err("\tkey_hash %d (%s)\n",
356 (int)sup->key_hash, get_key_hash(sup->key_hash));
357 pr_err("\tkey_fmt %d (%s)\n",
358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 pr_err("\tflags %#x\n", sup_flags);
360 pr_err("\tbig_lpt %u\n",
361 !!(sup_flags & UBIFS_FLG_BIGLPT));
362 pr_err("\tspace_fixup %u\n",
363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
368 pr_err("\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
376 pr_err("\tdefault_compr %u\n",
377 (int)le16_to_cpu(sup->default_compr));
378 pr_err("\trp_size %llu\n",
379 (unsigned long long)le64_to_cpu(sup->rp_size));
380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
384 pr_err("\tUUID %pUB\n", sup->uuid);
385 break;
386 }
387 case UBIFS_MST_NODE:
388 {
389 const struct ubifs_mst_node *mst = node;
390
391 pr_err("\thighest_inum %llu\n",
392 (unsigned long long)le64_to_cpu(mst->highest_inum));
393 pr_err("\tcommit number %llu\n",
394 (unsigned long long)le64_to_cpu(mst->cmt_no));
395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
403 pr_err("\tindex_size %llu\n",
404 (unsigned long long)le64_to_cpu(mst->index_size));
405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
417 pr_err("\ttotal_free %llu\n",
418 (unsigned long long)le64_to_cpu(mst->total_free));
419 pr_err("\ttotal_dirty %llu\n",
420 (unsigned long long)le64_to_cpu(mst->total_dirty));
421 pr_err("\ttotal_used %llu\n",
422 (unsigned long long)le64_to_cpu(mst->total_used));
423 pr_err("\ttotal_dead %llu\n",
424 (unsigned long long)le64_to_cpu(mst->total_dead));
425 pr_err("\ttotal_dark %llu\n",
426 (unsigned long long)le64_to_cpu(mst->total_dark));
427 break;
428 }
429 case UBIFS_REF_NODE:
430 {
431 const struct ubifs_ref_node *ref = node;
432
433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
436 break;
437 }
438 case UBIFS_INO_NODE:
439 {
440 const struct ubifs_ino_node *ino = node;
441
442 key_read(c, &ino->key, &key);
443 pr_err("\tkey %s\n",
444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 pr_err("\tcreat_sqnum %llu\n",
446 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 pr_err("\tsize %llu\n",
448 (unsigned long long)le64_to_cpu(ino->size));
449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
450 pr_err("\tatime %lld.%u\n",
451 (long long)le64_to_cpu(ino->atime_sec),
452 le32_to_cpu(ino->atime_nsec));
453 pr_err("\tmtime %lld.%u\n",
454 (long long)le64_to_cpu(ino->mtime_sec),
455 le32_to_cpu(ino->mtime_nsec));
456 pr_err("\tctime %lld.%u\n",
457 (long long)le64_to_cpu(ino->ctime_sec),
458 le32_to_cpu(ino->ctime_nsec));
459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
466 pr_err("\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
469 break;
470 }
471 case UBIFS_DENT_NODE:
472 case UBIFS_XENT_NODE:
473 {
474 const struct ubifs_dent_node *dent = node;
475 int nlen = le16_to_cpu(dent->nlen);
476
477 key_read(c, &dent->key, &key);
478 pr_err("\tkey %s\n",
479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 pr_err("\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 pr_err("\ttype %d\n", (int)dent->type);
483 pr_err("\tnlen %d\n", nlen);
484 pr_err("\tname ");
485
486 if (nlen > UBIFS_MAX_NLEN ||
487 nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 pr_err("(bad name length, not printing, bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 pr_cont("%c", isprint(dent->name[i]) ?
492 dent->name[i] : '?');
493 }
494 pr_cont("\n");
495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501
502 key_read(c, &dn->key, &key);
503 pr_err("\tkey %s\n",
504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
506 pr_err("\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 pr_err("\tdata size %u\n",
509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 pr_err("\tdata (length = %d):\n",
511 safe_len - (int)UBIFS_DATA_NODE_SZ);
512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data,
514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 break;
516 }
517 case UBIFS_TRUN_NODE:
518 {
519 const struct ubifs_trun_node *trun = node;
520
521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
522 pr_err("\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 pr_err("\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 (ubifs_idx_node_sz(c, 1) -
533 UBIFS_IDX_NODE_SZ);
534
535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt));
537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
538 pr_err("\tBranches:\n");
539
540 for (i = 0; i < n && i < c->fanout; i++) {
541 const struct ubifs_branch *br;
542
543 br = ubifs_idx_branch(c, idx, i);
544 key_read(c, &br->key, &key);
545 pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 le32_to_cpu(br->len),
548 dbg_snprintf_key(c, &key, key_buf,
549 DBG_KEY_BUF_LEN));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 pr_err("\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 pr_err("\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 pr_err("\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 pr_err("\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph->inos[i]));
569 break;
570 }
571 case UBIFS_AUTH_NODE:
572 {
573 break;
574 }
575 default:
576 pr_err("node type %d was not recognized\n", type);
577 }
578
579 out_unlock:
580 spin_unlock(&dbg_lock);
581 }
582
ubifs_dump_budget_req(const struct ubifs_budget_req * req)583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 spin_lock(&dbg_lock);
586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 req->new_ino, req->dirtied_ino);
588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
589 req->new_ino_d, req->dirtied_ino_d);
590 pr_err("\tnew_page %d, dirtied_page %d\n",
591 req->new_page, req->dirtied_page);
592 pr_err("\tnew_dent %d, mod_dent %d\n",
593 req->new_dent, req->mod_dent);
594 pr_err("\tidx_growth %d\n", req->idx_growth);
595 pr_err("\tdata_growth %d dd_growth %d\n",
596 req->data_growth, req->dd_growth);
597 spin_unlock(&dbg_lock);
598 }
599
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 spin_lock(&dbg_lock);
603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
604 current->pid, lst->empty_lebs, lst->idx_lebs);
605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 lst->total_used, lst->total_dark, lst->total_dead);
609 spin_unlock(&dbg_lock);
610 }
611
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 int i;
615 struct rb_node *rb;
616 struct ubifs_bud *bud;
617 struct ubifs_gced_idx_leb *idx_gc;
618 long long available, outstanding, free;
619
620 spin_lock(&c->space_lock);
621 spin_lock(&dbg_lock);
622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 current->pid, bi->data_growth + bi->dd_growth,
624 bi->data_growth + bi->dd_growth + bi->idx_growth);
625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 bi->data_growth, bi->dd_growth, bi->idx_growth);
627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 bi->page_budget, bi->inode_budget, bi->dent_budget);
631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634
635 if (bi != &c->bi)
636 /*
637 * If we are dumping saved budgeting data, do not print
638 * additional information which is about the current state, not
639 * the old one which corresponded to the saved budgeting data.
640 */
641 goto out_unlock;
642
643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 atomic_long_read(&c->dirty_pg_cnt),
647 atomic_long_read(&c->dirty_zn_cnt),
648 atomic_long_read(&c->clean_zn_cnt));
649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650
651 /* If we are in R/O mode, journal heads do not exist */
652 if (c->jheads)
653 for (i = 0; i < c->jhead_cnt; i++)
654 pr_err("\tjhead %s\t LEB %d\n",
655 dbg_jhead(c->jheads[i].wbuf.jhead),
656 c->jheads[i].wbuf.lnum);
657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 bud = rb_entry(rb, struct ubifs_bud, rb);
659 pr_err("\tbud LEB %d\n", bud->lnum);
660 }
661 list_for_each_entry(bud, &c->old_buds, list)
662 pr_err("\told bud LEB %d\n", bud->lnum);
663 list_for_each_entry(idx_gc, &c->idx_gc, list)
664 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 idx_gc->lnum, idx_gc->unmap);
666 pr_err("\tcommit state %d\n", c->cmt_state);
667
668 /* Print budgeting predictions */
669 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 outstanding = c->bi.data_growth + c->bi.dd_growth;
671 free = ubifs_get_free_space_nolock(c);
672 pr_err("Budgeting predictions:\n");
673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 available, outstanding, free);
675 out_unlock:
676 spin_unlock(&dbg_lock);
677 spin_unlock(&c->space_lock);
678 }
679
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 int i, spc, dark = 0, dead = 0;
683 struct rb_node *rb;
684 struct ubifs_bud *bud;
685
686 spc = lp->free + lp->dirty;
687 if (spc < c->dead_wm)
688 dead = spc;
689 else
690 dark = ubifs_calc_dark(c, spc);
691
692 if (lp->flags & LPROPS_INDEX)
693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 lp->flags);
696 else
697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700
701 if (lp->flags & LPROPS_TAKEN) {
702 if (lp->flags & LPROPS_INDEX)
703 pr_cont("index, taken");
704 else
705 pr_cont("taken");
706 } else {
707 const char *s;
708
709 if (lp->flags & LPROPS_INDEX) {
710 switch (lp->flags & LPROPS_CAT_MASK) {
711 case LPROPS_DIRTY_IDX:
712 s = "dirty index";
713 break;
714 case LPROPS_FRDI_IDX:
715 s = "freeable index";
716 break;
717 default:
718 s = "index";
719 }
720 } else {
721 switch (lp->flags & LPROPS_CAT_MASK) {
722 case LPROPS_UNCAT:
723 s = "not categorized";
724 break;
725 case LPROPS_DIRTY:
726 s = "dirty";
727 break;
728 case LPROPS_FREE:
729 s = "free";
730 break;
731 case LPROPS_EMPTY:
732 s = "empty";
733 break;
734 case LPROPS_FREEABLE:
735 s = "freeable";
736 break;
737 default:
738 s = NULL;
739 break;
740 }
741 }
742 pr_cont("%s", s);
743 }
744
745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 bud = rb_entry(rb, struct ubifs_bud, rb);
747 if (bud->lnum == lp->lnum) {
748 int head = 0;
749 for (i = 0; i < c->jhead_cnt; i++) {
750 /*
751 * Note, if we are in R/O mode or in the middle
752 * of mounting/re-mounting, the write-buffers do
753 * not exist.
754 */
755 if (c->jheads &&
756 lp->lnum == c->jheads[i].wbuf.lnum) {
757 pr_cont(", jhead %s", dbg_jhead(i));
758 head = 1;
759 }
760 }
761 if (!head)
762 pr_cont(", bud of jhead %s",
763 dbg_jhead(bud->jhead));
764 }
765 }
766 if (lp->lnum == c->gc_lnum)
767 pr_cont(", GC LEB");
768 pr_cont(")\n");
769 }
770
ubifs_dump_lprops(struct ubifs_info * c)771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 int lnum, err;
774 struct ubifs_lprops lp;
775 struct ubifs_lp_stats lst;
776
777 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 ubifs_get_lp_stats(c, &lst);
779 ubifs_dump_lstats(&lst);
780
781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 err = ubifs_read_one_lp(c, lnum, &lp);
783 if (err) {
784 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 continue;
786 }
787
788 ubifs_dump_lprop(c, &lp);
789 }
790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792
ubifs_dump_lpt_info(struct ubifs_info * c)793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 int i;
796
797 spin_lock(&dbg_lock);
798 pr_err("(pid %d) dumping LPT information\n", current->pid);
799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
800 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
801 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
802 pr_err("\tltab_sz: %d\n", c->ltab_sz);
803 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
804 pr_err("\tbig_lpt: %u\n", c->big_lpt);
805 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
811 pr_err("\tspace_bits: %d\n", c->space_bits);
812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
816 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 pr_err("\tLPT head is at %d:%d\n",
819 c->nhead_lnum, c->nhead_offs);
820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 if (c->big_lpt)
822 pr_err("\tLPT lsave is at %d:%d\n",
823 c->lsave_lnum, c->lsave_offs);
824 for (i = 0; i < c->lpt_lebs; i++)
825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 c->ltab[i].tgc, c->ltab[i].cmt);
828 spin_unlock(&dbg_lock);
829 }
830
ubifs_dump_leb(const struct ubifs_info * c,int lnum)831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833 struct ubifs_scan_leb *sleb;
834 struct ubifs_scan_node *snod;
835 void *buf;
836
837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838
839 buf = __vmalloc(c->leb_size, GFP_NOFS);
840 if (!buf) {
841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 return;
843 }
844
845 sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 if (IS_ERR(sleb)) {
847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 goto out;
849 }
850
851 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 sleb->nodes_cnt, sleb->endpt);
853
854 list_for_each_entry(snod, &sleb->nodes, list) {
855 cond_resched();
856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 snod->offs, snod->len);
858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 }
860
861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 ubifs_scan_destroy(sleb);
863
864 out:
865 vfree(buf);
866 return;
867 }
868
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)869 void ubifs_dump_znode(const struct ubifs_info *c,
870 const struct ubifs_znode *znode)
871 {
872 int n;
873 const struct ubifs_zbranch *zbr;
874 char key_buf[DBG_KEY_BUF_LEN];
875
876 spin_lock(&dbg_lock);
877 if (znode->parent)
878 zbr = &znode->parent->zbranch[znode->iip];
879 else
880 zbr = &c->zroot;
881
882 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884 znode->level, znode->child_cnt, znode->flags);
885
886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 spin_unlock(&dbg_lock);
888 return;
889 }
890
891 pr_err("zbranches:\n");
892 for (n = 0; n < znode->child_cnt; n++) {
893 zbr = &znode->zbranch[n];
894 if (znode->level > 0)
895 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897 dbg_snprintf_key(c, &zbr->key, key_buf,
898 DBG_KEY_BUF_LEN));
899 else
900 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902 dbg_snprintf_key(c, &zbr->key, key_buf,
903 DBG_KEY_BUF_LEN));
904 }
905 spin_unlock(&dbg_lock);
906 }
907
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909 {
910 int i;
911
912 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 current->pid, cat, heap->cnt);
914 for (i = 0; i < heap->cnt; i++) {
915 struct ubifs_lprops *lprops = heap->arr[i];
916
917 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 i, lprops->lnum, lprops->hpos, lprops->free,
919 lprops->dirty, lprops->flags);
920 }
921 pr_err("(pid %d) finish dumping heap\n", current->pid);
922 }
923
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 struct ubifs_nnode *parent, int iip)
926 {
927 int i;
928
929 pr_err("(pid %d) dumping pnode:\n", current->pid);
930 pr_err("\taddress %zx parent %zx cnext %zx\n",
931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 pr_err("\tflags %lu iip %d level %d num %d\n",
933 pnode->flags, iip, pnode->level, pnode->num);
934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 struct ubifs_lprops *lp = &pnode->lprops[i];
936
937 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 }
940 }
941
ubifs_dump_tnc(struct ubifs_info * c)942 void ubifs_dump_tnc(struct ubifs_info *c)
943 {
944 struct ubifs_znode *znode;
945 int level;
946
947 pr_err("\n");
948 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949 if (c->zroot.znode) {
950 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
951 level = znode->level;
952 pr_err("== Level %d ==\n", level);
953 while (znode) {
954 if (level != znode->level) {
955 level = znode->level;
956 pr_err("== Level %d ==\n", level);
957 }
958 ubifs_dump_znode(c, znode);
959 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
960 }
961 } else {
962 pr_err("empty TNC tree in memory\n");
963 }
964 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
965 }
966
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)967 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
968 void *priv)
969 {
970 ubifs_dump_znode(c, znode);
971 return 0;
972 }
973
974 /**
975 * ubifs_dump_index - dump the on-flash index.
976 * @c: UBIFS file-system description object
977 *
978 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
979 * which dumps only in-memory znodes and does not read znodes which from flash.
980 */
ubifs_dump_index(struct ubifs_info * c)981 void ubifs_dump_index(struct ubifs_info *c)
982 {
983 dbg_walk_index(c, NULL, dump_znode, NULL);
984 }
985
986 /**
987 * dbg_save_space_info - save information about flash space.
988 * @c: UBIFS file-system description object
989 *
990 * This function saves information about UBIFS free space, dirty space, etc, in
991 * order to check it later.
992 */
dbg_save_space_info(struct ubifs_info * c)993 void dbg_save_space_info(struct ubifs_info *c)
994 {
995 struct ubifs_debug_info *d = c->dbg;
996 int freeable_cnt;
997
998 spin_lock(&c->space_lock);
999 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1000 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1001 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1002
1003 /*
1004 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1005 * affects the free space calculations, and UBIFS might not know about
1006 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1007 * only when we read their lprops, and we do this only lazily, upon the
1008 * need. So at any given point of time @c->freeable_cnt might be not
1009 * exactly accurate.
1010 *
1011 * Just one example about the issue we hit when we did not zero
1012 * @c->freeable_cnt.
1013 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1014 * amount of free space in @d->saved_free
1015 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1016 * information from flash, where we cache LEBs from various
1017 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1018 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1019 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1020 * -> 'ubifs_add_to_cat()').
1021 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1022 * becomes %1.
1023 * 4. We calculate the amount of free space when the re-mount is
1024 * finished in 'dbg_check_space_info()' and it does not match
1025 * @d->saved_free.
1026 */
1027 freeable_cnt = c->freeable_cnt;
1028 c->freeable_cnt = 0;
1029 d->saved_free = ubifs_get_free_space_nolock(c);
1030 c->freeable_cnt = freeable_cnt;
1031 spin_unlock(&c->space_lock);
1032 }
1033
1034 /**
1035 * dbg_check_space_info - check flash space information.
1036 * @c: UBIFS file-system description object
1037 *
1038 * This function compares current flash space information with the information
1039 * which was saved when the 'dbg_save_space_info()' function was called.
1040 * Returns zero if the information has not changed, and %-EINVAL if it has
1041 * changed.
1042 */
dbg_check_space_info(struct ubifs_info * c)1043 int dbg_check_space_info(struct ubifs_info *c)
1044 {
1045 struct ubifs_debug_info *d = c->dbg;
1046 struct ubifs_lp_stats lst;
1047 long long free;
1048 int freeable_cnt;
1049
1050 spin_lock(&c->space_lock);
1051 freeable_cnt = c->freeable_cnt;
1052 c->freeable_cnt = 0;
1053 free = ubifs_get_free_space_nolock(c);
1054 c->freeable_cnt = freeable_cnt;
1055 spin_unlock(&c->space_lock);
1056
1057 if (free != d->saved_free) {
1058 ubifs_err(c, "free space changed from %lld to %lld",
1059 d->saved_free, free);
1060 goto out;
1061 }
1062
1063 return 0;
1064
1065 out:
1066 ubifs_msg(c, "saved lprops statistics dump");
1067 ubifs_dump_lstats(&d->saved_lst);
1068 ubifs_msg(c, "saved budgeting info dump");
1069 ubifs_dump_budg(c, &d->saved_bi);
1070 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1071 ubifs_msg(c, "current lprops statistics dump");
1072 ubifs_get_lp_stats(c, &lst);
1073 ubifs_dump_lstats(&lst);
1074 ubifs_msg(c, "current budgeting info dump");
1075 ubifs_dump_budg(c, &c->bi);
1076 dump_stack();
1077 return -EINVAL;
1078 }
1079
1080 /**
1081 * dbg_check_synced_i_size - check synchronized inode size.
1082 * @c: UBIFS file-system description object
1083 * @inode: inode to check
1084 *
1085 * If inode is clean, synchronized inode size has to be equivalent to current
1086 * inode size. This function has to be called only for locked inodes (@i_mutex
1087 * has to be locked). Returns %0 if synchronized inode size if correct, and
1088 * %-EINVAL if not.
1089 */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1090 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1091 {
1092 int err = 0;
1093 struct ubifs_inode *ui = ubifs_inode(inode);
1094
1095 if (!dbg_is_chk_gen(c))
1096 return 0;
1097 if (!S_ISREG(inode->i_mode))
1098 return 0;
1099
1100 mutex_lock(&ui->ui_mutex);
1101 spin_lock(&ui->ui_lock);
1102 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1103 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1104 ui->ui_size, ui->synced_i_size);
1105 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1106 inode->i_mode, i_size_read(inode));
1107 dump_stack();
1108 err = -EINVAL;
1109 }
1110 spin_unlock(&ui->ui_lock);
1111 mutex_unlock(&ui->ui_mutex);
1112 return err;
1113 }
1114
1115 /*
1116 * dbg_check_dir - check directory inode size and link count.
1117 * @c: UBIFS file-system description object
1118 * @dir: the directory to calculate size for
1119 * @size: the result is returned here
1120 *
1121 * This function makes sure that directory size and link count are correct.
1122 * Returns zero in case of success and a negative error code in case of
1123 * failure.
1124 *
1125 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1126 * calling this function.
1127 */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1128 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1129 {
1130 unsigned int nlink = 2;
1131 union ubifs_key key;
1132 struct ubifs_dent_node *dent, *pdent = NULL;
1133 struct fscrypt_name nm = {0};
1134 loff_t size = UBIFS_INO_NODE_SZ;
1135
1136 if (!dbg_is_chk_gen(c))
1137 return 0;
1138
1139 if (!S_ISDIR(dir->i_mode))
1140 return 0;
1141
1142 lowest_dent_key(c, &key, dir->i_ino);
1143 while (1) {
1144 int err;
1145
1146 dent = ubifs_tnc_next_ent(c, &key, &nm);
1147 if (IS_ERR(dent)) {
1148 err = PTR_ERR(dent);
1149 if (err == -ENOENT)
1150 break;
1151 kfree(pdent);
1152 return err;
1153 }
1154
1155 fname_name(&nm) = dent->name;
1156 fname_len(&nm) = le16_to_cpu(dent->nlen);
1157 size += CALC_DENT_SIZE(fname_len(&nm));
1158 if (dent->type == UBIFS_ITYPE_DIR)
1159 nlink += 1;
1160 kfree(pdent);
1161 pdent = dent;
1162 key_read(c, &dent->key, &key);
1163 }
1164 kfree(pdent);
1165
1166 if (i_size_read(dir) != size) {
1167 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1168 dir->i_ino, (unsigned long long)i_size_read(dir),
1169 (unsigned long long)size);
1170 ubifs_dump_inode(c, dir);
1171 dump_stack();
1172 return -EINVAL;
1173 }
1174 if (dir->i_nlink != nlink) {
1175 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1176 dir->i_ino, dir->i_nlink, nlink);
1177 ubifs_dump_inode(c, dir);
1178 dump_stack();
1179 return -EINVAL;
1180 }
1181
1182 return 0;
1183 }
1184
1185 /**
1186 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1187 * @c: UBIFS file-system description object
1188 * @zbr1: first zbranch
1189 * @zbr2: following zbranch
1190 *
1191 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1192 * names of the direntries/xentries which are referred by the keys. This
1193 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1194 * sure the name of direntry/xentry referred by @zbr1 is less than
1195 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1196 * and a negative error code in case of failure.
1197 */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1198 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1199 struct ubifs_zbranch *zbr2)
1200 {
1201 int err, nlen1, nlen2, cmp;
1202 struct ubifs_dent_node *dent1, *dent2;
1203 union ubifs_key key;
1204 char key_buf[DBG_KEY_BUF_LEN];
1205
1206 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1207 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1208 if (!dent1)
1209 return -ENOMEM;
1210 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1211 if (!dent2) {
1212 err = -ENOMEM;
1213 goto out_free;
1214 }
1215
1216 err = ubifs_tnc_read_node(c, zbr1, dent1);
1217 if (err)
1218 goto out_free;
1219 err = ubifs_validate_entry(c, dent1);
1220 if (err)
1221 goto out_free;
1222
1223 err = ubifs_tnc_read_node(c, zbr2, dent2);
1224 if (err)
1225 goto out_free;
1226 err = ubifs_validate_entry(c, dent2);
1227 if (err)
1228 goto out_free;
1229
1230 /* Make sure node keys are the same as in zbranch */
1231 err = 1;
1232 key_read(c, &dent1->key, &key);
1233 if (keys_cmp(c, &zbr1->key, &key)) {
1234 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1235 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1236 DBG_KEY_BUF_LEN));
1237 ubifs_err(c, "but it should have key %s according to tnc",
1238 dbg_snprintf_key(c, &zbr1->key, key_buf,
1239 DBG_KEY_BUF_LEN));
1240 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1241 goto out_free;
1242 }
1243
1244 key_read(c, &dent2->key, &key);
1245 if (keys_cmp(c, &zbr2->key, &key)) {
1246 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1247 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1248 DBG_KEY_BUF_LEN));
1249 ubifs_err(c, "but it should have key %s according to tnc",
1250 dbg_snprintf_key(c, &zbr2->key, key_buf,
1251 DBG_KEY_BUF_LEN));
1252 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1253 goto out_free;
1254 }
1255
1256 nlen1 = le16_to_cpu(dent1->nlen);
1257 nlen2 = le16_to_cpu(dent2->nlen);
1258
1259 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1260 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1261 err = 0;
1262 goto out_free;
1263 }
1264 if (cmp == 0 && nlen1 == nlen2)
1265 ubifs_err(c, "2 xent/dent nodes with the same name");
1266 else
1267 ubifs_err(c, "bad order of colliding key %s",
1268 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1269
1270 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1271 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1272 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1273 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1274
1275 out_free:
1276 kfree(dent2);
1277 kfree(dent1);
1278 return err;
1279 }
1280
1281 /**
1282 * dbg_check_znode - check if znode is all right.
1283 * @c: UBIFS file-system description object
1284 * @zbr: zbranch which points to this znode
1285 *
1286 * This function makes sure that znode referred to by @zbr is all right.
1287 * Returns zero if it is, and %-EINVAL if it is not.
1288 */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1289 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1290 {
1291 struct ubifs_znode *znode = zbr->znode;
1292 struct ubifs_znode *zp = znode->parent;
1293 int n, err, cmp;
1294
1295 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1296 err = 1;
1297 goto out;
1298 }
1299 if (znode->level < 0) {
1300 err = 2;
1301 goto out;
1302 }
1303 if (znode->iip < 0 || znode->iip >= c->fanout) {
1304 err = 3;
1305 goto out;
1306 }
1307
1308 if (zbr->len == 0)
1309 /* Only dirty zbranch may have no on-flash nodes */
1310 if (!ubifs_zn_dirty(znode)) {
1311 err = 4;
1312 goto out;
1313 }
1314
1315 if (ubifs_zn_dirty(znode)) {
1316 /*
1317 * If znode is dirty, its parent has to be dirty as well. The
1318 * order of the operation is important, so we have to have
1319 * memory barriers.
1320 */
1321 smp_mb();
1322 if (zp && !ubifs_zn_dirty(zp)) {
1323 /*
1324 * The dirty flag is atomic and is cleared outside the
1325 * TNC mutex, so znode's dirty flag may now have
1326 * been cleared. The child is always cleared before the
1327 * parent, so we just need to check again.
1328 */
1329 smp_mb();
1330 if (ubifs_zn_dirty(znode)) {
1331 err = 5;
1332 goto out;
1333 }
1334 }
1335 }
1336
1337 if (zp) {
1338 const union ubifs_key *min, *max;
1339
1340 if (znode->level != zp->level - 1) {
1341 err = 6;
1342 goto out;
1343 }
1344
1345 /* Make sure the 'parent' pointer in our znode is correct */
1346 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1347 if (!err) {
1348 /* This zbranch does not exist in the parent */
1349 err = 7;
1350 goto out;
1351 }
1352
1353 if (znode->iip >= zp->child_cnt) {
1354 err = 8;
1355 goto out;
1356 }
1357
1358 if (znode->iip != n) {
1359 /* This may happen only in case of collisions */
1360 if (keys_cmp(c, &zp->zbranch[n].key,
1361 &zp->zbranch[znode->iip].key)) {
1362 err = 9;
1363 goto out;
1364 }
1365 n = znode->iip;
1366 }
1367
1368 /*
1369 * Make sure that the first key in our znode is greater than or
1370 * equal to the key in the pointing zbranch.
1371 */
1372 min = &zbr->key;
1373 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1374 if (cmp == 1) {
1375 err = 10;
1376 goto out;
1377 }
1378
1379 if (n + 1 < zp->child_cnt) {
1380 max = &zp->zbranch[n + 1].key;
1381
1382 /*
1383 * Make sure the last key in our znode is less or
1384 * equivalent than the key in the zbranch which goes
1385 * after our pointing zbranch.
1386 */
1387 cmp = keys_cmp(c, max,
1388 &znode->zbranch[znode->child_cnt - 1].key);
1389 if (cmp == -1) {
1390 err = 11;
1391 goto out;
1392 }
1393 }
1394 } else {
1395 /* This may only be root znode */
1396 if (zbr != &c->zroot) {
1397 err = 12;
1398 goto out;
1399 }
1400 }
1401
1402 /*
1403 * Make sure that next key is greater or equivalent then the previous
1404 * one.
1405 */
1406 for (n = 1; n < znode->child_cnt; n++) {
1407 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1408 &znode->zbranch[n].key);
1409 if (cmp > 0) {
1410 err = 13;
1411 goto out;
1412 }
1413 if (cmp == 0) {
1414 /* This can only be keys with colliding hash */
1415 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1416 err = 14;
1417 goto out;
1418 }
1419
1420 if (znode->level != 0 || c->replaying)
1421 continue;
1422
1423 /*
1424 * Colliding keys should follow binary order of
1425 * corresponding xentry/dentry names.
1426 */
1427 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1428 &znode->zbranch[n]);
1429 if (err < 0)
1430 return err;
1431 if (err) {
1432 err = 15;
1433 goto out;
1434 }
1435 }
1436 }
1437
1438 for (n = 0; n < znode->child_cnt; n++) {
1439 if (!znode->zbranch[n].znode &&
1440 (znode->zbranch[n].lnum == 0 ||
1441 znode->zbranch[n].len == 0)) {
1442 err = 16;
1443 goto out;
1444 }
1445
1446 if (znode->zbranch[n].lnum != 0 &&
1447 znode->zbranch[n].len == 0) {
1448 err = 17;
1449 goto out;
1450 }
1451
1452 if (znode->zbranch[n].lnum == 0 &&
1453 znode->zbranch[n].len != 0) {
1454 err = 18;
1455 goto out;
1456 }
1457
1458 if (znode->zbranch[n].lnum == 0 &&
1459 znode->zbranch[n].offs != 0) {
1460 err = 19;
1461 goto out;
1462 }
1463
1464 if (znode->level != 0 && znode->zbranch[n].znode)
1465 if (znode->zbranch[n].znode->parent != znode) {
1466 err = 20;
1467 goto out;
1468 }
1469 }
1470
1471 return 0;
1472
1473 out:
1474 ubifs_err(c, "failed, error %d", err);
1475 ubifs_msg(c, "dump of the znode");
1476 ubifs_dump_znode(c, znode);
1477 if (zp) {
1478 ubifs_msg(c, "dump of the parent znode");
1479 ubifs_dump_znode(c, zp);
1480 }
1481 dump_stack();
1482 return -EINVAL;
1483 }
1484
1485 /**
1486 * dbg_check_tnc - check TNC tree.
1487 * @c: UBIFS file-system description object
1488 * @extra: do extra checks that are possible at start commit
1489 *
1490 * This function traverses whole TNC tree and checks every znode. Returns zero
1491 * if everything is all right and %-EINVAL if something is wrong with TNC.
1492 */
dbg_check_tnc(struct ubifs_info * c,int extra)1493 int dbg_check_tnc(struct ubifs_info *c, int extra)
1494 {
1495 struct ubifs_znode *znode;
1496 long clean_cnt = 0, dirty_cnt = 0;
1497 int err, last;
1498
1499 if (!dbg_is_chk_index(c))
1500 return 0;
1501
1502 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1503 if (!c->zroot.znode)
1504 return 0;
1505
1506 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1507 while (1) {
1508 struct ubifs_znode *prev;
1509 struct ubifs_zbranch *zbr;
1510
1511 if (!znode->parent)
1512 zbr = &c->zroot;
1513 else
1514 zbr = &znode->parent->zbranch[znode->iip];
1515
1516 err = dbg_check_znode(c, zbr);
1517 if (err)
1518 return err;
1519
1520 if (extra) {
1521 if (ubifs_zn_dirty(znode))
1522 dirty_cnt += 1;
1523 else
1524 clean_cnt += 1;
1525 }
1526
1527 prev = znode;
1528 znode = ubifs_tnc_postorder_next(c, znode);
1529 if (!znode)
1530 break;
1531
1532 /*
1533 * If the last key of this znode is equivalent to the first key
1534 * of the next znode (collision), then check order of the keys.
1535 */
1536 last = prev->child_cnt - 1;
1537 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1538 !keys_cmp(c, &prev->zbranch[last].key,
1539 &znode->zbranch[0].key)) {
1540 err = dbg_check_key_order(c, &prev->zbranch[last],
1541 &znode->zbranch[0]);
1542 if (err < 0)
1543 return err;
1544 if (err) {
1545 ubifs_msg(c, "first znode");
1546 ubifs_dump_znode(c, prev);
1547 ubifs_msg(c, "second znode");
1548 ubifs_dump_znode(c, znode);
1549 return -EINVAL;
1550 }
1551 }
1552 }
1553
1554 if (extra) {
1555 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1556 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1557 atomic_long_read(&c->clean_zn_cnt),
1558 clean_cnt);
1559 return -EINVAL;
1560 }
1561 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1562 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1563 atomic_long_read(&c->dirty_zn_cnt),
1564 dirty_cnt);
1565 return -EINVAL;
1566 }
1567 }
1568
1569 return 0;
1570 }
1571
1572 /**
1573 * dbg_walk_index - walk the on-flash index.
1574 * @c: UBIFS file-system description object
1575 * @leaf_cb: called for each leaf node
1576 * @znode_cb: called for each indexing node
1577 * @priv: private data which is passed to callbacks
1578 *
1579 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1580 * node and @znode_cb for each indexing node. Returns zero in case of success
1581 * and a negative error code in case of failure.
1582 *
1583 * It would be better if this function removed every znode it pulled to into
1584 * the TNC, so that the behavior more closely matched the non-debugging
1585 * behavior.
1586 */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1587 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1588 dbg_znode_callback znode_cb, void *priv)
1589 {
1590 int err;
1591 struct ubifs_zbranch *zbr;
1592 struct ubifs_znode *znode, *child;
1593
1594 mutex_lock(&c->tnc_mutex);
1595 /* If the root indexing node is not in TNC - pull it */
1596 if (!c->zroot.znode) {
1597 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1598 if (IS_ERR(c->zroot.znode)) {
1599 err = PTR_ERR(c->zroot.znode);
1600 c->zroot.znode = NULL;
1601 goto out_unlock;
1602 }
1603 }
1604
1605 /*
1606 * We are going to traverse the indexing tree in the postorder manner.
1607 * Go down and find the leftmost indexing node where we are going to
1608 * start from.
1609 */
1610 znode = c->zroot.znode;
1611 while (znode->level > 0) {
1612 zbr = &znode->zbranch[0];
1613 child = zbr->znode;
1614 if (!child) {
1615 child = ubifs_load_znode(c, zbr, znode, 0);
1616 if (IS_ERR(child)) {
1617 err = PTR_ERR(child);
1618 goto out_unlock;
1619 }
1620 }
1621
1622 znode = child;
1623 }
1624
1625 /* Iterate over all indexing nodes */
1626 while (1) {
1627 int idx;
1628
1629 cond_resched();
1630
1631 if (znode_cb) {
1632 err = znode_cb(c, znode, priv);
1633 if (err) {
1634 ubifs_err(c, "znode checking function returned error %d",
1635 err);
1636 ubifs_dump_znode(c, znode);
1637 goto out_dump;
1638 }
1639 }
1640 if (leaf_cb && znode->level == 0) {
1641 for (idx = 0; idx < znode->child_cnt; idx++) {
1642 zbr = &znode->zbranch[idx];
1643 err = leaf_cb(c, zbr, priv);
1644 if (err) {
1645 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1646 err, zbr->lnum, zbr->offs);
1647 goto out_dump;
1648 }
1649 }
1650 }
1651
1652 if (!znode->parent)
1653 break;
1654
1655 idx = znode->iip + 1;
1656 znode = znode->parent;
1657 if (idx < znode->child_cnt) {
1658 /* Switch to the next index in the parent */
1659 zbr = &znode->zbranch[idx];
1660 child = zbr->znode;
1661 if (!child) {
1662 child = ubifs_load_znode(c, zbr, znode, idx);
1663 if (IS_ERR(child)) {
1664 err = PTR_ERR(child);
1665 goto out_unlock;
1666 }
1667 zbr->znode = child;
1668 }
1669 znode = child;
1670 } else
1671 /*
1672 * This is the last child, switch to the parent and
1673 * continue.
1674 */
1675 continue;
1676
1677 /* Go to the lowest leftmost znode in the new sub-tree */
1678 while (znode->level > 0) {
1679 zbr = &znode->zbranch[0];
1680 child = zbr->znode;
1681 if (!child) {
1682 child = ubifs_load_znode(c, zbr, znode, 0);
1683 if (IS_ERR(child)) {
1684 err = PTR_ERR(child);
1685 goto out_unlock;
1686 }
1687 zbr->znode = child;
1688 }
1689 znode = child;
1690 }
1691 }
1692
1693 mutex_unlock(&c->tnc_mutex);
1694 return 0;
1695
1696 out_dump:
1697 if (znode->parent)
1698 zbr = &znode->parent->zbranch[znode->iip];
1699 else
1700 zbr = &c->zroot;
1701 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1702 ubifs_dump_znode(c, znode);
1703 out_unlock:
1704 mutex_unlock(&c->tnc_mutex);
1705 return err;
1706 }
1707
1708 /**
1709 * add_size - add znode size to partially calculated index size.
1710 * @c: UBIFS file-system description object
1711 * @znode: znode to add size for
1712 * @priv: partially calculated index size
1713 *
1714 * This is a helper function for 'dbg_check_idx_size()' which is called for
1715 * every indexing node and adds its size to the 'long long' variable pointed to
1716 * by @priv.
1717 */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1718 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1719 {
1720 long long *idx_size = priv;
1721 int add;
1722
1723 add = ubifs_idx_node_sz(c, znode->child_cnt);
1724 add = ALIGN(add, 8);
1725 *idx_size += add;
1726 return 0;
1727 }
1728
1729 /**
1730 * dbg_check_idx_size - check index size.
1731 * @c: UBIFS file-system description object
1732 * @idx_size: size to check
1733 *
1734 * This function walks the UBIFS index, calculates its size and checks that the
1735 * size is equivalent to @idx_size. Returns zero in case of success and a
1736 * negative error code in case of failure.
1737 */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1738 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1739 {
1740 int err;
1741 long long calc = 0;
1742
1743 if (!dbg_is_chk_index(c))
1744 return 0;
1745
1746 err = dbg_walk_index(c, NULL, add_size, &calc);
1747 if (err) {
1748 ubifs_err(c, "error %d while walking the index", err);
1749 return err;
1750 }
1751
1752 if (calc != idx_size) {
1753 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1754 calc, idx_size);
1755 dump_stack();
1756 return -EINVAL;
1757 }
1758
1759 return 0;
1760 }
1761
1762 /**
1763 * struct fsck_inode - information about an inode used when checking the file-system.
1764 * @rb: link in the RB-tree of inodes
1765 * @inum: inode number
1766 * @mode: inode type, permissions, etc
1767 * @nlink: inode link count
1768 * @xattr_cnt: count of extended attributes
1769 * @references: how many directory/xattr entries refer this inode (calculated
1770 * while walking the index)
1771 * @calc_cnt: for directory inode count of child directories
1772 * @size: inode size (read from on-flash inode)
1773 * @xattr_sz: summary size of all extended attributes (read from on-flash
1774 * inode)
1775 * @calc_sz: for directories calculated directory size
1776 * @calc_xcnt: count of extended attributes
1777 * @calc_xsz: calculated summary size of all extended attributes
1778 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1779 * inode (read from on-flash inode)
1780 * @calc_xnms: calculated sum of lengths of all extended attribute names
1781 */
1782 struct fsck_inode {
1783 struct rb_node rb;
1784 ino_t inum;
1785 umode_t mode;
1786 unsigned int nlink;
1787 unsigned int xattr_cnt;
1788 int references;
1789 int calc_cnt;
1790 long long size;
1791 unsigned int xattr_sz;
1792 long long calc_sz;
1793 long long calc_xcnt;
1794 long long calc_xsz;
1795 unsigned int xattr_nms;
1796 long long calc_xnms;
1797 };
1798
1799 /**
1800 * struct fsck_data - private FS checking information.
1801 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1802 */
1803 struct fsck_data {
1804 struct rb_root inodes;
1805 };
1806
1807 /**
1808 * add_inode - add inode information to RB-tree of inodes.
1809 * @c: UBIFS file-system description object
1810 * @fsckd: FS checking information
1811 * @ino: raw UBIFS inode to add
1812 *
1813 * This is a helper function for 'check_leaf()' which adds information about
1814 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1815 * case of success and a negative error code in case of failure.
1816 */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1817 static struct fsck_inode *add_inode(struct ubifs_info *c,
1818 struct fsck_data *fsckd,
1819 struct ubifs_ino_node *ino)
1820 {
1821 struct rb_node **p, *parent = NULL;
1822 struct fsck_inode *fscki;
1823 ino_t inum = key_inum_flash(c, &ino->key);
1824 struct inode *inode;
1825 struct ubifs_inode *ui;
1826
1827 p = &fsckd->inodes.rb_node;
1828 while (*p) {
1829 parent = *p;
1830 fscki = rb_entry(parent, struct fsck_inode, rb);
1831 if (inum < fscki->inum)
1832 p = &(*p)->rb_left;
1833 else if (inum > fscki->inum)
1834 p = &(*p)->rb_right;
1835 else
1836 return fscki;
1837 }
1838
1839 if (inum > c->highest_inum) {
1840 ubifs_err(c, "too high inode number, max. is %lu",
1841 (unsigned long)c->highest_inum);
1842 return ERR_PTR(-EINVAL);
1843 }
1844
1845 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1846 if (!fscki)
1847 return ERR_PTR(-ENOMEM);
1848
1849 inode = ilookup(c->vfs_sb, inum);
1850
1851 fscki->inum = inum;
1852 /*
1853 * If the inode is present in the VFS inode cache, use it instead of
1854 * the on-flash inode which might be out-of-date. E.g., the size might
1855 * be out-of-date. If we do not do this, the following may happen, for
1856 * example:
1857 * 1. A power cut happens
1858 * 2. We mount the file-system R/O, the replay process fixes up the
1859 * inode size in the VFS cache, but on on-flash.
1860 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1861 * size.
1862 */
1863 if (!inode) {
1864 fscki->nlink = le32_to_cpu(ino->nlink);
1865 fscki->size = le64_to_cpu(ino->size);
1866 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1867 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1868 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1869 fscki->mode = le32_to_cpu(ino->mode);
1870 } else {
1871 ui = ubifs_inode(inode);
1872 fscki->nlink = inode->i_nlink;
1873 fscki->size = inode->i_size;
1874 fscki->xattr_cnt = ui->xattr_cnt;
1875 fscki->xattr_sz = ui->xattr_size;
1876 fscki->xattr_nms = ui->xattr_names;
1877 fscki->mode = inode->i_mode;
1878 iput(inode);
1879 }
1880
1881 if (S_ISDIR(fscki->mode)) {
1882 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1883 fscki->calc_cnt = 2;
1884 }
1885
1886 rb_link_node(&fscki->rb, parent, p);
1887 rb_insert_color(&fscki->rb, &fsckd->inodes);
1888
1889 return fscki;
1890 }
1891
1892 /**
1893 * search_inode - search inode in the RB-tree of inodes.
1894 * @fsckd: FS checking information
1895 * @inum: inode number to search
1896 *
1897 * This is a helper function for 'check_leaf()' which searches inode @inum in
1898 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1899 * the inode was not found.
1900 */
search_inode(struct fsck_data * fsckd,ino_t inum)1901 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1902 {
1903 struct rb_node *p;
1904 struct fsck_inode *fscki;
1905
1906 p = fsckd->inodes.rb_node;
1907 while (p) {
1908 fscki = rb_entry(p, struct fsck_inode, rb);
1909 if (inum < fscki->inum)
1910 p = p->rb_left;
1911 else if (inum > fscki->inum)
1912 p = p->rb_right;
1913 else
1914 return fscki;
1915 }
1916 return NULL;
1917 }
1918
1919 /**
1920 * read_add_inode - read inode node and add it to RB-tree of inodes.
1921 * @c: UBIFS file-system description object
1922 * @fsckd: FS checking information
1923 * @inum: inode number to read
1924 *
1925 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1926 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1927 * information pointer in case of success and a negative error code in case of
1928 * failure.
1929 */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1930 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1931 struct fsck_data *fsckd, ino_t inum)
1932 {
1933 int n, err;
1934 union ubifs_key key;
1935 struct ubifs_znode *znode;
1936 struct ubifs_zbranch *zbr;
1937 struct ubifs_ino_node *ino;
1938 struct fsck_inode *fscki;
1939
1940 fscki = search_inode(fsckd, inum);
1941 if (fscki)
1942 return fscki;
1943
1944 ino_key_init(c, &key, inum);
1945 err = ubifs_lookup_level0(c, &key, &znode, &n);
1946 if (!err) {
1947 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1948 return ERR_PTR(-ENOENT);
1949 } else if (err < 0) {
1950 ubifs_err(c, "error %d while looking up inode %lu",
1951 err, (unsigned long)inum);
1952 return ERR_PTR(err);
1953 }
1954
1955 zbr = &znode->zbranch[n];
1956 if (zbr->len < UBIFS_INO_NODE_SZ) {
1957 ubifs_err(c, "bad node %lu node length %d",
1958 (unsigned long)inum, zbr->len);
1959 return ERR_PTR(-EINVAL);
1960 }
1961
1962 ino = kmalloc(zbr->len, GFP_NOFS);
1963 if (!ino)
1964 return ERR_PTR(-ENOMEM);
1965
1966 err = ubifs_tnc_read_node(c, zbr, ino);
1967 if (err) {
1968 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1969 zbr->lnum, zbr->offs, err);
1970 kfree(ino);
1971 return ERR_PTR(err);
1972 }
1973
1974 fscki = add_inode(c, fsckd, ino);
1975 kfree(ino);
1976 if (IS_ERR(fscki)) {
1977 ubifs_err(c, "error %ld while adding inode %lu node",
1978 PTR_ERR(fscki), (unsigned long)inum);
1979 return fscki;
1980 }
1981
1982 return fscki;
1983 }
1984
1985 /**
1986 * check_leaf - check leaf node.
1987 * @c: UBIFS file-system description object
1988 * @zbr: zbranch of the leaf node to check
1989 * @priv: FS checking information
1990 *
1991 * This is a helper function for 'dbg_check_filesystem()' which is called for
1992 * every single leaf node while walking the indexing tree. It checks that the
1993 * leaf node referred from the indexing tree exists, has correct CRC, and does
1994 * some other basic validation. This function is also responsible for building
1995 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1996 * calculates reference count, size, etc for each inode in order to later
1997 * compare them to the information stored inside the inodes and detect possible
1998 * inconsistencies. Returns zero in case of success and a negative error code
1999 * in case of failure.
2000 */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2001 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2002 void *priv)
2003 {
2004 ino_t inum;
2005 void *node;
2006 struct ubifs_ch *ch;
2007 int err, type = key_type(c, &zbr->key);
2008 struct fsck_inode *fscki;
2009
2010 if (zbr->len < UBIFS_CH_SZ) {
2011 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2012 zbr->len, zbr->lnum, zbr->offs);
2013 return -EINVAL;
2014 }
2015
2016 node = kmalloc(zbr->len, GFP_NOFS);
2017 if (!node)
2018 return -ENOMEM;
2019
2020 err = ubifs_tnc_read_node(c, zbr, node);
2021 if (err) {
2022 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2023 zbr->lnum, zbr->offs, err);
2024 goto out_free;
2025 }
2026
2027 /* If this is an inode node, add it to RB-tree of inodes */
2028 if (type == UBIFS_INO_KEY) {
2029 fscki = add_inode(c, priv, node);
2030 if (IS_ERR(fscki)) {
2031 err = PTR_ERR(fscki);
2032 ubifs_err(c, "error %d while adding inode node", err);
2033 goto out_dump;
2034 }
2035 goto out;
2036 }
2037
2038 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2039 type != UBIFS_DATA_KEY) {
2040 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2041 type, zbr->lnum, zbr->offs);
2042 err = -EINVAL;
2043 goto out_free;
2044 }
2045
2046 ch = node;
2047 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2048 ubifs_err(c, "too high sequence number, max. is %llu",
2049 c->max_sqnum);
2050 err = -EINVAL;
2051 goto out_dump;
2052 }
2053
2054 if (type == UBIFS_DATA_KEY) {
2055 long long blk_offs;
2056 struct ubifs_data_node *dn = node;
2057
2058 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2059
2060 /*
2061 * Search the inode node this data node belongs to and insert
2062 * it to the RB-tree of inodes.
2063 */
2064 inum = key_inum_flash(c, &dn->key);
2065 fscki = read_add_inode(c, priv, inum);
2066 if (IS_ERR(fscki)) {
2067 err = PTR_ERR(fscki);
2068 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2069 err, (unsigned long)inum);
2070 goto out_dump;
2071 }
2072
2073 /* Make sure the data node is within inode size */
2074 blk_offs = key_block_flash(c, &dn->key);
2075 blk_offs <<= UBIFS_BLOCK_SHIFT;
2076 blk_offs += le32_to_cpu(dn->size);
2077 if (blk_offs > fscki->size) {
2078 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2079 zbr->lnum, zbr->offs, fscki->size);
2080 err = -EINVAL;
2081 goto out_dump;
2082 }
2083 } else {
2084 int nlen;
2085 struct ubifs_dent_node *dent = node;
2086 struct fsck_inode *fscki1;
2087
2088 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2089
2090 err = ubifs_validate_entry(c, dent);
2091 if (err)
2092 goto out_dump;
2093
2094 /*
2095 * Search the inode node this entry refers to and the parent
2096 * inode node and insert them to the RB-tree of inodes.
2097 */
2098 inum = le64_to_cpu(dent->inum);
2099 fscki = read_add_inode(c, priv, inum);
2100 if (IS_ERR(fscki)) {
2101 err = PTR_ERR(fscki);
2102 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2103 err, (unsigned long)inum);
2104 goto out_dump;
2105 }
2106
2107 /* Count how many direntries or xentries refers this inode */
2108 fscki->references += 1;
2109
2110 inum = key_inum_flash(c, &dent->key);
2111 fscki1 = read_add_inode(c, priv, inum);
2112 if (IS_ERR(fscki1)) {
2113 err = PTR_ERR(fscki1);
2114 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2115 err, (unsigned long)inum);
2116 goto out_dump;
2117 }
2118
2119 nlen = le16_to_cpu(dent->nlen);
2120 if (type == UBIFS_XENT_KEY) {
2121 fscki1->calc_xcnt += 1;
2122 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2123 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2124 fscki1->calc_xnms += nlen;
2125 } else {
2126 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2127 if (dent->type == UBIFS_ITYPE_DIR)
2128 fscki1->calc_cnt += 1;
2129 }
2130 }
2131
2132 out:
2133 kfree(node);
2134 return 0;
2135
2136 out_dump:
2137 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2138 ubifs_dump_node(c, node, zbr->len);
2139 out_free:
2140 kfree(node);
2141 return err;
2142 }
2143
2144 /**
2145 * free_inodes - free RB-tree of inodes.
2146 * @fsckd: FS checking information
2147 */
free_inodes(struct fsck_data * fsckd)2148 static void free_inodes(struct fsck_data *fsckd)
2149 {
2150 struct fsck_inode *fscki, *n;
2151
2152 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2153 kfree(fscki);
2154 }
2155
2156 /**
2157 * check_inodes - checks all inodes.
2158 * @c: UBIFS file-system description object
2159 * @fsckd: FS checking information
2160 *
2161 * This is a helper function for 'dbg_check_filesystem()' which walks the
2162 * RB-tree of inodes after the index scan has been finished, and checks that
2163 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2164 * %-EINVAL if not, and a negative error code in case of failure.
2165 */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2166 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2167 {
2168 int n, err;
2169 union ubifs_key key;
2170 struct ubifs_znode *znode;
2171 struct ubifs_zbranch *zbr;
2172 struct ubifs_ino_node *ino;
2173 struct fsck_inode *fscki;
2174 struct rb_node *this = rb_first(&fsckd->inodes);
2175
2176 while (this) {
2177 fscki = rb_entry(this, struct fsck_inode, rb);
2178 this = rb_next(this);
2179
2180 if (S_ISDIR(fscki->mode)) {
2181 /*
2182 * Directories have to have exactly one reference (they
2183 * cannot have hardlinks), although root inode is an
2184 * exception.
2185 */
2186 if (fscki->inum != UBIFS_ROOT_INO &&
2187 fscki->references != 1) {
2188 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2189 (unsigned long)fscki->inum,
2190 fscki->references);
2191 goto out_dump;
2192 }
2193 if (fscki->inum == UBIFS_ROOT_INO &&
2194 fscki->references != 0) {
2195 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2196 (unsigned long)fscki->inum,
2197 fscki->references);
2198 goto out_dump;
2199 }
2200 if (fscki->calc_sz != fscki->size) {
2201 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2202 (unsigned long)fscki->inum,
2203 fscki->size, fscki->calc_sz);
2204 goto out_dump;
2205 }
2206 if (fscki->calc_cnt != fscki->nlink) {
2207 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2208 (unsigned long)fscki->inum,
2209 fscki->nlink, fscki->calc_cnt);
2210 goto out_dump;
2211 }
2212 } else {
2213 if (fscki->references != fscki->nlink) {
2214 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2215 (unsigned long)fscki->inum,
2216 fscki->nlink, fscki->references);
2217 goto out_dump;
2218 }
2219 }
2220 if (fscki->xattr_sz != fscki->calc_xsz) {
2221 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2222 (unsigned long)fscki->inum, fscki->xattr_sz,
2223 fscki->calc_xsz);
2224 goto out_dump;
2225 }
2226 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2227 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2228 (unsigned long)fscki->inum,
2229 fscki->xattr_cnt, fscki->calc_xcnt);
2230 goto out_dump;
2231 }
2232 if (fscki->xattr_nms != fscki->calc_xnms) {
2233 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2234 (unsigned long)fscki->inum, fscki->xattr_nms,
2235 fscki->calc_xnms);
2236 goto out_dump;
2237 }
2238 }
2239
2240 return 0;
2241
2242 out_dump:
2243 /* Read the bad inode and dump it */
2244 ino_key_init(c, &key, fscki->inum);
2245 err = ubifs_lookup_level0(c, &key, &znode, &n);
2246 if (!err) {
2247 ubifs_err(c, "inode %lu not found in index",
2248 (unsigned long)fscki->inum);
2249 return -ENOENT;
2250 } else if (err < 0) {
2251 ubifs_err(c, "error %d while looking up inode %lu",
2252 err, (unsigned long)fscki->inum);
2253 return err;
2254 }
2255
2256 zbr = &znode->zbranch[n];
2257 ino = kmalloc(zbr->len, GFP_NOFS);
2258 if (!ino)
2259 return -ENOMEM;
2260
2261 err = ubifs_tnc_read_node(c, zbr, ino);
2262 if (err) {
2263 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2264 zbr->lnum, zbr->offs, err);
2265 kfree(ino);
2266 return err;
2267 }
2268
2269 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2270 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2271 ubifs_dump_node(c, ino, zbr->len);
2272 kfree(ino);
2273 return -EINVAL;
2274 }
2275
2276 /**
2277 * dbg_check_filesystem - check the file-system.
2278 * @c: UBIFS file-system description object
2279 *
2280 * This function checks the file system, namely:
2281 * o makes sure that all leaf nodes exist and their CRCs are correct;
2282 * o makes sure inode nlink, size, xattr size/count are correct (for all
2283 * inodes).
2284 *
2285 * The function reads whole indexing tree and all nodes, so it is pretty
2286 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2287 * not, and a negative error code in case of failure.
2288 */
dbg_check_filesystem(struct ubifs_info * c)2289 int dbg_check_filesystem(struct ubifs_info *c)
2290 {
2291 int err;
2292 struct fsck_data fsckd;
2293
2294 if (!dbg_is_chk_fs(c))
2295 return 0;
2296
2297 fsckd.inodes = RB_ROOT;
2298 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2299 if (err)
2300 goto out_free;
2301
2302 err = check_inodes(c, &fsckd);
2303 if (err)
2304 goto out_free;
2305
2306 free_inodes(&fsckd);
2307 return 0;
2308
2309 out_free:
2310 ubifs_err(c, "file-system check failed with error %d", err);
2311 dump_stack();
2312 free_inodes(&fsckd);
2313 return err;
2314 }
2315
2316 /**
2317 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2318 * @c: UBIFS file-system description object
2319 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2320 *
2321 * This function returns zero if the list of data nodes is sorted correctly,
2322 * and %-EINVAL if not.
2323 */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2324 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2325 {
2326 struct list_head *cur;
2327 struct ubifs_scan_node *sa, *sb;
2328
2329 if (!dbg_is_chk_gen(c))
2330 return 0;
2331
2332 for (cur = head->next; cur->next != head; cur = cur->next) {
2333 ino_t inuma, inumb;
2334 uint32_t blka, blkb;
2335
2336 cond_resched();
2337 sa = container_of(cur, struct ubifs_scan_node, list);
2338 sb = container_of(cur->next, struct ubifs_scan_node, list);
2339
2340 if (sa->type != UBIFS_DATA_NODE) {
2341 ubifs_err(c, "bad node type %d", sa->type);
2342 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2343 return -EINVAL;
2344 }
2345 if (sb->type != UBIFS_DATA_NODE) {
2346 ubifs_err(c, "bad node type %d", sb->type);
2347 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2348 return -EINVAL;
2349 }
2350
2351 inuma = key_inum(c, &sa->key);
2352 inumb = key_inum(c, &sb->key);
2353
2354 if (inuma < inumb)
2355 continue;
2356 if (inuma > inumb) {
2357 ubifs_err(c, "larger inum %lu goes before inum %lu",
2358 (unsigned long)inuma, (unsigned long)inumb);
2359 goto error_dump;
2360 }
2361
2362 blka = key_block(c, &sa->key);
2363 blkb = key_block(c, &sb->key);
2364
2365 if (blka > blkb) {
2366 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2367 goto error_dump;
2368 }
2369 if (blka == blkb) {
2370 ubifs_err(c, "two data nodes for the same block");
2371 goto error_dump;
2372 }
2373 }
2374
2375 return 0;
2376
2377 error_dump:
2378 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2379 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2380 return -EINVAL;
2381 }
2382
2383 /**
2384 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2385 * @c: UBIFS file-system description object
2386 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2387 *
2388 * This function returns zero if the list of non-data nodes is sorted correctly,
2389 * and %-EINVAL if not.
2390 */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2391 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2392 {
2393 struct list_head *cur;
2394 struct ubifs_scan_node *sa, *sb;
2395
2396 if (!dbg_is_chk_gen(c))
2397 return 0;
2398
2399 for (cur = head->next; cur->next != head; cur = cur->next) {
2400 ino_t inuma, inumb;
2401 uint32_t hasha, hashb;
2402
2403 cond_resched();
2404 sa = container_of(cur, struct ubifs_scan_node, list);
2405 sb = container_of(cur->next, struct ubifs_scan_node, list);
2406
2407 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2408 sa->type != UBIFS_XENT_NODE) {
2409 ubifs_err(c, "bad node type %d", sa->type);
2410 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2411 return -EINVAL;
2412 }
2413 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2414 sb->type != UBIFS_XENT_NODE) {
2415 ubifs_err(c, "bad node type %d", sb->type);
2416 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2417 return -EINVAL;
2418 }
2419
2420 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2421 ubifs_err(c, "non-inode node goes before inode node");
2422 goto error_dump;
2423 }
2424
2425 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2426 continue;
2427
2428 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2429 /* Inode nodes are sorted in descending size order */
2430 if (sa->len < sb->len) {
2431 ubifs_err(c, "smaller inode node goes first");
2432 goto error_dump;
2433 }
2434 continue;
2435 }
2436
2437 /*
2438 * This is either a dentry or xentry, which should be sorted in
2439 * ascending (parent ino, hash) order.
2440 */
2441 inuma = key_inum(c, &sa->key);
2442 inumb = key_inum(c, &sb->key);
2443
2444 if (inuma < inumb)
2445 continue;
2446 if (inuma > inumb) {
2447 ubifs_err(c, "larger inum %lu goes before inum %lu",
2448 (unsigned long)inuma, (unsigned long)inumb);
2449 goto error_dump;
2450 }
2451
2452 hasha = key_block(c, &sa->key);
2453 hashb = key_block(c, &sb->key);
2454
2455 if (hasha > hashb) {
2456 ubifs_err(c, "larger hash %u goes before %u",
2457 hasha, hashb);
2458 goto error_dump;
2459 }
2460 }
2461
2462 return 0;
2463
2464 error_dump:
2465 ubifs_msg(c, "dumping first node");
2466 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2467 ubifs_msg(c, "dumping second node");
2468 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2469 return -EINVAL;
2470 }
2471
chance(unsigned int n,unsigned int out_of)2472 static inline int chance(unsigned int n, unsigned int out_of)
2473 {
2474 return !!(get_random_u32_below(out_of) + 1 <= n);
2475
2476 }
2477
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2478 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2479 {
2480 struct ubifs_debug_info *d = c->dbg;
2481
2482 ubifs_assert(c, dbg_is_tst_rcvry(c));
2483
2484 if (!d->pc_cnt) {
2485 /* First call - decide delay to the power cut */
2486 if (chance(1, 2)) {
2487 unsigned long delay;
2488
2489 if (chance(1, 2)) {
2490 d->pc_delay = 1;
2491 /* Fail within 1 minute */
2492 delay = get_random_u32_below(60000);
2493 d->pc_timeout = jiffies;
2494 d->pc_timeout += msecs_to_jiffies(delay);
2495 ubifs_warn(c, "failing after %lums", delay);
2496 } else {
2497 d->pc_delay = 2;
2498 delay = get_random_u32_below(10000);
2499 /* Fail within 10000 operations */
2500 d->pc_cnt_max = delay;
2501 ubifs_warn(c, "failing after %lu calls", delay);
2502 }
2503 }
2504
2505 d->pc_cnt += 1;
2506 }
2507
2508 /* Determine if failure delay has expired */
2509 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2510 return 0;
2511 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2512 return 0;
2513
2514 if (lnum == UBIFS_SB_LNUM) {
2515 if (write && chance(1, 2))
2516 return 0;
2517 if (chance(19, 20))
2518 return 0;
2519 ubifs_warn(c, "failing in super block LEB %d", lnum);
2520 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2521 if (chance(19, 20))
2522 return 0;
2523 ubifs_warn(c, "failing in master LEB %d", lnum);
2524 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2525 if (write && chance(99, 100))
2526 return 0;
2527 if (chance(399, 400))
2528 return 0;
2529 ubifs_warn(c, "failing in log LEB %d", lnum);
2530 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2531 if (write && chance(7, 8))
2532 return 0;
2533 if (chance(19, 20))
2534 return 0;
2535 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2536 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2537 if (write && chance(1, 2))
2538 return 0;
2539 if (chance(9, 10))
2540 return 0;
2541 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2542 } else if (lnum == c->ihead_lnum) {
2543 if (chance(99, 100))
2544 return 0;
2545 ubifs_warn(c, "failing in index head LEB %d", lnum);
2546 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2547 if (chance(9, 10))
2548 return 0;
2549 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2550 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2551 !ubifs_search_bud(c, lnum)) {
2552 if (chance(19, 20))
2553 return 0;
2554 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2555 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2556 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2557 if (chance(999, 1000))
2558 return 0;
2559 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2560 } else {
2561 if (chance(9999, 10000))
2562 return 0;
2563 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2564 }
2565
2566 d->pc_happened = 1;
2567 ubifs_warn(c, "========== Power cut emulated ==========");
2568 dump_stack();
2569 return 1;
2570 }
2571
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2572 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2573 unsigned int len)
2574 {
2575 unsigned int from, to, ffs = chance(1, 2);
2576 unsigned char *p = (void *)buf;
2577
2578 from = get_random_u32_below(len);
2579 /* Corruption span max to end of write unit */
2580 to = min(len, ALIGN(from + 1, c->max_write_size));
2581
2582 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2583 ffs ? "0xFFs" : "random data");
2584
2585 if (ffs)
2586 memset(p + from, 0xFF, to - from);
2587 else
2588 get_random_bytes(p + from, to - from);
2589
2590 return to;
2591 }
2592
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2593 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2594 int offs, int len)
2595 {
2596 int err, failing;
2597
2598 if (dbg_is_power_cut(c))
2599 return -EROFS;
2600
2601 failing = power_cut_emulated(c, lnum, 1);
2602 if (failing) {
2603 len = corrupt_data(c, buf, len);
2604 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2605 len, lnum, offs);
2606 }
2607 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2608 if (err)
2609 return err;
2610 if (failing)
2611 return -EROFS;
2612 return 0;
2613 }
2614
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2615 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2616 int len)
2617 {
2618 int err;
2619
2620 if (dbg_is_power_cut(c))
2621 return -EROFS;
2622 if (power_cut_emulated(c, lnum, 1))
2623 return -EROFS;
2624 err = ubi_leb_change(c->ubi, lnum, buf, len);
2625 if (err)
2626 return err;
2627 if (power_cut_emulated(c, lnum, 1))
2628 return -EROFS;
2629 return 0;
2630 }
2631
dbg_leb_unmap(struct ubifs_info * c,int lnum)2632 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2633 {
2634 int err;
2635
2636 if (dbg_is_power_cut(c))
2637 return -EROFS;
2638 if (power_cut_emulated(c, lnum, 0))
2639 return -EROFS;
2640 err = ubi_leb_unmap(c->ubi, lnum);
2641 if (err)
2642 return err;
2643 if (power_cut_emulated(c, lnum, 0))
2644 return -EROFS;
2645 return 0;
2646 }
2647
dbg_leb_map(struct ubifs_info * c,int lnum)2648 int dbg_leb_map(struct ubifs_info *c, int lnum)
2649 {
2650 int err;
2651
2652 if (dbg_is_power_cut(c))
2653 return -EROFS;
2654 if (power_cut_emulated(c, lnum, 0))
2655 return -EROFS;
2656 err = ubi_leb_map(c->ubi, lnum);
2657 if (err)
2658 return err;
2659 if (power_cut_emulated(c, lnum, 0))
2660 return -EROFS;
2661 return 0;
2662 }
2663
2664 /*
2665 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2666 * contain the stuff specific to particular file-system mounts.
2667 */
2668 static struct dentry *dfs_rootdir;
2669
dfs_file_open(struct inode * inode,struct file * file)2670 static int dfs_file_open(struct inode *inode, struct file *file)
2671 {
2672 file->private_data = inode->i_private;
2673 return nonseekable_open(inode, file);
2674 }
2675
2676 /**
2677 * provide_user_output - provide output to the user reading a debugfs file.
2678 * @val: boolean value for the answer
2679 * @u: the buffer to store the answer at
2680 * @count: size of the buffer
2681 * @ppos: position in the @u output buffer
2682 *
2683 * This is a simple helper function which stores @val boolean value in the user
2684 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2685 * bytes written to @u in case of success and a negative error code in case of
2686 * failure.
2687 */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2688 static int provide_user_output(int val, char __user *u, size_t count,
2689 loff_t *ppos)
2690 {
2691 char buf[3];
2692
2693 if (val)
2694 buf[0] = '1';
2695 else
2696 buf[0] = '0';
2697 buf[1] = '\n';
2698 buf[2] = 0x00;
2699
2700 return simple_read_from_buffer(u, count, ppos, buf, 2);
2701 }
2702
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2703 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2704 loff_t *ppos)
2705 {
2706 struct dentry *dent = file->f_path.dentry;
2707 struct ubifs_info *c = file->private_data;
2708 struct ubifs_debug_info *d = c->dbg;
2709 int val;
2710
2711 if (dent == d->dfs_chk_gen)
2712 val = d->chk_gen;
2713 else if (dent == d->dfs_chk_index)
2714 val = d->chk_index;
2715 else if (dent == d->dfs_chk_orph)
2716 val = d->chk_orph;
2717 else if (dent == d->dfs_chk_lprops)
2718 val = d->chk_lprops;
2719 else if (dent == d->dfs_chk_fs)
2720 val = d->chk_fs;
2721 else if (dent == d->dfs_tst_rcvry)
2722 val = d->tst_rcvry;
2723 else if (dent == d->dfs_ro_error)
2724 val = c->ro_error;
2725 else
2726 return -EINVAL;
2727
2728 return provide_user_output(val, u, count, ppos);
2729 }
2730
2731 /**
2732 * interpret_user_input - interpret user debugfs file input.
2733 * @u: user-provided buffer with the input
2734 * @count: buffer size
2735 *
2736 * This is a helper function which interpret user input to a boolean UBIFS
2737 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2738 * in case of failure.
2739 */
interpret_user_input(const char __user * u,size_t count)2740 static int interpret_user_input(const char __user *u, size_t count)
2741 {
2742 size_t buf_size;
2743 char buf[8];
2744
2745 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2746 if (copy_from_user(buf, u, buf_size))
2747 return -EFAULT;
2748
2749 if (buf[0] == '1')
2750 return 1;
2751 else if (buf[0] == '0')
2752 return 0;
2753
2754 return -EINVAL;
2755 }
2756
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2757 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2758 size_t count, loff_t *ppos)
2759 {
2760 struct ubifs_info *c = file->private_data;
2761 struct ubifs_debug_info *d = c->dbg;
2762 struct dentry *dent = file->f_path.dentry;
2763 int val;
2764
2765 if (file->f_path.dentry == d->dfs_dump_lprops) {
2766 ubifs_dump_lprops(c);
2767 return count;
2768 }
2769 if (file->f_path.dentry == d->dfs_dump_budg) {
2770 ubifs_dump_budg(c, &c->bi);
2771 return count;
2772 }
2773 if (file->f_path.dentry == d->dfs_dump_tnc) {
2774 mutex_lock(&c->tnc_mutex);
2775 ubifs_dump_tnc(c);
2776 mutex_unlock(&c->tnc_mutex);
2777 return count;
2778 }
2779
2780 val = interpret_user_input(u, count);
2781 if (val < 0)
2782 return val;
2783
2784 if (dent == d->dfs_chk_gen)
2785 d->chk_gen = val;
2786 else if (dent == d->dfs_chk_index)
2787 d->chk_index = val;
2788 else if (dent == d->dfs_chk_orph)
2789 d->chk_orph = val;
2790 else if (dent == d->dfs_chk_lprops)
2791 d->chk_lprops = val;
2792 else if (dent == d->dfs_chk_fs)
2793 d->chk_fs = val;
2794 else if (dent == d->dfs_tst_rcvry)
2795 d->tst_rcvry = val;
2796 else if (dent == d->dfs_ro_error)
2797 c->ro_error = !!val;
2798 else
2799 return -EINVAL;
2800
2801 return count;
2802 }
2803
2804 static const struct file_operations dfs_fops = {
2805 .open = dfs_file_open,
2806 .read = dfs_file_read,
2807 .write = dfs_file_write,
2808 .owner = THIS_MODULE,
2809 .llseek = no_llseek,
2810 };
2811
2812 /**
2813 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2814 * @c: UBIFS file-system description object
2815 *
2816 * This function creates all debugfs files for this instance of UBIFS.
2817 *
2818 * Note, the only reason we have not merged this function with the
2819 * 'ubifs_debugging_init()' function is because it is better to initialize
2820 * debugfs interfaces at the very end of the mount process, and remove them at
2821 * the very beginning of the mount process.
2822 */
dbg_debugfs_init_fs(struct ubifs_info * c)2823 void dbg_debugfs_init_fs(struct ubifs_info *c)
2824 {
2825 int n;
2826 const char *fname;
2827 struct ubifs_debug_info *d = c->dbg;
2828
2829 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2830 c->vi.ubi_num, c->vi.vol_id);
2831 if (n > UBIFS_DFS_DIR_LEN) {
2832 /* The array size is too small */
2833 return;
2834 }
2835
2836 fname = d->dfs_dir_name;
2837 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2838
2839 fname = "dump_lprops";
2840 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841 &dfs_fops);
2842
2843 fname = "dump_budg";
2844 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845 &dfs_fops);
2846
2847 fname = "dump_tnc";
2848 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2849 &dfs_fops);
2850
2851 fname = "chk_general";
2852 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853 d->dfs_dir, c, &dfs_fops);
2854
2855 fname = "chk_index";
2856 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857 d->dfs_dir, c, &dfs_fops);
2858
2859 fname = "chk_orphans";
2860 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861 d->dfs_dir, c, &dfs_fops);
2862
2863 fname = "chk_lprops";
2864 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 d->dfs_dir, c, &dfs_fops);
2866
2867 fname = "chk_fs";
2868 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 d->dfs_dir, c, &dfs_fops);
2870
2871 fname = "tst_recovery";
2872 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 d->dfs_dir, c, &dfs_fops);
2874
2875 fname = "ro_error";
2876 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877 d->dfs_dir, c, &dfs_fops);
2878 }
2879
2880 /**
2881 * dbg_debugfs_exit_fs - remove all debugfs files.
2882 * @c: UBIFS file-system description object
2883 */
dbg_debugfs_exit_fs(struct ubifs_info * c)2884 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2885 {
2886 debugfs_remove_recursive(c->dbg->dfs_dir);
2887 }
2888
2889 struct ubifs_global_debug_info ubifs_dbg;
2890
2891 static struct dentry *dfs_chk_gen;
2892 static struct dentry *dfs_chk_index;
2893 static struct dentry *dfs_chk_orph;
2894 static struct dentry *dfs_chk_lprops;
2895 static struct dentry *dfs_chk_fs;
2896 static struct dentry *dfs_tst_rcvry;
2897
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2898 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2899 size_t count, loff_t *ppos)
2900 {
2901 struct dentry *dent = file->f_path.dentry;
2902 int val;
2903
2904 if (dent == dfs_chk_gen)
2905 val = ubifs_dbg.chk_gen;
2906 else if (dent == dfs_chk_index)
2907 val = ubifs_dbg.chk_index;
2908 else if (dent == dfs_chk_orph)
2909 val = ubifs_dbg.chk_orph;
2910 else if (dent == dfs_chk_lprops)
2911 val = ubifs_dbg.chk_lprops;
2912 else if (dent == dfs_chk_fs)
2913 val = ubifs_dbg.chk_fs;
2914 else if (dent == dfs_tst_rcvry)
2915 val = ubifs_dbg.tst_rcvry;
2916 else
2917 return -EINVAL;
2918
2919 return provide_user_output(val, u, count, ppos);
2920 }
2921
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2922 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2923 size_t count, loff_t *ppos)
2924 {
2925 struct dentry *dent = file->f_path.dentry;
2926 int val;
2927
2928 val = interpret_user_input(u, count);
2929 if (val < 0)
2930 return val;
2931
2932 if (dent == dfs_chk_gen)
2933 ubifs_dbg.chk_gen = val;
2934 else if (dent == dfs_chk_index)
2935 ubifs_dbg.chk_index = val;
2936 else if (dent == dfs_chk_orph)
2937 ubifs_dbg.chk_orph = val;
2938 else if (dent == dfs_chk_lprops)
2939 ubifs_dbg.chk_lprops = val;
2940 else if (dent == dfs_chk_fs)
2941 ubifs_dbg.chk_fs = val;
2942 else if (dent == dfs_tst_rcvry)
2943 ubifs_dbg.tst_rcvry = val;
2944 else
2945 return -EINVAL;
2946
2947 return count;
2948 }
2949
2950 static const struct file_operations dfs_global_fops = {
2951 .read = dfs_global_file_read,
2952 .write = dfs_global_file_write,
2953 .owner = THIS_MODULE,
2954 .llseek = no_llseek,
2955 };
2956
2957 /**
2958 * dbg_debugfs_init - initialize debugfs file-system.
2959 *
2960 * UBIFS uses debugfs file-system to expose various debugging knobs to
2961 * user-space. This function creates "ubifs" directory in the debugfs
2962 * file-system.
2963 */
dbg_debugfs_init(void)2964 void dbg_debugfs_init(void)
2965 {
2966 const char *fname;
2967
2968 fname = "ubifs";
2969 dfs_rootdir = debugfs_create_dir(fname, NULL);
2970
2971 fname = "chk_general";
2972 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2973 NULL, &dfs_global_fops);
2974
2975 fname = "chk_index";
2976 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977 dfs_rootdir, NULL, &dfs_global_fops);
2978
2979 fname = "chk_orphans";
2980 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981 dfs_rootdir, NULL, &dfs_global_fops);
2982
2983 fname = "chk_lprops";
2984 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2985 dfs_rootdir, NULL, &dfs_global_fops);
2986
2987 fname = "chk_fs";
2988 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2989 NULL, &dfs_global_fops);
2990
2991 fname = "tst_recovery";
2992 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2993 dfs_rootdir, NULL, &dfs_global_fops);
2994 }
2995
2996 /**
2997 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2998 */
dbg_debugfs_exit(void)2999 void dbg_debugfs_exit(void)
3000 {
3001 debugfs_remove_recursive(dfs_rootdir);
3002 }
3003
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3004 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3005 const char *file, int line)
3006 {
3007 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3008
3009 switch (c->assert_action) {
3010 case ASSACT_PANIC:
3011 BUG();
3012 break;
3013
3014 case ASSACT_RO:
3015 ubifs_ro_mode(c, -EINVAL);
3016 break;
3017
3018 case ASSACT_REPORT:
3019 default:
3020 dump_stack();
3021 break;
3022
3023 }
3024 }
3025
3026 /**
3027 * ubifs_debugging_init - initialize UBIFS debugging.
3028 * @c: UBIFS file-system description object
3029 *
3030 * This function initializes debugging-related data for the file system.
3031 * Returns zero in case of success and a negative error code in case of
3032 * failure.
3033 */
ubifs_debugging_init(struct ubifs_info * c)3034 int ubifs_debugging_init(struct ubifs_info *c)
3035 {
3036 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3037 if (!c->dbg)
3038 return -ENOMEM;
3039
3040 return 0;
3041 }
3042
3043 /**
3044 * ubifs_debugging_exit - free debugging data.
3045 * @c: UBIFS file-system description object
3046 */
ubifs_debugging_exit(struct ubifs_info * c)3047 void ubifs_debugging_exit(struct ubifs_info *c)
3048 {
3049 kfree(c->dbg);
3050 }
3051