xref: /openbmc/linux/drivers/md/dm-integrity.c (revision 769218209d8f00a4003dc9ee351198a473043eaf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26 
27 #include "dm-audit.h"
28 
29 #define DM_MSG_PREFIX "integrity"
30 
31 #define DEFAULT_INTERLEAVE_SECTORS	32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
34 #define DEFAULT_BUFFER_SECTORS		128
35 #define DEFAULT_JOURNAL_WATERMARK	50
36 #define DEFAULT_SYNC_MSEC		10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS	3
39 #define MAX_LOG2_INTERLEAVE_SECTORS	31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
41 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER		16
43 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
44 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
45 #define DISCARD_FILLER			0xf6
46 #define SALT_SIZE			16
47 
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54 
55 /*
56  * On disk structures
57  */
58 
59 #define SB_MAGIC			"integrt"
60 #define SB_VERSION_1			1
61 #define SB_VERSION_2			2
62 #define SB_VERSION_3			3
63 #define SB_VERSION_4			4
64 #define SB_VERSION_5			5
65 #define SB_SECTORS			8
66 #define MAX_SECTORS_PER_BLOCK		8
67 
68 struct superblock {
69 	__u8 magic[8];
70 	__u8 version;
71 	__u8 log2_interleave_sectors;
72 	__le16 integrity_tag_size;
73 	__le32 journal_sections;
74 	__le64 provided_data_sectors;	/* userspace uses this value */
75 	__le32 flags;
76 	__u8 log2_sectors_per_block;
77 	__u8 log2_blocks_per_bitmap_bit;
78 	__u8 pad[2];
79 	__le64 recalc_sector;
80 	__u8 pad2[8];
81 	__u8 salt[SALT_SIZE];
82 };
83 
84 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
85 #define SB_FLAG_RECALCULATING		0x2
86 #define SB_FLAG_DIRTY_BITMAP		0x4
87 #define SB_FLAG_FIXED_PADDING		0x8
88 #define SB_FLAG_FIXED_HMAC		0x10
89 
90 #define	JOURNAL_ENTRY_ROUNDUP		8
91 
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR		8
94 
95 struct journal_entry {
96 	union {
97 		struct {
98 			__le32 sector_lo;
99 			__le32 sector_hi;
100 		} s;
101 		__le64 sector;
102 	} u;
103 	commit_id_t last_bytes[];
104 	/* __u8 tag[0]; */
105 };
106 
107 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108 
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
119 
120 #define JOURNAL_BLOCK_SECTORS		8
121 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123 
124 struct journal_sector {
125 	struct_group(sectors,
126 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
128 	);
129 	commit_id_t commit_id;
130 };
131 
132 #define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133 
134 #define METADATA_PADDING_SECTORS	8
135 
136 #define N_COMMIT_IDS			4
137 
prev_commit_seq(unsigned char seq)138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142 
next_commit_seq(unsigned char seq)143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145 	return (seq + 1) % N_COMMIT_IDS;
146 }
147 
148 /*
149  * In-memory structures
150  */
151 
152 struct journal_node {
153 	struct rb_node node;
154 	sector_t sector;
155 };
156 
157 struct alg_spec {
158 	char *alg_string;
159 	char *key_string;
160 	__u8 *key;
161 	unsigned int key_size;
162 };
163 
164 struct dm_integrity_c {
165 	struct dm_dev *dev;
166 	struct dm_dev *meta_dev;
167 	unsigned int tag_size;
168 	__s8 log2_tag_size;
169 	sector_t start;
170 	mempool_t journal_io_mempool;
171 	struct dm_io_client *io;
172 	struct dm_bufio_client *bufio;
173 	struct workqueue_struct *metadata_wq;
174 	struct superblock *sb;
175 	unsigned int journal_pages;
176 	unsigned int n_bitmap_blocks;
177 
178 	struct page_list *journal;
179 	struct page_list *journal_io;
180 	struct page_list *journal_xor;
181 	struct page_list *recalc_bitmap;
182 	struct page_list *may_write_bitmap;
183 	struct bitmap_block_status *bbs;
184 	unsigned int bitmap_flush_interval;
185 	int synchronous_mode;
186 	struct bio_list synchronous_bios;
187 	struct delayed_work bitmap_flush_work;
188 
189 	struct crypto_skcipher *journal_crypt;
190 	struct scatterlist **journal_scatterlist;
191 	struct scatterlist **journal_io_scatterlist;
192 	struct skcipher_request **sk_requests;
193 
194 	struct crypto_shash *journal_mac;
195 
196 	struct journal_node *journal_tree;
197 	struct rb_root journal_tree_root;
198 
199 	sector_t provided_data_sectors;
200 
201 	unsigned short journal_entry_size;
202 	unsigned char journal_entries_per_sector;
203 	unsigned char journal_section_entries;
204 	unsigned short journal_section_sectors;
205 	unsigned int journal_sections;
206 	unsigned int journal_entries;
207 	sector_t data_device_sectors;
208 	sector_t meta_device_sectors;
209 	unsigned int initial_sectors;
210 	unsigned int metadata_run;
211 	__s8 log2_metadata_run;
212 	__u8 log2_buffer_sectors;
213 	__u8 sectors_per_block;
214 	__u8 log2_blocks_per_bitmap_bit;
215 
216 	unsigned char mode;
217 
218 	int failed;
219 
220 	struct crypto_shash *internal_hash;
221 
222 	struct dm_target *ti;
223 
224 	/* these variables are locked with endio_wait.lock */
225 	struct rb_root in_progress;
226 	struct list_head wait_list;
227 	wait_queue_head_t endio_wait;
228 	struct workqueue_struct *wait_wq;
229 	struct workqueue_struct *offload_wq;
230 
231 	unsigned char commit_seq;
232 	commit_id_t commit_ids[N_COMMIT_IDS];
233 
234 	unsigned int committed_section;
235 	unsigned int n_committed_sections;
236 
237 	unsigned int uncommitted_section;
238 	unsigned int n_uncommitted_sections;
239 
240 	unsigned int free_section;
241 	unsigned char free_section_entry;
242 	unsigned int free_sectors;
243 
244 	unsigned int free_sectors_threshold;
245 
246 	struct workqueue_struct *commit_wq;
247 	struct work_struct commit_work;
248 
249 	struct workqueue_struct *writer_wq;
250 	struct work_struct writer_work;
251 
252 	struct workqueue_struct *recalc_wq;
253 	struct work_struct recalc_work;
254 
255 	struct bio_list flush_bio_list;
256 
257 	unsigned long autocommit_jiffies;
258 	struct timer_list autocommit_timer;
259 	unsigned int autocommit_msec;
260 
261 	wait_queue_head_t copy_to_journal_wait;
262 
263 	struct completion crypto_backoff;
264 
265 	bool wrote_to_journal;
266 	bool journal_uptodate;
267 	bool just_formatted;
268 	bool recalculate_flag;
269 	bool reset_recalculate_flag;
270 	bool discard;
271 	bool fix_padding;
272 	bool fix_hmac;
273 	bool legacy_recalculate;
274 
275 	struct alg_spec internal_hash_alg;
276 	struct alg_spec journal_crypt_alg;
277 	struct alg_spec journal_mac_alg;
278 
279 	atomic64_t number_of_mismatches;
280 
281 	mempool_t recheck_pool;
282 
283 	struct notifier_block reboot_notifier;
284 };
285 
286 struct dm_integrity_range {
287 	sector_t logical_sector;
288 	sector_t n_sectors;
289 	bool waiting;
290 	union {
291 		struct rb_node node;
292 		struct {
293 			struct task_struct *task;
294 			struct list_head wait_entry;
295 		};
296 	};
297 };
298 
299 struct dm_integrity_io {
300 	struct work_struct work;
301 
302 	struct dm_integrity_c *ic;
303 	enum req_op op;
304 	bool fua;
305 
306 	struct dm_integrity_range range;
307 
308 	sector_t metadata_block;
309 	unsigned int metadata_offset;
310 
311 	atomic_t in_flight;
312 	blk_status_t bi_status;
313 
314 	struct completion *completion;
315 
316 	struct dm_bio_details bio_details;
317 };
318 
319 struct journal_completion {
320 	struct dm_integrity_c *ic;
321 	atomic_t in_flight;
322 	struct completion comp;
323 };
324 
325 struct journal_io {
326 	struct dm_integrity_range range;
327 	struct journal_completion *comp;
328 };
329 
330 struct bitmap_block_status {
331 	struct work_struct work;
332 	struct dm_integrity_c *ic;
333 	unsigned int idx;
334 	unsigned long *bitmap;
335 	struct bio_list bio_queue;
336 	spinlock_t bio_queue_lock;
337 
338 };
339 
340 static struct kmem_cache *journal_io_cache;
341 
342 #define JOURNAL_IO_MEMPOOL	32
343 
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 						       len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)			do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
351 #endif
352 
dm_integrity_prepare(struct request * rq)353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356 
dm_integrity_complete(struct request * rq,unsigned int nr_bytes)357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360 
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365 	.name			= "DM-DIF-EXT-TAG",
366 	.generate_fn		= NULL,
367 	.verify_fn		= NULL,
368 	.prepare_fn		= dm_integrity_prepare,
369 	.complete_fn		= dm_integrity_complete,
370 };
371 
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375 
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378 	if (err == -EILSEQ)
379 		atomic64_inc(&ic->number_of_mismatches);
380 	if (!cmpxchg(&ic->failed, 0, err))
381 		DMERR("Error on %s: %d", msg, err);
382 }
383 
dm_integrity_failed(struct dm_integrity_c * ic)384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386 	return READ_ONCE(ic->failed);
387 }
388 
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391 	if (ic->legacy_recalculate)
392 		return false;
393 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 		return true;
397 	return false;
398 }
399 
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 					  unsigned int j, unsigned char seq)
402 {
403 	/*
404 	 * Xor the number with section and sector, so that if a piece of
405 	 * journal is written at wrong place, it is detected.
406 	 */
407 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409 
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 				sector_t *area, sector_t *offset)
412 {
413 	if (!ic->meta_dev) {
414 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 		*area = data_sector >> log2_interleave_sectors;
416 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 	} else {
418 		*area = 0;
419 		*offset = data_sector;
420 	}
421 }
422 
423 #define sector_to_block(ic, n)						\
424 do {									\
425 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
426 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
427 } while (0)
428 
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 					    sector_t offset, unsigned int *metadata_offset)
431 {
432 	__u64 ms;
433 	unsigned int mo;
434 
435 	ms = area << ic->sb->log2_interleave_sectors;
436 	if (likely(ic->log2_metadata_run >= 0))
437 		ms += area << ic->log2_metadata_run;
438 	else
439 		ms += area * ic->metadata_run;
440 	ms >>= ic->log2_buffer_sectors;
441 
442 	sector_to_block(ic, offset);
443 
444 	if (likely(ic->log2_tag_size >= 0)) {
445 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 	} else {
448 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 	}
451 	*metadata_offset = mo;
452 	return ms;
453 }
454 
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457 	sector_t result;
458 
459 	if (ic->meta_dev)
460 		return offset;
461 
462 	result = area << ic->sb->log2_interleave_sectors;
463 	if (likely(ic->log2_metadata_run >= 0))
464 		result += (area + 1) << ic->log2_metadata_run;
465 	else
466 		result += (area + 1) * ic->metadata_run;
467 
468 	result += (sector_t)ic->initial_sectors + offset;
469 	result += ic->start;
470 
471 	return result;
472 }
473 
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476 	if (unlikely(*sec_ptr >= ic->journal_sections))
477 		*sec_ptr -= ic->journal_sections;
478 }
479 
sb_set_version(struct dm_integrity_c * ic)480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 		ic->sb->version = SB_VERSION_5;
484 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 		ic->sb->version = SB_VERSION_4;
486 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 		ic->sb->version = SB_VERSION_3;
488 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 		ic->sb->version = SB_VERSION_2;
490 	else
491 		ic->sb->version = SB_VERSION_1;
492 }
493 
sb_mac(struct dm_integrity_c * ic,bool wr)494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 	int r;
498 	unsigned int size = crypto_shash_digestsize(ic->journal_mac);
499 
500 	if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
501 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502 		return -EINVAL;
503 	}
504 
505 	desc->tfm = ic->journal_mac;
506 
507 	r = crypto_shash_init(desc);
508 	if (unlikely(r < 0)) {
509 		dm_integrity_io_error(ic, "crypto_shash_init", r);
510 		return r;
511 	}
512 
513 	r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
514 	if (unlikely(r < 0)) {
515 		dm_integrity_io_error(ic, "crypto_shash_update", r);
516 		return r;
517 	}
518 
519 	if (likely(wr)) {
520 		r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
521 		if (unlikely(r < 0)) {
522 			dm_integrity_io_error(ic, "crypto_shash_final", r);
523 			return r;
524 		}
525 	} else {
526 		__u8 result[HASH_MAX_DIGESTSIZE];
527 
528 		r = crypto_shash_final(desc, result);
529 		if (unlikely(r < 0)) {
530 			dm_integrity_io_error(ic, "crypto_shash_final", r);
531 			return r;
532 		}
533 		if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
534 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
535 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
536 			return -EILSEQ;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)543 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
544 {
545 	struct dm_io_request io_req;
546 	struct dm_io_region io_loc;
547 	const enum req_op op = opf & REQ_OP_MASK;
548 	int r;
549 
550 	io_req.bi_opf = opf;
551 	io_req.mem.type = DM_IO_KMEM;
552 	io_req.mem.ptr.addr = ic->sb;
553 	io_req.notify.fn = NULL;
554 	io_req.client = ic->io;
555 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
556 	io_loc.sector = ic->start;
557 	io_loc.count = SB_SECTORS;
558 
559 	if (op == REQ_OP_WRITE) {
560 		sb_set_version(ic);
561 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562 			r = sb_mac(ic, true);
563 			if (unlikely(r))
564 				return r;
565 		}
566 	}
567 
568 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
569 	if (unlikely(r))
570 		return r;
571 
572 	if (op == REQ_OP_READ) {
573 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
574 			r = sb_mac(ic, false);
575 			if (unlikely(r))
576 				return r;
577 		}
578 	}
579 
580 	return 0;
581 }
582 
583 #define BITMAP_OP_TEST_ALL_SET		0
584 #define BITMAP_OP_TEST_ALL_CLEAR	1
585 #define BITMAP_OP_SET			2
586 #define BITMAP_OP_CLEAR			3
587 
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)588 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
589 			    sector_t sector, sector_t n_sectors, int mode)
590 {
591 	unsigned long bit, end_bit, this_end_bit, page, end_page;
592 	unsigned long *data;
593 
594 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
595 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
596 			sector,
597 			n_sectors,
598 			ic->sb->log2_sectors_per_block,
599 			ic->log2_blocks_per_bitmap_bit,
600 			mode);
601 		BUG();
602 	}
603 
604 	if (unlikely(!n_sectors))
605 		return true;
606 
607 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
608 	end_bit = (sector + n_sectors - 1) >>
609 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
610 
611 	page = bit / (PAGE_SIZE * 8);
612 	bit %= PAGE_SIZE * 8;
613 
614 	end_page = end_bit / (PAGE_SIZE * 8);
615 	end_bit %= PAGE_SIZE * 8;
616 
617 repeat:
618 	if (page < end_page)
619 		this_end_bit = PAGE_SIZE * 8 - 1;
620 	else
621 		this_end_bit = end_bit;
622 
623 	data = lowmem_page_address(bitmap[page].page);
624 
625 	if (mode == BITMAP_OP_TEST_ALL_SET) {
626 		while (bit <= this_end_bit) {
627 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
628 				do {
629 					if (data[bit / BITS_PER_LONG] != -1)
630 						return false;
631 					bit += BITS_PER_LONG;
632 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
633 				continue;
634 			}
635 			if (!test_bit(bit, data))
636 				return false;
637 			bit++;
638 		}
639 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
640 		while (bit <= this_end_bit) {
641 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
642 				do {
643 					if (data[bit / BITS_PER_LONG] != 0)
644 						return false;
645 					bit += BITS_PER_LONG;
646 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 				continue;
648 			}
649 			if (test_bit(bit, data))
650 				return false;
651 			bit++;
652 		}
653 	} else if (mode == BITMAP_OP_SET) {
654 		while (bit <= this_end_bit) {
655 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
656 				do {
657 					data[bit / BITS_PER_LONG] = -1;
658 					bit += BITS_PER_LONG;
659 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
660 				continue;
661 			}
662 			__set_bit(bit, data);
663 			bit++;
664 		}
665 	} else if (mode == BITMAP_OP_CLEAR) {
666 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
667 			clear_page(data);
668 		else {
669 			while (bit <= this_end_bit) {
670 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671 					do {
672 						data[bit / BITS_PER_LONG] = 0;
673 						bit += BITS_PER_LONG;
674 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
675 					continue;
676 				}
677 				__clear_bit(bit, data);
678 				bit++;
679 			}
680 		}
681 	} else {
682 		BUG();
683 	}
684 
685 	if (unlikely(page < end_page)) {
686 		bit = 0;
687 		page++;
688 		goto repeat;
689 	}
690 
691 	return true;
692 }
693 
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)694 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
695 {
696 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
697 	unsigned int i;
698 
699 	for (i = 0; i < n_bitmap_pages; i++) {
700 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
701 		unsigned long *src_data = lowmem_page_address(src[i].page);
702 
703 		copy_page(dst_data, src_data);
704 	}
705 }
706 
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)707 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
708 {
709 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
710 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
711 
712 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
713 	return &ic->bbs[bitmap_block];
714 }
715 
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)716 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
717 				 bool e, const char *function)
718 {
719 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
720 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
721 
722 	if (unlikely(section >= ic->journal_sections) ||
723 	    unlikely(offset >= limit)) {
724 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
725 		       function, section, offset, ic->journal_sections, limit);
726 		BUG();
727 	}
728 #endif
729 }
730 
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)731 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732 			       unsigned int *pl_index, unsigned int *pl_offset)
733 {
734 	unsigned int sector;
735 
736 	access_journal_check(ic, section, offset, false, "page_list_location");
737 
738 	sector = section * ic->journal_section_sectors + offset;
739 
740 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
741 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
742 }
743 
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)744 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
745 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
746 {
747 	unsigned int pl_index, pl_offset;
748 	char *va;
749 
750 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
751 
752 	if (n_sectors)
753 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
754 
755 	va = lowmem_page_address(pl[pl_index].page);
756 
757 	return (struct journal_sector *)(va + pl_offset);
758 }
759 
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)760 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
761 {
762 	return access_page_list(ic, ic->journal, section, offset, NULL);
763 }
764 
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)765 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
766 {
767 	unsigned int rel_sector, offset;
768 	struct journal_sector *js;
769 
770 	access_journal_check(ic, section, n, true, "access_journal_entry");
771 
772 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
773 	offset = n / JOURNAL_BLOCK_SECTORS;
774 
775 	js = access_journal(ic, section, rel_sector);
776 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
777 }
778 
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)779 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
780 {
781 	n <<= ic->sb->log2_sectors_per_block;
782 
783 	n += JOURNAL_BLOCK_SECTORS;
784 
785 	access_journal_check(ic, section, n, false, "access_journal_data");
786 
787 	return access_journal(ic, section, n);
788 }
789 
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])790 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
791 {
792 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
793 	int r;
794 	unsigned int j, size;
795 
796 	desc->tfm = ic->journal_mac;
797 
798 	r = crypto_shash_init(desc);
799 	if (unlikely(r < 0)) {
800 		dm_integrity_io_error(ic, "crypto_shash_init", r);
801 		goto err;
802 	}
803 
804 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
805 		__le64 section_le;
806 
807 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
808 		if (unlikely(r < 0)) {
809 			dm_integrity_io_error(ic, "crypto_shash_update", r);
810 			goto err;
811 		}
812 
813 		section_le = cpu_to_le64(section);
814 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
815 		if (unlikely(r < 0)) {
816 			dm_integrity_io_error(ic, "crypto_shash_update", r);
817 			goto err;
818 		}
819 	}
820 
821 	for (j = 0; j < ic->journal_section_entries; j++) {
822 		struct journal_entry *je = access_journal_entry(ic, section, j);
823 
824 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
825 		if (unlikely(r < 0)) {
826 			dm_integrity_io_error(ic, "crypto_shash_update", r);
827 			goto err;
828 		}
829 	}
830 
831 	size = crypto_shash_digestsize(ic->journal_mac);
832 
833 	if (likely(size <= JOURNAL_MAC_SIZE)) {
834 		r = crypto_shash_final(desc, result);
835 		if (unlikely(r < 0)) {
836 			dm_integrity_io_error(ic, "crypto_shash_final", r);
837 			goto err;
838 		}
839 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
840 	} else {
841 		__u8 digest[HASH_MAX_DIGESTSIZE];
842 
843 		if (WARN_ON(size > sizeof(digest))) {
844 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
845 			goto err;
846 		}
847 		r = crypto_shash_final(desc, digest);
848 		if (unlikely(r < 0)) {
849 			dm_integrity_io_error(ic, "crypto_shash_final", r);
850 			goto err;
851 		}
852 		memcpy(result, digest, JOURNAL_MAC_SIZE);
853 	}
854 
855 	return;
856 err:
857 	memset(result, 0, JOURNAL_MAC_SIZE);
858 }
859 
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)860 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
861 {
862 	__u8 result[JOURNAL_MAC_SIZE];
863 	unsigned int j;
864 
865 	if (!ic->journal_mac)
866 		return;
867 
868 	section_mac(ic, section, result);
869 
870 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
871 		struct journal_sector *js = access_journal(ic, section, j);
872 
873 		if (likely(wr))
874 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
875 		else {
876 			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
877 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
878 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
879 			}
880 		}
881 	}
882 }
883 
complete_journal_op(void * context)884 static void complete_journal_op(void *context)
885 {
886 	struct journal_completion *comp = context;
887 
888 	BUG_ON(!atomic_read(&comp->in_flight));
889 	if (likely(atomic_dec_and_test(&comp->in_flight)))
890 		complete(&comp->comp);
891 }
892 
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)893 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
894 			unsigned int n_sections, struct journal_completion *comp)
895 {
896 	struct async_submit_ctl submit;
897 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
898 	unsigned int pl_index, pl_offset, section_index;
899 	struct page_list *source_pl, *target_pl;
900 
901 	if (likely(encrypt)) {
902 		source_pl = ic->journal;
903 		target_pl = ic->journal_io;
904 	} else {
905 		source_pl = ic->journal_io;
906 		target_pl = ic->journal;
907 	}
908 
909 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
910 
911 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
912 
913 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
914 
915 	section_index = pl_index;
916 
917 	do {
918 		size_t this_step;
919 		struct page *src_pages[2];
920 		struct page *dst_page;
921 
922 		while (unlikely(pl_index == section_index)) {
923 			unsigned int dummy;
924 
925 			if (likely(encrypt))
926 				rw_section_mac(ic, section, true);
927 			section++;
928 			n_sections--;
929 			if (!n_sections)
930 				break;
931 			page_list_location(ic, section, 0, &section_index, &dummy);
932 		}
933 
934 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
935 		dst_page = target_pl[pl_index].page;
936 		src_pages[0] = source_pl[pl_index].page;
937 		src_pages[1] = ic->journal_xor[pl_index].page;
938 
939 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
940 
941 		pl_index++;
942 		pl_offset = 0;
943 		n_bytes -= this_step;
944 	} while (n_bytes);
945 
946 	BUG_ON(n_sections);
947 
948 	async_tx_issue_pending_all();
949 }
950 
complete_journal_encrypt(void * data,int err)951 static void complete_journal_encrypt(void *data, int err)
952 {
953 	struct journal_completion *comp = data;
954 
955 	if (unlikely(err)) {
956 		if (likely(err == -EINPROGRESS)) {
957 			complete(&comp->ic->crypto_backoff);
958 			return;
959 		}
960 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
961 	}
962 	complete_journal_op(comp);
963 }
964 
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)965 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
966 {
967 	int r;
968 
969 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
970 				      complete_journal_encrypt, comp);
971 	if (likely(encrypt))
972 		r = crypto_skcipher_encrypt(req);
973 	else
974 		r = crypto_skcipher_decrypt(req);
975 	if (likely(!r))
976 		return false;
977 	if (likely(r == -EINPROGRESS))
978 		return true;
979 	if (likely(r == -EBUSY)) {
980 		wait_for_completion(&comp->ic->crypto_backoff);
981 		reinit_completion(&comp->ic->crypto_backoff);
982 		return true;
983 	}
984 	dm_integrity_io_error(comp->ic, "encrypt", r);
985 	return false;
986 }
987 
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)988 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
989 			  unsigned int n_sections, struct journal_completion *comp)
990 {
991 	struct scatterlist **source_sg;
992 	struct scatterlist **target_sg;
993 
994 	atomic_add(2, &comp->in_flight);
995 
996 	if (likely(encrypt)) {
997 		source_sg = ic->journal_scatterlist;
998 		target_sg = ic->journal_io_scatterlist;
999 	} else {
1000 		source_sg = ic->journal_io_scatterlist;
1001 		target_sg = ic->journal_scatterlist;
1002 	}
1003 
1004 	do {
1005 		struct skcipher_request *req;
1006 		unsigned int ivsize;
1007 		char *iv;
1008 
1009 		if (likely(encrypt))
1010 			rw_section_mac(ic, section, true);
1011 
1012 		req = ic->sk_requests[section];
1013 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1014 		iv = req->iv;
1015 
1016 		memcpy(iv, iv + ivsize, ivsize);
1017 
1018 		req->src = source_sg[section];
1019 		req->dst = target_sg[section];
1020 
1021 		if (unlikely(do_crypt(encrypt, req, comp)))
1022 			atomic_inc(&comp->in_flight);
1023 
1024 		section++;
1025 		n_sections--;
1026 	} while (n_sections);
1027 
1028 	atomic_dec(&comp->in_flight);
1029 	complete_journal_op(comp);
1030 }
1031 
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1032 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1033 			    unsigned int n_sections, struct journal_completion *comp)
1034 {
1035 	if (ic->journal_xor)
1036 		return xor_journal(ic, encrypt, section, n_sections, comp);
1037 	else
1038 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1039 }
1040 
complete_journal_io(unsigned long error,void * context)1041 static void complete_journal_io(unsigned long error, void *context)
1042 {
1043 	struct journal_completion *comp = context;
1044 
1045 	if (unlikely(error != 0))
1046 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1047 	complete_journal_op(comp);
1048 }
1049 
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1050 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1051 			       unsigned int sector, unsigned int n_sectors,
1052 			       struct journal_completion *comp)
1053 {
1054 	struct dm_io_request io_req;
1055 	struct dm_io_region io_loc;
1056 	unsigned int pl_index, pl_offset;
1057 	int r;
1058 
1059 	if (unlikely(dm_integrity_failed(ic))) {
1060 		if (comp)
1061 			complete_journal_io(-1UL, comp);
1062 		return;
1063 	}
1064 
1065 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1066 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1067 
1068 	io_req.bi_opf = opf;
1069 	io_req.mem.type = DM_IO_PAGE_LIST;
1070 	if (ic->journal_io)
1071 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1072 	else
1073 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1074 	io_req.mem.offset = pl_offset;
1075 	if (likely(comp != NULL)) {
1076 		io_req.notify.fn = complete_journal_io;
1077 		io_req.notify.context = comp;
1078 	} else {
1079 		io_req.notify.fn = NULL;
1080 	}
1081 	io_req.client = ic->io;
1082 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1083 	io_loc.sector = ic->start + SB_SECTORS + sector;
1084 	io_loc.count = n_sectors;
1085 
1086 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1087 	if (unlikely(r)) {
1088 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1089 				      "reading journal" : "writing journal", r);
1090 		if (comp) {
1091 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1092 			complete_journal_io(-1UL, comp);
1093 		}
1094 	}
1095 }
1096 
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1097 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1098 		       unsigned int section, unsigned int n_sections,
1099 		       struct journal_completion *comp)
1100 {
1101 	unsigned int sector, n_sectors;
1102 
1103 	sector = section * ic->journal_section_sectors;
1104 	n_sectors = n_sections * ic->journal_section_sectors;
1105 
1106 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1107 }
1108 
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1109 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1110 {
1111 	struct journal_completion io_comp;
1112 	struct journal_completion crypt_comp_1;
1113 	struct journal_completion crypt_comp_2;
1114 	unsigned int i;
1115 
1116 	io_comp.ic = ic;
1117 	init_completion(&io_comp.comp);
1118 
1119 	if (commit_start + commit_sections <= ic->journal_sections) {
1120 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1121 		if (ic->journal_io) {
1122 			crypt_comp_1.ic = ic;
1123 			init_completion(&crypt_comp_1.comp);
1124 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1125 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1126 			wait_for_completion_io(&crypt_comp_1.comp);
1127 		} else {
1128 			for (i = 0; i < commit_sections; i++)
1129 				rw_section_mac(ic, commit_start + i, true);
1130 		}
1131 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1132 			   commit_sections, &io_comp);
1133 	} else {
1134 		unsigned int to_end;
1135 
1136 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137 		to_end = ic->journal_sections - commit_start;
1138 		if (ic->journal_io) {
1139 			crypt_comp_1.ic = ic;
1140 			init_completion(&crypt_comp_1.comp);
1141 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1145 					   commit_start, to_end, &io_comp);
1146 				reinit_completion(&crypt_comp_1.comp);
1147 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1148 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1149 				wait_for_completion_io(&crypt_comp_1.comp);
1150 			} else {
1151 				crypt_comp_2.ic = ic;
1152 				init_completion(&crypt_comp_2.comp);
1153 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1154 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1155 				wait_for_completion_io(&crypt_comp_1.comp);
1156 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1157 				wait_for_completion_io(&crypt_comp_2.comp);
1158 			}
1159 		} else {
1160 			for (i = 0; i < to_end; i++)
1161 				rw_section_mac(ic, commit_start + i, true);
1162 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1163 			for (i = 0; i < commit_sections - to_end; i++)
1164 				rw_section_mac(ic, i, true);
1165 		}
1166 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1167 	}
1168 
1169 	wait_for_completion_io(&io_comp.comp);
1170 }
1171 
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1172 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1173 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1174 {
1175 	struct dm_io_request io_req;
1176 	struct dm_io_region io_loc;
1177 	int r;
1178 	unsigned int sector, pl_index, pl_offset;
1179 
1180 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1181 
1182 	if (unlikely(dm_integrity_failed(ic))) {
1183 		fn(-1UL, data);
1184 		return;
1185 	}
1186 
1187 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1188 
1189 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1190 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1191 
1192 	io_req.bi_opf = REQ_OP_WRITE;
1193 	io_req.mem.type = DM_IO_PAGE_LIST;
1194 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1195 	io_req.mem.offset = pl_offset;
1196 	io_req.notify.fn = fn;
1197 	io_req.notify.context = data;
1198 	io_req.client = ic->io;
1199 	io_loc.bdev = ic->dev->bdev;
1200 	io_loc.sector = target;
1201 	io_loc.count = n_sectors;
1202 
1203 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1204 	if (unlikely(r)) {
1205 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206 		fn(-1UL, data);
1207 	}
1208 }
1209 
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215 
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218 	struct rb_node **n = &ic->in_progress.rb_node;
1219 	struct rb_node *parent;
1220 
1221 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1222 
1223 	if (likely(check_waiting)) {
1224 		struct dm_integrity_range *range;
1225 
1226 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1227 			if (unlikely(ranges_overlap(range, new_range)))
1228 				return false;
1229 		}
1230 	}
1231 
1232 	parent = NULL;
1233 
1234 	while (*n) {
1235 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1236 
1237 		parent = *n;
1238 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1239 			n = &range->node.rb_left;
1240 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1241 			n = &range->node.rb_right;
1242 		else
1243 			return false;
1244 	}
1245 
1246 	rb_link_node(&new_range->node, parent, n);
1247 	rb_insert_color(&new_range->node, &ic->in_progress);
1248 
1249 	return true;
1250 }
1251 
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254 	rb_erase(&range->node, &ic->in_progress);
1255 	while (unlikely(!list_empty(&ic->wait_list))) {
1256 		struct dm_integrity_range *last_range =
1257 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258 		struct task_struct *last_range_task;
1259 
1260 		last_range_task = last_range->task;
1261 		list_del(&last_range->wait_entry);
1262 		if (!add_new_range(ic, last_range, false)) {
1263 			last_range->task = last_range_task;
1264 			list_add(&last_range->wait_entry, &ic->wait_list);
1265 			break;
1266 		}
1267 		last_range->waiting = false;
1268 		wake_up_process(last_range_task);
1269 	}
1270 }
1271 
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1272 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1273 {
1274 	unsigned long flags;
1275 
1276 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1277 	remove_range_unlocked(ic, range);
1278 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1279 }
1280 
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1281 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 	new_range->waiting = true;
1284 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1285 	new_range->task = current;
1286 	do {
1287 		__set_current_state(TASK_UNINTERRUPTIBLE);
1288 		spin_unlock_irq(&ic->endio_wait.lock);
1289 		io_schedule();
1290 		spin_lock_irq(&ic->endio_wait.lock);
1291 	} while (unlikely(new_range->waiting));
1292 }
1293 
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1294 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1295 {
1296 	if (unlikely(!add_new_range(ic, new_range, true)))
1297 		wait_and_add_new_range(ic, new_range);
1298 }
1299 
init_journal_node(struct journal_node * node)1300 static void init_journal_node(struct journal_node *node)
1301 {
1302 	RB_CLEAR_NODE(&node->node);
1303 	node->sector = (sector_t)-1;
1304 }
1305 
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1306 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1307 {
1308 	struct rb_node **link;
1309 	struct rb_node *parent;
1310 
1311 	node->sector = sector;
1312 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1313 
1314 	link = &ic->journal_tree_root.rb_node;
1315 	parent = NULL;
1316 
1317 	while (*link) {
1318 		struct journal_node *j;
1319 
1320 		parent = *link;
1321 		j = container_of(parent, struct journal_node, node);
1322 		if (sector < j->sector)
1323 			link = &j->node.rb_left;
1324 		else
1325 			link = &j->node.rb_right;
1326 	}
1327 
1328 	rb_link_node(&node->node, parent, link);
1329 	rb_insert_color(&node->node, &ic->journal_tree_root);
1330 }
1331 
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1332 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1333 {
1334 	BUG_ON(RB_EMPTY_NODE(&node->node));
1335 	rb_erase(&node->node, &ic->journal_tree_root);
1336 	init_journal_node(node);
1337 }
1338 
1339 #define NOT_FOUND	(-1U)
1340 
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1341 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1342 {
1343 	struct rb_node *n = ic->journal_tree_root.rb_node;
1344 	unsigned int found = NOT_FOUND;
1345 
1346 	*next_sector = (sector_t)-1;
1347 	while (n) {
1348 		struct journal_node *j = container_of(n, struct journal_node, node);
1349 
1350 		if (sector == j->sector)
1351 			found = j - ic->journal_tree;
1352 
1353 		if (sector < j->sector) {
1354 			*next_sector = j->sector;
1355 			n = j->node.rb_left;
1356 		} else
1357 			n = j->node.rb_right;
1358 	}
1359 
1360 	return found;
1361 }
1362 
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1363 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1364 {
1365 	struct journal_node *node, *next_node;
1366 	struct rb_node *next;
1367 
1368 	if (unlikely(pos >= ic->journal_entries))
1369 		return false;
1370 	node = &ic->journal_tree[pos];
1371 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1372 		return false;
1373 	if (unlikely(node->sector != sector))
1374 		return false;
1375 
1376 	next = rb_next(&node->node);
1377 	if (unlikely(!next))
1378 		return true;
1379 
1380 	next_node = container_of(next, struct journal_node, node);
1381 	return next_node->sector != sector;
1382 }
1383 
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1384 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1385 {
1386 	struct rb_node *next;
1387 	struct journal_node *next_node;
1388 	unsigned int next_section;
1389 
1390 	BUG_ON(RB_EMPTY_NODE(&node->node));
1391 
1392 	next = rb_next(&node->node);
1393 	if (unlikely(!next))
1394 		return false;
1395 
1396 	next_node = container_of(next, struct journal_node, node);
1397 
1398 	if (next_node->sector != node->sector)
1399 		return false;
1400 
1401 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1402 	if (next_section >= ic->committed_section &&
1403 	    next_section < ic->committed_section + ic->n_committed_sections)
1404 		return true;
1405 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1406 		return true;
1407 
1408 	return false;
1409 }
1410 
1411 #define TAG_READ	0
1412 #define TAG_WRITE	1
1413 #define TAG_CMP		2
1414 
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1415 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1416 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1417 {
1418 #define MAY_BE_FILLER		1
1419 #define MAY_BE_HASH		2
1420 	unsigned int hash_offset = 0;
1421 	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1422 
1423 	do {
1424 		unsigned char *data, *dp;
1425 		struct dm_buffer *b;
1426 		unsigned int to_copy;
1427 		int r;
1428 
1429 		r = dm_integrity_failed(ic);
1430 		if (unlikely(r))
1431 			return r;
1432 
1433 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1434 		if (IS_ERR(data))
1435 			return PTR_ERR(data);
1436 
1437 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1438 		dp = data + *metadata_offset;
1439 		if (op == TAG_READ) {
1440 			memcpy(tag, dp, to_copy);
1441 		} else if (op == TAG_WRITE) {
1442 			if (memcmp(dp, tag, to_copy)) {
1443 				memcpy(dp, tag, to_copy);
1444 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1445 			}
1446 		} else {
1447 			/* e.g.: op == TAG_CMP */
1448 
1449 			if (likely(is_power_of_2(ic->tag_size))) {
1450 				if (unlikely(memcmp(dp, tag, to_copy)))
1451 					if (unlikely(!ic->discard) ||
1452 					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1453 						goto thorough_test;
1454 				}
1455 			} else {
1456 				unsigned int i, ts;
1457 thorough_test:
1458 				ts = total_size;
1459 
1460 				for (i = 0; i < to_copy; i++, ts--) {
1461 					if (unlikely(dp[i] != tag[i]))
1462 						may_be &= ~MAY_BE_HASH;
1463 					if (likely(dp[i] != DISCARD_FILLER))
1464 						may_be &= ~MAY_BE_FILLER;
1465 					hash_offset++;
1466 					if (unlikely(hash_offset == ic->tag_size)) {
1467 						if (unlikely(!may_be)) {
1468 							dm_bufio_release(b);
1469 							return ts;
1470 						}
1471 						hash_offset = 0;
1472 						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1473 					}
1474 				}
1475 			}
1476 		}
1477 		dm_bufio_release(b);
1478 
1479 		tag += to_copy;
1480 		*metadata_offset += to_copy;
1481 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1482 			(*metadata_block)++;
1483 			*metadata_offset = 0;
1484 		}
1485 
1486 		if (unlikely(!is_power_of_2(ic->tag_size)))
1487 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1488 
1489 		total_size -= to_copy;
1490 	} while (unlikely(total_size));
1491 
1492 	return 0;
1493 #undef MAY_BE_FILLER
1494 #undef MAY_BE_HASH
1495 }
1496 
1497 struct flush_request {
1498 	struct dm_io_request io_req;
1499 	struct dm_io_region io_reg;
1500 	struct dm_integrity_c *ic;
1501 	struct completion comp;
1502 };
1503 
flush_notify(unsigned long error,void * fr_)1504 static void flush_notify(unsigned long error, void *fr_)
1505 {
1506 	struct flush_request *fr = fr_;
1507 
1508 	if (unlikely(error != 0))
1509 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1510 	complete(&fr->comp);
1511 }
1512 
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1513 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1514 {
1515 	int r;
1516 	struct flush_request fr;
1517 
1518 	if (!ic->meta_dev)
1519 		flush_data = false;
1520 	if (flush_data) {
1521 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1522 		fr.io_req.mem.type = DM_IO_KMEM,
1523 		fr.io_req.mem.ptr.addr = NULL,
1524 		fr.io_req.notify.fn = flush_notify,
1525 		fr.io_req.notify.context = &fr;
1526 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1527 		fr.io_reg.bdev = ic->dev->bdev,
1528 		fr.io_reg.sector = 0,
1529 		fr.io_reg.count = 0,
1530 		fr.ic = ic;
1531 		init_completion(&fr.comp);
1532 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1533 		BUG_ON(r);
1534 	}
1535 
1536 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1537 	if (unlikely(r))
1538 		dm_integrity_io_error(ic, "writing tags", r);
1539 
1540 	if (flush_data)
1541 		wait_for_completion(&fr.comp);
1542 }
1543 
sleep_on_endio_wait(struct dm_integrity_c * ic)1544 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1545 {
1546 	DECLARE_WAITQUEUE(wait, current);
1547 
1548 	__add_wait_queue(&ic->endio_wait, &wait);
1549 	__set_current_state(TASK_UNINTERRUPTIBLE);
1550 	spin_unlock_irq(&ic->endio_wait.lock);
1551 	io_schedule();
1552 	spin_lock_irq(&ic->endio_wait.lock);
1553 	__remove_wait_queue(&ic->endio_wait, &wait);
1554 }
1555 
autocommit_fn(struct timer_list * t)1556 static void autocommit_fn(struct timer_list *t)
1557 {
1558 	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1559 
1560 	if (likely(!dm_integrity_failed(ic)))
1561 		queue_work(ic->commit_wq, &ic->commit_work);
1562 }
1563 
schedule_autocommit(struct dm_integrity_c * ic)1564 static void schedule_autocommit(struct dm_integrity_c *ic)
1565 {
1566 	if (!timer_pending(&ic->autocommit_timer))
1567 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1568 }
1569 
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1570 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1571 {
1572 	struct bio *bio;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1576 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1577 	bio_list_add(&ic->flush_bio_list, bio);
1578 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1579 
1580 	queue_work(ic->commit_wq, &ic->commit_work);
1581 }
1582 
do_endio(struct dm_integrity_c * ic,struct bio * bio)1583 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1584 {
1585 	int r;
1586 
1587 	r = dm_integrity_failed(ic);
1588 	if (unlikely(r) && !bio->bi_status)
1589 		bio->bi_status = errno_to_blk_status(r);
1590 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1591 		unsigned long flags;
1592 
1593 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1594 		bio_list_add(&ic->synchronous_bios, bio);
1595 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1596 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1597 		return;
1598 	}
1599 	bio_endio(bio);
1600 }
1601 
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1602 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1603 {
1604 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1605 
1606 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1607 		submit_flush_bio(ic, dio);
1608 	else
1609 		do_endio(ic, bio);
1610 }
1611 
dec_in_flight(struct dm_integrity_io * dio)1612 static void dec_in_flight(struct dm_integrity_io *dio)
1613 {
1614 	if (atomic_dec_and_test(&dio->in_flight)) {
1615 		struct dm_integrity_c *ic = dio->ic;
1616 		struct bio *bio;
1617 
1618 		remove_range(ic, &dio->range);
1619 
1620 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1621 			schedule_autocommit(ic);
1622 
1623 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1624 		if (unlikely(dio->bi_status) && !bio->bi_status)
1625 			bio->bi_status = dio->bi_status;
1626 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1627 			dio->range.logical_sector += dio->range.n_sectors;
1628 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1629 			INIT_WORK(&dio->work, integrity_bio_wait);
1630 			queue_work(ic->offload_wq, &dio->work);
1631 			return;
1632 		}
1633 		do_endio_flush(ic, dio);
1634 	}
1635 }
1636 
integrity_end_io(struct bio * bio)1637 static void integrity_end_io(struct bio *bio)
1638 {
1639 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1640 
1641 	dm_bio_restore(&dio->bio_details, bio);
1642 	if (bio->bi_integrity)
1643 		bio->bi_opf |= REQ_INTEGRITY;
1644 
1645 	if (dio->completion)
1646 		complete(dio->completion);
1647 
1648 	dec_in_flight(dio);
1649 }
1650 
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1651 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1652 				      const char *data, char *result)
1653 {
1654 	__le64 sector_le = cpu_to_le64(sector);
1655 	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1656 	int r;
1657 	unsigned int digest_size;
1658 
1659 	req->tfm = ic->internal_hash;
1660 
1661 	r = crypto_shash_init(req);
1662 	if (unlikely(r < 0)) {
1663 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1664 		goto failed;
1665 	}
1666 
1667 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1668 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1669 		if (unlikely(r < 0)) {
1670 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1671 			goto failed;
1672 		}
1673 	}
1674 
1675 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1676 	if (unlikely(r < 0)) {
1677 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1678 		goto failed;
1679 	}
1680 
1681 	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1682 	if (unlikely(r < 0)) {
1683 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1684 		goto failed;
1685 	}
1686 
1687 	r = crypto_shash_final(req, result);
1688 	if (unlikely(r < 0)) {
1689 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1690 		goto failed;
1691 	}
1692 
1693 	digest_size = crypto_shash_digestsize(ic->internal_hash);
1694 	if (unlikely(digest_size < ic->tag_size))
1695 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1696 
1697 	return;
1698 
1699 failed:
1700 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1701 	get_random_bytes(result, ic->tag_size);
1702 }
1703 
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1704 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1705 {
1706 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1707 	struct dm_integrity_c *ic = dio->ic;
1708 	struct bvec_iter iter;
1709 	struct bio_vec bv;
1710 	sector_t sector, logical_sector, area, offset;
1711 	struct page *page;
1712 
1713 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1714 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1715 							     &dio->metadata_offset);
1716 	sector = get_data_sector(ic, area, offset);
1717 	logical_sector = dio->range.logical_sector;
1718 
1719 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1720 
1721 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1722 		unsigned pos = 0;
1723 
1724 		do {
1725 			sector_t alignment;
1726 			char *mem;
1727 			char *buffer = page_to_virt(page);
1728 			int r;
1729 			struct dm_io_request io_req;
1730 			struct dm_io_region io_loc;
1731 			io_req.bi_opf = REQ_OP_READ;
1732 			io_req.mem.type = DM_IO_KMEM;
1733 			io_req.mem.ptr.addr = buffer;
1734 			io_req.notify.fn = NULL;
1735 			io_req.client = ic->io;
1736 			io_loc.bdev = ic->dev->bdev;
1737 			io_loc.sector = sector;
1738 			io_loc.count = ic->sectors_per_block;
1739 
1740 			/* Align the bio to logical block size */
1741 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1742 			alignment &= -alignment;
1743 			io_loc.sector = round_down(io_loc.sector, alignment);
1744 			io_loc.count += sector - io_loc.sector;
1745 			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1746 			io_loc.count = round_up(io_loc.count, alignment);
1747 
1748 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1749 			if (unlikely(r)) {
1750 				dio->bi_status = errno_to_blk_status(r);
1751 				goto free_ret;
1752 			}
1753 
1754 			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1755 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1756 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1757 			if (r) {
1758 				if (r > 0) {
1759 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1760 						    bio->bi_bdev, logical_sector);
1761 					atomic64_inc(&ic->number_of_mismatches);
1762 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1763 							 bio, logical_sector, 0);
1764 					r = -EILSEQ;
1765 				}
1766 				dio->bi_status = errno_to_blk_status(r);
1767 				goto free_ret;
1768 			}
1769 
1770 			mem = bvec_kmap_local(&bv);
1771 			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1772 			kunmap_local(mem);
1773 
1774 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1775 			sector += ic->sectors_per_block;
1776 			logical_sector += ic->sectors_per_block;
1777 		} while (pos < bv.bv_len);
1778 	}
1779 free_ret:
1780 	mempool_free(page, &ic->recheck_pool);
1781 }
1782 
integrity_metadata(struct work_struct * w)1783 static void integrity_metadata(struct work_struct *w)
1784 {
1785 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1786 	struct dm_integrity_c *ic = dio->ic;
1787 
1788 	int r;
1789 
1790 	if (ic->internal_hash) {
1791 		struct bvec_iter iter;
1792 		struct bio_vec bv;
1793 		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1794 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1795 		char *checksums;
1796 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1797 		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1798 		sector_t sector;
1799 		unsigned int sectors_to_process;
1800 
1801 		if (unlikely(ic->mode == 'R'))
1802 			goto skip_io;
1803 
1804 		if (likely(dio->op != REQ_OP_DISCARD))
1805 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1806 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1807 		else
1808 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1809 		if (!checksums) {
1810 			checksums = checksums_onstack;
1811 			if (WARN_ON(extra_space &&
1812 				    digest_size > sizeof(checksums_onstack))) {
1813 				r = -EINVAL;
1814 				goto error;
1815 			}
1816 		}
1817 
1818 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1819 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1820 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1821 			unsigned int max_blocks = max_size / ic->tag_size;
1822 
1823 			memset(checksums, DISCARD_FILLER, max_size);
1824 
1825 			while (bi_size) {
1826 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1827 
1828 				this_step_blocks = min(this_step_blocks, max_blocks);
1829 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1830 							this_step_blocks * ic->tag_size, TAG_WRITE);
1831 				if (unlikely(r)) {
1832 					if (likely(checksums != checksums_onstack))
1833 						kfree(checksums);
1834 					goto error;
1835 				}
1836 
1837 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1838 			}
1839 
1840 			if (likely(checksums != checksums_onstack))
1841 				kfree(checksums);
1842 			goto skip_io;
1843 		}
1844 
1845 		sector = dio->range.logical_sector;
1846 		sectors_to_process = dio->range.n_sectors;
1847 
1848 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1849 			struct bio_vec bv_copy = bv;
1850 			unsigned int pos;
1851 			char *mem, *checksums_ptr;
1852 
1853 again:
1854 			mem = bvec_kmap_local(&bv_copy);
1855 			pos = 0;
1856 			checksums_ptr = checksums;
1857 			do {
1858 				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1859 				checksums_ptr += ic->tag_size;
1860 				sectors_to_process -= ic->sectors_per_block;
1861 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1862 				sector += ic->sectors_per_block;
1863 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1864 			kunmap_local(mem);
1865 
1866 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1867 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1868 			if (unlikely(r)) {
1869 				if (likely(checksums != checksums_onstack))
1870 					kfree(checksums);
1871 				if (r > 0) {
1872 					integrity_recheck(dio, checksums_onstack);
1873 					goto skip_io;
1874 				}
1875 				goto error;
1876 			}
1877 
1878 			if (!sectors_to_process)
1879 				break;
1880 
1881 			if (unlikely(pos < bv_copy.bv_len)) {
1882 				bv_copy.bv_offset += pos;
1883 				bv_copy.bv_len -= pos;
1884 				goto again;
1885 			}
1886 		}
1887 
1888 		if (likely(checksums != checksums_onstack))
1889 			kfree(checksums);
1890 	} else {
1891 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1892 
1893 		if (bip) {
1894 			struct bio_vec biv;
1895 			struct bvec_iter iter;
1896 			unsigned int data_to_process = dio->range.n_sectors;
1897 
1898 			sector_to_block(ic, data_to_process);
1899 			data_to_process *= ic->tag_size;
1900 
1901 			bip_for_each_vec(biv, bip, iter) {
1902 				unsigned char *tag;
1903 				unsigned int this_len;
1904 
1905 				BUG_ON(PageHighMem(biv.bv_page));
1906 				tag = bvec_virt(&biv);
1907 				this_len = min(biv.bv_len, data_to_process);
1908 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1909 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1910 				if (unlikely(r))
1911 					goto error;
1912 				data_to_process -= this_len;
1913 				if (!data_to_process)
1914 					break;
1915 			}
1916 		}
1917 	}
1918 skip_io:
1919 	dec_in_flight(dio);
1920 	return;
1921 error:
1922 	dio->bi_status = errno_to_blk_status(r);
1923 	dec_in_flight(dio);
1924 }
1925 
dm_integrity_map(struct dm_target * ti,struct bio * bio)1926 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1927 {
1928 	struct dm_integrity_c *ic = ti->private;
1929 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1930 	struct bio_integrity_payload *bip;
1931 
1932 	sector_t area, offset;
1933 
1934 	dio->ic = ic;
1935 	dio->bi_status = 0;
1936 	dio->op = bio_op(bio);
1937 
1938 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1939 		if (ti->max_io_len) {
1940 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1942 			sector_t start_boundary = sec >> log2_max_io_len;
1943 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1944 
1945 			if (start_boundary < end_boundary) {
1946 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1947 
1948 				dm_accept_partial_bio(bio, len);
1949 			}
1950 		}
1951 	}
1952 
1953 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1954 		submit_flush_bio(ic, dio);
1955 		return DM_MAPIO_SUBMITTED;
1956 	}
1957 
1958 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1959 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1960 	if (unlikely(dio->fua)) {
1961 		/*
1962 		 * Don't pass down the FUA flag because we have to flush
1963 		 * disk cache anyway.
1964 		 */
1965 		bio->bi_opf &= ~REQ_FUA;
1966 	}
1967 	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1968 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1969 		      dio->range.logical_sector, bio_sectors(bio),
1970 		      ic->provided_data_sectors);
1971 		return DM_MAPIO_KILL;
1972 	}
1973 	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1974 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1975 		      ic->sectors_per_block,
1976 		      dio->range.logical_sector, bio_sectors(bio));
1977 		return DM_MAPIO_KILL;
1978 	}
1979 
1980 	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1981 		struct bvec_iter iter;
1982 		struct bio_vec bv;
1983 
1984 		bio_for_each_segment(bv, bio, iter) {
1985 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1986 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1987 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1988 				return DM_MAPIO_KILL;
1989 			}
1990 		}
1991 	}
1992 
1993 	bip = bio_integrity(bio);
1994 	if (!ic->internal_hash) {
1995 		if (bip) {
1996 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1997 
1998 			if (ic->log2_tag_size >= 0)
1999 				wanted_tag_size <<= ic->log2_tag_size;
2000 			else
2001 				wanted_tag_size *= ic->tag_size;
2002 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2003 				DMERR("Invalid integrity data size %u, expected %u",
2004 				      bip->bip_iter.bi_size, wanted_tag_size);
2005 				return DM_MAPIO_KILL;
2006 			}
2007 		}
2008 	} else {
2009 		if (unlikely(bip != NULL)) {
2010 			DMERR("Unexpected integrity data when using internal hash");
2011 			return DM_MAPIO_KILL;
2012 		}
2013 	}
2014 
2015 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2016 		return DM_MAPIO_KILL;
2017 
2018 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2019 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2020 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2021 
2022 	dm_integrity_map_continue(dio, true);
2023 	return DM_MAPIO_SUBMITTED;
2024 }
2025 
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2026 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2027 				 unsigned int journal_section, unsigned int journal_entry)
2028 {
2029 	struct dm_integrity_c *ic = dio->ic;
2030 	sector_t logical_sector;
2031 	unsigned int n_sectors;
2032 
2033 	logical_sector = dio->range.logical_sector;
2034 	n_sectors = dio->range.n_sectors;
2035 	do {
2036 		struct bio_vec bv = bio_iovec(bio);
2037 		char *mem;
2038 
2039 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2040 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2041 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2042 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2043 retry_kmap:
2044 		mem = kmap_local_page(bv.bv_page);
2045 		if (likely(dio->op == REQ_OP_WRITE))
2046 			flush_dcache_page(bv.bv_page);
2047 
2048 		do {
2049 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2050 
2051 			if (unlikely(dio->op == REQ_OP_READ)) {
2052 				struct journal_sector *js;
2053 				char *mem_ptr;
2054 				unsigned int s;
2055 
2056 				if (unlikely(journal_entry_is_inprogress(je))) {
2057 					flush_dcache_page(bv.bv_page);
2058 					kunmap_local(mem);
2059 
2060 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2061 					goto retry_kmap;
2062 				}
2063 				smp_rmb();
2064 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2065 				js = access_journal_data(ic, journal_section, journal_entry);
2066 				mem_ptr = mem + bv.bv_offset;
2067 				s = 0;
2068 				do {
2069 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2070 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2071 					js++;
2072 					mem_ptr += 1 << SECTOR_SHIFT;
2073 				} while (++s < ic->sectors_per_block);
2074 #ifdef INTERNAL_VERIFY
2075 				if (ic->internal_hash) {
2076 					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2077 
2078 					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2079 					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2080 						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2081 							    logical_sector);
2082 						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2083 								 bio, logical_sector, 0);
2084 					}
2085 				}
2086 #endif
2087 			}
2088 
2089 			if (!ic->internal_hash) {
2090 				struct bio_integrity_payload *bip = bio_integrity(bio);
2091 				unsigned int tag_todo = ic->tag_size;
2092 				char *tag_ptr = journal_entry_tag(ic, je);
2093 
2094 				if (bip) {
2095 					do {
2096 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2097 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2098 						char *tag_addr;
2099 
2100 						BUG_ON(PageHighMem(biv.bv_page));
2101 						tag_addr = bvec_virt(&biv);
2102 						if (likely(dio->op == REQ_OP_WRITE))
2103 							memcpy(tag_ptr, tag_addr, tag_now);
2104 						else
2105 							memcpy(tag_addr, tag_ptr, tag_now);
2106 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2107 						tag_ptr += tag_now;
2108 						tag_todo -= tag_now;
2109 					} while (unlikely(tag_todo));
2110 				} else if (likely(dio->op == REQ_OP_WRITE))
2111 					memset(tag_ptr, 0, tag_todo);
2112 			}
2113 
2114 			if (likely(dio->op == REQ_OP_WRITE)) {
2115 				struct journal_sector *js;
2116 				unsigned int s;
2117 
2118 				js = access_journal_data(ic, journal_section, journal_entry);
2119 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2120 
2121 				s = 0;
2122 				do {
2123 					je->last_bytes[s] = js[s].commit_id;
2124 				} while (++s < ic->sectors_per_block);
2125 
2126 				if (ic->internal_hash) {
2127 					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2128 
2129 					if (unlikely(digest_size > ic->tag_size)) {
2130 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2131 
2132 						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2133 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2134 					} else
2135 						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2136 				}
2137 
2138 				journal_entry_set_sector(je, logical_sector);
2139 			}
2140 			logical_sector += ic->sectors_per_block;
2141 
2142 			journal_entry++;
2143 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2144 				journal_entry = 0;
2145 				journal_section++;
2146 				wraparound_section(ic, &journal_section);
2147 			}
2148 
2149 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2150 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2151 
2152 		if (unlikely(dio->op == REQ_OP_READ))
2153 			flush_dcache_page(bv.bv_page);
2154 		kunmap_local(mem);
2155 	} while (n_sectors);
2156 
2157 	if (likely(dio->op == REQ_OP_WRITE)) {
2158 		smp_mb();
2159 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2160 			wake_up(&ic->copy_to_journal_wait);
2161 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2162 			queue_work(ic->commit_wq, &ic->commit_work);
2163 		else
2164 			schedule_autocommit(ic);
2165 	} else
2166 		remove_range(ic, &dio->range);
2167 
2168 	if (unlikely(bio->bi_iter.bi_size)) {
2169 		sector_t area, offset;
2170 
2171 		dio->range.logical_sector = logical_sector;
2172 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2173 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2174 		return true;
2175 	}
2176 
2177 	return false;
2178 }
2179 
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2180 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2181 {
2182 	struct dm_integrity_c *ic = dio->ic;
2183 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2184 	unsigned int journal_section, journal_entry;
2185 	unsigned int journal_read_pos;
2186 	sector_t recalc_sector;
2187 	struct completion read_comp;
2188 	bool discard_retried = false;
2189 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2190 
2191 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2192 		need_sync_io = true;
2193 
2194 	if (need_sync_io && from_map) {
2195 		INIT_WORK(&dio->work, integrity_bio_wait);
2196 		queue_work(ic->offload_wq, &dio->work);
2197 		return;
2198 	}
2199 
2200 lock_retry:
2201 	spin_lock_irq(&ic->endio_wait.lock);
2202 retry:
2203 	if (unlikely(dm_integrity_failed(ic))) {
2204 		spin_unlock_irq(&ic->endio_wait.lock);
2205 		do_endio(ic, bio);
2206 		return;
2207 	}
2208 	dio->range.n_sectors = bio_sectors(bio);
2209 	journal_read_pos = NOT_FOUND;
2210 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2211 		if (dio->op == REQ_OP_WRITE) {
2212 			unsigned int next_entry, i, pos;
2213 			unsigned int ws, we, range_sectors;
2214 
2215 			dio->range.n_sectors = min(dio->range.n_sectors,
2216 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2217 			if (unlikely(!dio->range.n_sectors)) {
2218 				if (from_map)
2219 					goto offload_to_thread;
2220 				sleep_on_endio_wait(ic);
2221 				goto retry;
2222 			}
2223 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2224 			ic->free_sectors -= range_sectors;
2225 			journal_section = ic->free_section;
2226 			journal_entry = ic->free_section_entry;
2227 
2228 			next_entry = ic->free_section_entry + range_sectors;
2229 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2230 			ic->free_section += next_entry / ic->journal_section_entries;
2231 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2232 			wraparound_section(ic, &ic->free_section);
2233 
2234 			pos = journal_section * ic->journal_section_entries + journal_entry;
2235 			ws = journal_section;
2236 			we = journal_entry;
2237 			i = 0;
2238 			do {
2239 				struct journal_entry *je;
2240 
2241 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2242 				pos++;
2243 				if (unlikely(pos >= ic->journal_entries))
2244 					pos = 0;
2245 
2246 				je = access_journal_entry(ic, ws, we);
2247 				BUG_ON(!journal_entry_is_unused(je));
2248 				journal_entry_set_inprogress(je);
2249 				we++;
2250 				if (unlikely(we == ic->journal_section_entries)) {
2251 					we = 0;
2252 					ws++;
2253 					wraparound_section(ic, &ws);
2254 				}
2255 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2256 
2257 			spin_unlock_irq(&ic->endio_wait.lock);
2258 			goto journal_read_write;
2259 		} else {
2260 			sector_t next_sector;
2261 
2262 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2263 			if (likely(journal_read_pos == NOT_FOUND)) {
2264 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2265 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2266 			} else {
2267 				unsigned int i;
2268 				unsigned int jp = journal_read_pos + 1;
2269 
2270 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2271 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2272 						break;
2273 				}
2274 				dio->range.n_sectors = i;
2275 			}
2276 		}
2277 	}
2278 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2279 		/*
2280 		 * We must not sleep in the request routine because it could
2281 		 * stall bios on current->bio_list.
2282 		 * So, we offload the bio to a workqueue if we have to sleep.
2283 		 */
2284 		if (from_map) {
2285 offload_to_thread:
2286 			spin_unlock_irq(&ic->endio_wait.lock);
2287 			INIT_WORK(&dio->work, integrity_bio_wait);
2288 			queue_work(ic->wait_wq, &dio->work);
2289 			return;
2290 		}
2291 		if (journal_read_pos != NOT_FOUND)
2292 			dio->range.n_sectors = ic->sectors_per_block;
2293 		wait_and_add_new_range(ic, &dio->range);
2294 		/*
2295 		 * wait_and_add_new_range drops the spinlock, so the journal
2296 		 * may have been changed arbitrarily. We need to recheck.
2297 		 * To simplify the code, we restrict I/O size to just one block.
2298 		 */
2299 		if (journal_read_pos != NOT_FOUND) {
2300 			sector_t next_sector;
2301 			unsigned int new_pos;
2302 
2303 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304 			if (unlikely(new_pos != journal_read_pos)) {
2305 				remove_range_unlocked(ic, &dio->range);
2306 				goto retry;
2307 			}
2308 		}
2309 	}
2310 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2311 		sector_t next_sector;
2312 		unsigned int new_pos;
2313 
2314 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2315 		if (unlikely(new_pos != NOT_FOUND) ||
2316 		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2317 			remove_range_unlocked(ic, &dio->range);
2318 			spin_unlock_irq(&ic->endio_wait.lock);
2319 			queue_work(ic->commit_wq, &ic->commit_work);
2320 			flush_workqueue(ic->commit_wq);
2321 			queue_work(ic->writer_wq, &ic->writer_work);
2322 			flush_workqueue(ic->writer_wq);
2323 			discard_retried = true;
2324 			goto lock_retry;
2325 		}
2326 	}
2327 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2328 	spin_unlock_irq(&ic->endio_wait.lock);
2329 
2330 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2331 		journal_section = journal_read_pos / ic->journal_section_entries;
2332 		journal_entry = journal_read_pos % ic->journal_section_entries;
2333 		goto journal_read_write;
2334 	}
2335 
2336 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2337 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2338 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2339 			struct bitmap_block_status *bbs;
2340 
2341 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2342 			spin_lock(&bbs->bio_queue_lock);
2343 			bio_list_add(&bbs->bio_queue, bio);
2344 			spin_unlock(&bbs->bio_queue_lock);
2345 			queue_work(ic->writer_wq, &bbs->work);
2346 			return;
2347 		}
2348 	}
2349 
2350 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2351 
2352 	if (need_sync_io) {
2353 		init_completion(&read_comp);
2354 		dio->completion = &read_comp;
2355 	} else
2356 		dio->completion = NULL;
2357 
2358 	dm_bio_record(&dio->bio_details, bio);
2359 	bio_set_dev(bio, ic->dev->bdev);
2360 	bio->bi_integrity = NULL;
2361 	bio->bi_opf &= ~REQ_INTEGRITY;
2362 	bio->bi_end_io = integrity_end_io;
2363 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2364 
2365 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2366 		integrity_metadata(&dio->work);
2367 		dm_integrity_flush_buffers(ic, false);
2368 
2369 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2370 		dio->completion = NULL;
2371 
2372 		submit_bio_noacct(bio);
2373 
2374 		return;
2375 	}
2376 
2377 	submit_bio_noacct(bio);
2378 
2379 	if (need_sync_io) {
2380 		wait_for_completion_io(&read_comp);
2381 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2382 		    dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2383 			goto skip_check;
2384 		if (ic->mode == 'B') {
2385 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2386 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2387 				goto skip_check;
2388 		}
2389 
2390 		if (likely(!bio->bi_status))
2391 			integrity_metadata(&dio->work);
2392 		else
2393 skip_check:
2394 			dec_in_flight(dio);
2395 	} else {
2396 		INIT_WORK(&dio->work, integrity_metadata);
2397 		queue_work(ic->metadata_wq, &dio->work);
2398 	}
2399 
2400 	return;
2401 
2402 journal_read_write:
2403 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2404 		goto lock_retry;
2405 
2406 	do_endio_flush(ic, dio);
2407 }
2408 
2409 
integrity_bio_wait(struct work_struct * w)2410 static void integrity_bio_wait(struct work_struct *w)
2411 {
2412 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2413 
2414 	dm_integrity_map_continue(dio, false);
2415 }
2416 
pad_uncommitted(struct dm_integrity_c * ic)2417 static void pad_uncommitted(struct dm_integrity_c *ic)
2418 {
2419 	if (ic->free_section_entry) {
2420 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2421 		ic->free_section_entry = 0;
2422 		ic->free_section++;
2423 		wraparound_section(ic, &ic->free_section);
2424 		ic->n_uncommitted_sections++;
2425 	}
2426 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2427 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2428 		    ic->journal_section_entries + ic->free_sectors)) {
2429 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2430 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2431 		       "journal_section_entries %u, free_sectors %u",
2432 		       ic->journal_sections, ic->journal_section_entries,
2433 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2434 		       ic->journal_section_entries, ic->free_sectors);
2435 	}
2436 }
2437 
integrity_commit(struct work_struct * w)2438 static void integrity_commit(struct work_struct *w)
2439 {
2440 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2441 	unsigned int commit_start, commit_sections;
2442 	unsigned int i, j, n;
2443 	struct bio *flushes;
2444 
2445 	del_timer(&ic->autocommit_timer);
2446 
2447 	spin_lock_irq(&ic->endio_wait.lock);
2448 	flushes = bio_list_get(&ic->flush_bio_list);
2449 	if (unlikely(ic->mode != 'J')) {
2450 		spin_unlock_irq(&ic->endio_wait.lock);
2451 		dm_integrity_flush_buffers(ic, true);
2452 		goto release_flush_bios;
2453 	}
2454 
2455 	pad_uncommitted(ic);
2456 	commit_start = ic->uncommitted_section;
2457 	commit_sections = ic->n_uncommitted_sections;
2458 	spin_unlock_irq(&ic->endio_wait.lock);
2459 
2460 	if (!commit_sections)
2461 		goto release_flush_bios;
2462 
2463 	ic->wrote_to_journal = true;
2464 
2465 	i = commit_start;
2466 	for (n = 0; n < commit_sections; n++) {
2467 		for (j = 0; j < ic->journal_section_entries; j++) {
2468 			struct journal_entry *je;
2469 
2470 			je = access_journal_entry(ic, i, j);
2471 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2472 		}
2473 		for (j = 0; j < ic->journal_section_sectors; j++) {
2474 			struct journal_sector *js;
2475 
2476 			js = access_journal(ic, i, j);
2477 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2478 		}
2479 		i++;
2480 		if (unlikely(i >= ic->journal_sections))
2481 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2482 		wraparound_section(ic, &i);
2483 	}
2484 	smp_rmb();
2485 
2486 	write_journal(ic, commit_start, commit_sections);
2487 
2488 	spin_lock_irq(&ic->endio_wait.lock);
2489 	ic->uncommitted_section += commit_sections;
2490 	wraparound_section(ic, &ic->uncommitted_section);
2491 	ic->n_uncommitted_sections -= commit_sections;
2492 	ic->n_committed_sections += commit_sections;
2493 	spin_unlock_irq(&ic->endio_wait.lock);
2494 
2495 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2496 		queue_work(ic->writer_wq, &ic->writer_work);
2497 
2498 release_flush_bios:
2499 	while (flushes) {
2500 		struct bio *next = flushes->bi_next;
2501 
2502 		flushes->bi_next = NULL;
2503 		do_endio(ic, flushes);
2504 		flushes = next;
2505 	}
2506 }
2507 
complete_copy_from_journal(unsigned long error,void * context)2508 static void complete_copy_from_journal(unsigned long error, void *context)
2509 {
2510 	struct journal_io *io = context;
2511 	struct journal_completion *comp = io->comp;
2512 	struct dm_integrity_c *ic = comp->ic;
2513 
2514 	remove_range(ic, &io->range);
2515 	mempool_free(io, &ic->journal_io_mempool);
2516 	if (unlikely(error != 0))
2517 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2518 	complete_journal_op(comp);
2519 }
2520 
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2521 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2522 			       struct journal_entry *je)
2523 {
2524 	unsigned int s = 0;
2525 
2526 	do {
2527 		js->commit_id = je->last_bytes[s];
2528 		js++;
2529 	} while (++s < ic->sectors_per_block);
2530 }
2531 
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2532 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2533 			     unsigned int write_sections, bool from_replay)
2534 {
2535 	unsigned int i, j, n;
2536 	struct journal_completion comp;
2537 	struct blk_plug plug;
2538 
2539 	blk_start_plug(&plug);
2540 
2541 	comp.ic = ic;
2542 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2543 	init_completion(&comp.comp);
2544 
2545 	i = write_start;
2546 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2547 #ifndef INTERNAL_VERIFY
2548 		if (unlikely(from_replay))
2549 #endif
2550 			rw_section_mac(ic, i, false);
2551 		for (j = 0; j < ic->journal_section_entries; j++) {
2552 			struct journal_entry *je = access_journal_entry(ic, i, j);
2553 			sector_t sec, area, offset;
2554 			unsigned int k, l, next_loop;
2555 			sector_t metadata_block;
2556 			unsigned int metadata_offset;
2557 			struct journal_io *io;
2558 
2559 			if (journal_entry_is_unused(je))
2560 				continue;
2561 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2562 			sec = journal_entry_get_sector(je);
2563 			if (unlikely(from_replay)) {
2564 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2565 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2566 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2567 				}
2568 				if (unlikely(sec >= ic->provided_data_sectors)) {
2569 					journal_entry_set_unused(je);
2570 					continue;
2571 				}
2572 			}
2573 			get_area_and_offset(ic, sec, &area, &offset);
2574 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2575 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2576 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2577 				sector_t sec2, area2, offset2;
2578 
2579 				if (journal_entry_is_unused(je2))
2580 					break;
2581 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2582 				sec2 = journal_entry_get_sector(je2);
2583 				if (unlikely(sec2 >= ic->provided_data_sectors))
2584 					break;
2585 				get_area_and_offset(ic, sec2, &area2, &offset2);
2586 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2587 					break;
2588 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2589 			}
2590 			next_loop = k - 1;
2591 
2592 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2593 			io->comp = &comp;
2594 			io->range.logical_sector = sec;
2595 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2596 
2597 			spin_lock_irq(&ic->endio_wait.lock);
2598 			add_new_range_and_wait(ic, &io->range);
2599 
2600 			if (likely(!from_replay)) {
2601 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2602 
2603 				/* don't write if there is newer committed sector */
2604 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2605 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2606 
2607 					journal_entry_set_unused(je2);
2608 					remove_journal_node(ic, &section_node[j]);
2609 					j++;
2610 					sec += ic->sectors_per_block;
2611 					offset += ic->sectors_per_block;
2612 				}
2613 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2614 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2615 
2616 					journal_entry_set_unused(je2);
2617 					remove_journal_node(ic, &section_node[k - 1]);
2618 					k--;
2619 				}
2620 				if (j == k) {
2621 					remove_range_unlocked(ic, &io->range);
2622 					spin_unlock_irq(&ic->endio_wait.lock);
2623 					mempool_free(io, &ic->journal_io_mempool);
2624 					goto skip_io;
2625 				}
2626 				for (l = j; l < k; l++)
2627 					remove_journal_node(ic, &section_node[l]);
2628 			}
2629 			spin_unlock_irq(&ic->endio_wait.lock);
2630 
2631 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2632 			for (l = j; l < k; l++) {
2633 				int r;
2634 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2635 
2636 				if (
2637 #ifndef INTERNAL_VERIFY
2638 				    unlikely(from_replay) &&
2639 #endif
2640 				    ic->internal_hash) {
2641 					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2642 
2643 					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2644 								  (char *)access_journal_data(ic, i, l), test_tag);
2645 					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2646 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2647 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2648 					}
2649 				}
2650 
2651 				journal_entry_set_unused(je2);
2652 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2653 							ic->tag_size, TAG_WRITE);
2654 				if (unlikely(r))
2655 					dm_integrity_io_error(ic, "reading tags", r);
2656 			}
2657 
2658 			atomic_inc(&comp.in_flight);
2659 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2660 					  (k - j) << ic->sb->log2_sectors_per_block,
2661 					  get_data_sector(ic, area, offset),
2662 					  complete_copy_from_journal, io);
2663 skip_io:
2664 			j = next_loop;
2665 		}
2666 	}
2667 
2668 	dm_bufio_write_dirty_buffers_async(ic->bufio);
2669 
2670 	blk_finish_plug(&plug);
2671 
2672 	complete_journal_op(&comp);
2673 	wait_for_completion_io(&comp.comp);
2674 
2675 	dm_integrity_flush_buffers(ic, true);
2676 }
2677 
integrity_writer(struct work_struct * w)2678 static void integrity_writer(struct work_struct *w)
2679 {
2680 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2681 	unsigned int write_start, write_sections;
2682 	unsigned int prev_free_sectors;
2683 
2684 	spin_lock_irq(&ic->endio_wait.lock);
2685 	write_start = ic->committed_section;
2686 	write_sections = ic->n_committed_sections;
2687 	spin_unlock_irq(&ic->endio_wait.lock);
2688 
2689 	if (!write_sections)
2690 		return;
2691 
2692 	do_journal_write(ic, write_start, write_sections, false);
2693 
2694 	spin_lock_irq(&ic->endio_wait.lock);
2695 
2696 	ic->committed_section += write_sections;
2697 	wraparound_section(ic, &ic->committed_section);
2698 	ic->n_committed_sections -= write_sections;
2699 
2700 	prev_free_sectors = ic->free_sectors;
2701 	ic->free_sectors += write_sections * ic->journal_section_entries;
2702 	if (unlikely(!prev_free_sectors))
2703 		wake_up_locked(&ic->endio_wait);
2704 
2705 	spin_unlock_irq(&ic->endio_wait.lock);
2706 }
2707 
recalc_write_super(struct dm_integrity_c * ic)2708 static void recalc_write_super(struct dm_integrity_c *ic)
2709 {
2710 	int r;
2711 
2712 	dm_integrity_flush_buffers(ic, false);
2713 	if (dm_integrity_failed(ic))
2714 		return;
2715 
2716 	r = sync_rw_sb(ic, REQ_OP_WRITE);
2717 	if (unlikely(r))
2718 		dm_integrity_io_error(ic, "writing superblock", r);
2719 }
2720 
integrity_recalc(struct work_struct * w)2721 static void integrity_recalc(struct work_struct *w)
2722 {
2723 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2724 	size_t recalc_tags_size;
2725 	u8 *recalc_buffer = NULL;
2726 	u8 *recalc_tags = NULL;
2727 	struct dm_integrity_range range;
2728 	struct dm_io_request io_req;
2729 	struct dm_io_region io_loc;
2730 	sector_t area, offset;
2731 	sector_t metadata_block;
2732 	unsigned int metadata_offset;
2733 	sector_t logical_sector, n_sectors;
2734 	__u8 *t;
2735 	unsigned int i;
2736 	int r;
2737 	unsigned int super_counter = 0;
2738 	unsigned recalc_sectors = RECALC_SECTORS;
2739 
2740 retry:
2741 	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2742 	if (!recalc_buffer) {
2743 oom:
2744 		recalc_sectors >>= 1;
2745 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2746 			goto retry;
2747 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2748 		goto free_ret;
2749 	}
2750 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2751 	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2752 		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2753 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2754 	if (!recalc_tags) {
2755 		vfree(recalc_buffer);
2756 		recalc_buffer = NULL;
2757 		goto oom;
2758 	}
2759 
2760 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2761 
2762 	spin_lock_irq(&ic->endio_wait.lock);
2763 
2764 next_chunk:
2765 
2766 	if (unlikely(dm_post_suspending(ic->ti)))
2767 		goto unlock_ret;
2768 
2769 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2770 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2771 		if (ic->mode == 'B') {
2772 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2773 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2774 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2775 		}
2776 		goto unlock_ret;
2777 	}
2778 
2779 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2780 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2781 	if (!ic->meta_dev)
2782 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2783 
2784 	add_new_range_and_wait(ic, &range);
2785 	spin_unlock_irq(&ic->endio_wait.lock);
2786 	logical_sector = range.logical_sector;
2787 	n_sectors = range.n_sectors;
2788 
2789 	if (ic->mode == 'B') {
2790 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2791 			goto advance_and_next;
2792 
2793 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2794 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2795 			logical_sector += ic->sectors_per_block;
2796 			n_sectors -= ic->sectors_per_block;
2797 			cond_resched();
2798 		}
2799 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2800 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2801 			n_sectors -= ic->sectors_per_block;
2802 			cond_resched();
2803 		}
2804 		get_area_and_offset(ic, logical_sector, &area, &offset);
2805 	}
2806 
2807 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2808 
2809 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2810 		recalc_write_super(ic);
2811 		if (ic->mode == 'B')
2812 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2813 
2814 		super_counter = 0;
2815 	}
2816 
2817 	if (unlikely(dm_integrity_failed(ic)))
2818 		goto err;
2819 
2820 	io_req.bi_opf = REQ_OP_READ;
2821 	io_req.mem.type = DM_IO_VMA;
2822 	io_req.mem.ptr.addr = recalc_buffer;
2823 	io_req.notify.fn = NULL;
2824 	io_req.client = ic->io;
2825 	io_loc.bdev = ic->dev->bdev;
2826 	io_loc.sector = get_data_sector(ic, area, offset);
2827 	io_loc.count = n_sectors;
2828 
2829 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2830 	if (unlikely(r)) {
2831 		dm_integrity_io_error(ic, "reading data", r);
2832 		goto err;
2833 	}
2834 
2835 	t = recalc_tags;
2836 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2837 		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2838 		t += ic->tag_size;
2839 	}
2840 
2841 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2842 
2843 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2844 	if (unlikely(r)) {
2845 		dm_integrity_io_error(ic, "writing tags", r);
2846 		goto err;
2847 	}
2848 
2849 	if (ic->mode == 'B') {
2850 		sector_t start, end;
2851 
2852 		start = (range.logical_sector >>
2853 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2854 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2855 		end = ((range.logical_sector + range.n_sectors) >>
2856 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2857 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2858 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2859 	}
2860 
2861 advance_and_next:
2862 	cond_resched();
2863 
2864 	spin_lock_irq(&ic->endio_wait.lock);
2865 	remove_range_unlocked(ic, &range);
2866 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2867 	goto next_chunk;
2868 
2869 err:
2870 	remove_range(ic, &range);
2871 	goto free_ret;
2872 
2873 unlock_ret:
2874 	spin_unlock_irq(&ic->endio_wait.lock);
2875 
2876 	recalc_write_super(ic);
2877 
2878 free_ret:
2879 	vfree(recalc_buffer);
2880 	kvfree(recalc_tags);
2881 }
2882 
bitmap_block_work(struct work_struct * w)2883 static void bitmap_block_work(struct work_struct *w)
2884 {
2885 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2886 	struct dm_integrity_c *ic = bbs->ic;
2887 	struct bio *bio;
2888 	struct bio_list bio_queue;
2889 	struct bio_list waiting;
2890 
2891 	bio_list_init(&waiting);
2892 
2893 	spin_lock(&bbs->bio_queue_lock);
2894 	bio_queue = bbs->bio_queue;
2895 	bio_list_init(&bbs->bio_queue);
2896 	spin_unlock(&bbs->bio_queue_lock);
2897 
2898 	while ((bio = bio_list_pop(&bio_queue))) {
2899 		struct dm_integrity_io *dio;
2900 
2901 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2902 
2903 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2904 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2905 			remove_range(ic, &dio->range);
2906 			INIT_WORK(&dio->work, integrity_bio_wait);
2907 			queue_work(ic->offload_wq, &dio->work);
2908 		} else {
2909 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2910 					dio->range.n_sectors, BITMAP_OP_SET);
2911 			bio_list_add(&waiting, bio);
2912 		}
2913 	}
2914 
2915 	if (bio_list_empty(&waiting))
2916 		return;
2917 
2918 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2919 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2920 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2921 
2922 	while ((bio = bio_list_pop(&waiting))) {
2923 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2924 
2925 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2926 				dio->range.n_sectors, BITMAP_OP_SET);
2927 
2928 		remove_range(ic, &dio->range);
2929 		INIT_WORK(&dio->work, integrity_bio_wait);
2930 		queue_work(ic->offload_wq, &dio->work);
2931 	}
2932 
2933 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2934 }
2935 
bitmap_flush_work(struct work_struct * work)2936 static void bitmap_flush_work(struct work_struct *work)
2937 {
2938 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2939 	struct dm_integrity_range range;
2940 	unsigned long limit;
2941 	struct bio *bio;
2942 
2943 	dm_integrity_flush_buffers(ic, false);
2944 
2945 	range.logical_sector = 0;
2946 	range.n_sectors = ic->provided_data_sectors;
2947 
2948 	spin_lock_irq(&ic->endio_wait.lock);
2949 	add_new_range_and_wait(ic, &range);
2950 	spin_unlock_irq(&ic->endio_wait.lock);
2951 
2952 	dm_integrity_flush_buffers(ic, true);
2953 
2954 	limit = ic->provided_data_sectors;
2955 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2956 		limit = le64_to_cpu(ic->sb->recalc_sector)
2957 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2958 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2959 	}
2960 	/*DEBUG_print("zeroing journal\n");*/
2961 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2962 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2963 
2964 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2965 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2966 
2967 	spin_lock_irq(&ic->endio_wait.lock);
2968 	remove_range_unlocked(ic, &range);
2969 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2970 		bio_endio(bio);
2971 		spin_unlock_irq(&ic->endio_wait.lock);
2972 		spin_lock_irq(&ic->endio_wait.lock);
2973 	}
2974 	spin_unlock_irq(&ic->endio_wait.lock);
2975 }
2976 
2977 
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)2978 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2979 			 unsigned int n_sections, unsigned char commit_seq)
2980 {
2981 	unsigned int i, j, n;
2982 
2983 	if (!n_sections)
2984 		return;
2985 
2986 	for (n = 0; n < n_sections; n++) {
2987 		i = start_section + n;
2988 		wraparound_section(ic, &i);
2989 		for (j = 0; j < ic->journal_section_sectors; j++) {
2990 			struct journal_sector *js = access_journal(ic, i, j);
2991 
2992 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2993 			memset(&js->sectors, 0, sizeof(js->sectors));
2994 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2995 		}
2996 		for (j = 0; j < ic->journal_section_entries; j++) {
2997 			struct journal_entry *je = access_journal_entry(ic, i, j);
2998 
2999 			journal_entry_set_unused(je);
3000 		}
3001 	}
3002 
3003 	write_journal(ic, start_section, n_sections);
3004 }
3005 
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3006 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3007 {
3008 	unsigned char k;
3009 
3010 	for (k = 0; k < N_COMMIT_IDS; k++) {
3011 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3012 			return k;
3013 	}
3014 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3015 	return -EIO;
3016 }
3017 
replay_journal(struct dm_integrity_c * ic)3018 static void replay_journal(struct dm_integrity_c *ic)
3019 {
3020 	unsigned int i, j;
3021 	bool used_commit_ids[N_COMMIT_IDS];
3022 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3023 	unsigned int write_start, write_sections;
3024 	unsigned int continue_section;
3025 	bool journal_empty;
3026 	unsigned char unused, last_used, want_commit_seq;
3027 
3028 	if (ic->mode == 'R')
3029 		return;
3030 
3031 	if (ic->journal_uptodate)
3032 		return;
3033 
3034 	last_used = 0;
3035 	write_start = 0;
3036 
3037 	if (!ic->just_formatted) {
3038 		DEBUG_print("reading journal\n");
3039 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3040 		if (ic->journal_io)
3041 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3042 		if (ic->journal_io) {
3043 			struct journal_completion crypt_comp;
3044 
3045 			crypt_comp.ic = ic;
3046 			init_completion(&crypt_comp.comp);
3047 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3048 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3049 			wait_for_completion(&crypt_comp.comp);
3050 		}
3051 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3052 	}
3053 
3054 	if (dm_integrity_failed(ic))
3055 		goto clear_journal;
3056 
3057 	journal_empty = true;
3058 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3059 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3060 	for (i = 0; i < ic->journal_sections; i++) {
3061 		for (j = 0; j < ic->journal_section_sectors; j++) {
3062 			int k;
3063 			struct journal_sector *js = access_journal(ic, i, j);
3064 
3065 			k = find_commit_seq(ic, i, j, js->commit_id);
3066 			if (k < 0)
3067 				goto clear_journal;
3068 			used_commit_ids[k] = true;
3069 			max_commit_id_sections[k] = i;
3070 		}
3071 		if (journal_empty) {
3072 			for (j = 0; j < ic->journal_section_entries; j++) {
3073 				struct journal_entry *je = access_journal_entry(ic, i, j);
3074 
3075 				if (!journal_entry_is_unused(je)) {
3076 					journal_empty = false;
3077 					break;
3078 				}
3079 			}
3080 		}
3081 	}
3082 
3083 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3084 		unused = N_COMMIT_IDS - 1;
3085 		while (unused && !used_commit_ids[unused - 1])
3086 			unused--;
3087 	} else {
3088 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3089 			if (!used_commit_ids[unused])
3090 				break;
3091 		if (unused == N_COMMIT_IDS) {
3092 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3093 			goto clear_journal;
3094 		}
3095 	}
3096 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3097 		    unused, used_commit_ids[0], used_commit_ids[1],
3098 		    used_commit_ids[2], used_commit_ids[3]);
3099 
3100 	last_used = prev_commit_seq(unused);
3101 	want_commit_seq = prev_commit_seq(last_used);
3102 
3103 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3104 		journal_empty = true;
3105 
3106 	write_start = max_commit_id_sections[last_used] + 1;
3107 	if (unlikely(write_start >= ic->journal_sections))
3108 		want_commit_seq = next_commit_seq(want_commit_seq);
3109 	wraparound_section(ic, &write_start);
3110 
3111 	i = write_start;
3112 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3113 		for (j = 0; j < ic->journal_section_sectors; j++) {
3114 			struct journal_sector *js = access_journal(ic, i, j);
3115 
3116 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3117 				/*
3118 				 * This could be caused by crash during writing.
3119 				 * We won't replay the inconsistent part of the
3120 				 * journal.
3121 				 */
3122 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3123 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3124 				goto brk;
3125 			}
3126 		}
3127 		i++;
3128 		if (unlikely(i >= ic->journal_sections))
3129 			want_commit_seq = next_commit_seq(want_commit_seq);
3130 		wraparound_section(ic, &i);
3131 	}
3132 brk:
3133 
3134 	if (!journal_empty) {
3135 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3136 			    write_sections, write_start, want_commit_seq);
3137 		do_journal_write(ic, write_start, write_sections, true);
3138 	}
3139 
3140 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3141 		continue_section = write_start;
3142 		ic->commit_seq = want_commit_seq;
3143 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3144 	} else {
3145 		unsigned int s;
3146 		unsigned char erase_seq;
3147 
3148 clear_journal:
3149 		DEBUG_print("clearing journal\n");
3150 
3151 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3152 		s = write_start;
3153 		init_journal(ic, s, 1, erase_seq);
3154 		s++;
3155 		wraparound_section(ic, &s);
3156 		if (ic->journal_sections >= 2) {
3157 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3158 			s += ic->journal_sections - 2;
3159 			wraparound_section(ic, &s);
3160 			init_journal(ic, s, 1, erase_seq);
3161 		}
3162 
3163 		continue_section = 0;
3164 		ic->commit_seq = next_commit_seq(erase_seq);
3165 	}
3166 
3167 	ic->committed_section = continue_section;
3168 	ic->n_committed_sections = 0;
3169 
3170 	ic->uncommitted_section = continue_section;
3171 	ic->n_uncommitted_sections = 0;
3172 
3173 	ic->free_section = continue_section;
3174 	ic->free_section_entry = 0;
3175 	ic->free_sectors = ic->journal_entries;
3176 
3177 	ic->journal_tree_root = RB_ROOT;
3178 	for (i = 0; i < ic->journal_entries; i++)
3179 		init_journal_node(&ic->journal_tree[i]);
3180 }
3181 
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3182 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3183 {
3184 	DEBUG_print("%s\n", __func__);
3185 
3186 	if (ic->mode == 'B') {
3187 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3188 		ic->synchronous_mode = 1;
3189 
3190 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3191 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3192 		flush_workqueue(ic->commit_wq);
3193 	}
3194 }
3195 
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3196 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3197 {
3198 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3199 
3200 	DEBUG_print("%s\n", __func__);
3201 
3202 	dm_integrity_enter_synchronous_mode(ic);
3203 
3204 	return NOTIFY_DONE;
3205 }
3206 
dm_integrity_postsuspend(struct dm_target * ti)3207 static void dm_integrity_postsuspend(struct dm_target *ti)
3208 {
3209 	struct dm_integrity_c *ic = ti->private;
3210 	int r;
3211 
3212 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3213 
3214 	del_timer_sync(&ic->autocommit_timer);
3215 
3216 	if (ic->recalc_wq)
3217 		drain_workqueue(ic->recalc_wq);
3218 
3219 	if (ic->mode == 'B')
3220 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3221 
3222 	queue_work(ic->commit_wq, &ic->commit_work);
3223 	drain_workqueue(ic->commit_wq);
3224 
3225 	if (ic->mode == 'J') {
3226 		queue_work(ic->writer_wq, &ic->writer_work);
3227 		drain_workqueue(ic->writer_wq);
3228 		dm_integrity_flush_buffers(ic, true);
3229 		if (ic->wrote_to_journal) {
3230 			init_journal(ic, ic->free_section,
3231 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3232 			if (ic->free_section) {
3233 				init_journal(ic, 0, ic->free_section,
3234 					     next_commit_seq(ic->commit_seq));
3235 			}
3236 		}
3237 	}
3238 
3239 	if (ic->mode == 'B') {
3240 		dm_integrity_flush_buffers(ic, true);
3241 #if 1
3242 		/* set to 0 to test bitmap replay code */
3243 		init_journal(ic, 0, ic->journal_sections, 0);
3244 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3245 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3246 		if (unlikely(r))
3247 			dm_integrity_io_error(ic, "writing superblock", r);
3248 #endif
3249 	}
3250 
3251 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3252 
3253 	ic->journal_uptodate = true;
3254 }
3255 
dm_integrity_resume(struct dm_target * ti)3256 static void dm_integrity_resume(struct dm_target *ti)
3257 {
3258 	struct dm_integrity_c *ic = ti->private;
3259 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3260 	int r;
3261 
3262 	DEBUG_print("resume\n");
3263 
3264 	ic->wrote_to_journal = false;
3265 
3266 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3267 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3268 		    ic->mode == 'B' &&
3269 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3270 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3271 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3272 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3273 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3274 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3275 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3276 		}
3277 
3278 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3279 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3280 		if (unlikely(r))
3281 			dm_integrity_io_error(ic, "writing superblock", r);
3282 	}
3283 
3284 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3285 		DEBUG_print("resume dirty_bitmap\n");
3286 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3287 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3288 		if (ic->mode == 'B') {
3289 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3290 			    !ic->reset_recalculate_flag) {
3291 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3292 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3293 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3294 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3295 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3296 					ic->sb->recalc_sector = cpu_to_le64(0);
3297 				}
3298 			} else {
3299 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3300 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3301 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3302 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3303 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3304 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3305 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3306 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3307 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308 				ic->sb->recalc_sector = cpu_to_le64(0);
3309 			}
3310 		} else {
3311 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3312 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3313 			    ic->reset_recalculate_flag) {
3314 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3315 				ic->sb->recalc_sector = cpu_to_le64(0);
3316 			}
3317 			init_journal(ic, 0, ic->journal_sections, 0);
3318 			replay_journal(ic);
3319 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3320 		}
3321 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3322 		if (unlikely(r))
3323 			dm_integrity_io_error(ic, "writing superblock", r);
3324 	} else {
3325 		replay_journal(ic);
3326 		if (ic->reset_recalculate_flag) {
3327 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3328 			ic->sb->recalc_sector = cpu_to_le64(0);
3329 		}
3330 		if (ic->mode == 'B') {
3331 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3332 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3333 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3334 			if (unlikely(r))
3335 				dm_integrity_io_error(ic, "writing superblock", r);
3336 
3337 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3338 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3339 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3340 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3341 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3342 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3343 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3344 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3345 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3346 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3347 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3348 			}
3349 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3350 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3351 		}
3352 	}
3353 
3354 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3355 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3356 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3357 
3358 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3359 		if (recalc_pos < ic->provided_data_sectors) {
3360 			queue_work(ic->recalc_wq, &ic->recalc_work);
3361 		} else if (recalc_pos > ic->provided_data_sectors) {
3362 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3363 			recalc_write_super(ic);
3364 		}
3365 	}
3366 
3367 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3368 	ic->reboot_notifier.next = NULL;
3369 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3370 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3371 
3372 #if 0
3373 	/* set to 1 to stress test synchronous mode */
3374 	dm_integrity_enter_synchronous_mode(ic);
3375 #endif
3376 }
3377 
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3378 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3379 				unsigned int status_flags, char *result, unsigned int maxlen)
3380 {
3381 	struct dm_integrity_c *ic = ti->private;
3382 	unsigned int arg_count;
3383 	size_t sz = 0;
3384 
3385 	switch (type) {
3386 	case STATUSTYPE_INFO:
3387 		DMEMIT("%llu %llu",
3388 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3389 			ic->provided_data_sectors);
3390 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3391 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3392 		else
3393 			DMEMIT(" -");
3394 		break;
3395 
3396 	case STATUSTYPE_TABLE: {
3397 		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3398 
3399 		watermark_percentage += ic->journal_entries / 2;
3400 		do_div(watermark_percentage, ic->journal_entries);
3401 		arg_count = 3;
3402 		arg_count += !!ic->meta_dev;
3403 		arg_count += ic->sectors_per_block != 1;
3404 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3405 		arg_count += ic->reset_recalculate_flag;
3406 		arg_count += ic->discard;
3407 		arg_count += ic->mode == 'J';
3408 		arg_count += ic->mode == 'J';
3409 		arg_count += ic->mode == 'B';
3410 		arg_count += ic->mode == 'B';
3411 		arg_count += !!ic->internal_hash_alg.alg_string;
3412 		arg_count += !!ic->journal_crypt_alg.alg_string;
3413 		arg_count += !!ic->journal_mac_alg.alg_string;
3414 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3415 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3416 		arg_count += ic->legacy_recalculate;
3417 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3418 		       ic->tag_size, ic->mode, arg_count);
3419 		if (ic->meta_dev)
3420 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3421 		if (ic->sectors_per_block != 1)
3422 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3423 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3424 			DMEMIT(" recalculate");
3425 		if (ic->reset_recalculate_flag)
3426 			DMEMIT(" reset_recalculate");
3427 		if (ic->discard)
3428 			DMEMIT(" allow_discards");
3429 		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3430 		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3431 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3432 		if (ic->mode == 'J') {
3433 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3434 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3435 		}
3436 		if (ic->mode == 'B') {
3437 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3438 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3439 		}
3440 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3441 			DMEMIT(" fix_padding");
3442 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3443 			DMEMIT(" fix_hmac");
3444 		if (ic->legacy_recalculate)
3445 			DMEMIT(" legacy_recalculate");
3446 
3447 #define EMIT_ALG(a, n)							\
3448 		do {							\
3449 			if (ic->a.alg_string) {				\
3450 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3451 				if (ic->a.key_string)			\
3452 					DMEMIT(":%s", ic->a.key_string);\
3453 			}						\
3454 		} while (0)
3455 		EMIT_ALG(internal_hash_alg, "internal_hash");
3456 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3457 		EMIT_ALG(journal_mac_alg, "journal_mac");
3458 		break;
3459 	}
3460 	case STATUSTYPE_IMA:
3461 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3462 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3463 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3464 
3465 		if (ic->meta_dev)
3466 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3467 		if (ic->sectors_per_block != 1)
3468 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3469 
3470 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3471 		       'y' : 'n');
3472 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3473 		DMEMIT(",fix_padding=%c",
3474 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3475 		DMEMIT(",fix_hmac=%c",
3476 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3477 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3478 
3479 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3480 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3481 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3482 		DMEMIT(";");
3483 		break;
3484 	}
3485 }
3486 
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3487 static int dm_integrity_iterate_devices(struct dm_target *ti,
3488 					iterate_devices_callout_fn fn, void *data)
3489 {
3490 	struct dm_integrity_c *ic = ti->private;
3491 
3492 	if (!ic->meta_dev)
3493 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3494 	else
3495 		return fn(ti, ic->dev, 0, ti->len, data);
3496 }
3497 
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3498 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3499 {
3500 	struct dm_integrity_c *ic = ti->private;
3501 
3502 	if (ic->sectors_per_block > 1) {
3503 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3504 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3505 		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3506 		limits->dma_alignment = limits->logical_block_size - 1;
3507 	}
3508 }
3509 
calculate_journal_section_size(struct dm_integrity_c * ic)3510 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3511 {
3512 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3513 
3514 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3515 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3516 					 JOURNAL_ENTRY_ROUNDUP);
3517 
3518 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3519 		sector_space -= JOURNAL_MAC_PER_SECTOR;
3520 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3521 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3522 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3523 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3524 }
3525 
calculate_device_limits(struct dm_integrity_c * ic)3526 static int calculate_device_limits(struct dm_integrity_c *ic)
3527 {
3528 	__u64 initial_sectors;
3529 
3530 	calculate_journal_section_size(ic);
3531 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3532 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3533 		return -EINVAL;
3534 	ic->initial_sectors = initial_sectors;
3535 
3536 	if (!ic->meta_dev) {
3537 		sector_t last_sector, last_area, last_offset;
3538 
3539 		/* we have to maintain excessive padding for compatibility with existing volumes */
3540 		__u64 metadata_run_padding =
3541 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3542 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3543 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3544 
3545 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3546 					    metadata_run_padding) >> SECTOR_SHIFT;
3547 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3548 			ic->log2_metadata_run = __ffs(ic->metadata_run);
3549 		else
3550 			ic->log2_metadata_run = -1;
3551 
3552 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3553 		last_sector = get_data_sector(ic, last_area, last_offset);
3554 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3555 			return -EINVAL;
3556 	} else {
3557 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3558 
3559 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3560 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3561 		meta_size <<= ic->log2_buffer_sectors;
3562 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3563 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3564 			return -EINVAL;
3565 		ic->metadata_run = 1;
3566 		ic->log2_metadata_run = 0;
3567 	}
3568 
3569 	return 0;
3570 }
3571 
get_provided_data_sectors(struct dm_integrity_c * ic)3572 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3573 {
3574 	if (!ic->meta_dev) {
3575 		int test_bit;
3576 
3577 		ic->provided_data_sectors = 0;
3578 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3579 			__u64 prev_data_sectors = ic->provided_data_sectors;
3580 
3581 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3582 			if (calculate_device_limits(ic))
3583 				ic->provided_data_sectors = prev_data_sectors;
3584 		}
3585 	} else {
3586 		ic->provided_data_sectors = ic->data_device_sectors;
3587 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3588 	}
3589 }
3590 
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)3591 static int initialize_superblock(struct dm_integrity_c *ic,
3592 				 unsigned int journal_sectors, unsigned int interleave_sectors)
3593 {
3594 	unsigned int journal_sections;
3595 	int test_bit;
3596 
3597 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3598 	memcpy(ic->sb->magic, SB_MAGIC, 8);
3599 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3600 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3601 	if (ic->journal_mac_alg.alg_string)
3602 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3603 
3604 	calculate_journal_section_size(ic);
3605 	journal_sections = journal_sectors / ic->journal_section_sectors;
3606 	if (!journal_sections)
3607 		journal_sections = 1;
3608 
3609 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3610 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3611 		get_random_bytes(ic->sb->salt, SALT_SIZE);
3612 	}
3613 
3614 	if (!ic->meta_dev) {
3615 		if (ic->fix_padding)
3616 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3617 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3618 		if (!interleave_sectors)
3619 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3620 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3621 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3622 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3623 
3624 		get_provided_data_sectors(ic);
3625 		if (!ic->provided_data_sectors)
3626 			return -EINVAL;
3627 	} else {
3628 		ic->sb->log2_interleave_sectors = 0;
3629 
3630 		get_provided_data_sectors(ic);
3631 		if (!ic->provided_data_sectors)
3632 			return -EINVAL;
3633 
3634 try_smaller_buffer:
3635 		ic->sb->journal_sections = cpu_to_le32(0);
3636 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3637 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3638 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3639 
3640 			if (test_journal_sections > journal_sections)
3641 				continue;
3642 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3643 			if (calculate_device_limits(ic))
3644 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3645 
3646 		}
3647 		if (!le32_to_cpu(ic->sb->journal_sections)) {
3648 			if (ic->log2_buffer_sectors > 3) {
3649 				ic->log2_buffer_sectors--;
3650 				goto try_smaller_buffer;
3651 			}
3652 			return -EINVAL;
3653 		}
3654 	}
3655 
3656 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3657 
3658 	sb_set_version(ic);
3659 
3660 	return 0;
3661 }
3662 
dm_integrity_set(struct dm_target * ti,struct dm_integrity_c * ic)3663 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3664 {
3665 	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3666 	struct blk_integrity bi;
3667 
3668 	memset(&bi, 0, sizeof(bi));
3669 	bi.profile = &dm_integrity_profile;
3670 	bi.tuple_size = ic->tag_size;
3671 	bi.tag_size = bi.tuple_size;
3672 	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3673 
3674 	blk_integrity_register(disk, &bi);
3675 	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3676 }
3677 
dm_integrity_free_page_list(struct page_list * pl)3678 static void dm_integrity_free_page_list(struct page_list *pl)
3679 {
3680 	unsigned int i;
3681 
3682 	if (!pl)
3683 		return;
3684 	for (i = 0; pl[i].page; i++)
3685 		__free_page(pl[i].page);
3686 	kvfree(pl);
3687 }
3688 
dm_integrity_alloc_page_list(unsigned int n_pages)3689 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3690 {
3691 	struct page_list *pl;
3692 	unsigned int i;
3693 
3694 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3695 	if (!pl)
3696 		return NULL;
3697 
3698 	for (i = 0; i < n_pages; i++) {
3699 		pl[i].page = alloc_page(GFP_KERNEL);
3700 		if (!pl[i].page) {
3701 			dm_integrity_free_page_list(pl);
3702 			return NULL;
3703 		}
3704 		if (i)
3705 			pl[i - 1].next = &pl[i];
3706 	}
3707 	pl[i].page = NULL;
3708 	pl[i].next = NULL;
3709 
3710 	return pl;
3711 }
3712 
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)3713 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3714 {
3715 	unsigned int i;
3716 
3717 	for (i = 0; i < ic->journal_sections; i++)
3718 		kvfree(sl[i]);
3719 	kvfree(sl);
3720 }
3721 
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)3722 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3723 								   struct page_list *pl)
3724 {
3725 	struct scatterlist **sl;
3726 	unsigned int i;
3727 
3728 	sl = kvmalloc_array(ic->journal_sections,
3729 			    sizeof(struct scatterlist *),
3730 			    GFP_KERNEL | __GFP_ZERO);
3731 	if (!sl)
3732 		return NULL;
3733 
3734 	for (i = 0; i < ic->journal_sections; i++) {
3735 		struct scatterlist *s;
3736 		unsigned int start_index, start_offset;
3737 		unsigned int end_index, end_offset;
3738 		unsigned int n_pages;
3739 		unsigned int idx;
3740 
3741 		page_list_location(ic, i, 0, &start_index, &start_offset);
3742 		page_list_location(ic, i, ic->journal_section_sectors - 1,
3743 				   &end_index, &end_offset);
3744 
3745 		n_pages = (end_index - start_index + 1);
3746 
3747 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3748 				   GFP_KERNEL);
3749 		if (!s) {
3750 			dm_integrity_free_journal_scatterlist(ic, sl);
3751 			return NULL;
3752 		}
3753 
3754 		sg_init_table(s, n_pages);
3755 		for (idx = start_index; idx <= end_index; idx++) {
3756 			char *va = lowmem_page_address(pl[idx].page);
3757 			unsigned int start = 0, end = PAGE_SIZE;
3758 
3759 			if (idx == start_index)
3760 				start = start_offset;
3761 			if (idx == end_index)
3762 				end = end_offset + (1 << SECTOR_SHIFT);
3763 			sg_set_buf(&s[idx - start_index], va + start, end - start);
3764 		}
3765 
3766 		sl[i] = s;
3767 	}
3768 
3769 	return sl;
3770 }
3771 
free_alg(struct alg_spec * a)3772 static void free_alg(struct alg_spec *a)
3773 {
3774 	kfree_sensitive(a->alg_string);
3775 	kfree_sensitive(a->key);
3776 	memset(a, 0, sizeof(*a));
3777 }
3778 
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)3779 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3780 {
3781 	char *k;
3782 
3783 	free_alg(a);
3784 
3785 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3786 	if (!a->alg_string)
3787 		goto nomem;
3788 
3789 	k = strchr(a->alg_string, ':');
3790 	if (k) {
3791 		*k = 0;
3792 		a->key_string = k + 1;
3793 		if (strlen(a->key_string) & 1)
3794 			goto inval;
3795 
3796 		a->key_size = strlen(a->key_string) / 2;
3797 		a->key = kmalloc(a->key_size, GFP_KERNEL);
3798 		if (!a->key)
3799 			goto nomem;
3800 		if (hex2bin(a->key, a->key_string, a->key_size))
3801 			goto inval;
3802 	}
3803 
3804 	return 0;
3805 inval:
3806 	*error = error_inval;
3807 	return -EINVAL;
3808 nomem:
3809 	*error = "Out of memory for an argument";
3810 	return -ENOMEM;
3811 }
3812 
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)3813 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3814 		   char *error_alg, char *error_key)
3815 {
3816 	int r;
3817 
3818 	if (a->alg_string) {
3819 		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3820 		if (IS_ERR(*hash)) {
3821 			*error = error_alg;
3822 			r = PTR_ERR(*hash);
3823 			*hash = NULL;
3824 			return r;
3825 		}
3826 
3827 		if (a->key) {
3828 			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3829 			if (r) {
3830 				*error = error_key;
3831 				return r;
3832 			}
3833 		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3834 			*error = error_key;
3835 			return -ENOKEY;
3836 		}
3837 	}
3838 
3839 	return 0;
3840 }
3841 
create_journal(struct dm_integrity_c * ic,char ** error)3842 static int create_journal(struct dm_integrity_c *ic, char **error)
3843 {
3844 	int r = 0;
3845 	unsigned int i;
3846 	__u64 journal_pages, journal_desc_size, journal_tree_size;
3847 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3848 	struct skcipher_request *req = NULL;
3849 
3850 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3851 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3852 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3853 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3854 
3855 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3856 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3857 	journal_desc_size = journal_pages * sizeof(struct page_list);
3858 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3859 		*error = "Journal doesn't fit into memory";
3860 		r = -ENOMEM;
3861 		goto bad;
3862 	}
3863 	ic->journal_pages = journal_pages;
3864 
3865 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3866 	if (!ic->journal) {
3867 		*error = "Could not allocate memory for journal";
3868 		r = -ENOMEM;
3869 		goto bad;
3870 	}
3871 	if (ic->journal_crypt_alg.alg_string) {
3872 		unsigned int ivsize, blocksize;
3873 		struct journal_completion comp;
3874 
3875 		comp.ic = ic;
3876 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3877 		if (IS_ERR(ic->journal_crypt)) {
3878 			*error = "Invalid journal cipher";
3879 			r = PTR_ERR(ic->journal_crypt);
3880 			ic->journal_crypt = NULL;
3881 			goto bad;
3882 		}
3883 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3884 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3885 
3886 		if (ic->journal_crypt_alg.key) {
3887 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3888 						   ic->journal_crypt_alg.key_size);
3889 			if (r) {
3890 				*error = "Error setting encryption key";
3891 				goto bad;
3892 			}
3893 		}
3894 		DEBUG_print("cipher %s, block size %u iv size %u\n",
3895 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3896 
3897 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3898 		if (!ic->journal_io) {
3899 			*error = "Could not allocate memory for journal io";
3900 			r = -ENOMEM;
3901 			goto bad;
3902 		}
3903 
3904 		if (blocksize == 1) {
3905 			struct scatterlist *sg;
3906 
3907 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3908 			if (!req) {
3909 				*error = "Could not allocate crypt request";
3910 				r = -ENOMEM;
3911 				goto bad;
3912 			}
3913 
3914 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3915 			if (!crypt_iv) {
3916 				*error = "Could not allocate iv";
3917 				r = -ENOMEM;
3918 				goto bad;
3919 			}
3920 
3921 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3922 			if (!ic->journal_xor) {
3923 				*error = "Could not allocate memory for journal xor";
3924 				r = -ENOMEM;
3925 				goto bad;
3926 			}
3927 
3928 			sg = kvmalloc_array(ic->journal_pages + 1,
3929 					    sizeof(struct scatterlist),
3930 					    GFP_KERNEL);
3931 			if (!sg) {
3932 				*error = "Unable to allocate sg list";
3933 				r = -ENOMEM;
3934 				goto bad;
3935 			}
3936 			sg_init_table(sg, ic->journal_pages + 1);
3937 			for (i = 0; i < ic->journal_pages; i++) {
3938 				char *va = lowmem_page_address(ic->journal_xor[i].page);
3939 
3940 				clear_page(va);
3941 				sg_set_buf(&sg[i], va, PAGE_SIZE);
3942 			}
3943 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3944 
3945 			skcipher_request_set_crypt(req, sg, sg,
3946 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3947 			init_completion(&comp.comp);
3948 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3949 			if (do_crypt(true, req, &comp))
3950 				wait_for_completion(&comp.comp);
3951 			kvfree(sg);
3952 			r = dm_integrity_failed(ic);
3953 			if (r) {
3954 				*error = "Unable to encrypt journal";
3955 				goto bad;
3956 			}
3957 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3958 
3959 			crypto_free_skcipher(ic->journal_crypt);
3960 			ic->journal_crypt = NULL;
3961 		} else {
3962 			unsigned int crypt_len = roundup(ivsize, blocksize);
3963 
3964 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3965 			if (!req) {
3966 				*error = "Could not allocate crypt request";
3967 				r = -ENOMEM;
3968 				goto bad;
3969 			}
3970 
3971 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3972 			if (!crypt_iv) {
3973 				*error = "Could not allocate iv";
3974 				r = -ENOMEM;
3975 				goto bad;
3976 			}
3977 
3978 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3979 			if (!crypt_data) {
3980 				*error = "Unable to allocate crypt data";
3981 				r = -ENOMEM;
3982 				goto bad;
3983 			}
3984 
3985 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3986 			if (!ic->journal_scatterlist) {
3987 				*error = "Unable to allocate sg list";
3988 				r = -ENOMEM;
3989 				goto bad;
3990 			}
3991 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3992 			if (!ic->journal_io_scatterlist) {
3993 				*error = "Unable to allocate sg list";
3994 				r = -ENOMEM;
3995 				goto bad;
3996 			}
3997 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3998 							 sizeof(struct skcipher_request *),
3999 							 GFP_KERNEL | __GFP_ZERO);
4000 			if (!ic->sk_requests) {
4001 				*error = "Unable to allocate sk requests";
4002 				r = -ENOMEM;
4003 				goto bad;
4004 			}
4005 			for (i = 0; i < ic->journal_sections; i++) {
4006 				struct scatterlist sg;
4007 				struct skcipher_request *section_req;
4008 				__le32 section_le = cpu_to_le32(i);
4009 
4010 				memset(crypt_iv, 0x00, ivsize);
4011 				memset(crypt_data, 0x00, crypt_len);
4012 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4013 
4014 				sg_init_one(&sg, crypt_data, crypt_len);
4015 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4016 				init_completion(&comp.comp);
4017 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4018 				if (do_crypt(true, req, &comp))
4019 					wait_for_completion(&comp.comp);
4020 
4021 				r = dm_integrity_failed(ic);
4022 				if (r) {
4023 					*error = "Unable to generate iv";
4024 					goto bad;
4025 				}
4026 
4027 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4028 				if (!section_req) {
4029 					*error = "Unable to allocate crypt request";
4030 					r = -ENOMEM;
4031 					goto bad;
4032 				}
4033 				section_req->iv = kmalloc_array(ivsize, 2,
4034 								GFP_KERNEL);
4035 				if (!section_req->iv) {
4036 					skcipher_request_free(section_req);
4037 					*error = "Unable to allocate iv";
4038 					r = -ENOMEM;
4039 					goto bad;
4040 				}
4041 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4042 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4043 				ic->sk_requests[i] = section_req;
4044 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4045 			}
4046 		}
4047 	}
4048 
4049 	for (i = 0; i < N_COMMIT_IDS; i++) {
4050 		unsigned int j;
4051 
4052 retest_commit_id:
4053 		for (j = 0; j < i; j++) {
4054 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4055 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4056 				goto retest_commit_id;
4057 			}
4058 		}
4059 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4060 	}
4061 
4062 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4063 	if (journal_tree_size > ULONG_MAX) {
4064 		*error = "Journal doesn't fit into memory";
4065 		r = -ENOMEM;
4066 		goto bad;
4067 	}
4068 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4069 	if (!ic->journal_tree) {
4070 		*error = "Could not allocate memory for journal tree";
4071 		r = -ENOMEM;
4072 	}
4073 bad:
4074 	kfree(crypt_data);
4075 	kfree(crypt_iv);
4076 	skcipher_request_free(req);
4077 
4078 	return r;
4079 }
4080 
4081 /*
4082  * Construct a integrity mapping
4083  *
4084  * Arguments:
4085  *	device
4086  *	offset from the start of the device
4087  *	tag size
4088  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4089  *	number of optional arguments
4090  *	optional arguments:
4091  *		journal_sectors
4092  *		interleave_sectors
4093  *		buffer_sectors
4094  *		journal_watermark
4095  *		commit_time
4096  *		meta_device
4097  *		block_size
4098  *		sectors_per_bit
4099  *		bitmap_flush_interval
4100  *		internal_hash
4101  *		journal_crypt
4102  *		journal_mac
4103  *		recalculate
4104  */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4105 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4106 {
4107 	struct dm_integrity_c *ic;
4108 	char dummy;
4109 	int r;
4110 	unsigned int extra_args;
4111 	struct dm_arg_set as;
4112 	static const struct dm_arg _args[] = {
4113 		{0, 18, "Invalid number of feature args"},
4114 	};
4115 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4116 	bool should_write_sb;
4117 	__u64 threshold;
4118 	unsigned long long start;
4119 	__s8 log2_sectors_per_bitmap_bit = -1;
4120 	__s8 log2_blocks_per_bitmap_bit;
4121 	__u64 bits_in_journal;
4122 	__u64 n_bitmap_bits;
4123 
4124 #define DIRECT_ARGUMENTS	4
4125 
4126 	if (argc <= DIRECT_ARGUMENTS) {
4127 		ti->error = "Invalid argument count";
4128 		return -EINVAL;
4129 	}
4130 
4131 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4132 	if (!ic) {
4133 		ti->error = "Cannot allocate integrity context";
4134 		return -ENOMEM;
4135 	}
4136 	ti->private = ic;
4137 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4138 	ic->ti = ti;
4139 
4140 	ic->in_progress = RB_ROOT;
4141 	INIT_LIST_HEAD(&ic->wait_list);
4142 	init_waitqueue_head(&ic->endio_wait);
4143 	bio_list_init(&ic->flush_bio_list);
4144 	init_waitqueue_head(&ic->copy_to_journal_wait);
4145 	init_completion(&ic->crypto_backoff);
4146 	atomic64_set(&ic->number_of_mismatches, 0);
4147 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4148 
4149 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4150 	if (r) {
4151 		ti->error = "Device lookup failed";
4152 		goto bad;
4153 	}
4154 
4155 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4156 		ti->error = "Invalid starting offset";
4157 		r = -EINVAL;
4158 		goto bad;
4159 	}
4160 	ic->start = start;
4161 
4162 	if (strcmp(argv[2], "-")) {
4163 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4164 			ti->error = "Invalid tag size";
4165 			r = -EINVAL;
4166 			goto bad;
4167 		}
4168 	}
4169 
4170 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4171 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4172 		ic->mode = argv[3][0];
4173 	} else {
4174 		ti->error = "Invalid mode (expecting J, B, D, R)";
4175 		r = -EINVAL;
4176 		goto bad;
4177 	}
4178 
4179 	journal_sectors = 0;
4180 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4181 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4182 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4183 	sync_msec = DEFAULT_SYNC_MSEC;
4184 	ic->sectors_per_block = 1;
4185 
4186 	as.argc = argc - DIRECT_ARGUMENTS;
4187 	as.argv = argv + DIRECT_ARGUMENTS;
4188 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4189 	if (r)
4190 		goto bad;
4191 
4192 	while (extra_args--) {
4193 		const char *opt_string;
4194 		unsigned int val;
4195 		unsigned long long llval;
4196 
4197 		opt_string = dm_shift_arg(&as);
4198 		if (!opt_string) {
4199 			r = -EINVAL;
4200 			ti->error = "Not enough feature arguments";
4201 			goto bad;
4202 		}
4203 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4204 			journal_sectors = val ? val : 1;
4205 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4206 			interleave_sectors = val;
4207 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4208 			buffer_sectors = val;
4209 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4210 			journal_watermark = val;
4211 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4212 			sync_msec = val;
4213 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4214 			if (ic->meta_dev) {
4215 				dm_put_device(ti, ic->meta_dev);
4216 				ic->meta_dev = NULL;
4217 			}
4218 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4219 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4220 			if (r) {
4221 				ti->error = "Device lookup failed";
4222 				goto bad;
4223 			}
4224 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4225 			if (val < 1 << SECTOR_SHIFT ||
4226 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4227 			    (val & (val - 1))) {
4228 				r = -EINVAL;
4229 				ti->error = "Invalid block_size argument";
4230 				goto bad;
4231 			}
4232 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4233 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4234 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4235 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4236 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4237 				r = -EINVAL;
4238 				ti->error = "Invalid bitmap_flush_interval argument";
4239 				goto bad;
4240 			}
4241 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4242 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4243 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4244 					    "Invalid internal_hash argument");
4245 			if (r)
4246 				goto bad;
4247 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4248 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4249 					    "Invalid journal_crypt argument");
4250 			if (r)
4251 				goto bad;
4252 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4253 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4254 					    "Invalid journal_mac argument");
4255 			if (r)
4256 				goto bad;
4257 		} else if (!strcmp(opt_string, "recalculate")) {
4258 			ic->recalculate_flag = true;
4259 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4260 			ic->recalculate_flag = true;
4261 			ic->reset_recalculate_flag = true;
4262 		} else if (!strcmp(opt_string, "allow_discards")) {
4263 			ic->discard = true;
4264 		} else if (!strcmp(opt_string, "fix_padding")) {
4265 			ic->fix_padding = true;
4266 		} else if (!strcmp(opt_string, "fix_hmac")) {
4267 			ic->fix_hmac = true;
4268 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4269 			ic->legacy_recalculate = true;
4270 		} else {
4271 			r = -EINVAL;
4272 			ti->error = "Invalid argument";
4273 			goto bad;
4274 		}
4275 	}
4276 
4277 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4278 	if (!ic->meta_dev)
4279 		ic->meta_device_sectors = ic->data_device_sectors;
4280 	else
4281 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4282 
4283 	if (!journal_sectors) {
4284 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4285 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4286 	}
4287 
4288 	if (!buffer_sectors)
4289 		buffer_sectors = 1;
4290 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4291 
4292 	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4293 		    "Invalid internal hash", "Error setting internal hash key");
4294 	if (r)
4295 		goto bad;
4296 
4297 	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4298 		    "Invalid journal mac", "Error setting journal mac key");
4299 	if (r)
4300 		goto bad;
4301 
4302 	if (!ic->tag_size) {
4303 		if (!ic->internal_hash) {
4304 			ti->error = "Unknown tag size";
4305 			r = -EINVAL;
4306 			goto bad;
4307 		}
4308 		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4309 	}
4310 	if (ic->tag_size > MAX_TAG_SIZE) {
4311 		ti->error = "Too big tag size";
4312 		r = -EINVAL;
4313 		goto bad;
4314 	}
4315 	if (!(ic->tag_size & (ic->tag_size - 1)))
4316 		ic->log2_tag_size = __ffs(ic->tag_size);
4317 	else
4318 		ic->log2_tag_size = -1;
4319 
4320 	if (ic->mode == 'B' && !ic->internal_hash) {
4321 		r = -EINVAL;
4322 		ti->error = "Bitmap mode can be only used with internal hash";
4323 		goto bad;
4324 	}
4325 
4326 	if (ic->discard && !ic->internal_hash) {
4327 		r = -EINVAL;
4328 		ti->error = "Discard can be only used with internal hash";
4329 		goto bad;
4330 	}
4331 
4332 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4333 	ic->autocommit_msec = sync_msec;
4334 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4335 
4336 	ic->io = dm_io_client_create();
4337 	if (IS_ERR(ic->io)) {
4338 		r = PTR_ERR(ic->io);
4339 		ic->io = NULL;
4340 		ti->error = "Cannot allocate dm io";
4341 		goto bad;
4342 	}
4343 
4344 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4345 	if (r) {
4346 		ti->error = "Cannot allocate mempool";
4347 		goto bad;
4348 	}
4349 
4350 	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4351 	if (r) {
4352 		ti->error = "Cannot allocate mempool";
4353 		goto bad;
4354 	}
4355 
4356 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4357 					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4358 	if (!ic->metadata_wq) {
4359 		ti->error = "Cannot allocate workqueue";
4360 		r = -ENOMEM;
4361 		goto bad;
4362 	}
4363 
4364 	/*
4365 	 * If this workqueue weren't ordered, it would cause bio reordering
4366 	 * and reduced performance.
4367 	 */
4368 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4369 	if (!ic->wait_wq) {
4370 		ti->error = "Cannot allocate workqueue";
4371 		r = -ENOMEM;
4372 		goto bad;
4373 	}
4374 
4375 	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4376 					  METADATA_WORKQUEUE_MAX_ACTIVE);
4377 	if (!ic->offload_wq) {
4378 		ti->error = "Cannot allocate workqueue";
4379 		r = -ENOMEM;
4380 		goto bad;
4381 	}
4382 
4383 	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4384 	if (!ic->commit_wq) {
4385 		ti->error = "Cannot allocate workqueue";
4386 		r = -ENOMEM;
4387 		goto bad;
4388 	}
4389 	INIT_WORK(&ic->commit_work, integrity_commit);
4390 
4391 	if (ic->mode == 'J' || ic->mode == 'B') {
4392 		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4393 		if (!ic->writer_wq) {
4394 			ti->error = "Cannot allocate workqueue";
4395 			r = -ENOMEM;
4396 			goto bad;
4397 		}
4398 		INIT_WORK(&ic->writer_work, integrity_writer);
4399 	}
4400 
4401 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4402 	if (!ic->sb) {
4403 		r = -ENOMEM;
4404 		ti->error = "Cannot allocate superblock area";
4405 		goto bad;
4406 	}
4407 
4408 	r = sync_rw_sb(ic, REQ_OP_READ);
4409 	if (r) {
4410 		ti->error = "Error reading superblock";
4411 		goto bad;
4412 	}
4413 	should_write_sb = false;
4414 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4415 		if (ic->mode != 'R') {
4416 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4417 				r = -EINVAL;
4418 				ti->error = "The device is not initialized";
4419 				goto bad;
4420 			}
4421 		}
4422 
4423 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4424 		if (r) {
4425 			ti->error = "Could not initialize superblock";
4426 			goto bad;
4427 		}
4428 		if (ic->mode != 'R')
4429 			should_write_sb = true;
4430 	}
4431 
4432 	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4433 		r = -EINVAL;
4434 		ti->error = "Unknown version";
4435 		goto bad;
4436 	}
4437 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4438 		r = -EINVAL;
4439 		ti->error = "Tag size doesn't match the information in superblock";
4440 		goto bad;
4441 	}
4442 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4443 		r = -EINVAL;
4444 		ti->error = "Block size doesn't match the information in superblock";
4445 		goto bad;
4446 	}
4447 	if (!le32_to_cpu(ic->sb->journal_sections)) {
4448 		r = -EINVAL;
4449 		ti->error = "Corrupted superblock, journal_sections is 0";
4450 		goto bad;
4451 	}
4452 	/* make sure that ti->max_io_len doesn't overflow */
4453 	if (!ic->meta_dev) {
4454 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4455 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4456 			r = -EINVAL;
4457 			ti->error = "Invalid interleave_sectors in the superblock";
4458 			goto bad;
4459 		}
4460 	} else {
4461 		if (ic->sb->log2_interleave_sectors) {
4462 			r = -EINVAL;
4463 			ti->error = "Invalid interleave_sectors in the superblock";
4464 			goto bad;
4465 		}
4466 	}
4467 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4468 		r = -EINVAL;
4469 		ti->error = "Journal mac mismatch";
4470 		goto bad;
4471 	}
4472 
4473 	get_provided_data_sectors(ic);
4474 	if (!ic->provided_data_sectors) {
4475 		r = -EINVAL;
4476 		ti->error = "The device is too small";
4477 		goto bad;
4478 	}
4479 
4480 try_smaller_buffer:
4481 	r = calculate_device_limits(ic);
4482 	if (r) {
4483 		if (ic->meta_dev) {
4484 			if (ic->log2_buffer_sectors > 3) {
4485 				ic->log2_buffer_sectors--;
4486 				goto try_smaller_buffer;
4487 			}
4488 		}
4489 		ti->error = "The device is too small";
4490 		goto bad;
4491 	}
4492 
4493 	if (log2_sectors_per_bitmap_bit < 0)
4494 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4495 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4496 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4497 
4498 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4499 	if (bits_in_journal > UINT_MAX)
4500 		bits_in_journal = UINT_MAX;
4501 	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4502 		log2_sectors_per_bitmap_bit++;
4503 
4504 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4505 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4506 	if (should_write_sb)
4507 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4508 
4509 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4510 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4511 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4512 
4513 	if (!ic->meta_dev)
4514 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4515 
4516 	if (ti->len > ic->provided_data_sectors) {
4517 		r = -EINVAL;
4518 		ti->error = "Not enough provided sectors for requested mapping size";
4519 		goto bad;
4520 	}
4521 
4522 
4523 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4524 	threshold += 50;
4525 	do_div(threshold, 100);
4526 	ic->free_sectors_threshold = threshold;
4527 
4528 	DEBUG_print("initialized:\n");
4529 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4530 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4531 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4532 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4533 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4534 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4535 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4536 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4537 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4538 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4539 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4540 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4541 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4542 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4543 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4544 
4545 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4546 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4547 		ic->sb->recalc_sector = cpu_to_le64(0);
4548 	}
4549 
4550 	if (ic->internal_hash) {
4551 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4552 		if (!ic->recalc_wq) {
4553 			ti->error = "Cannot allocate workqueue";
4554 			r = -ENOMEM;
4555 			goto bad;
4556 		}
4557 		INIT_WORK(&ic->recalc_work, integrity_recalc);
4558 	} else {
4559 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4560 			ti->error = "Recalculate can only be specified with internal_hash";
4561 			r = -EINVAL;
4562 			goto bad;
4563 		}
4564 	}
4565 
4566 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4567 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4568 	    dm_integrity_disable_recalculate(ic)) {
4569 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4570 		r = -EOPNOTSUPP;
4571 		goto bad;
4572 	}
4573 
4574 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4575 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4576 	if (IS_ERR(ic->bufio)) {
4577 		r = PTR_ERR(ic->bufio);
4578 		ti->error = "Cannot initialize dm-bufio";
4579 		ic->bufio = NULL;
4580 		goto bad;
4581 	}
4582 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4583 
4584 	if (ic->mode != 'R') {
4585 		r = create_journal(ic, &ti->error);
4586 		if (r)
4587 			goto bad;
4588 
4589 	}
4590 
4591 	if (ic->mode == 'B') {
4592 		unsigned int i;
4593 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4594 
4595 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4596 		if (!ic->recalc_bitmap) {
4597 			r = -ENOMEM;
4598 			goto bad;
4599 		}
4600 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4601 		if (!ic->may_write_bitmap) {
4602 			r = -ENOMEM;
4603 			goto bad;
4604 		}
4605 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4606 		if (!ic->bbs) {
4607 			r = -ENOMEM;
4608 			goto bad;
4609 		}
4610 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4611 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4612 			struct bitmap_block_status *bbs = &ic->bbs[i];
4613 			unsigned int sector, pl_index, pl_offset;
4614 
4615 			INIT_WORK(&bbs->work, bitmap_block_work);
4616 			bbs->ic = ic;
4617 			bbs->idx = i;
4618 			bio_list_init(&bbs->bio_queue);
4619 			spin_lock_init(&bbs->bio_queue_lock);
4620 
4621 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4622 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4623 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4624 
4625 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4626 		}
4627 	}
4628 
4629 	if (should_write_sb) {
4630 		init_journal(ic, 0, ic->journal_sections, 0);
4631 		r = dm_integrity_failed(ic);
4632 		if (unlikely(r)) {
4633 			ti->error = "Error initializing journal";
4634 			goto bad;
4635 		}
4636 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4637 		if (r) {
4638 			ti->error = "Error initializing superblock";
4639 			goto bad;
4640 		}
4641 		ic->just_formatted = true;
4642 	}
4643 
4644 	if (!ic->meta_dev) {
4645 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4646 		if (r)
4647 			goto bad;
4648 	}
4649 	if (ic->mode == 'B') {
4650 		unsigned int max_io_len;
4651 
4652 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4653 		if (!max_io_len)
4654 			max_io_len = 1U << 31;
4655 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4656 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4657 			r = dm_set_target_max_io_len(ti, max_io_len);
4658 			if (r)
4659 				goto bad;
4660 		}
4661 	}
4662 
4663 	if (!ic->internal_hash)
4664 		dm_integrity_set(ti, ic);
4665 
4666 	ti->num_flush_bios = 1;
4667 	ti->flush_supported = true;
4668 	if (ic->discard)
4669 		ti->num_discard_bios = 1;
4670 
4671 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4672 	return 0;
4673 
4674 bad:
4675 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4676 	dm_integrity_dtr(ti);
4677 	return r;
4678 }
4679 
dm_integrity_dtr(struct dm_target * ti)4680 static void dm_integrity_dtr(struct dm_target *ti)
4681 {
4682 	struct dm_integrity_c *ic = ti->private;
4683 
4684 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4685 	BUG_ON(!list_empty(&ic->wait_list));
4686 
4687 	if (ic->mode == 'B')
4688 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4689 	if (ic->metadata_wq)
4690 		destroy_workqueue(ic->metadata_wq);
4691 	if (ic->wait_wq)
4692 		destroy_workqueue(ic->wait_wq);
4693 	if (ic->offload_wq)
4694 		destroy_workqueue(ic->offload_wq);
4695 	if (ic->commit_wq)
4696 		destroy_workqueue(ic->commit_wq);
4697 	if (ic->writer_wq)
4698 		destroy_workqueue(ic->writer_wq);
4699 	if (ic->recalc_wq)
4700 		destroy_workqueue(ic->recalc_wq);
4701 	kvfree(ic->bbs);
4702 	if (ic->bufio)
4703 		dm_bufio_client_destroy(ic->bufio);
4704 	mempool_exit(&ic->recheck_pool);
4705 	mempool_exit(&ic->journal_io_mempool);
4706 	if (ic->io)
4707 		dm_io_client_destroy(ic->io);
4708 	if (ic->dev)
4709 		dm_put_device(ti, ic->dev);
4710 	if (ic->meta_dev)
4711 		dm_put_device(ti, ic->meta_dev);
4712 	dm_integrity_free_page_list(ic->journal);
4713 	dm_integrity_free_page_list(ic->journal_io);
4714 	dm_integrity_free_page_list(ic->journal_xor);
4715 	dm_integrity_free_page_list(ic->recalc_bitmap);
4716 	dm_integrity_free_page_list(ic->may_write_bitmap);
4717 	if (ic->journal_scatterlist)
4718 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4719 	if (ic->journal_io_scatterlist)
4720 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4721 	if (ic->sk_requests) {
4722 		unsigned int i;
4723 
4724 		for (i = 0; i < ic->journal_sections; i++) {
4725 			struct skcipher_request *req;
4726 
4727 			req = ic->sk_requests[i];
4728 			if (req) {
4729 				kfree_sensitive(req->iv);
4730 				skcipher_request_free(req);
4731 			}
4732 		}
4733 		kvfree(ic->sk_requests);
4734 	}
4735 	kvfree(ic->journal_tree);
4736 	if (ic->sb)
4737 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4738 
4739 	if (ic->internal_hash)
4740 		crypto_free_shash(ic->internal_hash);
4741 	free_alg(&ic->internal_hash_alg);
4742 
4743 	if (ic->journal_crypt)
4744 		crypto_free_skcipher(ic->journal_crypt);
4745 	free_alg(&ic->journal_crypt_alg);
4746 
4747 	if (ic->journal_mac)
4748 		crypto_free_shash(ic->journal_mac);
4749 	free_alg(&ic->journal_mac_alg);
4750 
4751 	kfree(ic);
4752 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4753 }
4754 
4755 static struct target_type integrity_target = {
4756 	.name			= "integrity",
4757 	.version		= {1, 10, 0},
4758 	.module			= THIS_MODULE,
4759 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4760 	.ctr			= dm_integrity_ctr,
4761 	.dtr			= dm_integrity_dtr,
4762 	.map			= dm_integrity_map,
4763 	.postsuspend		= dm_integrity_postsuspend,
4764 	.resume			= dm_integrity_resume,
4765 	.status			= dm_integrity_status,
4766 	.iterate_devices	= dm_integrity_iterate_devices,
4767 	.io_hints		= dm_integrity_io_hints,
4768 };
4769 
dm_integrity_init(void)4770 static int __init dm_integrity_init(void)
4771 {
4772 	int r;
4773 
4774 	journal_io_cache = kmem_cache_create("integrity_journal_io",
4775 					     sizeof(struct journal_io), 0, 0, NULL);
4776 	if (!journal_io_cache) {
4777 		DMERR("can't allocate journal io cache");
4778 		return -ENOMEM;
4779 	}
4780 
4781 	r = dm_register_target(&integrity_target);
4782 	if (r < 0) {
4783 		kmem_cache_destroy(journal_io_cache);
4784 		return r;
4785 	}
4786 
4787 	return 0;
4788 }
4789 
dm_integrity_exit(void)4790 static void __exit dm_integrity_exit(void)
4791 {
4792 	dm_unregister_target(&integrity_target);
4793 	kmem_cache_destroy(journal_io_cache);
4794 }
4795 
4796 module_init(dm_integrity_init);
4797 module_exit(dm_integrity_exit);
4798 
4799 MODULE_AUTHOR("Milan Broz");
4800 MODULE_AUTHOR("Mikulas Patocka");
4801 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4802 MODULE_LICENSE("GPL");
4803