xref: /openbmc/linux/net/ipv4/tcp_input.c (revision af9b2ff010f593d81e2f5fb04155e9fc25b9dfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
247 
248 			do_div(val, skb->truesize);
249 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 
251 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
252 				struct tcp_sock *tp = tcp_sk(sk);
253 
254 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
255 				tcp_set_window_clamp(sk, val);
256 
257 				if (tp->window_clamp < tp->rcvq_space.space)
258 					tp->rcvq_space.space = tp->window_clamp;
259 			}
260 		}
261 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
262 					       tcp_sk(sk)->advmss);
263 		/* Account for possibly-removed options */
264 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
265 				   MAX_TCP_OPTION_SPACE))
266 			tcp_gro_dev_warn(sk, skb, len);
267 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
268 		 * set then it is likely the end of an application write. So
269 		 * more data may not be arriving soon, and yet the data sender
270 		 * may be waiting for an ACK if cwnd-bound or using TX zero
271 		 * copy. So we set ICSK_ACK_PUSHED here so that
272 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
273 		 * reads all of the data and is not ping-pong. If len > MSS
274 		 * then this logic does not matter (and does not hurt) because
275 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
276 		 * reads data and there is more than an MSS of unACKed data.
277 		 */
278 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
279 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
280 	} else {
281 		/* Otherwise, we make more careful check taking into account,
282 		 * that SACKs block is variable.
283 		 *
284 		 * "len" is invariant segment length, including TCP header.
285 		 */
286 		len += skb->data - skb_transport_header(skb);
287 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
288 		    /* If PSH is not set, packet should be
289 		     * full sized, provided peer TCP is not badly broken.
290 		     * This observation (if it is correct 8)) allows
291 		     * to handle super-low mtu links fairly.
292 		     */
293 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
294 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
295 			/* Subtract also invariant (if peer is RFC compliant),
296 			 * tcp header plus fixed timestamp option length.
297 			 * Resulting "len" is MSS free of SACK jitter.
298 			 */
299 			len -= tcp_sk(sk)->tcp_header_len;
300 			icsk->icsk_ack.last_seg_size = len;
301 			if (len == lss) {
302 				icsk->icsk_ack.rcv_mss = len;
303 				return;
304 			}
305 		}
306 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
307 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
308 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
309 	}
310 }
311 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)312 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
313 {
314 	struct inet_connection_sock *icsk = inet_csk(sk);
315 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
316 
317 	if (quickacks == 0)
318 		quickacks = 2;
319 	quickacks = min(quickacks, max_quickacks);
320 	if (quickacks > icsk->icsk_ack.quick)
321 		icsk->icsk_ack.quick = quickacks;
322 }
323 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)324 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
325 {
326 	struct inet_connection_sock *icsk = inet_csk(sk);
327 
328 	tcp_incr_quickack(sk, max_quickacks);
329 	inet_csk_exit_pingpong_mode(sk);
330 	icsk->icsk_ack.ato = TCP_ATO_MIN;
331 }
332 
333 /* Send ACKs quickly, if "quick" count is not exhausted
334  * and the session is not interactive.
335  */
336 
tcp_in_quickack_mode(struct sock * sk)337 static bool tcp_in_quickack_mode(struct sock *sk)
338 {
339 	const struct inet_connection_sock *icsk = inet_csk(sk);
340 	const struct dst_entry *dst = __sk_dst_get(sk);
341 
342 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
343 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
344 }
345 
tcp_ecn_queue_cwr(struct tcp_sock * tp)346 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
347 {
348 	if (tp->ecn_flags & TCP_ECN_OK)
349 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
350 }
351 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)352 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
353 {
354 	if (tcp_hdr(skb)->cwr) {
355 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
356 
357 		/* If the sender is telling us it has entered CWR, then its
358 		 * cwnd may be very low (even just 1 packet), so we should ACK
359 		 * immediately.
360 		 */
361 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
362 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
363 	}
364 }
365 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)366 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
367 {
368 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
369 }
370 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 	struct tcp_sock *tp = tcp_sk(sk);
374 
375 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
376 	case INET_ECN_NOT_ECT:
377 		/* Funny extension: if ECT is not set on a segment,
378 		 * and we already seen ECT on a previous segment,
379 		 * it is probably a retransmit.
380 		 */
381 		if (tp->ecn_flags & TCP_ECN_SEEN)
382 			tcp_enter_quickack_mode(sk, 2);
383 		break;
384 	case INET_ECN_CE:
385 		if (tcp_ca_needs_ecn(sk))
386 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
387 
388 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
389 			/* Better not delay acks, sender can have a very low cwnd */
390 			tcp_enter_quickack_mode(sk, 2);
391 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
392 		}
393 		tp->ecn_flags |= TCP_ECN_SEEN;
394 		break;
395 	default:
396 		if (tcp_ca_needs_ecn(sk))
397 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
398 		tp->ecn_flags |= TCP_ECN_SEEN;
399 		break;
400 	}
401 }
402 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)403 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
404 {
405 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
406 		__tcp_ecn_check_ce(sk, skb);
407 }
408 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
412 		tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)415 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
418 		tp->ecn_flags &= ~TCP_ECN_OK;
419 }
420 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)421 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
422 {
423 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
424 		return true;
425 	return false;
426 }
427 
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)428 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
429 {
430 	tp->delivered_ce += ecn_count;
431 }
432 
433 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)434 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
435 				bool ece_ack)
436 {
437 	tp->delivered += delivered;
438 	if (ece_ack)
439 		tcp_count_delivered_ce(tp, delivered);
440 }
441 
442 /* Buffer size and advertised window tuning.
443  *
444  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
445  */
446 
tcp_sndbuf_expand(struct sock * sk)447 static void tcp_sndbuf_expand(struct sock *sk)
448 {
449 	const struct tcp_sock *tp = tcp_sk(sk);
450 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
451 	int sndmem, per_mss;
452 	u32 nr_segs;
453 
454 	/* Worst case is non GSO/TSO : each frame consumes one skb
455 	 * and skb->head is kmalloced using power of two area of memory
456 	 */
457 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
458 		  MAX_TCP_HEADER +
459 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
460 
461 	per_mss = roundup_pow_of_two(per_mss) +
462 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
463 
464 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
465 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
466 
467 	/* Fast Recovery (RFC 5681 3.2) :
468 	 * Cubic needs 1.7 factor, rounded to 2 to include
469 	 * extra cushion (application might react slowly to EPOLLOUT)
470 	 */
471 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
472 	sndmem *= nr_segs * per_mss;
473 
474 	if (sk->sk_sndbuf < sndmem)
475 		WRITE_ONCE(sk->sk_sndbuf,
476 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
477 }
478 
479 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
480  *
481  * All tcp_full_space() is split to two parts: "network" buffer, allocated
482  * forward and advertised in receiver window (tp->rcv_wnd) and
483  * "application buffer", required to isolate scheduling/application
484  * latencies from network.
485  * window_clamp is maximal advertised window. It can be less than
486  * tcp_full_space(), in this case tcp_full_space() - window_clamp
487  * is reserved for "application" buffer. The less window_clamp is
488  * the smoother our behaviour from viewpoint of network, but the lower
489  * throughput and the higher sensitivity of the connection to losses. 8)
490  *
491  * rcv_ssthresh is more strict window_clamp used at "slow start"
492  * phase to predict further behaviour of this connection.
493  * It is used for two goals:
494  * - to enforce header prediction at sender, even when application
495  *   requires some significant "application buffer". It is check #1.
496  * - to prevent pruning of receive queue because of misprediction
497  *   of receiver window. Check #2.
498  *
499  * The scheme does not work when sender sends good segments opening
500  * window and then starts to feed us spaghetti. But it should work
501  * in common situations. Otherwise, we have to rely on queue collapsing.
502  */
503 
504 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)505 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
506 			     unsigned int skbtruesize)
507 {
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	/* Optimize this! */
510 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
511 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
512 
513 	while (tp->rcv_ssthresh <= window) {
514 		if (truesize <= skb->len)
515 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
516 
517 		truesize >>= 1;
518 		window >>= 1;
519 	}
520 	return 0;
521 }
522 
523 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
524  * can play nice with us, as sk_buff and skb->head might be either
525  * freed or shared with up to MAX_SKB_FRAGS segments.
526  * Only give a boost to drivers using page frag(s) to hold the frame(s),
527  * and if no payload was pulled in skb->head before reaching us.
528  */
truesize_adjust(bool adjust,const struct sk_buff * skb)529 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
530 {
531 	u32 truesize = skb->truesize;
532 
533 	if (adjust && !skb_headlen(skb)) {
534 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
535 		/* paranoid check, some drivers might be buggy */
536 		if (unlikely((int)truesize < (int)skb->len))
537 			truesize = skb->truesize;
538 	}
539 	return truesize;
540 }
541 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)542 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
543 			    bool adjust)
544 {
545 	struct tcp_sock *tp = tcp_sk(sk);
546 	int room;
547 
548 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
549 
550 	if (room <= 0)
551 		return;
552 
553 	/* Check #1 */
554 	if (!tcp_under_memory_pressure(sk)) {
555 		unsigned int truesize = truesize_adjust(adjust, skb);
556 		int incr;
557 
558 		/* Check #2. Increase window, if skb with such overhead
559 		 * will fit to rcvbuf in future.
560 		 */
561 		if (tcp_win_from_space(sk, truesize) <= skb->len)
562 			incr = 2 * tp->advmss;
563 		else
564 			incr = __tcp_grow_window(sk, skb, truesize);
565 
566 		if (incr) {
567 			incr = max_t(int, incr, 2 * skb->len);
568 			tp->rcv_ssthresh += min(room, incr);
569 			inet_csk(sk)->icsk_ack.quick |= 1;
570 		}
571 	} else {
572 		/* Under pressure:
573 		 * Adjust rcv_ssthresh according to reserved mem
574 		 */
575 		tcp_adjust_rcv_ssthresh(sk);
576 	}
577 }
578 
579 /* 3. Try to fixup all. It is made immediately after connection enters
580  *    established state.
581  */
tcp_init_buffer_space(struct sock * sk)582 static void tcp_init_buffer_space(struct sock *sk)
583 {
584 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
585 	struct tcp_sock *tp = tcp_sk(sk);
586 	int maxwin;
587 
588 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
589 		tcp_sndbuf_expand(sk);
590 
591 	tcp_mstamp_refresh(tp);
592 	tp->rcvq_space.time = tp->tcp_mstamp;
593 	tp->rcvq_space.seq = tp->copied_seq;
594 
595 	maxwin = tcp_full_space(sk);
596 
597 	if (tp->window_clamp >= maxwin) {
598 		WRITE_ONCE(tp->window_clamp, maxwin);
599 
600 		if (tcp_app_win && maxwin > 4 * tp->advmss)
601 			WRITE_ONCE(tp->window_clamp,
602 				   max(maxwin - (maxwin >> tcp_app_win),
603 				       4 * tp->advmss));
604 	}
605 
606 	/* Force reservation of one segment. */
607 	if (tcp_app_win &&
608 	    tp->window_clamp > 2 * tp->advmss &&
609 	    tp->window_clamp + tp->advmss > maxwin)
610 		WRITE_ONCE(tp->window_clamp,
611 			   max(2 * tp->advmss, maxwin - tp->advmss));
612 
613 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
614 	tp->snd_cwnd_stamp = tcp_jiffies32;
615 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
616 				    (u32)TCP_INIT_CWND * tp->advmss);
617 }
618 
619 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)620 static void tcp_clamp_window(struct sock *sk)
621 {
622 	struct tcp_sock *tp = tcp_sk(sk);
623 	struct inet_connection_sock *icsk = inet_csk(sk);
624 	struct net *net = sock_net(sk);
625 	int rmem2;
626 
627 	icsk->icsk_ack.quick = 0;
628 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
629 
630 	if (sk->sk_rcvbuf < rmem2 &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
632 	    !tcp_under_memory_pressure(sk) &&
633 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
634 		WRITE_ONCE(sk->sk_rcvbuf,
635 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
636 	}
637 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
638 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
639 }
640 
641 /* Initialize RCV_MSS value.
642  * RCV_MSS is an our guess about MSS used by the peer.
643  * We haven't any direct information about the MSS.
644  * It's better to underestimate the RCV_MSS rather than overestimate.
645  * Overestimations make us ACKing less frequently than needed.
646  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
647  */
tcp_initialize_rcv_mss(struct sock * sk)648 void tcp_initialize_rcv_mss(struct sock *sk)
649 {
650 	const struct tcp_sock *tp = tcp_sk(sk);
651 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
652 
653 	hint = min(hint, tp->rcv_wnd / 2);
654 	hint = min(hint, TCP_MSS_DEFAULT);
655 	hint = max(hint, TCP_MIN_MSS);
656 
657 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
658 }
659 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
660 
661 /* Receiver "autotuning" code.
662  *
663  * The algorithm for RTT estimation w/o timestamps is based on
664  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
665  * <https://public.lanl.gov/radiant/pubs.html#DRS>
666  *
667  * More detail on this code can be found at
668  * <http://staff.psc.edu/jheffner/>,
669  * though this reference is out of date.  A new paper
670  * is pending.
671  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)672 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
673 {
674 	u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
675 	long m = sample << 3;
676 
677 	if (old_sample == 0 || m < old_sample) {
678 		new_sample = m;
679 	} else {
680 		/* If we sample in larger samples in the non-timestamp
681 		 * case, we could grossly overestimate the RTT especially
682 		 * with chatty applications or bulk transfer apps which
683 		 * are stalled on filesystem I/O.
684 		 *
685 		 * Also, since we are only going for a minimum in the
686 		 * non-timestamp case, we do not smooth things out
687 		 * else with timestamps disabled convergence takes too
688 		 * long.
689 		 */
690 		if (win_dep)
691 			return;
692 		new_sample = old_sample - (old_sample >> 3) + sample;
693 	}
694 
695 	tp->rcv_rtt_est.rtt_us = new_sample;
696 }
697 
tcp_rcv_rtt_measure(struct tcp_sock * tp)698 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
699 {
700 	u32 delta_us;
701 
702 	if (tp->rcv_rtt_est.time == 0)
703 		goto new_measure;
704 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
705 		return;
706 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
707 	if (!delta_us)
708 		delta_us = 1;
709 	tcp_rcv_rtt_update(tp, delta_us, 1);
710 
711 new_measure:
712 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
713 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
714 }
715 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)716 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
717 					  const struct sk_buff *skb)
718 {
719 	struct tcp_sock *tp = tcp_sk(sk);
720 
721 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
722 		return;
723 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
724 
725 	if (TCP_SKB_CB(skb)->end_seq -
726 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
727 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
728 		u32 delta_us;
729 
730 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
731 			if (!delta)
732 				delta = 1;
733 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
734 			tcp_rcv_rtt_update(tp, delta_us, 0);
735 		}
736 	}
737 }
738 
739 /*
740  * This function should be called every time data is copied to user space.
741  * It calculates the appropriate TCP receive buffer space.
742  */
tcp_rcv_space_adjust(struct sock * sk)743 void tcp_rcv_space_adjust(struct sock *sk)
744 {
745 	struct tcp_sock *tp = tcp_sk(sk);
746 	u32 copied;
747 	int time;
748 
749 	trace_tcp_rcv_space_adjust(sk);
750 
751 	tcp_mstamp_refresh(tp);
752 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
753 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
754 		return;
755 
756 	/* Number of bytes copied to user in last RTT */
757 	copied = tp->copied_seq - tp->rcvq_space.seq;
758 	if (copied <= tp->rcvq_space.space)
759 		goto new_measure;
760 
761 	/* A bit of theory :
762 	 * copied = bytes received in previous RTT, our base window
763 	 * To cope with packet losses, we need a 2x factor
764 	 * To cope with slow start, and sender growing its cwin by 100 %
765 	 * every RTT, we need a 4x factor, because the ACK we are sending
766 	 * now is for the next RTT, not the current one :
767 	 * <prev RTT . ><current RTT .. ><next RTT .... >
768 	 */
769 
770 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
771 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
772 		u64 rcvwin, grow;
773 		int rcvbuf;
774 
775 		/* minimal window to cope with packet losses, assuming
776 		 * steady state. Add some cushion because of small variations.
777 		 */
778 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
779 
780 		/* Accommodate for sender rate increase (eg. slow start) */
781 		grow = rcvwin * (copied - tp->rcvq_space.space);
782 		do_div(grow, tp->rcvq_space.space);
783 		rcvwin += (grow << 1);
784 
785 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
786 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
787 		if (rcvbuf > sk->sk_rcvbuf) {
788 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
789 
790 			/* Make the window clamp follow along.  */
791 			WRITE_ONCE(tp->window_clamp,
792 				   tcp_win_from_space(sk, rcvbuf));
793 		}
794 	}
795 	tp->rcvq_space.space = copied;
796 
797 new_measure:
798 	tp->rcvq_space.seq = tp->copied_seq;
799 	tp->rcvq_space.time = tp->tcp_mstamp;
800 }
801 
802 /* There is something which you must keep in mind when you analyze the
803  * behavior of the tp->ato delayed ack timeout interval.  When a
804  * connection starts up, we want to ack as quickly as possible.  The
805  * problem is that "good" TCP's do slow start at the beginning of data
806  * transmission.  The means that until we send the first few ACK's the
807  * sender will sit on his end and only queue most of his data, because
808  * he can only send snd_cwnd unacked packets at any given time.  For
809  * each ACK we send, he increments snd_cwnd and transmits more of his
810  * queue.  -DaveM
811  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)812 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
813 {
814 	struct tcp_sock *tp = tcp_sk(sk);
815 	struct inet_connection_sock *icsk = inet_csk(sk);
816 	u32 now;
817 
818 	inet_csk_schedule_ack(sk);
819 
820 	tcp_measure_rcv_mss(sk, skb);
821 
822 	tcp_rcv_rtt_measure(tp);
823 
824 	now = tcp_jiffies32;
825 
826 	if (!icsk->icsk_ack.ato) {
827 		/* The _first_ data packet received, initialize
828 		 * delayed ACK engine.
829 		 */
830 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
831 		icsk->icsk_ack.ato = TCP_ATO_MIN;
832 	} else {
833 		int m = now - icsk->icsk_ack.lrcvtime;
834 
835 		if (m <= TCP_ATO_MIN / 2) {
836 			/* The fastest case is the first. */
837 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
838 		} else if (m < icsk->icsk_ack.ato) {
839 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
840 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
841 				icsk->icsk_ack.ato = icsk->icsk_rto;
842 		} else if (m > icsk->icsk_rto) {
843 			/* Too long gap. Apparently sender failed to
844 			 * restart window, so that we send ACKs quickly.
845 			 */
846 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
847 		}
848 	}
849 	icsk->icsk_ack.lrcvtime = now;
850 
851 	tcp_ecn_check_ce(sk, skb);
852 
853 	if (skb->len >= 128)
854 		tcp_grow_window(sk, skb, true);
855 }
856 
857 /* Called to compute a smoothed rtt estimate. The data fed to this
858  * routine either comes from timestamps, or from segments that were
859  * known _not_ to have been retransmitted [see Karn/Partridge
860  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
861  * piece by Van Jacobson.
862  * NOTE: the next three routines used to be one big routine.
863  * To save cycles in the RFC 1323 implementation it was better to break
864  * it up into three procedures. -- erics
865  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)866 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
867 {
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	long m = mrtt_us; /* RTT */
870 	u32 srtt = tp->srtt_us;
871 
872 	/*	The following amusing code comes from Jacobson's
873 	 *	article in SIGCOMM '88.  Note that rtt and mdev
874 	 *	are scaled versions of rtt and mean deviation.
875 	 *	This is designed to be as fast as possible
876 	 *	m stands for "measurement".
877 	 *
878 	 *	On a 1990 paper the rto value is changed to:
879 	 *	RTO = rtt + 4 * mdev
880 	 *
881 	 * Funny. This algorithm seems to be very broken.
882 	 * These formulae increase RTO, when it should be decreased, increase
883 	 * too slowly, when it should be increased quickly, decrease too quickly
884 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
885 	 * does not matter how to _calculate_ it. Seems, it was trap
886 	 * that VJ failed to avoid. 8)
887 	 */
888 	if (srtt != 0) {
889 		m -= (srtt >> 3);	/* m is now error in rtt est */
890 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
891 		if (m < 0) {
892 			m = -m;		/* m is now abs(error) */
893 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
894 			/* This is similar to one of Eifel findings.
895 			 * Eifel blocks mdev updates when rtt decreases.
896 			 * This solution is a bit different: we use finer gain
897 			 * for mdev in this case (alpha*beta).
898 			 * Like Eifel it also prevents growth of rto,
899 			 * but also it limits too fast rto decreases,
900 			 * happening in pure Eifel.
901 			 */
902 			if (m > 0)
903 				m >>= 3;
904 		} else {
905 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
906 		}
907 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
908 		if (tp->mdev_us > tp->mdev_max_us) {
909 			tp->mdev_max_us = tp->mdev_us;
910 			if (tp->mdev_max_us > tp->rttvar_us)
911 				tp->rttvar_us = tp->mdev_max_us;
912 		}
913 		if (after(tp->snd_una, tp->rtt_seq)) {
914 			if (tp->mdev_max_us < tp->rttvar_us)
915 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
916 			tp->rtt_seq = tp->snd_nxt;
917 			tp->mdev_max_us = tcp_rto_min_us(sk);
918 
919 			tcp_bpf_rtt(sk);
920 		}
921 	} else {
922 		/* no previous measure. */
923 		srtt = m << 3;		/* take the measured time to be rtt */
924 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
925 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
926 		tp->mdev_max_us = tp->rttvar_us;
927 		tp->rtt_seq = tp->snd_nxt;
928 
929 		tcp_bpf_rtt(sk);
930 	}
931 	tp->srtt_us = max(1U, srtt);
932 }
933 
tcp_update_pacing_rate(struct sock * sk)934 static void tcp_update_pacing_rate(struct sock *sk)
935 {
936 	const struct tcp_sock *tp = tcp_sk(sk);
937 	u64 rate;
938 
939 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
940 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
941 
942 	/* current rate is (cwnd * mss) / srtt
943 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
944 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
945 	 *
946 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
947 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
948 	 *	 end of slow start and should slow down.
949 	 */
950 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
951 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
952 	else
953 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
954 
955 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
956 
957 	if (likely(tp->srtt_us))
958 		do_div(rate, tp->srtt_us);
959 
960 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
961 	 * without any lock. We want to make sure compiler wont store
962 	 * intermediate values in this location.
963 	 */
964 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
965 					     sk->sk_max_pacing_rate));
966 }
967 
968 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
969  * routine referred to above.
970  */
tcp_set_rto(struct sock * sk)971 static void tcp_set_rto(struct sock *sk)
972 {
973 	const struct tcp_sock *tp = tcp_sk(sk);
974 	/* Old crap is replaced with new one. 8)
975 	 *
976 	 * More seriously:
977 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
978 	 *    It cannot be less due to utterly erratic ACK generation made
979 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
980 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
981 	 *    is invisible. Actually, Linux-2.4 also generates erratic
982 	 *    ACKs in some circumstances.
983 	 */
984 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
985 
986 	/* 2. Fixups made earlier cannot be right.
987 	 *    If we do not estimate RTO correctly without them,
988 	 *    all the algo is pure shit and should be replaced
989 	 *    with correct one. It is exactly, which we pretend to do.
990 	 */
991 
992 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
993 	 * guarantees that rto is higher.
994 	 */
995 	tcp_bound_rto(sk);
996 }
997 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)998 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
999 {
1000 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1001 
1002 	if (!cwnd)
1003 		cwnd = TCP_INIT_CWND;
1004 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1005 }
1006 
1007 struct tcp_sacktag_state {
1008 	/* Timestamps for earliest and latest never-retransmitted segment
1009 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1010 	 * but congestion control should still get an accurate delay signal.
1011 	 */
1012 	u64	first_sackt;
1013 	u64	last_sackt;
1014 	u32	reord;
1015 	u32	sack_delivered;
1016 	int	flag;
1017 	unsigned int mss_now;
1018 	struct rate_sample *rate;
1019 };
1020 
1021 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1022  * and spurious retransmission information if this DSACK is unlikely caused by
1023  * sender's action:
1024  * - DSACKed sequence range is larger than maximum receiver's window.
1025  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1026  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1027 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1028 			  u32 end_seq, struct tcp_sacktag_state *state)
1029 {
1030 	u32 seq_len, dup_segs = 1;
1031 
1032 	if (!before(start_seq, end_seq))
1033 		return 0;
1034 
1035 	seq_len = end_seq - start_seq;
1036 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1037 	if (seq_len > tp->max_window)
1038 		return 0;
1039 	if (seq_len > tp->mss_cache)
1040 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1041 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1042 		state->flag |= FLAG_DSACK_TLP;
1043 
1044 	tp->dsack_dups += dup_segs;
1045 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1046 	if (tp->dsack_dups > tp->total_retrans)
1047 		return 0;
1048 
1049 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1050 	/* We increase the RACK ordering window in rounds where we receive
1051 	 * DSACKs that may have been due to reordering causing RACK to trigger
1052 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1053 	 * without having seen reordering, or that match TLP probes (TLP
1054 	 * is timer-driven, not triggered by RACK).
1055 	 */
1056 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1057 		tp->rack.dsack_seen = 1;
1058 
1059 	state->flag |= FLAG_DSACKING_ACK;
1060 	/* A spurious retransmission is delivered */
1061 	state->sack_delivered += dup_segs;
1062 
1063 	return dup_segs;
1064 }
1065 
1066 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1067  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1068  * distance is approximated in full-mss packet distance ("reordering").
1069  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1070 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1071 				      const int ts)
1072 {
1073 	struct tcp_sock *tp = tcp_sk(sk);
1074 	const u32 mss = tp->mss_cache;
1075 	u32 fack, metric;
1076 
1077 	fack = tcp_highest_sack_seq(tp);
1078 	if (!before(low_seq, fack))
1079 		return;
1080 
1081 	metric = fack - low_seq;
1082 	if ((metric > tp->reordering * mss) && mss) {
1083 #if FASTRETRANS_DEBUG > 1
1084 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1085 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1086 			 tp->reordering,
1087 			 0,
1088 			 tp->sacked_out,
1089 			 tp->undo_marker ? tp->undo_retrans : 0);
1090 #endif
1091 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1092 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1093 	}
1094 
1095 	/* This exciting event is worth to be remembered. 8) */
1096 	tp->reord_seen++;
1097 	NET_INC_STATS(sock_net(sk),
1098 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1099 }
1100 
1101  /* This must be called before lost_out or retrans_out are updated
1102   * on a new loss, because we want to know if all skbs previously
1103   * known to be lost have already been retransmitted, indicating
1104   * that this newly lost skb is our next skb to retransmit.
1105   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1106 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1107 {
1108 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1109 	    (tp->retransmit_skb_hint &&
1110 	     before(TCP_SKB_CB(skb)->seq,
1111 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1112 		tp->retransmit_skb_hint = skb;
1113 }
1114 
1115 /* Sum the number of packets on the wire we have marked as lost, and
1116  * notify the congestion control module that the given skb was marked lost.
1117  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1118 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1119 {
1120 	tp->lost += tcp_skb_pcount(skb);
1121 }
1122 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1123 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1124 {
1125 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1126 	struct tcp_sock *tp = tcp_sk(sk);
1127 
1128 	if (sacked & TCPCB_SACKED_ACKED)
1129 		return;
1130 
1131 	tcp_verify_retransmit_hint(tp, skb);
1132 	if (sacked & TCPCB_LOST) {
1133 		if (sacked & TCPCB_SACKED_RETRANS) {
1134 			/* Account for retransmits that are lost again */
1135 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1136 			tp->retrans_out -= tcp_skb_pcount(skb);
1137 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1138 				      tcp_skb_pcount(skb));
1139 			tcp_notify_skb_loss_event(tp, skb);
1140 		}
1141 	} else {
1142 		tp->lost_out += tcp_skb_pcount(skb);
1143 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1144 		tcp_notify_skb_loss_event(tp, skb);
1145 	}
1146 }
1147 
1148 /* This procedure tags the retransmission queue when SACKs arrive.
1149  *
1150  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1151  * Packets in queue with these bits set are counted in variables
1152  * sacked_out, retrans_out and lost_out, correspondingly.
1153  *
1154  * Valid combinations are:
1155  * Tag  InFlight	Description
1156  * 0	1		- orig segment is in flight.
1157  * S	0		- nothing flies, orig reached receiver.
1158  * L	0		- nothing flies, orig lost by net.
1159  * R	2		- both orig and retransmit are in flight.
1160  * L|R	1		- orig is lost, retransmit is in flight.
1161  * S|R  1		- orig reached receiver, retrans is still in flight.
1162  * (L|S|R is logically valid, it could occur when L|R is sacked,
1163  *  but it is equivalent to plain S and code short-curcuits it to S.
1164  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1165  *
1166  * These 6 states form finite state machine, controlled by the following events:
1167  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1168  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1169  * 3. Loss detection event of two flavors:
1170  *	A. Scoreboard estimator decided the packet is lost.
1171  *	   A'. Reno "three dupacks" marks head of queue lost.
1172  *	B. SACK arrives sacking SND.NXT at the moment, when the
1173  *	   segment was retransmitted.
1174  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1175  *
1176  * It is pleasant to note, that state diagram turns out to be commutative,
1177  * so that we are allowed not to be bothered by order of our actions,
1178  * when multiple events arrive simultaneously. (see the function below).
1179  *
1180  * Reordering detection.
1181  * --------------------
1182  * Reordering metric is maximal distance, which a packet can be displaced
1183  * in packet stream. With SACKs we can estimate it:
1184  *
1185  * 1. SACK fills old hole and the corresponding segment was not
1186  *    ever retransmitted -> reordering. Alas, we cannot use it
1187  *    when segment was retransmitted.
1188  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1189  *    for retransmitted and already SACKed segment -> reordering..
1190  * Both of these heuristics are not used in Loss state, when we cannot
1191  * account for retransmits accurately.
1192  *
1193  * SACK block validation.
1194  * ----------------------
1195  *
1196  * SACK block range validation checks that the received SACK block fits to
1197  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1198  * Note that SND.UNA is not included to the range though being valid because
1199  * it means that the receiver is rather inconsistent with itself reporting
1200  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1201  * perfectly valid, however, in light of RFC2018 which explicitly states
1202  * that "SACK block MUST reflect the newest segment.  Even if the newest
1203  * segment is going to be discarded ...", not that it looks very clever
1204  * in case of head skb. Due to potentional receiver driven attacks, we
1205  * choose to avoid immediate execution of a walk in write queue due to
1206  * reneging and defer head skb's loss recovery to standard loss recovery
1207  * procedure that will eventually trigger (nothing forbids us doing this).
1208  *
1209  * Implements also blockage to start_seq wrap-around. Problem lies in the
1210  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1211  * there's no guarantee that it will be before snd_nxt (n). The problem
1212  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1213  * wrap (s_w):
1214  *
1215  *         <- outs wnd ->                          <- wrapzone ->
1216  *         u     e      n                         u_w   e_w  s n_w
1217  *         |     |      |                          |     |   |  |
1218  * |<------------+------+----- TCP seqno space --------------+---------->|
1219  * ...-- <2^31 ->|                                           |<--------...
1220  * ...---- >2^31 ------>|                                    |<--------...
1221  *
1222  * Current code wouldn't be vulnerable but it's better still to discard such
1223  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1224  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1225  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1226  * equal to the ideal case (infinite seqno space without wrap caused issues).
1227  *
1228  * With D-SACK the lower bound is extended to cover sequence space below
1229  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1230  * again, D-SACK block must not to go across snd_una (for the same reason as
1231  * for the normal SACK blocks, explained above). But there all simplicity
1232  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1233  * fully below undo_marker they do not affect behavior in anyway and can
1234  * therefore be safely ignored. In rare cases (which are more or less
1235  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1236  * fragmentation and packet reordering past skb's retransmission. To consider
1237  * them correctly, the acceptable range must be extended even more though
1238  * the exact amount is rather hard to quantify. However, tp->max_window can
1239  * be used as an exaggerated estimate.
1240  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1241 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1242 				   u32 start_seq, u32 end_seq)
1243 {
1244 	/* Too far in future, or reversed (interpretation is ambiguous) */
1245 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1246 		return false;
1247 
1248 	/* Nasty start_seq wrap-around check (see comments above) */
1249 	if (!before(start_seq, tp->snd_nxt))
1250 		return false;
1251 
1252 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1253 	 * start_seq == snd_una is non-sensical (see comments above)
1254 	 */
1255 	if (after(start_seq, tp->snd_una))
1256 		return true;
1257 
1258 	if (!is_dsack || !tp->undo_marker)
1259 		return false;
1260 
1261 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1262 	if (after(end_seq, tp->snd_una))
1263 		return false;
1264 
1265 	if (!before(start_seq, tp->undo_marker))
1266 		return true;
1267 
1268 	/* Too old */
1269 	if (!after(end_seq, tp->undo_marker))
1270 		return false;
1271 
1272 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1273 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1274 	 */
1275 	return !before(start_seq, end_seq - tp->max_window);
1276 }
1277 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1278 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1279 			    struct tcp_sack_block_wire *sp, int num_sacks,
1280 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1281 {
1282 	struct tcp_sock *tp = tcp_sk(sk);
1283 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1284 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1285 	u32 dup_segs;
1286 
1287 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1288 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1289 	} else if (num_sacks > 1) {
1290 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1291 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1292 
1293 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1294 			return false;
1295 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1296 	} else {
1297 		return false;
1298 	}
1299 
1300 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1301 	if (!dup_segs) {	/* Skip dubious DSACK */
1302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1303 		return false;
1304 	}
1305 
1306 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1307 
1308 	/* D-SACK for already forgotten data... Do dumb counting. */
1309 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1310 	    !after(end_seq_0, prior_snd_una) &&
1311 	    after(end_seq_0, tp->undo_marker))
1312 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1313 
1314 	return true;
1315 }
1316 
1317 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1318  * the incoming SACK may not exactly match but we can find smaller MSS
1319  * aligned portion of it that matches. Therefore we might need to fragment
1320  * which may fail and creates some hassle (caller must handle error case
1321  * returns).
1322  *
1323  * FIXME: this could be merged to shift decision code
1324  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1325 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1326 				  u32 start_seq, u32 end_seq)
1327 {
1328 	int err;
1329 	bool in_sack;
1330 	unsigned int pkt_len;
1331 	unsigned int mss;
1332 
1333 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1334 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1335 
1336 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1337 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1338 		mss = tcp_skb_mss(skb);
1339 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1340 
1341 		if (!in_sack) {
1342 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1343 			if (pkt_len < mss)
1344 				pkt_len = mss;
1345 		} else {
1346 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1347 			if (pkt_len < mss)
1348 				return -EINVAL;
1349 		}
1350 
1351 		/* Round if necessary so that SACKs cover only full MSSes
1352 		 * and/or the remaining small portion (if present)
1353 		 */
1354 		if (pkt_len > mss) {
1355 			unsigned int new_len = (pkt_len / mss) * mss;
1356 			if (!in_sack && new_len < pkt_len)
1357 				new_len += mss;
1358 			pkt_len = new_len;
1359 		}
1360 
1361 		if (pkt_len >= skb->len && !in_sack)
1362 			return 0;
1363 
1364 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1365 				   pkt_len, mss, GFP_ATOMIC);
1366 		if (err < 0)
1367 			return err;
1368 	}
1369 
1370 	return in_sack;
1371 }
1372 
1373 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1374 static u8 tcp_sacktag_one(struct sock *sk,
1375 			  struct tcp_sacktag_state *state, u8 sacked,
1376 			  u32 start_seq, u32 end_seq,
1377 			  int dup_sack, int pcount,
1378 			  u64 xmit_time)
1379 {
1380 	struct tcp_sock *tp = tcp_sk(sk);
1381 
1382 	/* Account D-SACK for retransmitted packet. */
1383 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1384 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1385 		    after(end_seq, tp->undo_marker))
1386 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1387 		if ((sacked & TCPCB_SACKED_ACKED) &&
1388 		    before(start_seq, state->reord))
1389 				state->reord = start_seq;
1390 	}
1391 
1392 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1393 	if (!after(end_seq, tp->snd_una))
1394 		return sacked;
1395 
1396 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1397 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1398 
1399 		if (sacked & TCPCB_SACKED_RETRANS) {
1400 			/* If the segment is not tagged as lost,
1401 			 * we do not clear RETRANS, believing
1402 			 * that retransmission is still in flight.
1403 			 */
1404 			if (sacked & TCPCB_LOST) {
1405 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1406 				tp->lost_out -= pcount;
1407 				tp->retrans_out -= pcount;
1408 			}
1409 		} else {
1410 			if (!(sacked & TCPCB_RETRANS)) {
1411 				/* New sack for not retransmitted frame,
1412 				 * which was in hole. It is reordering.
1413 				 */
1414 				if (before(start_seq,
1415 					   tcp_highest_sack_seq(tp)) &&
1416 				    before(start_seq, state->reord))
1417 					state->reord = start_seq;
1418 
1419 				if (!after(end_seq, tp->high_seq))
1420 					state->flag |= FLAG_ORIG_SACK_ACKED;
1421 				if (state->first_sackt == 0)
1422 					state->first_sackt = xmit_time;
1423 				state->last_sackt = xmit_time;
1424 			}
1425 
1426 			if (sacked & TCPCB_LOST) {
1427 				sacked &= ~TCPCB_LOST;
1428 				tp->lost_out -= pcount;
1429 			}
1430 		}
1431 
1432 		sacked |= TCPCB_SACKED_ACKED;
1433 		state->flag |= FLAG_DATA_SACKED;
1434 		tp->sacked_out += pcount;
1435 		/* Out-of-order packets delivered */
1436 		state->sack_delivered += pcount;
1437 
1438 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1439 		if (tp->lost_skb_hint &&
1440 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1441 			tp->lost_cnt_hint += pcount;
1442 	}
1443 
1444 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1445 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1446 	 * are accounted above as well.
1447 	 */
1448 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1449 		sacked &= ~TCPCB_SACKED_RETRANS;
1450 		tp->retrans_out -= pcount;
1451 	}
1452 
1453 	return sacked;
1454 }
1455 
1456 /* Shift newly-SACKed bytes from this skb to the immediately previous
1457  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1458  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1459 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1460 			    struct sk_buff *skb,
1461 			    struct tcp_sacktag_state *state,
1462 			    unsigned int pcount, int shifted, int mss,
1463 			    bool dup_sack)
1464 {
1465 	struct tcp_sock *tp = tcp_sk(sk);
1466 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1467 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1468 
1469 	BUG_ON(!pcount);
1470 
1471 	/* Adjust counters and hints for the newly sacked sequence
1472 	 * range but discard the return value since prev is already
1473 	 * marked. We must tag the range first because the seq
1474 	 * advancement below implicitly advances
1475 	 * tcp_highest_sack_seq() when skb is highest_sack.
1476 	 */
1477 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1478 			start_seq, end_seq, dup_sack, pcount,
1479 			tcp_skb_timestamp_us(skb));
1480 	tcp_rate_skb_delivered(sk, skb, state->rate);
1481 
1482 	if (skb == tp->lost_skb_hint)
1483 		tp->lost_cnt_hint += pcount;
1484 
1485 	TCP_SKB_CB(prev)->end_seq += shifted;
1486 	TCP_SKB_CB(skb)->seq += shifted;
1487 
1488 	tcp_skb_pcount_add(prev, pcount);
1489 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1490 	tcp_skb_pcount_add(skb, -pcount);
1491 
1492 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1493 	 * in theory this shouldn't be necessary but as long as DSACK
1494 	 * code can come after this skb later on it's better to keep
1495 	 * setting gso_size to something.
1496 	 */
1497 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1498 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1499 
1500 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1501 	if (tcp_skb_pcount(skb) <= 1)
1502 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1503 
1504 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1505 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1506 
1507 	if (skb->len > 0) {
1508 		BUG_ON(!tcp_skb_pcount(skb));
1509 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1510 		return false;
1511 	}
1512 
1513 	/* Whole SKB was eaten :-) */
1514 
1515 	if (skb == tp->retransmit_skb_hint)
1516 		tp->retransmit_skb_hint = prev;
1517 	if (skb == tp->lost_skb_hint) {
1518 		tp->lost_skb_hint = prev;
1519 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1520 	}
1521 
1522 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1523 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1524 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1525 		TCP_SKB_CB(prev)->end_seq++;
1526 
1527 	if (skb == tcp_highest_sack(sk))
1528 		tcp_advance_highest_sack(sk, skb);
1529 
1530 	tcp_skb_collapse_tstamp(prev, skb);
1531 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1532 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1533 
1534 	tcp_rtx_queue_unlink_and_free(skb, sk);
1535 
1536 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1537 
1538 	return true;
1539 }
1540 
1541 /* I wish gso_size would have a bit more sane initialization than
1542  * something-or-zero which complicates things
1543  */
tcp_skb_seglen(const struct sk_buff * skb)1544 static int tcp_skb_seglen(const struct sk_buff *skb)
1545 {
1546 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1547 }
1548 
1549 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1550 static int skb_can_shift(const struct sk_buff *skb)
1551 {
1552 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1553 }
1554 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1555 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1556 		  int pcount, int shiftlen)
1557 {
1558 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1559 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1560 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1561 	 * even if current MSS is bigger.
1562 	 */
1563 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1564 		return 0;
1565 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1566 		return 0;
1567 	return skb_shift(to, from, shiftlen);
1568 }
1569 
1570 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1571  * skb.
1572  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1573 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1574 					  struct tcp_sacktag_state *state,
1575 					  u32 start_seq, u32 end_seq,
1576 					  bool dup_sack)
1577 {
1578 	struct tcp_sock *tp = tcp_sk(sk);
1579 	struct sk_buff *prev;
1580 	int mss;
1581 	int pcount = 0;
1582 	int len;
1583 	int in_sack;
1584 
1585 	/* Normally R but no L won't result in plain S */
1586 	if (!dup_sack &&
1587 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1588 		goto fallback;
1589 	if (!skb_can_shift(skb))
1590 		goto fallback;
1591 	/* This frame is about to be dropped (was ACKed). */
1592 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1593 		goto fallback;
1594 
1595 	/* Can only happen with delayed DSACK + discard craziness */
1596 	prev = skb_rb_prev(skb);
1597 	if (!prev)
1598 		goto fallback;
1599 
1600 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1601 		goto fallback;
1602 
1603 	if (!tcp_skb_can_collapse(prev, skb))
1604 		goto fallback;
1605 
1606 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1607 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1608 
1609 	if (in_sack) {
1610 		len = skb->len;
1611 		pcount = tcp_skb_pcount(skb);
1612 		mss = tcp_skb_seglen(skb);
1613 
1614 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1615 		 * drop this restriction as unnecessary
1616 		 */
1617 		if (mss != tcp_skb_seglen(prev))
1618 			goto fallback;
1619 	} else {
1620 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1621 			goto noop;
1622 		/* CHECKME: This is non-MSS split case only?, this will
1623 		 * cause skipped skbs due to advancing loop btw, original
1624 		 * has that feature too
1625 		 */
1626 		if (tcp_skb_pcount(skb) <= 1)
1627 			goto noop;
1628 
1629 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1630 		if (!in_sack) {
1631 			/* TODO: head merge to next could be attempted here
1632 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1633 			 * though it might not be worth of the additional hassle
1634 			 *
1635 			 * ...we can probably just fallback to what was done
1636 			 * previously. We could try merging non-SACKed ones
1637 			 * as well but it probably isn't going to buy off
1638 			 * because later SACKs might again split them, and
1639 			 * it would make skb timestamp tracking considerably
1640 			 * harder problem.
1641 			 */
1642 			goto fallback;
1643 		}
1644 
1645 		len = end_seq - TCP_SKB_CB(skb)->seq;
1646 		BUG_ON(len < 0);
1647 		BUG_ON(len > skb->len);
1648 
1649 		/* MSS boundaries should be honoured or else pcount will
1650 		 * severely break even though it makes things bit trickier.
1651 		 * Optimize common case to avoid most of the divides
1652 		 */
1653 		mss = tcp_skb_mss(skb);
1654 
1655 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1656 		 * drop this restriction as unnecessary
1657 		 */
1658 		if (mss != tcp_skb_seglen(prev))
1659 			goto fallback;
1660 
1661 		if (len == mss) {
1662 			pcount = 1;
1663 		} else if (len < mss) {
1664 			goto noop;
1665 		} else {
1666 			pcount = len / mss;
1667 			len = pcount * mss;
1668 		}
1669 	}
1670 
1671 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1672 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1673 		goto fallback;
1674 
1675 	if (!tcp_skb_shift(prev, skb, pcount, len))
1676 		goto fallback;
1677 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1678 		goto out;
1679 
1680 	/* Hole filled allows collapsing with the next as well, this is very
1681 	 * useful when hole on every nth skb pattern happens
1682 	 */
1683 	skb = skb_rb_next(prev);
1684 	if (!skb)
1685 		goto out;
1686 
1687 	if (!skb_can_shift(skb) ||
1688 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1689 	    (mss != tcp_skb_seglen(skb)))
1690 		goto out;
1691 
1692 	if (!tcp_skb_can_collapse(prev, skb))
1693 		goto out;
1694 	len = skb->len;
1695 	pcount = tcp_skb_pcount(skb);
1696 	if (tcp_skb_shift(prev, skb, pcount, len))
1697 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1698 				len, mss, 0);
1699 
1700 out:
1701 	return prev;
1702 
1703 noop:
1704 	return skb;
1705 
1706 fallback:
1707 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1708 	return NULL;
1709 }
1710 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1711 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1712 					struct tcp_sack_block *next_dup,
1713 					struct tcp_sacktag_state *state,
1714 					u32 start_seq, u32 end_seq,
1715 					bool dup_sack_in)
1716 {
1717 	struct tcp_sock *tp = tcp_sk(sk);
1718 	struct sk_buff *tmp;
1719 
1720 	skb_rbtree_walk_from(skb) {
1721 		int in_sack = 0;
1722 		bool dup_sack = dup_sack_in;
1723 
1724 		/* queue is in-order => we can short-circuit the walk early */
1725 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1726 			break;
1727 
1728 		if (next_dup  &&
1729 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1730 			in_sack = tcp_match_skb_to_sack(sk, skb,
1731 							next_dup->start_seq,
1732 							next_dup->end_seq);
1733 			if (in_sack > 0)
1734 				dup_sack = true;
1735 		}
1736 
1737 		/* skb reference here is a bit tricky to get right, since
1738 		 * shifting can eat and free both this skb and the next,
1739 		 * so not even _safe variant of the loop is enough.
1740 		 */
1741 		if (in_sack <= 0) {
1742 			tmp = tcp_shift_skb_data(sk, skb, state,
1743 						 start_seq, end_seq, dup_sack);
1744 			if (tmp) {
1745 				if (tmp != skb) {
1746 					skb = tmp;
1747 					continue;
1748 				}
1749 
1750 				in_sack = 0;
1751 			} else {
1752 				in_sack = tcp_match_skb_to_sack(sk, skb,
1753 								start_seq,
1754 								end_seq);
1755 			}
1756 		}
1757 
1758 		if (unlikely(in_sack < 0))
1759 			break;
1760 
1761 		if (in_sack) {
1762 			TCP_SKB_CB(skb)->sacked =
1763 				tcp_sacktag_one(sk,
1764 						state,
1765 						TCP_SKB_CB(skb)->sacked,
1766 						TCP_SKB_CB(skb)->seq,
1767 						TCP_SKB_CB(skb)->end_seq,
1768 						dup_sack,
1769 						tcp_skb_pcount(skb),
1770 						tcp_skb_timestamp_us(skb));
1771 			tcp_rate_skb_delivered(sk, skb, state->rate);
1772 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1773 				list_del_init(&skb->tcp_tsorted_anchor);
1774 
1775 			if (!before(TCP_SKB_CB(skb)->seq,
1776 				    tcp_highest_sack_seq(tp)))
1777 				tcp_advance_highest_sack(sk, skb);
1778 		}
1779 	}
1780 	return skb;
1781 }
1782 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1783 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1784 {
1785 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1786 	struct sk_buff *skb;
1787 
1788 	while (*p) {
1789 		parent = *p;
1790 		skb = rb_to_skb(parent);
1791 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1792 			p = &parent->rb_left;
1793 			continue;
1794 		}
1795 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1796 			p = &parent->rb_right;
1797 			continue;
1798 		}
1799 		return skb;
1800 	}
1801 	return NULL;
1802 }
1803 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1804 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1805 					u32 skip_to_seq)
1806 {
1807 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1808 		return skb;
1809 
1810 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1811 }
1812 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1813 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1814 						struct sock *sk,
1815 						struct tcp_sack_block *next_dup,
1816 						struct tcp_sacktag_state *state,
1817 						u32 skip_to_seq)
1818 {
1819 	if (!next_dup)
1820 		return skb;
1821 
1822 	if (before(next_dup->start_seq, skip_to_seq)) {
1823 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1824 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1825 				       next_dup->start_seq, next_dup->end_seq,
1826 				       1);
1827 	}
1828 
1829 	return skb;
1830 }
1831 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1832 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1833 {
1834 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1835 }
1836 
1837 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1838 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1839 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1840 {
1841 	struct tcp_sock *tp = tcp_sk(sk);
1842 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1843 				    TCP_SKB_CB(ack_skb)->sacked);
1844 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1845 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1846 	struct tcp_sack_block *cache;
1847 	struct sk_buff *skb;
1848 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1849 	int used_sacks;
1850 	bool found_dup_sack = false;
1851 	int i, j;
1852 	int first_sack_index;
1853 
1854 	state->flag = 0;
1855 	state->reord = tp->snd_nxt;
1856 
1857 	if (!tp->sacked_out)
1858 		tcp_highest_sack_reset(sk);
1859 
1860 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1861 					 num_sacks, prior_snd_una, state);
1862 
1863 	/* Eliminate too old ACKs, but take into
1864 	 * account more or less fresh ones, they can
1865 	 * contain valid SACK info.
1866 	 */
1867 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1868 		return 0;
1869 
1870 	if (!tp->packets_out)
1871 		goto out;
1872 
1873 	used_sacks = 0;
1874 	first_sack_index = 0;
1875 	for (i = 0; i < num_sacks; i++) {
1876 		bool dup_sack = !i && found_dup_sack;
1877 
1878 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1879 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1880 
1881 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1882 					    sp[used_sacks].start_seq,
1883 					    sp[used_sacks].end_seq)) {
1884 			int mib_idx;
1885 
1886 			if (dup_sack) {
1887 				if (!tp->undo_marker)
1888 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1889 				else
1890 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1891 			} else {
1892 				/* Don't count olds caused by ACK reordering */
1893 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1894 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1895 					continue;
1896 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1897 			}
1898 
1899 			NET_INC_STATS(sock_net(sk), mib_idx);
1900 			if (i == 0)
1901 				first_sack_index = -1;
1902 			continue;
1903 		}
1904 
1905 		/* Ignore very old stuff early */
1906 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1907 			if (i == 0)
1908 				first_sack_index = -1;
1909 			continue;
1910 		}
1911 
1912 		used_sacks++;
1913 	}
1914 
1915 	/* order SACK blocks to allow in order walk of the retrans queue */
1916 	for (i = used_sacks - 1; i > 0; i--) {
1917 		for (j = 0; j < i; j++) {
1918 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1919 				swap(sp[j], sp[j + 1]);
1920 
1921 				/* Track where the first SACK block goes to */
1922 				if (j == first_sack_index)
1923 					first_sack_index = j + 1;
1924 			}
1925 		}
1926 	}
1927 
1928 	state->mss_now = tcp_current_mss(sk);
1929 	skb = NULL;
1930 	i = 0;
1931 
1932 	if (!tp->sacked_out) {
1933 		/* It's already past, so skip checking against it */
1934 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1935 	} else {
1936 		cache = tp->recv_sack_cache;
1937 		/* Skip empty blocks in at head of the cache */
1938 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1939 		       !cache->end_seq)
1940 			cache++;
1941 	}
1942 
1943 	while (i < used_sacks) {
1944 		u32 start_seq = sp[i].start_seq;
1945 		u32 end_seq = sp[i].end_seq;
1946 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1947 		struct tcp_sack_block *next_dup = NULL;
1948 
1949 		if (found_dup_sack && ((i + 1) == first_sack_index))
1950 			next_dup = &sp[i + 1];
1951 
1952 		/* Skip too early cached blocks */
1953 		while (tcp_sack_cache_ok(tp, cache) &&
1954 		       !before(start_seq, cache->end_seq))
1955 			cache++;
1956 
1957 		/* Can skip some work by looking recv_sack_cache? */
1958 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1959 		    after(end_seq, cache->start_seq)) {
1960 
1961 			/* Head todo? */
1962 			if (before(start_seq, cache->start_seq)) {
1963 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1964 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1965 						       state,
1966 						       start_seq,
1967 						       cache->start_seq,
1968 						       dup_sack);
1969 			}
1970 
1971 			/* Rest of the block already fully processed? */
1972 			if (!after(end_seq, cache->end_seq))
1973 				goto advance_sp;
1974 
1975 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1976 						       state,
1977 						       cache->end_seq);
1978 
1979 			/* ...tail remains todo... */
1980 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1981 				/* ...but better entrypoint exists! */
1982 				skb = tcp_highest_sack(sk);
1983 				if (!skb)
1984 					break;
1985 				cache++;
1986 				goto walk;
1987 			}
1988 
1989 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1990 			/* Check overlap against next cached too (past this one already) */
1991 			cache++;
1992 			continue;
1993 		}
1994 
1995 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1996 			skb = tcp_highest_sack(sk);
1997 			if (!skb)
1998 				break;
1999 		}
2000 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2001 
2002 walk:
2003 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2004 				       start_seq, end_seq, dup_sack);
2005 
2006 advance_sp:
2007 		i++;
2008 	}
2009 
2010 	/* Clear the head of the cache sack blocks so we can skip it next time */
2011 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2012 		tp->recv_sack_cache[i].start_seq = 0;
2013 		tp->recv_sack_cache[i].end_seq = 0;
2014 	}
2015 	for (j = 0; j < used_sacks; j++)
2016 		tp->recv_sack_cache[i++] = sp[j];
2017 
2018 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2019 		tcp_check_sack_reordering(sk, state->reord, 0);
2020 
2021 	tcp_verify_left_out(tp);
2022 out:
2023 
2024 #if FASTRETRANS_DEBUG > 0
2025 	WARN_ON((int)tp->sacked_out < 0);
2026 	WARN_ON((int)tp->lost_out < 0);
2027 	WARN_ON((int)tp->retrans_out < 0);
2028 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2029 #endif
2030 	return state->flag;
2031 }
2032 
2033 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2034  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2035  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2036 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2037 {
2038 	u32 holes;
2039 
2040 	holes = max(tp->lost_out, 1U);
2041 	holes = min(holes, tp->packets_out);
2042 
2043 	if ((tp->sacked_out + holes) > tp->packets_out) {
2044 		tp->sacked_out = tp->packets_out - holes;
2045 		return true;
2046 	}
2047 	return false;
2048 }
2049 
2050 /* If we receive more dupacks than we expected counting segments
2051  * in assumption of absent reordering, interpret this as reordering.
2052  * The only another reason could be bug in receiver TCP.
2053  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2054 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2055 {
2056 	struct tcp_sock *tp = tcp_sk(sk);
2057 
2058 	if (!tcp_limit_reno_sacked(tp))
2059 		return;
2060 
2061 	tp->reordering = min_t(u32, tp->packets_out + addend,
2062 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2063 	tp->reord_seen++;
2064 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2065 }
2066 
2067 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2068 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2069 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2070 {
2071 	if (num_dupack) {
2072 		struct tcp_sock *tp = tcp_sk(sk);
2073 		u32 prior_sacked = tp->sacked_out;
2074 		s32 delivered;
2075 
2076 		tp->sacked_out += num_dupack;
2077 		tcp_check_reno_reordering(sk, 0);
2078 		delivered = tp->sacked_out - prior_sacked;
2079 		if (delivered > 0)
2080 			tcp_count_delivered(tp, delivered, ece_ack);
2081 		tcp_verify_left_out(tp);
2082 	}
2083 }
2084 
2085 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2086 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2087 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2088 {
2089 	struct tcp_sock *tp = tcp_sk(sk);
2090 
2091 	if (acked > 0) {
2092 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2093 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2094 				    ece_ack);
2095 		if (acked - 1 >= tp->sacked_out)
2096 			tp->sacked_out = 0;
2097 		else
2098 			tp->sacked_out -= acked - 1;
2099 	}
2100 	tcp_check_reno_reordering(sk, acked);
2101 	tcp_verify_left_out(tp);
2102 }
2103 
tcp_reset_reno_sack(struct tcp_sock * tp)2104 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2105 {
2106 	tp->sacked_out = 0;
2107 }
2108 
tcp_clear_retrans(struct tcp_sock * tp)2109 void tcp_clear_retrans(struct tcp_sock *tp)
2110 {
2111 	tp->retrans_out = 0;
2112 	tp->lost_out = 0;
2113 	tp->undo_marker = 0;
2114 	tp->undo_retrans = -1;
2115 	tp->sacked_out = 0;
2116 	tp->rto_stamp = 0;
2117 	tp->total_rto = 0;
2118 	tp->total_rto_recoveries = 0;
2119 	tp->total_rto_time = 0;
2120 }
2121 
tcp_init_undo(struct tcp_sock * tp)2122 static inline void tcp_init_undo(struct tcp_sock *tp)
2123 {
2124 	tp->undo_marker = tp->snd_una;
2125 
2126 	/* Retransmission still in flight may cause DSACKs later. */
2127 	/* First, account for regular retransmits in flight: */
2128 	tp->undo_retrans = tp->retrans_out;
2129 	/* Next, account for TLP retransmits in flight: */
2130 	if (tp->tlp_high_seq && tp->tlp_retrans)
2131 		tp->undo_retrans++;
2132 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2133 	if (!tp->undo_retrans)
2134 		tp->undo_retrans = -1;
2135 }
2136 
tcp_is_rack(const struct sock * sk)2137 static bool tcp_is_rack(const struct sock *sk)
2138 {
2139 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2140 		TCP_RACK_LOSS_DETECTION;
2141 }
2142 
2143 /* If we detect SACK reneging, forget all SACK information
2144  * and reset tags completely, otherwise preserve SACKs. If receiver
2145  * dropped its ofo queue, we will know this due to reneging detection.
2146  */
tcp_timeout_mark_lost(struct sock * sk)2147 static void tcp_timeout_mark_lost(struct sock *sk)
2148 {
2149 	struct tcp_sock *tp = tcp_sk(sk);
2150 	struct sk_buff *skb, *head;
2151 	bool is_reneg;			/* is receiver reneging on SACKs? */
2152 
2153 	head = tcp_rtx_queue_head(sk);
2154 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2155 	if (is_reneg) {
2156 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2157 		tp->sacked_out = 0;
2158 		/* Mark SACK reneging until we recover from this loss event. */
2159 		tp->is_sack_reneg = 1;
2160 	} else if (tcp_is_reno(tp)) {
2161 		tcp_reset_reno_sack(tp);
2162 	}
2163 
2164 	skb = head;
2165 	skb_rbtree_walk_from(skb) {
2166 		if (is_reneg)
2167 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2168 		else if (tcp_is_rack(sk) && skb != head &&
2169 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2170 			continue; /* Don't mark recently sent ones lost yet */
2171 		tcp_mark_skb_lost(sk, skb);
2172 	}
2173 	tcp_verify_left_out(tp);
2174 	tcp_clear_all_retrans_hints(tp);
2175 }
2176 
2177 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2178 void tcp_enter_loss(struct sock *sk)
2179 {
2180 	const struct inet_connection_sock *icsk = inet_csk(sk);
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 	struct net *net = sock_net(sk);
2183 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2184 	u8 reordering;
2185 
2186 	tcp_timeout_mark_lost(sk);
2187 
2188 	/* Reduce ssthresh if it has not yet been made inside this window. */
2189 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2190 	    !after(tp->high_seq, tp->snd_una) ||
2191 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2192 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2193 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2194 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2195 		tcp_ca_event(sk, CA_EVENT_LOSS);
2196 		tcp_init_undo(tp);
2197 	}
2198 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2199 	tp->snd_cwnd_cnt   = 0;
2200 	tp->snd_cwnd_stamp = tcp_jiffies32;
2201 
2202 	/* Timeout in disordered state after receiving substantial DUPACKs
2203 	 * suggests that the degree of reordering is over-estimated.
2204 	 */
2205 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2206 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2207 	    tp->sacked_out >= reordering)
2208 		tp->reordering = min_t(unsigned int, tp->reordering,
2209 				       reordering);
2210 
2211 	tcp_set_ca_state(sk, TCP_CA_Loss);
2212 	tp->high_seq = tp->snd_nxt;
2213 	tp->tlp_high_seq = 0;
2214 	tcp_ecn_queue_cwr(tp);
2215 
2216 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2217 	 * loss recovery is underway except recurring timeout(s) on
2218 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2219 	 */
2220 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2221 		   (new_recovery || icsk->icsk_retransmits) &&
2222 		   !inet_csk(sk)->icsk_mtup.probe_size;
2223 }
2224 
2225 /* If ACK arrived pointing to a remembered SACK, it means that our
2226  * remembered SACKs do not reflect real state of receiver i.e.
2227  * receiver _host_ is heavily congested (or buggy).
2228  *
2229  * To avoid big spurious retransmission bursts due to transient SACK
2230  * scoreboard oddities that look like reneging, we give the receiver a
2231  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2232  * restore sanity to the SACK scoreboard. If the apparent reneging
2233  * persists until this RTO then we'll clear the SACK scoreboard.
2234  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2235 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2236 {
2237 	if (*ack_flag & FLAG_SACK_RENEGING &&
2238 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2239 		struct tcp_sock *tp = tcp_sk(sk);
2240 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2241 					  msecs_to_jiffies(10));
2242 
2243 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2244 					  delay, TCP_RTO_MAX);
2245 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2246 		return true;
2247 	}
2248 	return false;
2249 }
2250 
2251 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2252  * counter when SACK is enabled (without SACK, sacked_out is used for
2253  * that purpose).
2254  *
2255  * With reordering, holes may still be in flight, so RFC3517 recovery
2256  * uses pure sacked_out (total number of SACKed segments) even though
2257  * it violates the RFC that uses duplicate ACKs, often these are equal
2258  * but when e.g. out-of-window ACKs or packet duplication occurs,
2259  * they differ. Since neither occurs due to loss, TCP should really
2260  * ignore them.
2261  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2262 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2263 {
2264 	return tp->sacked_out + 1;
2265 }
2266 
2267 /* Linux NewReno/SACK/ECN state machine.
2268  * --------------------------------------
2269  *
2270  * "Open"	Normal state, no dubious events, fast path.
2271  * "Disorder"   In all the respects it is "Open",
2272  *		but requires a bit more attention. It is entered when
2273  *		we see some SACKs or dupacks. It is split of "Open"
2274  *		mainly to move some processing from fast path to slow one.
2275  * "CWR"	CWND was reduced due to some Congestion Notification event.
2276  *		It can be ECN, ICMP source quench, local device congestion.
2277  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2278  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2279  *
2280  * tcp_fastretrans_alert() is entered:
2281  * - each incoming ACK, if state is not "Open"
2282  * - when arrived ACK is unusual, namely:
2283  *	* SACK
2284  *	* Duplicate ACK.
2285  *	* ECN ECE.
2286  *
2287  * Counting packets in flight is pretty simple.
2288  *
2289  *	in_flight = packets_out - left_out + retrans_out
2290  *
2291  *	packets_out is SND.NXT-SND.UNA counted in packets.
2292  *
2293  *	retrans_out is number of retransmitted segments.
2294  *
2295  *	left_out is number of segments left network, but not ACKed yet.
2296  *
2297  *		left_out = sacked_out + lost_out
2298  *
2299  *     sacked_out: Packets, which arrived to receiver out of order
2300  *		   and hence not ACKed. With SACKs this number is simply
2301  *		   amount of SACKed data. Even without SACKs
2302  *		   it is easy to give pretty reliable estimate of this number,
2303  *		   counting duplicate ACKs.
2304  *
2305  *       lost_out: Packets lost by network. TCP has no explicit
2306  *		   "loss notification" feedback from network (for now).
2307  *		   It means that this number can be only _guessed_.
2308  *		   Actually, it is the heuristics to predict lossage that
2309  *		   distinguishes different algorithms.
2310  *
2311  *	F.e. after RTO, when all the queue is considered as lost,
2312  *	lost_out = packets_out and in_flight = retrans_out.
2313  *
2314  *		Essentially, we have now a few algorithms detecting
2315  *		lost packets.
2316  *
2317  *		If the receiver supports SACK:
2318  *
2319  *		RFC6675/3517: It is the conventional algorithm. A packet is
2320  *		considered lost if the number of higher sequence packets
2321  *		SACKed is greater than or equal the DUPACK thoreshold
2322  *		(reordering). This is implemented in tcp_mark_head_lost and
2323  *		tcp_update_scoreboard.
2324  *
2325  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2326  *		(2017-) that checks timing instead of counting DUPACKs.
2327  *		Essentially a packet is considered lost if it's not S/ACKed
2328  *		after RTT + reordering_window, where both metrics are
2329  *		dynamically measured and adjusted. This is implemented in
2330  *		tcp_rack_mark_lost.
2331  *
2332  *		If the receiver does not support SACK:
2333  *
2334  *		NewReno (RFC6582): in Recovery we assume that one segment
2335  *		is lost (classic Reno). While we are in Recovery and
2336  *		a partial ACK arrives, we assume that one more packet
2337  *		is lost (NewReno). This heuristics are the same in NewReno
2338  *		and SACK.
2339  *
2340  * Really tricky (and requiring careful tuning) part of algorithm
2341  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2342  * The first determines the moment _when_ we should reduce CWND and,
2343  * hence, slow down forward transmission. In fact, it determines the moment
2344  * when we decide that hole is caused by loss, rather than by a reorder.
2345  *
2346  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2347  * holes, caused by lost packets.
2348  *
2349  * And the most logically complicated part of algorithm is undo
2350  * heuristics. We detect false retransmits due to both too early
2351  * fast retransmit (reordering) and underestimated RTO, analyzing
2352  * timestamps and D-SACKs. When we detect that some segments were
2353  * retransmitted by mistake and CWND reduction was wrong, we undo
2354  * window reduction and abort recovery phase. This logic is hidden
2355  * inside several functions named tcp_try_undo_<something>.
2356  */
2357 
2358 /* This function decides, when we should leave Disordered state
2359  * and enter Recovery phase, reducing congestion window.
2360  *
2361  * Main question: may we further continue forward transmission
2362  * with the same cwnd?
2363  */
tcp_time_to_recover(struct sock * sk,int flag)2364 static bool tcp_time_to_recover(struct sock *sk, int flag)
2365 {
2366 	struct tcp_sock *tp = tcp_sk(sk);
2367 
2368 	/* Trick#1: The loss is proven. */
2369 	if (tp->lost_out)
2370 		return true;
2371 
2372 	/* Not-A-Trick#2 : Classic rule... */
2373 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2374 		return true;
2375 
2376 	return false;
2377 }
2378 
2379 /* Detect loss in event "A" above by marking head of queue up as lost.
2380  * For RFC3517 SACK, a segment is considered lost if it
2381  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2382  * the maximum SACKed segments to pass before reaching this limit.
2383  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2384 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2385 {
2386 	struct tcp_sock *tp = tcp_sk(sk);
2387 	struct sk_buff *skb;
2388 	int cnt;
2389 	/* Use SACK to deduce losses of new sequences sent during recovery */
2390 	const u32 loss_high = tp->snd_nxt;
2391 
2392 	WARN_ON(packets > tp->packets_out);
2393 	skb = tp->lost_skb_hint;
2394 	if (skb) {
2395 		/* Head already handled? */
2396 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2397 			return;
2398 		cnt = tp->lost_cnt_hint;
2399 	} else {
2400 		skb = tcp_rtx_queue_head(sk);
2401 		cnt = 0;
2402 	}
2403 
2404 	skb_rbtree_walk_from(skb) {
2405 		/* TODO: do this better */
2406 		/* this is not the most efficient way to do this... */
2407 		tp->lost_skb_hint = skb;
2408 		tp->lost_cnt_hint = cnt;
2409 
2410 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2411 			break;
2412 
2413 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2414 			cnt += tcp_skb_pcount(skb);
2415 
2416 		if (cnt > packets)
2417 			break;
2418 
2419 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2420 			tcp_mark_skb_lost(sk, skb);
2421 
2422 		if (mark_head)
2423 			break;
2424 	}
2425 	tcp_verify_left_out(tp);
2426 }
2427 
2428 /* Account newly detected lost packet(s) */
2429 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2430 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2431 {
2432 	struct tcp_sock *tp = tcp_sk(sk);
2433 
2434 	if (tcp_is_sack(tp)) {
2435 		int sacked_upto = tp->sacked_out - tp->reordering;
2436 		if (sacked_upto >= 0)
2437 			tcp_mark_head_lost(sk, sacked_upto, 0);
2438 		else if (fast_rexmit)
2439 			tcp_mark_head_lost(sk, 1, 1);
2440 	}
2441 }
2442 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2443 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2444 {
2445 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2446 	       before(tp->rx_opt.rcv_tsecr, when);
2447 }
2448 
2449 /* skb is spurious retransmitted if the returned timestamp echo
2450  * reply is prior to the skb transmission time
2451  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2452 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2453 				     const struct sk_buff *skb)
2454 {
2455 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2456 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2457 }
2458 
2459 /* Nothing was retransmitted or returned timestamp is less
2460  * than timestamp of the first retransmission.
2461  */
tcp_packet_delayed(const struct tcp_sock * tp)2462 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2463 {
2464 	const struct sock *sk = (const struct sock *)tp;
2465 
2466 	/* Received an echoed timestamp before the first retransmission? */
2467 	if (tp->retrans_stamp)
2468 		return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2469 
2470 	/* We set tp->retrans_stamp upon the first retransmission of a loss
2471 	 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2472 	 * retransmission has happened yet (likely due to TSQ, which can cause
2473 	 * fast retransmits to be delayed). So if snd_una advanced while
2474 	 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2475 	 * not lost. But there are exceptions where we retransmit but then
2476 	 * clear tp->retrans_stamp, so we check for those exceptions.
2477 	 */
2478 
2479 	/* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2480 	 * clears tp->retrans_stamp when snd_una == high_seq.
2481 	 */
2482 	if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2483 		return false;
2484 
2485 	/* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2486 	 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2487 	 * retransmitted.
2488 	 */
2489 	if (sk->sk_state == TCP_SYN_SENT)
2490 		return false;
2491 
2492 	return true;	/* tp->retrans_stamp is zero; no retransmit yet */
2493 }
2494 
2495 /* Undo procedures. */
2496 
2497 /* We can clear retrans_stamp when there are no retransmissions in the
2498  * window. It would seem that it is trivially available for us in
2499  * tp->retrans_out, however, that kind of assumptions doesn't consider
2500  * what will happen if errors occur when sending retransmission for the
2501  * second time. ...It could the that such segment has only
2502  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2503  * the head skb is enough except for some reneging corner cases that
2504  * are not worth the effort.
2505  *
2506  * Main reason for all this complexity is the fact that connection dying
2507  * time now depends on the validity of the retrans_stamp, in particular,
2508  * that successive retransmissions of a segment must not advance
2509  * retrans_stamp under any conditions.
2510  */
tcp_any_retrans_done(const struct sock * sk)2511 static bool tcp_any_retrans_done(const struct sock *sk)
2512 {
2513 	const struct tcp_sock *tp = tcp_sk(sk);
2514 	struct sk_buff *skb;
2515 
2516 	if (tp->retrans_out)
2517 		return true;
2518 
2519 	skb = tcp_rtx_queue_head(sk);
2520 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2521 		return true;
2522 
2523 	return false;
2524 }
2525 
2526 /* If loss recovery is finished and there are no retransmits out in the
2527  * network, then we clear retrans_stamp so that upon the next loss recovery
2528  * retransmits_timed_out() and timestamp-undo are using the correct value.
2529  */
tcp_retrans_stamp_cleanup(struct sock * sk)2530 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2531 {
2532 	if (!tcp_any_retrans_done(sk))
2533 		tcp_sk(sk)->retrans_stamp = 0;
2534 }
2535 
DBGUNDO(struct sock * sk,const char * msg)2536 static void DBGUNDO(struct sock *sk, const char *msg)
2537 {
2538 #if FASTRETRANS_DEBUG > 1
2539 	struct tcp_sock *tp = tcp_sk(sk);
2540 	struct inet_sock *inet = inet_sk(sk);
2541 
2542 	if (sk->sk_family == AF_INET) {
2543 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2544 			 msg,
2545 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2546 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2547 			 tp->snd_ssthresh, tp->prior_ssthresh,
2548 			 tp->packets_out);
2549 	}
2550 #if IS_ENABLED(CONFIG_IPV6)
2551 	else if (sk->sk_family == AF_INET6) {
2552 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2553 			 msg,
2554 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2555 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2556 			 tp->snd_ssthresh, tp->prior_ssthresh,
2557 			 tp->packets_out);
2558 	}
2559 #endif
2560 #endif
2561 }
2562 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2563 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2564 {
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 
2567 	if (unmark_loss) {
2568 		struct sk_buff *skb;
2569 
2570 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2571 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2572 		}
2573 		tp->lost_out = 0;
2574 		tcp_clear_all_retrans_hints(tp);
2575 	}
2576 
2577 	if (tp->prior_ssthresh) {
2578 		const struct inet_connection_sock *icsk = inet_csk(sk);
2579 
2580 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2581 
2582 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2583 			tp->snd_ssthresh = tp->prior_ssthresh;
2584 			tcp_ecn_withdraw_cwr(tp);
2585 		}
2586 	}
2587 	tp->snd_cwnd_stamp = tcp_jiffies32;
2588 	tp->undo_marker = 0;
2589 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2590 }
2591 
tcp_may_undo(const struct tcp_sock * tp)2592 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2593 {
2594 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2595 }
2596 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2597 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2598 {
2599 	struct tcp_sock *tp = tcp_sk(sk);
2600 
2601 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2602 		/* Hold old state until something *above* high_seq
2603 		 * is ACKed. For Reno it is MUST to prevent false
2604 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2605 		if (!tcp_any_retrans_done(sk))
2606 			tp->retrans_stamp = 0;
2607 		return true;
2608 	}
2609 	return false;
2610 }
2611 
2612 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2613 static bool tcp_try_undo_recovery(struct sock *sk)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 
2617 	if (tcp_may_undo(tp)) {
2618 		int mib_idx;
2619 
2620 		/* Happy end! We did not retransmit anything
2621 		 * or our original transmission succeeded.
2622 		 */
2623 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2624 		tcp_undo_cwnd_reduction(sk, false);
2625 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2626 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2627 		else
2628 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2629 
2630 		NET_INC_STATS(sock_net(sk), mib_idx);
2631 	} else if (tp->rack.reo_wnd_persist) {
2632 		tp->rack.reo_wnd_persist--;
2633 	}
2634 	if (tcp_is_non_sack_preventing_reopen(sk))
2635 		return true;
2636 	tcp_set_ca_state(sk, TCP_CA_Open);
2637 	tp->is_sack_reneg = 0;
2638 	return false;
2639 }
2640 
2641 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2642 static bool tcp_try_undo_dsack(struct sock *sk)
2643 {
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 
2646 	if (tp->undo_marker && !tp->undo_retrans) {
2647 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2648 					       tp->rack.reo_wnd_persist + 1);
2649 		DBGUNDO(sk, "D-SACK");
2650 		tcp_undo_cwnd_reduction(sk, false);
2651 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2652 		return true;
2653 	}
2654 	return false;
2655 }
2656 
2657 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2658 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 
2662 	if (frto_undo || tcp_may_undo(tp)) {
2663 		tcp_undo_cwnd_reduction(sk, true);
2664 
2665 		DBGUNDO(sk, "partial loss");
2666 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2667 		if (frto_undo)
2668 			NET_INC_STATS(sock_net(sk),
2669 					LINUX_MIB_TCPSPURIOUSRTOS);
2670 		inet_csk(sk)->icsk_retransmits = 0;
2671 		if (tcp_is_non_sack_preventing_reopen(sk))
2672 			return true;
2673 		if (frto_undo || tcp_is_sack(tp)) {
2674 			tcp_set_ca_state(sk, TCP_CA_Open);
2675 			tp->is_sack_reneg = 0;
2676 		}
2677 		return true;
2678 	}
2679 	return false;
2680 }
2681 
2682 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2683  * It computes the number of packets to send (sndcnt) based on packets newly
2684  * delivered:
2685  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2686  *	cwnd reductions across a full RTT.
2687  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2688  *      But when SND_UNA is acked without further losses,
2689  *      slow starts cwnd up to ssthresh to speed up the recovery.
2690  */
tcp_init_cwnd_reduction(struct sock * sk)2691 static void tcp_init_cwnd_reduction(struct sock *sk)
2692 {
2693 	struct tcp_sock *tp = tcp_sk(sk);
2694 
2695 	tp->high_seq = tp->snd_nxt;
2696 	tp->tlp_high_seq = 0;
2697 	tp->snd_cwnd_cnt = 0;
2698 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2699 	tp->prr_delivered = 0;
2700 	tp->prr_out = 0;
2701 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2702 	tcp_ecn_queue_cwr(tp);
2703 }
2704 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2705 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2706 {
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 	int sndcnt = 0;
2709 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2710 
2711 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2712 		return;
2713 
2714 	tp->prr_delivered += newly_acked_sacked;
2715 	if (delta < 0) {
2716 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2717 			       tp->prior_cwnd - 1;
2718 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2719 	} else {
2720 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2721 			       newly_acked_sacked);
2722 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2723 			sndcnt++;
2724 		sndcnt = min(delta, sndcnt);
2725 	}
2726 	/* Force a fast retransmit upon entering fast recovery */
2727 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2728 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2729 }
2730 
tcp_end_cwnd_reduction(struct sock * sk)2731 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 
2735 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2736 		return;
2737 
2738 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2739 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2740 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2741 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2742 		tp->snd_cwnd_stamp = tcp_jiffies32;
2743 	}
2744 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2745 }
2746 
2747 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2748 void tcp_enter_cwr(struct sock *sk)
2749 {
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 
2752 	tp->prior_ssthresh = 0;
2753 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2754 		tp->undo_marker = 0;
2755 		tcp_init_cwnd_reduction(sk);
2756 		tcp_set_ca_state(sk, TCP_CA_CWR);
2757 	}
2758 }
2759 EXPORT_SYMBOL(tcp_enter_cwr);
2760 
tcp_try_keep_open(struct sock * sk)2761 static void tcp_try_keep_open(struct sock *sk)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 	int state = TCP_CA_Open;
2765 
2766 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2767 		state = TCP_CA_Disorder;
2768 
2769 	if (inet_csk(sk)->icsk_ca_state != state) {
2770 		tcp_set_ca_state(sk, state);
2771 		tp->high_seq = tp->snd_nxt;
2772 	}
2773 }
2774 
tcp_try_to_open(struct sock * sk,int flag)2775 static void tcp_try_to_open(struct sock *sk, int flag)
2776 {
2777 	struct tcp_sock *tp = tcp_sk(sk);
2778 
2779 	tcp_verify_left_out(tp);
2780 
2781 	if (!tcp_any_retrans_done(sk))
2782 		tp->retrans_stamp = 0;
2783 
2784 	if (flag & FLAG_ECE)
2785 		tcp_enter_cwr(sk);
2786 
2787 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2788 		tcp_try_keep_open(sk);
2789 	}
2790 }
2791 
tcp_mtup_probe_failed(struct sock * sk)2792 static void tcp_mtup_probe_failed(struct sock *sk)
2793 {
2794 	struct inet_connection_sock *icsk = inet_csk(sk);
2795 
2796 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2797 	icsk->icsk_mtup.probe_size = 0;
2798 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2799 }
2800 
tcp_mtup_probe_success(struct sock * sk)2801 static void tcp_mtup_probe_success(struct sock *sk)
2802 {
2803 	struct tcp_sock *tp = tcp_sk(sk);
2804 	struct inet_connection_sock *icsk = inet_csk(sk);
2805 	u64 val;
2806 
2807 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2808 
2809 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2810 	do_div(val, icsk->icsk_mtup.probe_size);
2811 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2812 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2813 
2814 	tp->snd_cwnd_cnt = 0;
2815 	tp->snd_cwnd_stamp = tcp_jiffies32;
2816 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2817 
2818 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2819 	icsk->icsk_mtup.probe_size = 0;
2820 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2821 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2822 }
2823 
2824 /* Sometimes we deduce that packets have been dropped due to reasons other than
2825  * congestion, like path MTU reductions or failed client TFO attempts. In these
2826  * cases we call this function to retransmit as many packets as cwnd allows,
2827  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2828  * non-zero value (and may do so in a later calling context due to TSQ), we
2829  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2830  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2831  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2832  * prematurely).
2833  */
tcp_non_congestion_loss_retransmit(struct sock * sk)2834 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2835 {
2836 	const struct inet_connection_sock *icsk = inet_csk(sk);
2837 	struct tcp_sock *tp = tcp_sk(sk);
2838 
2839 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2840 		tp->high_seq = tp->snd_nxt;
2841 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2842 		tp->prior_ssthresh = 0;
2843 		tp->undo_marker = 0;
2844 		tcp_set_ca_state(sk, TCP_CA_Loss);
2845 	}
2846 	tcp_xmit_retransmit_queue(sk);
2847 }
2848 
2849 /* Do a simple retransmit without using the backoff mechanisms in
2850  * tcp_timer. This is used for path mtu discovery.
2851  * The socket is already locked here.
2852  */
tcp_simple_retransmit(struct sock * sk)2853 void tcp_simple_retransmit(struct sock *sk)
2854 {
2855 	struct tcp_sock *tp = tcp_sk(sk);
2856 	struct sk_buff *skb;
2857 	int mss;
2858 
2859 	/* A fastopen SYN request is stored as two separate packets within
2860 	 * the retransmit queue, this is done by tcp_send_syn_data().
2861 	 * As a result simply checking the MSS of the frames in the queue
2862 	 * will not work for the SYN packet.
2863 	 *
2864 	 * Us being here is an indication of a path MTU issue so we can
2865 	 * assume that the fastopen SYN was lost and just mark all the
2866 	 * frames in the retransmit queue as lost. We will use an MSS of
2867 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2868 	 */
2869 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2870 		mss = -1;
2871 	else
2872 		mss = tcp_current_mss(sk);
2873 
2874 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2875 		if (tcp_skb_seglen(skb) > mss)
2876 			tcp_mark_skb_lost(sk, skb);
2877 	}
2878 
2879 	tcp_clear_retrans_hints_partial(tp);
2880 
2881 	if (!tp->lost_out)
2882 		return;
2883 
2884 	if (tcp_is_reno(tp))
2885 		tcp_limit_reno_sacked(tp);
2886 
2887 	tcp_verify_left_out(tp);
2888 
2889 	/* Don't muck with the congestion window here.
2890 	 * Reason is that we do not increase amount of _data_
2891 	 * in network, but units changed and effective
2892 	 * cwnd/ssthresh really reduced now.
2893 	 */
2894 	tcp_non_congestion_loss_retransmit(sk);
2895 }
2896 EXPORT_SYMBOL(tcp_simple_retransmit);
2897 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2898 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2899 {
2900 	struct tcp_sock *tp = tcp_sk(sk);
2901 	int mib_idx;
2902 
2903 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2904 	tcp_retrans_stamp_cleanup(sk);
2905 
2906 	if (tcp_is_reno(tp))
2907 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2908 	else
2909 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2910 
2911 	NET_INC_STATS(sock_net(sk), mib_idx);
2912 
2913 	tp->prior_ssthresh = 0;
2914 	tcp_init_undo(tp);
2915 
2916 	if (!tcp_in_cwnd_reduction(sk)) {
2917 		if (!ece_ack)
2918 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2919 		tcp_init_cwnd_reduction(sk);
2920 	}
2921 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2922 }
2923 
tcp_update_rto_time(struct tcp_sock * tp)2924 static void tcp_update_rto_time(struct tcp_sock *tp)
2925 {
2926 	if (tp->rto_stamp) {
2927 		tp->total_rto_time += tcp_time_stamp(tp) - tp->rto_stamp;
2928 		tp->rto_stamp = 0;
2929 	}
2930 }
2931 
2932 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2933  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2934  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2935 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2936 			     int *rexmit)
2937 {
2938 	struct tcp_sock *tp = tcp_sk(sk);
2939 	bool recovered = !before(tp->snd_una, tp->high_seq);
2940 
2941 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2942 	    tcp_try_undo_loss(sk, false))
2943 		return;
2944 
2945 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2946 		/* Step 3.b. A timeout is spurious if not all data are
2947 		 * lost, i.e., never-retransmitted data are (s)acked.
2948 		 */
2949 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2950 		    tcp_try_undo_loss(sk, true))
2951 			return;
2952 
2953 		if (after(tp->snd_nxt, tp->high_seq)) {
2954 			if (flag & FLAG_DATA_SACKED || num_dupack)
2955 				tp->frto = 0; /* Step 3.a. loss was real */
2956 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2957 			tp->high_seq = tp->snd_nxt;
2958 			/* Step 2.b. Try send new data (but deferred until cwnd
2959 			 * is updated in tcp_ack()). Otherwise fall back to
2960 			 * the conventional recovery.
2961 			 */
2962 			if (!tcp_write_queue_empty(sk) &&
2963 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2964 				*rexmit = REXMIT_NEW;
2965 				return;
2966 			}
2967 			tp->frto = 0;
2968 		}
2969 	}
2970 
2971 	if (recovered) {
2972 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2973 		tcp_try_undo_recovery(sk);
2974 		return;
2975 	}
2976 	if (tcp_is_reno(tp)) {
2977 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2978 		 * delivered. Lower inflight to clock out (re)transmissions.
2979 		 */
2980 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2981 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2982 		else if (flag & FLAG_SND_UNA_ADVANCED)
2983 			tcp_reset_reno_sack(tp);
2984 	}
2985 	*rexmit = REXMIT_LOST;
2986 }
2987 
tcp_force_fast_retransmit(struct sock * sk)2988 static bool tcp_force_fast_retransmit(struct sock *sk)
2989 {
2990 	struct tcp_sock *tp = tcp_sk(sk);
2991 
2992 	return after(tcp_highest_sack_seq(tp),
2993 		     tp->snd_una + tp->reordering * tp->mss_cache);
2994 }
2995 
2996 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2997 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2998 				 bool *do_lost)
2999 {
3000 	struct tcp_sock *tp = tcp_sk(sk);
3001 
3002 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
3003 		/* Plain luck! Hole if filled with delayed
3004 		 * packet, rather than with a retransmit. Check reordering.
3005 		 */
3006 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
3007 
3008 		/* We are getting evidence that the reordering degree is higher
3009 		 * than we realized. If there are no retransmits out then we
3010 		 * can undo. Otherwise we clock out new packets but do not
3011 		 * mark more packets lost or retransmit more.
3012 		 */
3013 		if (tp->retrans_out)
3014 			return true;
3015 
3016 		if (!tcp_any_retrans_done(sk))
3017 			tp->retrans_stamp = 0;
3018 
3019 		DBGUNDO(sk, "partial recovery");
3020 		tcp_undo_cwnd_reduction(sk, true);
3021 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3022 		tcp_try_keep_open(sk);
3023 	} else {
3024 		/* Partial ACK arrived. Force fast retransmit. */
3025 		*do_lost = tcp_force_fast_retransmit(sk);
3026 	}
3027 	return false;
3028 }
3029 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3030 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3031 {
3032 	struct tcp_sock *tp = tcp_sk(sk);
3033 
3034 	if (tcp_rtx_queue_empty(sk))
3035 		return;
3036 
3037 	if (unlikely(tcp_is_reno(tp))) {
3038 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3039 	} else if (tcp_is_rack(sk)) {
3040 		u32 prior_retrans = tp->retrans_out;
3041 
3042 		if (tcp_rack_mark_lost(sk))
3043 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3044 		if (prior_retrans > tp->retrans_out)
3045 			*ack_flag |= FLAG_LOST_RETRANS;
3046 	}
3047 }
3048 
3049 /* Process an event, which can update packets-in-flight not trivially.
3050  * Main goal of this function is to calculate new estimate for left_out,
3051  * taking into account both packets sitting in receiver's buffer and
3052  * packets lost by network.
3053  *
3054  * Besides that it updates the congestion state when packet loss or ECN
3055  * is detected. But it does not reduce the cwnd, it is done by the
3056  * congestion control later.
3057  *
3058  * It does _not_ decide what to send, it is made in function
3059  * tcp_xmit_retransmit_queue().
3060  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3061 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3062 				  int num_dupack, int *ack_flag, int *rexmit)
3063 {
3064 	struct inet_connection_sock *icsk = inet_csk(sk);
3065 	struct tcp_sock *tp = tcp_sk(sk);
3066 	int fast_rexmit = 0, flag = *ack_flag;
3067 	bool ece_ack = flag & FLAG_ECE;
3068 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3069 				      tcp_force_fast_retransmit(sk));
3070 
3071 	if (!tp->packets_out && tp->sacked_out)
3072 		tp->sacked_out = 0;
3073 
3074 	/* Now state machine starts.
3075 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3076 	if (ece_ack)
3077 		tp->prior_ssthresh = 0;
3078 
3079 	/* B. In all the states check for reneging SACKs. */
3080 	if (tcp_check_sack_reneging(sk, ack_flag))
3081 		return;
3082 
3083 	/* C. Check consistency of the current state. */
3084 	tcp_verify_left_out(tp);
3085 
3086 	/* D. Check state exit conditions. State can be terminated
3087 	 *    when high_seq is ACKed. */
3088 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3089 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3090 		tp->retrans_stamp = 0;
3091 	} else if (!before(tp->snd_una, tp->high_seq)) {
3092 		switch (icsk->icsk_ca_state) {
3093 		case TCP_CA_CWR:
3094 			/* CWR is to be held something *above* high_seq
3095 			 * is ACKed for CWR bit to reach receiver. */
3096 			if (tp->snd_una != tp->high_seq) {
3097 				tcp_end_cwnd_reduction(sk);
3098 				tcp_set_ca_state(sk, TCP_CA_Open);
3099 			}
3100 			break;
3101 
3102 		case TCP_CA_Recovery:
3103 			if (tcp_is_reno(tp))
3104 				tcp_reset_reno_sack(tp);
3105 			if (tcp_try_undo_recovery(sk))
3106 				return;
3107 			tcp_end_cwnd_reduction(sk);
3108 			break;
3109 		}
3110 	}
3111 
3112 	/* E. Process state. */
3113 	switch (icsk->icsk_ca_state) {
3114 	case TCP_CA_Recovery:
3115 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3116 			if (tcp_is_reno(tp))
3117 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3118 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3119 			return;
3120 
3121 		if (tcp_try_undo_dsack(sk))
3122 			tcp_try_to_open(sk, flag);
3123 
3124 		tcp_identify_packet_loss(sk, ack_flag);
3125 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3126 			if (!tcp_time_to_recover(sk, flag))
3127 				return;
3128 			/* Undo reverts the recovery state. If loss is evident,
3129 			 * starts a new recovery (e.g. reordering then loss);
3130 			 */
3131 			tcp_enter_recovery(sk, ece_ack);
3132 		}
3133 		break;
3134 	case TCP_CA_Loss:
3135 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3136 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3137 			tcp_update_rto_time(tp);
3138 		tcp_identify_packet_loss(sk, ack_flag);
3139 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3140 		      (*ack_flag & FLAG_LOST_RETRANS)))
3141 			return;
3142 		/* Change state if cwnd is undone or retransmits are lost */
3143 		fallthrough;
3144 	default:
3145 		if (tcp_is_reno(tp)) {
3146 			if (flag & FLAG_SND_UNA_ADVANCED)
3147 				tcp_reset_reno_sack(tp);
3148 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3149 		}
3150 
3151 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3152 			tcp_try_undo_dsack(sk);
3153 
3154 		tcp_identify_packet_loss(sk, ack_flag);
3155 		if (!tcp_time_to_recover(sk, flag)) {
3156 			tcp_try_to_open(sk, flag);
3157 			return;
3158 		}
3159 
3160 		/* MTU probe failure: don't reduce cwnd */
3161 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3162 		    icsk->icsk_mtup.probe_size &&
3163 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3164 			tcp_mtup_probe_failed(sk);
3165 			/* Restores the reduction we did in tcp_mtup_probe() */
3166 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3167 			tcp_simple_retransmit(sk);
3168 			return;
3169 		}
3170 
3171 		/* Otherwise enter Recovery state */
3172 		tcp_enter_recovery(sk, ece_ack);
3173 		fast_rexmit = 1;
3174 	}
3175 
3176 	if (!tcp_is_rack(sk) && do_lost)
3177 		tcp_update_scoreboard(sk, fast_rexmit);
3178 	*rexmit = REXMIT_LOST;
3179 }
3180 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3181 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3182 {
3183 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3184 	struct tcp_sock *tp = tcp_sk(sk);
3185 
3186 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3187 		/* If the remote keeps returning delayed ACKs, eventually
3188 		 * the min filter would pick it up and overestimate the
3189 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3190 		 */
3191 		return;
3192 	}
3193 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3194 			   rtt_us ? : jiffies_to_usecs(1));
3195 }
3196 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3197 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3198 			       long seq_rtt_us, long sack_rtt_us,
3199 			       long ca_rtt_us, struct rate_sample *rs)
3200 {
3201 	const struct tcp_sock *tp = tcp_sk(sk);
3202 
3203 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3204 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3205 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3206 	 * is acked (RFC6298).
3207 	 */
3208 	if (seq_rtt_us < 0)
3209 		seq_rtt_us = sack_rtt_us;
3210 
3211 	/* RTTM Rule: A TSecr value received in a segment is used to
3212 	 * update the averaged RTT measurement only if the segment
3213 	 * acknowledges some new data, i.e., only if it advances the
3214 	 * left edge of the send window.
3215 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3216 	 */
3217 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3218 	    flag & FLAG_ACKED) {
3219 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3220 
3221 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3222 			if (!delta)
3223 				delta = 1;
3224 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3225 			ca_rtt_us = seq_rtt_us;
3226 		}
3227 	}
3228 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3229 	if (seq_rtt_us < 0)
3230 		return false;
3231 
3232 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3233 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3234 	 * values will be skipped with the seq_rtt_us < 0 check above.
3235 	 */
3236 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3237 	tcp_rtt_estimator(sk, seq_rtt_us);
3238 	tcp_set_rto(sk);
3239 
3240 	/* RFC6298: only reset backoff on valid RTT measurement. */
3241 	inet_csk(sk)->icsk_backoff = 0;
3242 	return true;
3243 }
3244 
3245 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3246 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3247 {
3248 	struct rate_sample rs;
3249 	long rtt_us = -1L;
3250 
3251 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3252 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3253 
3254 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3255 }
3256 
3257 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3258 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3259 {
3260 	const struct inet_connection_sock *icsk = inet_csk(sk);
3261 
3262 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3263 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3264 }
3265 
3266 /* Restart timer after forward progress on connection.
3267  * RFC2988 recommends to restart timer to now+rto.
3268  */
tcp_rearm_rto(struct sock * sk)3269 void tcp_rearm_rto(struct sock *sk)
3270 {
3271 	const struct inet_connection_sock *icsk = inet_csk(sk);
3272 	struct tcp_sock *tp = tcp_sk(sk);
3273 
3274 	/* If the retrans timer is currently being used by Fast Open
3275 	 * for SYN-ACK retrans purpose, stay put.
3276 	 */
3277 	if (rcu_access_pointer(tp->fastopen_rsk))
3278 		return;
3279 
3280 	if (!tp->packets_out) {
3281 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3282 	} else {
3283 		u32 rto = inet_csk(sk)->icsk_rto;
3284 		/* Offset the time elapsed after installing regular RTO */
3285 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3286 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3287 			s64 delta_us = tcp_rto_delta_us(sk);
3288 			/* delta_us may not be positive if the socket is locked
3289 			 * when the retrans timer fires and is rescheduled.
3290 			 */
3291 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3292 		}
3293 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3294 				     TCP_RTO_MAX);
3295 	}
3296 }
3297 
3298 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3299 static void tcp_set_xmit_timer(struct sock *sk)
3300 {
3301 	if (!tcp_schedule_loss_probe(sk, true))
3302 		tcp_rearm_rto(sk);
3303 }
3304 
3305 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3306 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3307 {
3308 	struct tcp_sock *tp = tcp_sk(sk);
3309 	u32 packets_acked;
3310 
3311 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3312 
3313 	packets_acked = tcp_skb_pcount(skb);
3314 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3315 		return 0;
3316 	packets_acked -= tcp_skb_pcount(skb);
3317 
3318 	if (packets_acked) {
3319 		BUG_ON(tcp_skb_pcount(skb) == 0);
3320 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3321 	}
3322 
3323 	return packets_acked;
3324 }
3325 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3326 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3327 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3328 {
3329 	const struct skb_shared_info *shinfo;
3330 
3331 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3332 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3333 		return;
3334 
3335 	shinfo = skb_shinfo(skb);
3336 	if (!before(shinfo->tskey, prior_snd_una) &&
3337 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3338 		tcp_skb_tsorted_save(skb) {
3339 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3340 		} tcp_skb_tsorted_restore(skb);
3341 	}
3342 }
3343 
3344 /* Remove acknowledged frames from the retransmission queue. If our packet
3345  * is before the ack sequence we can discard it as it's confirmed to have
3346  * arrived at the other end.
3347  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3348 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3349 			       u32 prior_fack, u32 prior_snd_una,
3350 			       struct tcp_sacktag_state *sack, bool ece_ack)
3351 {
3352 	const struct inet_connection_sock *icsk = inet_csk(sk);
3353 	u64 first_ackt, last_ackt;
3354 	struct tcp_sock *tp = tcp_sk(sk);
3355 	u32 prior_sacked = tp->sacked_out;
3356 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3357 	struct sk_buff *skb, *next;
3358 	bool fully_acked = true;
3359 	long sack_rtt_us = -1L;
3360 	long seq_rtt_us = -1L;
3361 	long ca_rtt_us = -1L;
3362 	u32 pkts_acked = 0;
3363 	bool rtt_update;
3364 	int flag = 0;
3365 
3366 	first_ackt = 0;
3367 
3368 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3369 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3370 		const u32 start_seq = scb->seq;
3371 		u8 sacked = scb->sacked;
3372 		u32 acked_pcount;
3373 
3374 		/* Determine how many packets and what bytes were acked, tso and else */
3375 		if (after(scb->end_seq, tp->snd_una)) {
3376 			if (tcp_skb_pcount(skb) == 1 ||
3377 			    !after(tp->snd_una, scb->seq))
3378 				break;
3379 
3380 			acked_pcount = tcp_tso_acked(sk, skb);
3381 			if (!acked_pcount)
3382 				break;
3383 			fully_acked = false;
3384 		} else {
3385 			acked_pcount = tcp_skb_pcount(skb);
3386 		}
3387 
3388 		if (unlikely(sacked & TCPCB_RETRANS)) {
3389 			if (sacked & TCPCB_SACKED_RETRANS)
3390 				tp->retrans_out -= acked_pcount;
3391 			flag |= FLAG_RETRANS_DATA_ACKED;
3392 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3393 			last_ackt = tcp_skb_timestamp_us(skb);
3394 			WARN_ON_ONCE(last_ackt == 0);
3395 			if (!first_ackt)
3396 				first_ackt = last_ackt;
3397 
3398 			if (before(start_seq, reord))
3399 				reord = start_seq;
3400 			if (!after(scb->end_seq, tp->high_seq))
3401 				flag |= FLAG_ORIG_SACK_ACKED;
3402 		}
3403 
3404 		if (sacked & TCPCB_SACKED_ACKED) {
3405 			tp->sacked_out -= acked_pcount;
3406 		} else if (tcp_is_sack(tp)) {
3407 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3408 			if (!tcp_skb_spurious_retrans(tp, skb))
3409 				tcp_rack_advance(tp, sacked, scb->end_seq,
3410 						 tcp_skb_timestamp_us(skb));
3411 		}
3412 		if (sacked & TCPCB_LOST)
3413 			tp->lost_out -= acked_pcount;
3414 
3415 		tp->packets_out -= acked_pcount;
3416 		pkts_acked += acked_pcount;
3417 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3418 
3419 		/* Initial outgoing SYN's get put onto the write_queue
3420 		 * just like anything else we transmit.  It is not
3421 		 * true data, and if we misinform our callers that
3422 		 * this ACK acks real data, we will erroneously exit
3423 		 * connection startup slow start one packet too
3424 		 * quickly.  This is severely frowned upon behavior.
3425 		 */
3426 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3427 			flag |= FLAG_DATA_ACKED;
3428 		} else {
3429 			flag |= FLAG_SYN_ACKED;
3430 			tp->retrans_stamp = 0;
3431 		}
3432 
3433 		if (!fully_acked)
3434 			break;
3435 
3436 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3437 
3438 		next = skb_rb_next(skb);
3439 		if (unlikely(skb == tp->retransmit_skb_hint))
3440 			tp->retransmit_skb_hint = NULL;
3441 		if (unlikely(skb == tp->lost_skb_hint))
3442 			tp->lost_skb_hint = NULL;
3443 		tcp_highest_sack_replace(sk, skb, next);
3444 		tcp_rtx_queue_unlink_and_free(skb, sk);
3445 	}
3446 
3447 	if (!skb)
3448 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3449 
3450 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3451 		tp->snd_up = tp->snd_una;
3452 
3453 	if (skb) {
3454 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3455 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3456 			flag |= FLAG_SACK_RENEGING;
3457 	}
3458 
3459 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3460 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3461 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3462 
3463 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3464 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3465 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3466 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3467 			/* Conservatively mark a delayed ACK. It's typically
3468 			 * from a lone runt packet over the round trip to
3469 			 * a receiver w/o out-of-order or CE events.
3470 			 */
3471 			flag |= FLAG_ACK_MAYBE_DELAYED;
3472 		}
3473 	}
3474 	if (sack->first_sackt) {
3475 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3476 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3477 	}
3478 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3479 					ca_rtt_us, sack->rate);
3480 
3481 	if (flag & FLAG_ACKED) {
3482 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3483 		if (unlikely(icsk->icsk_mtup.probe_size &&
3484 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3485 			tcp_mtup_probe_success(sk);
3486 		}
3487 
3488 		if (tcp_is_reno(tp)) {
3489 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3490 
3491 			/* If any of the cumulatively ACKed segments was
3492 			 * retransmitted, non-SACK case cannot confirm that
3493 			 * progress was due to original transmission due to
3494 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3495 			 * the packets may have been never retransmitted.
3496 			 */
3497 			if (flag & FLAG_RETRANS_DATA_ACKED)
3498 				flag &= ~FLAG_ORIG_SACK_ACKED;
3499 		} else {
3500 			int delta;
3501 
3502 			/* Non-retransmitted hole got filled? That's reordering */
3503 			if (before(reord, prior_fack))
3504 				tcp_check_sack_reordering(sk, reord, 0);
3505 
3506 			delta = prior_sacked - tp->sacked_out;
3507 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3508 		}
3509 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3510 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3511 						    tcp_skb_timestamp_us(skb))) {
3512 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3513 		 * after when the head was last (re)transmitted. Otherwise the
3514 		 * timeout may continue to extend in loss recovery.
3515 		 */
3516 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3517 	}
3518 
3519 	if (icsk->icsk_ca_ops->pkts_acked) {
3520 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3521 					     .rtt_us = sack->rate->rtt_us };
3522 
3523 		sample.in_flight = tp->mss_cache *
3524 			(tp->delivered - sack->rate->prior_delivered);
3525 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3526 	}
3527 
3528 #if FASTRETRANS_DEBUG > 0
3529 	WARN_ON((int)tp->sacked_out < 0);
3530 	WARN_ON((int)tp->lost_out < 0);
3531 	WARN_ON((int)tp->retrans_out < 0);
3532 	if (!tp->packets_out && tcp_is_sack(tp)) {
3533 		icsk = inet_csk(sk);
3534 		if (tp->lost_out) {
3535 			pr_debug("Leak l=%u %d\n",
3536 				 tp->lost_out, icsk->icsk_ca_state);
3537 			tp->lost_out = 0;
3538 		}
3539 		if (tp->sacked_out) {
3540 			pr_debug("Leak s=%u %d\n",
3541 				 tp->sacked_out, icsk->icsk_ca_state);
3542 			tp->sacked_out = 0;
3543 		}
3544 		if (tp->retrans_out) {
3545 			pr_debug("Leak r=%u %d\n",
3546 				 tp->retrans_out, icsk->icsk_ca_state);
3547 			tp->retrans_out = 0;
3548 		}
3549 	}
3550 #endif
3551 	return flag;
3552 }
3553 
tcp_ack_probe(struct sock * sk)3554 static void tcp_ack_probe(struct sock *sk)
3555 {
3556 	struct inet_connection_sock *icsk = inet_csk(sk);
3557 	struct sk_buff *head = tcp_send_head(sk);
3558 	const struct tcp_sock *tp = tcp_sk(sk);
3559 
3560 	/* Was it a usable window open? */
3561 	if (!head)
3562 		return;
3563 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3564 		icsk->icsk_backoff = 0;
3565 		icsk->icsk_probes_tstamp = 0;
3566 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3567 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3568 		 * This function is not for random using!
3569 		 */
3570 	} else {
3571 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3572 
3573 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3574 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3575 	}
3576 }
3577 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3578 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3579 {
3580 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3581 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3582 }
3583 
3584 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3585 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3586 {
3587 	/* If reordering is high then always grow cwnd whenever data is
3588 	 * delivered regardless of its ordering. Otherwise stay conservative
3589 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3590 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3591 	 * cwnd in tcp_fastretrans_alert() based on more states.
3592 	 */
3593 	if (tcp_sk(sk)->reordering >
3594 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3595 		return flag & FLAG_FORWARD_PROGRESS;
3596 
3597 	return flag & FLAG_DATA_ACKED;
3598 }
3599 
3600 /* The "ultimate" congestion control function that aims to replace the rigid
3601  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3602  * It's called toward the end of processing an ACK with precise rate
3603  * information. All transmission or retransmission are delayed afterwards.
3604  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3605 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3606 			     int flag, const struct rate_sample *rs)
3607 {
3608 	const struct inet_connection_sock *icsk = inet_csk(sk);
3609 
3610 	if (icsk->icsk_ca_ops->cong_control) {
3611 		icsk->icsk_ca_ops->cong_control(sk, rs);
3612 		return;
3613 	}
3614 
3615 	if (tcp_in_cwnd_reduction(sk)) {
3616 		/* Reduce cwnd if state mandates */
3617 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3618 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3619 		/* Advance cwnd if state allows */
3620 		tcp_cong_avoid(sk, ack, acked_sacked);
3621 	}
3622 	tcp_update_pacing_rate(sk);
3623 }
3624 
3625 /* Check that window update is acceptable.
3626  * The function assumes that snd_una<=ack<=snd_next.
3627  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3628 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3629 					const u32 ack, const u32 ack_seq,
3630 					const u32 nwin)
3631 {
3632 	return	after(ack, tp->snd_una) ||
3633 		after(ack_seq, tp->snd_wl1) ||
3634 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3635 }
3636 
3637 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3638 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3639 {
3640 	u32 delta = ack - tp->snd_una;
3641 
3642 	sock_owned_by_me((struct sock *)tp);
3643 	tp->bytes_acked += delta;
3644 	tp->snd_una = ack;
3645 }
3646 
3647 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3648 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3649 {
3650 	u32 delta = seq - tp->rcv_nxt;
3651 
3652 	sock_owned_by_me((struct sock *)tp);
3653 	tp->bytes_received += delta;
3654 	WRITE_ONCE(tp->rcv_nxt, seq);
3655 }
3656 
3657 /* Update our send window.
3658  *
3659  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3660  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3661  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3662 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3663 				 u32 ack_seq)
3664 {
3665 	struct tcp_sock *tp = tcp_sk(sk);
3666 	int flag = 0;
3667 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3668 
3669 	if (likely(!tcp_hdr(skb)->syn))
3670 		nwin <<= tp->rx_opt.snd_wscale;
3671 
3672 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3673 		flag |= FLAG_WIN_UPDATE;
3674 		tcp_update_wl(tp, ack_seq);
3675 
3676 		if (tp->snd_wnd != nwin) {
3677 			tp->snd_wnd = nwin;
3678 
3679 			/* Note, it is the only place, where
3680 			 * fast path is recovered for sending TCP.
3681 			 */
3682 			tp->pred_flags = 0;
3683 			tcp_fast_path_check(sk);
3684 
3685 			if (!tcp_write_queue_empty(sk))
3686 				tcp_slow_start_after_idle_check(sk);
3687 
3688 			if (nwin > tp->max_window) {
3689 				tp->max_window = nwin;
3690 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3691 			}
3692 		}
3693 	}
3694 
3695 	tcp_snd_una_update(tp, ack);
3696 
3697 	return flag;
3698 }
3699 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3700 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3701 				   u32 *last_oow_ack_time)
3702 {
3703 	/* Paired with the WRITE_ONCE() in this function. */
3704 	u32 val = READ_ONCE(*last_oow_ack_time);
3705 
3706 	if (val) {
3707 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3708 
3709 		if (0 <= elapsed &&
3710 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3711 			NET_INC_STATS(net, mib_idx);
3712 			return true;	/* rate-limited: don't send yet! */
3713 		}
3714 	}
3715 
3716 	/* Paired with the prior READ_ONCE() and with itself,
3717 	 * as we might be lockless.
3718 	 */
3719 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3720 
3721 	return false;	/* not rate-limited: go ahead, send dupack now! */
3722 }
3723 
3724 /* Return true if we're currently rate-limiting out-of-window ACKs and
3725  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3726  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3727  * attacks that send repeated SYNs or ACKs for the same connection. To
3728  * do this, we do not send a duplicate SYNACK or ACK if the remote
3729  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3730  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3731 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3732 			  int mib_idx, u32 *last_oow_ack_time)
3733 {
3734 	/* Data packets without SYNs are not likely part of an ACK loop. */
3735 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3736 	    !tcp_hdr(skb)->syn)
3737 		return false;
3738 
3739 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3740 }
3741 
3742 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3743 static void tcp_send_challenge_ack(struct sock *sk)
3744 {
3745 	struct tcp_sock *tp = tcp_sk(sk);
3746 	struct net *net = sock_net(sk);
3747 	u32 count, now, ack_limit;
3748 
3749 	/* First check our per-socket dupack rate limit. */
3750 	if (__tcp_oow_rate_limited(net,
3751 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3752 				   &tp->last_oow_ack_time))
3753 		return;
3754 
3755 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3756 	if (ack_limit == INT_MAX)
3757 		goto send_ack;
3758 
3759 	/* Then check host-wide RFC 5961 rate limit. */
3760 	now = jiffies / HZ;
3761 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3762 		u32 half = (ack_limit + 1) >> 1;
3763 
3764 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3765 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3766 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3767 	}
3768 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3769 	if (count > 0) {
3770 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3771 send_ack:
3772 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3773 		tcp_send_ack(sk);
3774 	}
3775 }
3776 
tcp_store_ts_recent(struct tcp_sock * tp)3777 static void tcp_store_ts_recent(struct tcp_sock *tp)
3778 {
3779 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3780 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3781 }
3782 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3783 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3784 {
3785 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3786 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3787 		 * extra check below makes sure this can only happen
3788 		 * for pure ACK frames.  -DaveM
3789 		 *
3790 		 * Not only, also it occurs for expired timestamps.
3791 		 */
3792 
3793 		if (tcp_paws_check(&tp->rx_opt, 0))
3794 			tcp_store_ts_recent(tp);
3795 	}
3796 }
3797 
3798 /* This routine deals with acks during a TLP episode and ends an episode by
3799  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3800  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3801 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3802 {
3803 	struct tcp_sock *tp = tcp_sk(sk);
3804 
3805 	if (before(ack, tp->tlp_high_seq))
3806 		return;
3807 
3808 	if (!tp->tlp_retrans) {
3809 		/* TLP of new data has been acknowledged */
3810 		tp->tlp_high_seq = 0;
3811 	} else if (flag & FLAG_DSACK_TLP) {
3812 		/* This DSACK means original and TLP probe arrived; no loss */
3813 		tp->tlp_high_seq = 0;
3814 	} else if (after(ack, tp->tlp_high_seq)) {
3815 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3816 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3817 		 */
3818 		tcp_init_cwnd_reduction(sk);
3819 		tcp_set_ca_state(sk, TCP_CA_CWR);
3820 		tcp_end_cwnd_reduction(sk);
3821 		tcp_try_keep_open(sk);
3822 		NET_INC_STATS(sock_net(sk),
3823 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3824 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3825 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3826 		/* Pure dupack: original and TLP probe arrived; no loss */
3827 		tp->tlp_high_seq = 0;
3828 	}
3829 }
3830 
tcp_in_ack_event(struct sock * sk,int flag)3831 static void tcp_in_ack_event(struct sock *sk, int flag)
3832 {
3833 	const struct inet_connection_sock *icsk = inet_csk(sk);
3834 
3835 	if (icsk->icsk_ca_ops->in_ack_event) {
3836 		u32 ack_ev_flags = 0;
3837 
3838 		if (flag & FLAG_WIN_UPDATE)
3839 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3840 		if (flag & FLAG_SLOWPATH) {
3841 			ack_ev_flags |= CA_ACK_SLOWPATH;
3842 			if (flag & FLAG_ECE)
3843 				ack_ev_flags |= CA_ACK_ECE;
3844 		}
3845 
3846 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3847 	}
3848 }
3849 
3850 /* Congestion control has updated the cwnd already. So if we're in
3851  * loss recovery then now we do any new sends (for FRTO) or
3852  * retransmits (for CA_Loss or CA_recovery) that make sense.
3853  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3854 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3855 {
3856 	struct tcp_sock *tp = tcp_sk(sk);
3857 
3858 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3859 		return;
3860 
3861 	if (unlikely(rexmit == REXMIT_NEW)) {
3862 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3863 					  TCP_NAGLE_OFF);
3864 		if (after(tp->snd_nxt, tp->high_seq))
3865 			return;
3866 		tp->frto = 0;
3867 	}
3868 	tcp_xmit_retransmit_queue(sk);
3869 }
3870 
3871 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3872 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3873 {
3874 	const struct net *net = sock_net(sk);
3875 	struct tcp_sock *tp = tcp_sk(sk);
3876 	u32 delivered;
3877 
3878 	delivered = tp->delivered - prior_delivered;
3879 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3880 	if (flag & FLAG_ECE)
3881 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3882 
3883 	return delivered;
3884 }
3885 
3886 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3887 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3888 {
3889 	struct inet_connection_sock *icsk = inet_csk(sk);
3890 	struct tcp_sock *tp = tcp_sk(sk);
3891 	struct tcp_sacktag_state sack_state;
3892 	struct rate_sample rs = { .prior_delivered = 0 };
3893 	u32 prior_snd_una = tp->snd_una;
3894 	bool is_sack_reneg = tp->is_sack_reneg;
3895 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3896 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3897 	int num_dupack = 0;
3898 	int prior_packets = tp->packets_out;
3899 	u32 delivered = tp->delivered;
3900 	u32 lost = tp->lost;
3901 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3902 	u32 prior_fack;
3903 
3904 	sack_state.first_sackt = 0;
3905 	sack_state.rate = &rs;
3906 	sack_state.sack_delivered = 0;
3907 
3908 	/* We very likely will need to access rtx queue. */
3909 	prefetch(sk->tcp_rtx_queue.rb_node);
3910 
3911 	/* If the ack is older than previous acks
3912 	 * then we can probably ignore it.
3913 	 */
3914 	if (before(ack, prior_snd_una)) {
3915 		u32 max_window;
3916 
3917 		/* do not accept ACK for bytes we never sent. */
3918 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3919 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3920 		if (before(ack, prior_snd_una - max_window)) {
3921 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3922 				tcp_send_challenge_ack(sk);
3923 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3924 		}
3925 		goto old_ack;
3926 	}
3927 
3928 	/* If the ack includes data we haven't sent yet, discard
3929 	 * this segment (RFC793 Section 3.9).
3930 	 */
3931 	if (after(ack, tp->snd_nxt))
3932 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3933 
3934 	if (after(ack, prior_snd_una)) {
3935 		flag |= FLAG_SND_UNA_ADVANCED;
3936 		icsk->icsk_retransmits = 0;
3937 
3938 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3939 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3940 			if (icsk->icsk_clean_acked)
3941 				icsk->icsk_clean_acked(sk, ack);
3942 #endif
3943 	}
3944 
3945 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3946 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3947 
3948 	/* ts_recent update must be made after we are sure that the packet
3949 	 * is in window.
3950 	 */
3951 	if (flag & FLAG_UPDATE_TS_RECENT)
3952 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3953 
3954 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3955 	    FLAG_SND_UNA_ADVANCED) {
3956 		/* Window is constant, pure forward advance.
3957 		 * No more checks are required.
3958 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3959 		 */
3960 		tcp_update_wl(tp, ack_seq);
3961 		tcp_snd_una_update(tp, ack);
3962 		flag |= FLAG_WIN_UPDATE;
3963 
3964 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3965 	} else {
3966 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3967 			flag |= FLAG_DATA;
3968 		else
3969 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3970 
3971 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3972 
3973 		if (TCP_SKB_CB(skb)->sacked)
3974 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3975 							&sack_state);
3976 
3977 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3978 			flag |= FLAG_ECE;
3979 
3980 		if (sack_state.sack_delivered)
3981 			tcp_count_delivered(tp, sack_state.sack_delivered,
3982 					    flag & FLAG_ECE);
3983 	}
3984 
3985 	/* This is a deviation from RFC3168 since it states that:
3986 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3987 	 * the congestion window, it SHOULD set the CWR bit only on the first
3988 	 * new data packet that it transmits."
3989 	 * We accept CWR on pure ACKs to be more robust
3990 	 * with widely-deployed TCP implementations that do this.
3991 	 */
3992 	tcp_ecn_accept_cwr(sk, skb);
3993 
3994 	/* We passed data and got it acked, remove any soft error
3995 	 * log. Something worked...
3996 	 */
3997 	WRITE_ONCE(sk->sk_err_soft, 0);
3998 	icsk->icsk_probes_out = 0;
3999 	tp->rcv_tstamp = tcp_jiffies32;
4000 	if (!prior_packets)
4001 		goto no_queue;
4002 
4003 	/* See if we can take anything off of the retransmit queue. */
4004 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4005 				    &sack_state, flag & FLAG_ECE);
4006 
4007 	tcp_rack_update_reo_wnd(sk, &rs);
4008 
4009 	tcp_in_ack_event(sk, flag);
4010 
4011 	if (tp->tlp_high_seq)
4012 		tcp_process_tlp_ack(sk, ack, flag);
4013 
4014 	if (tcp_ack_is_dubious(sk, flag)) {
4015 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4016 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4017 			num_dupack = 1;
4018 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4019 			if (!(flag & FLAG_DATA))
4020 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4021 		}
4022 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4023 				      &rexmit);
4024 	}
4025 
4026 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4027 	if (flag & FLAG_SET_XMIT_TIMER)
4028 		tcp_set_xmit_timer(sk);
4029 
4030 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4031 		sk_dst_confirm(sk);
4032 
4033 	delivered = tcp_newly_delivered(sk, delivered, flag);
4034 	lost = tp->lost - lost;			/* freshly marked lost */
4035 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4036 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4037 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4038 	tcp_xmit_recovery(sk, rexmit);
4039 	return 1;
4040 
4041 no_queue:
4042 	tcp_in_ack_event(sk, flag);
4043 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4044 	if (flag & FLAG_DSACKING_ACK) {
4045 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4046 				      &rexmit);
4047 		tcp_newly_delivered(sk, delivered, flag);
4048 	}
4049 	/* If this ack opens up a zero window, clear backoff.  It was
4050 	 * being used to time the probes, and is probably far higher than
4051 	 * it needs to be for normal retransmission.
4052 	 */
4053 	tcp_ack_probe(sk);
4054 
4055 	if (tp->tlp_high_seq)
4056 		tcp_process_tlp_ack(sk, ack, flag);
4057 	return 1;
4058 
4059 old_ack:
4060 	/* If data was SACKed, tag it and see if we should send more data.
4061 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4062 	 */
4063 	if (TCP_SKB_CB(skb)->sacked) {
4064 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4065 						&sack_state);
4066 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4067 				      &rexmit);
4068 		tcp_newly_delivered(sk, delivered, flag);
4069 		tcp_xmit_recovery(sk, rexmit);
4070 	}
4071 
4072 	return 0;
4073 }
4074 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4075 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4076 				      bool syn, struct tcp_fastopen_cookie *foc,
4077 				      bool exp_opt)
4078 {
4079 	/* Valid only in SYN or SYN-ACK with an even length.  */
4080 	if (!foc || !syn || len < 0 || (len & 1))
4081 		return;
4082 
4083 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4084 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4085 		memcpy(foc->val, cookie, len);
4086 	else if (len != 0)
4087 		len = -1;
4088 	foc->len = len;
4089 	foc->exp = exp_opt;
4090 }
4091 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4092 static bool smc_parse_options(const struct tcphdr *th,
4093 			      struct tcp_options_received *opt_rx,
4094 			      const unsigned char *ptr,
4095 			      int opsize)
4096 {
4097 #if IS_ENABLED(CONFIG_SMC)
4098 	if (static_branch_unlikely(&tcp_have_smc)) {
4099 		if (th->syn && !(opsize & 1) &&
4100 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4101 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4102 			opt_rx->smc_ok = 1;
4103 			return true;
4104 		}
4105 	}
4106 #endif
4107 	return false;
4108 }
4109 
4110 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4111  * value on success.
4112  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4113 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4114 {
4115 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4116 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4117 	u16 mss = 0;
4118 
4119 	while (length > 0) {
4120 		int opcode = *ptr++;
4121 		int opsize;
4122 
4123 		switch (opcode) {
4124 		case TCPOPT_EOL:
4125 			return mss;
4126 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4127 			length--;
4128 			continue;
4129 		default:
4130 			if (length < 2)
4131 				return mss;
4132 			opsize = *ptr++;
4133 			if (opsize < 2) /* "silly options" */
4134 				return mss;
4135 			if (opsize > length)
4136 				return mss;	/* fail on partial options */
4137 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4138 				u16 in_mss = get_unaligned_be16(ptr);
4139 
4140 				if (in_mss) {
4141 					if (user_mss && user_mss < in_mss)
4142 						in_mss = user_mss;
4143 					mss = in_mss;
4144 				}
4145 			}
4146 			ptr += opsize - 2;
4147 			length -= opsize;
4148 		}
4149 	}
4150 	return mss;
4151 }
4152 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4153 
4154 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4155  * But, this can also be called on packets in the established flow when
4156  * the fast version below fails.
4157  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4158 void tcp_parse_options(const struct net *net,
4159 		       const struct sk_buff *skb,
4160 		       struct tcp_options_received *opt_rx, int estab,
4161 		       struct tcp_fastopen_cookie *foc)
4162 {
4163 	const unsigned char *ptr;
4164 	const struct tcphdr *th = tcp_hdr(skb);
4165 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4166 
4167 	ptr = (const unsigned char *)(th + 1);
4168 	opt_rx->saw_tstamp = 0;
4169 	opt_rx->saw_unknown = 0;
4170 
4171 	while (length > 0) {
4172 		int opcode = *ptr++;
4173 		int opsize;
4174 
4175 		switch (opcode) {
4176 		case TCPOPT_EOL:
4177 			return;
4178 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4179 			length--;
4180 			continue;
4181 		default:
4182 			if (length < 2)
4183 				return;
4184 			opsize = *ptr++;
4185 			if (opsize < 2) /* "silly options" */
4186 				return;
4187 			if (opsize > length)
4188 				return;	/* don't parse partial options */
4189 			switch (opcode) {
4190 			case TCPOPT_MSS:
4191 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4192 					u16 in_mss = get_unaligned_be16(ptr);
4193 					if (in_mss) {
4194 						if (opt_rx->user_mss &&
4195 						    opt_rx->user_mss < in_mss)
4196 							in_mss = opt_rx->user_mss;
4197 						opt_rx->mss_clamp = in_mss;
4198 					}
4199 				}
4200 				break;
4201 			case TCPOPT_WINDOW:
4202 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4203 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4204 					__u8 snd_wscale = *(__u8 *)ptr;
4205 					opt_rx->wscale_ok = 1;
4206 					if (snd_wscale > TCP_MAX_WSCALE) {
4207 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4208 								     __func__,
4209 								     snd_wscale,
4210 								     TCP_MAX_WSCALE);
4211 						snd_wscale = TCP_MAX_WSCALE;
4212 					}
4213 					opt_rx->snd_wscale = snd_wscale;
4214 				}
4215 				break;
4216 			case TCPOPT_TIMESTAMP:
4217 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4218 				    ((estab && opt_rx->tstamp_ok) ||
4219 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4220 					opt_rx->saw_tstamp = 1;
4221 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4222 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4223 				}
4224 				break;
4225 			case TCPOPT_SACK_PERM:
4226 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4227 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4228 					opt_rx->sack_ok = TCP_SACK_SEEN;
4229 					tcp_sack_reset(opt_rx);
4230 				}
4231 				break;
4232 
4233 			case TCPOPT_SACK:
4234 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4235 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4236 				   opt_rx->sack_ok) {
4237 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4238 				}
4239 				break;
4240 #ifdef CONFIG_TCP_MD5SIG
4241 			case TCPOPT_MD5SIG:
4242 				/* The MD5 Hash has already been
4243 				 * checked (see tcp_v{4,6}_rcv()).
4244 				 */
4245 				break;
4246 #endif
4247 			case TCPOPT_FASTOPEN:
4248 				tcp_parse_fastopen_option(
4249 					opsize - TCPOLEN_FASTOPEN_BASE,
4250 					ptr, th->syn, foc, false);
4251 				break;
4252 
4253 			case TCPOPT_EXP:
4254 				/* Fast Open option shares code 254 using a
4255 				 * 16 bits magic number.
4256 				 */
4257 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4258 				    get_unaligned_be16(ptr) ==
4259 				    TCPOPT_FASTOPEN_MAGIC) {
4260 					tcp_parse_fastopen_option(opsize -
4261 						TCPOLEN_EXP_FASTOPEN_BASE,
4262 						ptr + 2, th->syn, foc, true);
4263 					break;
4264 				}
4265 
4266 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4267 					break;
4268 
4269 				opt_rx->saw_unknown = 1;
4270 				break;
4271 
4272 			default:
4273 				opt_rx->saw_unknown = 1;
4274 			}
4275 			ptr += opsize-2;
4276 			length -= opsize;
4277 		}
4278 	}
4279 }
4280 EXPORT_SYMBOL(tcp_parse_options);
4281 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4282 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4283 {
4284 	const __be32 *ptr = (const __be32 *)(th + 1);
4285 
4286 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4287 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4288 		tp->rx_opt.saw_tstamp = 1;
4289 		++ptr;
4290 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4291 		++ptr;
4292 		if (*ptr)
4293 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4294 		else
4295 			tp->rx_opt.rcv_tsecr = 0;
4296 		return true;
4297 	}
4298 	return false;
4299 }
4300 
4301 /* Fast parse options. This hopes to only see timestamps.
4302  * If it is wrong it falls back on tcp_parse_options().
4303  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4304 static bool tcp_fast_parse_options(const struct net *net,
4305 				   const struct sk_buff *skb,
4306 				   const struct tcphdr *th, struct tcp_sock *tp)
4307 {
4308 	/* In the spirit of fast parsing, compare doff directly to constant
4309 	 * values.  Because equality is used, short doff can be ignored here.
4310 	 */
4311 	if (th->doff == (sizeof(*th) / 4)) {
4312 		tp->rx_opt.saw_tstamp = 0;
4313 		return false;
4314 	} else if (tp->rx_opt.tstamp_ok &&
4315 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4316 		if (tcp_parse_aligned_timestamp(tp, th))
4317 			return true;
4318 	}
4319 
4320 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4321 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4322 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4323 
4324 	return true;
4325 }
4326 
4327 #ifdef CONFIG_TCP_MD5SIG
4328 /*
4329  * Parse MD5 Signature option
4330  */
tcp_parse_md5sig_option(const struct tcphdr * th)4331 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4332 {
4333 	int length = (th->doff << 2) - sizeof(*th);
4334 	const u8 *ptr = (const u8 *)(th + 1);
4335 
4336 	/* If not enough data remaining, we can short cut */
4337 	while (length >= TCPOLEN_MD5SIG) {
4338 		int opcode = *ptr++;
4339 		int opsize;
4340 
4341 		switch (opcode) {
4342 		case TCPOPT_EOL:
4343 			return NULL;
4344 		case TCPOPT_NOP:
4345 			length--;
4346 			continue;
4347 		default:
4348 			opsize = *ptr++;
4349 			if (opsize < 2 || opsize > length)
4350 				return NULL;
4351 			if (opcode == TCPOPT_MD5SIG)
4352 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4353 		}
4354 		ptr += opsize - 2;
4355 		length -= opsize;
4356 	}
4357 	return NULL;
4358 }
4359 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4360 #endif
4361 
4362 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4363  *
4364  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4365  * it can pass through stack. So, the following predicate verifies that
4366  * this segment is not used for anything but congestion avoidance or
4367  * fast retransmit. Moreover, we even are able to eliminate most of such
4368  * second order effects, if we apply some small "replay" window (~RTO)
4369  * to timestamp space.
4370  *
4371  * All these measures still do not guarantee that we reject wrapped ACKs
4372  * on networks with high bandwidth, when sequence space is recycled fastly,
4373  * but it guarantees that such events will be very rare and do not affect
4374  * connection seriously. This doesn't look nice, but alas, PAWS is really
4375  * buggy extension.
4376  *
4377  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4378  * states that events when retransmit arrives after original data are rare.
4379  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4380  * the biggest problem on large power networks even with minor reordering.
4381  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4382  * up to bandwidth of 18Gigabit/sec. 8) ]
4383  */
4384 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4385 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4386 {
4387 	const struct tcp_sock *tp = tcp_sk(sk);
4388 	const struct tcphdr *th = tcp_hdr(skb);
4389 	u32 seq = TCP_SKB_CB(skb)->seq;
4390 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4391 
4392 	return (/* 1. Pure ACK with correct sequence number. */
4393 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4394 
4395 		/* 2. ... and duplicate ACK. */
4396 		ack == tp->snd_una &&
4397 
4398 		/* 3. ... and does not update window. */
4399 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4400 
4401 		/* 4. ... and sits in replay window. */
4402 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4403 }
4404 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4405 static inline bool tcp_paws_discard(const struct sock *sk,
4406 				   const struct sk_buff *skb)
4407 {
4408 	const struct tcp_sock *tp = tcp_sk(sk);
4409 
4410 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4411 	       !tcp_disordered_ack(sk, skb);
4412 }
4413 
4414 /* Check segment sequence number for validity.
4415  *
4416  * Segment controls are considered valid, if the segment
4417  * fits to the window after truncation to the window. Acceptability
4418  * of data (and SYN, FIN, of course) is checked separately.
4419  * See tcp_data_queue(), for example.
4420  *
4421  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4422  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4423  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4424  * (borrowed from freebsd)
4425  */
4426 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4427 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4428 					 u32 seq, u32 end_seq)
4429 {
4430 	if (before(end_seq, tp->rcv_wup))
4431 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4432 
4433 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4434 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4435 
4436 	return SKB_NOT_DROPPED_YET;
4437 }
4438 
4439 
tcp_done_with_error(struct sock * sk,int err)4440 void tcp_done_with_error(struct sock *sk, int err)
4441 {
4442 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4443 	WRITE_ONCE(sk->sk_err, err);
4444 	smp_wmb();
4445 
4446 	tcp_write_queue_purge(sk);
4447 	tcp_done(sk);
4448 
4449 	if (!sock_flag(sk, SOCK_DEAD))
4450 		sk_error_report(sk);
4451 }
4452 EXPORT_SYMBOL(tcp_done_with_error);
4453 
4454 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4455 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4456 {
4457 	int err;
4458 
4459 	trace_tcp_receive_reset(sk);
4460 
4461 	/* mptcp can't tell us to ignore reset pkts,
4462 	 * so just ignore the return value of mptcp_incoming_options().
4463 	 */
4464 	if (sk_is_mptcp(sk))
4465 		mptcp_incoming_options(sk, skb);
4466 
4467 	/* We want the right error as BSD sees it (and indeed as we do). */
4468 	switch (sk->sk_state) {
4469 	case TCP_SYN_SENT:
4470 		err = ECONNREFUSED;
4471 		break;
4472 	case TCP_CLOSE_WAIT:
4473 		err = EPIPE;
4474 		break;
4475 	case TCP_CLOSE:
4476 		return;
4477 	default:
4478 		err = ECONNRESET;
4479 	}
4480 	tcp_done_with_error(sk, err);
4481 }
4482 
4483 /*
4484  * 	Process the FIN bit. This now behaves as it is supposed to work
4485  *	and the FIN takes effect when it is validly part of sequence
4486  *	space. Not before when we get holes.
4487  *
4488  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4489  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4490  *	TIME-WAIT)
4491  *
4492  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4493  *	close and we go into CLOSING (and later onto TIME-WAIT)
4494  *
4495  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4496  */
tcp_fin(struct sock * sk)4497 void tcp_fin(struct sock *sk)
4498 {
4499 	struct tcp_sock *tp = tcp_sk(sk);
4500 
4501 	inet_csk_schedule_ack(sk);
4502 
4503 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4504 	sock_set_flag(sk, SOCK_DONE);
4505 
4506 	switch (sk->sk_state) {
4507 	case TCP_SYN_RECV:
4508 	case TCP_ESTABLISHED:
4509 		/* Move to CLOSE_WAIT */
4510 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4511 		inet_csk_enter_pingpong_mode(sk);
4512 		break;
4513 
4514 	case TCP_CLOSE_WAIT:
4515 	case TCP_CLOSING:
4516 		/* Received a retransmission of the FIN, do
4517 		 * nothing.
4518 		 */
4519 		break;
4520 	case TCP_LAST_ACK:
4521 		/* RFC793: Remain in the LAST-ACK state. */
4522 		break;
4523 
4524 	case TCP_FIN_WAIT1:
4525 		/* This case occurs when a simultaneous close
4526 		 * happens, we must ack the received FIN and
4527 		 * enter the CLOSING state.
4528 		 */
4529 		tcp_send_ack(sk);
4530 		tcp_set_state(sk, TCP_CLOSING);
4531 		break;
4532 	case TCP_FIN_WAIT2:
4533 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4534 		tcp_send_ack(sk);
4535 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4536 		break;
4537 	default:
4538 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4539 		 * cases we should never reach this piece of code.
4540 		 */
4541 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4542 		       __func__, sk->sk_state);
4543 		break;
4544 	}
4545 
4546 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4547 	 * Probably, we should reset in this case. For now drop them.
4548 	 */
4549 	skb_rbtree_purge(&tp->out_of_order_queue);
4550 	if (tcp_is_sack(tp))
4551 		tcp_sack_reset(&tp->rx_opt);
4552 
4553 	if (!sock_flag(sk, SOCK_DEAD)) {
4554 		sk->sk_state_change(sk);
4555 
4556 		/* Do not send POLL_HUP for half duplex close. */
4557 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4558 		    sk->sk_state == TCP_CLOSE)
4559 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4560 		else
4561 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4562 	}
4563 }
4564 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4565 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4566 				  u32 end_seq)
4567 {
4568 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4569 		if (before(seq, sp->start_seq))
4570 			sp->start_seq = seq;
4571 		if (after(end_seq, sp->end_seq))
4572 			sp->end_seq = end_seq;
4573 		return true;
4574 	}
4575 	return false;
4576 }
4577 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4578 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4579 {
4580 	struct tcp_sock *tp = tcp_sk(sk);
4581 
4582 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4583 		int mib_idx;
4584 
4585 		if (before(seq, tp->rcv_nxt))
4586 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4587 		else
4588 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4589 
4590 		NET_INC_STATS(sock_net(sk), mib_idx);
4591 
4592 		tp->rx_opt.dsack = 1;
4593 		tp->duplicate_sack[0].start_seq = seq;
4594 		tp->duplicate_sack[0].end_seq = end_seq;
4595 	}
4596 }
4597 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4598 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4599 {
4600 	struct tcp_sock *tp = tcp_sk(sk);
4601 
4602 	if (!tp->rx_opt.dsack)
4603 		tcp_dsack_set(sk, seq, end_seq);
4604 	else
4605 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4606 }
4607 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4608 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4609 {
4610 	/* When the ACK path fails or drops most ACKs, the sender would
4611 	 * timeout and spuriously retransmit the same segment repeatedly.
4612 	 * The receiver remembers and reflects via DSACKs. Leverage the
4613 	 * DSACK state and change the txhash to re-route speculatively.
4614 	 */
4615 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4616 	    sk_rethink_txhash(sk))
4617 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4618 }
4619 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4620 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4621 {
4622 	struct tcp_sock *tp = tcp_sk(sk);
4623 
4624 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4625 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4626 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4627 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4628 
4629 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4630 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4631 
4632 			tcp_rcv_spurious_retrans(sk, skb);
4633 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4634 				end_seq = tp->rcv_nxt;
4635 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4636 		}
4637 	}
4638 
4639 	tcp_send_ack(sk);
4640 }
4641 
4642 /* These routines update the SACK block as out-of-order packets arrive or
4643  * in-order packets close up the sequence space.
4644  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4645 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4646 {
4647 	int this_sack;
4648 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4649 	struct tcp_sack_block *swalk = sp + 1;
4650 
4651 	/* See if the recent change to the first SACK eats into
4652 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4653 	 */
4654 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4655 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4656 			int i;
4657 
4658 			/* Zap SWALK, by moving every further SACK up by one slot.
4659 			 * Decrease num_sacks.
4660 			 */
4661 			tp->rx_opt.num_sacks--;
4662 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4663 				sp[i] = sp[i + 1];
4664 			continue;
4665 		}
4666 		this_sack++;
4667 		swalk++;
4668 	}
4669 }
4670 
tcp_sack_compress_send_ack(struct sock * sk)4671 void tcp_sack_compress_send_ack(struct sock *sk)
4672 {
4673 	struct tcp_sock *tp = tcp_sk(sk);
4674 
4675 	if (!tp->compressed_ack)
4676 		return;
4677 
4678 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4679 		__sock_put(sk);
4680 
4681 	/* Since we have to send one ack finally,
4682 	 * substract one from tp->compressed_ack to keep
4683 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4684 	 */
4685 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4686 		      tp->compressed_ack - 1);
4687 
4688 	tp->compressed_ack = 0;
4689 	tcp_send_ack(sk);
4690 }
4691 
4692 /* Reasonable amount of sack blocks included in TCP SACK option
4693  * The max is 4, but this becomes 3 if TCP timestamps are there.
4694  * Given that SACK packets might be lost, be conservative and use 2.
4695  */
4696 #define TCP_SACK_BLOCKS_EXPECTED 2
4697 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4698 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4699 {
4700 	struct tcp_sock *tp = tcp_sk(sk);
4701 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4702 	int cur_sacks = tp->rx_opt.num_sacks;
4703 	int this_sack;
4704 
4705 	if (!cur_sacks)
4706 		goto new_sack;
4707 
4708 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4709 		if (tcp_sack_extend(sp, seq, end_seq)) {
4710 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4711 				tcp_sack_compress_send_ack(sk);
4712 			/* Rotate this_sack to the first one. */
4713 			for (; this_sack > 0; this_sack--, sp--)
4714 				swap(*sp, *(sp - 1));
4715 			if (cur_sacks > 1)
4716 				tcp_sack_maybe_coalesce(tp);
4717 			return;
4718 		}
4719 	}
4720 
4721 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4722 		tcp_sack_compress_send_ack(sk);
4723 
4724 	/* Could not find an adjacent existing SACK, build a new one,
4725 	 * put it at the front, and shift everyone else down.  We
4726 	 * always know there is at least one SACK present already here.
4727 	 *
4728 	 * If the sack array is full, forget about the last one.
4729 	 */
4730 	if (this_sack >= TCP_NUM_SACKS) {
4731 		this_sack--;
4732 		tp->rx_opt.num_sacks--;
4733 		sp--;
4734 	}
4735 	for (; this_sack > 0; this_sack--, sp--)
4736 		*sp = *(sp - 1);
4737 
4738 new_sack:
4739 	/* Build the new head SACK, and we're done. */
4740 	sp->start_seq = seq;
4741 	sp->end_seq = end_seq;
4742 	tp->rx_opt.num_sacks++;
4743 }
4744 
4745 /* RCV.NXT advances, some SACKs should be eaten. */
4746 
tcp_sack_remove(struct tcp_sock * tp)4747 static void tcp_sack_remove(struct tcp_sock *tp)
4748 {
4749 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4750 	int num_sacks = tp->rx_opt.num_sacks;
4751 	int this_sack;
4752 
4753 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4754 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4755 		tp->rx_opt.num_sacks = 0;
4756 		return;
4757 	}
4758 
4759 	for (this_sack = 0; this_sack < num_sacks;) {
4760 		/* Check if the start of the sack is covered by RCV.NXT. */
4761 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4762 			int i;
4763 
4764 			/* RCV.NXT must cover all the block! */
4765 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4766 
4767 			/* Zap this SACK, by moving forward any other SACKS. */
4768 			for (i = this_sack+1; i < num_sacks; i++)
4769 				tp->selective_acks[i-1] = tp->selective_acks[i];
4770 			num_sacks--;
4771 			continue;
4772 		}
4773 		this_sack++;
4774 		sp++;
4775 	}
4776 	tp->rx_opt.num_sacks = num_sacks;
4777 }
4778 
4779 /**
4780  * tcp_try_coalesce - try to merge skb to prior one
4781  * @sk: socket
4782  * @to: prior buffer
4783  * @from: buffer to add in queue
4784  * @fragstolen: pointer to boolean
4785  *
4786  * Before queueing skb @from after @to, try to merge them
4787  * to reduce overall memory use and queue lengths, if cost is small.
4788  * Packets in ofo or receive queues can stay a long time.
4789  * Better try to coalesce them right now to avoid future collapses.
4790  * Returns true if caller should free @from instead of queueing it
4791  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4792 static bool tcp_try_coalesce(struct sock *sk,
4793 			     struct sk_buff *to,
4794 			     struct sk_buff *from,
4795 			     bool *fragstolen)
4796 {
4797 	int delta;
4798 
4799 	*fragstolen = false;
4800 
4801 	/* Its possible this segment overlaps with prior segment in queue */
4802 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4803 		return false;
4804 
4805 	if (!mptcp_skb_can_collapse(to, from))
4806 		return false;
4807 
4808 #ifdef CONFIG_TLS_DEVICE
4809 	if (from->decrypted != to->decrypted)
4810 		return false;
4811 #endif
4812 
4813 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4814 		return false;
4815 
4816 	atomic_add(delta, &sk->sk_rmem_alloc);
4817 	sk_mem_charge(sk, delta);
4818 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4819 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4820 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4821 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4822 
4823 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4824 		TCP_SKB_CB(to)->has_rxtstamp = true;
4825 		to->tstamp = from->tstamp;
4826 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4827 	}
4828 
4829 	return true;
4830 }
4831 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4832 static bool tcp_ooo_try_coalesce(struct sock *sk,
4833 			     struct sk_buff *to,
4834 			     struct sk_buff *from,
4835 			     bool *fragstolen)
4836 {
4837 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4838 
4839 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4840 	if (res) {
4841 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4842 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4843 
4844 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4845 	}
4846 	return res;
4847 }
4848 
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4849 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4850 			    enum skb_drop_reason reason)
4851 {
4852 	sk_drops_add(sk, skb);
4853 	kfree_skb_reason(skb, reason);
4854 }
4855 
4856 /* This one checks to see if we can put data from the
4857  * out_of_order queue into the receive_queue.
4858  */
tcp_ofo_queue(struct sock * sk)4859 static void tcp_ofo_queue(struct sock *sk)
4860 {
4861 	struct tcp_sock *tp = tcp_sk(sk);
4862 	__u32 dsack_high = tp->rcv_nxt;
4863 	bool fin, fragstolen, eaten;
4864 	struct sk_buff *skb, *tail;
4865 	struct rb_node *p;
4866 
4867 	p = rb_first(&tp->out_of_order_queue);
4868 	while (p) {
4869 		skb = rb_to_skb(p);
4870 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4871 			break;
4872 
4873 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4874 			__u32 dsack = dsack_high;
4875 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4876 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4877 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4878 		}
4879 		p = rb_next(p);
4880 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4881 
4882 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4883 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4884 			continue;
4885 		}
4886 
4887 		tail = skb_peek_tail(&sk->sk_receive_queue);
4888 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4889 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4890 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4891 		if (!eaten)
4892 			tcp_add_receive_queue(sk, skb);
4893 		else
4894 			kfree_skb_partial(skb, fragstolen);
4895 
4896 		if (unlikely(fin)) {
4897 			tcp_fin(sk);
4898 			/* tcp_fin() purges tp->out_of_order_queue,
4899 			 * so we must end this loop right now.
4900 			 */
4901 			break;
4902 		}
4903 	}
4904 }
4905 
4906 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4907 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4908 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4909 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4910 				 unsigned int size)
4911 {
4912 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4913 	    !sk_rmem_schedule(sk, skb, size)) {
4914 
4915 		if (tcp_prune_queue(sk, skb) < 0)
4916 			return -1;
4917 
4918 		while (!sk_rmem_schedule(sk, skb, size)) {
4919 			if (!tcp_prune_ofo_queue(sk, skb))
4920 				return -1;
4921 		}
4922 	}
4923 	return 0;
4924 }
4925 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4926 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4927 {
4928 	struct tcp_sock *tp = tcp_sk(sk);
4929 	struct rb_node **p, *parent;
4930 	struct sk_buff *skb1;
4931 	u32 seq, end_seq;
4932 	bool fragstolen;
4933 
4934 	tcp_ecn_check_ce(sk, skb);
4935 
4936 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4937 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4938 		sk->sk_data_ready(sk);
4939 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4940 		return;
4941 	}
4942 
4943 	/* Disable header prediction. */
4944 	tp->pred_flags = 0;
4945 	inet_csk_schedule_ack(sk);
4946 
4947 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4948 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4949 	seq = TCP_SKB_CB(skb)->seq;
4950 	end_seq = TCP_SKB_CB(skb)->end_seq;
4951 
4952 	p = &tp->out_of_order_queue.rb_node;
4953 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4954 		/* Initial out of order segment, build 1 SACK. */
4955 		if (tcp_is_sack(tp)) {
4956 			tp->rx_opt.num_sacks = 1;
4957 			tp->selective_acks[0].start_seq = seq;
4958 			tp->selective_acks[0].end_seq = end_seq;
4959 		}
4960 		rb_link_node(&skb->rbnode, NULL, p);
4961 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4962 		tp->ooo_last_skb = skb;
4963 		goto end;
4964 	}
4965 
4966 	/* In the typical case, we are adding an skb to the end of the list.
4967 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4968 	 */
4969 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4970 				 skb, &fragstolen)) {
4971 coalesce_done:
4972 		/* For non sack flows, do not grow window to force DUPACK
4973 		 * and trigger fast retransmit.
4974 		 */
4975 		if (tcp_is_sack(tp))
4976 			tcp_grow_window(sk, skb, true);
4977 		kfree_skb_partial(skb, fragstolen);
4978 		skb = NULL;
4979 		goto add_sack;
4980 	}
4981 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4982 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4983 		parent = &tp->ooo_last_skb->rbnode;
4984 		p = &parent->rb_right;
4985 		goto insert;
4986 	}
4987 
4988 	/* Find place to insert this segment. Handle overlaps on the way. */
4989 	parent = NULL;
4990 	while (*p) {
4991 		parent = *p;
4992 		skb1 = rb_to_skb(parent);
4993 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4994 			p = &parent->rb_left;
4995 			continue;
4996 		}
4997 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4998 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4999 				/* All the bits are present. Drop. */
5000 				NET_INC_STATS(sock_net(sk),
5001 					      LINUX_MIB_TCPOFOMERGE);
5002 				tcp_drop_reason(sk, skb,
5003 						SKB_DROP_REASON_TCP_OFOMERGE);
5004 				skb = NULL;
5005 				tcp_dsack_set(sk, seq, end_seq);
5006 				goto add_sack;
5007 			}
5008 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5009 				/* Partial overlap. */
5010 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5011 			} else {
5012 				/* skb's seq == skb1's seq and skb covers skb1.
5013 				 * Replace skb1 with skb.
5014 				 */
5015 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5016 						&tp->out_of_order_queue);
5017 				tcp_dsack_extend(sk,
5018 						 TCP_SKB_CB(skb1)->seq,
5019 						 TCP_SKB_CB(skb1)->end_seq);
5020 				NET_INC_STATS(sock_net(sk),
5021 					      LINUX_MIB_TCPOFOMERGE);
5022 				tcp_drop_reason(sk, skb1,
5023 						SKB_DROP_REASON_TCP_OFOMERGE);
5024 				goto merge_right;
5025 			}
5026 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5027 						skb, &fragstolen)) {
5028 			goto coalesce_done;
5029 		}
5030 		p = &parent->rb_right;
5031 	}
5032 insert:
5033 	/* Insert segment into RB tree. */
5034 	rb_link_node(&skb->rbnode, parent, p);
5035 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5036 
5037 merge_right:
5038 	/* Remove other segments covered by skb. */
5039 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5040 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5041 			break;
5042 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5043 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5044 					 end_seq);
5045 			break;
5046 		}
5047 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5048 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5049 				 TCP_SKB_CB(skb1)->end_seq);
5050 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5051 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5052 	}
5053 	/* If there is no skb after us, we are the last_skb ! */
5054 	if (!skb1)
5055 		tp->ooo_last_skb = skb;
5056 
5057 add_sack:
5058 	if (tcp_is_sack(tp))
5059 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5060 end:
5061 	if (skb) {
5062 		/* For non sack flows, do not grow window to force DUPACK
5063 		 * and trigger fast retransmit.
5064 		 */
5065 		if (tcp_is_sack(tp))
5066 			tcp_grow_window(sk, skb, false);
5067 		skb_condense(skb);
5068 		skb_set_owner_r(skb, sk);
5069 	}
5070 }
5071 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5072 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5073 				      bool *fragstolen)
5074 {
5075 	int eaten;
5076 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5077 
5078 	eaten = (tail &&
5079 		 tcp_try_coalesce(sk, tail,
5080 				  skb, fragstolen)) ? 1 : 0;
5081 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5082 	if (!eaten) {
5083 		tcp_add_receive_queue(sk, skb);
5084 		skb_set_owner_r(skb, sk);
5085 	}
5086 	return eaten;
5087 }
5088 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5089 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5090 {
5091 	struct sk_buff *skb;
5092 	int err = -ENOMEM;
5093 	int data_len = 0;
5094 	bool fragstolen;
5095 
5096 	if (size == 0)
5097 		return 0;
5098 
5099 	if (size > PAGE_SIZE) {
5100 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5101 
5102 		data_len = npages << PAGE_SHIFT;
5103 		size = data_len + (size & ~PAGE_MASK);
5104 	}
5105 	skb = alloc_skb_with_frags(size - data_len, data_len,
5106 				   PAGE_ALLOC_COSTLY_ORDER,
5107 				   &err, sk->sk_allocation);
5108 	if (!skb)
5109 		goto err;
5110 
5111 	skb_put(skb, size - data_len);
5112 	skb->data_len = data_len;
5113 	skb->len = size;
5114 
5115 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5116 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5117 		goto err_free;
5118 	}
5119 
5120 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5121 	if (err)
5122 		goto err_free;
5123 
5124 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5125 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5126 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5127 
5128 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5129 		WARN_ON_ONCE(fragstolen); /* should not happen */
5130 		__kfree_skb(skb);
5131 	}
5132 	return size;
5133 
5134 err_free:
5135 	kfree_skb(skb);
5136 err:
5137 	return err;
5138 
5139 }
5140 
tcp_data_ready(struct sock * sk)5141 void tcp_data_ready(struct sock *sk)
5142 {
5143 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5144 		sk->sk_data_ready(sk);
5145 }
5146 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5147 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5148 {
5149 	struct tcp_sock *tp = tcp_sk(sk);
5150 	enum skb_drop_reason reason;
5151 	bool fragstolen;
5152 	int eaten;
5153 
5154 	/* If a subflow has been reset, the packet should not continue
5155 	 * to be processed, drop the packet.
5156 	 */
5157 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5158 		__kfree_skb(skb);
5159 		return;
5160 	}
5161 
5162 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5163 		__kfree_skb(skb);
5164 		return;
5165 	}
5166 	tcp_cleanup_skb(skb);
5167 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5168 
5169 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5170 	tp->rx_opt.dsack = 0;
5171 
5172 	/*  Queue data for delivery to the user.
5173 	 *  Packets in sequence go to the receive queue.
5174 	 *  Out of sequence packets to the out_of_order_queue.
5175 	 */
5176 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5177 		if (tcp_receive_window(tp) == 0) {
5178 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5179 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5180 			goto out_of_window;
5181 		}
5182 
5183 		/* Ok. In sequence. In window. */
5184 queue_and_out:
5185 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5186 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5187 			inet_csk(sk)->icsk_ack.pending |=
5188 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5189 			inet_csk_schedule_ack(sk);
5190 			sk->sk_data_ready(sk);
5191 
5192 			if (skb_queue_len(&sk->sk_receive_queue)) {
5193 				reason = SKB_DROP_REASON_PROTO_MEM;
5194 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5195 				goto drop;
5196 			}
5197 			sk_forced_mem_schedule(sk, skb->truesize);
5198 		}
5199 
5200 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5201 		if (skb->len)
5202 			tcp_event_data_recv(sk, skb);
5203 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5204 			tcp_fin(sk);
5205 
5206 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5207 			tcp_ofo_queue(sk);
5208 
5209 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5210 			 * gap in queue is filled.
5211 			 */
5212 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5213 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5214 		}
5215 
5216 		if (tp->rx_opt.num_sacks)
5217 			tcp_sack_remove(tp);
5218 
5219 		tcp_fast_path_check(sk);
5220 
5221 		if (eaten > 0)
5222 			kfree_skb_partial(skb, fragstolen);
5223 		if (!sock_flag(sk, SOCK_DEAD))
5224 			tcp_data_ready(sk);
5225 		return;
5226 	}
5227 
5228 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5229 		tcp_rcv_spurious_retrans(sk, skb);
5230 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5231 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5232 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5233 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5234 
5235 out_of_window:
5236 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5237 		inet_csk_schedule_ack(sk);
5238 drop:
5239 		tcp_drop_reason(sk, skb, reason);
5240 		return;
5241 	}
5242 
5243 	/* Out of window. F.e. zero window probe. */
5244 	if (!before(TCP_SKB_CB(skb)->seq,
5245 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5246 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5247 		goto out_of_window;
5248 	}
5249 
5250 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5251 		/* Partial packet, seq < rcv_next < end_seq */
5252 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5253 
5254 		/* If window is closed, drop tail of packet. But after
5255 		 * remembering D-SACK for its head made in previous line.
5256 		 */
5257 		if (!tcp_receive_window(tp)) {
5258 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5259 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5260 			goto out_of_window;
5261 		}
5262 		goto queue_and_out;
5263 	}
5264 
5265 	tcp_data_queue_ofo(sk, skb);
5266 }
5267 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5268 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5269 {
5270 	if (list)
5271 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5272 
5273 	return skb_rb_next(skb);
5274 }
5275 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5276 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5277 					struct sk_buff_head *list,
5278 					struct rb_root *root)
5279 {
5280 	struct sk_buff *next = tcp_skb_next(skb, list);
5281 
5282 	if (list)
5283 		__skb_unlink(skb, list);
5284 	else
5285 		rb_erase(&skb->rbnode, root);
5286 
5287 	__kfree_skb(skb);
5288 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5289 
5290 	return next;
5291 }
5292 
5293 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5294 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5295 {
5296 	struct rb_node **p = &root->rb_node;
5297 	struct rb_node *parent = NULL;
5298 	struct sk_buff *skb1;
5299 
5300 	while (*p) {
5301 		parent = *p;
5302 		skb1 = rb_to_skb(parent);
5303 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5304 			p = &parent->rb_left;
5305 		else
5306 			p = &parent->rb_right;
5307 	}
5308 	rb_link_node(&skb->rbnode, parent, p);
5309 	rb_insert_color(&skb->rbnode, root);
5310 }
5311 
5312 /* Collapse contiguous sequence of skbs head..tail with
5313  * sequence numbers start..end.
5314  *
5315  * If tail is NULL, this means until the end of the queue.
5316  *
5317  * Segments with FIN/SYN are not collapsed (only because this
5318  * simplifies code)
5319  */
5320 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5321 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5322 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5323 {
5324 	struct sk_buff *skb = head, *n;
5325 	struct sk_buff_head tmp;
5326 	bool end_of_skbs;
5327 
5328 	/* First, check that queue is collapsible and find
5329 	 * the point where collapsing can be useful.
5330 	 */
5331 restart:
5332 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5333 		n = tcp_skb_next(skb, list);
5334 
5335 		/* No new bits? It is possible on ofo queue. */
5336 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5337 			skb = tcp_collapse_one(sk, skb, list, root);
5338 			if (!skb)
5339 				break;
5340 			goto restart;
5341 		}
5342 
5343 		/* The first skb to collapse is:
5344 		 * - not SYN/FIN and
5345 		 * - bloated or contains data before "start" or
5346 		 *   overlaps to the next one and mptcp allow collapsing.
5347 		 */
5348 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5349 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5350 		     before(TCP_SKB_CB(skb)->seq, start))) {
5351 			end_of_skbs = false;
5352 			break;
5353 		}
5354 
5355 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5356 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5357 			end_of_skbs = false;
5358 			break;
5359 		}
5360 
5361 		/* Decided to skip this, advance start seq. */
5362 		start = TCP_SKB_CB(skb)->end_seq;
5363 	}
5364 	if (end_of_skbs ||
5365 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5366 		return;
5367 
5368 	__skb_queue_head_init(&tmp);
5369 
5370 	while (before(start, end)) {
5371 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5372 		struct sk_buff *nskb;
5373 
5374 		nskb = alloc_skb(copy, GFP_ATOMIC);
5375 		if (!nskb)
5376 			break;
5377 
5378 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5379 #ifdef CONFIG_TLS_DEVICE
5380 		nskb->decrypted = skb->decrypted;
5381 #endif
5382 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5383 		if (list)
5384 			__skb_queue_before(list, skb, nskb);
5385 		else
5386 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5387 		skb_set_owner_r(nskb, sk);
5388 		mptcp_skb_ext_move(nskb, skb);
5389 
5390 		/* Copy data, releasing collapsed skbs. */
5391 		while (copy > 0) {
5392 			int offset = start - TCP_SKB_CB(skb)->seq;
5393 			int size = TCP_SKB_CB(skb)->end_seq - start;
5394 
5395 			BUG_ON(offset < 0);
5396 			if (size > 0) {
5397 				size = min(copy, size);
5398 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5399 					BUG();
5400 				TCP_SKB_CB(nskb)->end_seq += size;
5401 				copy -= size;
5402 				start += size;
5403 			}
5404 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5405 				skb = tcp_collapse_one(sk, skb, list, root);
5406 				if (!skb ||
5407 				    skb == tail ||
5408 				    !mptcp_skb_can_collapse(nskb, skb) ||
5409 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5410 					goto end;
5411 #ifdef CONFIG_TLS_DEVICE
5412 				if (skb->decrypted != nskb->decrypted)
5413 					goto end;
5414 #endif
5415 			}
5416 		}
5417 	}
5418 end:
5419 	skb_queue_walk_safe(&tmp, skb, n)
5420 		tcp_rbtree_insert(root, skb);
5421 }
5422 
5423 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5424  * and tcp_collapse() them until all the queue is collapsed.
5425  */
tcp_collapse_ofo_queue(struct sock * sk)5426 static void tcp_collapse_ofo_queue(struct sock *sk)
5427 {
5428 	struct tcp_sock *tp = tcp_sk(sk);
5429 	u32 range_truesize, sum_tiny = 0;
5430 	struct sk_buff *skb, *head;
5431 	u32 start, end;
5432 
5433 	skb = skb_rb_first(&tp->out_of_order_queue);
5434 new_range:
5435 	if (!skb) {
5436 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5437 		return;
5438 	}
5439 	start = TCP_SKB_CB(skb)->seq;
5440 	end = TCP_SKB_CB(skb)->end_seq;
5441 	range_truesize = skb->truesize;
5442 
5443 	for (head = skb;;) {
5444 		skb = skb_rb_next(skb);
5445 
5446 		/* Range is terminated when we see a gap or when
5447 		 * we are at the queue end.
5448 		 */
5449 		if (!skb ||
5450 		    after(TCP_SKB_CB(skb)->seq, end) ||
5451 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5452 			/* Do not attempt collapsing tiny skbs */
5453 			if (range_truesize != head->truesize ||
5454 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5455 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5456 					     head, skb, start, end);
5457 			} else {
5458 				sum_tiny += range_truesize;
5459 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5460 					return;
5461 			}
5462 			goto new_range;
5463 		}
5464 
5465 		range_truesize += skb->truesize;
5466 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5467 			start = TCP_SKB_CB(skb)->seq;
5468 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5469 			end = TCP_SKB_CB(skb)->end_seq;
5470 	}
5471 }
5472 
5473 /*
5474  * Clean the out-of-order queue to make room.
5475  * We drop high sequences packets to :
5476  * 1) Let a chance for holes to be filled.
5477  *    This means we do not drop packets from ooo queue if their sequence
5478  *    is before incoming packet sequence.
5479  * 2) not add too big latencies if thousands of packets sit there.
5480  *    (But if application shrinks SO_RCVBUF, we could still end up
5481  *     freeing whole queue here)
5482  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5483  *
5484  * Return true if queue has shrunk.
5485  */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5486 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5487 {
5488 	struct tcp_sock *tp = tcp_sk(sk);
5489 	struct rb_node *node, *prev;
5490 	bool pruned = false;
5491 	int goal;
5492 
5493 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5494 		return false;
5495 
5496 	goal = sk->sk_rcvbuf >> 3;
5497 	node = &tp->ooo_last_skb->rbnode;
5498 
5499 	do {
5500 		struct sk_buff *skb = rb_to_skb(node);
5501 
5502 		/* If incoming skb would land last in ofo queue, stop pruning. */
5503 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5504 			break;
5505 		pruned = true;
5506 		prev = rb_prev(node);
5507 		rb_erase(node, &tp->out_of_order_queue);
5508 		goal -= skb->truesize;
5509 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5510 		tp->ooo_last_skb = rb_to_skb(prev);
5511 		if (!prev || goal <= 0) {
5512 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5513 			    !tcp_under_memory_pressure(sk))
5514 				break;
5515 			goal = sk->sk_rcvbuf >> 3;
5516 		}
5517 		node = prev;
5518 	} while (node);
5519 
5520 	if (pruned) {
5521 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5522 		/* Reset SACK state.  A conforming SACK implementation will
5523 		 * do the same at a timeout based retransmit.  When a connection
5524 		 * is in a sad state like this, we care only about integrity
5525 		 * of the connection not performance.
5526 		 */
5527 		if (tp->rx_opt.sack_ok)
5528 			tcp_sack_reset(&tp->rx_opt);
5529 	}
5530 	return pruned;
5531 }
5532 
5533 /* Reduce allocated memory if we can, trying to get
5534  * the socket within its memory limits again.
5535  *
5536  * Return less than zero if we should start dropping frames
5537  * until the socket owning process reads some of the data
5538  * to stabilize the situation.
5539  */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5540 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5541 {
5542 	struct tcp_sock *tp = tcp_sk(sk);
5543 
5544 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5545 
5546 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5547 		tcp_clamp_window(sk);
5548 	else if (tcp_under_memory_pressure(sk))
5549 		tcp_adjust_rcv_ssthresh(sk);
5550 
5551 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5552 		return 0;
5553 
5554 	tcp_collapse_ofo_queue(sk);
5555 	if (!skb_queue_empty(&sk->sk_receive_queue))
5556 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5557 			     skb_peek(&sk->sk_receive_queue),
5558 			     NULL,
5559 			     tp->copied_seq, tp->rcv_nxt);
5560 
5561 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5562 		return 0;
5563 
5564 	/* Collapsing did not help, destructive actions follow.
5565 	 * This must not ever occur. */
5566 
5567 	tcp_prune_ofo_queue(sk, in_skb);
5568 
5569 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5570 		return 0;
5571 
5572 	/* If we are really being abused, tell the caller to silently
5573 	 * drop receive data on the floor.  It will get retransmitted
5574 	 * and hopefully then we'll have sufficient space.
5575 	 */
5576 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5577 
5578 	/* Massive buffer overcommit. */
5579 	tp->pred_flags = 0;
5580 	return -1;
5581 }
5582 
tcp_should_expand_sndbuf(struct sock * sk)5583 static bool tcp_should_expand_sndbuf(struct sock *sk)
5584 {
5585 	const struct tcp_sock *tp = tcp_sk(sk);
5586 
5587 	/* If the user specified a specific send buffer setting, do
5588 	 * not modify it.
5589 	 */
5590 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5591 		return false;
5592 
5593 	/* If we are under global TCP memory pressure, do not expand.  */
5594 	if (tcp_under_memory_pressure(sk)) {
5595 		int unused_mem = sk_unused_reserved_mem(sk);
5596 
5597 		/* Adjust sndbuf according to reserved mem. But make sure
5598 		 * it never goes below SOCK_MIN_SNDBUF.
5599 		 * See sk_stream_moderate_sndbuf() for more details.
5600 		 */
5601 		if (unused_mem > SOCK_MIN_SNDBUF)
5602 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5603 
5604 		return false;
5605 	}
5606 
5607 	/* If we are under soft global TCP memory pressure, do not expand.  */
5608 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5609 		return false;
5610 
5611 	/* If we filled the congestion window, do not expand.  */
5612 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5613 		return false;
5614 
5615 	return true;
5616 }
5617 
tcp_new_space(struct sock * sk)5618 static void tcp_new_space(struct sock *sk)
5619 {
5620 	struct tcp_sock *tp = tcp_sk(sk);
5621 
5622 	if (tcp_should_expand_sndbuf(sk)) {
5623 		tcp_sndbuf_expand(sk);
5624 		tp->snd_cwnd_stamp = tcp_jiffies32;
5625 	}
5626 
5627 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5628 }
5629 
5630 /* Caller made space either from:
5631  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5632  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5633  *
5634  * We might be able to generate EPOLLOUT to the application if:
5635  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5636  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5637  *    small enough that tcp_stream_memory_free() decides it
5638  *    is time to generate EPOLLOUT.
5639  */
tcp_check_space(struct sock * sk)5640 void tcp_check_space(struct sock *sk)
5641 {
5642 	/* pairs with tcp_poll() */
5643 	smp_mb();
5644 	if (sk->sk_socket &&
5645 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5646 		tcp_new_space(sk);
5647 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5648 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5649 	}
5650 }
5651 
tcp_data_snd_check(struct sock * sk)5652 static inline void tcp_data_snd_check(struct sock *sk)
5653 {
5654 	tcp_push_pending_frames(sk);
5655 	tcp_check_space(sk);
5656 }
5657 
5658 /*
5659  * Check if sending an ack is needed.
5660  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5661 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5662 {
5663 	struct tcp_sock *tp = tcp_sk(sk);
5664 	unsigned long rtt, delay;
5665 
5666 	    /* More than one full frame received... */
5667 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5668 	     /* ... and right edge of window advances far enough.
5669 	      * (tcp_recvmsg() will send ACK otherwise).
5670 	      * If application uses SO_RCVLOWAT, we want send ack now if
5671 	      * we have not received enough bytes to satisfy the condition.
5672 	      */
5673 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5674 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5675 	    /* We ACK each frame or... */
5676 	    tcp_in_quickack_mode(sk) ||
5677 	    /* Protocol state mandates a one-time immediate ACK */
5678 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5679 send_now:
5680 		tcp_send_ack(sk);
5681 		return;
5682 	}
5683 
5684 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5685 		tcp_send_delayed_ack(sk);
5686 		return;
5687 	}
5688 
5689 	if (!tcp_is_sack(tp) ||
5690 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5691 		goto send_now;
5692 
5693 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5694 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5695 		tp->dup_ack_counter = 0;
5696 	}
5697 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5698 		tp->dup_ack_counter++;
5699 		goto send_now;
5700 	}
5701 	tp->compressed_ack++;
5702 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5703 		return;
5704 
5705 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5706 
5707 	rtt = tp->rcv_rtt_est.rtt_us;
5708 	if (tp->srtt_us && tp->srtt_us < rtt)
5709 		rtt = tp->srtt_us;
5710 
5711 	delay = min_t(unsigned long,
5712 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5713 		      rtt * (NSEC_PER_USEC >> 3)/20);
5714 	sock_hold(sk);
5715 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5716 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5717 			       HRTIMER_MODE_REL_PINNED_SOFT);
5718 }
5719 
tcp_ack_snd_check(struct sock * sk)5720 static inline void tcp_ack_snd_check(struct sock *sk)
5721 {
5722 	if (!inet_csk_ack_scheduled(sk)) {
5723 		/* We sent a data segment already. */
5724 		return;
5725 	}
5726 	__tcp_ack_snd_check(sk, 1);
5727 }
5728 
5729 /*
5730  *	This routine is only called when we have urgent data
5731  *	signaled. Its the 'slow' part of tcp_urg. It could be
5732  *	moved inline now as tcp_urg is only called from one
5733  *	place. We handle URGent data wrong. We have to - as
5734  *	BSD still doesn't use the correction from RFC961.
5735  *	For 1003.1g we should support a new option TCP_STDURG to permit
5736  *	either form (or just set the sysctl tcp_stdurg).
5737  */
5738 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5739 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5740 {
5741 	struct tcp_sock *tp = tcp_sk(sk);
5742 	u32 ptr = ntohs(th->urg_ptr);
5743 
5744 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5745 		ptr--;
5746 	ptr += ntohl(th->seq);
5747 
5748 	/* Ignore urgent data that we've already seen and read. */
5749 	if (after(tp->copied_seq, ptr))
5750 		return;
5751 
5752 	/* Do not replay urg ptr.
5753 	 *
5754 	 * NOTE: interesting situation not covered by specs.
5755 	 * Misbehaving sender may send urg ptr, pointing to segment,
5756 	 * which we already have in ofo queue. We are not able to fetch
5757 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5758 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5759 	 * situations. But it is worth to think about possibility of some
5760 	 * DoSes using some hypothetical application level deadlock.
5761 	 */
5762 	if (before(ptr, tp->rcv_nxt))
5763 		return;
5764 
5765 	/* Do we already have a newer (or duplicate) urgent pointer? */
5766 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5767 		return;
5768 
5769 	/* Tell the world about our new urgent pointer. */
5770 	sk_send_sigurg(sk);
5771 
5772 	/* We may be adding urgent data when the last byte read was
5773 	 * urgent. To do this requires some care. We cannot just ignore
5774 	 * tp->copied_seq since we would read the last urgent byte again
5775 	 * as data, nor can we alter copied_seq until this data arrives
5776 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5777 	 *
5778 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5779 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5780 	 * and expect that both A and B disappear from stream. This is _wrong_.
5781 	 * Though this happens in BSD with high probability, this is occasional.
5782 	 * Any application relying on this is buggy. Note also, that fix "works"
5783 	 * only in this artificial test. Insert some normal data between A and B and we will
5784 	 * decline of BSD again. Verdict: it is better to remove to trap
5785 	 * buggy users.
5786 	 */
5787 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5788 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5789 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5790 		tp->copied_seq++;
5791 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5792 			__skb_unlink(skb, &sk->sk_receive_queue);
5793 			__kfree_skb(skb);
5794 		}
5795 	}
5796 
5797 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5798 	WRITE_ONCE(tp->urg_seq, ptr);
5799 
5800 	/* Disable header prediction. */
5801 	tp->pred_flags = 0;
5802 }
5803 
5804 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5805 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5806 {
5807 	struct tcp_sock *tp = tcp_sk(sk);
5808 
5809 	/* Check if we get a new urgent pointer - normally not. */
5810 	if (unlikely(th->urg))
5811 		tcp_check_urg(sk, th);
5812 
5813 	/* Do we wait for any urgent data? - normally not... */
5814 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5815 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5816 			  th->syn;
5817 
5818 		/* Is the urgent pointer pointing into this packet? */
5819 		if (ptr < skb->len) {
5820 			u8 tmp;
5821 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5822 				BUG();
5823 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5824 			if (!sock_flag(sk, SOCK_DEAD))
5825 				sk->sk_data_ready(sk);
5826 		}
5827 	}
5828 }
5829 
5830 /* Accept RST for rcv_nxt - 1 after a FIN.
5831  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5832  * FIN is sent followed by a RST packet. The RST is sent with the same
5833  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5834  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5835  * ACKs on the closed socket. In addition middleboxes can drop either the
5836  * challenge ACK or a subsequent RST.
5837  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5838 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5839 {
5840 	const struct tcp_sock *tp = tcp_sk(sk);
5841 
5842 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5843 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5844 					       TCPF_CLOSING));
5845 }
5846 
5847 /* Does PAWS and seqno based validation of an incoming segment, flags will
5848  * play significant role here.
5849  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5850 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5851 				  const struct tcphdr *th, int syn_inerr)
5852 {
5853 	struct tcp_sock *tp = tcp_sk(sk);
5854 	SKB_DR(reason);
5855 
5856 	/* RFC1323: H1. Apply PAWS check first. */
5857 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5858 	    tp->rx_opt.saw_tstamp &&
5859 	    tcp_paws_discard(sk, skb)) {
5860 		if (!th->rst) {
5861 			if (unlikely(th->syn))
5862 				goto syn_challenge;
5863 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5864 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5865 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5866 						  &tp->last_oow_ack_time))
5867 				tcp_send_dupack(sk, skb);
5868 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5869 			goto discard;
5870 		}
5871 		/* Reset is accepted even if it did not pass PAWS. */
5872 	}
5873 
5874 	/* Step 1: check sequence number */
5875 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5876 	if (reason) {
5877 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5878 		 * (RST) segments are validated by checking their SEQ-fields."
5879 		 * And page 69: "If an incoming segment is not acceptable,
5880 		 * an acknowledgment should be sent in reply (unless the RST
5881 		 * bit is set, if so drop the segment and return)".
5882 		 */
5883 		if (!th->rst) {
5884 			if (th->syn)
5885 				goto syn_challenge;
5886 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5887 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5888 						  &tp->last_oow_ack_time))
5889 				tcp_send_dupack(sk, skb);
5890 		} else if (tcp_reset_check(sk, skb)) {
5891 			goto reset;
5892 		}
5893 		goto discard;
5894 	}
5895 
5896 	/* Step 2: check RST bit */
5897 	if (th->rst) {
5898 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5899 		 * FIN and SACK too if available):
5900 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5901 		 * the right-most SACK block,
5902 		 * then
5903 		 *     RESET the connection
5904 		 * else
5905 		 *     Send a challenge ACK
5906 		 */
5907 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5908 		    tcp_reset_check(sk, skb))
5909 			goto reset;
5910 
5911 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5912 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5913 			int max_sack = sp[0].end_seq;
5914 			int this_sack;
5915 
5916 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5917 			     ++this_sack) {
5918 				max_sack = after(sp[this_sack].end_seq,
5919 						 max_sack) ?
5920 					sp[this_sack].end_seq : max_sack;
5921 			}
5922 
5923 			if (TCP_SKB_CB(skb)->seq == max_sack)
5924 				goto reset;
5925 		}
5926 
5927 		/* Disable TFO if RST is out-of-order
5928 		 * and no data has been received
5929 		 * for current active TFO socket
5930 		 */
5931 		if (tp->syn_fastopen && !tp->data_segs_in &&
5932 		    sk->sk_state == TCP_ESTABLISHED)
5933 			tcp_fastopen_active_disable(sk);
5934 		tcp_send_challenge_ack(sk);
5935 		SKB_DR_SET(reason, TCP_RESET);
5936 		goto discard;
5937 	}
5938 
5939 	/* step 3: check security and precedence [ignored] */
5940 
5941 	/* step 4: Check for a SYN
5942 	 * RFC 5961 4.2 : Send a challenge ack
5943 	 */
5944 	if (th->syn) {
5945 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5946 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5947 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5948 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5949 			goto pass;
5950 syn_challenge:
5951 		if (syn_inerr)
5952 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5953 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5954 		tcp_send_challenge_ack(sk);
5955 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5956 		goto discard;
5957 	}
5958 
5959 pass:
5960 	bpf_skops_parse_hdr(sk, skb);
5961 
5962 	return true;
5963 
5964 discard:
5965 	tcp_drop_reason(sk, skb, reason);
5966 	return false;
5967 
5968 reset:
5969 	tcp_reset(sk, skb);
5970 	__kfree_skb(skb);
5971 	return false;
5972 }
5973 
5974 /*
5975  *	TCP receive function for the ESTABLISHED state.
5976  *
5977  *	It is split into a fast path and a slow path. The fast path is
5978  * 	disabled when:
5979  *	- A zero window was announced from us - zero window probing
5980  *        is only handled properly in the slow path.
5981  *	- Out of order segments arrived.
5982  *	- Urgent data is expected.
5983  *	- There is no buffer space left
5984  *	- Unexpected TCP flags/window values/header lengths are received
5985  *	  (detected by checking the TCP header against pred_flags)
5986  *	- Data is sent in both directions. Fast path only supports pure senders
5987  *	  or pure receivers (this means either the sequence number or the ack
5988  *	  value must stay constant)
5989  *	- Unexpected TCP option.
5990  *
5991  *	When these conditions are not satisfied it drops into a standard
5992  *	receive procedure patterned after RFC793 to handle all cases.
5993  *	The first three cases are guaranteed by proper pred_flags setting,
5994  *	the rest is checked inline. Fast processing is turned on in
5995  *	tcp_data_queue when everything is OK.
5996  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5997 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5998 {
5999 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6000 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6001 	struct tcp_sock *tp = tcp_sk(sk);
6002 	unsigned int len = skb->len;
6003 
6004 	/* TCP congestion window tracking */
6005 	trace_tcp_probe(sk, skb);
6006 
6007 	tcp_mstamp_refresh(tp);
6008 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6009 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6010 	/*
6011 	 *	Header prediction.
6012 	 *	The code loosely follows the one in the famous
6013 	 *	"30 instruction TCP receive" Van Jacobson mail.
6014 	 *
6015 	 *	Van's trick is to deposit buffers into socket queue
6016 	 *	on a device interrupt, to call tcp_recv function
6017 	 *	on the receive process context and checksum and copy
6018 	 *	the buffer to user space. smart...
6019 	 *
6020 	 *	Our current scheme is not silly either but we take the
6021 	 *	extra cost of the net_bh soft interrupt processing...
6022 	 *	We do checksum and copy also but from device to kernel.
6023 	 */
6024 
6025 	tp->rx_opt.saw_tstamp = 0;
6026 
6027 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6028 	 *	if header_prediction is to be made
6029 	 *	'S' will always be tp->tcp_header_len >> 2
6030 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6031 	 *  turn it off	(when there are holes in the receive
6032 	 *	 space for instance)
6033 	 *	PSH flag is ignored.
6034 	 */
6035 
6036 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6037 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6038 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6039 		int tcp_header_len = tp->tcp_header_len;
6040 
6041 		/* Timestamp header prediction: tcp_header_len
6042 		 * is automatically equal to th->doff*4 due to pred_flags
6043 		 * match.
6044 		 */
6045 
6046 		/* Check timestamp */
6047 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6048 			/* No? Slow path! */
6049 			if (!tcp_parse_aligned_timestamp(tp, th))
6050 				goto slow_path;
6051 
6052 			/* If PAWS failed, check it more carefully in slow path */
6053 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6054 				goto slow_path;
6055 
6056 			/* DO NOT update ts_recent here, if checksum fails
6057 			 * and timestamp was corrupted part, it will result
6058 			 * in a hung connection since we will drop all
6059 			 * future packets due to the PAWS test.
6060 			 */
6061 		}
6062 
6063 		if (len <= tcp_header_len) {
6064 			/* Bulk data transfer: sender */
6065 			if (len == tcp_header_len) {
6066 				/* Predicted packet is in window by definition.
6067 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6068 				 * Hence, check seq<=rcv_wup reduces to:
6069 				 */
6070 				if (tcp_header_len ==
6071 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6072 				    tp->rcv_nxt == tp->rcv_wup)
6073 					tcp_store_ts_recent(tp);
6074 
6075 				/* We know that such packets are checksummed
6076 				 * on entry.
6077 				 */
6078 				tcp_ack(sk, skb, 0);
6079 				__kfree_skb(skb);
6080 				tcp_data_snd_check(sk);
6081 				/* When receiving pure ack in fast path, update
6082 				 * last ts ecr directly instead of calling
6083 				 * tcp_rcv_rtt_measure_ts()
6084 				 */
6085 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6086 				return;
6087 			} else { /* Header too small */
6088 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6089 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6090 				goto discard;
6091 			}
6092 		} else {
6093 			int eaten = 0;
6094 			bool fragstolen = false;
6095 
6096 			if (tcp_checksum_complete(skb))
6097 				goto csum_error;
6098 
6099 			if ((int)skb->truesize > sk->sk_forward_alloc)
6100 				goto step5;
6101 
6102 			/* Predicted packet is in window by definition.
6103 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6104 			 * Hence, check seq<=rcv_wup reduces to:
6105 			 */
6106 			if (tcp_header_len ==
6107 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6108 			    tp->rcv_nxt == tp->rcv_wup)
6109 				tcp_store_ts_recent(tp);
6110 
6111 			tcp_rcv_rtt_measure_ts(sk, skb);
6112 
6113 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6114 
6115 			/* Bulk data transfer: receiver */
6116 			tcp_cleanup_skb(skb);
6117 			__skb_pull(skb, tcp_header_len);
6118 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6119 
6120 			tcp_event_data_recv(sk, skb);
6121 
6122 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6123 				/* Well, only one small jumplet in fast path... */
6124 				tcp_ack(sk, skb, FLAG_DATA);
6125 				tcp_data_snd_check(sk);
6126 				if (!inet_csk_ack_scheduled(sk))
6127 					goto no_ack;
6128 			} else {
6129 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6130 			}
6131 
6132 			__tcp_ack_snd_check(sk, 0);
6133 no_ack:
6134 			if (eaten)
6135 				kfree_skb_partial(skb, fragstolen);
6136 			tcp_data_ready(sk);
6137 			return;
6138 		}
6139 	}
6140 
6141 slow_path:
6142 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6143 		goto csum_error;
6144 
6145 	if (!th->ack && !th->rst && !th->syn) {
6146 		reason = SKB_DROP_REASON_TCP_FLAGS;
6147 		goto discard;
6148 	}
6149 
6150 	/*
6151 	 *	Standard slow path.
6152 	 */
6153 
6154 	if (!tcp_validate_incoming(sk, skb, th, 1))
6155 		return;
6156 
6157 step5:
6158 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6159 	if ((int)reason < 0) {
6160 		reason = -reason;
6161 		goto discard;
6162 	}
6163 	tcp_rcv_rtt_measure_ts(sk, skb);
6164 
6165 	/* Process urgent data. */
6166 	tcp_urg(sk, skb, th);
6167 
6168 	/* step 7: process the segment text */
6169 	tcp_data_queue(sk, skb);
6170 
6171 	tcp_data_snd_check(sk);
6172 	tcp_ack_snd_check(sk);
6173 	return;
6174 
6175 csum_error:
6176 	reason = SKB_DROP_REASON_TCP_CSUM;
6177 	trace_tcp_bad_csum(skb);
6178 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6179 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6180 
6181 discard:
6182 	tcp_drop_reason(sk, skb, reason);
6183 }
6184 EXPORT_SYMBOL(tcp_rcv_established);
6185 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6186 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6187 {
6188 	struct inet_connection_sock *icsk = inet_csk(sk);
6189 	struct tcp_sock *tp = tcp_sk(sk);
6190 
6191 	tcp_mtup_init(sk);
6192 	icsk->icsk_af_ops->rebuild_header(sk);
6193 	tcp_init_metrics(sk);
6194 
6195 	/* Initialize the congestion window to start the transfer.
6196 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6197 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6198 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6199 	 * retransmission has occurred.
6200 	 */
6201 	if (tp->total_retrans > 1 && tp->undo_marker)
6202 		tcp_snd_cwnd_set(tp, 1);
6203 	else
6204 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6205 	tp->snd_cwnd_stamp = tcp_jiffies32;
6206 
6207 	bpf_skops_established(sk, bpf_op, skb);
6208 	/* Initialize congestion control unless BPF initialized it already: */
6209 	if (!icsk->icsk_ca_initialized)
6210 		tcp_init_congestion_control(sk);
6211 	tcp_init_buffer_space(sk);
6212 }
6213 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6214 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6215 {
6216 	struct tcp_sock *tp = tcp_sk(sk);
6217 	struct inet_connection_sock *icsk = inet_csk(sk);
6218 
6219 	tcp_set_state(sk, TCP_ESTABLISHED);
6220 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6221 
6222 	if (skb) {
6223 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6224 		security_inet_conn_established(sk, skb);
6225 		sk_mark_napi_id(sk, skb);
6226 	}
6227 
6228 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6229 
6230 	/* Prevent spurious tcp_cwnd_restart() on first data
6231 	 * packet.
6232 	 */
6233 	tp->lsndtime = tcp_jiffies32;
6234 
6235 	if (sock_flag(sk, SOCK_KEEPOPEN))
6236 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6237 
6238 	if (!tp->rx_opt.snd_wscale)
6239 		__tcp_fast_path_on(tp, tp->snd_wnd);
6240 	else
6241 		tp->pred_flags = 0;
6242 }
6243 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6244 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6245 				    struct tcp_fastopen_cookie *cookie)
6246 {
6247 	struct tcp_sock *tp = tcp_sk(sk);
6248 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6249 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6250 	bool syn_drop = false;
6251 
6252 	if (mss == tp->rx_opt.user_mss) {
6253 		struct tcp_options_received opt;
6254 
6255 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6256 		tcp_clear_options(&opt);
6257 		opt.user_mss = opt.mss_clamp = 0;
6258 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6259 		mss = opt.mss_clamp;
6260 	}
6261 
6262 	if (!tp->syn_fastopen) {
6263 		/* Ignore an unsolicited cookie */
6264 		cookie->len = -1;
6265 	} else if (tp->total_retrans) {
6266 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6267 		 * acknowledges data. Presumably the remote received only
6268 		 * the retransmitted (regular) SYNs: either the original
6269 		 * SYN-data or the corresponding SYN-ACK was dropped.
6270 		 */
6271 		syn_drop = (cookie->len < 0 && data);
6272 	} else if (cookie->len < 0 && !tp->syn_data) {
6273 		/* We requested a cookie but didn't get it. If we did not use
6274 		 * the (old) exp opt format then try so next time (try_exp=1).
6275 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6276 		 */
6277 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6278 	}
6279 
6280 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6281 
6282 	if (data) { /* Retransmit unacked data in SYN */
6283 		if (tp->total_retrans)
6284 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6285 		else
6286 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6287 		skb_rbtree_walk_from(data)
6288 			 tcp_mark_skb_lost(sk, data);
6289 		tcp_non_congestion_loss_retransmit(sk);
6290 		NET_INC_STATS(sock_net(sk),
6291 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6292 		return true;
6293 	}
6294 	tp->syn_data_acked = tp->syn_data;
6295 	if (tp->syn_data_acked) {
6296 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6297 		/* SYN-data is counted as two separate packets in tcp_ack() */
6298 		if (tp->delivered > 1)
6299 			--tp->delivered;
6300 	}
6301 
6302 	tcp_fastopen_add_skb(sk, synack);
6303 
6304 	return false;
6305 }
6306 
smc_check_reset_syn(struct tcp_sock * tp)6307 static void smc_check_reset_syn(struct tcp_sock *tp)
6308 {
6309 #if IS_ENABLED(CONFIG_SMC)
6310 	if (static_branch_unlikely(&tcp_have_smc)) {
6311 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6312 			tp->syn_smc = 0;
6313 	}
6314 #endif
6315 }
6316 
tcp_try_undo_spurious_syn(struct sock * sk)6317 static void tcp_try_undo_spurious_syn(struct sock *sk)
6318 {
6319 	struct tcp_sock *tp = tcp_sk(sk);
6320 	u32 syn_stamp;
6321 
6322 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6323 	 * spurious if the ACK's timestamp option echo value matches the
6324 	 * original SYN timestamp.
6325 	 */
6326 	syn_stamp = tp->retrans_stamp;
6327 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6328 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6329 		tp->undo_marker = 0;
6330 }
6331 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6332 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6333 					 const struct tcphdr *th)
6334 {
6335 	struct inet_connection_sock *icsk = inet_csk(sk);
6336 	struct tcp_sock *tp = tcp_sk(sk);
6337 	struct tcp_fastopen_cookie foc = { .len = -1 };
6338 	int saved_clamp = tp->rx_opt.mss_clamp;
6339 	bool fastopen_fail;
6340 	SKB_DR(reason);
6341 
6342 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6343 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6344 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6345 
6346 	if (th->ack) {
6347 		/* rfc793:
6348 		 * "If the state is SYN-SENT then
6349 		 *    first check the ACK bit
6350 		 *      If the ACK bit is set
6351 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6352 		 *        a reset (unless the RST bit is set, if so drop
6353 		 *        the segment and return)"
6354 		 */
6355 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6356 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6357 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6358 			if (icsk->icsk_retransmits == 0)
6359 				inet_csk_reset_xmit_timer(sk,
6360 						ICSK_TIME_RETRANS,
6361 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6362 			goto reset_and_undo;
6363 		}
6364 
6365 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6366 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6367 			     tcp_time_stamp(tp))) {
6368 			NET_INC_STATS(sock_net(sk),
6369 					LINUX_MIB_PAWSACTIVEREJECTED);
6370 			goto reset_and_undo;
6371 		}
6372 
6373 		/* Now ACK is acceptable.
6374 		 *
6375 		 * "If the RST bit is set
6376 		 *    If the ACK was acceptable then signal the user "error:
6377 		 *    connection reset", drop the segment, enter CLOSED state,
6378 		 *    delete TCB, and return."
6379 		 */
6380 
6381 		if (th->rst) {
6382 			tcp_reset(sk, skb);
6383 consume:
6384 			__kfree_skb(skb);
6385 			return 0;
6386 		}
6387 
6388 		/* rfc793:
6389 		 *   "fifth, if neither of the SYN or RST bits is set then
6390 		 *    drop the segment and return."
6391 		 *
6392 		 *    See note below!
6393 		 *                                        --ANK(990513)
6394 		 */
6395 		if (!th->syn) {
6396 			SKB_DR_SET(reason, TCP_FLAGS);
6397 			goto discard_and_undo;
6398 		}
6399 		/* rfc793:
6400 		 *   "If the SYN bit is on ...
6401 		 *    are acceptable then ...
6402 		 *    (our SYN has been ACKed), change the connection
6403 		 *    state to ESTABLISHED..."
6404 		 */
6405 
6406 		tcp_ecn_rcv_synack(tp, th);
6407 
6408 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6409 		tcp_try_undo_spurious_syn(sk);
6410 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6411 
6412 		/* Ok.. it's good. Set up sequence numbers and
6413 		 * move to established.
6414 		 */
6415 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6416 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6417 
6418 		/* RFC1323: The window in SYN & SYN/ACK segments is
6419 		 * never scaled.
6420 		 */
6421 		tp->snd_wnd = ntohs(th->window);
6422 
6423 		if (!tp->rx_opt.wscale_ok) {
6424 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6425 			WRITE_ONCE(tp->window_clamp,
6426 				   min(tp->window_clamp, 65535U));
6427 		}
6428 
6429 		if (tp->rx_opt.saw_tstamp) {
6430 			tp->rx_opt.tstamp_ok	   = 1;
6431 			tp->tcp_header_len =
6432 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6433 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6434 			tcp_store_ts_recent(tp);
6435 		} else {
6436 			tp->tcp_header_len = sizeof(struct tcphdr);
6437 		}
6438 
6439 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6440 		tcp_initialize_rcv_mss(sk);
6441 
6442 		/* Remember, tcp_poll() does not lock socket!
6443 		 * Change state from SYN-SENT only after copied_seq
6444 		 * is initialized. */
6445 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6446 
6447 		smc_check_reset_syn(tp);
6448 
6449 		smp_mb();
6450 
6451 		tcp_finish_connect(sk, skb);
6452 
6453 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6454 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6455 
6456 		if (!sock_flag(sk, SOCK_DEAD)) {
6457 			sk->sk_state_change(sk);
6458 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6459 		}
6460 		if (fastopen_fail)
6461 			return -1;
6462 		if (sk->sk_write_pending ||
6463 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6464 		    inet_csk_in_pingpong_mode(sk)) {
6465 			/* Save one ACK. Data will be ready after
6466 			 * several ticks, if write_pending is set.
6467 			 *
6468 			 * It may be deleted, but with this feature tcpdumps
6469 			 * look so _wonderfully_ clever, that I was not able
6470 			 * to stand against the temptation 8)     --ANK
6471 			 */
6472 			inet_csk_schedule_ack(sk);
6473 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6474 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6475 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6476 			goto consume;
6477 		}
6478 		tcp_send_ack(sk);
6479 		return -1;
6480 	}
6481 
6482 	/* No ACK in the segment */
6483 
6484 	if (th->rst) {
6485 		/* rfc793:
6486 		 * "If the RST bit is set
6487 		 *
6488 		 *      Otherwise (no ACK) drop the segment and return."
6489 		 */
6490 		SKB_DR_SET(reason, TCP_RESET);
6491 		goto discard_and_undo;
6492 	}
6493 
6494 	/* PAWS check. */
6495 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6496 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6497 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6498 		goto discard_and_undo;
6499 	}
6500 	if (th->syn) {
6501 		/* We see SYN without ACK. It is attempt of
6502 		 * simultaneous connect with crossed SYNs.
6503 		 * Particularly, it can be connect to self.
6504 		 */
6505 		tcp_set_state(sk, TCP_SYN_RECV);
6506 
6507 		if (tp->rx_opt.saw_tstamp) {
6508 			tp->rx_opt.tstamp_ok = 1;
6509 			tcp_store_ts_recent(tp);
6510 			tp->tcp_header_len =
6511 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6512 		} else {
6513 			tp->tcp_header_len = sizeof(struct tcphdr);
6514 		}
6515 
6516 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6517 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6518 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6519 
6520 		/* RFC1323: The window in SYN & SYN/ACK segments is
6521 		 * never scaled.
6522 		 */
6523 		tp->snd_wnd    = ntohs(th->window);
6524 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6525 		tp->max_window = tp->snd_wnd;
6526 
6527 		tcp_ecn_rcv_syn(tp, th);
6528 
6529 		tcp_mtup_init(sk);
6530 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6531 		tcp_initialize_rcv_mss(sk);
6532 
6533 		tcp_send_synack(sk);
6534 #if 0
6535 		/* Note, we could accept data and URG from this segment.
6536 		 * There are no obstacles to make this (except that we must
6537 		 * either change tcp_recvmsg() to prevent it from returning data
6538 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6539 		 *
6540 		 * However, if we ignore data in ACKless segments sometimes,
6541 		 * we have no reasons to accept it sometimes.
6542 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6543 		 * is not flawless. So, discard packet for sanity.
6544 		 * Uncomment this return to process the data.
6545 		 */
6546 		return -1;
6547 #else
6548 		goto consume;
6549 #endif
6550 	}
6551 	/* "fifth, if neither of the SYN or RST bits is set then
6552 	 * drop the segment and return."
6553 	 */
6554 
6555 discard_and_undo:
6556 	tcp_clear_options(&tp->rx_opt);
6557 	tp->rx_opt.mss_clamp = saved_clamp;
6558 	tcp_drop_reason(sk, skb, reason);
6559 	return 0;
6560 
6561 reset_and_undo:
6562 	tcp_clear_options(&tp->rx_opt);
6563 	tp->rx_opt.mss_clamp = saved_clamp;
6564 	return 1;
6565 }
6566 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6567 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6568 {
6569 	struct tcp_sock *tp = tcp_sk(sk);
6570 	struct request_sock *req;
6571 
6572 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6573 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6574 	 */
6575 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6576 		tcp_try_undo_recovery(sk);
6577 
6578 	tcp_update_rto_time(tp);
6579 	inet_csk(sk)->icsk_retransmits = 0;
6580 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6581 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6582 	 * need to zero retrans_stamp here to prevent spurious
6583 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6584 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6585 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6586 	 * undo behavior.
6587 	 */
6588 	tcp_retrans_stamp_cleanup(sk);
6589 
6590 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6591 	 * we no longer need req so release it.
6592 	 */
6593 	req = rcu_dereference_protected(tp->fastopen_rsk,
6594 					lockdep_sock_is_held(sk));
6595 	reqsk_fastopen_remove(sk, req, false);
6596 
6597 	/* Re-arm the timer because data may have been sent out.
6598 	 * This is similar to the regular data transmission case
6599 	 * when new data has just been ack'ed.
6600 	 *
6601 	 * (TFO) - we could try to be more aggressive and
6602 	 * retransmitting any data sooner based on when they
6603 	 * are sent out.
6604 	 */
6605 	tcp_rearm_rto(sk);
6606 }
6607 
6608 /*
6609  *	This function implements the receiving procedure of RFC 793 for
6610  *	all states except ESTABLISHED and TIME_WAIT.
6611  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6612  *	address independent.
6613  */
6614 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6615 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6616 {
6617 	struct tcp_sock *tp = tcp_sk(sk);
6618 	struct inet_connection_sock *icsk = inet_csk(sk);
6619 	const struct tcphdr *th = tcp_hdr(skb);
6620 	struct request_sock *req;
6621 	int queued = 0;
6622 	bool acceptable;
6623 	SKB_DR(reason);
6624 
6625 	switch (sk->sk_state) {
6626 	case TCP_CLOSE:
6627 		SKB_DR_SET(reason, TCP_CLOSE);
6628 		goto discard;
6629 
6630 	case TCP_LISTEN:
6631 		if (th->ack)
6632 			return 1;
6633 
6634 		if (th->rst) {
6635 			SKB_DR_SET(reason, TCP_RESET);
6636 			goto discard;
6637 		}
6638 		if (th->syn) {
6639 			if (th->fin) {
6640 				SKB_DR_SET(reason, TCP_FLAGS);
6641 				goto discard;
6642 			}
6643 			/* It is possible that we process SYN packets from backlog,
6644 			 * so we need to make sure to disable BH and RCU right there.
6645 			 */
6646 			rcu_read_lock();
6647 			local_bh_disable();
6648 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6649 			local_bh_enable();
6650 			rcu_read_unlock();
6651 
6652 			if (!acceptable)
6653 				return 1;
6654 			consume_skb(skb);
6655 			return 0;
6656 		}
6657 		SKB_DR_SET(reason, TCP_FLAGS);
6658 		goto discard;
6659 
6660 	case TCP_SYN_SENT:
6661 		tp->rx_opt.saw_tstamp = 0;
6662 		tcp_mstamp_refresh(tp);
6663 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6664 		if (queued >= 0)
6665 			return queued;
6666 
6667 		/* Do step6 onward by hand. */
6668 		tcp_urg(sk, skb, th);
6669 		__kfree_skb(skb);
6670 		tcp_data_snd_check(sk);
6671 		return 0;
6672 	}
6673 
6674 	tcp_mstamp_refresh(tp);
6675 	tp->rx_opt.saw_tstamp = 0;
6676 	req = rcu_dereference_protected(tp->fastopen_rsk,
6677 					lockdep_sock_is_held(sk));
6678 	if (req) {
6679 		bool req_stolen;
6680 
6681 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6682 		    sk->sk_state != TCP_FIN_WAIT1);
6683 
6684 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6685 			SKB_DR_SET(reason, TCP_FASTOPEN);
6686 			goto discard;
6687 		}
6688 	}
6689 
6690 	if (!th->ack && !th->rst && !th->syn) {
6691 		SKB_DR_SET(reason, TCP_FLAGS);
6692 		goto discard;
6693 	}
6694 	if (!tcp_validate_incoming(sk, skb, th, 0))
6695 		return 0;
6696 
6697 	/* step 5: check the ACK field */
6698 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6699 				      FLAG_UPDATE_TS_RECENT |
6700 				      FLAG_NO_CHALLENGE_ACK) > 0;
6701 
6702 	if (!acceptable) {
6703 		if (sk->sk_state == TCP_SYN_RECV)
6704 			return 1;	/* send one RST */
6705 		tcp_send_challenge_ack(sk);
6706 		SKB_DR_SET(reason, TCP_OLD_ACK);
6707 		goto discard;
6708 	}
6709 	switch (sk->sk_state) {
6710 	case TCP_SYN_RECV:
6711 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6712 		if (!tp->srtt_us)
6713 			tcp_synack_rtt_meas(sk, req);
6714 
6715 		if (tp->rx_opt.tstamp_ok)
6716 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6717 
6718 		if (req) {
6719 			tcp_rcv_synrecv_state_fastopen(sk);
6720 		} else {
6721 			tcp_try_undo_spurious_syn(sk);
6722 			tp->retrans_stamp = 0;
6723 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6724 					  skb);
6725 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6726 		}
6727 		smp_mb();
6728 		tcp_set_state(sk, TCP_ESTABLISHED);
6729 		sk->sk_state_change(sk);
6730 
6731 		/* Note, that this wakeup is only for marginal crossed SYN case.
6732 		 * Passively open sockets are not waked up, because
6733 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6734 		 */
6735 		if (sk->sk_socket)
6736 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6737 
6738 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6739 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6740 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6741 
6742 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6743 			tcp_update_pacing_rate(sk);
6744 
6745 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6746 		tp->lsndtime = tcp_jiffies32;
6747 
6748 		tcp_initialize_rcv_mss(sk);
6749 		tcp_fast_path_on(tp);
6750 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6751 			tcp_shutdown(sk, SEND_SHUTDOWN);
6752 		break;
6753 
6754 	case TCP_FIN_WAIT1: {
6755 		int tmo;
6756 
6757 		if (req)
6758 			tcp_rcv_synrecv_state_fastopen(sk);
6759 
6760 		if (tp->snd_una != tp->write_seq)
6761 			break;
6762 
6763 		tcp_set_state(sk, TCP_FIN_WAIT2);
6764 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6765 
6766 		sk_dst_confirm(sk);
6767 
6768 		if (!sock_flag(sk, SOCK_DEAD)) {
6769 			/* Wake up lingering close() */
6770 			sk->sk_state_change(sk);
6771 			break;
6772 		}
6773 
6774 		if (READ_ONCE(tp->linger2) < 0) {
6775 			tcp_done(sk);
6776 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6777 			return 1;
6778 		}
6779 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6780 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6781 			/* Receive out of order FIN after close() */
6782 			if (tp->syn_fastopen && th->fin)
6783 				tcp_fastopen_active_disable(sk);
6784 			tcp_done(sk);
6785 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6786 			return 1;
6787 		}
6788 
6789 		tmo = tcp_fin_time(sk);
6790 		if (tmo > TCP_TIMEWAIT_LEN) {
6791 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6792 		} else if (th->fin || sock_owned_by_user(sk)) {
6793 			/* Bad case. We could lose such FIN otherwise.
6794 			 * It is not a big problem, but it looks confusing
6795 			 * and not so rare event. We still can lose it now,
6796 			 * if it spins in bh_lock_sock(), but it is really
6797 			 * marginal case.
6798 			 */
6799 			inet_csk_reset_keepalive_timer(sk, tmo);
6800 		} else {
6801 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6802 			goto consume;
6803 		}
6804 		break;
6805 	}
6806 
6807 	case TCP_CLOSING:
6808 		if (tp->snd_una == tp->write_seq) {
6809 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6810 			goto consume;
6811 		}
6812 		break;
6813 
6814 	case TCP_LAST_ACK:
6815 		if (tp->snd_una == tp->write_seq) {
6816 			tcp_update_metrics(sk);
6817 			tcp_done(sk);
6818 			goto consume;
6819 		}
6820 		break;
6821 	}
6822 
6823 	/* step 6: check the URG bit */
6824 	tcp_urg(sk, skb, th);
6825 
6826 	/* step 7: process the segment text */
6827 	switch (sk->sk_state) {
6828 	case TCP_CLOSE_WAIT:
6829 	case TCP_CLOSING:
6830 	case TCP_LAST_ACK:
6831 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6832 			/* If a subflow has been reset, the packet should not
6833 			 * continue to be processed, drop the packet.
6834 			 */
6835 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6836 				goto discard;
6837 			break;
6838 		}
6839 		fallthrough;
6840 	case TCP_FIN_WAIT1:
6841 	case TCP_FIN_WAIT2:
6842 		/* RFC 793 says to queue data in these states,
6843 		 * RFC 1122 says we MUST send a reset.
6844 		 * BSD 4.4 also does reset.
6845 		 */
6846 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6847 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6848 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6849 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6850 				tcp_reset(sk, skb);
6851 				return 1;
6852 			}
6853 		}
6854 		fallthrough;
6855 	case TCP_ESTABLISHED:
6856 		tcp_data_queue(sk, skb);
6857 		queued = 1;
6858 		break;
6859 	}
6860 
6861 	/* tcp_data could move socket to TIME-WAIT */
6862 	if (sk->sk_state != TCP_CLOSE) {
6863 		tcp_data_snd_check(sk);
6864 		tcp_ack_snd_check(sk);
6865 	}
6866 
6867 	if (!queued) {
6868 discard:
6869 		tcp_drop_reason(sk, skb, reason);
6870 	}
6871 	return 0;
6872 
6873 consume:
6874 	__kfree_skb(skb);
6875 	return 0;
6876 }
6877 EXPORT_SYMBOL(tcp_rcv_state_process);
6878 
pr_drop_req(struct request_sock * req,__u16 port,int family)6879 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6880 {
6881 	struct inet_request_sock *ireq = inet_rsk(req);
6882 
6883 	if (family == AF_INET)
6884 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6885 				    &ireq->ir_rmt_addr, port);
6886 #if IS_ENABLED(CONFIG_IPV6)
6887 	else if (family == AF_INET6)
6888 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6889 				    &ireq->ir_v6_rmt_addr, port);
6890 #endif
6891 }
6892 
6893 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6894  *
6895  * If we receive a SYN packet with these bits set, it means a
6896  * network is playing bad games with TOS bits. In order to
6897  * avoid possible false congestion notifications, we disable
6898  * TCP ECN negotiation.
6899  *
6900  * Exception: tcp_ca wants ECN. This is required for DCTCP
6901  * congestion control: Linux DCTCP asserts ECT on all packets,
6902  * including SYN, which is most optimal solution; however,
6903  * others, such as FreeBSD do not.
6904  *
6905  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6906  * set, indicating the use of a future TCP extension (such as AccECN). See
6907  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6908  * extensions.
6909  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6910 static void tcp_ecn_create_request(struct request_sock *req,
6911 				   const struct sk_buff *skb,
6912 				   const struct sock *listen_sk,
6913 				   const struct dst_entry *dst)
6914 {
6915 	const struct tcphdr *th = tcp_hdr(skb);
6916 	const struct net *net = sock_net(listen_sk);
6917 	bool th_ecn = th->ece && th->cwr;
6918 	bool ect, ecn_ok;
6919 	u32 ecn_ok_dst;
6920 
6921 	if (!th_ecn)
6922 		return;
6923 
6924 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6925 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6926 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6927 
6928 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6929 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6930 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6931 		inet_rsk(req)->ecn_ok = 1;
6932 }
6933 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6934 static void tcp_openreq_init(struct request_sock *req,
6935 			     const struct tcp_options_received *rx_opt,
6936 			     struct sk_buff *skb, const struct sock *sk)
6937 {
6938 	struct inet_request_sock *ireq = inet_rsk(req);
6939 
6940 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6941 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6942 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6943 	tcp_rsk(req)->snt_synack = 0;
6944 	tcp_rsk(req)->last_oow_ack_time = 0;
6945 	req->mss = rx_opt->mss_clamp;
6946 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6947 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6948 	ireq->sack_ok = rx_opt->sack_ok;
6949 	ireq->snd_wscale = rx_opt->snd_wscale;
6950 	ireq->wscale_ok = rx_opt->wscale_ok;
6951 	ireq->acked = 0;
6952 	ireq->ecn_ok = 0;
6953 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6954 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6955 	ireq->ir_mark = inet_request_mark(sk, skb);
6956 #if IS_ENABLED(CONFIG_SMC)
6957 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6958 			tcp_sk(sk)->smc_hs_congested(sk));
6959 #endif
6960 }
6961 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6962 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6963 				      struct sock *sk_listener,
6964 				      bool attach_listener)
6965 {
6966 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6967 					       attach_listener);
6968 
6969 	if (req) {
6970 		struct inet_request_sock *ireq = inet_rsk(req);
6971 
6972 		ireq->ireq_opt = NULL;
6973 #if IS_ENABLED(CONFIG_IPV6)
6974 		ireq->pktopts = NULL;
6975 #endif
6976 		atomic64_set(&ireq->ir_cookie, 0);
6977 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6978 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6979 		ireq->ireq_family = sk_listener->sk_family;
6980 		req->timeout = TCP_TIMEOUT_INIT;
6981 	}
6982 
6983 	return req;
6984 }
6985 EXPORT_SYMBOL(inet_reqsk_alloc);
6986 
6987 /*
6988  * Return true if a syncookie should be sent
6989  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6990 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6991 {
6992 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6993 	const char *msg = "Dropping request";
6994 	struct net *net = sock_net(sk);
6995 	bool want_cookie = false;
6996 	u8 syncookies;
6997 
6998 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6999 
7000 #ifdef CONFIG_SYN_COOKIES
7001 	if (syncookies) {
7002 		msg = "Sending cookies";
7003 		want_cookie = true;
7004 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7005 	} else
7006 #endif
7007 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7008 
7009 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7010 	    xchg(&queue->synflood_warned, 1) == 0) {
7011 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7012 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7013 					proto, inet6_rcv_saddr(sk),
7014 					sk->sk_num, msg);
7015 		} else {
7016 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7017 					proto, &sk->sk_rcv_saddr,
7018 					sk->sk_num, msg);
7019 		}
7020 	}
7021 
7022 	return want_cookie;
7023 }
7024 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7025 static void tcp_reqsk_record_syn(const struct sock *sk,
7026 				 struct request_sock *req,
7027 				 const struct sk_buff *skb)
7028 {
7029 	if (tcp_sk(sk)->save_syn) {
7030 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7031 		struct saved_syn *saved_syn;
7032 		u32 mac_hdrlen;
7033 		void *base;
7034 
7035 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7036 			base = skb_mac_header(skb);
7037 			mac_hdrlen = skb_mac_header_len(skb);
7038 			len += mac_hdrlen;
7039 		} else {
7040 			base = skb_network_header(skb);
7041 			mac_hdrlen = 0;
7042 		}
7043 
7044 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7045 				    GFP_ATOMIC);
7046 		if (saved_syn) {
7047 			saved_syn->mac_hdrlen = mac_hdrlen;
7048 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7049 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7050 			memcpy(saved_syn->data, base, len);
7051 			req->saved_syn = saved_syn;
7052 		}
7053 	}
7054 }
7055 
7056 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7057  * used for SYN cookie generation.
7058  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7059 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7060 			  const struct tcp_request_sock_ops *af_ops,
7061 			  struct sock *sk, struct tcphdr *th)
7062 {
7063 	struct tcp_sock *tp = tcp_sk(sk);
7064 	u16 mss;
7065 
7066 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7067 	    !inet_csk_reqsk_queue_is_full(sk))
7068 		return 0;
7069 
7070 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7071 		return 0;
7072 
7073 	if (sk_acceptq_is_full(sk)) {
7074 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7075 		return 0;
7076 	}
7077 
7078 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7079 	if (!mss)
7080 		mss = af_ops->mss_clamp;
7081 
7082 	return mss;
7083 }
7084 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7085 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7086 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7087 		     const struct tcp_request_sock_ops *af_ops,
7088 		     struct sock *sk, struct sk_buff *skb)
7089 {
7090 	struct tcp_fastopen_cookie foc = { .len = -1 };
7091 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7092 	struct tcp_options_received tmp_opt;
7093 	struct tcp_sock *tp = tcp_sk(sk);
7094 	struct net *net = sock_net(sk);
7095 	struct sock *fastopen_sk = NULL;
7096 	struct request_sock *req;
7097 	bool want_cookie = false;
7098 	struct dst_entry *dst;
7099 	struct flowi fl;
7100 	u8 syncookies;
7101 
7102 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7103 
7104 	/* TW buckets are converted to open requests without
7105 	 * limitations, they conserve resources and peer is
7106 	 * evidently real one.
7107 	 */
7108 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7109 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7110 		if (!want_cookie)
7111 			goto drop;
7112 	}
7113 
7114 	if (sk_acceptq_is_full(sk)) {
7115 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7116 		goto drop;
7117 	}
7118 
7119 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7120 	if (!req)
7121 		goto drop;
7122 
7123 	req->syncookie = want_cookie;
7124 	tcp_rsk(req)->af_specific = af_ops;
7125 	tcp_rsk(req)->ts_off = 0;
7126 #if IS_ENABLED(CONFIG_MPTCP)
7127 	tcp_rsk(req)->is_mptcp = 0;
7128 #endif
7129 
7130 	tcp_clear_options(&tmp_opt);
7131 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7132 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7133 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7134 			  want_cookie ? NULL : &foc);
7135 
7136 	if (want_cookie && !tmp_opt.saw_tstamp)
7137 		tcp_clear_options(&tmp_opt);
7138 
7139 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7140 		tmp_opt.smc_ok = 0;
7141 
7142 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7143 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7144 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7145 
7146 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7147 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7148 
7149 	dst = af_ops->route_req(sk, skb, &fl, req);
7150 	if (!dst)
7151 		goto drop_and_free;
7152 
7153 	if (tmp_opt.tstamp_ok)
7154 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7155 
7156 	if (!want_cookie && !isn) {
7157 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7158 
7159 		/* Kill the following clause, if you dislike this way. */
7160 		if (!syncookies &&
7161 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7162 		     (max_syn_backlog >> 2)) &&
7163 		    !tcp_peer_is_proven(req, dst)) {
7164 			/* Without syncookies last quarter of
7165 			 * backlog is filled with destinations,
7166 			 * proven to be alive.
7167 			 * It means that we continue to communicate
7168 			 * to destinations, already remembered
7169 			 * to the moment of synflood.
7170 			 */
7171 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7172 				    rsk_ops->family);
7173 			goto drop_and_release;
7174 		}
7175 
7176 		isn = af_ops->init_seq(skb);
7177 	}
7178 
7179 	tcp_ecn_create_request(req, skb, sk, dst);
7180 
7181 	if (want_cookie) {
7182 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7183 		if (!tmp_opt.tstamp_ok)
7184 			inet_rsk(req)->ecn_ok = 0;
7185 	}
7186 
7187 	tcp_rsk(req)->snt_isn = isn;
7188 	tcp_rsk(req)->txhash = net_tx_rndhash();
7189 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7190 	tcp_openreq_init_rwin(req, sk, dst);
7191 	sk_rx_queue_set(req_to_sk(req), skb);
7192 	if (!want_cookie) {
7193 		tcp_reqsk_record_syn(sk, req, skb);
7194 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7195 	}
7196 	if (fastopen_sk) {
7197 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7198 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7199 		/* Add the child socket directly into the accept queue */
7200 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7201 			reqsk_fastopen_remove(fastopen_sk, req, false);
7202 			bh_unlock_sock(fastopen_sk);
7203 			sock_put(fastopen_sk);
7204 			goto drop_and_free;
7205 		}
7206 		sk->sk_data_ready(sk);
7207 		bh_unlock_sock(fastopen_sk);
7208 		sock_put(fastopen_sk);
7209 	} else {
7210 		tcp_rsk(req)->tfo_listener = false;
7211 		if (!want_cookie) {
7212 			req->timeout = tcp_timeout_init((struct sock *)req);
7213 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7214 								    req->timeout))) {
7215 				reqsk_free(req);
7216 				dst_release(dst);
7217 				return 0;
7218 			}
7219 
7220 		}
7221 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7222 				    !want_cookie ? TCP_SYNACK_NORMAL :
7223 						   TCP_SYNACK_COOKIE,
7224 				    skb);
7225 		if (want_cookie) {
7226 			reqsk_free(req);
7227 			return 0;
7228 		}
7229 	}
7230 	reqsk_put(req);
7231 	return 0;
7232 
7233 drop_and_release:
7234 	dst_release(dst);
7235 drop_and_free:
7236 	__reqsk_free(req);
7237 drop:
7238 	tcp_listendrop(sk);
7239 	return 0;
7240 }
7241 EXPORT_SYMBOL(tcp_conn_request);
7242