xref: /openbmc/linux/fs/f2fs/node.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page);
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 	return NODE_MAPPING(sbi) == page->mapping &&
316 			IS_DNODE(page) && is_cold_node(page);
317 }
318 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->nid = nid;
562 retry:
563 	/* Check nat cache */
564 	f2fs_down_read(&nm_i->nat_tree_lock);
565 	e = __lookup_nat_cache(nm_i, nid);
566 	if (e) {
567 		ni->ino = nat_get_ino(e);
568 		ni->blk_addr = nat_get_blkaddr(e);
569 		ni->version = nat_get_version(e);
570 		f2fs_up_read(&nm_i->nat_tree_lock);
571 		return 0;
572 	}
573 
574 	/*
575 	 * Check current segment summary by trying to grab journal_rwsem first.
576 	 * This sem is on the critical path on the checkpoint requiring the above
577 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 	 * while not bothering checkpoint.
579 	 */
580 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 		down_read(&curseg->journal_rwsem);
582 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 				!down_read_trylock(&curseg->journal_rwsem)) {
584 		f2fs_up_read(&nm_i->nat_tree_lock);
585 		goto retry;
586 	}
587 
588 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 	if (i >= 0) {
590 		ne = nat_in_journal(journal, i);
591 		node_info_from_raw_nat(ni, &ne);
592 	}
593 	up_read(&curseg->journal_rwsem);
594 	if (i >= 0) {
595 		f2fs_up_read(&nm_i->nat_tree_lock);
596 		goto cache;
597 	}
598 
599 	/* Fill node_info from nat page */
600 	index = current_nat_addr(sbi, nid);
601 	f2fs_up_read(&nm_i->nat_tree_lock);
602 
603 	page = f2fs_get_meta_page(sbi, index);
604 	if (IS_ERR(page))
605 		return PTR_ERR(page);
606 
607 	nat_blk = (struct f2fs_nat_block *)page_address(page);
608 	ne = nat_blk->entries[nid - start_nid];
609 	node_info_from_raw_nat(ni, &ne);
610 	f2fs_put_page(page, 1);
611 cache:
612 	blkaddr = le32_to_cpu(ne.block_addr);
613 	if (__is_valid_data_blkaddr(blkaddr) &&
614 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 		return -EFAULT;
616 
617 	/* cache nat entry */
618 	cache_nat_entry(sbi, nid, &ne);
619 	return 0;
620 }
621 
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
f2fs_ra_node_pages(struct page * parent,int start,int n)625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 	struct blk_plug plug;
629 	int i, end;
630 	nid_t nid;
631 
632 	blk_start_plug(&plug);
633 
634 	/* Then, try readahead for siblings of the desired node */
635 	end = start + n;
636 	end = min(end, NIDS_PER_BLOCK);
637 	for (i = start; i < end; i++) {
638 		nid = get_nid(parent, i, false);
639 		f2fs_ra_node_page(sbi, nid);
640 	}
641 
642 	blk_finish_plug(&plug);
643 }
644 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 	const long direct_index = ADDRS_PER_INODE(dn->inode);
648 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 	int cur_level = dn->cur_level;
652 	int max_level = dn->max_level;
653 	pgoff_t base = 0;
654 
655 	if (!dn->max_level)
656 		return pgofs + 1;
657 
658 	while (max_level-- > cur_level)
659 		skipped_unit *= NIDS_PER_BLOCK;
660 
661 	switch (dn->max_level) {
662 	case 3:
663 		base += 2 * indirect_blks;
664 		fallthrough;
665 	case 2:
666 		base += 2 * direct_blks;
667 		fallthrough;
668 	case 1:
669 		base += direct_index;
670 		break;
671 	default:
672 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 	}
674 
675 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677 
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])682 static int get_node_path(struct inode *inode, long block,
683 				int offset[4], unsigned int noffset[4])
684 {
685 	const long direct_index = ADDRS_PER_INODE(inode);
686 	const long direct_blks = ADDRS_PER_BLOCK(inode);
687 	const long dptrs_per_blk = NIDS_PER_BLOCK;
688 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 	int n = 0;
691 	int level = 0;
692 
693 	noffset[0] = 0;
694 
695 	if (block < direct_index) {
696 		offset[n] = block;
697 		goto got;
698 	}
699 	block -= direct_index;
700 	if (block < direct_blks) {
701 		offset[n++] = NODE_DIR1_BLOCK;
702 		noffset[n] = 1;
703 		offset[n] = block;
704 		level = 1;
705 		goto got;
706 	}
707 	block -= direct_blks;
708 	if (block < direct_blks) {
709 		offset[n++] = NODE_DIR2_BLOCK;
710 		noffset[n] = 2;
711 		offset[n] = block;
712 		level = 1;
713 		goto got;
714 	}
715 	block -= direct_blks;
716 	if (block < indirect_blks) {
717 		offset[n++] = NODE_IND1_BLOCK;
718 		noffset[n] = 3;
719 		offset[n++] = block / direct_blks;
720 		noffset[n] = 4 + offset[n - 1];
721 		offset[n] = block % direct_blks;
722 		level = 2;
723 		goto got;
724 	}
725 	block -= indirect_blks;
726 	if (block < indirect_blks) {
727 		offset[n++] = NODE_IND2_BLOCK;
728 		noffset[n] = 4 + dptrs_per_blk;
729 		offset[n++] = block / direct_blks;
730 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 		offset[n] = block % direct_blks;
732 		level = 2;
733 		goto got;
734 	}
735 	block -= indirect_blks;
736 	if (block < dindirect_blks) {
737 		offset[n++] = NODE_DIND_BLOCK;
738 		noffset[n] = 5 + (dptrs_per_blk * 2);
739 		offset[n++] = block / indirect_blks;
740 		noffset[n] = 6 + (dptrs_per_blk * 2) +
741 			      offset[n - 1] * (dptrs_per_blk + 1);
742 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 		noffset[n] = 7 + (dptrs_per_blk * 2) +
744 			      offset[n - 2] * (dptrs_per_blk + 1) +
745 			      offset[n - 1];
746 		offset[n] = block % direct_blks;
747 		level = 3;
748 		goto got;
749 	} else {
750 		return -E2BIG;
751 	}
752 got:
753 	return level;
754 }
755 
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 	struct page *npage[4];
765 	struct page *parent = NULL;
766 	int offset[4];
767 	unsigned int noffset[4];
768 	nid_t nids[4];
769 	int level, i = 0;
770 	int err = 0;
771 
772 	level = get_node_path(dn->inode, index, offset, noffset);
773 	if (level < 0)
774 		return level;
775 
776 	nids[0] = dn->inode->i_ino;
777 	npage[0] = dn->inode_page;
778 
779 	if (!npage[0]) {
780 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 		if (IS_ERR(npage[0]))
782 			return PTR_ERR(npage[0]);
783 	}
784 
785 	/* if inline_data is set, should not report any block indices */
786 	if (f2fs_has_inline_data(dn->inode) && index) {
787 		err = -ENOENT;
788 		f2fs_put_page(npage[0], 1);
789 		goto release_out;
790 	}
791 
792 	parent = npage[0];
793 	if (level != 0)
794 		nids[1] = get_nid(parent, offset[0], true);
795 	dn->inode_page = npage[0];
796 	dn->inode_page_locked = true;
797 
798 	/* get indirect or direct nodes */
799 	for (i = 1; i <= level; i++) {
800 		bool done = false;
801 
802 		if (!nids[i] && mode == ALLOC_NODE) {
803 			/* alloc new node */
804 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 				err = -ENOSPC;
806 				goto release_pages;
807 			}
808 
809 			dn->nid = nids[i];
810 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 			if (IS_ERR(npage[i])) {
812 				f2fs_alloc_nid_failed(sbi, nids[i]);
813 				err = PTR_ERR(npage[i]);
814 				goto release_pages;
815 			}
816 
817 			set_nid(parent, offset[i - 1], nids[i], i == 1);
818 			f2fs_alloc_nid_done(sbi, nids[i]);
819 			done = true;
820 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 			if (IS_ERR(npage[i])) {
823 				err = PTR_ERR(npage[i]);
824 				goto release_pages;
825 			}
826 			done = true;
827 		}
828 		if (i == 1) {
829 			dn->inode_page_locked = false;
830 			unlock_page(parent);
831 		} else {
832 			f2fs_put_page(parent, 1);
833 		}
834 
835 		if (!done) {
836 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 			if (IS_ERR(npage[i])) {
838 				err = PTR_ERR(npage[i]);
839 				f2fs_put_page(npage[0], 0);
840 				goto release_out;
841 			}
842 		}
843 		if (i < level) {
844 			parent = npage[i];
845 			nids[i + 1] = get_nid(parent, offset[i], false);
846 		}
847 	}
848 	dn->nid = nids[level];
849 	dn->ofs_in_node = offset[level];
850 	dn->node_page = npage[level];
851 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
852 
853 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 					f2fs_sb_has_readonly(sbi)) {
855 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 		unsigned int ofs_in_node = dn->ofs_in_node;
857 		pgoff_t fofs = index;
858 		unsigned int c_len;
859 		block_t blkaddr;
860 
861 		/* should align fofs and ofs_in_node to cluster_size */
862 		if (fofs % cluster_size) {
863 			fofs = round_down(fofs, cluster_size);
864 			ofs_in_node = round_down(ofs_in_node, cluster_size);
865 		}
866 
867 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 		if (!c_len)
869 			goto out;
870 
871 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 		if (blkaddr == COMPRESS_ADDR)
873 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 						ofs_in_node + 1);
875 
876 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 					fofs, blkaddr, cluster_size, c_len);
878 	}
879 out:
880 	return 0;
881 
882 release_pages:
883 	f2fs_put_page(parent, 1);
884 	if (i > 1)
885 		f2fs_put_page(npage[0], 0);
886 release_out:
887 	dn->inode_page = NULL;
888 	dn->node_page = NULL;
889 	if (err == -ENOENT) {
890 		dn->cur_level = i;
891 		dn->max_level = level;
892 		dn->ofs_in_node = offset[level];
893 	}
894 	return err;
895 }
896 
truncate_node(struct dnode_of_data * dn)897 static int truncate_node(struct dnode_of_data *dn)
898 {
899 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 	struct node_info ni;
901 	int err;
902 	pgoff_t index;
903 
904 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 	if (err)
906 		return err;
907 
908 	if (ni.blk_addr != NEW_ADDR &&
909 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
910 		f2fs_err_ratelimited(sbi,
911 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
912 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
913 		set_sbi_flag(sbi, SBI_NEED_FSCK);
914 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
915 		return -EFSCORRUPTED;
916 	}
917 
918 	/* Deallocate node address */
919 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
920 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
921 	set_node_addr(sbi, &ni, NULL_ADDR, false);
922 
923 	if (dn->nid == dn->inode->i_ino) {
924 		f2fs_remove_orphan_inode(sbi, dn->nid);
925 		dec_valid_inode_count(sbi);
926 		f2fs_inode_synced(dn->inode);
927 	}
928 
929 	clear_node_page_dirty(dn->node_page);
930 	set_sbi_flag(sbi, SBI_IS_DIRTY);
931 
932 	index = dn->node_page->index;
933 	f2fs_put_page(dn->node_page, 1);
934 
935 	invalidate_mapping_pages(NODE_MAPPING(sbi),
936 			index, index);
937 
938 	dn->node_page = NULL;
939 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
940 
941 	return 0;
942 }
943 
truncate_dnode(struct dnode_of_data * dn)944 static int truncate_dnode(struct dnode_of_data *dn)
945 {
946 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
947 	struct page *page;
948 	int err;
949 
950 	if (dn->nid == 0)
951 		return 1;
952 
953 	/* get direct node */
954 	page = f2fs_get_node_page(sbi, dn->nid);
955 	if (PTR_ERR(page) == -ENOENT)
956 		return 1;
957 	else if (IS_ERR(page))
958 		return PTR_ERR(page);
959 
960 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
961 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
962 				dn->inode->i_ino, dn->nid, ino_of_node(page));
963 		set_sbi_flag(sbi, SBI_NEED_FSCK);
964 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
965 		f2fs_put_page(page, 1);
966 		return -EFSCORRUPTED;
967 	}
968 
969 	/* Make dnode_of_data for parameter */
970 	dn->node_page = page;
971 	dn->ofs_in_node = 0;
972 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
973 	err = truncate_node(dn);
974 	if (err) {
975 		f2fs_put_page(page, 1);
976 		return err;
977 	}
978 
979 	return 1;
980 }
981 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)982 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
983 						int ofs, int depth)
984 {
985 	struct dnode_of_data rdn = *dn;
986 	struct page *page;
987 	struct f2fs_node *rn;
988 	nid_t child_nid;
989 	unsigned int child_nofs;
990 	int freed = 0;
991 	int i, ret;
992 
993 	if (dn->nid == 0)
994 		return NIDS_PER_BLOCK + 1;
995 
996 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
997 
998 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
999 	if (IS_ERR(page)) {
1000 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001 		return PTR_ERR(page);
1002 	}
1003 
1004 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005 
1006 	rn = F2FS_NODE(page);
1007 	if (depth < 3) {
1008 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009 			child_nid = le32_to_cpu(rn->in.nid[i]);
1010 			if (child_nid == 0)
1011 				continue;
1012 			rdn.nid = child_nid;
1013 			ret = truncate_dnode(&rdn);
1014 			if (ret < 0)
1015 				goto out_err;
1016 			if (set_nid(page, i, 0, false))
1017 				dn->node_changed = true;
1018 		}
1019 	} else {
1020 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022 			child_nid = le32_to_cpu(rn->in.nid[i]);
1023 			if (child_nid == 0) {
1024 				child_nofs += NIDS_PER_BLOCK + 1;
1025 				continue;
1026 			}
1027 			rdn.nid = child_nid;
1028 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029 			if (ret == (NIDS_PER_BLOCK + 1)) {
1030 				if (set_nid(page, i, 0, false))
1031 					dn->node_changed = true;
1032 				child_nofs += ret;
1033 			} else if (ret < 0 && ret != -ENOENT) {
1034 				goto out_err;
1035 			}
1036 		}
1037 		freed = child_nofs;
1038 	}
1039 
1040 	if (!ofs) {
1041 		/* remove current indirect node */
1042 		dn->node_page = page;
1043 		ret = truncate_node(dn);
1044 		if (ret)
1045 			goto out_err;
1046 		freed++;
1047 	} else {
1048 		f2fs_put_page(page, 1);
1049 	}
1050 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051 	return freed;
1052 
1053 out_err:
1054 	f2fs_put_page(page, 1);
1055 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056 	return ret;
1057 }
1058 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1059 static int truncate_partial_nodes(struct dnode_of_data *dn,
1060 			struct f2fs_inode *ri, int *offset, int depth)
1061 {
1062 	struct page *pages[2];
1063 	nid_t nid[3];
1064 	nid_t child_nid;
1065 	int err = 0;
1066 	int i;
1067 	int idx = depth - 2;
1068 
1069 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1070 	if (!nid[0])
1071 		return 0;
1072 
1073 	/* get indirect nodes in the path */
1074 	for (i = 0; i < idx + 1; i++) {
1075 		/* reference count'll be increased */
1076 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077 		if (IS_ERR(pages[i])) {
1078 			err = PTR_ERR(pages[i]);
1079 			idx = i - 1;
1080 			goto fail;
1081 		}
1082 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083 	}
1084 
1085 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086 
1087 	/* free direct nodes linked to a partial indirect node */
1088 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089 		child_nid = get_nid(pages[idx], i, false);
1090 		if (!child_nid)
1091 			continue;
1092 		dn->nid = child_nid;
1093 		err = truncate_dnode(dn);
1094 		if (err < 0)
1095 			goto fail;
1096 		if (set_nid(pages[idx], i, 0, false))
1097 			dn->node_changed = true;
1098 	}
1099 
1100 	if (offset[idx + 1] == 0) {
1101 		dn->node_page = pages[idx];
1102 		dn->nid = nid[idx];
1103 		err = truncate_node(dn);
1104 		if (err)
1105 			goto fail;
1106 	} else {
1107 		f2fs_put_page(pages[idx], 1);
1108 	}
1109 	offset[idx]++;
1110 	offset[idx + 1] = 0;
1111 	idx--;
1112 fail:
1113 	for (i = idx; i >= 0; i--)
1114 		f2fs_put_page(pages[i], 1);
1115 
1116 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117 
1118 	return err;
1119 }
1120 
1121 /*
1122  * All the block addresses of data and nodes should be nullified.
1123  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1124 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125 {
1126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 	int err = 0, cont = 1;
1128 	int level, offset[4], noffset[4];
1129 	unsigned int nofs = 0;
1130 	struct f2fs_inode *ri;
1131 	struct dnode_of_data dn;
1132 	struct page *page;
1133 
1134 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135 
1136 	level = get_node_path(inode, from, offset, noffset);
1137 	if (level <= 0) {
1138 		if (!level) {
1139 			level = -EFSCORRUPTED;
1140 			f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1141 					__func__, inode->i_ino,
1142 					from, ADDRS_PER_INODE(inode));
1143 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1144 		}
1145 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1146 		return level;
1147 	}
1148 
1149 	page = f2fs_get_node_page(sbi, inode->i_ino);
1150 	if (IS_ERR(page)) {
1151 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1152 		return PTR_ERR(page);
1153 	}
1154 
1155 	set_new_dnode(&dn, inode, page, NULL, 0);
1156 	unlock_page(page);
1157 
1158 	ri = F2FS_INODE(page);
1159 	switch (level) {
1160 	case 0:
1161 	case 1:
1162 		nofs = noffset[1];
1163 		break;
1164 	case 2:
1165 		nofs = noffset[1];
1166 		if (!offset[level - 1])
1167 			goto skip_partial;
1168 		err = truncate_partial_nodes(&dn, ri, offset, level);
1169 		if (err < 0 && err != -ENOENT)
1170 			goto fail;
1171 		nofs += 1 + NIDS_PER_BLOCK;
1172 		break;
1173 	case 3:
1174 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1175 		if (!offset[level - 1])
1176 			goto skip_partial;
1177 		err = truncate_partial_nodes(&dn, ri, offset, level);
1178 		if (err < 0 && err != -ENOENT)
1179 			goto fail;
1180 		break;
1181 	default:
1182 		BUG();
1183 	}
1184 
1185 skip_partial:
1186 	while (cont) {
1187 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1188 		switch (offset[0]) {
1189 		case NODE_DIR1_BLOCK:
1190 		case NODE_DIR2_BLOCK:
1191 			err = truncate_dnode(&dn);
1192 			break;
1193 
1194 		case NODE_IND1_BLOCK:
1195 		case NODE_IND2_BLOCK:
1196 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1197 			break;
1198 
1199 		case NODE_DIND_BLOCK:
1200 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1201 			cont = 0;
1202 			break;
1203 
1204 		default:
1205 			BUG();
1206 		}
1207 		if (err < 0 && err != -ENOENT)
1208 			goto fail;
1209 		if (offset[1] == 0 &&
1210 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1211 			lock_page(page);
1212 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1213 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1214 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1215 			set_page_dirty(page);
1216 			unlock_page(page);
1217 		}
1218 		offset[1] = 0;
1219 		offset[0]++;
1220 		nofs += err;
1221 	}
1222 fail:
1223 	f2fs_put_page(page, 0);
1224 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1225 	return err > 0 ? 0 : err;
1226 }
1227 
1228 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1229 int f2fs_truncate_xattr_node(struct inode *inode)
1230 {
1231 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1232 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1233 	struct dnode_of_data dn;
1234 	struct page *npage;
1235 	int err;
1236 
1237 	if (!nid)
1238 		return 0;
1239 
1240 	npage = f2fs_get_node_page(sbi, nid);
1241 	if (IS_ERR(npage))
1242 		return PTR_ERR(npage);
1243 
1244 	set_new_dnode(&dn, inode, NULL, npage, nid);
1245 	err = truncate_node(&dn);
1246 	if (err) {
1247 		f2fs_put_page(npage, 1);
1248 		return err;
1249 	}
1250 
1251 	f2fs_i_xnid_write(inode, 0);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1258  * f2fs_unlock_op().
1259  */
f2fs_remove_inode_page(struct inode * inode)1260 int f2fs_remove_inode_page(struct inode *inode)
1261 {
1262 	struct dnode_of_data dn;
1263 	int err;
1264 
1265 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1267 	if (err)
1268 		return err;
1269 
1270 	err = f2fs_truncate_xattr_node(inode);
1271 	if (err) {
1272 		f2fs_put_dnode(&dn);
1273 		return err;
1274 	}
1275 
1276 	/* remove potential inline_data blocks */
1277 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1278 				S_ISLNK(inode->i_mode))
1279 		f2fs_truncate_data_blocks_range(&dn, 1);
1280 
1281 	/* 0 is possible, after f2fs_new_inode() has failed */
1282 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1283 		f2fs_put_dnode(&dn);
1284 		return -EIO;
1285 	}
1286 
1287 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1288 		f2fs_warn(F2FS_I_SB(inode),
1289 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1290 			inode->i_ino, (unsigned long long)inode->i_blocks);
1291 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1292 	}
1293 
1294 	/* will put inode & node pages */
1295 	err = truncate_node(&dn);
1296 	if (err) {
1297 		f2fs_put_dnode(&dn);
1298 		return err;
1299 	}
1300 	return 0;
1301 }
1302 
f2fs_new_inode_page(struct inode * inode)1303 struct page *f2fs_new_inode_page(struct inode *inode)
1304 {
1305 	struct dnode_of_data dn;
1306 
1307 	/* allocate inode page for new inode */
1308 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1309 
1310 	/* caller should f2fs_put_page(page, 1); */
1311 	return f2fs_new_node_page(&dn, 0);
1312 }
1313 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1314 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1315 {
1316 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1317 	struct node_info new_ni;
1318 	struct page *page;
1319 	int err;
1320 
1321 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1322 		return ERR_PTR(-EPERM);
1323 
1324 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1325 	if (!page)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1329 		goto fail;
1330 
1331 #ifdef CONFIG_F2FS_CHECK_FS
1332 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1333 	if (err) {
1334 		dec_valid_node_count(sbi, dn->inode, !ofs);
1335 		goto fail;
1336 	}
1337 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1338 		err = -EFSCORRUPTED;
1339 		dec_valid_node_count(sbi, dn->inode, !ofs);
1340 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1341 		f2fs_warn_ratelimited(sbi,
1342 			"f2fs_new_node_page: inconsistent nat entry, "
1343 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1344 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1345 			new_ni.version, new_ni.flag);
1346 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1347 		goto fail;
1348 	}
1349 #endif
1350 	new_ni.nid = dn->nid;
1351 	new_ni.ino = dn->inode->i_ino;
1352 	new_ni.blk_addr = NULL_ADDR;
1353 	new_ni.flag = 0;
1354 	new_ni.version = 0;
1355 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1356 
1357 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1358 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1359 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1360 	if (!PageUptodate(page))
1361 		SetPageUptodate(page);
1362 	if (set_page_dirty(page))
1363 		dn->node_changed = true;
1364 
1365 	if (f2fs_has_xattr_block(ofs))
1366 		f2fs_i_xnid_write(dn->inode, dn->nid);
1367 
1368 	if (ofs == 0)
1369 		inc_valid_inode_count(sbi);
1370 	return page;
1371 fail:
1372 	clear_node_page_dirty(page);
1373 	f2fs_put_page(page, 1);
1374 	return ERR_PTR(err);
1375 }
1376 
1377 /*
1378  * Caller should do after getting the following values.
1379  * 0: f2fs_put_page(page, 0)
1380  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1381  */
read_node_page(struct page * page,blk_opf_t op_flags)1382 static int read_node_page(struct page *page, blk_opf_t op_flags)
1383 {
1384 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1385 	struct node_info ni;
1386 	struct f2fs_io_info fio = {
1387 		.sbi = sbi,
1388 		.type = NODE,
1389 		.op = REQ_OP_READ,
1390 		.op_flags = op_flags,
1391 		.page = page,
1392 		.encrypted_page = NULL,
1393 	};
1394 	int err;
1395 
1396 	if (PageUptodate(page)) {
1397 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1398 			ClearPageUptodate(page);
1399 			return -EFSBADCRC;
1400 		}
1401 		return LOCKED_PAGE;
1402 	}
1403 
1404 	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1405 	if (err)
1406 		return err;
1407 
1408 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1409 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1410 		ClearPageUptodate(page);
1411 		return -ENOENT;
1412 	}
1413 
1414 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1415 
1416 	err = f2fs_submit_page_bio(&fio);
1417 
1418 	if (!err)
1419 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1420 
1421 	return err;
1422 }
1423 
1424 /*
1425  * Readahead a node page
1426  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1427 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1428 {
1429 	struct page *apage;
1430 	int err;
1431 
1432 	if (!nid)
1433 		return;
1434 	if (f2fs_check_nid_range(sbi, nid))
1435 		return;
1436 
1437 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1438 	if (apage)
1439 		return;
1440 
1441 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1442 	if (!apage)
1443 		return;
1444 
1445 	err = read_node_page(apage, REQ_RAHEAD);
1446 	f2fs_put_page(apage, err ? 1 : 0);
1447 }
1448 
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1449 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1450 					struct page *parent, int start)
1451 {
1452 	struct page *page;
1453 	int err;
1454 
1455 	if (!nid)
1456 		return ERR_PTR(-ENOENT);
1457 	if (f2fs_check_nid_range(sbi, nid))
1458 		return ERR_PTR(-EINVAL);
1459 repeat:
1460 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1461 	if (!page)
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	err = read_node_page(page, 0);
1465 	if (err < 0) {
1466 		goto out_put_err;
1467 	} else if (err == LOCKED_PAGE) {
1468 		err = 0;
1469 		goto page_hit;
1470 	}
1471 
1472 	if (parent)
1473 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1474 
1475 	lock_page(page);
1476 
1477 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1478 		f2fs_put_page(page, 1);
1479 		goto repeat;
1480 	}
1481 
1482 	if (unlikely(!PageUptodate(page))) {
1483 		err = -EIO;
1484 		goto out_err;
1485 	}
1486 
1487 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1488 		err = -EFSBADCRC;
1489 		goto out_err;
1490 	}
1491 page_hit:
1492 	if (likely(nid == nid_of_node(page)))
1493 		return page;
1494 
1495 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1496 			  nid, nid_of_node(page), ino_of_node(page),
1497 			  ofs_of_node(page), cpver_of_node(page),
1498 			  next_blkaddr_of_node(page));
1499 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1500 	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1501 	err = -EFSCORRUPTED;
1502 out_err:
1503 	ClearPageUptodate(page);
1504 out_put_err:
1505 	/* ENOENT comes from read_node_page which is not an error. */
1506 	if (err != -ENOENT)
1507 		f2fs_handle_page_eio(sbi, page->index, NODE);
1508 	f2fs_put_page(page, 1);
1509 	return ERR_PTR(err);
1510 }
1511 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1512 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1513 {
1514 	return __get_node_page(sbi, nid, NULL, 0);
1515 }
1516 
f2fs_get_node_page_ra(struct page * parent,int start)1517 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1518 {
1519 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1520 	nid_t nid = get_nid(parent, start, false);
1521 
1522 	return __get_node_page(sbi, nid, parent, start);
1523 }
1524 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1525 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1526 {
1527 	struct inode *inode;
1528 	struct page *page;
1529 	int ret;
1530 
1531 	/* should flush inline_data before evict_inode */
1532 	inode = ilookup(sbi->sb, ino);
1533 	if (!inode)
1534 		return;
1535 
1536 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1537 					FGP_LOCK|FGP_NOWAIT, 0);
1538 	if (!page)
1539 		goto iput_out;
1540 
1541 	if (!PageUptodate(page))
1542 		goto page_out;
1543 
1544 	if (!PageDirty(page))
1545 		goto page_out;
1546 
1547 	if (!clear_page_dirty_for_io(page))
1548 		goto page_out;
1549 
1550 	ret = f2fs_write_inline_data(inode, page);
1551 	inode_dec_dirty_pages(inode);
1552 	f2fs_remove_dirty_inode(inode);
1553 	if (ret)
1554 		set_page_dirty(page);
1555 page_out:
1556 	f2fs_put_page(page, 1);
1557 iput_out:
1558 	iput(inode);
1559 }
1560 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1561 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1562 {
1563 	pgoff_t index;
1564 	struct folio_batch fbatch;
1565 	struct page *last_page = NULL;
1566 	int nr_folios;
1567 
1568 	folio_batch_init(&fbatch);
1569 	index = 0;
1570 
1571 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1572 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1573 					&fbatch))) {
1574 		int i;
1575 
1576 		for (i = 0; i < nr_folios; i++) {
1577 			struct page *page = &fbatch.folios[i]->page;
1578 
1579 			if (unlikely(f2fs_cp_error(sbi))) {
1580 				f2fs_put_page(last_page, 0);
1581 				folio_batch_release(&fbatch);
1582 				return ERR_PTR(-EIO);
1583 			}
1584 
1585 			if (!IS_DNODE(page) || !is_cold_node(page))
1586 				continue;
1587 			if (ino_of_node(page) != ino)
1588 				continue;
1589 
1590 			lock_page(page);
1591 
1592 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1593 continue_unlock:
1594 				unlock_page(page);
1595 				continue;
1596 			}
1597 			if (ino_of_node(page) != ino)
1598 				goto continue_unlock;
1599 
1600 			if (!PageDirty(page)) {
1601 				/* someone wrote it for us */
1602 				goto continue_unlock;
1603 			}
1604 
1605 			if (last_page)
1606 				f2fs_put_page(last_page, 0);
1607 
1608 			get_page(page);
1609 			last_page = page;
1610 			unlock_page(page);
1611 		}
1612 		folio_batch_release(&fbatch);
1613 		cond_resched();
1614 	}
1615 	return last_page;
1616 }
1617 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1618 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1619 				struct writeback_control *wbc, bool do_balance,
1620 				enum iostat_type io_type, unsigned int *seq_id)
1621 {
1622 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1623 	nid_t nid;
1624 	struct node_info ni;
1625 	struct f2fs_io_info fio = {
1626 		.sbi = sbi,
1627 		.ino = ino_of_node(page),
1628 		.type = NODE,
1629 		.op = REQ_OP_WRITE,
1630 		.op_flags = wbc_to_write_flags(wbc),
1631 		.page = page,
1632 		.encrypted_page = NULL,
1633 		.submitted = 0,
1634 		.io_type = io_type,
1635 		.io_wbc = wbc,
1636 	};
1637 	unsigned int seq;
1638 
1639 	trace_f2fs_writepage(page, NODE);
1640 
1641 	if (unlikely(f2fs_cp_error(sbi))) {
1642 		/* keep node pages in remount-ro mode */
1643 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1644 			goto redirty_out;
1645 		ClearPageUptodate(page);
1646 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1647 		unlock_page(page);
1648 		return 0;
1649 	}
1650 
1651 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1652 		goto redirty_out;
1653 
1654 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1655 			wbc->sync_mode == WB_SYNC_NONE &&
1656 			IS_DNODE(page) && is_cold_node(page))
1657 		goto redirty_out;
1658 
1659 	/* get old block addr of this node page */
1660 	nid = nid_of_node(page);
1661 	f2fs_bug_on(sbi, page->index != nid);
1662 
1663 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1664 		goto redirty_out;
1665 
1666 	if (wbc->for_reclaim) {
1667 		if (!f2fs_down_read_trylock(&sbi->node_write))
1668 			goto redirty_out;
1669 	} else {
1670 		f2fs_down_read(&sbi->node_write);
1671 	}
1672 
1673 	/* This page is already truncated */
1674 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1675 		ClearPageUptodate(page);
1676 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1677 		f2fs_up_read(&sbi->node_write);
1678 		unlock_page(page);
1679 		return 0;
1680 	}
1681 
1682 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1683 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1684 					DATA_GENERIC_ENHANCE)) {
1685 		f2fs_up_read(&sbi->node_write);
1686 		goto redirty_out;
1687 	}
1688 
1689 	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1690 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1691 
1692 	/* should add to global list before clearing PAGECACHE status */
1693 	if (f2fs_in_warm_node_list(sbi, page)) {
1694 		seq = f2fs_add_fsync_node_entry(sbi, page);
1695 		if (seq_id)
1696 			*seq_id = seq;
1697 	}
1698 
1699 	set_page_writeback(page);
1700 
1701 	fio.old_blkaddr = ni.blk_addr;
1702 	f2fs_do_write_node_page(nid, &fio);
1703 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1704 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1705 	f2fs_up_read(&sbi->node_write);
1706 
1707 	if (wbc->for_reclaim) {
1708 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1709 		submitted = NULL;
1710 	}
1711 
1712 	unlock_page(page);
1713 
1714 	if (unlikely(f2fs_cp_error(sbi))) {
1715 		f2fs_submit_merged_write(sbi, NODE);
1716 		submitted = NULL;
1717 	}
1718 	if (submitted)
1719 		*submitted = fio.submitted;
1720 
1721 	if (do_balance)
1722 		f2fs_balance_fs(sbi, false);
1723 	return 0;
1724 
1725 redirty_out:
1726 	redirty_page_for_writepage(wbc, page);
1727 	return AOP_WRITEPAGE_ACTIVATE;
1728 }
1729 
f2fs_move_node_page(struct page * node_page,int gc_type)1730 int f2fs_move_node_page(struct page *node_page, int gc_type)
1731 {
1732 	int err = 0;
1733 
1734 	if (gc_type == FG_GC) {
1735 		struct writeback_control wbc = {
1736 			.sync_mode = WB_SYNC_ALL,
1737 			.nr_to_write = 1,
1738 			.for_reclaim = 0,
1739 		};
1740 
1741 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1742 
1743 		set_page_dirty(node_page);
1744 
1745 		if (!clear_page_dirty_for_io(node_page)) {
1746 			err = -EAGAIN;
1747 			goto out_page;
1748 		}
1749 
1750 		if (__write_node_page(node_page, false, NULL,
1751 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1752 			err = -EAGAIN;
1753 			unlock_page(node_page);
1754 		}
1755 		goto release_page;
1756 	} else {
1757 		/* set page dirty and write it */
1758 		if (!PageWriteback(node_page))
1759 			set_page_dirty(node_page);
1760 	}
1761 out_page:
1762 	unlock_page(node_page);
1763 release_page:
1764 	f2fs_put_page(node_page, 0);
1765 	return err;
1766 }
1767 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1768 static int f2fs_write_node_page(struct page *page,
1769 				struct writeback_control *wbc)
1770 {
1771 	return __write_node_page(page, false, NULL, wbc, false,
1772 						FS_NODE_IO, NULL);
1773 }
1774 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1775 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1776 			struct writeback_control *wbc, bool atomic,
1777 			unsigned int *seq_id)
1778 {
1779 	pgoff_t index;
1780 	struct folio_batch fbatch;
1781 	int ret = 0;
1782 	struct page *last_page = NULL;
1783 	bool marked = false;
1784 	nid_t ino = inode->i_ino;
1785 	int nr_folios;
1786 	int nwritten = 0;
1787 
1788 	if (atomic) {
1789 		last_page = last_fsync_dnode(sbi, ino);
1790 		if (IS_ERR_OR_NULL(last_page))
1791 			return PTR_ERR_OR_ZERO(last_page);
1792 	}
1793 retry:
1794 	folio_batch_init(&fbatch);
1795 	index = 0;
1796 
1797 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1798 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1799 					&fbatch))) {
1800 		int i;
1801 
1802 		for (i = 0; i < nr_folios; i++) {
1803 			struct page *page = &fbatch.folios[i]->page;
1804 			bool submitted = false;
1805 
1806 			if (unlikely(f2fs_cp_error(sbi))) {
1807 				f2fs_put_page(last_page, 0);
1808 				folio_batch_release(&fbatch);
1809 				ret = -EIO;
1810 				goto out;
1811 			}
1812 
1813 			if (!IS_DNODE(page) || !is_cold_node(page))
1814 				continue;
1815 			if (ino_of_node(page) != ino)
1816 				continue;
1817 
1818 			lock_page(page);
1819 
1820 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1821 continue_unlock:
1822 				unlock_page(page);
1823 				continue;
1824 			}
1825 			if (ino_of_node(page) != ino)
1826 				goto continue_unlock;
1827 
1828 			if (!PageDirty(page) && page != last_page) {
1829 				/* someone wrote it for us */
1830 				goto continue_unlock;
1831 			}
1832 
1833 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1834 
1835 			set_fsync_mark(page, 0);
1836 			set_dentry_mark(page, 0);
1837 
1838 			if (!atomic || page == last_page) {
1839 				set_fsync_mark(page, 1);
1840 				percpu_counter_inc(&sbi->rf_node_block_count);
1841 				if (IS_INODE(page)) {
1842 					if (is_inode_flag_set(inode,
1843 								FI_DIRTY_INODE))
1844 						f2fs_update_inode(inode, page);
1845 					set_dentry_mark(page,
1846 						f2fs_need_dentry_mark(sbi, ino));
1847 				}
1848 				/* may be written by other thread */
1849 				if (!PageDirty(page))
1850 					set_page_dirty(page);
1851 			}
1852 
1853 			if (!clear_page_dirty_for_io(page))
1854 				goto continue_unlock;
1855 
1856 			ret = __write_node_page(page, atomic &&
1857 						page == last_page,
1858 						&submitted, wbc, true,
1859 						FS_NODE_IO, seq_id);
1860 			if (ret) {
1861 				unlock_page(page);
1862 				f2fs_put_page(last_page, 0);
1863 				break;
1864 			} else if (submitted) {
1865 				nwritten++;
1866 			}
1867 
1868 			if (page == last_page) {
1869 				f2fs_put_page(page, 0);
1870 				marked = true;
1871 				break;
1872 			}
1873 		}
1874 		folio_batch_release(&fbatch);
1875 		cond_resched();
1876 
1877 		if (ret || marked)
1878 			break;
1879 	}
1880 	if (!ret && atomic && !marked) {
1881 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1882 			   ino, last_page->index);
1883 		lock_page(last_page);
1884 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1885 		set_page_dirty(last_page);
1886 		unlock_page(last_page);
1887 		goto retry;
1888 	}
1889 out:
1890 	if (nwritten)
1891 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1892 	return ret ? -EIO : 0;
1893 }
1894 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1895 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1896 {
1897 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1898 	bool clean;
1899 
1900 	if (inode->i_ino != ino)
1901 		return 0;
1902 
1903 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1904 		return 0;
1905 
1906 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1907 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1908 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1909 
1910 	if (clean)
1911 		return 0;
1912 
1913 	inode = igrab(inode);
1914 	if (!inode)
1915 		return 0;
1916 	return 1;
1917 }
1918 
flush_dirty_inode(struct page * page)1919 static bool flush_dirty_inode(struct page *page)
1920 {
1921 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1922 	struct inode *inode;
1923 	nid_t ino = ino_of_node(page);
1924 
1925 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1926 	if (!inode)
1927 		return false;
1928 
1929 	f2fs_update_inode(inode, page);
1930 	unlock_page(page);
1931 
1932 	iput(inode);
1933 	return true;
1934 }
1935 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1936 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1937 {
1938 	pgoff_t index = 0;
1939 	struct folio_batch fbatch;
1940 	int nr_folios;
1941 
1942 	folio_batch_init(&fbatch);
1943 
1944 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1945 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1946 					&fbatch))) {
1947 		int i;
1948 
1949 		for (i = 0; i < nr_folios; i++) {
1950 			struct page *page = &fbatch.folios[i]->page;
1951 
1952 			if (!IS_DNODE(page))
1953 				continue;
1954 
1955 			lock_page(page);
1956 
1957 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1958 continue_unlock:
1959 				unlock_page(page);
1960 				continue;
1961 			}
1962 
1963 			if (!PageDirty(page)) {
1964 				/* someone wrote it for us */
1965 				goto continue_unlock;
1966 			}
1967 
1968 			/* flush inline_data, if it's async context. */
1969 			if (page_private_inline(page)) {
1970 				clear_page_private_inline(page);
1971 				unlock_page(page);
1972 				flush_inline_data(sbi, ino_of_node(page));
1973 				continue;
1974 			}
1975 			unlock_page(page);
1976 		}
1977 		folio_batch_release(&fbatch);
1978 		cond_resched();
1979 	}
1980 }
1981 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1982 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1983 				struct writeback_control *wbc,
1984 				bool do_balance, enum iostat_type io_type)
1985 {
1986 	pgoff_t index;
1987 	struct folio_batch fbatch;
1988 	int step = 0;
1989 	int nwritten = 0;
1990 	int ret = 0;
1991 	int nr_folios, done = 0;
1992 
1993 	folio_batch_init(&fbatch);
1994 
1995 next_step:
1996 	index = 0;
1997 
1998 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1999 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2000 				&fbatch))) {
2001 		int i;
2002 
2003 		for (i = 0; i < nr_folios; i++) {
2004 			struct page *page = &fbatch.folios[i]->page;
2005 			bool submitted = false;
2006 
2007 			/* give a priority to WB_SYNC threads */
2008 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2009 					wbc->sync_mode == WB_SYNC_NONE) {
2010 				done = 1;
2011 				break;
2012 			}
2013 
2014 			/*
2015 			 * flushing sequence with step:
2016 			 * 0. indirect nodes
2017 			 * 1. dentry dnodes
2018 			 * 2. file dnodes
2019 			 */
2020 			if (step == 0 && IS_DNODE(page))
2021 				continue;
2022 			if (step == 1 && (!IS_DNODE(page) ||
2023 						is_cold_node(page)))
2024 				continue;
2025 			if (step == 2 && (!IS_DNODE(page) ||
2026 						!is_cold_node(page)))
2027 				continue;
2028 lock_node:
2029 			if (wbc->sync_mode == WB_SYNC_ALL)
2030 				lock_page(page);
2031 			else if (!trylock_page(page))
2032 				continue;
2033 
2034 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2035 continue_unlock:
2036 				unlock_page(page);
2037 				continue;
2038 			}
2039 
2040 			if (!PageDirty(page)) {
2041 				/* someone wrote it for us */
2042 				goto continue_unlock;
2043 			}
2044 
2045 			/* flush inline_data/inode, if it's async context. */
2046 			if (!do_balance)
2047 				goto write_node;
2048 
2049 			/* flush inline_data */
2050 			if (page_private_inline(page)) {
2051 				clear_page_private_inline(page);
2052 				unlock_page(page);
2053 				flush_inline_data(sbi, ino_of_node(page));
2054 				goto lock_node;
2055 			}
2056 
2057 			/* flush dirty inode */
2058 			if (IS_INODE(page) && flush_dirty_inode(page))
2059 				goto lock_node;
2060 write_node:
2061 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2062 
2063 			if (!clear_page_dirty_for_io(page))
2064 				goto continue_unlock;
2065 
2066 			set_fsync_mark(page, 0);
2067 			set_dentry_mark(page, 0);
2068 
2069 			ret = __write_node_page(page, false, &submitted,
2070 						wbc, do_balance, io_type, NULL);
2071 			if (ret)
2072 				unlock_page(page);
2073 			else if (submitted)
2074 				nwritten++;
2075 
2076 			if (--wbc->nr_to_write == 0)
2077 				break;
2078 		}
2079 		folio_batch_release(&fbatch);
2080 		cond_resched();
2081 
2082 		if (wbc->nr_to_write == 0) {
2083 			step = 2;
2084 			break;
2085 		}
2086 	}
2087 
2088 	if (step < 2) {
2089 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2090 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2091 			goto out;
2092 		step++;
2093 		goto next_step;
2094 	}
2095 out:
2096 	if (nwritten)
2097 		f2fs_submit_merged_write(sbi, NODE);
2098 
2099 	if (unlikely(f2fs_cp_error(sbi)))
2100 		return -EIO;
2101 	return ret;
2102 }
2103 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2104 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2105 						unsigned int seq_id)
2106 {
2107 	struct fsync_node_entry *fn;
2108 	struct page *page;
2109 	struct list_head *head = &sbi->fsync_node_list;
2110 	unsigned long flags;
2111 	unsigned int cur_seq_id = 0;
2112 
2113 	while (seq_id && cur_seq_id < seq_id) {
2114 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2115 		if (list_empty(head)) {
2116 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2117 			break;
2118 		}
2119 		fn = list_first_entry(head, struct fsync_node_entry, list);
2120 		if (fn->seq_id > seq_id) {
2121 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2122 			break;
2123 		}
2124 		cur_seq_id = fn->seq_id;
2125 		page = fn->page;
2126 		get_page(page);
2127 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2128 
2129 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2130 
2131 		put_page(page);
2132 	}
2133 
2134 	return filemap_check_errors(NODE_MAPPING(sbi));
2135 }
2136 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2137 static int f2fs_write_node_pages(struct address_space *mapping,
2138 			    struct writeback_control *wbc)
2139 {
2140 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2141 	struct blk_plug plug;
2142 	long diff;
2143 
2144 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2145 		goto skip_write;
2146 
2147 	/* balancing f2fs's metadata in background */
2148 	f2fs_balance_fs_bg(sbi, true);
2149 
2150 	/* collect a number of dirty node pages and write together */
2151 	if (wbc->sync_mode != WB_SYNC_ALL &&
2152 			get_pages(sbi, F2FS_DIRTY_NODES) <
2153 					nr_pages_to_skip(sbi, NODE))
2154 		goto skip_write;
2155 
2156 	if (wbc->sync_mode == WB_SYNC_ALL)
2157 		atomic_inc(&sbi->wb_sync_req[NODE]);
2158 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2159 		/* to avoid potential deadlock */
2160 		if (current->plug)
2161 			blk_finish_plug(current->plug);
2162 		goto skip_write;
2163 	}
2164 
2165 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2166 
2167 	diff = nr_pages_to_write(sbi, NODE, wbc);
2168 	blk_start_plug(&plug);
2169 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2170 	blk_finish_plug(&plug);
2171 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2172 
2173 	if (wbc->sync_mode == WB_SYNC_ALL)
2174 		atomic_dec(&sbi->wb_sync_req[NODE]);
2175 	return 0;
2176 
2177 skip_write:
2178 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2179 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2180 	return 0;
2181 }
2182 
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2183 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2184 		struct folio *folio)
2185 {
2186 	trace_f2fs_set_page_dirty(&folio->page, NODE);
2187 
2188 	if (!folio_test_uptodate(folio))
2189 		folio_mark_uptodate(folio);
2190 #ifdef CONFIG_F2FS_CHECK_FS
2191 	if (IS_INODE(&folio->page))
2192 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2193 #endif
2194 	if (filemap_dirty_folio(mapping, folio)) {
2195 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2196 		set_page_private_reference(&folio->page);
2197 		return true;
2198 	}
2199 	return false;
2200 }
2201 
2202 /*
2203  * Structure of the f2fs node operations
2204  */
2205 const struct address_space_operations f2fs_node_aops = {
2206 	.writepage	= f2fs_write_node_page,
2207 	.writepages	= f2fs_write_node_pages,
2208 	.dirty_folio	= f2fs_dirty_node_folio,
2209 	.invalidate_folio = f2fs_invalidate_folio,
2210 	.release_folio	= f2fs_release_folio,
2211 	.migrate_folio	= filemap_migrate_folio,
2212 };
2213 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2214 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2215 						nid_t n)
2216 {
2217 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2218 }
2219 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2220 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2221 				struct free_nid *i)
2222 {
2223 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2224 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2225 
2226 	if (err)
2227 		return err;
2228 
2229 	nm_i->nid_cnt[FREE_NID]++;
2230 	list_add_tail(&i->list, &nm_i->free_nid_list);
2231 	return 0;
2232 }
2233 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2234 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2235 			struct free_nid *i, enum nid_state state)
2236 {
2237 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2238 
2239 	f2fs_bug_on(sbi, state != i->state);
2240 	nm_i->nid_cnt[state]--;
2241 	if (state == FREE_NID)
2242 		list_del(&i->list);
2243 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2244 }
2245 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2246 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2247 			enum nid_state org_state, enum nid_state dst_state)
2248 {
2249 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2250 
2251 	f2fs_bug_on(sbi, org_state != i->state);
2252 	i->state = dst_state;
2253 	nm_i->nid_cnt[org_state]--;
2254 	nm_i->nid_cnt[dst_state]++;
2255 
2256 	switch (dst_state) {
2257 	case PREALLOC_NID:
2258 		list_del(&i->list);
2259 		break;
2260 	case FREE_NID:
2261 		list_add_tail(&i->list, &nm_i->free_nid_list);
2262 		break;
2263 	default:
2264 		BUG_ON(1);
2265 	}
2266 }
2267 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2268 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2269 							bool set, bool build)
2270 {
2271 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2272 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2273 	unsigned int nid_ofs = nid - START_NID(nid);
2274 
2275 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2276 		return;
2277 
2278 	if (set) {
2279 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2280 			return;
2281 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2282 		nm_i->free_nid_count[nat_ofs]++;
2283 	} else {
2284 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2285 			return;
2286 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2287 		if (!build)
2288 			nm_i->free_nid_count[nat_ofs]--;
2289 	}
2290 }
2291 
2292 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2293 static bool add_free_nid(struct f2fs_sb_info *sbi,
2294 				nid_t nid, bool build, bool update)
2295 {
2296 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2297 	struct free_nid *i, *e;
2298 	struct nat_entry *ne;
2299 	int err = -EINVAL;
2300 	bool ret = false;
2301 
2302 	/* 0 nid should not be used */
2303 	if (unlikely(nid == 0))
2304 		return false;
2305 
2306 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2307 		return false;
2308 
2309 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2310 	i->nid = nid;
2311 	i->state = FREE_NID;
2312 
2313 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2314 
2315 	spin_lock(&nm_i->nid_list_lock);
2316 
2317 	if (build) {
2318 		/*
2319 		 *   Thread A             Thread B
2320 		 *  - f2fs_create
2321 		 *   - f2fs_new_inode
2322 		 *    - f2fs_alloc_nid
2323 		 *     - __insert_nid_to_list(PREALLOC_NID)
2324 		 *                     - f2fs_balance_fs_bg
2325 		 *                      - f2fs_build_free_nids
2326 		 *                       - __f2fs_build_free_nids
2327 		 *                        - scan_nat_page
2328 		 *                         - add_free_nid
2329 		 *                          - __lookup_nat_cache
2330 		 *  - f2fs_add_link
2331 		 *   - f2fs_init_inode_metadata
2332 		 *    - f2fs_new_inode_page
2333 		 *     - f2fs_new_node_page
2334 		 *      - set_node_addr
2335 		 *  - f2fs_alloc_nid_done
2336 		 *   - __remove_nid_from_list(PREALLOC_NID)
2337 		 *                         - __insert_nid_to_list(FREE_NID)
2338 		 */
2339 		ne = __lookup_nat_cache(nm_i, nid);
2340 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2341 				nat_get_blkaddr(ne) != NULL_ADDR))
2342 			goto err_out;
2343 
2344 		e = __lookup_free_nid_list(nm_i, nid);
2345 		if (e) {
2346 			if (e->state == FREE_NID)
2347 				ret = true;
2348 			goto err_out;
2349 		}
2350 	}
2351 	ret = true;
2352 	err = __insert_free_nid(sbi, i);
2353 err_out:
2354 	if (update) {
2355 		update_free_nid_bitmap(sbi, nid, ret, build);
2356 		if (!build)
2357 			nm_i->available_nids++;
2358 	}
2359 	spin_unlock(&nm_i->nid_list_lock);
2360 	radix_tree_preload_end();
2361 
2362 	if (err)
2363 		kmem_cache_free(free_nid_slab, i);
2364 	return ret;
2365 }
2366 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2367 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2368 {
2369 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2370 	struct free_nid *i;
2371 	bool need_free = false;
2372 
2373 	spin_lock(&nm_i->nid_list_lock);
2374 	i = __lookup_free_nid_list(nm_i, nid);
2375 	if (i && i->state == FREE_NID) {
2376 		__remove_free_nid(sbi, i, FREE_NID);
2377 		need_free = true;
2378 	}
2379 	spin_unlock(&nm_i->nid_list_lock);
2380 
2381 	if (need_free)
2382 		kmem_cache_free(free_nid_slab, i);
2383 }
2384 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2385 static int scan_nat_page(struct f2fs_sb_info *sbi,
2386 			struct page *nat_page, nid_t start_nid)
2387 {
2388 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2389 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2390 	block_t blk_addr;
2391 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2392 	int i;
2393 
2394 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2395 
2396 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2397 
2398 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2399 		if (unlikely(start_nid >= nm_i->max_nid))
2400 			break;
2401 
2402 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2403 
2404 		if (blk_addr == NEW_ADDR)
2405 			return -EFSCORRUPTED;
2406 
2407 		if (blk_addr == NULL_ADDR) {
2408 			add_free_nid(sbi, start_nid, true, true);
2409 		} else {
2410 			spin_lock(&NM_I(sbi)->nid_list_lock);
2411 			update_free_nid_bitmap(sbi, start_nid, false, true);
2412 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2413 		}
2414 	}
2415 
2416 	return 0;
2417 }
2418 
scan_curseg_cache(struct f2fs_sb_info * sbi)2419 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2420 {
2421 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2422 	struct f2fs_journal *journal = curseg->journal;
2423 	int i;
2424 
2425 	down_read(&curseg->journal_rwsem);
2426 	for (i = 0; i < nats_in_cursum(journal); i++) {
2427 		block_t addr;
2428 		nid_t nid;
2429 
2430 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2431 		nid = le32_to_cpu(nid_in_journal(journal, i));
2432 		if (addr == NULL_ADDR)
2433 			add_free_nid(sbi, nid, true, false);
2434 		else
2435 			remove_free_nid(sbi, nid);
2436 	}
2437 	up_read(&curseg->journal_rwsem);
2438 }
2439 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2440 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2441 {
2442 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2443 	unsigned int i, idx;
2444 	nid_t nid;
2445 
2446 	f2fs_down_read(&nm_i->nat_tree_lock);
2447 
2448 	for (i = 0; i < nm_i->nat_blocks; i++) {
2449 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2450 			continue;
2451 		if (!nm_i->free_nid_count[i])
2452 			continue;
2453 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2454 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2455 						NAT_ENTRY_PER_BLOCK, idx);
2456 			if (idx >= NAT_ENTRY_PER_BLOCK)
2457 				break;
2458 
2459 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2460 			add_free_nid(sbi, nid, true, false);
2461 
2462 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2463 				goto out;
2464 		}
2465 	}
2466 out:
2467 	scan_curseg_cache(sbi);
2468 
2469 	f2fs_up_read(&nm_i->nat_tree_lock);
2470 }
2471 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2472 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2473 						bool sync, bool mount)
2474 {
2475 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2476 	int i = 0, ret;
2477 	nid_t nid = nm_i->next_scan_nid;
2478 
2479 	if (unlikely(nid >= nm_i->max_nid))
2480 		nid = 0;
2481 
2482 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2483 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2484 
2485 	/* Enough entries */
2486 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2487 		return 0;
2488 
2489 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2490 		return 0;
2491 
2492 	if (!mount) {
2493 		/* try to find free nids in free_nid_bitmap */
2494 		scan_free_nid_bits(sbi);
2495 
2496 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2497 			return 0;
2498 	}
2499 
2500 	/* readahead nat pages to be scanned */
2501 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2502 							META_NAT, true);
2503 
2504 	f2fs_down_read(&nm_i->nat_tree_lock);
2505 
2506 	while (1) {
2507 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2508 						nm_i->nat_block_bitmap)) {
2509 			struct page *page = get_current_nat_page(sbi, nid);
2510 
2511 			if (IS_ERR(page)) {
2512 				ret = PTR_ERR(page);
2513 			} else {
2514 				ret = scan_nat_page(sbi, page, nid);
2515 				f2fs_put_page(page, 1);
2516 			}
2517 
2518 			if (ret) {
2519 				f2fs_up_read(&nm_i->nat_tree_lock);
2520 
2521 				if (ret == -EFSCORRUPTED) {
2522 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2523 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2524 					f2fs_handle_error(sbi,
2525 						ERROR_INCONSISTENT_NAT);
2526 				}
2527 
2528 				return ret;
2529 			}
2530 		}
2531 
2532 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2533 		if (unlikely(nid >= nm_i->max_nid))
2534 			nid = 0;
2535 
2536 		if (++i >= FREE_NID_PAGES)
2537 			break;
2538 	}
2539 
2540 	/* go to the next free nat pages to find free nids abundantly */
2541 	nm_i->next_scan_nid = nid;
2542 
2543 	/* find free nids from current sum_pages */
2544 	scan_curseg_cache(sbi);
2545 
2546 	f2fs_up_read(&nm_i->nat_tree_lock);
2547 
2548 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2549 					nm_i->ra_nid_pages, META_NAT, false);
2550 
2551 	return 0;
2552 }
2553 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2554 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2555 {
2556 	int ret;
2557 
2558 	mutex_lock(&NM_I(sbi)->build_lock);
2559 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2560 	mutex_unlock(&NM_I(sbi)->build_lock);
2561 
2562 	return ret;
2563 }
2564 
2565 /*
2566  * If this function returns success, caller can obtain a new nid
2567  * from second parameter of this function.
2568  * The returned nid could be used ino as well as nid when inode is created.
2569  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2570 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2571 {
2572 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2573 	struct free_nid *i = NULL;
2574 retry:
2575 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2576 		return false;
2577 
2578 	spin_lock(&nm_i->nid_list_lock);
2579 
2580 	if (unlikely(nm_i->available_nids == 0)) {
2581 		spin_unlock(&nm_i->nid_list_lock);
2582 		return false;
2583 	}
2584 
2585 	/* We should not use stale free nids created by f2fs_build_free_nids */
2586 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2587 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2588 		i = list_first_entry(&nm_i->free_nid_list,
2589 					struct free_nid, list);
2590 		*nid = i->nid;
2591 
2592 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2593 		nm_i->available_nids--;
2594 
2595 		update_free_nid_bitmap(sbi, *nid, false, false);
2596 
2597 		spin_unlock(&nm_i->nid_list_lock);
2598 		return true;
2599 	}
2600 	spin_unlock(&nm_i->nid_list_lock);
2601 
2602 	/* Let's scan nat pages and its caches to get free nids */
2603 	if (!f2fs_build_free_nids(sbi, true, false))
2604 		goto retry;
2605 	return false;
2606 }
2607 
2608 /*
2609  * f2fs_alloc_nid() should be called prior to this function.
2610  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2611 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2612 {
2613 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2614 	struct free_nid *i;
2615 
2616 	spin_lock(&nm_i->nid_list_lock);
2617 	i = __lookup_free_nid_list(nm_i, nid);
2618 	f2fs_bug_on(sbi, !i);
2619 	__remove_free_nid(sbi, i, PREALLOC_NID);
2620 	spin_unlock(&nm_i->nid_list_lock);
2621 
2622 	kmem_cache_free(free_nid_slab, i);
2623 }
2624 
2625 /*
2626  * f2fs_alloc_nid() should be called prior to this function.
2627  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2628 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2629 {
2630 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2631 	struct free_nid *i;
2632 	bool need_free = false;
2633 
2634 	if (!nid)
2635 		return;
2636 
2637 	spin_lock(&nm_i->nid_list_lock);
2638 	i = __lookup_free_nid_list(nm_i, nid);
2639 	f2fs_bug_on(sbi, !i);
2640 
2641 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2642 		__remove_free_nid(sbi, i, PREALLOC_NID);
2643 		need_free = true;
2644 	} else {
2645 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2646 	}
2647 
2648 	nm_i->available_nids++;
2649 
2650 	update_free_nid_bitmap(sbi, nid, true, false);
2651 
2652 	spin_unlock(&nm_i->nid_list_lock);
2653 
2654 	if (need_free)
2655 		kmem_cache_free(free_nid_slab, i);
2656 }
2657 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2658 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2659 {
2660 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2661 	int nr = nr_shrink;
2662 
2663 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2664 		return 0;
2665 
2666 	if (!mutex_trylock(&nm_i->build_lock))
2667 		return 0;
2668 
2669 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2670 		struct free_nid *i, *next;
2671 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2672 
2673 		spin_lock(&nm_i->nid_list_lock);
2674 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2675 			if (!nr_shrink || !batch ||
2676 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2677 				break;
2678 			__remove_free_nid(sbi, i, FREE_NID);
2679 			kmem_cache_free(free_nid_slab, i);
2680 			nr_shrink--;
2681 			batch--;
2682 		}
2683 		spin_unlock(&nm_i->nid_list_lock);
2684 	}
2685 
2686 	mutex_unlock(&nm_i->build_lock);
2687 
2688 	return nr - nr_shrink;
2689 }
2690 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2691 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2692 {
2693 	void *src_addr, *dst_addr;
2694 	size_t inline_size;
2695 	struct page *ipage;
2696 	struct f2fs_inode *ri;
2697 
2698 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2699 	if (IS_ERR(ipage))
2700 		return PTR_ERR(ipage);
2701 
2702 	ri = F2FS_INODE(page);
2703 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2704 		if (!f2fs_has_inline_xattr(inode)) {
2705 			set_inode_flag(inode, FI_INLINE_XATTR);
2706 			stat_inc_inline_xattr(inode);
2707 		}
2708 	} else {
2709 		if (f2fs_has_inline_xattr(inode)) {
2710 			stat_dec_inline_xattr(inode);
2711 			clear_inode_flag(inode, FI_INLINE_XATTR);
2712 		}
2713 		goto update_inode;
2714 	}
2715 
2716 	dst_addr = inline_xattr_addr(inode, ipage);
2717 	src_addr = inline_xattr_addr(inode, page);
2718 	inline_size = inline_xattr_size(inode);
2719 
2720 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2721 	memcpy(dst_addr, src_addr, inline_size);
2722 update_inode:
2723 	f2fs_update_inode(inode, ipage);
2724 	f2fs_put_page(ipage, 1);
2725 	return 0;
2726 }
2727 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2728 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2729 {
2730 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2731 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2732 	nid_t new_xnid;
2733 	struct dnode_of_data dn;
2734 	struct node_info ni;
2735 	struct page *xpage;
2736 	int err;
2737 
2738 	if (!prev_xnid)
2739 		goto recover_xnid;
2740 
2741 	/* 1: invalidate the previous xattr nid */
2742 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2743 	if (err)
2744 		return err;
2745 
2746 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2747 	dec_valid_node_count(sbi, inode, false);
2748 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2749 
2750 recover_xnid:
2751 	/* 2: update xattr nid in inode */
2752 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2753 		return -ENOSPC;
2754 
2755 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2756 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2757 	if (IS_ERR(xpage)) {
2758 		f2fs_alloc_nid_failed(sbi, new_xnid);
2759 		return PTR_ERR(xpage);
2760 	}
2761 
2762 	f2fs_alloc_nid_done(sbi, new_xnid);
2763 	f2fs_update_inode_page(inode);
2764 
2765 	/* 3: update and set xattr node page dirty */
2766 	if (page) {
2767 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2768 				VALID_XATTR_BLOCK_SIZE);
2769 		set_page_dirty(xpage);
2770 	}
2771 	f2fs_put_page(xpage, 1);
2772 
2773 	return 0;
2774 }
2775 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2776 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2777 {
2778 	struct f2fs_inode *src, *dst;
2779 	nid_t ino = ino_of_node(page);
2780 	struct node_info old_ni, new_ni;
2781 	struct page *ipage;
2782 	int err;
2783 
2784 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2785 	if (err)
2786 		return err;
2787 
2788 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2789 		return -EINVAL;
2790 retry:
2791 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2792 	if (!ipage) {
2793 		memalloc_retry_wait(GFP_NOFS);
2794 		goto retry;
2795 	}
2796 
2797 	/* Should not use this inode from free nid list */
2798 	remove_free_nid(sbi, ino);
2799 
2800 	if (!PageUptodate(ipage))
2801 		SetPageUptodate(ipage);
2802 	fill_node_footer(ipage, ino, ino, 0, true);
2803 	set_cold_node(ipage, false);
2804 
2805 	src = F2FS_INODE(page);
2806 	dst = F2FS_INODE(ipage);
2807 
2808 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2809 	dst->i_size = 0;
2810 	dst->i_blocks = cpu_to_le64(1);
2811 	dst->i_links = cpu_to_le32(1);
2812 	dst->i_xattr_nid = 0;
2813 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2814 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2815 		dst->i_extra_isize = src->i_extra_isize;
2816 
2817 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2818 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2819 							i_inline_xattr_size))
2820 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2821 
2822 		if (f2fs_sb_has_project_quota(sbi) &&
2823 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2824 								i_projid))
2825 			dst->i_projid = src->i_projid;
2826 
2827 		if (f2fs_sb_has_inode_crtime(sbi) &&
2828 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2829 							i_crtime_nsec)) {
2830 			dst->i_crtime = src->i_crtime;
2831 			dst->i_crtime_nsec = src->i_crtime_nsec;
2832 		}
2833 	}
2834 
2835 	new_ni = old_ni;
2836 	new_ni.ino = ino;
2837 
2838 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2839 		WARN_ON(1);
2840 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2841 	inc_valid_inode_count(sbi);
2842 	set_page_dirty(ipage);
2843 	f2fs_put_page(ipage, 1);
2844 	return 0;
2845 }
2846 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2847 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2848 			unsigned int segno, struct f2fs_summary_block *sum)
2849 {
2850 	struct f2fs_node *rn;
2851 	struct f2fs_summary *sum_entry;
2852 	block_t addr;
2853 	int i, idx, last_offset, nrpages;
2854 
2855 	/* scan the node segment */
2856 	last_offset = BLKS_PER_SEG(sbi);
2857 	addr = START_BLOCK(sbi, segno);
2858 	sum_entry = &sum->entries[0];
2859 
2860 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2861 		nrpages = bio_max_segs(last_offset - i);
2862 
2863 		/* readahead node pages */
2864 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2865 
2866 		for (idx = addr; idx < addr + nrpages; idx++) {
2867 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2868 
2869 			if (IS_ERR(page))
2870 				return PTR_ERR(page);
2871 
2872 			rn = F2FS_NODE(page);
2873 			sum_entry->nid = rn->footer.nid;
2874 			sum_entry->version = 0;
2875 			sum_entry->ofs_in_node = 0;
2876 			sum_entry++;
2877 			f2fs_put_page(page, 1);
2878 		}
2879 
2880 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2881 							addr + nrpages);
2882 	}
2883 	return 0;
2884 }
2885 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2886 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2887 {
2888 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2889 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2890 	struct f2fs_journal *journal = curseg->journal;
2891 	int i;
2892 
2893 	down_write(&curseg->journal_rwsem);
2894 	for (i = 0; i < nats_in_cursum(journal); i++) {
2895 		struct nat_entry *ne;
2896 		struct f2fs_nat_entry raw_ne;
2897 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2898 
2899 		if (f2fs_check_nid_range(sbi, nid))
2900 			continue;
2901 
2902 		raw_ne = nat_in_journal(journal, i);
2903 
2904 		ne = __lookup_nat_cache(nm_i, nid);
2905 		if (!ne) {
2906 			ne = __alloc_nat_entry(sbi, nid, true);
2907 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2908 		}
2909 
2910 		/*
2911 		 * if a free nat in journal has not been used after last
2912 		 * checkpoint, we should remove it from available nids,
2913 		 * since later we will add it again.
2914 		 */
2915 		if (!get_nat_flag(ne, IS_DIRTY) &&
2916 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2917 			spin_lock(&nm_i->nid_list_lock);
2918 			nm_i->available_nids--;
2919 			spin_unlock(&nm_i->nid_list_lock);
2920 		}
2921 
2922 		__set_nat_cache_dirty(nm_i, ne);
2923 	}
2924 	update_nats_in_cursum(journal, -i);
2925 	up_write(&curseg->journal_rwsem);
2926 }
2927 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2928 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2929 						struct list_head *head, int max)
2930 {
2931 	struct nat_entry_set *cur;
2932 
2933 	if (nes->entry_cnt >= max)
2934 		goto add_out;
2935 
2936 	list_for_each_entry(cur, head, set_list) {
2937 		if (cur->entry_cnt >= nes->entry_cnt) {
2938 			list_add(&nes->set_list, cur->set_list.prev);
2939 			return;
2940 		}
2941 	}
2942 add_out:
2943 	list_add_tail(&nes->set_list, head);
2944 }
2945 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2946 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2947 						struct page *page)
2948 {
2949 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2950 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2951 	struct f2fs_nat_block *nat_blk = page_address(page);
2952 	int valid = 0;
2953 	int i = 0;
2954 
2955 	if (!enabled_nat_bits(sbi, NULL))
2956 		return;
2957 
2958 	if (nat_index == 0) {
2959 		valid = 1;
2960 		i = 1;
2961 	}
2962 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2963 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2964 			valid++;
2965 	}
2966 	if (valid == 0) {
2967 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2968 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2969 		return;
2970 	}
2971 
2972 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2973 	if (valid == NAT_ENTRY_PER_BLOCK)
2974 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2975 	else
2976 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2977 }
2978 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2979 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2980 		struct nat_entry_set *set, struct cp_control *cpc)
2981 {
2982 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2983 	struct f2fs_journal *journal = curseg->journal;
2984 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2985 	bool to_journal = true;
2986 	struct f2fs_nat_block *nat_blk;
2987 	struct nat_entry *ne, *cur;
2988 	struct page *page = NULL;
2989 
2990 	/*
2991 	 * there are two steps to flush nat entries:
2992 	 * #1, flush nat entries to journal in current hot data summary block.
2993 	 * #2, flush nat entries to nat page.
2994 	 */
2995 	if (enabled_nat_bits(sbi, cpc) ||
2996 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2997 		to_journal = false;
2998 
2999 	if (to_journal) {
3000 		down_write(&curseg->journal_rwsem);
3001 	} else {
3002 		page = get_next_nat_page(sbi, start_nid);
3003 		if (IS_ERR(page))
3004 			return PTR_ERR(page);
3005 
3006 		nat_blk = page_address(page);
3007 		f2fs_bug_on(sbi, !nat_blk);
3008 	}
3009 
3010 	/* flush dirty nats in nat entry set */
3011 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3012 		struct f2fs_nat_entry *raw_ne;
3013 		nid_t nid = nat_get_nid(ne);
3014 		int offset;
3015 
3016 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3017 
3018 		if (to_journal) {
3019 			offset = f2fs_lookup_journal_in_cursum(journal,
3020 							NAT_JOURNAL, nid, 1);
3021 			f2fs_bug_on(sbi, offset < 0);
3022 			raw_ne = &nat_in_journal(journal, offset);
3023 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3024 		} else {
3025 			raw_ne = &nat_blk->entries[nid - start_nid];
3026 		}
3027 		raw_nat_from_node_info(raw_ne, &ne->ni);
3028 		nat_reset_flag(ne);
3029 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3030 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3031 			add_free_nid(sbi, nid, false, true);
3032 		} else {
3033 			spin_lock(&NM_I(sbi)->nid_list_lock);
3034 			update_free_nid_bitmap(sbi, nid, false, false);
3035 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3036 		}
3037 	}
3038 
3039 	if (to_journal) {
3040 		up_write(&curseg->journal_rwsem);
3041 	} else {
3042 		__update_nat_bits(sbi, start_nid, page);
3043 		f2fs_put_page(page, 1);
3044 	}
3045 
3046 	/* Allow dirty nats by node block allocation in write_begin */
3047 	if (!set->entry_cnt) {
3048 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3049 		kmem_cache_free(nat_entry_set_slab, set);
3050 	}
3051 	return 0;
3052 }
3053 
3054 /*
3055  * This function is called during the checkpointing process.
3056  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3057 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3058 {
3059 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3060 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3061 	struct f2fs_journal *journal = curseg->journal;
3062 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3063 	struct nat_entry_set *set, *tmp;
3064 	unsigned int found;
3065 	nid_t set_idx = 0;
3066 	LIST_HEAD(sets);
3067 	int err = 0;
3068 
3069 	/*
3070 	 * during unmount, let's flush nat_bits before checking
3071 	 * nat_cnt[DIRTY_NAT].
3072 	 */
3073 	if (enabled_nat_bits(sbi, cpc)) {
3074 		f2fs_down_write(&nm_i->nat_tree_lock);
3075 		remove_nats_in_journal(sbi);
3076 		f2fs_up_write(&nm_i->nat_tree_lock);
3077 	}
3078 
3079 	if (!nm_i->nat_cnt[DIRTY_NAT])
3080 		return 0;
3081 
3082 	f2fs_down_write(&nm_i->nat_tree_lock);
3083 
3084 	/*
3085 	 * if there are no enough space in journal to store dirty nat
3086 	 * entries, remove all entries from journal and merge them
3087 	 * into nat entry set.
3088 	 */
3089 	if (enabled_nat_bits(sbi, cpc) ||
3090 		!__has_cursum_space(journal,
3091 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3092 		remove_nats_in_journal(sbi);
3093 
3094 	while ((found = __gang_lookup_nat_set(nm_i,
3095 					set_idx, NAT_VEC_SIZE, setvec))) {
3096 		unsigned idx;
3097 
3098 		set_idx = setvec[found - 1]->set + 1;
3099 		for (idx = 0; idx < found; idx++)
3100 			__adjust_nat_entry_set(setvec[idx], &sets,
3101 						MAX_NAT_JENTRIES(journal));
3102 	}
3103 
3104 	/* flush dirty nats in nat entry set */
3105 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3106 		err = __flush_nat_entry_set(sbi, set, cpc);
3107 		if (err)
3108 			break;
3109 	}
3110 
3111 	f2fs_up_write(&nm_i->nat_tree_lock);
3112 	/* Allow dirty nats by node block allocation in write_begin */
3113 
3114 	return err;
3115 }
3116 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3117 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3118 {
3119 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3120 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3121 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3122 	unsigned int i;
3123 	__u64 cp_ver = cur_cp_version(ckpt);
3124 	block_t nat_bits_addr;
3125 
3126 	if (!enabled_nat_bits(sbi, NULL))
3127 		return 0;
3128 
3129 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3130 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3131 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3132 	if (!nm_i->nat_bits)
3133 		return -ENOMEM;
3134 
3135 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3136 						nm_i->nat_bits_blocks;
3137 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3138 		struct page *page;
3139 
3140 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3141 		if (IS_ERR(page))
3142 			return PTR_ERR(page);
3143 
3144 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3145 					page_address(page), F2FS_BLKSIZE);
3146 		f2fs_put_page(page, 1);
3147 	}
3148 
3149 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3150 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3151 		disable_nat_bits(sbi, true);
3152 		return 0;
3153 	}
3154 
3155 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3156 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3157 
3158 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3159 	return 0;
3160 }
3161 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3162 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3163 {
3164 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3165 	unsigned int i = 0;
3166 	nid_t nid, last_nid;
3167 
3168 	if (!enabled_nat_bits(sbi, NULL))
3169 		return;
3170 
3171 	for (i = 0; i < nm_i->nat_blocks; i++) {
3172 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3173 		if (i >= nm_i->nat_blocks)
3174 			break;
3175 
3176 		__set_bit_le(i, nm_i->nat_block_bitmap);
3177 
3178 		nid = i * NAT_ENTRY_PER_BLOCK;
3179 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3180 
3181 		spin_lock(&NM_I(sbi)->nid_list_lock);
3182 		for (; nid < last_nid; nid++)
3183 			update_free_nid_bitmap(sbi, nid, true, true);
3184 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3185 	}
3186 
3187 	for (i = 0; i < nm_i->nat_blocks; i++) {
3188 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3189 		if (i >= nm_i->nat_blocks)
3190 			break;
3191 
3192 		__set_bit_le(i, nm_i->nat_block_bitmap);
3193 	}
3194 }
3195 
init_node_manager(struct f2fs_sb_info * sbi)3196 static int init_node_manager(struct f2fs_sb_info *sbi)
3197 {
3198 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3199 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3200 	unsigned char *version_bitmap;
3201 	unsigned int nat_segs;
3202 	int err;
3203 
3204 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3205 
3206 	/* segment_count_nat includes pair segment so divide to 2. */
3207 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3208 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3209 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3210 
3211 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3212 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3213 						F2FS_RESERVED_NODE_NUM;
3214 	nm_i->nid_cnt[FREE_NID] = 0;
3215 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3216 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3217 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3218 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3219 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3220 
3221 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3222 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3223 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3224 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3225 	INIT_LIST_HEAD(&nm_i->nat_entries);
3226 	spin_lock_init(&nm_i->nat_list_lock);
3227 
3228 	mutex_init(&nm_i->build_lock);
3229 	spin_lock_init(&nm_i->nid_list_lock);
3230 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3231 
3232 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3233 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3234 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3235 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3236 					GFP_KERNEL);
3237 	if (!nm_i->nat_bitmap)
3238 		return -ENOMEM;
3239 
3240 	err = __get_nat_bitmaps(sbi);
3241 	if (err)
3242 		return err;
3243 
3244 #ifdef CONFIG_F2FS_CHECK_FS
3245 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3246 					GFP_KERNEL);
3247 	if (!nm_i->nat_bitmap_mir)
3248 		return -ENOMEM;
3249 #endif
3250 
3251 	return 0;
3252 }
3253 
init_free_nid_cache(struct f2fs_sb_info * sbi)3254 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3255 {
3256 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3257 	int i;
3258 
3259 	nm_i->free_nid_bitmap =
3260 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3261 					      nm_i->nat_blocks),
3262 			      GFP_KERNEL);
3263 	if (!nm_i->free_nid_bitmap)
3264 		return -ENOMEM;
3265 
3266 	for (i = 0; i < nm_i->nat_blocks; i++) {
3267 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3268 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3269 		if (!nm_i->free_nid_bitmap[i])
3270 			return -ENOMEM;
3271 	}
3272 
3273 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3274 								GFP_KERNEL);
3275 	if (!nm_i->nat_block_bitmap)
3276 		return -ENOMEM;
3277 
3278 	nm_i->free_nid_count =
3279 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3280 					      nm_i->nat_blocks),
3281 			      GFP_KERNEL);
3282 	if (!nm_i->free_nid_count)
3283 		return -ENOMEM;
3284 	return 0;
3285 }
3286 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3287 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3288 {
3289 	int err;
3290 
3291 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3292 							GFP_KERNEL);
3293 	if (!sbi->nm_info)
3294 		return -ENOMEM;
3295 
3296 	err = init_node_manager(sbi);
3297 	if (err)
3298 		return err;
3299 
3300 	err = init_free_nid_cache(sbi);
3301 	if (err)
3302 		return err;
3303 
3304 	/* load free nid status from nat_bits table */
3305 	load_free_nid_bitmap(sbi);
3306 
3307 	return f2fs_build_free_nids(sbi, true, true);
3308 }
3309 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3310 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3311 {
3312 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3313 	struct free_nid *i, *next_i;
3314 	void *vec[NAT_VEC_SIZE];
3315 	struct nat_entry **natvec = (struct nat_entry **)vec;
3316 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3317 	nid_t nid = 0;
3318 	unsigned int found;
3319 
3320 	if (!nm_i)
3321 		return;
3322 
3323 	/* destroy free nid list */
3324 	spin_lock(&nm_i->nid_list_lock);
3325 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3326 		__remove_free_nid(sbi, i, FREE_NID);
3327 		spin_unlock(&nm_i->nid_list_lock);
3328 		kmem_cache_free(free_nid_slab, i);
3329 		spin_lock(&nm_i->nid_list_lock);
3330 	}
3331 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3332 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3333 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3334 	spin_unlock(&nm_i->nid_list_lock);
3335 
3336 	/* destroy nat cache */
3337 	f2fs_down_write(&nm_i->nat_tree_lock);
3338 	while ((found = __gang_lookup_nat_cache(nm_i,
3339 					nid, NAT_VEC_SIZE, natvec))) {
3340 		unsigned idx;
3341 
3342 		nid = nat_get_nid(natvec[found - 1]) + 1;
3343 		for (idx = 0; idx < found; idx++) {
3344 			spin_lock(&nm_i->nat_list_lock);
3345 			list_del(&natvec[idx]->list);
3346 			spin_unlock(&nm_i->nat_list_lock);
3347 
3348 			__del_from_nat_cache(nm_i, natvec[idx]);
3349 		}
3350 	}
3351 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3352 
3353 	/* destroy nat set cache */
3354 	nid = 0;
3355 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3356 	while ((found = __gang_lookup_nat_set(nm_i,
3357 					nid, NAT_VEC_SIZE, setvec))) {
3358 		unsigned idx;
3359 
3360 		nid = setvec[found - 1]->set + 1;
3361 		for (idx = 0; idx < found; idx++) {
3362 			/* entry_cnt is not zero, when cp_error was occurred */
3363 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3364 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3365 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3366 		}
3367 	}
3368 	f2fs_up_write(&nm_i->nat_tree_lock);
3369 
3370 	kvfree(nm_i->nat_block_bitmap);
3371 	if (nm_i->free_nid_bitmap) {
3372 		int i;
3373 
3374 		for (i = 0; i < nm_i->nat_blocks; i++)
3375 			kvfree(nm_i->free_nid_bitmap[i]);
3376 		kvfree(nm_i->free_nid_bitmap);
3377 	}
3378 	kvfree(nm_i->free_nid_count);
3379 
3380 	kvfree(nm_i->nat_bitmap);
3381 	kvfree(nm_i->nat_bits);
3382 #ifdef CONFIG_F2FS_CHECK_FS
3383 	kvfree(nm_i->nat_bitmap_mir);
3384 #endif
3385 	sbi->nm_info = NULL;
3386 	kfree(nm_i);
3387 }
3388 
f2fs_create_node_manager_caches(void)3389 int __init f2fs_create_node_manager_caches(void)
3390 {
3391 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3392 			sizeof(struct nat_entry));
3393 	if (!nat_entry_slab)
3394 		goto fail;
3395 
3396 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3397 			sizeof(struct free_nid));
3398 	if (!free_nid_slab)
3399 		goto destroy_nat_entry;
3400 
3401 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3402 			sizeof(struct nat_entry_set));
3403 	if (!nat_entry_set_slab)
3404 		goto destroy_free_nid;
3405 
3406 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3407 			sizeof(struct fsync_node_entry));
3408 	if (!fsync_node_entry_slab)
3409 		goto destroy_nat_entry_set;
3410 	return 0;
3411 
3412 destroy_nat_entry_set:
3413 	kmem_cache_destroy(nat_entry_set_slab);
3414 destroy_free_nid:
3415 	kmem_cache_destroy(free_nid_slab);
3416 destroy_nat_entry:
3417 	kmem_cache_destroy(nat_entry_slab);
3418 fail:
3419 	return -ENOMEM;
3420 }
3421 
f2fs_destroy_node_manager_caches(void)3422 void f2fs_destroy_node_manager_caches(void)
3423 {
3424 	kmem_cache_destroy(fsync_node_entry_slab);
3425 	kmem_cache_destroy(nat_entry_set_slab);
3426 	kmem_cache_destroy(free_nid_slab);
3427 	kmem_cache_destroy(nat_entry_slab);
3428 }
3429