1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4
5 use std::{ffi::CStr, mem::size_of, ptr::addr_of_mut};
6
7 use qemu_api::{
8 chardev::{CharBackend, Chardev, Event},
9 impl_vmstate_forward,
10 irq::{IRQState, InterruptSource},
11 memory::{hwaddr, MemoryRegion, MemoryRegionOps, MemoryRegionOpsBuilder},
12 prelude::*,
13 qdev::{Clock, ClockEvent, DeviceImpl, DeviceState, Property, ResetType, ResettablePhasesImpl},
14 qom::{ObjectImpl, Owned, ParentField},
15 static_assert,
16 sysbus::{SysBusDevice, SysBusDeviceImpl},
17 vmstate::VMStateDescription,
18 };
19
20 use crate::{
21 device_class,
22 registers::{self, Interrupt, RegisterOffset},
23 };
24
25 // TODO: You must disable the UART before any of the control registers are
26 // reprogrammed. When the UART is disabled in the middle of transmission or
27 // reception, it completes the current character before stopping
28
29 /// Integer Baud Rate Divider, `UARTIBRD`
30 const IBRD_MASK: u32 = 0xffff;
31
32 /// Fractional Baud Rate Divider, `UARTFBRD`
33 const FBRD_MASK: u32 = 0x3f;
34
35 /// QEMU sourced constant.
36 pub const PL011_FIFO_DEPTH: u32 = 16;
37
38 #[derive(Clone, Copy)]
39 struct DeviceId(&'static [u8; 8]);
40
41 impl std::ops::Index<hwaddr> for DeviceId {
42 type Output = u8;
43
index(&self, idx: hwaddr) -> &Self::Output44 fn index(&self, idx: hwaddr) -> &Self::Output {
45 &self.0[idx as usize]
46 }
47 }
48
49 // FIFOs use 32-bit indices instead of usize, for compatibility with
50 // the migration stream produced by the C version of this device.
51 #[repr(transparent)]
52 #[derive(Debug, Default)]
53 pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]);
54 impl_vmstate_forward!(Fifo);
55
56 impl Fifo {
len(&self) -> u3257 const fn len(&self) -> u32 {
58 self.0.len() as u32
59 }
60 }
61
62 impl std::ops::IndexMut<u32> for Fifo {
index_mut(&mut self, idx: u32) -> &mut Self::Output63 fn index_mut(&mut self, idx: u32) -> &mut Self::Output {
64 &mut self.0[idx as usize]
65 }
66 }
67
68 impl std::ops::Index<u32> for Fifo {
69 type Output = registers::Data;
70
index(&self, idx: u32) -> &Self::Output71 fn index(&self, idx: u32) -> &Self::Output {
72 &self.0[idx as usize]
73 }
74 }
75
76 #[repr(C)]
77 #[derive(Debug, Default, qemu_api_macros::offsets)]
78 pub struct PL011Registers {
79 #[doc(alias = "fr")]
80 pub flags: registers::Flags,
81 #[doc(alias = "lcr")]
82 pub line_control: registers::LineControl,
83 #[doc(alias = "rsr")]
84 pub receive_status_error_clear: registers::ReceiveStatusErrorClear,
85 #[doc(alias = "cr")]
86 pub control: registers::Control,
87 pub dmacr: u32,
88 pub int_enabled: u32,
89 pub int_level: u32,
90 pub read_fifo: Fifo,
91 pub ilpr: u32,
92 pub ibrd: u32,
93 pub fbrd: u32,
94 pub ifl: u32,
95 pub read_pos: u32,
96 pub read_count: u32,
97 pub read_trigger: u32,
98 }
99
100 #[repr(C)]
101 #[derive(qemu_api_macros::Object, qemu_api_macros::offsets)]
102 /// PL011 Device Model in QEMU
103 pub struct PL011State {
104 pub parent_obj: ParentField<SysBusDevice>,
105 pub iomem: MemoryRegion,
106 #[doc(alias = "chr")]
107 pub char_backend: CharBackend,
108 pub regs: BqlRefCell<PL011Registers>,
109 /// QEMU interrupts
110 ///
111 /// ```text
112 /// * sysbus MMIO region 0: device registers
113 /// * sysbus IRQ 0: `UARTINTR` (combined interrupt line)
114 /// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line)
115 /// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line)
116 /// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line)
117 /// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line)
118 /// * sysbus IRQ 5: `UARTEINTR` (error interrupt line)
119 /// ```
120 #[doc(alias = "irq")]
121 pub interrupts: [InterruptSource; IRQMASK.len()],
122 #[doc(alias = "clk")]
123 pub clock: Owned<Clock>,
124 #[doc(alias = "migrate_clk")]
125 pub migrate_clock: bool,
126 }
127
128 // Some C users of this device embed its state struct into their own
129 // structs, so the size of the Rust version must not be any larger
130 // than the size of the C one. If this assert triggers you need to
131 // expand the padding_for_rust[] array in the C PL011State struct.
132 static_assert!(size_of::<PL011State>() <= size_of::<qemu_api::bindings::PL011State>());
133
134 qom_isa!(PL011State : SysBusDevice, DeviceState, Object);
135
136 #[repr(C)]
137 pub struct PL011Class {
138 parent_class: <SysBusDevice as ObjectType>::Class,
139 /// The byte string that identifies the device.
140 device_id: DeviceId,
141 }
142
143 trait PL011Impl: SysBusDeviceImpl + IsA<PL011State> {
144 const DEVICE_ID: DeviceId;
145 }
146
147 impl PL011Class {
class_init<T: PL011Impl>(&mut self)148 fn class_init<T: PL011Impl>(&mut self) {
149 self.device_id = T::DEVICE_ID;
150 self.parent_class.class_init::<T>();
151 }
152 }
153
154 unsafe impl ObjectType for PL011State {
155 type Class = PL011Class;
156 const TYPE_NAME: &'static CStr = crate::TYPE_PL011;
157 }
158
159 impl PL011Impl for PL011State {
160 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]);
161 }
162
163 impl ObjectImpl for PL011State {
164 type ParentType = SysBusDevice;
165
166 const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init);
167 const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init);
168 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>;
169 }
170
171 impl DeviceImpl for PL011State {
properties() -> &'static [Property]172 fn properties() -> &'static [Property] {
173 &device_class::PL011_PROPERTIES
174 }
vmsd() -> Option<&'static VMStateDescription>175 fn vmsd() -> Option<&'static VMStateDescription> {
176 Some(&device_class::VMSTATE_PL011)
177 }
178 const REALIZE: Option<fn(&Self)> = Some(Self::realize);
179 }
180
181 impl ResettablePhasesImpl for PL011State {
182 const HOLD: Option<fn(&Self, ResetType)> = Some(Self::reset_hold);
183 }
184
185 impl SysBusDeviceImpl for PL011State {}
186
187 impl PL011Registers {
read(&mut self, offset: RegisterOffset) -> (bool, u32)188 pub(self) fn read(&mut self, offset: RegisterOffset) -> (bool, u32) {
189 use RegisterOffset::*;
190
191 let mut update = false;
192 let result = match offset {
193 DR => {
194 self.flags.set_receive_fifo_full(false);
195 let c = self.read_fifo[self.read_pos];
196 if self.read_count > 0 {
197 self.read_count -= 1;
198 self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1);
199 }
200 if self.read_count == 0 {
201 self.flags.set_receive_fifo_empty(true);
202 }
203 if self.read_count + 1 == self.read_trigger {
204 self.int_level &= !Interrupt::RX.0;
205 }
206 // Update error bits.
207 self.receive_status_error_clear.set_from_data(c);
208 // Must call qemu_chr_fe_accept_input
209 update = true;
210 u32::from(c)
211 }
212 RSR => u32::from(self.receive_status_error_clear),
213 FR => u32::from(self.flags),
214 FBRD => self.fbrd,
215 ILPR => self.ilpr,
216 IBRD => self.ibrd,
217 LCR_H => u32::from(self.line_control),
218 CR => u32::from(self.control),
219 FLS => self.ifl,
220 IMSC => self.int_enabled,
221 RIS => self.int_level,
222 MIS => self.int_level & self.int_enabled,
223 ICR => {
224 // "The UARTICR Register is the interrupt clear register and is write-only"
225 // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR
226 0
227 }
228 DMACR => self.dmacr,
229 };
230 (update, result)
231 }
232
write( &mut self, offset: RegisterOffset, value: u32, char_backend: &CharBackend, ) -> bool233 pub(self) fn write(
234 &mut self,
235 offset: RegisterOffset,
236 value: u32,
237 char_backend: &CharBackend,
238 ) -> bool {
239 // eprintln!("write offset {offset} value {value}");
240 use RegisterOffset::*;
241 match offset {
242 DR => {
243 // interrupts always checked
244 let _ = self.loopback_tx(value.into());
245 self.int_level |= Interrupt::TX.0;
246 return true;
247 }
248 RSR => {
249 self.receive_status_error_clear = 0.into();
250 }
251 FR => {
252 // flag writes are ignored
253 }
254 ILPR => {
255 self.ilpr = value;
256 }
257 IBRD => {
258 self.ibrd = value;
259 }
260 FBRD => {
261 self.fbrd = value;
262 }
263 LCR_H => {
264 let new_val: registers::LineControl = value.into();
265 // Reset the FIFO state on FIFO enable or disable
266 if self.line_control.fifos_enabled() != new_val.fifos_enabled() {
267 self.reset_rx_fifo();
268 self.reset_tx_fifo();
269 }
270 let update = (self.line_control.send_break() != new_val.send_break()) && {
271 let break_enable = new_val.send_break();
272 let _ = char_backend.send_break(break_enable);
273 self.loopback_break(break_enable)
274 };
275 self.line_control = new_val;
276 self.set_read_trigger();
277 return update;
278 }
279 CR => {
280 // ??? Need to implement the enable bit.
281 self.control = value.into();
282 return self.loopback_mdmctrl();
283 }
284 FLS => {
285 self.ifl = value;
286 self.set_read_trigger();
287 }
288 IMSC => {
289 self.int_enabled = value;
290 return true;
291 }
292 RIS => {}
293 MIS => {}
294 ICR => {
295 self.int_level &= !value;
296 return true;
297 }
298 DMACR => {
299 self.dmacr = value;
300 if value & 3 > 0 {
301 // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n");
302 eprintln!("pl011: DMA not implemented");
303 }
304 }
305 }
306 false
307 }
308
309 #[inline]
310 #[must_use]
loopback_tx(&mut self, value: registers::Data) -> bool311 fn loopback_tx(&mut self, value: registers::Data) -> bool {
312 // Caveat:
313 //
314 // In real hardware, TX loopback happens at the serial-bit level
315 // and then reassembled by the RX logics back into bytes and placed
316 // into the RX fifo. That is, loopback happens after TX fifo.
317 //
318 // Because the real hardware TX fifo is time-drained at the frame
319 // rate governed by the configured serial format, some loopback
320 // bytes in TX fifo may still be able to get into the RX fifo
321 // that could be full at times while being drained at software
322 // pace.
323 //
324 // In such scenario, the RX draining pace is the major factor
325 // deciding which loopback bytes get into the RX fifo, unless
326 // hardware flow-control is enabled.
327 //
328 // For simplicity, the above described is not emulated.
329 self.loopback_enabled() && self.put_fifo(value)
330 }
331
332 #[must_use]
loopback_mdmctrl(&mut self) -> bool333 fn loopback_mdmctrl(&mut self) -> bool {
334 if !self.loopback_enabled() {
335 return false;
336 }
337
338 /*
339 * Loopback software-driven modem control outputs to modem status inputs:
340 * FR.RI <= CR.Out2
341 * FR.DCD <= CR.Out1
342 * FR.CTS <= CR.RTS
343 * FR.DSR <= CR.DTR
344 *
345 * The loopback happens immediately even if this call is triggered
346 * by setting only CR.LBE.
347 *
348 * CTS/RTS updates due to enabled hardware flow controls are not
349 * dealt with here.
350 */
351
352 self.flags.set_ring_indicator(self.control.out_2());
353 self.flags.set_data_carrier_detect(self.control.out_1());
354 self.flags.set_clear_to_send(self.control.request_to_send());
355 self.flags
356 .set_data_set_ready(self.control.data_transmit_ready());
357
358 // Change interrupts based on updated FR
359 let mut il = self.int_level;
360
361 il &= !Interrupt::MS.0;
362
363 if self.flags.data_set_ready() {
364 il |= Interrupt::DSR.0;
365 }
366 if self.flags.data_carrier_detect() {
367 il |= Interrupt::DCD.0;
368 }
369 if self.flags.clear_to_send() {
370 il |= Interrupt::CTS.0;
371 }
372 if self.flags.ring_indicator() {
373 il |= Interrupt::RI.0;
374 }
375 self.int_level = il;
376 true
377 }
378
loopback_break(&mut self, enable: bool) -> bool379 fn loopback_break(&mut self, enable: bool) -> bool {
380 enable && self.loopback_tx(registers::Data::BREAK)
381 }
382
set_read_trigger(&mut self)383 fn set_read_trigger(&mut self) {
384 self.read_trigger = 1;
385 }
386
reset(&mut self)387 pub fn reset(&mut self) {
388 self.line_control.reset();
389 self.receive_status_error_clear.reset();
390 self.dmacr = 0;
391 self.int_enabled = 0;
392 self.int_level = 0;
393 self.ilpr = 0;
394 self.ibrd = 0;
395 self.fbrd = 0;
396 self.read_trigger = 1;
397 self.ifl = 0x12;
398 self.control.reset();
399 self.flags.reset();
400 self.reset_rx_fifo();
401 self.reset_tx_fifo();
402 }
403
reset_rx_fifo(&mut self)404 pub fn reset_rx_fifo(&mut self) {
405 self.read_count = 0;
406 self.read_pos = 0;
407
408 // Reset FIFO flags
409 self.flags.set_receive_fifo_full(false);
410 self.flags.set_receive_fifo_empty(true);
411 }
412
reset_tx_fifo(&mut self)413 pub fn reset_tx_fifo(&mut self) {
414 // Reset FIFO flags
415 self.flags.set_transmit_fifo_full(false);
416 self.flags.set_transmit_fifo_empty(true);
417 }
418
419 #[inline]
fifo_enabled(&self) -> bool420 pub fn fifo_enabled(&self) -> bool {
421 self.line_control.fifos_enabled() == registers::Mode::FIFO
422 }
423
424 #[inline]
loopback_enabled(&self) -> bool425 pub fn loopback_enabled(&self) -> bool {
426 self.control.enable_loopback()
427 }
428
429 #[inline]
fifo_depth(&self) -> u32430 pub fn fifo_depth(&self) -> u32 {
431 // Note: FIFO depth is expected to be power-of-2
432 if self.fifo_enabled() {
433 return PL011_FIFO_DEPTH;
434 }
435 1
436 }
437
438 #[must_use]
put_fifo(&mut self, value: registers::Data) -> bool439 pub fn put_fifo(&mut self, value: registers::Data) -> bool {
440 let depth = self.fifo_depth();
441 assert!(depth > 0);
442 let slot = (self.read_pos + self.read_count) & (depth - 1);
443 self.read_fifo[slot] = value;
444 self.read_count += 1;
445 self.flags.set_receive_fifo_empty(false);
446 if self.read_count == depth {
447 self.flags.set_receive_fifo_full(true);
448 }
449
450 if self.read_count == self.read_trigger {
451 self.int_level |= Interrupt::RX.0;
452 return true;
453 }
454 false
455 }
456
post_load(&mut self) -> Result<(), ()>457 pub fn post_load(&mut self) -> Result<(), ()> {
458 /* Sanity-check input state */
459 if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() {
460 return Err(());
461 }
462
463 if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 {
464 // Older versions of PL011 didn't ensure that the single
465 // character in the FIFO in FIFO-disabled mode is in
466 // element 0 of the array; convert to follow the current
467 // code's assumptions.
468 self.read_fifo[0] = self.read_fifo[self.read_pos];
469 self.read_pos = 0;
470 }
471
472 self.ibrd &= IBRD_MASK;
473 self.fbrd &= FBRD_MASK;
474
475 Ok(())
476 }
477 }
478
479 impl PL011State {
480 /// Initializes a pre-allocated, unitialized instance of `PL011State`.
481 ///
482 /// # Safety
483 ///
484 /// `self` must point to a correctly sized and aligned location for the
485 /// `PL011State` type. It must not be called more than once on the same
486 /// location/instance. All its fields are expected to hold unitialized
487 /// values with the sole exception of `parent_obj`.
init(&mut self)488 unsafe fn init(&mut self) {
489 static PL011_OPS: MemoryRegionOps<PL011State> = MemoryRegionOpsBuilder::<PL011State>::new()
490 .read(&PL011State::read)
491 .write(&PL011State::write)
492 .native_endian()
493 .impl_sizes(4, 4)
494 .build();
495
496 // SAFETY:
497 //
498 // self and self.iomem are guaranteed to be valid at this point since callers
499 // must make sure the `self` reference is valid.
500 MemoryRegion::init_io(
501 unsafe { &mut *addr_of_mut!(self.iomem) },
502 addr_of_mut!(*self),
503 &PL011_OPS,
504 "pl011",
505 0x1000,
506 );
507
508 self.regs = Default::default();
509
510 // SAFETY:
511 //
512 // self.clock is not initialized at this point; but since `Owned<_>` is
513 // not Drop, we can overwrite the undefined value without side effects;
514 // it's not sound but, because for all PL011State instances are created
515 // by QOM code which calls this function to initialize the fields, at
516 // leastno code is able to access an invalid self.clock value.
517 self.clock = self.init_clock_in("clk", &Self::clock_update, ClockEvent::ClockUpdate);
518 }
519
clock_update(&self, _event: ClockEvent)520 const fn clock_update(&self, _event: ClockEvent) {
521 /* pl011_trace_baudrate_change(s); */
522 }
523
post_init(&self)524 fn post_init(&self) {
525 self.init_mmio(&self.iomem);
526 for irq in self.interrupts.iter() {
527 self.init_irq(irq);
528 }
529 }
530
read(&self, offset: hwaddr, _size: u32) -> u64531 fn read(&self, offset: hwaddr, _size: u32) -> u64 {
532 match RegisterOffset::try_from(offset) {
533 Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => {
534 let device_id = self.get_class().device_id;
535 u64::from(device_id[(offset - 0xfe0) >> 2])
536 }
537 Err(_) => {
538 // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset);
539 0
540 }
541 Ok(field) => {
542 let (update_irq, result) = self.regs.borrow_mut().read(field);
543 if update_irq {
544 self.update();
545 self.char_backend.accept_input();
546 }
547 result.into()
548 }
549 }
550 }
551
write(&self, offset: hwaddr, value: u64, _size: u32)552 fn write(&self, offset: hwaddr, value: u64, _size: u32) {
553 let mut update_irq = false;
554 if let Ok(field) = RegisterOffset::try_from(offset) {
555 // qemu_chr_fe_write_all() calls into the can_receive
556 // callback, so handle writes before entering PL011Registers.
557 if field == RegisterOffset::DR {
558 // ??? Check if transmitter is enabled.
559 let ch: [u8; 1] = [value as u8];
560 // XXX this blocks entire thread. Rewrite to use
561 // qemu_chr_fe_write and background I/O callbacks
562 let _ = self.char_backend.write_all(&ch);
563 }
564
565 update_irq = self
566 .regs
567 .borrow_mut()
568 .write(field, value as u32, &self.char_backend);
569 } else {
570 eprintln!("write bad offset {offset} value {value}");
571 }
572 if update_irq {
573 self.update();
574 }
575 }
576
can_receive(&self) -> u32577 fn can_receive(&self) -> u32 {
578 let regs = self.regs.borrow();
579 // trace_pl011_can_receive(s->lcr, s->read_count, r);
580 u32::from(regs.read_count < regs.fifo_depth())
581 }
582
receive(&self, buf: &[u8])583 fn receive(&self, buf: &[u8]) {
584 if buf.is_empty() {
585 return;
586 }
587 let mut regs = self.regs.borrow_mut();
588 let c: u32 = buf[0].into();
589 let update_irq = !regs.loopback_enabled() && regs.put_fifo(c.into());
590 // Release the BqlRefCell before calling self.update()
591 drop(regs);
592
593 if update_irq {
594 self.update();
595 }
596 }
597
event(&self, event: Event)598 fn event(&self, event: Event) {
599 let mut update_irq = false;
600 let mut regs = self.regs.borrow_mut();
601 if event == Event::CHR_EVENT_BREAK && !regs.loopback_enabled() {
602 update_irq = regs.put_fifo(registers::Data::BREAK);
603 }
604 // Release the BqlRefCell before calling self.update()
605 drop(regs);
606
607 if update_irq {
608 self.update()
609 }
610 }
611
realize(&self)612 fn realize(&self) {
613 self.char_backend
614 .enable_handlers(self, Self::can_receive, Self::receive, Self::event);
615 }
616
reset_hold(&self, _type: ResetType)617 fn reset_hold(&self, _type: ResetType) {
618 self.regs.borrow_mut().reset();
619 }
620
update(&self)621 fn update(&self) {
622 let regs = self.regs.borrow();
623 let flags = regs.int_level & regs.int_enabled;
624 for (irq, i) in self.interrupts.iter().zip(IRQMASK) {
625 irq.set(flags & i != 0);
626 }
627 }
628
post_load(&self, _version_id: u32) -> Result<(), ()>629 pub fn post_load(&self, _version_id: u32) -> Result<(), ()> {
630 self.regs.borrow_mut().post_load()
631 }
632 }
633
634 /// Which bits in the interrupt status matter for each outbound IRQ line ?
635 const IRQMASK: [u32; 6] = [
636 /* combined IRQ */
637 Interrupt::E.0 | Interrupt::MS.0 | Interrupt::RT.0 | Interrupt::TX.0 | Interrupt::RX.0,
638 Interrupt::RX.0,
639 Interrupt::TX.0,
640 Interrupt::RT.0,
641 Interrupt::MS.0,
642 Interrupt::E.0,
643 ];
644
645 /// # Safety
646 ///
647 /// We expect the FFI user of this function to pass a valid pointer for `chr`
648 /// and `irq`.
649 #[no_mangle]
pl011_create( addr: u64, irq: *mut IRQState, chr: *mut Chardev, ) -> *mut DeviceState650 pub unsafe extern "C" fn pl011_create(
651 addr: u64,
652 irq: *mut IRQState,
653 chr: *mut Chardev,
654 ) -> *mut DeviceState {
655 // SAFETY: The callers promise that they have owned references.
656 // They do not gift them to pl011_create, so use `Owned::from`.
657 let irq = unsafe { Owned::<IRQState>::from(&*irq) };
658
659 let dev = PL011State::new();
660 if !chr.is_null() {
661 let chr = unsafe { Owned::<Chardev>::from(&*chr) };
662 dev.prop_set_chr("chardev", &chr);
663 }
664 dev.sysbus_realize();
665 dev.mmio_map(0, addr);
666 dev.connect_irq(0, &irq);
667
668 // The pointer is kept alive by the QOM tree; drop the owned ref
669 dev.as_mut_ptr()
670 }
671
672 #[repr(C)]
673 #[derive(qemu_api_macros::Object)]
674 /// PL011 Luminary device model.
675 pub struct PL011Luminary {
676 parent_obj: ParentField<PL011State>,
677 }
678
679 qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object);
680
681 unsafe impl ObjectType for PL011Luminary {
682 type Class = <PL011State as ObjectType>::Class;
683 const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY;
684 }
685
686 impl ObjectImpl for PL011Luminary {
687 type ParentType = PL011State;
688
689 const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>;
690 }
691
692 impl PL011Impl for PL011Luminary {
693 const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]);
694 }
695
696 impl DeviceImpl for PL011Luminary {}
697 impl ResettablePhasesImpl for PL011Luminary {}
698 impl SysBusDeviceImpl for PL011Luminary {}
699