xref: /openbmc/linux/include/linux/pagemap.h (revision 6e4f6b5eac461867471b3f368699097b31843d23)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 
36 int write_inode_now(struct inode *, int sync);
37 int filemap_fdatawrite(struct address_space *);
38 int filemap_flush(struct address_space *);
39 int filemap_fdatawait_keep_errors(struct address_space *mapping);
40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42 		loff_t start_byte, loff_t end_byte);
43 
filemap_fdatawait(struct address_space * mapping)44 static inline int filemap_fdatawait(struct address_space *mapping)
45 {
46 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
47 }
48 
49 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
50 int filemap_write_and_wait_range(struct address_space *mapping,
51 		loff_t lstart, loff_t lend);
52 int __filemap_fdatawrite_range(struct address_space *mapping,
53 		loff_t start, loff_t end, int sync_mode);
54 int filemap_fdatawrite_range(struct address_space *mapping,
55 		loff_t start, loff_t end);
56 int filemap_check_errors(struct address_space *mapping);
57 void __filemap_set_wb_err(struct address_space *mapping, int err);
58 int filemap_fdatawrite_wbc(struct address_space *mapping,
59 			   struct writeback_control *wbc);
60 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
61 
filemap_write_and_wait(struct address_space * mapping)62 static inline int filemap_write_and_wait(struct address_space *mapping)
63 {
64 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
65 }
66 
67 /**
68  * filemap_set_wb_err - set a writeback error on an address_space
69  * @mapping: mapping in which to set writeback error
70  * @err: error to be set in mapping
71  *
72  * When writeback fails in some way, we must record that error so that
73  * userspace can be informed when fsync and the like are called.  We endeavor
74  * to report errors on any file that was open at the time of the error.  Some
75  * internal callers also need to know when writeback errors have occurred.
76  *
77  * When a writeback error occurs, most filesystems will want to call
78  * filemap_set_wb_err to record the error in the mapping so that it will be
79  * automatically reported whenever fsync is called on the file.
80  */
filemap_set_wb_err(struct address_space * mapping,int err)81 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
82 {
83 	/* Fastpath for common case of no error */
84 	if (unlikely(err))
85 		__filemap_set_wb_err(mapping, err);
86 }
87 
88 /**
89  * filemap_check_wb_err - has an error occurred since the mark was sampled?
90  * @mapping: mapping to check for writeback errors
91  * @since: previously-sampled errseq_t
92  *
93  * Grab the errseq_t value from the mapping, and see if it has changed "since"
94  * the given value was sampled.
95  *
96  * If it has then report the latest error set, otherwise return 0.
97  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)98 static inline int filemap_check_wb_err(struct address_space *mapping,
99 					errseq_t since)
100 {
101 	return errseq_check(&mapping->wb_err, since);
102 }
103 
104 /**
105  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
106  * @mapping: mapping to be sampled
107  *
108  * Writeback errors are always reported relative to a particular sample point
109  * in the past. This function provides those sample points.
110  */
filemap_sample_wb_err(struct address_space * mapping)111 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
112 {
113 	return errseq_sample(&mapping->wb_err);
114 }
115 
116 /**
117  * file_sample_sb_err - sample the current errseq_t to test for later errors
118  * @file: file pointer to be sampled
119  *
120  * Grab the most current superblock-level errseq_t value for the given
121  * struct file.
122  */
file_sample_sb_err(struct file * file)123 static inline errseq_t file_sample_sb_err(struct file *file)
124 {
125 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
126 }
127 
128 /*
129  * Flush file data before changing attributes.  Caller must hold any locks
130  * required to prevent further writes to this file until we're done setting
131  * flags.
132  */
inode_drain_writes(struct inode * inode)133 static inline int inode_drain_writes(struct inode *inode)
134 {
135 	inode_dio_wait(inode);
136 	return filemap_write_and_wait(inode->i_mapping);
137 }
138 
mapping_empty(struct address_space * mapping)139 static inline bool mapping_empty(struct address_space *mapping)
140 {
141 	return xa_empty(&mapping->i_pages);
142 }
143 
144 /*
145  * mapping_shrinkable - test if page cache state allows inode reclaim
146  * @mapping: the page cache mapping
147  *
148  * This checks the mapping's cache state for the pupose of inode
149  * reclaim and LRU management.
150  *
151  * The caller is expected to hold the i_lock, but is not required to
152  * hold the i_pages lock, which usually protects cache state. That's
153  * because the i_lock and the list_lru lock that protect the inode and
154  * its LRU state don't nest inside the irq-safe i_pages lock.
155  *
156  * Cache deletions are performed under the i_lock, which ensures that
157  * when an inode goes empty, it will reliably get queued on the LRU.
158  *
159  * Cache additions do not acquire the i_lock and may race with this
160  * check, in which case we'll report the inode as shrinkable when it
161  * has cache pages. This is okay: the shrinker also checks the
162  * refcount and the referenced bit, which will be elevated or set in
163  * the process of adding new cache pages to an inode.
164  */
mapping_shrinkable(struct address_space * mapping)165 static inline bool mapping_shrinkable(struct address_space *mapping)
166 {
167 	void *head;
168 
169 	/*
170 	 * On highmem systems, there could be lowmem pressure from the
171 	 * inodes before there is highmem pressure from the page
172 	 * cache. Make inodes shrinkable regardless of cache state.
173 	 */
174 	if (IS_ENABLED(CONFIG_HIGHMEM))
175 		return true;
176 
177 	/* Cache completely empty? Shrink away. */
178 	head = rcu_access_pointer(mapping->i_pages.xa_head);
179 	if (!head)
180 		return true;
181 
182 	/*
183 	 * The xarray stores single offset-0 entries directly in the
184 	 * head pointer, which allows non-resident page cache entries
185 	 * to escape the shadow shrinker's list of xarray nodes. The
186 	 * inode shrinker needs to pick them up under memory pressure.
187 	 */
188 	if (!xa_is_node(head) && xa_is_value(head))
189 		return true;
190 
191 	return false;
192 }
193 
194 /*
195  * Bits in mapping->flags.
196  */
197 enum mapping_flags {
198 	AS_EIO		= 0,	/* IO error on async write */
199 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
200 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
201 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
202 	AS_EXITING	= 4, 	/* final truncate in progress */
203 	/* writeback related tags are not used */
204 	AS_NO_WRITEBACK_TAGS = 5,
205 	AS_LARGE_FOLIO_SUPPORT = 6,
206 	AS_RELEASE_ALWAYS,	/* Call ->release_folio(), even if no private data */
207 	AS_STABLE_WRITES,	/* must wait for writeback before modifying
208 				   folio contents */
209 };
210 
211 /**
212  * mapping_set_error - record a writeback error in the address_space
213  * @mapping: the mapping in which an error should be set
214  * @error: the error to set in the mapping
215  *
216  * When writeback fails in some way, we must record that error so that
217  * userspace can be informed when fsync and the like are called.  We endeavor
218  * to report errors on any file that was open at the time of the error.  Some
219  * internal callers also need to know when writeback errors have occurred.
220  *
221  * When a writeback error occurs, most filesystems will want to call
222  * mapping_set_error to record the error in the mapping so that it can be
223  * reported when the application calls fsync(2).
224  */
mapping_set_error(struct address_space * mapping,int error)225 static inline void mapping_set_error(struct address_space *mapping, int error)
226 {
227 	if (likely(!error))
228 		return;
229 
230 	/* Record in wb_err for checkers using errseq_t based tracking */
231 	__filemap_set_wb_err(mapping, error);
232 
233 	/* Record it in superblock */
234 	if (mapping->host)
235 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
236 
237 	/* Record it in flags for now, for legacy callers */
238 	if (error == -ENOSPC)
239 		set_bit(AS_ENOSPC, &mapping->flags);
240 	else
241 		set_bit(AS_EIO, &mapping->flags);
242 }
243 
mapping_set_unevictable(struct address_space * mapping)244 static inline void mapping_set_unevictable(struct address_space *mapping)
245 {
246 	set_bit(AS_UNEVICTABLE, &mapping->flags);
247 }
248 
mapping_clear_unevictable(struct address_space * mapping)249 static inline void mapping_clear_unevictable(struct address_space *mapping)
250 {
251 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
252 }
253 
mapping_unevictable(struct address_space * mapping)254 static inline bool mapping_unevictable(struct address_space *mapping)
255 {
256 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
257 }
258 
mapping_set_exiting(struct address_space * mapping)259 static inline void mapping_set_exiting(struct address_space *mapping)
260 {
261 	set_bit(AS_EXITING, &mapping->flags);
262 }
263 
mapping_exiting(struct address_space * mapping)264 static inline int mapping_exiting(struct address_space *mapping)
265 {
266 	return test_bit(AS_EXITING, &mapping->flags);
267 }
268 
mapping_set_no_writeback_tags(struct address_space * mapping)269 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
270 {
271 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
272 }
273 
mapping_use_writeback_tags(struct address_space * mapping)274 static inline int mapping_use_writeback_tags(struct address_space *mapping)
275 {
276 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
277 }
278 
mapping_release_always(const struct address_space * mapping)279 static inline bool mapping_release_always(const struct address_space *mapping)
280 {
281 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
282 }
283 
mapping_set_release_always(struct address_space * mapping)284 static inline void mapping_set_release_always(struct address_space *mapping)
285 {
286 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
287 }
288 
mapping_clear_release_always(struct address_space * mapping)289 static inline void mapping_clear_release_always(struct address_space *mapping)
290 {
291 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
292 }
293 
mapping_stable_writes(const struct address_space * mapping)294 static inline bool mapping_stable_writes(const struct address_space *mapping)
295 {
296 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
297 }
298 
mapping_set_stable_writes(struct address_space * mapping)299 static inline void mapping_set_stable_writes(struct address_space *mapping)
300 {
301 	set_bit(AS_STABLE_WRITES, &mapping->flags);
302 }
303 
mapping_clear_stable_writes(struct address_space * mapping)304 static inline void mapping_clear_stable_writes(struct address_space *mapping)
305 {
306 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
307 }
308 
mapping_gfp_mask(struct address_space * mapping)309 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
310 {
311 	return mapping->gfp_mask;
312 }
313 
314 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)315 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
316 		gfp_t gfp_mask)
317 {
318 	return mapping_gfp_mask(mapping) & gfp_mask;
319 }
320 
321 /*
322  * This is non-atomic.  Only to be used before the mapping is activated.
323  * Probably needs a barrier...
324  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)325 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
326 {
327 	m->gfp_mask = mask;
328 }
329 
330 /*
331  * There are some parts of the kernel which assume that PMD entries
332  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
333  * limit the maximum allocation order to PMD size.  I'm not aware of any
334  * assumptions about maximum order if THP are disabled, but 8 seems like
335  * a good order (that's 1MB if you're using 4kB pages)
336  */
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 #define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
339 #else
340 #define PREFERRED_MAX_PAGECACHE_ORDER	8
341 #endif
342 
343 /*
344  * xas_split_alloc() does not support arbitrary orders. This implies no
345  * 512MB THP on ARM64 with 64KB base page size.
346  */
347 #define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
348 #define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
349 
350 /**
351  * mapping_set_large_folios() - Indicate the file supports large folios.
352  * @mapping: The file.
353  *
354  * The filesystem should call this function in its inode constructor to
355  * indicate that the VFS can use large folios to cache the contents of
356  * the file.
357  *
358  * Context: This should not be called while the inode is active as it
359  * is non-atomic.
360  */
mapping_set_large_folios(struct address_space * mapping)361 static inline void mapping_set_large_folios(struct address_space *mapping)
362 {
363 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
364 }
365 
366 /*
367  * Large folio support currently depends on THP.  These dependencies are
368  * being worked on but are not yet fixed.
369  */
mapping_large_folio_support(struct address_space * mapping)370 static inline bool mapping_large_folio_support(struct address_space *mapping)
371 {
372 	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
373 		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
374 }
375 
376 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(struct address_space * mapping)377 static inline size_t mapping_max_folio_size(struct address_space *mapping)
378 {
379 	if (mapping_large_folio_support(mapping))
380 		return PAGE_SIZE << MAX_PAGECACHE_ORDER;
381 	return PAGE_SIZE;
382 }
383 
filemap_nr_thps(struct address_space * mapping)384 static inline int filemap_nr_thps(struct address_space *mapping)
385 {
386 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
387 	return atomic_read(&mapping->nr_thps);
388 #else
389 	return 0;
390 #endif
391 }
392 
filemap_nr_thps_inc(struct address_space * mapping)393 static inline void filemap_nr_thps_inc(struct address_space *mapping)
394 {
395 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
396 	if (!mapping_large_folio_support(mapping))
397 		atomic_inc(&mapping->nr_thps);
398 #else
399 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
400 #endif
401 }
402 
filemap_nr_thps_dec(struct address_space * mapping)403 static inline void filemap_nr_thps_dec(struct address_space *mapping)
404 {
405 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
406 	if (!mapping_large_folio_support(mapping))
407 		atomic_dec(&mapping->nr_thps);
408 #else
409 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
410 #endif
411 }
412 
413 struct address_space *page_mapping(struct page *);
414 struct address_space *folio_mapping(struct folio *);
415 struct address_space *swapcache_mapping(struct folio *);
416 
417 /**
418  * folio_file_mapping - Find the mapping this folio belongs to.
419  * @folio: The folio.
420  *
421  * For folios which are in the page cache, return the mapping that this
422  * page belongs to.  Folios in the swap cache return the mapping of the
423  * swap file or swap device where the data is stored.  This is different
424  * from the mapping returned by folio_mapping().  The only reason to
425  * use it is if, like NFS, you return 0 from ->activate_swapfile.
426  *
427  * Do not call this for folios which aren't in the page cache or swap cache.
428  */
folio_file_mapping(struct folio * folio)429 static inline struct address_space *folio_file_mapping(struct folio *folio)
430 {
431 	if (unlikely(folio_test_swapcache(folio)))
432 		return swapcache_mapping(folio);
433 
434 	return folio->mapping;
435 }
436 
437 /**
438  * folio_flush_mapping - Find the file mapping this folio belongs to.
439  * @folio: The folio.
440  *
441  * For folios which are in the page cache, return the mapping that this
442  * page belongs to.  Anonymous folios return NULL, even if they're in
443  * the swap cache.  Other kinds of folio also return NULL.
444  *
445  * This is ONLY used by architecture cache flushing code.  If you aren't
446  * writing cache flushing code, you want either folio_mapping() or
447  * folio_file_mapping().
448  */
folio_flush_mapping(struct folio * folio)449 static inline struct address_space *folio_flush_mapping(struct folio *folio)
450 {
451 	if (unlikely(folio_test_swapcache(folio)))
452 		return NULL;
453 
454 	return folio_mapping(folio);
455 }
456 
page_file_mapping(struct page * page)457 static inline struct address_space *page_file_mapping(struct page *page)
458 {
459 	return folio_file_mapping(page_folio(page));
460 }
461 
462 /**
463  * folio_inode - Get the host inode for this folio.
464  * @folio: The folio.
465  *
466  * For folios which are in the page cache, return the inode that this folio
467  * belongs to.
468  *
469  * Do not call this for folios which aren't in the page cache.
470  */
folio_inode(struct folio * folio)471 static inline struct inode *folio_inode(struct folio *folio)
472 {
473 	return folio->mapping->host;
474 }
475 
476 /**
477  * folio_attach_private - Attach private data to a folio.
478  * @folio: Folio to attach data to.
479  * @data: Data to attach to folio.
480  *
481  * Attaching private data to a folio increments the page's reference count.
482  * The data must be detached before the folio will be freed.
483  */
folio_attach_private(struct folio * folio,void * data)484 static inline void folio_attach_private(struct folio *folio, void *data)
485 {
486 	folio_get(folio);
487 	folio->private = data;
488 	folio_set_private(folio);
489 }
490 
491 /**
492  * folio_change_private - Change private data on a folio.
493  * @folio: Folio to change the data on.
494  * @data: Data to set on the folio.
495  *
496  * Change the private data attached to a folio and return the old
497  * data.  The page must previously have had data attached and the data
498  * must be detached before the folio will be freed.
499  *
500  * Return: Data that was previously attached to the folio.
501  */
folio_change_private(struct folio * folio,void * data)502 static inline void *folio_change_private(struct folio *folio, void *data)
503 {
504 	void *old = folio_get_private(folio);
505 
506 	folio->private = data;
507 	return old;
508 }
509 
510 /**
511  * folio_detach_private - Detach private data from a folio.
512  * @folio: Folio to detach data from.
513  *
514  * Removes the data that was previously attached to the folio and decrements
515  * the refcount on the page.
516  *
517  * Return: Data that was attached to the folio.
518  */
folio_detach_private(struct folio * folio)519 static inline void *folio_detach_private(struct folio *folio)
520 {
521 	void *data = folio_get_private(folio);
522 
523 	if (!folio_test_private(folio))
524 		return NULL;
525 	folio_clear_private(folio);
526 	folio->private = NULL;
527 	folio_put(folio);
528 
529 	return data;
530 }
531 
attach_page_private(struct page * page,void * data)532 static inline void attach_page_private(struct page *page, void *data)
533 {
534 	folio_attach_private(page_folio(page), data);
535 }
536 
detach_page_private(struct page * page)537 static inline void *detach_page_private(struct page *page)
538 {
539 	return folio_detach_private(page_folio(page));
540 }
541 
542 #ifdef CONFIG_NUMA
543 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
544 #else
filemap_alloc_folio(gfp_t gfp,unsigned int order)545 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
546 {
547 	return folio_alloc(gfp, order);
548 }
549 #endif
550 
__page_cache_alloc(gfp_t gfp)551 static inline struct page *__page_cache_alloc(gfp_t gfp)
552 {
553 	return &filemap_alloc_folio(gfp, 0)->page;
554 }
555 
page_cache_alloc(struct address_space * x)556 static inline struct page *page_cache_alloc(struct address_space *x)
557 {
558 	return __page_cache_alloc(mapping_gfp_mask(x));
559 }
560 
readahead_gfp_mask(struct address_space * x)561 static inline gfp_t readahead_gfp_mask(struct address_space *x)
562 {
563 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
564 }
565 
566 typedef int filler_t(struct file *, struct folio *);
567 
568 pgoff_t page_cache_next_miss(struct address_space *mapping,
569 			     pgoff_t index, unsigned long max_scan);
570 pgoff_t page_cache_prev_miss(struct address_space *mapping,
571 			     pgoff_t index, unsigned long max_scan);
572 
573 /**
574  * typedef fgf_t - Flags for getting folios from the page cache.
575  *
576  * Most users of the page cache will not need to use these flags;
577  * there are convenience functions such as filemap_get_folio() and
578  * filemap_lock_folio().  For users which need more control over exactly
579  * what is done with the folios, these flags to __filemap_get_folio()
580  * are available.
581  *
582  * * %FGP_ACCESSED - The folio will be marked accessed.
583  * * %FGP_LOCK - The folio is returned locked.
584  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
585  *   added to the page cache and the VM's LRU list.  The folio is
586  *   returned locked.
587  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
588  *   folio is already in cache.  If the folio was allocated, unlock it
589  *   before returning so the caller can do the same dance.
590  * * %FGP_WRITE - The folio will be written to by the caller.
591  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
592  * * %FGP_NOWAIT - Don't block on the folio lock.
593  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
594  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
595  *   implementation.
596  */
597 typedef unsigned int __bitwise fgf_t;
598 
599 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
600 #define FGP_LOCK		((__force fgf_t)0x00000002)
601 #define FGP_CREAT		((__force fgf_t)0x00000004)
602 #define FGP_WRITE		((__force fgf_t)0x00000008)
603 #define FGP_NOFS		((__force fgf_t)0x00000010)
604 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
605 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
606 #define FGP_STABLE		((__force fgf_t)0x00000080)
607 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
608 
609 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
610 
611 /**
612  * fgf_set_order - Encode a length in the fgf_t flags.
613  * @size: The suggested size of the folio to create.
614  *
615  * The caller of __filemap_get_folio() can use this to suggest a preferred
616  * size for the folio that is created.  If there is already a folio at
617  * the index, it will be returned, no matter what its size.  If a folio
618  * is freshly created, it may be of a different size than requested
619  * due to alignment constraints, memory pressure, or the presence of
620  * other folios at nearby indices.
621  */
fgf_set_order(size_t size)622 static inline fgf_t fgf_set_order(size_t size)
623 {
624 	unsigned int shift = ilog2(size);
625 
626 	if (shift <= PAGE_SHIFT)
627 		return 0;
628 	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
629 }
630 
631 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
632 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
633 		fgf_t fgp_flags, gfp_t gfp);
634 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
635 		fgf_t fgp_flags, gfp_t gfp);
636 
637 /**
638  * filemap_get_folio - Find and get a folio.
639  * @mapping: The address_space to search.
640  * @index: The page index.
641  *
642  * Looks up the page cache entry at @mapping & @index.  If a folio is
643  * present, it is returned with an increased refcount.
644  *
645  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
646  * this index.  Will not return a shadow, swap or DAX entry.
647  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)648 static inline struct folio *filemap_get_folio(struct address_space *mapping,
649 					pgoff_t index)
650 {
651 	return __filemap_get_folio(mapping, index, 0, 0);
652 }
653 
654 /**
655  * filemap_lock_folio - Find and lock a folio.
656  * @mapping: The address_space to search.
657  * @index: The page index.
658  *
659  * Looks up the page cache entry at @mapping & @index.  If a folio is
660  * present, it is returned locked with an increased refcount.
661  *
662  * Context: May sleep.
663  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
664  * this index.  Will not return a shadow, swap or DAX entry.
665  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)666 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
667 					pgoff_t index)
668 {
669 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
670 }
671 
672 /**
673  * filemap_grab_folio - grab a folio from the page cache
674  * @mapping: The address space to search
675  * @index: The page index
676  *
677  * Looks up the page cache entry at @mapping & @index. If no folio is found,
678  * a new folio is created. The folio is locked, marked as accessed, and
679  * returned.
680  *
681  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
682  * and failed to create a folio.
683  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)684 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
685 					pgoff_t index)
686 {
687 	return __filemap_get_folio(mapping, index,
688 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
689 			mapping_gfp_mask(mapping));
690 }
691 
692 /**
693  * find_get_page - find and get a page reference
694  * @mapping: the address_space to search
695  * @offset: the page index
696  *
697  * Looks up the page cache slot at @mapping & @offset.  If there is a
698  * page cache page, it is returned with an increased refcount.
699  *
700  * Otherwise, %NULL is returned.
701  */
find_get_page(struct address_space * mapping,pgoff_t offset)702 static inline struct page *find_get_page(struct address_space *mapping,
703 					pgoff_t offset)
704 {
705 	return pagecache_get_page(mapping, offset, 0, 0);
706 }
707 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)708 static inline struct page *find_get_page_flags(struct address_space *mapping,
709 					pgoff_t offset, fgf_t fgp_flags)
710 {
711 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
712 }
713 
714 /**
715  * find_lock_page - locate, pin and lock a pagecache page
716  * @mapping: the address_space to search
717  * @index: the page index
718  *
719  * Looks up the page cache entry at @mapping & @index.  If there is a
720  * page cache page, it is returned locked and with an increased
721  * refcount.
722  *
723  * Context: May sleep.
724  * Return: A struct page or %NULL if there is no page in the cache for this
725  * index.
726  */
find_lock_page(struct address_space * mapping,pgoff_t index)727 static inline struct page *find_lock_page(struct address_space *mapping,
728 					pgoff_t index)
729 {
730 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
731 }
732 
733 /**
734  * find_or_create_page - locate or add a pagecache page
735  * @mapping: the page's address_space
736  * @index: the page's index into the mapping
737  * @gfp_mask: page allocation mode
738  *
739  * Looks up the page cache slot at @mapping & @offset.  If there is a
740  * page cache page, it is returned locked and with an increased
741  * refcount.
742  *
743  * If the page is not present, a new page is allocated using @gfp_mask
744  * and added to the page cache and the VM's LRU list.  The page is
745  * returned locked and with an increased refcount.
746  *
747  * On memory exhaustion, %NULL is returned.
748  *
749  * find_or_create_page() may sleep, even if @gfp_flags specifies an
750  * atomic allocation!
751  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)752 static inline struct page *find_or_create_page(struct address_space *mapping,
753 					pgoff_t index, gfp_t gfp_mask)
754 {
755 	return pagecache_get_page(mapping, index,
756 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
757 					gfp_mask);
758 }
759 
760 /**
761  * grab_cache_page_nowait - returns locked page at given index in given cache
762  * @mapping: target address_space
763  * @index: the page index
764  *
765  * Same as grab_cache_page(), but do not wait if the page is unavailable.
766  * This is intended for speculative data generators, where the data can
767  * be regenerated if the page couldn't be grabbed.  This routine should
768  * be safe to call while holding the lock for another page.
769  *
770  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
771  * and deadlock against the caller's locked page.
772  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)773 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
774 				pgoff_t index)
775 {
776 	return pagecache_get_page(mapping, index,
777 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
778 			mapping_gfp_mask(mapping));
779 }
780 
781 #define swapcache_index(folio)	__page_file_index(&(folio)->page)
782 
783 /**
784  * folio_index - File index of a folio.
785  * @folio: The folio.
786  *
787  * For a folio which is either in the page cache or the swap cache,
788  * return its index within the address_space it belongs to.  If you know
789  * the page is definitely in the page cache, you can look at the folio's
790  * index directly.
791  *
792  * Return: The index (offset in units of pages) of a folio in its file.
793  */
folio_index(struct folio * folio)794 static inline pgoff_t folio_index(struct folio *folio)
795 {
796         if (unlikely(folio_test_swapcache(folio)))
797                 return swapcache_index(folio);
798         return folio->index;
799 }
800 
801 /**
802  * folio_next_index - Get the index of the next folio.
803  * @folio: The current folio.
804  *
805  * Return: The index of the folio which follows this folio in the file.
806  */
folio_next_index(struct folio * folio)807 static inline pgoff_t folio_next_index(struct folio *folio)
808 {
809 	return folio->index + folio_nr_pages(folio);
810 }
811 
812 /**
813  * folio_file_page - The page for a particular index.
814  * @folio: The folio which contains this index.
815  * @index: The index we want to look up.
816  *
817  * Sometimes after looking up a folio in the page cache, we need to
818  * obtain the specific page for an index (eg a page fault).
819  *
820  * Return: The page containing the file data for this index.
821  */
folio_file_page(struct folio * folio,pgoff_t index)822 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
823 {
824 	/* HugeTLBfs indexes the page cache in units of hpage_size */
825 	if (folio_test_hugetlb(folio))
826 		return &folio->page;
827 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
828 }
829 
830 /**
831  * folio_contains - Does this folio contain this index?
832  * @folio: The folio.
833  * @index: The page index within the file.
834  *
835  * Context: The caller should have the page locked in order to prevent
836  * (eg) shmem from moving the page between the page cache and swap cache
837  * and changing its index in the middle of the operation.
838  * Return: true or false.
839  */
folio_contains(struct folio * folio,pgoff_t index)840 static inline bool folio_contains(struct folio *folio, pgoff_t index)
841 {
842 	/* HugeTLBfs indexes the page cache in units of hpage_size */
843 	if (folio_test_hugetlb(folio))
844 		return folio->index == index;
845 	return index - folio_index(folio) < folio_nr_pages(folio);
846 }
847 
848 /*
849  * Given the page we found in the page cache, return the page corresponding
850  * to this index in the file
851  */
find_subpage(struct page * head,pgoff_t index)852 static inline struct page *find_subpage(struct page *head, pgoff_t index)
853 {
854 	/* HugeTLBfs wants the head page regardless */
855 	if (PageHuge(head))
856 		return head;
857 
858 	return head + (index & (thp_nr_pages(head) - 1));
859 }
860 
861 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
862 		pgoff_t end, struct folio_batch *fbatch);
863 unsigned filemap_get_folios_contig(struct address_space *mapping,
864 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
865 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
866 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
867 
868 struct page *grab_cache_page_write_begin(struct address_space *mapping,
869 			pgoff_t index);
870 
871 /*
872  * Returns locked page at given index in given cache, creating it if needed.
873  */
grab_cache_page(struct address_space * mapping,pgoff_t index)874 static inline struct page *grab_cache_page(struct address_space *mapping,
875 								pgoff_t index)
876 {
877 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
878 }
879 
880 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
881 		filler_t *filler, struct file *file);
882 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
883 		gfp_t flags);
884 struct page *read_cache_page(struct address_space *, pgoff_t index,
885 		filler_t *filler, struct file *file);
886 extern struct page * read_cache_page_gfp(struct address_space *mapping,
887 				pgoff_t index, gfp_t gfp_mask);
888 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)889 static inline struct page *read_mapping_page(struct address_space *mapping,
890 				pgoff_t index, struct file *file)
891 {
892 	return read_cache_page(mapping, index, NULL, file);
893 }
894 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)895 static inline struct folio *read_mapping_folio(struct address_space *mapping,
896 				pgoff_t index, struct file *file)
897 {
898 	return read_cache_folio(mapping, index, NULL, file);
899 }
900 
901 /*
902  * Get index of the page within radix-tree (but not for hugetlb pages).
903  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
904  */
page_to_index(struct page * page)905 static inline pgoff_t page_to_index(struct page *page)
906 {
907 	struct page *head;
908 
909 	if (likely(!PageTransTail(page)))
910 		return page->index;
911 
912 	head = compound_head(page);
913 	/*
914 	 *  We don't initialize ->index for tail pages: calculate based on
915 	 *  head page
916 	 */
917 	return head->index + page - head;
918 }
919 
920 extern pgoff_t hugetlb_basepage_index(struct page *page);
921 
922 /*
923  * Get the offset in PAGE_SIZE (even for hugetlb pages).
924  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
925  */
page_to_pgoff(struct page * page)926 static inline pgoff_t page_to_pgoff(struct page *page)
927 {
928 	if (unlikely(PageHuge(page)))
929 		return hugetlb_basepage_index(page);
930 	return page_to_index(page);
931 }
932 
933 /*
934  * Return byte-offset into filesystem object for page.
935  */
page_offset(struct page * page)936 static inline loff_t page_offset(struct page *page)
937 {
938 	return ((loff_t)page->index) << PAGE_SHIFT;
939 }
940 
page_file_offset(struct page * page)941 static inline loff_t page_file_offset(struct page *page)
942 {
943 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
944 }
945 
946 /**
947  * folio_pos - Returns the byte position of this folio in its file.
948  * @folio: The folio.
949  */
folio_pos(struct folio * folio)950 static inline loff_t folio_pos(struct folio *folio)
951 {
952 	return page_offset(&folio->page);
953 }
954 
955 /**
956  * folio_file_pos - Returns the byte position of this folio in its file.
957  * @folio: The folio.
958  *
959  * This differs from folio_pos() for folios which belong to a swap file.
960  * NFS is the only filesystem today which needs to use folio_file_pos().
961  */
folio_file_pos(struct folio * folio)962 static inline loff_t folio_file_pos(struct folio *folio)
963 {
964 	return page_file_offset(&folio->page);
965 }
966 
967 /*
968  * Get the offset in PAGE_SIZE (even for hugetlb folios).
969  * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
970  */
folio_pgoff(struct folio * folio)971 static inline pgoff_t folio_pgoff(struct folio *folio)
972 {
973 	if (unlikely(folio_test_hugetlb(folio)))
974 		return hugetlb_basepage_index(&folio->page);
975 	return folio->index;
976 }
977 
978 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
979 				     unsigned long address);
980 
linear_page_index(struct vm_area_struct * vma,unsigned long address)981 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
982 					unsigned long address)
983 {
984 	pgoff_t pgoff;
985 	if (unlikely(is_vm_hugetlb_page(vma)))
986 		return linear_hugepage_index(vma, address);
987 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
988 	pgoff += vma->vm_pgoff;
989 	return pgoff;
990 }
991 
992 struct wait_page_key {
993 	struct folio *folio;
994 	int bit_nr;
995 	int page_match;
996 };
997 
998 struct wait_page_queue {
999 	struct folio *folio;
1000 	int bit_nr;
1001 	wait_queue_entry_t wait;
1002 };
1003 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1004 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1005 				  struct wait_page_key *key)
1006 {
1007 	if (wait_page->folio != key->folio)
1008 	       return false;
1009 	key->page_match = 1;
1010 
1011 	if (wait_page->bit_nr != key->bit_nr)
1012 		return false;
1013 
1014 	return true;
1015 }
1016 
1017 void __folio_lock(struct folio *folio);
1018 int __folio_lock_killable(struct folio *folio);
1019 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1020 void unlock_page(struct page *page);
1021 void folio_unlock(struct folio *folio);
1022 
1023 /**
1024  * folio_trylock() - Attempt to lock a folio.
1025  * @folio: The folio to attempt to lock.
1026  *
1027  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1028  * when the locks are being taken in the wrong order, or if making
1029  * progress through a batch of folios is more important than processing
1030  * them in order).  Usually folio_lock() is the correct function to call.
1031  *
1032  * Context: Any context.
1033  * Return: Whether the lock was successfully acquired.
1034  */
folio_trylock(struct folio * folio)1035 static inline bool folio_trylock(struct folio *folio)
1036 {
1037 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1038 }
1039 
1040 /*
1041  * Return true if the page was successfully locked
1042  */
trylock_page(struct page * page)1043 static inline int trylock_page(struct page *page)
1044 {
1045 	return folio_trylock(page_folio(page));
1046 }
1047 
1048 /**
1049  * folio_lock() - Lock this folio.
1050  * @folio: The folio to lock.
1051  *
1052  * The folio lock protects against many things, probably more than it
1053  * should.  It is primarily held while a folio is being brought uptodate,
1054  * either from its backing file or from swap.  It is also held while a
1055  * folio is being truncated from its address_space, so holding the lock
1056  * is sufficient to keep folio->mapping stable.
1057  *
1058  * The folio lock is also held while write() is modifying the page to
1059  * provide POSIX atomicity guarantees (as long as the write does not
1060  * cross a page boundary).  Other modifications to the data in the folio
1061  * do not hold the folio lock and can race with writes, eg DMA and stores
1062  * to mapped pages.
1063  *
1064  * Context: May sleep.  If you need to acquire the locks of two or
1065  * more folios, they must be in order of ascending index, if they are
1066  * in the same address_space.  If they are in different address_spaces,
1067  * acquire the lock of the folio which belongs to the address_space which
1068  * has the lowest address in memory first.
1069  */
folio_lock(struct folio * folio)1070 static inline void folio_lock(struct folio *folio)
1071 {
1072 	might_sleep();
1073 	if (!folio_trylock(folio))
1074 		__folio_lock(folio);
1075 }
1076 
1077 /**
1078  * lock_page() - Lock the folio containing this page.
1079  * @page: The page to lock.
1080  *
1081  * See folio_lock() for a description of what the lock protects.
1082  * This is a legacy function and new code should probably use folio_lock()
1083  * instead.
1084  *
1085  * Context: May sleep.  Pages in the same folio share a lock, so do not
1086  * attempt to lock two pages which share a folio.
1087  */
lock_page(struct page * page)1088 static inline void lock_page(struct page *page)
1089 {
1090 	struct folio *folio;
1091 	might_sleep();
1092 
1093 	folio = page_folio(page);
1094 	if (!folio_trylock(folio))
1095 		__folio_lock(folio);
1096 }
1097 
1098 /**
1099  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1100  * @folio: The folio to lock.
1101  *
1102  * Attempts to lock the folio, like folio_lock(), except that the sleep
1103  * to acquire the lock is interruptible by a fatal signal.
1104  *
1105  * Context: May sleep; see folio_lock().
1106  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1107  */
folio_lock_killable(struct folio * folio)1108 static inline int folio_lock_killable(struct folio *folio)
1109 {
1110 	might_sleep();
1111 	if (!folio_trylock(folio))
1112 		return __folio_lock_killable(folio);
1113 	return 0;
1114 }
1115 
1116 /*
1117  * folio_lock_or_retry - Lock the folio, unless this would block and the
1118  * caller indicated that it can handle a retry.
1119  *
1120  * Return value and mmap_lock implications depend on flags; see
1121  * __folio_lock_or_retry().
1122  */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1123 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1124 					     struct vm_fault *vmf)
1125 {
1126 	might_sleep();
1127 	if (!folio_trylock(folio))
1128 		return __folio_lock_or_retry(folio, vmf);
1129 	return 0;
1130 }
1131 
1132 /*
1133  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1134  * and should not be used directly.
1135  */
1136 void folio_wait_bit(struct folio *folio, int bit_nr);
1137 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1138 
1139 /*
1140  * Wait for a folio to be unlocked.
1141  *
1142  * This must be called with the caller "holding" the folio,
1143  * ie with increased folio reference count so that the folio won't
1144  * go away during the wait.
1145  */
folio_wait_locked(struct folio * folio)1146 static inline void folio_wait_locked(struct folio *folio)
1147 {
1148 	if (folio_test_locked(folio))
1149 		folio_wait_bit(folio, PG_locked);
1150 }
1151 
folio_wait_locked_killable(struct folio * folio)1152 static inline int folio_wait_locked_killable(struct folio *folio)
1153 {
1154 	if (!folio_test_locked(folio))
1155 		return 0;
1156 	return folio_wait_bit_killable(folio, PG_locked);
1157 }
1158 
wait_on_page_locked(struct page * page)1159 static inline void wait_on_page_locked(struct page *page)
1160 {
1161 	folio_wait_locked(page_folio(page));
1162 }
1163 
1164 void wait_on_page_writeback(struct page *page);
1165 void folio_wait_writeback(struct folio *folio);
1166 int folio_wait_writeback_killable(struct folio *folio);
1167 void end_page_writeback(struct page *page);
1168 void folio_end_writeback(struct folio *folio);
1169 void wait_for_stable_page(struct page *page);
1170 void folio_wait_stable(struct folio *folio);
1171 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)1172 static inline void __set_page_dirty(struct page *page,
1173 		struct address_space *mapping, int warn)
1174 {
1175 	__folio_mark_dirty(page_folio(page), mapping, warn);
1176 }
1177 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1178 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1179 static inline void folio_cancel_dirty(struct folio *folio)
1180 {
1181 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1182 	if (folio_test_dirty(folio))
1183 		__folio_cancel_dirty(folio);
1184 }
1185 bool folio_clear_dirty_for_io(struct folio *folio);
1186 bool clear_page_dirty_for_io(struct page *page);
1187 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1188 int __set_page_dirty_nobuffers(struct page *page);
1189 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1190 
1191 #ifdef CONFIG_MIGRATION
1192 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1193 		struct folio *src, enum migrate_mode mode);
1194 #else
1195 #define filemap_migrate_folio NULL
1196 #endif
1197 void folio_end_private_2(struct folio *folio);
1198 void folio_wait_private_2(struct folio *folio);
1199 int folio_wait_private_2_killable(struct folio *folio);
1200 
1201 /*
1202  * Add an arbitrary waiter to a page's wait queue
1203  */
1204 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1205 
1206 /*
1207  * Fault in userspace address range.
1208  */
1209 size_t fault_in_writeable(char __user *uaddr, size_t size);
1210 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1211 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1212 size_t fault_in_readable(const char __user *uaddr, size_t size);
1213 
1214 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1215 		pgoff_t index, gfp_t gfp);
1216 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1217 		pgoff_t index, gfp_t gfp);
1218 void filemap_remove_folio(struct folio *folio);
1219 void __filemap_remove_folio(struct folio *folio, void *shadow);
1220 void replace_page_cache_folio(struct folio *old, struct folio *new);
1221 void delete_from_page_cache_batch(struct address_space *mapping,
1222 				  struct folio_batch *fbatch);
1223 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1224 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1225 		int whence);
1226 
1227 /* Must be non-static for BPF error injection */
1228 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1229 		pgoff_t index, gfp_t gfp, void **shadowp);
1230 
1231 bool filemap_range_has_writeback(struct address_space *mapping,
1232 				 loff_t start_byte, loff_t end_byte);
1233 
1234 /**
1235  * filemap_range_needs_writeback - check if range potentially needs writeback
1236  * @mapping:           address space within which to check
1237  * @start_byte:        offset in bytes where the range starts
1238  * @end_byte:          offset in bytes where the range ends (inclusive)
1239  *
1240  * Find at least one page in the range supplied, usually used to check if
1241  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1242  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1243  * filemap_write_and_wait_range() before proceeding.
1244  *
1245  * Return: %true if the caller should do filemap_write_and_wait_range() before
1246  * doing O_DIRECT to a page in this range, %false otherwise.
1247  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1248 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1249 						 loff_t start_byte,
1250 						 loff_t end_byte)
1251 {
1252 	if (!mapping->nrpages)
1253 		return false;
1254 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1255 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1256 		return false;
1257 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1258 }
1259 
1260 /**
1261  * struct readahead_control - Describes a readahead request.
1262  *
1263  * A readahead request is for consecutive pages.  Filesystems which
1264  * implement the ->readahead method should call readahead_page() or
1265  * readahead_page_batch() in a loop and attempt to start I/O against
1266  * each page in the request.
1267  *
1268  * Most of the fields in this struct are private and should be accessed
1269  * by the functions below.
1270  *
1271  * @file: The file, used primarily by network filesystems for authentication.
1272  *	  May be NULL if invoked internally by the filesystem.
1273  * @mapping: Readahead this filesystem object.
1274  * @ra: File readahead state.  May be NULL.
1275  */
1276 struct readahead_control {
1277 	struct file *file;
1278 	struct address_space *mapping;
1279 	struct file_ra_state *ra;
1280 /* private: use the readahead_* accessors instead */
1281 	pgoff_t _index;
1282 	unsigned int _nr_pages;
1283 	unsigned int _batch_count;
1284 	bool _workingset;
1285 	unsigned long _pflags;
1286 };
1287 
1288 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1289 	struct readahead_control ractl = {				\
1290 		.file = f,						\
1291 		.mapping = m,						\
1292 		.ra = r,						\
1293 		._index = i,						\
1294 	}
1295 
1296 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1297 
1298 void page_cache_ra_unbounded(struct readahead_control *,
1299 		unsigned long nr_to_read, unsigned long lookahead_count);
1300 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1301 void page_cache_async_ra(struct readahead_control *, struct folio *,
1302 		unsigned long req_count);
1303 void readahead_expand(struct readahead_control *ractl,
1304 		      loff_t new_start, size_t new_len);
1305 
1306 /**
1307  * page_cache_sync_readahead - generic file readahead
1308  * @mapping: address_space which holds the pagecache and I/O vectors
1309  * @ra: file_ra_state which holds the readahead state
1310  * @file: Used by the filesystem for authentication.
1311  * @index: Index of first page to be read.
1312  * @req_count: Total number of pages being read by the caller.
1313  *
1314  * page_cache_sync_readahead() should be called when a cache miss happened:
1315  * it will submit the read.  The readahead logic may decide to piggyback more
1316  * pages onto the read request if access patterns suggest it will improve
1317  * performance.
1318  */
1319 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1320 void page_cache_sync_readahead(struct address_space *mapping,
1321 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1322 		unsigned long req_count)
1323 {
1324 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1325 	page_cache_sync_ra(&ractl, req_count);
1326 }
1327 
1328 /**
1329  * page_cache_async_readahead - file readahead for marked pages
1330  * @mapping: address_space which holds the pagecache and I/O vectors
1331  * @ra: file_ra_state which holds the readahead state
1332  * @file: Used by the filesystem for authentication.
1333  * @folio: The folio at @index which triggered the readahead call.
1334  * @index: Index of first page to be read.
1335  * @req_count: Total number of pages being read by the caller.
1336  *
1337  * page_cache_async_readahead() should be called when a page is used which
1338  * is marked as PageReadahead; this is a marker to suggest that the application
1339  * has used up enough of the readahead window that we should start pulling in
1340  * more pages.
1341  */
1342 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,pgoff_t index,unsigned long req_count)1343 void page_cache_async_readahead(struct address_space *mapping,
1344 		struct file_ra_state *ra, struct file *file,
1345 		struct folio *folio, pgoff_t index, unsigned long req_count)
1346 {
1347 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1348 	page_cache_async_ra(&ractl, folio, req_count);
1349 }
1350 
__readahead_folio(struct readahead_control * ractl)1351 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1352 {
1353 	struct folio *folio;
1354 
1355 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1356 	ractl->_nr_pages -= ractl->_batch_count;
1357 	ractl->_index += ractl->_batch_count;
1358 
1359 	if (!ractl->_nr_pages) {
1360 		ractl->_batch_count = 0;
1361 		return NULL;
1362 	}
1363 
1364 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1365 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1366 	ractl->_batch_count = folio_nr_pages(folio);
1367 
1368 	return folio;
1369 }
1370 
1371 /**
1372  * readahead_page - Get the next page to read.
1373  * @ractl: The current readahead request.
1374  *
1375  * Context: The page is locked and has an elevated refcount.  The caller
1376  * should decreases the refcount once the page has been submitted for I/O
1377  * and unlock the page once all I/O to that page has completed.
1378  * Return: A pointer to the next page, or %NULL if we are done.
1379  */
readahead_page(struct readahead_control * ractl)1380 static inline struct page *readahead_page(struct readahead_control *ractl)
1381 {
1382 	struct folio *folio = __readahead_folio(ractl);
1383 
1384 	return &folio->page;
1385 }
1386 
1387 /**
1388  * readahead_folio - Get the next folio to read.
1389  * @ractl: The current readahead request.
1390  *
1391  * Context: The folio is locked.  The caller should unlock the folio once
1392  * all I/O to that folio has completed.
1393  * Return: A pointer to the next folio, or %NULL if we are done.
1394  */
readahead_folio(struct readahead_control * ractl)1395 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1396 {
1397 	struct folio *folio = __readahead_folio(ractl);
1398 
1399 	if (folio)
1400 		folio_put(folio);
1401 	return folio;
1402 }
1403 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1404 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1405 		struct page **array, unsigned int array_sz)
1406 {
1407 	unsigned int i = 0;
1408 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1409 	struct page *page;
1410 
1411 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1412 	rac->_nr_pages -= rac->_batch_count;
1413 	rac->_index += rac->_batch_count;
1414 	rac->_batch_count = 0;
1415 
1416 	xas_set(&xas, rac->_index);
1417 	rcu_read_lock();
1418 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1419 		if (xas_retry(&xas, page))
1420 			continue;
1421 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1422 		VM_BUG_ON_PAGE(PageTail(page), page);
1423 		array[i++] = page;
1424 		rac->_batch_count += thp_nr_pages(page);
1425 		if (i == array_sz)
1426 			break;
1427 	}
1428 	rcu_read_unlock();
1429 
1430 	return i;
1431 }
1432 
1433 /**
1434  * readahead_page_batch - Get a batch of pages to read.
1435  * @rac: The current readahead request.
1436  * @array: An array of pointers to struct page.
1437  *
1438  * Context: The pages are locked and have an elevated refcount.  The caller
1439  * should decreases the refcount once the page has been submitted for I/O
1440  * and unlock the page once all I/O to that page has completed.
1441  * Return: The number of pages placed in the array.  0 indicates the request
1442  * is complete.
1443  */
1444 #define readahead_page_batch(rac, array)				\
1445 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1446 
1447 /**
1448  * readahead_pos - The byte offset into the file of this readahead request.
1449  * @rac: The readahead request.
1450  */
readahead_pos(struct readahead_control * rac)1451 static inline loff_t readahead_pos(struct readahead_control *rac)
1452 {
1453 	return (loff_t)rac->_index * PAGE_SIZE;
1454 }
1455 
1456 /**
1457  * readahead_length - The number of bytes in this readahead request.
1458  * @rac: The readahead request.
1459  */
readahead_length(struct readahead_control * rac)1460 static inline size_t readahead_length(struct readahead_control *rac)
1461 {
1462 	return rac->_nr_pages * PAGE_SIZE;
1463 }
1464 
1465 /**
1466  * readahead_index - The index of the first page in this readahead request.
1467  * @rac: The readahead request.
1468  */
readahead_index(struct readahead_control * rac)1469 static inline pgoff_t readahead_index(struct readahead_control *rac)
1470 {
1471 	return rac->_index;
1472 }
1473 
1474 /**
1475  * readahead_count - The number of pages in this readahead request.
1476  * @rac: The readahead request.
1477  */
readahead_count(struct readahead_control * rac)1478 static inline unsigned int readahead_count(struct readahead_control *rac)
1479 {
1480 	return rac->_nr_pages;
1481 }
1482 
1483 /**
1484  * readahead_batch_length - The number of bytes in the current batch.
1485  * @rac: The readahead request.
1486  */
readahead_batch_length(struct readahead_control * rac)1487 static inline size_t readahead_batch_length(struct readahead_control *rac)
1488 {
1489 	return rac->_batch_count * PAGE_SIZE;
1490 }
1491 
dir_pages(struct inode * inode)1492 static inline unsigned long dir_pages(struct inode *inode)
1493 {
1494 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1495 			       PAGE_SHIFT;
1496 }
1497 
1498 /**
1499  * folio_mkwrite_check_truncate - check if folio was truncated
1500  * @folio: the folio to check
1501  * @inode: the inode to check the folio against
1502  *
1503  * Return: the number of bytes in the folio up to EOF,
1504  * or -EFAULT if the folio was truncated.
1505  */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1506 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1507 					      struct inode *inode)
1508 {
1509 	loff_t size = i_size_read(inode);
1510 	pgoff_t index = size >> PAGE_SHIFT;
1511 	size_t offset = offset_in_folio(folio, size);
1512 
1513 	if (!folio->mapping)
1514 		return -EFAULT;
1515 
1516 	/* folio is wholly inside EOF */
1517 	if (folio_next_index(folio) - 1 < index)
1518 		return folio_size(folio);
1519 	/* folio is wholly past EOF */
1520 	if (folio->index > index || !offset)
1521 		return -EFAULT;
1522 	/* folio is partially inside EOF */
1523 	return offset;
1524 }
1525 
1526 /**
1527  * page_mkwrite_check_truncate - check if page was truncated
1528  * @page: the page to check
1529  * @inode: the inode to check the page against
1530  *
1531  * Returns the number of bytes in the page up to EOF,
1532  * or -EFAULT if the page was truncated.
1533  */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1534 static inline int page_mkwrite_check_truncate(struct page *page,
1535 					      struct inode *inode)
1536 {
1537 	loff_t size = i_size_read(inode);
1538 	pgoff_t index = size >> PAGE_SHIFT;
1539 	int offset = offset_in_page(size);
1540 
1541 	if (page->mapping != inode->i_mapping)
1542 		return -EFAULT;
1543 
1544 	/* page is wholly inside EOF */
1545 	if (page->index < index)
1546 		return PAGE_SIZE;
1547 	/* page is wholly past EOF */
1548 	if (page->index > index || !offset)
1549 		return -EFAULT;
1550 	/* page is partially inside EOF */
1551 	return offset;
1552 }
1553 
1554 /**
1555  * i_blocks_per_folio - How many blocks fit in this folio.
1556  * @inode: The inode which contains the blocks.
1557  * @folio: The folio.
1558  *
1559  * If the block size is larger than the size of this folio, return zero.
1560  *
1561  * Context: The caller should hold a refcount on the folio to prevent it
1562  * from being split.
1563  * Return: The number of filesystem blocks covered by this folio.
1564  */
1565 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1566 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1567 {
1568 	return folio_size(folio) >> inode->i_blkbits;
1569 }
1570 
1571 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1572 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1573 {
1574 	return i_blocks_per_folio(inode, page_folio(page));
1575 }
1576 #endif /* _LINUX_PAGEMAP_H */
1577