xref: /openbmc/linux/drivers/gpu/drm/gma500/cdv_intel_display.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2011 Intel Corporation
4  *
5  * Authors:
6  *	Eric Anholt <eric@anholt.net>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 
12 #include <drm/drm_crtc.h>
13 #include <drm/drm_modeset_helper_vtables.h>
14 
15 #include "cdv_device.h"
16 #include "framebuffer.h"
17 #include "gma_display.h"
18 #include "power.h"
19 #include "psb_drv.h"
20 #include "psb_intel_drv.h"
21 #include "psb_intel_reg.h"
22 
23 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
24 				  struct drm_crtc *crtc, int target,
25 				  int refclk, struct gma_clock_t *best_clock);
26 
27 
28 #define CDV_LIMIT_SINGLE_LVDS_96	0
29 #define CDV_LIMIT_SINGLE_LVDS_100	1
30 #define CDV_LIMIT_DAC_HDMI_27		2
31 #define CDV_LIMIT_DAC_HDMI_96		3
32 #define CDV_LIMIT_DP_27			4
33 #define CDV_LIMIT_DP_100		5
34 
35 static const struct gma_limit_t cdv_intel_limits[] = {
36 	{			/* CDV_SINGLE_LVDS_96MHz */
37 	 .dot = {.min = 20000, .max = 115500},
38 	 .vco = {.min = 1800000, .max = 3600000},
39 	 .n = {.min = 2, .max = 6},
40 	 .m = {.min = 60, .max = 160},
41 	 .m1 = {.min = 0, .max = 0},
42 	 .m2 = {.min = 58, .max = 158},
43 	 .p = {.min = 28, .max = 140},
44 	 .p1 = {.min = 2, .max = 10},
45 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
46 	 .find_pll = gma_find_best_pll,
47 	 },
48 	{			/* CDV_SINGLE_LVDS_100MHz */
49 	 .dot = {.min = 20000, .max = 115500},
50 	 .vco = {.min = 1800000, .max = 3600000},
51 	 .n = {.min = 2, .max = 6},
52 	 .m = {.min = 60, .max = 160},
53 	 .m1 = {.min = 0, .max = 0},
54 	 .m2 = {.min = 58, .max = 158},
55 	 .p = {.min = 28, .max = 140},
56 	 .p1 = {.min = 2, .max = 10},
57 	 /* The single-channel range is 25-112Mhz, and dual-channel
58 	  * is 80-224Mhz.  Prefer single channel as much as possible.
59 	  */
60 	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
61 	 .find_pll = gma_find_best_pll,
62 	 },
63 	{			/* CDV_DAC_HDMI_27MHz */
64 	 .dot = {.min = 20000, .max = 400000},
65 	 .vco = {.min = 1809000, .max = 3564000},
66 	 .n = {.min = 1, .max = 1},
67 	 .m = {.min = 67, .max = 132},
68 	 .m1 = {.min = 0, .max = 0},
69 	 .m2 = {.min = 65, .max = 130},
70 	 .p = {.min = 5, .max = 90},
71 	 .p1 = {.min = 1, .max = 9},
72 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
73 	 .find_pll = gma_find_best_pll,
74 	 },
75 	{			/* CDV_DAC_HDMI_96MHz */
76 	 .dot = {.min = 20000, .max = 400000},
77 	 .vco = {.min = 1800000, .max = 3600000},
78 	 .n = {.min = 2, .max = 6},
79 	 .m = {.min = 60, .max = 160},
80 	 .m1 = {.min = 0, .max = 0},
81 	 .m2 = {.min = 58, .max = 158},
82 	 .p = {.min = 5, .max = 100},
83 	 .p1 = {.min = 1, .max = 10},
84 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
85 	 .find_pll = gma_find_best_pll,
86 	 },
87 	{			/* CDV_DP_27MHz */
88 	 .dot = {.min = 160000, .max = 272000},
89 	 .vco = {.min = 1809000, .max = 3564000},
90 	 .n = {.min = 1, .max = 1},
91 	 .m = {.min = 67, .max = 132},
92 	 .m1 = {.min = 0, .max = 0},
93 	 .m2 = {.min = 65, .max = 130},
94 	 .p = {.min = 5, .max = 90},
95 	 .p1 = {.min = 1, .max = 9},
96 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
97 	 .find_pll = cdv_intel_find_dp_pll,
98 	 },
99 	{			/* CDV_DP_100MHz */
100 	 .dot = {.min = 160000, .max = 272000},
101 	 .vco = {.min = 1800000, .max = 3600000},
102 	 .n = {.min = 2, .max = 6},
103 	 .m = {.min = 60, .max = 164},
104 	 .m1 = {.min = 0, .max = 0},
105 	 .m2 = {.min = 58, .max = 162},
106 	 .p = {.min = 5, .max = 100},
107 	 .p1 = {.min = 1, .max = 10},
108 	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
109 	 .find_pll = cdv_intel_find_dp_pll,
110 	}
111 };
112 
113 #define _wait_for(COND, MS, W) ({ \
114 	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
115 	int ret__ = 0;							\
116 	while (!(COND)) {						\
117 		if (time_after(jiffies, timeout__)) {			\
118 			ret__ = -ETIMEDOUT;				\
119 			break;						\
120 		}							\
121 		if (W && !in_dbg_master())				\
122 			msleep(W);					\
123 	}								\
124 	ret__;								\
125 })
126 
127 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
128 
129 
cdv_sb_read(struct drm_device * dev,u32 reg,u32 * val)130 int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
131 {
132 	int ret;
133 
134 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
135 	if (ret) {
136 		DRM_ERROR("timeout waiting for SB to idle before read\n");
137 		return ret;
138 	}
139 
140 	REG_WRITE(SB_ADDR, reg);
141 	REG_WRITE(SB_PCKT,
142 		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
143 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
144 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
145 
146 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
147 	if (ret) {
148 		DRM_ERROR("timeout waiting for SB to idle after read\n");
149 		return ret;
150 	}
151 
152 	*val = REG_READ(SB_DATA);
153 
154 	return 0;
155 }
156 
cdv_sb_write(struct drm_device * dev,u32 reg,u32 val)157 int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
158 {
159 	int ret;
160 	static bool dpio_debug = true;
161 	u32 temp;
162 
163 	if (dpio_debug) {
164 		if (cdv_sb_read(dev, reg, &temp) == 0)
165 			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
166 		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
167 	}
168 
169 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
170 	if (ret) {
171 		DRM_ERROR("timeout waiting for SB to idle before write\n");
172 		return ret;
173 	}
174 
175 	REG_WRITE(SB_ADDR, reg);
176 	REG_WRITE(SB_DATA, val);
177 	REG_WRITE(SB_PCKT,
178 		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
179 		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
180 		   SET_FIELD(0xf, SB_BYTE_ENABLE));
181 
182 	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
183 	if (ret) {
184 		DRM_ERROR("timeout waiting for SB to idle after write\n");
185 		return ret;
186 	}
187 
188 	if (dpio_debug) {
189 		if (cdv_sb_read(dev, reg, &temp) == 0)
190 			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
191 	}
192 
193 	return 0;
194 }
195 
196 /* Reset the DPIO configuration register.  The BIOS does this at every
197  * mode set.
198  */
cdv_sb_reset(struct drm_device * dev)199 void cdv_sb_reset(struct drm_device *dev)
200 {
201 
202 	REG_WRITE(DPIO_CFG, 0);
203 	REG_READ(DPIO_CFG);
204 	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
205 }
206 
207 /* Unlike most Intel display engines, on Cedarview the DPLL registers
208  * are behind this sideband bus.  They must be programmed while the
209  * DPLL reference clock is on in the DPLL control register, but before
210  * the DPLL is enabled in the DPLL control register.
211  */
212 static int
cdv_dpll_set_clock_cdv(struct drm_device * dev,struct drm_crtc * crtc,struct gma_clock_t * clock,bool is_lvds,u32 ddi_select)213 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
214 		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
215 {
216 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
217 	int pipe = gma_crtc->pipe;
218 	u32 m, n_vco, p;
219 	int ret = 0;
220 	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
221 	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
222 	u32 ref_value;
223 	u32 lane_reg, lane_value;
224 
225 	cdv_sb_reset(dev);
226 
227 	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
228 
229 	udelay(100);
230 
231 	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
232 	ref_value = 0x68A701;
233 
234 	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
235 
236 	/* We don't know what the other fields of these regs are, so
237 	 * leave them in place.
238 	 */
239 	/*
240 	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
241 	 * for the pipe A/B. Display spec 1.06 has wrong definition.
242 	 * Correct definition is like below:
243 	 *
244 	 * refclka mean use clock from same PLL
245 	 *
246 	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
247 	 *
248 	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
249 	 *
250 	 */
251 	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
252 	if (ret)
253 		return ret;
254 	ref_value &= ~(REF_CLK_MASK);
255 
256 	/* use DPLL_A for pipeB on CRT/HDMI */
257 	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
258 		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
259 		ref_value |= REF_CLK_DPLLA;
260 	} else {
261 		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
262 		ref_value |= REF_CLK_DPLL;
263 	}
264 	ret = cdv_sb_write(dev, ref_sfr, ref_value);
265 	if (ret)
266 		return ret;
267 
268 	ret = cdv_sb_read(dev, SB_M(pipe), &m);
269 	if (ret)
270 		return ret;
271 	m &= ~SB_M_DIVIDER_MASK;
272 	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
273 	ret = cdv_sb_write(dev, SB_M(pipe), m);
274 	if (ret)
275 		return ret;
276 
277 	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
278 	if (ret)
279 		return ret;
280 
281 	/* Follow the BIOS to program the N_DIVIDER REG */
282 	n_vco &= 0xFFFF;
283 	n_vco |= 0x107;
284 	n_vco &= ~(SB_N_VCO_SEL_MASK |
285 		   SB_N_DIVIDER_MASK |
286 		   SB_N_CB_TUNE_MASK);
287 
288 	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
289 
290 	if (clock->vco < 2250000) {
291 		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
292 		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
293 	} else if (clock->vco < 2750000) {
294 		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
295 		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
296 	} else if (clock->vco < 3300000) {
297 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
298 		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
299 	} else {
300 		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
301 		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
302 	}
303 
304 	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
305 	if (ret)
306 		return ret;
307 
308 	ret = cdv_sb_read(dev, SB_P(pipe), &p);
309 	if (ret)
310 		return ret;
311 	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
312 	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
313 	switch (clock->p2) {
314 	case 5:
315 		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
316 		break;
317 	case 10:
318 		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
319 		break;
320 	case 14:
321 		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
322 		break;
323 	case 7:
324 		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
325 		break;
326 	default:
327 		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
328 		return -EINVAL;
329 	}
330 	ret = cdv_sb_write(dev, SB_P(pipe), p);
331 	if (ret)
332 		return ret;
333 
334 	if (ddi_select) {
335 		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
336 			lane_reg = PSB_LANE0;
337 			cdv_sb_read(dev, lane_reg, &lane_value);
338 			lane_value &= ~(LANE_PLL_MASK);
339 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
340 			cdv_sb_write(dev, lane_reg, lane_value);
341 
342 			lane_reg = PSB_LANE1;
343 			cdv_sb_read(dev, lane_reg, &lane_value);
344 			lane_value &= ~(LANE_PLL_MASK);
345 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
346 			cdv_sb_write(dev, lane_reg, lane_value);
347 		} else {
348 			lane_reg = PSB_LANE2;
349 			cdv_sb_read(dev, lane_reg, &lane_value);
350 			lane_value &= ~(LANE_PLL_MASK);
351 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
352 			cdv_sb_write(dev, lane_reg, lane_value);
353 
354 			lane_reg = PSB_LANE3;
355 			cdv_sb_read(dev, lane_reg, &lane_value);
356 			lane_value &= ~(LANE_PLL_MASK);
357 			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
358 			cdv_sb_write(dev, lane_reg, lane_value);
359 		}
360 	}
361 	return 0;
362 }
363 
cdv_intel_limit(struct drm_crtc * crtc,int refclk)364 static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
365 						 int refclk)
366 {
367 	const struct gma_limit_t *limit;
368 	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369 		/*
370 		 * Now only single-channel LVDS is supported on CDV. If it is
371 		 * incorrect, please add the dual-channel LVDS.
372 		 */
373 		if (refclk == 96000)
374 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
375 		else
376 			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
377 	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
378 			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
379 		if (refclk == 27000)
380 			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
381 		else
382 			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
383 	} else {
384 		if (refclk == 27000)
385 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
386 		else
387 			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
388 	}
389 	return limit;
390 }
391 
392 /* m1 is reserved as 0 in CDV, n is a ring counter */
cdv_intel_clock(int refclk,struct gma_clock_t * clock)393 static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
394 {
395 	clock->m = clock->m2 + 2;
396 	clock->p = clock->p1 * clock->p2;
397 	clock->vco = (refclk * clock->m) / clock->n;
398 	clock->dot = clock->vco / clock->p;
399 }
400 
cdv_intel_find_dp_pll(const struct gma_limit_t * limit,struct drm_crtc * crtc,int target,int refclk,struct gma_clock_t * best_clock)401 static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
402 				  struct drm_crtc *crtc, int target,
403 				  int refclk,
404 				  struct gma_clock_t *best_clock)
405 {
406 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
407 	struct gma_clock_t clock;
408 
409 	memset(&clock, 0, sizeof(clock));
410 
411 	switch (refclk) {
412 	case 27000:
413 		if (target < 200000) {
414 			clock.p1 = 2;
415 			clock.p2 = 10;
416 			clock.n = 1;
417 			clock.m1 = 0;
418 			clock.m2 = 118;
419 		} else {
420 			clock.p1 = 1;
421 			clock.p2 = 10;
422 			clock.n = 1;
423 			clock.m1 = 0;
424 			clock.m2 = 98;
425 		}
426 		break;
427 
428 	case 100000:
429 		if (target < 200000) {
430 			clock.p1 = 2;
431 			clock.p2 = 10;
432 			clock.n = 5;
433 			clock.m1 = 0;
434 			clock.m2 = 160;
435 		} else {
436 			clock.p1 = 1;
437 			clock.p2 = 10;
438 			clock.n = 5;
439 			clock.m1 = 0;
440 			clock.m2 = 133;
441 		}
442 		break;
443 
444 	default:
445 		return false;
446 	}
447 
448 	gma_crtc->clock_funcs->clock(refclk, &clock);
449 	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
450 	return true;
451 }
452 
453 #define		FIFO_PIPEA		(1 << 0)
454 #define		FIFO_PIPEB		(1 << 1)
455 
cdv_intel_pipe_enabled(struct drm_device * dev,int pipe)456 static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
457 {
458 	struct drm_crtc *crtc;
459 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
460 	struct gma_crtc *gma_crtc = NULL;
461 
462 	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
463 	gma_crtc = to_gma_crtc(crtc);
464 
465 	if (crtc->primary->fb == NULL || !gma_crtc->active)
466 		return false;
467 	return true;
468 }
469 
cdv_disable_sr(struct drm_device * dev)470 void cdv_disable_sr(struct drm_device *dev)
471 {
472 	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
473 
474 		/* Disable self-refresh before adjust WM */
475 		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
476 		REG_READ(FW_BLC_SELF);
477 
478 		gma_wait_for_vblank(dev);
479 
480 		/* Cedarview workaround to write ovelay plane, which force to leave
481 		 * MAX_FIFO state.
482 		 */
483 		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
484 		REG_READ(OV_OVADD);
485 
486 		gma_wait_for_vblank(dev);
487 	}
488 
489 }
490 
cdv_update_wm(struct drm_device * dev,struct drm_crtc * crtc)491 void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
492 {
493 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
494 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
495 
496 	/* Is only one pipe enabled? */
497 	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
498 		u32 fw;
499 
500 		fw = REG_READ(DSPFW1);
501 		fw &= ~DSP_FIFO_SR_WM_MASK;
502 		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
503 		fw &= ~CURSOR_B_FIFO_WM_MASK;
504 		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
505 		REG_WRITE(DSPFW1, fw);
506 
507 		fw = REG_READ(DSPFW2);
508 		fw &= ~CURSOR_A_FIFO_WM_MASK;
509 		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
510 		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
511 		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
512 		REG_WRITE(DSPFW2, fw);
513 
514 		REG_WRITE(DSPFW3, 0x36000000);
515 
516 		/* ignore FW4 */
517 
518 		/* Is pipe b lvds ? */
519 		if (gma_crtc->pipe == 1 &&
520 		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 			REG_WRITE(DSPFW5, 0x00040330);
522 		} else {
523 			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
524 			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
525 			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
526 			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
527 			REG_WRITE(DSPFW5, fw);
528 		}
529 
530 		REG_WRITE(DSPFW6, 0x10);
531 
532 		gma_wait_for_vblank(dev);
533 
534 		/* enable self-refresh for single pipe active */
535 		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
536 		REG_READ(FW_BLC_SELF);
537 		gma_wait_for_vblank(dev);
538 
539 	} else {
540 
541 		/* HW team suggested values... */
542 		REG_WRITE(DSPFW1, 0x3f880808);
543 		REG_WRITE(DSPFW2, 0x0b020202);
544 		REG_WRITE(DSPFW3, 0x24000000);
545 		REG_WRITE(DSPFW4, 0x08030202);
546 		REG_WRITE(DSPFW5, 0x01010101);
547 		REG_WRITE(DSPFW6, 0x1d0);
548 
549 		gma_wait_for_vblank(dev);
550 
551 		dev_priv->ops->disable_sr(dev);
552 	}
553 }
554 
555 /*
556  * Return the pipe currently connected to the panel fitter,
557  * or -1 if the panel fitter is not present or not in use
558  */
cdv_intel_panel_fitter_pipe(struct drm_device * dev)559 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
560 {
561 	u32 pfit_control;
562 
563 	pfit_control = REG_READ(PFIT_CONTROL);
564 
565 	/* See if the panel fitter is in use */
566 	if ((pfit_control & PFIT_ENABLE) == 0)
567 		return -1;
568 	return (pfit_control >> 29) & 0x3;
569 }
570 
cdv_intel_crtc_mode_set(struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode,int x,int y,struct drm_framebuffer * old_fb)571 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
572 			       struct drm_display_mode *mode,
573 			       struct drm_display_mode *adjusted_mode,
574 			       int x, int y,
575 			       struct drm_framebuffer *old_fb)
576 {
577 	struct drm_device *dev = crtc->dev;
578 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
579 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
580 	int pipe = gma_crtc->pipe;
581 	const struct psb_offset *map = &dev_priv->regmap[pipe];
582 	int refclk;
583 	struct gma_clock_t clock;
584 	u32 dpll = 0, dspcntr, pipeconf;
585 	bool ok;
586 	bool is_lvds = false;
587 	bool is_dp = false;
588 	struct drm_connector_list_iter conn_iter;
589 	struct drm_connector *connector;
590 	const struct gma_limit_t *limit;
591 	u32 ddi_select = 0;
592 	bool is_edp = false;
593 
594 	drm_connector_list_iter_begin(dev, &conn_iter);
595 	drm_for_each_connector_iter(connector, &conn_iter) {
596 		struct gma_encoder *gma_encoder =
597 					gma_attached_encoder(connector);
598 
599 		if (!connector->encoder
600 		    || connector->encoder->crtc != crtc)
601 			continue;
602 
603 		ddi_select = gma_encoder->ddi_select;
604 		switch (gma_encoder->type) {
605 		case INTEL_OUTPUT_LVDS:
606 			is_lvds = true;
607 			break;
608 		case INTEL_OUTPUT_ANALOG:
609 		case INTEL_OUTPUT_HDMI:
610 			break;
611 		case INTEL_OUTPUT_DISPLAYPORT:
612 			is_dp = true;
613 			break;
614 		case INTEL_OUTPUT_EDP:
615 			is_edp = true;
616 			break;
617 		default:
618 			drm_connector_list_iter_end(&conn_iter);
619 			DRM_ERROR("invalid output type.\n");
620 			return 0;
621 		}
622 
623 		break;
624 	}
625 	drm_connector_list_iter_end(&conn_iter);
626 
627 	if (dev_priv->dplla_96mhz)
628 		/* low-end sku, 96/100 mhz */
629 		refclk = 96000;
630 	else
631 		/* high-end sku, 27/100 mhz */
632 		refclk = 27000;
633 	if (is_dp || is_edp) {
634 		/*
635 		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
636 		 * unnecessary to consider it for DP/eDP.
637 		 * On the high-end SKU, it will use the 27/100M reference clk
638 		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
639 		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
640 		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
641 		 */
642 		if (pipe == 0)
643 			refclk = 27000;
644 		else
645 			refclk = 100000;
646 	}
647 
648 	if (is_lvds && dev_priv->lvds_use_ssc) {
649 		refclk = dev_priv->lvds_ssc_freq * 1000;
650 		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
651 	}
652 
653 	drm_mode_debug_printmodeline(adjusted_mode);
654 
655 	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
656 
657 	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
658 				 &clock);
659 	if (!ok) {
660 		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
661 			  adjusted_mode->clock, clock.dot);
662 		return 0;
663 	}
664 
665 	dpll = DPLL_VGA_MODE_DIS;
666 
667 	if (is_dp || is_edp) {
668 		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
669 	} else {
670 		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
671 		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
672 		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
673 		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
674 	}
675 
676 	dpll |= DPLL_SYNCLOCK_ENABLE;
677 /*	if (is_lvds)
678 		dpll |= DPLLB_MODE_LVDS;
679 	else
680 		dpll |= DPLLB_MODE_DAC_SERIAL; */
681 	/* dpll |= (2 << 11); */
682 
683 	/* setup pipeconf */
684 	pipeconf = REG_READ(map->conf);
685 
686 	pipeconf &= ~(PIPE_BPC_MASK);
687 	if (is_edp) {
688 		switch (dev_priv->edp.bpp) {
689 		case 24:
690 			pipeconf |= PIPE_8BPC;
691 			break;
692 		case 18:
693 			pipeconf |= PIPE_6BPC;
694 			break;
695 		case 30:
696 			pipeconf |= PIPE_10BPC;
697 			break;
698 		default:
699 			pipeconf |= PIPE_8BPC;
700 			break;
701 		}
702 	} else if (is_lvds) {
703 		/* the BPC will be 6 if it is 18-bit LVDS panel */
704 		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
705 			pipeconf |= PIPE_8BPC;
706 		else
707 			pipeconf |= PIPE_6BPC;
708 	} else
709 		pipeconf |= PIPE_8BPC;
710 
711 	/* Set up the display plane register */
712 	dspcntr = DISPPLANE_GAMMA_ENABLE;
713 
714 	if (pipe == 0)
715 		dspcntr |= DISPPLANE_SEL_PIPE_A;
716 	else
717 		dspcntr |= DISPPLANE_SEL_PIPE_B;
718 
719 	dspcntr |= DISPLAY_PLANE_ENABLE;
720 	pipeconf |= PIPEACONF_ENABLE;
721 
722 	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
723 	REG_READ(map->dpll);
724 
725 	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
726 
727 	udelay(150);
728 
729 
730 	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
731 	 * This is an exception to the general rule that mode_set doesn't turn
732 	 * things on.
733 	 */
734 	if (is_lvds) {
735 		u32 lvds = REG_READ(LVDS);
736 
737 		lvds |=
738 		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
739 		    LVDS_PIPEB_SELECT;
740 		/* Set the B0-B3 data pairs corresponding to
741 		 * whether we're going to
742 		 * set the DPLLs for dual-channel mode or not.
743 		 */
744 		if (clock.p2 == 7)
745 			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
746 		else
747 			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
748 
749 		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
750 		 * appropriately here, but we need to look more
751 		 * thoroughly into how panels behave in the two modes.
752 		 */
753 
754 		REG_WRITE(LVDS, lvds);
755 		REG_READ(LVDS);
756 	}
757 
758 	dpll |= DPLL_VCO_ENABLE;
759 
760 	/* Disable the panel fitter if it was on our pipe */
761 	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
762 		REG_WRITE(PFIT_CONTROL, 0);
763 
764 	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
765 	drm_mode_debug_printmodeline(mode);
766 
767 	REG_WRITE(map->dpll,
768 		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
769 	REG_READ(map->dpll);
770 	/* Wait for the clocks to stabilize. */
771 	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
772 
773 	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
774 		dev_err(dev->dev, "Failed to get DPLL lock\n");
775 		return -EBUSY;
776 	}
777 
778 	{
779 		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
780 		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
781 	}
782 
783 	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
784 		  ((adjusted_mode->crtc_htotal - 1) << 16));
785 	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
786 		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
787 	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
788 		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
789 	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
790 		  ((adjusted_mode->crtc_vtotal - 1) << 16));
791 	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
792 		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
793 	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
794 		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
795 	/* pipesrc and dspsize control the size that is scaled from,
796 	 * which should always be the user's requested size.
797 	 */
798 	REG_WRITE(map->size,
799 		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
800 	REG_WRITE(map->pos, 0);
801 	REG_WRITE(map->src,
802 		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
803 	REG_WRITE(map->conf, pipeconf);
804 	REG_READ(map->conf);
805 
806 	gma_wait_for_vblank(dev);
807 
808 	REG_WRITE(map->cntr, dspcntr);
809 
810 	/* Flush the plane changes */
811 	{
812 		const struct drm_crtc_helper_funcs *crtc_funcs =
813 		    crtc->helper_private;
814 		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
815 	}
816 
817 	gma_wait_for_vblank(dev);
818 
819 	return 0;
820 }
821 
822 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
823 
824 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
825 
i8xx_clock(int refclk,struct gma_clock_t * clock)826 static void i8xx_clock(int refclk, struct gma_clock_t *clock)
827 {
828 	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
829 	clock->p = clock->p1 * clock->p2;
830 	clock->vco = refclk * clock->m / (clock->n + 2);
831 	clock->dot = clock->vco / clock->p;
832 }
833 
834 /* Returns the clock of the currently programmed mode of the given pipe. */
cdv_intel_crtc_clock_get(struct drm_device * dev,struct drm_crtc * crtc)835 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
836 				struct drm_crtc *crtc)
837 {
838 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
839 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
840 	int pipe = gma_crtc->pipe;
841 	const struct psb_offset *map = &dev_priv->regmap[pipe];
842 	u32 dpll;
843 	u32 fp;
844 	struct gma_clock_t clock;
845 	bool is_lvds;
846 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
847 
848 	if (gma_power_begin(dev, false)) {
849 		dpll = REG_READ(map->dpll);
850 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
851 			fp = REG_READ(map->fp0);
852 		else
853 			fp = REG_READ(map->fp1);
854 		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
855 		gma_power_end(dev);
856 	} else {
857 		dpll = p->dpll;
858 		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
859 			fp = p->fp0;
860 		else
861 			fp = p->fp1;
862 
863 		is_lvds = (pipe == 1) &&
864 				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
865 	}
866 
867 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
868 	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
869 	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
870 
871 	if (is_lvds) {
872 		clock.p1 =
873 		    ffs((dpll &
874 			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
875 			DPLL_FPA01_P1_POST_DIV_SHIFT);
876 		if (clock.p1 == 0) {
877 			clock.p1 = 4;
878 			dev_err(dev->dev, "PLL %d\n", dpll);
879 		}
880 		clock.p2 = 14;
881 
882 		if ((dpll & PLL_REF_INPUT_MASK) ==
883 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
884 			/* XXX: might not be 66MHz */
885 			i8xx_clock(66000, &clock);
886 		} else
887 			i8xx_clock(48000, &clock);
888 	} else {
889 		if (dpll & PLL_P1_DIVIDE_BY_TWO)
890 			clock.p1 = 2;
891 		else {
892 			clock.p1 =
893 			    ((dpll &
894 			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
895 			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
896 		}
897 		if (dpll & PLL_P2_DIVIDE_BY_4)
898 			clock.p2 = 4;
899 		else
900 			clock.p2 = 2;
901 
902 		i8xx_clock(48000, &clock);
903 	}
904 
905 	/* XXX: It would be nice to validate the clocks, but we can't reuse
906 	 * i830PllIsValid() because it relies on the xf86_config connector
907 	 * configuration being accurate, which it isn't necessarily.
908 	 */
909 
910 	return clock.dot;
911 }
912 
913 /** Returns the currently programmed mode of the given pipe. */
cdv_intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)914 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
915 					     struct drm_crtc *crtc)
916 {
917 	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
918 	int pipe = gma_crtc->pipe;
919 	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
920 	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
921 	const struct psb_offset *map = &dev_priv->regmap[pipe];
922 	struct drm_display_mode *mode;
923 	int htot;
924 	int hsync;
925 	int vtot;
926 	int vsync;
927 
928 	if (gma_power_begin(dev, false)) {
929 		htot = REG_READ(map->htotal);
930 		hsync = REG_READ(map->hsync);
931 		vtot = REG_READ(map->vtotal);
932 		vsync = REG_READ(map->vsync);
933 		gma_power_end(dev);
934 	} else {
935 		htot = p->htotal;
936 		hsync = p->hsync;
937 		vtot = p->vtotal;
938 		vsync = p->vsync;
939 	}
940 
941 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
942 	if (!mode)
943 		return NULL;
944 
945 	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
946 	mode->hdisplay = (htot & 0xffff) + 1;
947 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
948 	mode->hsync_start = (hsync & 0xffff) + 1;
949 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
950 	mode->vdisplay = (vtot & 0xffff) + 1;
951 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
952 	mode->vsync_start = (vsync & 0xffff) + 1;
953 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
954 
955 	drm_mode_set_name(mode);
956 	drm_mode_set_crtcinfo(mode, 0);
957 
958 	return mode;
959 }
960 
961 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
962 	.dpms = gma_crtc_dpms,
963 	.mode_set = cdv_intel_crtc_mode_set,
964 	.mode_set_base = gma_pipe_set_base,
965 	.prepare = gma_crtc_prepare,
966 	.commit = gma_crtc_commit,
967 	.disable = gma_crtc_disable,
968 };
969 
970 const struct gma_clock_funcs cdv_clock_funcs = {
971 	.clock = cdv_intel_clock,
972 	.limit = cdv_intel_limit,
973 	.pll_is_valid = gma_pll_is_valid,
974 };
975