xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_nested.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *	   Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24 
25 static struct patb_entry *pseries_partition_tb;
26 
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29 
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
33 
34 	hr->pcr = vc->pcr | PCR_MASK;
35 	hr->dpdes = vcpu->arch.doorbell_request;
36 	hr->hfscr = vcpu->arch.hfscr;
37 	hr->tb_offset = vc->tb_offset;
38 	hr->dawr0 = vcpu->arch.dawr0;
39 	hr->dawrx0 = vcpu->arch.dawrx0;
40 	hr->ciabr = vcpu->arch.ciabr;
41 	hr->purr = vcpu->arch.purr;
42 	hr->spurr = vcpu->arch.spurr;
43 	hr->ic = vcpu->arch.ic;
44 	hr->vtb = vc->vtb;
45 	hr->srr0 = vcpu->arch.shregs.srr0;
46 	hr->srr1 = vcpu->arch.shregs.srr1;
47 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
48 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
49 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
50 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
51 	hr->pidr = vcpu->arch.pid;
52 	hr->cfar = vcpu->arch.cfar;
53 	hr->ppr = vcpu->arch.ppr;
54 	hr->dawr1 = vcpu->arch.dawr1;
55 	hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57 
58 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
byteswap_pt_regs(struct pt_regs * regs)59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61 	unsigned long *addr = (unsigned long *) regs;
62 
63 	for (; addr < ((unsigned long *) (regs + 1)); addr++)
64 		*addr = swab64(*addr);
65 }
66 
byteswap_hv_regs(struct hv_guest_state * hr)67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69 	hr->version = swab64(hr->version);
70 	hr->lpid = swab32(hr->lpid);
71 	hr->vcpu_token = swab32(hr->vcpu_token);
72 	hr->lpcr = swab64(hr->lpcr);
73 	hr->pcr = swab64(hr->pcr) | PCR_MASK;
74 	hr->amor = swab64(hr->amor);
75 	hr->dpdes = swab64(hr->dpdes);
76 	hr->hfscr = swab64(hr->hfscr);
77 	hr->tb_offset = swab64(hr->tb_offset);
78 	hr->dawr0 = swab64(hr->dawr0);
79 	hr->dawrx0 = swab64(hr->dawrx0);
80 	hr->ciabr = swab64(hr->ciabr);
81 	hr->hdec_expiry = swab64(hr->hdec_expiry);
82 	hr->purr = swab64(hr->purr);
83 	hr->spurr = swab64(hr->spurr);
84 	hr->ic = swab64(hr->ic);
85 	hr->vtb = swab64(hr->vtb);
86 	hr->hdar = swab64(hr->hdar);
87 	hr->hdsisr = swab64(hr->hdsisr);
88 	hr->heir = swab64(hr->heir);
89 	hr->asdr = swab64(hr->asdr);
90 	hr->srr0 = swab64(hr->srr0);
91 	hr->srr1 = swab64(hr->srr1);
92 	hr->sprg[0] = swab64(hr->sprg[0]);
93 	hr->sprg[1] = swab64(hr->sprg[1]);
94 	hr->sprg[2] = swab64(hr->sprg[2]);
95 	hr->sprg[3] = swab64(hr->sprg[3]);
96 	hr->pidr = swab64(hr->pidr);
97 	hr->cfar = swab64(hr->cfar);
98 	hr->ppr = swab64(hr->ppr);
99 	hr->dawr1 = swab64(hr->dawr1);
100 	hr->dawrx1 = swab64(hr->dawrx1);
101 }
102 
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104 				 struct hv_guest_state *hr)
105 {
106 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
107 
108 	hr->dpdes = vcpu->arch.doorbell_request;
109 	hr->purr = vcpu->arch.purr;
110 	hr->spurr = vcpu->arch.spurr;
111 	hr->ic = vcpu->arch.ic;
112 	hr->vtb = vc->vtb;
113 	hr->srr0 = vcpu->arch.shregs.srr0;
114 	hr->srr1 = vcpu->arch.shregs.srr1;
115 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 	hr->pidr = vcpu->arch.pid;
120 	hr->cfar = vcpu->arch.cfar;
121 	hr->ppr = vcpu->arch.ppr;
122 	switch (vcpu->arch.trap) {
123 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 		hr->hdar = vcpu->arch.fault_dar;
125 		hr->hdsisr = vcpu->arch.fault_dsisr;
126 		hr->asdr = vcpu->arch.fault_gpa;
127 		break;
128 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 		hr->asdr = vcpu->arch.fault_gpa;
130 		break;
131 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132 		hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133 			     (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134 		break;
135 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136 		hr->heir = vcpu->arch.emul_inst;
137 		break;
138 	}
139 }
140 
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
144 
145 	vc->pcr = hr->pcr | PCR_MASK;
146 	vcpu->arch.doorbell_request = hr->dpdes;
147 	vcpu->arch.hfscr = hr->hfscr;
148 	vcpu->arch.dawr0 = hr->dawr0;
149 	vcpu->arch.dawrx0 = hr->dawrx0;
150 	vcpu->arch.ciabr = hr->ciabr;
151 	vcpu->arch.purr = hr->purr;
152 	vcpu->arch.spurr = hr->spurr;
153 	vcpu->arch.ic = hr->ic;
154 	vc->vtb = hr->vtb;
155 	vcpu->arch.shregs.srr0 = hr->srr0;
156 	vcpu->arch.shregs.srr1 = hr->srr1;
157 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
158 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
159 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
160 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
161 	vcpu->arch.pid = hr->pidr;
162 	vcpu->arch.cfar = hr->cfar;
163 	vcpu->arch.ppr = hr->ppr;
164 	vcpu->arch.dawr1 = hr->dawr1;
165 	vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167 
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169 				   struct hv_guest_state *hr)
170 {
171 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
172 
173 	/*
174 	 * This L2 vCPU might have received a doorbell while H_ENTER_NESTED was being handled.
175 	 * Make sure we preserve the doorbell if it was either:
176 	 *   a) Sent after H_ENTER_NESTED was called on this vCPU (arch.doorbell_request would be 1)
177 	 *   b) Doorbell was not handled and L2 exited for some other reason (hr->dpdes would be 1)
178 	 */
179 	vcpu->arch.doorbell_request = vcpu->arch.doorbell_request | hr->dpdes;
180 	vcpu->arch.hfscr = hr->hfscr;
181 	vcpu->arch.purr = hr->purr;
182 	vcpu->arch.spurr = hr->spurr;
183 	vcpu->arch.ic = hr->ic;
184 	vc->vtb = hr->vtb;
185 	vcpu->arch.fault_dar = hr->hdar;
186 	vcpu->arch.fault_dsisr = hr->hdsisr;
187 	vcpu->arch.fault_gpa = hr->asdr;
188 	vcpu->arch.emul_inst = hr->heir;
189 	vcpu->arch.shregs.srr0 = hr->srr0;
190 	vcpu->arch.shregs.srr1 = hr->srr1;
191 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
192 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
193 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
194 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
195 	vcpu->arch.pid = hr->pidr;
196 	vcpu->arch.cfar = hr->cfar;
197 	vcpu->arch.ppr = hr->ppr;
198 }
199 
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)200 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
201 {
202 	/* No need to reflect the page fault to L1, we've handled it */
203 	vcpu->arch.trap = 0;
204 
205 	/*
206 	 * Since the L2 gprs have already been written back into L1 memory when
207 	 * we complete the mmio, store the L1 memory location of the L2 gpr
208 	 * being loaded into by the mmio so that the loaded value can be
209 	 * written there in kvmppc_complete_mmio_load()
210 	 */
211 	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
212 	    && (vcpu->mmio_is_write == 0)) {
213 		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
214 					   offsetof(struct pt_regs,
215 						    gpr[vcpu->arch.io_gpr]);
216 		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
217 	}
218 }
219 
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)220 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
221 					   struct hv_guest_state *l2_hv,
222 					   struct pt_regs *l2_regs,
223 					   u64 hv_ptr, u64 regs_ptr)
224 {
225 	int size;
226 
227 	if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
228 				sizeof(l2_hv->version)))
229 		return -1;
230 
231 	if (kvmppc_need_byteswap(vcpu))
232 		l2_hv->version = swab64(l2_hv->version);
233 
234 	size = hv_guest_state_size(l2_hv->version);
235 	if (size < 0)
236 		return -1;
237 
238 	return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
239 		kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
240 				    sizeof(struct pt_regs));
241 }
242 
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)243 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
244 					    struct hv_guest_state *l2_hv,
245 					    struct pt_regs *l2_regs,
246 					    u64 hv_ptr, u64 regs_ptr)
247 {
248 	int size;
249 
250 	size = hv_guest_state_size(l2_hv->version);
251 	if (size < 0)
252 		return -1;
253 
254 	return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
255 		kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
256 				     sizeof(struct pt_regs));
257 }
258 
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)259 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
260 			    const struct hv_guest_state *l2_hv,
261 			    const struct hv_guest_state *l1_hv, u64 *lpcr)
262 {
263 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
264 	u64 mask;
265 
266 	restore_hv_regs(vcpu, l2_hv);
267 
268 	/*
269 	 * Don't let L1 change LPCR bits for the L2 except these:
270 	 */
271 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
272 
273 	/*
274 	 * Additional filtering is required depending on hardware
275 	 * and configuration.
276 	 */
277 	*lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
278 				      (vc->lpcr & ~mask) | (*lpcr & mask));
279 
280 	/*
281 	 * Don't let L1 enable features for L2 which we don't allow for L1,
282 	 * but preserve the interrupt cause field.
283 	 */
284 	vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
285 
286 	/* Don't let data address watchpoint match in hypervisor state */
287 	vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
288 	vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
289 
290 	/* Don't let completed instruction address breakpt match in HV state */
291 	if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
292 		vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
293 }
294 
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)295 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
296 {
297 	long int err, r;
298 	struct kvm_nested_guest *l2;
299 	struct pt_regs l2_regs, saved_l1_regs;
300 	struct hv_guest_state l2_hv = {0}, saved_l1_hv;
301 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
302 	u64 hv_ptr, regs_ptr;
303 	u64 hdec_exp, lpcr;
304 	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
305 
306 	if (vcpu->kvm->arch.l1_ptcr == 0)
307 		return H_NOT_AVAILABLE;
308 
309 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
310 		return H_BAD_MODE;
311 
312 	/* copy parameters in */
313 	hv_ptr = kvmppc_get_gpr(vcpu, 4);
314 	regs_ptr = kvmppc_get_gpr(vcpu, 5);
315 	kvm_vcpu_srcu_read_lock(vcpu);
316 	err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
317 					      hv_ptr, regs_ptr);
318 	kvm_vcpu_srcu_read_unlock(vcpu);
319 	if (err)
320 		return H_PARAMETER;
321 
322 	if (kvmppc_need_byteswap(vcpu))
323 		byteswap_hv_regs(&l2_hv);
324 	if (l2_hv.version > HV_GUEST_STATE_VERSION)
325 		return H_P2;
326 
327 	if (kvmppc_need_byteswap(vcpu))
328 		byteswap_pt_regs(&l2_regs);
329 	if (l2_hv.vcpu_token >= NR_CPUS)
330 		return H_PARAMETER;
331 
332 	/*
333 	 * L1 must have set up a suspended state to enter the L2 in a
334 	 * transactional state, and only in that case. These have to be
335 	 * filtered out here to prevent causing a TM Bad Thing in the
336 	 * host HRFID. We could synthesize a TM Bad Thing back to the L1
337 	 * here but there doesn't seem like much point.
338 	 */
339 	if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
340 		if (!MSR_TM_ACTIVE(l2_regs.msr))
341 			return H_BAD_MODE;
342 	} else {
343 		if (l2_regs.msr & MSR_TS_MASK)
344 			return H_BAD_MODE;
345 		if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
346 			return H_BAD_MODE;
347 	}
348 
349 	/* translate lpid */
350 	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
351 	if (!l2)
352 		return H_PARAMETER;
353 	if (!l2->l1_gr_to_hr) {
354 		mutex_lock(&l2->tlb_lock);
355 		kvmhv_update_ptbl_cache(l2);
356 		mutex_unlock(&l2->tlb_lock);
357 	}
358 
359 	/* save l1 values of things */
360 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
361 	saved_l1_regs = vcpu->arch.regs;
362 	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
363 
364 	/* convert TB values/offsets to host (L0) values */
365 	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
366 	vc->tb_offset += l2_hv.tb_offset;
367 	vcpu->arch.dec_expires += l2_hv.tb_offset;
368 
369 	/* set L1 state to L2 state */
370 	vcpu->arch.nested = l2;
371 	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
372 	vcpu->arch.nested_hfscr = l2_hv.hfscr;
373 	vcpu->arch.regs = l2_regs;
374 
375 	/* Guest must always run with ME enabled, HV disabled. */
376 	vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
377 
378 	lpcr = l2_hv.lpcr;
379 	load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
380 
381 	vcpu->arch.ret = RESUME_GUEST;
382 	vcpu->arch.trap = 0;
383 	do {
384 		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
385 	} while (is_kvmppc_resume_guest(r));
386 
387 	/* save L2 state for return */
388 	l2_regs = vcpu->arch.regs;
389 	l2_regs.msr = vcpu->arch.shregs.msr;
390 	delta_purr = vcpu->arch.purr - l2_hv.purr;
391 	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
392 	delta_ic = vcpu->arch.ic - l2_hv.ic;
393 	delta_vtb = vc->vtb - l2_hv.vtb;
394 	save_hv_return_state(vcpu, &l2_hv);
395 
396 	/* restore L1 state */
397 	vcpu->arch.nested = NULL;
398 	vcpu->arch.regs = saved_l1_regs;
399 	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
400 	/* set L1 MSR TS field according to L2 transaction state */
401 	if (l2_regs.msr & MSR_TS_MASK)
402 		vcpu->arch.shregs.msr |= MSR_TS_S;
403 	vc->tb_offset = saved_l1_hv.tb_offset;
404 	/* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
405 	vcpu->arch.dec_expires -= l2_hv.tb_offset;
406 	restore_hv_regs(vcpu, &saved_l1_hv);
407 	vcpu->arch.purr += delta_purr;
408 	vcpu->arch.spurr += delta_spurr;
409 	vcpu->arch.ic += delta_ic;
410 	vc->vtb += delta_vtb;
411 
412 	kvmhv_put_nested(l2);
413 
414 	/* copy l2_hv_state and regs back to guest */
415 	if (kvmppc_need_byteswap(vcpu)) {
416 		byteswap_hv_regs(&l2_hv);
417 		byteswap_pt_regs(&l2_regs);
418 	}
419 	kvm_vcpu_srcu_read_lock(vcpu);
420 	err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
421 					       hv_ptr, regs_ptr);
422 	kvm_vcpu_srcu_read_unlock(vcpu);
423 	if (err)
424 		return H_AUTHORITY;
425 
426 	if (r == -EINTR)
427 		return H_INTERRUPT;
428 
429 	if (vcpu->mmio_needed) {
430 		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
431 		return H_TOO_HARD;
432 	}
433 
434 	return vcpu->arch.trap;
435 }
436 
kvmhv_nested_init(void)437 long kvmhv_nested_init(void)
438 {
439 	long int ptb_order;
440 	unsigned long ptcr;
441 	long rc;
442 
443 	if (!kvmhv_on_pseries())
444 		return 0;
445 	if (!radix_enabled())
446 		return -ENODEV;
447 
448 	/* Partition table entry is 1<<4 bytes in size, hence the 4. */
449 	ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
450 	/* Minimum partition table size is 1<<12 bytes */
451 	if (ptb_order < 12)
452 		ptb_order = 12;
453 	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
454 				       GFP_KERNEL);
455 	if (!pseries_partition_tb) {
456 		pr_err("kvm-hv: failed to allocated nested partition table\n");
457 		return -ENOMEM;
458 	}
459 
460 	ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
461 	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
462 	if (rc != H_SUCCESS) {
463 		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
464 		       rc);
465 		kfree(pseries_partition_tb);
466 		pseries_partition_tb = NULL;
467 		return -ENODEV;
468 	}
469 
470 	return 0;
471 }
472 
kvmhv_nested_exit(void)473 void kvmhv_nested_exit(void)
474 {
475 	/*
476 	 * N.B. the kvmhv_on_pseries() test is there because it enables
477 	 * the compiler to remove the call to plpar_hcall_norets()
478 	 * when CONFIG_PPC_PSERIES=n.
479 	 */
480 	if (kvmhv_on_pseries() && pseries_partition_tb) {
481 		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
482 		kfree(pseries_partition_tb);
483 		pseries_partition_tb = NULL;
484 	}
485 }
486 
kvmhv_flush_lpid(unsigned int lpid)487 static void kvmhv_flush_lpid(unsigned int lpid)
488 {
489 	long rc;
490 
491 	if (!kvmhv_on_pseries()) {
492 		radix__flush_all_lpid(lpid);
493 		return;
494 	}
495 
496 	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
497 		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
498 					lpid, TLBIEL_INVAL_SET_LPID);
499 	else
500 		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
501 					    H_RPTI_TYPE_NESTED |
502 					    H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
503 					    H_RPTI_TYPE_PAT,
504 					    H_RPTI_PAGE_ALL, 0, -1UL);
505 	if (rc)
506 		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
507 }
508 
kvmhv_set_ptbl_entry(unsigned int lpid,u64 dw0,u64 dw1)509 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
510 {
511 	if (!kvmhv_on_pseries()) {
512 		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
513 		return;
514 	}
515 
516 	pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
517 	pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
518 	/* L0 will do the necessary barriers */
519 	kvmhv_flush_lpid(lpid);
520 }
521 
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)522 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
523 {
524 	unsigned long dw0;
525 
526 	dw0 = PATB_HR | radix__get_tree_size() |
527 		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
528 	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
529 }
530 
531 /*
532  * Handle the H_SET_PARTITION_TABLE hcall.
533  * r4 = guest real address of partition table + log_2(size) - 12
534  * (formatted as for the PTCR).
535  */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)536 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
537 {
538 	struct kvm *kvm = vcpu->kvm;
539 	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
540 	int srcu_idx;
541 	long ret = H_SUCCESS;
542 
543 	srcu_idx = srcu_read_lock(&kvm->srcu);
544 	/* Check partition size and base address. */
545 	if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
546 	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
547 		ret = H_PARAMETER;
548 	srcu_read_unlock(&kvm->srcu, srcu_idx);
549 	if (ret == H_SUCCESS)
550 		kvm->arch.l1_ptcr = ptcr;
551 
552 	return ret;
553 }
554 
555 /*
556  * Handle the H_COPY_TOFROM_GUEST hcall.
557  * r4 = L1 lpid of nested guest
558  * r5 = pid
559  * r6 = eaddr to access
560  * r7 = to buffer (L1 gpa)
561  * r8 = from buffer (L1 gpa)
562  * r9 = n bytes to copy
563  */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)564 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
565 {
566 	struct kvm_nested_guest *gp;
567 	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
568 	int pid = kvmppc_get_gpr(vcpu, 5);
569 	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
570 	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
571 	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
572 	void *buf;
573 	unsigned long n = kvmppc_get_gpr(vcpu, 9);
574 	bool is_load = !!gp_to;
575 	long rc;
576 
577 	if (gp_to && gp_from) /* One must be NULL to determine the direction */
578 		return H_PARAMETER;
579 
580 	if (eaddr & (0xFFFUL << 52))
581 		return H_PARAMETER;
582 
583 	buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
584 	if (!buf)
585 		return H_NO_MEM;
586 
587 	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
588 	if (!gp) {
589 		rc = H_PARAMETER;
590 		goto out_free;
591 	}
592 
593 	mutex_lock(&gp->tlb_lock);
594 
595 	if (is_load) {
596 		/* Load from the nested guest into our buffer */
597 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
598 						     eaddr, buf, NULL, n);
599 		if (rc)
600 			goto not_found;
601 
602 		/* Write what was loaded into our buffer back to the L1 guest */
603 		kvm_vcpu_srcu_read_lock(vcpu);
604 		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
605 		kvm_vcpu_srcu_read_unlock(vcpu);
606 		if (rc)
607 			goto not_found;
608 	} else {
609 		/* Load the data to be stored from the L1 guest into our buf */
610 		kvm_vcpu_srcu_read_lock(vcpu);
611 		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
612 		kvm_vcpu_srcu_read_unlock(vcpu);
613 		if (rc)
614 			goto not_found;
615 
616 		/* Store from our buffer into the nested guest */
617 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
618 						     eaddr, NULL, buf, n);
619 		if (rc)
620 			goto not_found;
621 	}
622 
623 out_unlock:
624 	mutex_unlock(&gp->tlb_lock);
625 	kvmhv_put_nested(gp);
626 out_free:
627 	kfree(buf);
628 	return rc;
629 not_found:
630 	rc = H_NOT_FOUND;
631 	goto out_unlock;
632 }
633 
634 /*
635  * Reload the partition table entry for a guest.
636  * Caller must hold gp->tlb_lock.
637  */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)638 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
639 {
640 	int ret;
641 	struct patb_entry ptbl_entry;
642 	unsigned long ptbl_addr;
643 	struct kvm *kvm = gp->l1_host;
644 
645 	ret = -EFAULT;
646 	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
647 	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
648 		int srcu_idx = srcu_read_lock(&kvm->srcu);
649 		ret = kvm_read_guest(kvm, ptbl_addr,
650 				     &ptbl_entry, sizeof(ptbl_entry));
651 		srcu_read_unlock(&kvm->srcu, srcu_idx);
652 	}
653 	if (ret) {
654 		gp->l1_gr_to_hr = 0;
655 		gp->process_table = 0;
656 	} else {
657 		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
658 		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
659 	}
660 	kvmhv_set_nested_ptbl(gp);
661 }
662 
kvmhv_vm_nested_init(struct kvm * kvm)663 void kvmhv_vm_nested_init(struct kvm *kvm)
664 {
665 	idr_init(&kvm->arch.kvm_nested_guest_idr);
666 }
667 
__find_nested(struct kvm * kvm,int lpid)668 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
669 {
670 	return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
671 }
672 
__prealloc_nested(struct kvm * kvm,int lpid)673 static bool __prealloc_nested(struct kvm *kvm, int lpid)
674 {
675 	if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
676 				NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
677 		return false;
678 	return true;
679 }
680 
__add_nested(struct kvm * kvm,int lpid,struct kvm_nested_guest * gp)681 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
682 {
683 	if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
684 		WARN_ON(1);
685 }
686 
__remove_nested(struct kvm * kvm,int lpid)687 static void __remove_nested(struct kvm *kvm, int lpid)
688 {
689 	idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
690 }
691 
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)692 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
693 {
694 	struct kvm_nested_guest *gp;
695 	long shadow_lpid;
696 
697 	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
698 	if (!gp)
699 		return NULL;
700 	gp->l1_host = kvm;
701 	gp->l1_lpid = lpid;
702 	mutex_init(&gp->tlb_lock);
703 	gp->shadow_pgtable = pgd_alloc(kvm->mm);
704 	if (!gp->shadow_pgtable)
705 		goto out_free;
706 	shadow_lpid = kvmppc_alloc_lpid();
707 	if (shadow_lpid < 0)
708 		goto out_free2;
709 	gp->shadow_lpid = shadow_lpid;
710 	gp->radix = 1;
711 
712 	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
713 
714 	return gp;
715 
716  out_free2:
717 	pgd_free(kvm->mm, gp->shadow_pgtable);
718  out_free:
719 	kfree(gp);
720 	return NULL;
721 }
722 
723 /*
724  * Free up any resources allocated for a nested guest.
725  */
kvmhv_release_nested(struct kvm_nested_guest * gp)726 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
727 {
728 	struct kvm *kvm = gp->l1_host;
729 
730 	if (gp->shadow_pgtable) {
731 		/*
732 		 * No vcpu is using this struct and no call to
733 		 * kvmhv_get_nested can find this struct,
734 		 * so we don't need to hold kvm->mmu_lock.
735 		 */
736 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
737 					  gp->shadow_lpid);
738 		pgd_free(kvm->mm, gp->shadow_pgtable);
739 	}
740 	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
741 	kvmppc_free_lpid(gp->shadow_lpid);
742 	kfree(gp);
743 }
744 
kvmhv_remove_nested(struct kvm_nested_guest * gp)745 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
746 {
747 	struct kvm *kvm = gp->l1_host;
748 	int lpid = gp->l1_lpid;
749 	long ref;
750 
751 	spin_lock(&kvm->mmu_lock);
752 	if (gp == __find_nested(kvm, lpid)) {
753 		__remove_nested(kvm, lpid);
754 		--gp->refcnt;
755 	}
756 	ref = gp->refcnt;
757 	spin_unlock(&kvm->mmu_lock);
758 	if (ref == 0)
759 		kvmhv_release_nested(gp);
760 }
761 
762 /*
763  * Free up all nested resources allocated for this guest.
764  * This is called with no vcpus of the guest running, when
765  * switching the guest to HPT mode or when destroying the
766  * guest.
767  */
kvmhv_release_all_nested(struct kvm * kvm)768 void kvmhv_release_all_nested(struct kvm *kvm)
769 {
770 	int lpid;
771 	struct kvm_nested_guest *gp;
772 	struct kvm_nested_guest *freelist = NULL;
773 	struct kvm_memory_slot *memslot;
774 	int srcu_idx, bkt;
775 
776 	spin_lock(&kvm->mmu_lock);
777 	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
778 		__remove_nested(kvm, lpid);
779 		if (--gp->refcnt == 0) {
780 			gp->next = freelist;
781 			freelist = gp;
782 		}
783 	}
784 	idr_destroy(&kvm->arch.kvm_nested_guest_idr);
785 	/* idr is empty and may be reused at this point */
786 	spin_unlock(&kvm->mmu_lock);
787 	while ((gp = freelist) != NULL) {
788 		freelist = gp->next;
789 		kvmhv_release_nested(gp);
790 	}
791 
792 	srcu_idx = srcu_read_lock(&kvm->srcu);
793 	kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
794 		kvmhv_free_memslot_nest_rmap(memslot);
795 	srcu_read_unlock(&kvm->srcu, srcu_idx);
796 }
797 
798 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)799 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
800 {
801 	struct kvm *kvm = gp->l1_host;
802 
803 	spin_lock(&kvm->mmu_lock);
804 	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
805 	spin_unlock(&kvm->mmu_lock);
806 	kvmhv_flush_lpid(gp->shadow_lpid);
807 	kvmhv_update_ptbl_cache(gp);
808 	if (gp->l1_gr_to_hr == 0)
809 		kvmhv_remove_nested(gp);
810 }
811 
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)812 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
813 					  bool create)
814 {
815 	struct kvm_nested_guest *gp, *newgp;
816 
817 	if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
818 		return NULL;
819 
820 	spin_lock(&kvm->mmu_lock);
821 	gp = __find_nested(kvm, l1_lpid);
822 	if (gp)
823 		++gp->refcnt;
824 	spin_unlock(&kvm->mmu_lock);
825 
826 	if (gp || !create)
827 		return gp;
828 
829 	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
830 	if (!newgp)
831 		return NULL;
832 
833 	if (!__prealloc_nested(kvm, l1_lpid)) {
834 		kvmhv_release_nested(newgp);
835 		return NULL;
836 	}
837 
838 	spin_lock(&kvm->mmu_lock);
839 	gp = __find_nested(kvm, l1_lpid);
840 	if (!gp) {
841 		__add_nested(kvm, l1_lpid, newgp);
842 		++newgp->refcnt;
843 		gp = newgp;
844 		newgp = NULL;
845 	}
846 	++gp->refcnt;
847 	spin_unlock(&kvm->mmu_lock);
848 
849 	if (newgp)
850 		kvmhv_release_nested(newgp);
851 
852 	return gp;
853 }
854 
kvmhv_put_nested(struct kvm_nested_guest * gp)855 void kvmhv_put_nested(struct kvm_nested_guest *gp)
856 {
857 	struct kvm *kvm = gp->l1_host;
858 	long ref;
859 
860 	spin_lock(&kvm->mmu_lock);
861 	ref = --gp->refcnt;
862 	spin_unlock(&kvm->mmu_lock);
863 	if (ref == 0)
864 		kvmhv_release_nested(gp);
865 }
866 
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)867 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
868 				 unsigned long ea, unsigned *hshift)
869 {
870 	struct kvm_nested_guest *gp;
871 	pte_t *pte;
872 
873 	gp = __find_nested(kvm, lpid);
874 	if (!gp)
875 		return NULL;
876 
877 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
878 		"%s called with kvm mmu_lock not held \n", __func__);
879 	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
880 
881 	return pte;
882 }
883 
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)884 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
885 {
886 	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
887 				       RMAP_NESTED_GPA_MASK));
888 }
889 
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)890 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
891 			    struct rmap_nested **n_rmap)
892 {
893 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
894 	struct rmap_nested *cursor;
895 	u64 rmap, new_rmap = (*n_rmap)->rmap;
896 
897 	/* Are there any existing entries? */
898 	if (!(*rmapp)) {
899 		/* No -> use the rmap as a single entry */
900 		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
901 		return;
902 	}
903 
904 	/* Do any entries match what we're trying to insert? */
905 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
906 		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
907 			return;
908 	}
909 
910 	/* Do we need to create a list or just add the new entry? */
911 	rmap = *rmapp;
912 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
913 		*rmapp = 0UL;
914 	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
915 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
916 		(*n_rmap)->list.next = (struct llist_node *) rmap;
917 
918 	/* Set NULL so not freed by caller */
919 	*n_rmap = NULL;
920 }
921 
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)922 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
923 				      unsigned long clr, unsigned long set,
924 				      unsigned long hpa, unsigned long mask)
925 {
926 	unsigned long gpa;
927 	unsigned int shift, lpid;
928 	pte_t *ptep;
929 
930 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
931 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
932 
933 	/* Find the pte */
934 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
935 	/*
936 	 * If the pte is present and the pfn is still the same, update the pte.
937 	 * If the pfn has changed then this is a stale rmap entry, the nested
938 	 * gpa actually points somewhere else now, and there is nothing to do.
939 	 * XXX A future optimisation would be to remove the rmap entry here.
940 	 */
941 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
942 		__radix_pte_update(ptep, clr, set);
943 		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
944 	}
945 }
946 
947 /*
948  * For a given list of rmap entries, update the rc bits in all ptes in shadow
949  * page tables for nested guests which are referenced by the rmap list.
950  */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)951 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
952 				    unsigned long clr, unsigned long set,
953 				    unsigned long hpa, unsigned long nbytes)
954 {
955 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
956 	struct rmap_nested *cursor;
957 	unsigned long rmap, mask;
958 
959 	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
960 		return;
961 
962 	mask = PTE_RPN_MASK & ~(nbytes - 1);
963 	hpa &= mask;
964 
965 	for_each_nest_rmap_safe(cursor, entry, &rmap)
966 		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
967 }
968 
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)969 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
970 				   unsigned long hpa, unsigned long mask)
971 {
972 	struct kvm_nested_guest *gp;
973 	unsigned long gpa;
974 	unsigned int shift, lpid;
975 	pte_t *ptep;
976 
977 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
978 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
979 	gp = __find_nested(kvm, lpid);
980 	if (!gp)
981 		return;
982 
983 	/* Find and invalidate the pte */
984 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
985 	/* Don't spuriously invalidate ptes if the pfn has changed */
986 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
987 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
988 }
989 
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)990 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
991 					unsigned long hpa, unsigned long mask)
992 {
993 	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
994 	struct rmap_nested *cursor;
995 	unsigned long rmap;
996 
997 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
998 		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
999 		kfree(cursor);
1000 	}
1001 }
1002 
1003 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)1004 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1005 				  const struct kvm_memory_slot *memslot,
1006 				  unsigned long gpa, unsigned long hpa,
1007 				  unsigned long nbytes)
1008 {
1009 	unsigned long gfn, end_gfn;
1010 	unsigned long addr_mask;
1011 
1012 	if (!memslot)
1013 		return;
1014 	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1015 	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1016 
1017 	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1018 	hpa &= addr_mask;
1019 
1020 	for (; gfn < end_gfn; gfn++) {
1021 		unsigned long *rmap = &memslot->arch.rmap[gfn];
1022 		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1023 	}
1024 }
1025 
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1026 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1027 {
1028 	unsigned long page;
1029 
1030 	for (page = 0; page < free->npages; page++) {
1031 		unsigned long rmap, *rmapp = &free->arch.rmap[page];
1032 		struct rmap_nested *cursor;
1033 		struct llist_node *entry;
1034 
1035 		entry = llist_del_all((struct llist_head *) rmapp);
1036 		for_each_nest_rmap_safe(cursor, entry, &rmap)
1037 			kfree(cursor);
1038 	}
1039 }
1040 
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1041 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1042 					struct kvm_nested_guest *gp,
1043 					long gpa, int *shift_ret)
1044 {
1045 	struct kvm *kvm = vcpu->kvm;
1046 	bool ret = false;
1047 	pte_t *ptep;
1048 	int shift;
1049 
1050 	spin_lock(&kvm->mmu_lock);
1051 	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1052 	if (!shift)
1053 		shift = PAGE_SHIFT;
1054 	if (ptep && pte_present(*ptep)) {
1055 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1056 		ret = true;
1057 	}
1058 	spin_unlock(&kvm->mmu_lock);
1059 
1060 	if (shift_ret)
1061 		*shift_ret = shift;
1062 	return ret;
1063 }
1064 
get_ric(unsigned int instr)1065 static inline int get_ric(unsigned int instr)
1066 {
1067 	return (instr >> 18) & 0x3;
1068 }
1069 
get_prs(unsigned int instr)1070 static inline int get_prs(unsigned int instr)
1071 {
1072 	return (instr >> 17) & 0x1;
1073 }
1074 
get_r(unsigned int instr)1075 static inline int get_r(unsigned int instr)
1076 {
1077 	return (instr >> 16) & 0x1;
1078 }
1079 
get_lpid(unsigned long r_val)1080 static inline int get_lpid(unsigned long r_val)
1081 {
1082 	return r_val & 0xffffffff;
1083 }
1084 
get_is(unsigned long r_val)1085 static inline int get_is(unsigned long r_val)
1086 {
1087 	return (r_val >> 10) & 0x3;
1088 }
1089 
get_ap(unsigned long r_val)1090 static inline int get_ap(unsigned long r_val)
1091 {
1092 	return (r_val >> 5) & 0x7;
1093 }
1094 
get_epn(unsigned long r_val)1095 static inline long get_epn(unsigned long r_val)
1096 {
1097 	return r_val >> 12;
1098 }
1099 
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1100 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1101 					int ap, long epn)
1102 {
1103 	struct kvm *kvm = vcpu->kvm;
1104 	struct kvm_nested_guest *gp;
1105 	long npages;
1106 	int shift, shadow_shift;
1107 	unsigned long addr;
1108 
1109 	shift = ap_to_shift(ap);
1110 	addr = epn << 12;
1111 	if (shift < 0)
1112 		/* Invalid ap encoding */
1113 		return -EINVAL;
1114 
1115 	addr &= ~((1UL << shift) - 1);
1116 	npages = 1UL << (shift - PAGE_SHIFT);
1117 
1118 	gp = kvmhv_get_nested(kvm, lpid, false);
1119 	if (!gp) /* No such guest -> nothing to do */
1120 		return 0;
1121 	mutex_lock(&gp->tlb_lock);
1122 
1123 	/* There may be more than one host page backing this single guest pte */
1124 	do {
1125 		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1126 
1127 		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1128 		addr += 1UL << shadow_shift;
1129 	} while (npages > 0);
1130 
1131 	mutex_unlock(&gp->tlb_lock);
1132 	kvmhv_put_nested(gp);
1133 	return 0;
1134 }
1135 
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1136 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1137 				     struct kvm_nested_guest *gp, int ric)
1138 {
1139 	struct kvm *kvm = vcpu->kvm;
1140 
1141 	mutex_lock(&gp->tlb_lock);
1142 	switch (ric) {
1143 	case 0:
1144 		/* Invalidate TLB */
1145 		spin_lock(&kvm->mmu_lock);
1146 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1147 					  gp->shadow_lpid);
1148 		kvmhv_flush_lpid(gp->shadow_lpid);
1149 		spin_unlock(&kvm->mmu_lock);
1150 		break;
1151 	case 1:
1152 		/*
1153 		 * Invalidate PWC
1154 		 * We don't cache this -> nothing to do
1155 		 */
1156 		break;
1157 	case 2:
1158 		/* Invalidate TLB, PWC and caching of partition table entries */
1159 		kvmhv_flush_nested(gp);
1160 		break;
1161 	default:
1162 		break;
1163 	}
1164 	mutex_unlock(&gp->tlb_lock);
1165 }
1166 
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1167 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1168 {
1169 	struct kvm *kvm = vcpu->kvm;
1170 	struct kvm_nested_guest *gp;
1171 	int lpid;
1172 
1173 	spin_lock(&kvm->mmu_lock);
1174 	idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1175 		spin_unlock(&kvm->mmu_lock);
1176 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1177 		spin_lock(&kvm->mmu_lock);
1178 	}
1179 	spin_unlock(&kvm->mmu_lock);
1180 }
1181 
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1182 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1183 				    unsigned long rsval, unsigned long rbval)
1184 {
1185 	struct kvm *kvm = vcpu->kvm;
1186 	struct kvm_nested_guest *gp;
1187 	int r, ric, prs, is, ap;
1188 	int lpid;
1189 	long epn;
1190 	int ret = 0;
1191 
1192 	ric = get_ric(instr);
1193 	prs = get_prs(instr);
1194 	r = get_r(instr);
1195 	lpid = get_lpid(rsval);
1196 	is = get_is(rbval);
1197 
1198 	/*
1199 	 * These cases are invalid and are not handled:
1200 	 * r   != 1 -> Only radix supported
1201 	 * prs == 1 -> Not HV privileged
1202 	 * ric == 3 -> No cluster bombs for radix
1203 	 * is  == 1 -> Partition scoped translations not associated with pid
1204 	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1205 	 */
1206 	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1207 	    ((!is) && (ric == 1 || ric == 2)))
1208 		return -EINVAL;
1209 
1210 	switch (is) {
1211 	case 0:
1212 		/*
1213 		 * We know ric == 0
1214 		 * Invalidate TLB for a given target address
1215 		 */
1216 		epn = get_epn(rbval);
1217 		ap = get_ap(rbval);
1218 		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1219 		break;
1220 	case 2:
1221 		/* Invalidate matching LPID */
1222 		gp = kvmhv_get_nested(kvm, lpid, false);
1223 		if (gp) {
1224 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1225 			kvmhv_put_nested(gp);
1226 		}
1227 		break;
1228 	case 3:
1229 		/* Invalidate ALL LPIDs */
1230 		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1231 		break;
1232 	default:
1233 		ret = -EINVAL;
1234 		break;
1235 	}
1236 
1237 	return ret;
1238 }
1239 
1240 /*
1241  * This handles the H_TLB_INVALIDATE hcall.
1242  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1243  * (r6) rB contents.
1244  */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1245 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1246 {
1247 	int ret;
1248 
1249 	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1250 			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1251 	if (ret)
1252 		return H_PARAMETER;
1253 	return H_SUCCESS;
1254 }
1255 
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1256 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1257 					 unsigned long lpid, unsigned long ric)
1258 {
1259 	struct kvm *kvm = vcpu->kvm;
1260 	struct kvm_nested_guest *gp;
1261 
1262 	gp = kvmhv_get_nested(kvm, lpid, false);
1263 	if (gp) {
1264 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1265 		kvmhv_put_nested(gp);
1266 	}
1267 	return H_SUCCESS;
1268 }
1269 
1270 /*
1271  * Number of pages above which we invalidate the entire LPID rather than
1272  * flush individual pages.
1273  */
1274 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1275 
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1276 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1277 					 unsigned long lpid,
1278 					 unsigned long pg_sizes,
1279 					 unsigned long start,
1280 					 unsigned long end)
1281 {
1282 	int ret = H_P4;
1283 	unsigned long addr, nr_pages;
1284 	struct mmu_psize_def *def;
1285 	unsigned long psize, ap, page_size;
1286 	bool flush_lpid;
1287 
1288 	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1289 		def = &mmu_psize_defs[psize];
1290 		if (!(pg_sizes & def->h_rpt_pgsize))
1291 			continue;
1292 
1293 		nr_pages = (end - start) >> def->shift;
1294 		flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1295 		if (flush_lpid)
1296 			return do_tlb_invalidate_nested_all(vcpu, lpid,
1297 							RIC_FLUSH_TLB);
1298 		addr = start;
1299 		ap = mmu_get_ap(psize);
1300 		page_size = 1UL << def->shift;
1301 		do {
1302 			ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1303 						   get_epn(addr));
1304 			if (ret)
1305 				return H_P4;
1306 			addr += page_size;
1307 		} while (addr < end);
1308 	}
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Performs partition-scoped invalidations for nested guests
1314  * as part of H_RPT_INVALIDATE hcall.
1315  */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1316 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1317 			     unsigned long type, unsigned long pg_sizes,
1318 			     unsigned long start, unsigned long end)
1319 {
1320 	/*
1321 	 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1322 	 *
1323 	 * However, nested KVM issues a L2 lpid flush call when creating
1324 	 * partition table entries for L2. This happens even before the
1325 	 * corresponding shadow lpid is created in HV which happens in
1326 	 * H_ENTER_NESTED call. Since we can't differentiate this case from
1327 	 * the invalid case, we ignore such flush requests and return success.
1328 	 */
1329 	if (!__find_nested(vcpu->kvm, lpid))
1330 		return H_SUCCESS;
1331 
1332 	/*
1333 	 * A flush all request can be handled by a full lpid flush only.
1334 	 */
1335 	if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1336 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1337 
1338 	/*
1339 	 * We don't need to handle a PWC flush like process table here,
1340 	 * because intermediate partition scoped table in nested guest doesn't
1341 	 * really have PWC. Only level we have PWC is in L0 and for nested
1342 	 * invalidate at L0 we always do kvm_flush_lpid() which does
1343 	 * radix__flush_all_lpid(). For range invalidate at any level, we
1344 	 * are not removing the higher level page tables and hence there is
1345 	 * no PWC invalidate needed.
1346 	 *
1347 	 * if (type & H_RPTI_TYPE_PWC) {
1348 	 *	ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1349 	 *	if (ret)
1350 	 *		return H_P4;
1351 	 * }
1352 	 */
1353 
1354 	if (start == 0 && end == -1)
1355 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1356 
1357 	if (type & H_RPTI_TYPE_TLB)
1358 		return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1359 						    start, end);
1360 	return H_SUCCESS;
1361 }
1362 
1363 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1364 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1365 				       struct kvm_nested_guest *gp,
1366 				       unsigned long n_gpa, unsigned long dsisr,
1367 				       struct kvmppc_pte *gpte_p)
1368 {
1369 	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1370 	int ret;
1371 
1372 	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1373 					 &fault_addr);
1374 
1375 	if (ret) {
1376 		/* We didn't find a pte */
1377 		if (ret == -EINVAL) {
1378 			/* Unsupported mmu config */
1379 			flags |= DSISR_UNSUPP_MMU;
1380 		} else if (ret == -ENOENT) {
1381 			/* No translation found */
1382 			flags |= DSISR_NOHPTE;
1383 		} else if (ret == -EFAULT) {
1384 			/* Couldn't access L1 real address */
1385 			flags |= DSISR_PRTABLE_FAULT;
1386 			vcpu->arch.fault_gpa = fault_addr;
1387 		} else {
1388 			/* Unknown error */
1389 			return ret;
1390 		}
1391 		goto forward_to_l1;
1392 	} else {
1393 		/* We found a pte -> check permissions */
1394 		if (dsisr & DSISR_ISSTORE) {
1395 			/* Can we write? */
1396 			if (!gpte_p->may_write) {
1397 				flags |= DSISR_PROTFAULT;
1398 				goto forward_to_l1;
1399 			}
1400 		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1401 			/* Can we execute? */
1402 			if (!gpte_p->may_execute) {
1403 				flags |= SRR1_ISI_N_G_OR_CIP;
1404 				goto forward_to_l1;
1405 			}
1406 		} else {
1407 			/* Can we read? */
1408 			if (!gpte_p->may_read && !gpte_p->may_write) {
1409 				flags |= DSISR_PROTFAULT;
1410 				goto forward_to_l1;
1411 			}
1412 		}
1413 	}
1414 
1415 	return 0;
1416 
1417 forward_to_l1:
1418 	vcpu->arch.fault_dsisr = flags;
1419 	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1420 		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1421 		vcpu->arch.shregs.msr |= flags;
1422 	}
1423 	return RESUME_HOST;
1424 }
1425 
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1426 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1427 				       struct kvm_nested_guest *gp,
1428 				       unsigned long n_gpa,
1429 				       struct kvmppc_pte gpte,
1430 				       unsigned long dsisr)
1431 {
1432 	struct kvm *kvm = vcpu->kvm;
1433 	bool writing = !!(dsisr & DSISR_ISSTORE);
1434 	u64 pgflags;
1435 	long ret;
1436 
1437 	/* Are the rc bits set in the L1 partition scoped pte? */
1438 	pgflags = _PAGE_ACCESSED;
1439 	if (writing)
1440 		pgflags |= _PAGE_DIRTY;
1441 	if (pgflags & ~gpte.rc)
1442 		return RESUME_HOST;
1443 
1444 	spin_lock(&kvm->mmu_lock);
1445 	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1446 	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1447 				      gpte.raddr, kvm->arch.lpid);
1448 	if (!ret) {
1449 		ret = -EINVAL;
1450 		goto out_unlock;
1451 	}
1452 
1453 	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1454 	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1455 				      n_gpa, gp->l1_lpid);
1456 	if (!ret)
1457 		ret = -EINVAL;
1458 	else
1459 		ret = 0;
1460 
1461 out_unlock:
1462 	spin_unlock(&kvm->mmu_lock);
1463 	return ret;
1464 }
1465 
kvmppc_radix_level_to_shift(int level)1466 static inline int kvmppc_radix_level_to_shift(int level)
1467 {
1468 	switch (level) {
1469 	case 2:
1470 		return PUD_SHIFT;
1471 	case 1:
1472 		return PMD_SHIFT;
1473 	default:
1474 		return PAGE_SHIFT;
1475 	}
1476 }
1477 
kvmppc_radix_shift_to_level(int shift)1478 static inline int kvmppc_radix_shift_to_level(int shift)
1479 {
1480 	if (shift == PUD_SHIFT)
1481 		return 2;
1482 	if (shift == PMD_SHIFT)
1483 		return 1;
1484 	if (shift == PAGE_SHIFT)
1485 		return 0;
1486 	WARN_ON_ONCE(1);
1487 	return 0;
1488 }
1489 
1490 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1491 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1492 					  struct kvm_nested_guest *gp)
1493 {
1494 	struct kvm *kvm = vcpu->kvm;
1495 	struct kvm_memory_slot *memslot;
1496 	struct rmap_nested *n_rmap;
1497 	struct kvmppc_pte gpte;
1498 	pte_t pte, *pte_p;
1499 	unsigned long mmu_seq;
1500 	unsigned long dsisr = vcpu->arch.fault_dsisr;
1501 	unsigned long ea = vcpu->arch.fault_dar;
1502 	unsigned long *rmapp;
1503 	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1504 	unsigned int shift, l1_shift, level;
1505 	bool writing = !!(dsisr & DSISR_ISSTORE);
1506 	bool kvm_ro = false;
1507 	long int ret;
1508 
1509 	if (!gp->l1_gr_to_hr) {
1510 		kvmhv_update_ptbl_cache(gp);
1511 		if (!gp->l1_gr_to_hr)
1512 			return RESUME_HOST;
1513 	}
1514 
1515 	/* Convert the nested guest real address into a L1 guest real address */
1516 
1517 	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1518 	if (!(dsisr & DSISR_PRTABLE_FAULT))
1519 		n_gpa |= ea & 0xFFF;
1520 	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1521 
1522 	/*
1523 	 * If the hardware found a translation but we don't now have a usable
1524 	 * translation in the l1 partition-scoped tree, remove the shadow pte
1525 	 * and let the guest retry.
1526 	 */
1527 	if (ret == RESUME_HOST &&
1528 	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1529 		      DSISR_BAD_COPYPASTE)))
1530 		goto inval;
1531 	if (ret)
1532 		return ret;
1533 
1534 	/* Failed to set the reference/change bits */
1535 	if (dsisr & DSISR_SET_RC) {
1536 		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1537 		if (ret == RESUME_HOST)
1538 			return ret;
1539 		if (ret)
1540 			goto inval;
1541 		dsisr &= ~DSISR_SET_RC;
1542 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1543 			       DSISR_PROTFAULT)))
1544 			return RESUME_GUEST;
1545 	}
1546 
1547 	/*
1548 	 * We took an HISI or HDSI while we were running a nested guest which
1549 	 * means we have no partition scoped translation for that. This means
1550 	 * we need to insert a pte for the mapping into our shadow_pgtable.
1551 	 */
1552 
1553 	l1_shift = gpte.page_shift;
1554 	if (l1_shift < PAGE_SHIFT) {
1555 		/* We don't support l1 using a page size smaller than our own */
1556 		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1557 			l1_shift, PAGE_SHIFT);
1558 		return -EINVAL;
1559 	}
1560 	gpa = gpte.raddr;
1561 	gfn = gpa >> PAGE_SHIFT;
1562 
1563 	/* 1. Get the corresponding host memslot */
1564 
1565 	memslot = gfn_to_memslot(kvm, gfn);
1566 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1567 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1568 			/* unusual error -> reflect to the guest as a DSI */
1569 			kvmppc_core_queue_data_storage(vcpu,
1570 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1571 					ea, dsisr);
1572 			return RESUME_GUEST;
1573 		}
1574 
1575 		/* passthrough of emulated MMIO case */
1576 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1577 	}
1578 	if (memslot->flags & KVM_MEM_READONLY) {
1579 		if (writing) {
1580 			/* Give the guest a DSI */
1581 			kvmppc_core_queue_data_storage(vcpu,
1582 					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1583 					ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1584 			return RESUME_GUEST;
1585 		}
1586 		kvm_ro = true;
1587 	}
1588 
1589 	/* 2. Find the host pte for this L1 guest real address */
1590 
1591 	/* Used to check for invalidations in progress */
1592 	mmu_seq = kvm->mmu_invalidate_seq;
1593 	smp_rmb();
1594 
1595 	/* See if can find translation in our partition scoped tables for L1 */
1596 	pte = __pte(0);
1597 	spin_lock(&kvm->mmu_lock);
1598 	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1599 	if (!shift)
1600 		shift = PAGE_SHIFT;
1601 	if (pte_p)
1602 		pte = *pte_p;
1603 	spin_unlock(&kvm->mmu_lock);
1604 
1605 	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1606 		/* No suitable pte found -> try to insert a mapping */
1607 		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1608 					writing, kvm_ro, &pte, &level);
1609 		if (ret == -EAGAIN)
1610 			return RESUME_GUEST;
1611 		else if (ret)
1612 			return ret;
1613 		shift = kvmppc_radix_level_to_shift(level);
1614 	}
1615 	/* Align gfn to the start of the page */
1616 	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1617 
1618 	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1619 
1620 	/* The permissions is the combination of the host and l1 guest ptes */
1621 	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1622 	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1623 	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1624 	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1625 	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1626 	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1627 	pte = __pte(pte_val(pte) & ~perm);
1628 
1629 	/* What size pte can we insert? */
1630 	if (shift > l1_shift) {
1631 		u64 mask;
1632 		unsigned int actual_shift = PAGE_SHIFT;
1633 		if (PMD_SHIFT < l1_shift)
1634 			actual_shift = PMD_SHIFT;
1635 		mask = (1UL << shift) - (1UL << actual_shift);
1636 		pte = __pte(pte_val(pte) | (gpa & mask));
1637 		shift = actual_shift;
1638 	}
1639 	level = kvmppc_radix_shift_to_level(shift);
1640 	n_gpa &= ~((1UL << shift) - 1);
1641 
1642 	/* 4. Insert the pte into our shadow_pgtable */
1643 
1644 	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1645 	if (!n_rmap)
1646 		return RESUME_GUEST; /* Let the guest try again */
1647 	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1648 		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1649 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1650 	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1651 				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1652 	kfree(n_rmap);
1653 	if (ret == -EAGAIN)
1654 		ret = RESUME_GUEST;	/* Let the guest try again */
1655 
1656 	return ret;
1657 
1658  inval:
1659 	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1660 	return RESUME_GUEST;
1661 }
1662 
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1663 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1664 {
1665 	struct kvm_nested_guest *gp = vcpu->arch.nested;
1666 	long int ret;
1667 
1668 	mutex_lock(&gp->tlb_lock);
1669 	ret = __kvmhv_nested_page_fault(vcpu, gp);
1670 	mutex_unlock(&gp->tlb_lock);
1671 	return ret;
1672 }
1673 
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1674 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1675 {
1676 	int ret = lpid + 1;
1677 
1678 	spin_lock(&kvm->mmu_lock);
1679 	if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1680 		ret = -1;
1681 	spin_unlock(&kvm->mmu_lock);
1682 
1683 	return ret;
1684 }
1685