1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163
164 /*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
212 bool registered;
213 struct kvm_user_return_msr_values {
214 u64 host;
215 u64 curr;
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 const char *op = write ? "wrmsr" : "rdmsr";
328
329 if (ignore_msrs) {
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 op, msr, data);
333 /* Mask the error */
334 return true;
335 } else {
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 op, msr, data);
338 return false;
339 }
340 }
341
kvm_alloc_emulator_cache(void)342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 int i;
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
kvm_on_user_return(struct user_return_notifier * urn)362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 unsigned slot;
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
368 unsigned long flags;
369
370 /*
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
373 */
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
378 }
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
385 }
386 }
387 }
388
kvm_probe_user_return_msr(u32 msr)389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 u64 val;
392 int ret;
393
394 preempt_disable();
395 ret = rdmsrl_safe(msr, &val);
396 if (ret)
397 goto out;
398 ret = wrmsrl_safe(msr, val);
399 out:
400 preempt_enable();
401 return ret;
402 }
403
kvm_add_user_return_msr(u32 msr)404 int kvm_add_user_return_msr(u32 msr)
405 {
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408 if (kvm_probe_user_return_msr(msr))
409 return -1;
410
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
kvm_find_user_return_msr(u32 msr)416 int kvm_find_user_return_msr(u32 msr)
417 {
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
422 return i;
423 }
424 return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
kvm_user_return_msr_cpu_online(void)428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 u64 value;
433 int i;
434
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
439 }
440 }
441
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 int err;
447
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
450 return 0;
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 if (err)
453 return 1;
454
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
460 }
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
drop_user_return_notifiers(void)465 static void drop_user_return_notifiers(void)
466 {
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
472 }
473
kvm_get_apic_base(struct kvm_vcpu * vcpu)474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 return vcpu->arch.apic_base;
477 }
478
kvm_get_apic_mode(struct kvm_vcpu * vcpu)479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 return 1;
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 return 1;
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 return 1;
499 }
500
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
503 return 0;
504 }
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
kvm_spurious_fault(void)513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
exception_class(int vector)524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545 #define EXCPT_DB 4
546
exception_type(int vector)547 static int exception_type(int vector)
548 {
549 unsigned int mask;
550
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
553
554 mask = 1 << vector;
555
556 /*
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 */
560 if (mask & (1 << DB_VECTOR))
561 return EXCPT_DB;
562
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 return EXCPT_TRAP;
565
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 return EXCPT_ABORT;
568
569 /* Reserved exceptions will result in fault */
570 return EXCPT_FAULT;
571 }
572
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
575 {
576 if (!ex->has_payload)
577 return;
578
579 switch (ex->vector) {
580 case DB_VECTOR:
581 /*
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
585 */
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 /*
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 * DR6_BS and DR6_BT)
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
597 *
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
602 */
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607 /*
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
612 */
613 vcpu->arch.dr6 &= ~BIT(12);
614 break;
615 case PF_VECTOR:
616 vcpu->arch.cr2 = ex->payload;
617 break;
618 }
619
620 ex->has_payload = false;
621 ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
628 {
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631 ex->vector = vector;
632 ex->injected = false;
633 ex->pending = true;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
649 {
650 u32 prev_nr;
651 int class1, class2;
652
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655 /*
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
661 */
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
666 return;
667 }
668
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 queue:
671 if (reinject) {
672 /*
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
678 */
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
682 /*
683 * A reinjected event has already
684 * delivered its payload.
685 */
686 has_payload = false;
687 payload = 0;
688 }
689 } else {
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
692 }
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
701 return;
702 }
703
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 return;
710 }
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 /*
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
718 */
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
721
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 } else {
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
726 exception */
727 goto queue;
728 }
729 }
730
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
745 {
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
752 {
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
755 }
756
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 if (err)
760 kvm_inject_gp(vcpu, 0);
761 else
762 return kvm_skip_emulated_instruction(vcpu);
763
764 return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 if (err) {
771 kvm_inject_gp(vcpu, 0);
772 return 1;
773 }
774
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 ++vcpu->stat.pf_guest;
782
783 /*
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
786 */
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
791 else
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 fault->address);
794 }
795
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
798 {
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 vcpu->arch.walk_mmu;
804
805 /*
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
808 */
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
813
814 fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
kvm_inject_nmi(struct kvm_vcpu * vcpu)818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
839 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 return true;
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 return false;
846 }
847
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 return true;
852
853 kvm_queue_exception(vcpu, UD_VECTOR);
854 return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
865 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 gpa_t real_gpa;
871 int i;
872 int ret;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875 /*
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 * to an L1 GPA.
878 */
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
882 return 0;
883
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
887 if (ret < 0)
888 return 0;
889
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 return 0;
894 }
895 }
896
897 /*
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
900 */
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
908
909 return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 if (cr0 & 0xffffffff00000000UL)
917 return false;
918 #endif
919
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 return false;
922
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 return false;
925
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 /*
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
938 */
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
941 return;
942
943 if (tdp_enabled) {
944 kvm_init_mmu(vcpu);
945 return;
946 }
947 }
948
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
952
953 /*
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 * perspective.
956 */
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 }
960
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
963
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975 if (!kvm_is_valid_cr0(vcpu, cr0))
976 return 1;
977
978 cr0 |= X86_CR0_ET;
979
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
986 int cs_db, cs_l;
987
988 if (!is_pae(vcpu))
989 return 1;
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 if (cs_l)
992 return 1;
993 }
994 #endif
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 return 1;
1003
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 if (vcpu->arch.guest_state_protected)
1021 return;
1022
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 }
1032
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 if (vcpu->arch.guest_state_protected)
1044 return;
1045
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1052 }
1053
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1062 }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 u64 xcr0 = xcr;
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1078 u64 valid_bits;
1079
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1082 return 1;
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1084 return 1;
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 return 1;
1087
1088 /*
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 */
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1095 return 1;
1096
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 return 1;
1100
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1103 return 1;
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 return 1;
1106 }
1107
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 return 1;
1111
1112 vcpu->arch.xcr0 = xcr0;
1113
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1116 return 0;
1117 }
1118
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1125 return 1;
1126 }
1127
1128 return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 if (cr4 & cr4_reserved_bits)
1135 return false;
1136
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 return false;
1139
1140 return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1154
1155 /*
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 * so fall through.
1162 */
1163 if (!tdp_enabled &&
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1166
1167 /*
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1172 *
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 */
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179 /*
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1184 */
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1197 return 1;
1198
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1201 return 1;
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 return 1;
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 return 1;
1208
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 return 1;
1213 }
1214
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1227 int i;
1228
1229 /*
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1235 */
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 return;
1239 }
1240
1241 /*
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1245 */
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 }
1250
1251 /*
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 * with PCIDE=0.
1255 */
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 return;
1258
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1275 }
1276 #endif
1277
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1281
1282 /*
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1286 */
1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 return 1;
1289
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 return 1;
1292
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1299
1300 handle_tlb_flush:
1301 /*
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1307 */
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 if (cr8 & CR8_RESERVED_BITS)
1318 return 1;
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1321 else
1322 vcpu->arch.cr8 = cr8;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
kvm_get_cr8(struct kvm_vcpu * vcpu)1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1331 else
1332 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
kvm_update_dr0123(struct kvm_vcpu * vcpu)1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 int i;
1339
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 }
1344 }
1345
kvm_update_dr7(struct kvm_vcpu * vcpu)1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 unsigned long dr7;
1349
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1352 else
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 u64 fixed = DR6_FIXED_1;
1364
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 fixed |= DR6_RTM;
1367
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1370 return fixed;
1371 }
1372
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377 switch (dr) {
1378 case 0 ... 3:
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1382 break;
1383 case 4:
1384 case 6:
1385 if (!kvm_dr6_valid(val))
1386 return 1; /* #GP */
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 break;
1389 case 5:
1390 default: /* 7 */
1391 if (!kvm_dr7_valid(val))
1392 return 1; /* #GP */
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1395 break;
1396 }
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406 switch (dr) {
1407 case 0 ... 3:
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 break;
1410 case 4:
1411 case 6:
1412 *val = vcpu->arch.dr6;
1413 break;
1414 case 5:
1415 default: /* 7 */
1416 *val = vcpu->arch.dr7;
1417 break;
1418 }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 u32 ecx = kvm_rcx_read(vcpu);
1425 u64 data;
1426
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1429 return 1;
1430 }
1431
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1447 */
1448
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1465
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 HV_X64_MSR_RESET,
1513 HV_X64_MSR_VP_INDEX,
1514 HV_X64_MSR_VP_RUNTIME,
1515 HV_X64_MSR_SCONTROL,
1516 HV_X64_MSR_STIMER0_CONFIG,
1517 HV_X64_MSR_VP_ASSIST_PAGE,
1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 HV_X64_MSR_SYNDBG_OPTIONS,
1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524
1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528 MSR_IA32_TSC_ADJUST,
1529 MSR_IA32_TSC_DEADLINE,
1530 MSR_IA32_ARCH_CAPABILITIES,
1531 MSR_IA32_PERF_CAPABILITIES,
1532 MSR_IA32_MISC_ENABLE,
1533 MSR_IA32_MCG_STATUS,
1534 MSR_IA32_MCG_CTL,
1535 MSR_IA32_MCG_EXT_CTL,
1536 MSR_IA32_SMBASE,
1537 MSR_SMI_COUNT,
1538 MSR_PLATFORM_INFO,
1539 MSR_MISC_FEATURES_ENABLES,
1540 MSR_AMD64_VIRT_SPEC_CTRL,
1541 MSR_AMD64_TSC_RATIO,
1542 MSR_IA32_POWER_CTL,
1543 MSR_IA32_UCODE_REV,
1544
1545 /*
1546 * KVM always supports the "true" VMX control MSRs, even if the host
1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1548 * doesn't strictly require them to exist in the host (ignoring that
1549 * KVM would refuse to load in the first place if the core set of MSRs
1550 * aren't supported).
1551 */
1552 MSR_IA32_VMX_BASIC,
1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 MSR_IA32_VMX_MISC,
1558 MSR_IA32_VMX_CR0_FIXED0,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_VMCS_ENUM,
1561 MSR_IA32_VMX_PROCBASED_CTLS2,
1562 MSR_IA32_VMX_EPT_VPID_CAP,
1563 MSR_IA32_VMX_VMFUNC,
1564
1565 MSR_K7_HWCR,
1566 MSR_KVM_POLL_CONTROL,
1567 };
1568
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571
1572 /*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 MSR_AMD64_DE_CFG,
1579 MSR_IA32_UCODE_REV,
1580 MSR_IA32_ARCH_CAPABILITIES,
1581 MSR_IA32_PERF_CAPABILITIES,
1582 };
1583
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587
1588 /*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
kvm_is_immutable_feature_msr(u32 msr)1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 int i;
1595
1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 return true;
1598
1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 if (msr == msr_based_features_all_except_vmx[i])
1601 return msr != MSR_IA32_UCODE_REV;
1602 }
1603
1604 return false;
1605 }
1606
1607 /*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 * 10 - MISC_PACKAGE_CTRLS
1611 * 11 - ENERGY_FILTERING_CTL
1612 * 12 - DOITM
1613 * 18 - FB_CLEAR_CTRL
1614 * 21 - XAPIC_DISABLE_STATUS
1615 * 23 - OVERCLOCKING_STATUS
1616 */
1617
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1625
kvm_get_arch_capabilities(void)1626 static u64 kvm_get_arch_capabilities(void)
1627 {
1628 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629
1630 /*
1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 * the nested hypervisor runs with NX huge pages. If it is not,
1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 * L1 guests, so it need not worry about its own (L2) guests.
1635 */
1636 data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
1638 /*
1639 * If we're doing cache flushes (either "always" or "cond")
1640 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 * If an outer hypervisor is doing the cache flush for us
1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 * capability to the guest too, and if EPT is disabled we're not
1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 * require a nested hypervisor to do a flush of its own.
1646 */
1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 data |= ARCH_CAP_RDCL_NO;
1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 data |= ARCH_CAP_SSB_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 data |= ARCH_CAP_MDS_NO;
1656 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657 data |= ARCH_CAP_RFDS_NO;
1658
1659 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 /*
1661 * If RTM=0 because the kernel has disabled TSX, the host might
1662 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1663 * and therefore knows that there cannot be TAA) but keep
1664 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 * and we want to allow migrating those guests to tsx=off hosts.
1666 */
1667 data &= ~ARCH_CAP_TAA_NO;
1668 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 data |= ARCH_CAP_TAA_NO;
1670 } else {
1671 /*
1672 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 * host so the guest can choose between disabling TSX or
1674 * using VERW to clear CPU buffers.
1675 */
1676 }
1677
1678 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 data |= ARCH_CAP_GDS_NO;
1680
1681 return data;
1682 }
1683
kvm_get_msr_feature(struct kvm_msr_entry * msr)1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 switch (msr->index) {
1687 case MSR_IA32_ARCH_CAPABILITIES:
1688 msr->data = kvm_get_arch_capabilities();
1689 break;
1690 case MSR_IA32_PERF_CAPABILITIES:
1691 msr->data = kvm_caps.supported_perf_cap;
1692 break;
1693 case MSR_IA32_UCODE_REV:
1694 rdmsrl_safe(msr->index, &msr->data);
1695 break;
1696 default:
1697 return static_call(kvm_x86_get_msr_feature)(msr);
1698 }
1699 return 0;
1700 }
1701
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 struct kvm_msr_entry msr;
1705 int r;
1706
1707 msr.index = index;
1708 r = kvm_get_msr_feature(&msr);
1709
1710 if (r == KVM_MSR_RET_INVALID) {
1711 /* Unconditionally clear the output for simplicity */
1712 *data = 0;
1713 if (kvm_msr_ignored_check(index, 0, false))
1714 r = 0;
1715 }
1716
1717 if (r)
1718 return r;
1719
1720 *data = msr.data;
1721
1722 return 0;
1723 }
1724
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728 return false;
1729
1730 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731 return false;
1732
1733 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734 return false;
1735
1736 if (efer & (EFER_LME | EFER_LMA) &&
1737 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738 return false;
1739
1740 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741 return false;
1742
1743 return true;
1744
1745 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748 if (efer & efer_reserved_bits)
1749 return false;
1750
1751 return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 u64 old_efer = vcpu->arch.efer;
1758 u64 efer = msr_info->data;
1759 int r;
1760
1761 if (efer & efer_reserved_bits)
1762 return 1;
1763
1764 if (!msr_info->host_initiated) {
1765 if (!__kvm_valid_efer(vcpu, efer))
1766 return 1;
1767
1768 if (is_paging(vcpu) &&
1769 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770 return 1;
1771 }
1772
1773 efer &= ~EFER_LMA;
1774 efer |= vcpu->arch.efer & EFER_LMA;
1775
1776 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777 if (r) {
1778 WARN_ON(r > 0);
1779 return r;
1780 }
1781
1782 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 kvm_mmu_reset_context(vcpu);
1784
1785 return 0;
1786 }
1787
kvm_enable_efer_bits(u64 mask)1788 void kvm_enable_efer_bits(u64 mask)
1789 {
1790 efer_reserved_bits &= ~mask;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1794 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795 {
1796 struct kvm_x86_msr_filter *msr_filter;
1797 struct msr_bitmap_range *ranges;
1798 struct kvm *kvm = vcpu->kvm;
1799 bool allowed;
1800 int idx;
1801 u32 i;
1802
1803 /* x2APIC MSRs do not support filtering. */
1804 if (index >= 0x800 && index <= 0x8ff)
1805 return true;
1806
1807 idx = srcu_read_lock(&kvm->srcu);
1808
1809 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810 if (!msr_filter) {
1811 allowed = true;
1812 goto out;
1813 }
1814
1815 allowed = msr_filter->default_allow;
1816 ranges = msr_filter->ranges;
1817
1818 for (i = 0; i < msr_filter->count; i++) {
1819 u32 start = ranges[i].base;
1820 u32 end = start + ranges[i].nmsrs;
1821 u32 flags = ranges[i].flags;
1822 unsigned long *bitmap = ranges[i].bitmap;
1823
1824 if ((index >= start) && (index < end) && (flags & type)) {
1825 allowed = test_bit(index - start, bitmap);
1826 break;
1827 }
1828 }
1829
1830 out:
1831 srcu_read_unlock(&kvm->srcu, idx);
1832
1833 return allowed;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836
1837 /*
1838 * Write @data into the MSR specified by @index. Select MSR specific fault
1839 * checks are bypassed if @host_initiated is %true.
1840 * Returns 0 on success, non-0 otherwise.
1841 * Assumes vcpu_load() was already called.
1842 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1843 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844 bool host_initiated)
1845 {
1846 struct msr_data msr;
1847
1848 switch (index) {
1849 case MSR_FS_BASE:
1850 case MSR_GS_BASE:
1851 case MSR_KERNEL_GS_BASE:
1852 case MSR_CSTAR:
1853 case MSR_LSTAR:
1854 if (is_noncanonical_address(data, vcpu))
1855 return 1;
1856 break;
1857 case MSR_IA32_SYSENTER_EIP:
1858 case MSR_IA32_SYSENTER_ESP:
1859 /*
1860 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861 * non-canonical address is written on Intel but not on
1862 * AMD (which ignores the top 32-bits, because it does
1863 * not implement 64-bit SYSENTER).
1864 *
1865 * 64-bit code should hence be able to write a non-canonical
1866 * value on AMD. Making the address canonical ensures that
1867 * vmentry does not fail on Intel after writing a non-canonical
1868 * value, and that something deterministic happens if the guest
1869 * invokes 64-bit SYSENTER.
1870 */
1871 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872 break;
1873 case MSR_TSC_AUX:
1874 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875 return 1;
1876
1877 if (!host_initiated &&
1878 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880 return 1;
1881
1882 /*
1883 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884 * incomplete and conflicting architectural behavior. Current
1885 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886 * reserved and always read as zeros. Enforce Intel's reserved
1887 * bits check if and only if the guest CPU is Intel, and clear
1888 * the bits in all other cases. This ensures cross-vendor
1889 * migration will provide consistent behavior for the guest.
1890 */
1891 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892 return 1;
1893
1894 data = (u32)data;
1895 break;
1896 }
1897
1898 msr.data = data;
1899 msr.index = index;
1900 msr.host_initiated = host_initiated;
1901
1902 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903 }
1904
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1905 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906 u32 index, u64 data, bool host_initiated)
1907 {
1908 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909
1910 if (ret == KVM_MSR_RET_INVALID)
1911 if (kvm_msr_ignored_check(index, data, true))
1912 ret = 0;
1913
1914 return ret;
1915 }
1916
1917 /*
1918 * Read the MSR specified by @index into @data. Select MSR specific fault
1919 * checks are bypassed if @host_initiated is %true.
1920 * Returns 0 on success, non-0 otherwise.
1921 * Assumes vcpu_load() was already called.
1922 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1923 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924 bool host_initiated)
1925 {
1926 struct msr_data msr;
1927 int ret;
1928
1929 switch (index) {
1930 case MSR_TSC_AUX:
1931 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932 return 1;
1933
1934 if (!host_initiated &&
1935 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937 return 1;
1938 break;
1939 }
1940
1941 msr.index = index;
1942 msr.host_initiated = host_initiated;
1943
1944 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945 if (!ret)
1946 *data = msr.data;
1947 return ret;
1948 }
1949
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1950 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951 u32 index, u64 *data, bool host_initiated)
1952 {
1953 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954
1955 if (ret == KVM_MSR_RET_INVALID) {
1956 /* Unconditionally clear *data for simplicity */
1957 *data = 0;
1958 if (kvm_msr_ignored_check(index, 0, false))
1959 ret = 0;
1960 }
1961
1962 return ret;
1963 }
1964
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1965 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966 {
1967 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968 return KVM_MSR_RET_FILTERED;
1969 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970 }
1971
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1972 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975 return KVM_MSR_RET_FILTERED;
1976 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977 }
1978
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1979 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980 {
1981 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_get_msr);
1984
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1985 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986 {
1987 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_set_msr);
1990
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1991 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 if (!vcpu->run->msr.error) {
1994 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996 }
1997 }
1998
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1999 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000 {
2001 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002 }
2003
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2004 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005 {
2006 complete_userspace_rdmsr(vcpu);
2007 return complete_emulated_msr_access(vcpu);
2008 }
2009
complete_fast_msr_access(struct kvm_vcpu * vcpu)2010 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011 {
2012 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013 }
2014
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2015 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016 {
2017 complete_userspace_rdmsr(vcpu);
2018 return complete_fast_msr_access(vcpu);
2019 }
2020
kvm_msr_reason(int r)2021 static u64 kvm_msr_reason(int r)
2022 {
2023 switch (r) {
2024 case KVM_MSR_RET_INVALID:
2025 return KVM_MSR_EXIT_REASON_UNKNOWN;
2026 case KVM_MSR_RET_FILTERED:
2027 return KVM_MSR_EXIT_REASON_FILTER;
2028 default:
2029 return KVM_MSR_EXIT_REASON_INVAL;
2030 }
2031 }
2032
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2033 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034 u32 exit_reason, u64 data,
2035 int (*completion)(struct kvm_vcpu *vcpu),
2036 int r)
2037 {
2038 u64 msr_reason = kvm_msr_reason(r);
2039
2040 /* Check if the user wanted to know about this MSR fault */
2041 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042 return 0;
2043
2044 vcpu->run->exit_reason = exit_reason;
2045 vcpu->run->msr.error = 0;
2046 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047 vcpu->run->msr.reason = msr_reason;
2048 vcpu->run->msr.index = index;
2049 vcpu->run->msr.data = data;
2050 vcpu->arch.complete_userspace_io = completion;
2051
2052 return 1;
2053 }
2054
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2055 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056 {
2057 u32 ecx = kvm_rcx_read(vcpu);
2058 u64 data;
2059 int r;
2060
2061 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062
2063 if (!r) {
2064 trace_kvm_msr_read(ecx, data);
2065
2066 kvm_rax_write(vcpu, data & -1u);
2067 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068 } else {
2069 /* MSR read failed? See if we should ask user space */
2070 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071 complete_fast_rdmsr, r))
2072 return 0;
2073 trace_kvm_msr_read_ex(ecx);
2074 }
2075
2076 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2080 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081 {
2082 u32 ecx = kvm_rcx_read(vcpu);
2083 u64 data = kvm_read_edx_eax(vcpu);
2084 int r;
2085
2086 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087
2088 if (!r) {
2089 trace_kvm_msr_write(ecx, data);
2090 } else {
2091 /* MSR write failed? See if we should ask user space */
2092 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093 complete_fast_msr_access, r))
2094 return 0;
2095 /* Signal all other negative errors to userspace */
2096 if (r < 0)
2097 return r;
2098 trace_kvm_msr_write_ex(ecx, data);
2099 }
2100
2101 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2105 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106 {
2107 return kvm_skip_emulated_instruction(vcpu);
2108 }
2109
kvm_emulate_invd(struct kvm_vcpu * vcpu)2110 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111 {
2112 /* Treat an INVD instruction as a NOP and just skip it. */
2113 return kvm_emulate_as_nop(vcpu);
2114 }
2115 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2117 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118 {
2119 kvm_queue_exception(vcpu, UD_VECTOR);
2120 return 1;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123
2124
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2125 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126 {
2127 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129 return kvm_handle_invalid_op(vcpu);
2130
2131 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132 return kvm_emulate_as_nop(vcpu);
2133 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2134 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135 {
2136 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137 }
2138 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2140 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141 {
2142 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143 }
2144 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2146 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147 {
2148 xfer_to_guest_mode_prepare();
2149 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150 xfer_to_guest_mode_work_pending();
2151 }
2152
2153 /*
2154 * The fast path for frequent and performance sensitive wrmsr emulation,
2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158 * other cases which must be called after interrupts are enabled on the host.
2159 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2160 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161 {
2162 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163 return 1;
2164
2165 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168 ((u32)(data >> 32) != X2APIC_BROADCAST))
2169 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170
2171 return 1;
2172 }
2173
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2174 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175 {
2176 if (!kvm_can_use_hv_timer(vcpu))
2177 return 1;
2178
2179 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180 return 0;
2181 }
2182
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2183 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184 {
2185 u32 msr = kvm_rcx_read(vcpu);
2186 u64 data;
2187 fastpath_t ret = EXIT_FASTPATH_NONE;
2188
2189 kvm_vcpu_srcu_read_lock(vcpu);
2190
2191 switch (msr) {
2192 case APIC_BASE_MSR + (APIC_ICR >> 4):
2193 data = kvm_read_edx_eax(vcpu);
2194 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195 kvm_skip_emulated_instruction(vcpu);
2196 ret = EXIT_FASTPATH_EXIT_HANDLED;
2197 }
2198 break;
2199 case MSR_IA32_TSC_DEADLINE:
2200 data = kvm_read_edx_eax(vcpu);
2201 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202 kvm_skip_emulated_instruction(vcpu);
2203 ret = EXIT_FASTPATH_REENTER_GUEST;
2204 }
2205 break;
2206 default:
2207 break;
2208 }
2209
2210 if (ret != EXIT_FASTPATH_NONE)
2211 trace_kvm_msr_write(msr, data);
2212
2213 kvm_vcpu_srcu_read_unlock(vcpu);
2214
2215 return ret;
2216 }
2217 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218
2219 /*
2220 * Adapt set_msr() to msr_io()'s calling convention
2221 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2222 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223 {
2224 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225 }
2226
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2227 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228 {
2229 u64 val;
2230
2231 /*
2232 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2233 * not support modifying the guest vCPU model on the fly, e.g. changing
2234 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2235 * writes of the same value, e.g. to allow userspace to blindly stuff
2236 * all MSRs when emulating RESET.
2237 */
2238 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239 if (do_get_msr(vcpu, index, &val) || *data != val)
2240 return -EINVAL;
2241
2242 return 0;
2243 }
2244
2245 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246 }
2247
2248 #ifdef CONFIG_X86_64
2249 struct pvclock_clock {
2250 int vclock_mode;
2251 u64 cycle_last;
2252 u64 mask;
2253 u32 mult;
2254 u32 shift;
2255 u64 base_cycles;
2256 u64 offset;
2257 };
2258
2259 struct pvclock_gtod_data {
2260 seqcount_t seq;
2261
2262 struct pvclock_clock clock; /* extract of a clocksource struct */
2263 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264
2265 ktime_t offs_boot;
2266 u64 wall_time_sec;
2267 };
2268
2269 static struct pvclock_gtod_data pvclock_gtod_data;
2270
update_pvclock_gtod(struct timekeeper * tk)2271 static void update_pvclock_gtod(struct timekeeper *tk)
2272 {
2273 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274
2275 write_seqcount_begin(&vdata->seq);
2276
2277 /* copy pvclock gtod data */
2278 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2279 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2280 vdata->clock.mask = tk->tkr_mono.mask;
2281 vdata->clock.mult = tk->tkr_mono.mult;
2282 vdata->clock.shift = tk->tkr_mono.shift;
2283 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2284 vdata->clock.offset = tk->tkr_mono.base;
2285
2286 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2287 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2288 vdata->raw_clock.mask = tk->tkr_raw.mask;
2289 vdata->raw_clock.mult = tk->tkr_raw.mult;
2290 vdata->raw_clock.shift = tk->tkr_raw.shift;
2291 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2292 vdata->raw_clock.offset = tk->tkr_raw.base;
2293
2294 vdata->wall_time_sec = tk->xtime_sec;
2295
2296 vdata->offs_boot = tk->offs_boot;
2297
2298 write_seqcount_end(&vdata->seq);
2299 }
2300
get_kvmclock_base_ns(void)2301 static s64 get_kvmclock_base_ns(void)
2302 {
2303 /* Count up from boot time, but with the frequency of the raw clock. */
2304 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305 }
2306 #else
get_kvmclock_base_ns(void)2307 static s64 get_kvmclock_base_ns(void)
2308 {
2309 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2310 return ktime_get_boottime_ns();
2311 }
2312 #endif
2313
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2314 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315 {
2316 int version;
2317 int r;
2318 struct pvclock_wall_clock wc;
2319 u32 wc_sec_hi;
2320 u64 wall_nsec;
2321
2322 if (!wall_clock)
2323 return;
2324
2325 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326 if (r)
2327 return;
2328
2329 if (version & 1)
2330 ++version; /* first time write, random junk */
2331
2332 ++version;
2333
2334 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335 return;
2336
2337 /*
2338 * The guest calculates current wall clock time by adding
2339 * system time (updated by kvm_guest_time_update below) to the
2340 * wall clock specified here. We do the reverse here.
2341 */
2342 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2343
2344 wc.nsec = do_div(wall_nsec, 1000000000);
2345 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2346 wc.version = version;
2347
2348 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2349
2350 if (sec_hi_ofs) {
2351 wc_sec_hi = wall_nsec >> 32;
2352 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2353 &wc_sec_hi, sizeof(wc_sec_hi));
2354 }
2355
2356 version++;
2357 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2358 }
2359
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2360 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2361 bool old_msr, bool host_initiated)
2362 {
2363 struct kvm_arch *ka = &vcpu->kvm->arch;
2364
2365 if (vcpu->vcpu_id == 0 && !host_initiated) {
2366 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2367 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2368
2369 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2370 }
2371
2372 vcpu->arch.time = system_time;
2373 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2374
2375 /* we verify if the enable bit is set... */
2376 if (system_time & 1)
2377 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2378 sizeof(struct pvclock_vcpu_time_info));
2379 else
2380 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2381
2382 return;
2383 }
2384
div_frac(uint32_t dividend,uint32_t divisor)2385 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2386 {
2387 do_shl32_div32(dividend, divisor);
2388 return dividend;
2389 }
2390
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2391 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2392 s8 *pshift, u32 *pmultiplier)
2393 {
2394 uint64_t scaled64;
2395 int32_t shift = 0;
2396 uint64_t tps64;
2397 uint32_t tps32;
2398
2399 tps64 = base_hz;
2400 scaled64 = scaled_hz;
2401 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2402 tps64 >>= 1;
2403 shift--;
2404 }
2405
2406 tps32 = (uint32_t)tps64;
2407 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2408 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2409 scaled64 >>= 1;
2410 else
2411 tps32 <<= 1;
2412 shift++;
2413 }
2414
2415 *pshift = shift;
2416 *pmultiplier = div_frac(scaled64, tps32);
2417 }
2418
2419 #ifdef CONFIG_X86_64
2420 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2421 #endif
2422
2423 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2424 static unsigned long max_tsc_khz;
2425
adjust_tsc_khz(u32 khz,s32 ppm)2426 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2427 {
2428 u64 v = (u64)khz * (1000000 + ppm);
2429 do_div(v, 1000000);
2430 return v;
2431 }
2432
2433 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2434
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2435 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2436 {
2437 u64 ratio;
2438
2439 /* Guest TSC same frequency as host TSC? */
2440 if (!scale) {
2441 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2442 return 0;
2443 }
2444
2445 /* TSC scaling supported? */
2446 if (!kvm_caps.has_tsc_control) {
2447 if (user_tsc_khz > tsc_khz) {
2448 vcpu->arch.tsc_catchup = 1;
2449 vcpu->arch.tsc_always_catchup = 1;
2450 return 0;
2451 } else {
2452 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2453 return -1;
2454 }
2455 }
2456
2457 /* TSC scaling required - calculate ratio */
2458 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2459 user_tsc_khz, tsc_khz);
2460
2461 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2462 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2463 user_tsc_khz);
2464 return -1;
2465 }
2466
2467 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2468 return 0;
2469 }
2470
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2471 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2472 {
2473 u32 thresh_lo, thresh_hi;
2474 int use_scaling = 0;
2475
2476 /* tsc_khz can be zero if TSC calibration fails */
2477 if (user_tsc_khz == 0) {
2478 /* set tsc_scaling_ratio to a safe value */
2479 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2480 return -1;
2481 }
2482
2483 /* Compute a scale to convert nanoseconds in TSC cycles */
2484 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2485 &vcpu->arch.virtual_tsc_shift,
2486 &vcpu->arch.virtual_tsc_mult);
2487 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2488
2489 /*
2490 * Compute the variation in TSC rate which is acceptable
2491 * within the range of tolerance and decide if the
2492 * rate being applied is within that bounds of the hardware
2493 * rate. If so, no scaling or compensation need be done.
2494 */
2495 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2496 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2497 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2498 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2499 user_tsc_khz, thresh_lo, thresh_hi);
2500 use_scaling = 1;
2501 }
2502 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2503 }
2504
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2505 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2506 {
2507 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2508 vcpu->arch.virtual_tsc_mult,
2509 vcpu->arch.virtual_tsc_shift);
2510 tsc += vcpu->arch.this_tsc_write;
2511 return tsc;
2512 }
2513
2514 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2515 static inline int gtod_is_based_on_tsc(int mode)
2516 {
2517 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2518 }
2519 #endif
2520
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2521 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2522 {
2523 #ifdef CONFIG_X86_64
2524 bool vcpus_matched;
2525 struct kvm_arch *ka = &vcpu->kvm->arch;
2526 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2527
2528 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2529 atomic_read(&vcpu->kvm->online_vcpus));
2530
2531 /*
2532 * Once the masterclock is enabled, always perform request in
2533 * order to update it.
2534 *
2535 * In order to enable masterclock, the host clocksource must be TSC
2536 * and the vcpus need to have matched TSCs. When that happens,
2537 * perform request to enable masterclock.
2538 */
2539 if (ka->use_master_clock ||
2540 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2541 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542
2543 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544 atomic_read(&vcpu->kvm->online_vcpus),
2545 ka->use_master_clock, gtod->clock.vclock_mode);
2546 #endif
2547 }
2548
2549 /*
2550 * Multiply tsc by a fixed point number represented by ratio.
2551 *
2552 * The most significant 64-N bits (mult) of ratio represent the
2553 * integral part of the fixed point number; the remaining N bits
2554 * (frac) represent the fractional part, ie. ratio represents a fixed
2555 * point number (mult + frac * 2^(-N)).
2556 *
2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558 */
__scale_tsc(u64 ratio,u64 tsc)2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560 {
2561 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562 }
2563
kvm_scale_tsc(u64 tsc,u64 ratio)2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565 {
2566 u64 _tsc = tsc;
2567
2568 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569 _tsc = __scale_tsc(ratio, tsc);
2570
2571 return _tsc;
2572 }
2573
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575 {
2576 u64 tsc;
2577
2578 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579
2580 return target_tsc - tsc;
2581 }
2582
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584 {
2585 return vcpu->arch.l1_tsc_offset +
2586 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591 {
2592 u64 nested_offset;
2593
2594 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595 nested_offset = l1_offset;
2596 else
2597 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598 kvm_caps.tsc_scaling_ratio_frac_bits);
2599
2600 nested_offset += l2_offset;
2601 return nested_offset;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606 {
2607 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609 kvm_caps.tsc_scaling_ratio_frac_bits);
2610
2611 return l1_multiplier;
2612 }
2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616 {
2617 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618 vcpu->arch.l1_tsc_offset,
2619 l1_offset);
2620
2621 vcpu->arch.l1_tsc_offset = l1_offset;
2622
2623 /*
2624 * If we are here because L1 chose not to trap WRMSR to TSC then
2625 * according to the spec this should set L1's TSC (as opposed to
2626 * setting L1's offset for L2).
2627 */
2628 if (is_guest_mode(vcpu))
2629 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630 l1_offset,
2631 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633 else
2634 vcpu->arch.tsc_offset = l1_offset;
2635
2636 static_call(kvm_x86_write_tsc_offset)(vcpu);
2637 }
2638
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640 {
2641 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642
2643 /* Userspace is changing the multiplier while L2 is active */
2644 if (is_guest_mode(vcpu))
2645 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646 l1_multiplier,
2647 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648 else
2649 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650
2651 if (kvm_caps.has_tsc_control)
2652 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653 }
2654
kvm_check_tsc_unstable(void)2655 static inline bool kvm_check_tsc_unstable(void)
2656 {
2657 #ifdef CONFIG_X86_64
2658 /*
2659 * TSC is marked unstable when we're running on Hyper-V,
2660 * 'TSC page' clocksource is good.
2661 */
2662 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663 return false;
2664 #endif
2665 return check_tsc_unstable();
2666 }
2667
2668 /*
2669 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671 * participates in.
2672 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674 u64 ns, bool matched)
2675 {
2676 struct kvm *kvm = vcpu->kvm;
2677
2678 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679
2680 /*
2681 * We also track th most recent recorded KHZ, write and time to
2682 * allow the matching interval to be extended at each write.
2683 */
2684 kvm->arch.last_tsc_nsec = ns;
2685 kvm->arch.last_tsc_write = tsc;
2686 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687 kvm->arch.last_tsc_offset = offset;
2688
2689 vcpu->arch.last_guest_tsc = tsc;
2690
2691 kvm_vcpu_write_tsc_offset(vcpu, offset);
2692
2693 if (!matched) {
2694 /*
2695 * We split periods of matched TSC writes into generations.
2696 * For each generation, we track the original measured
2697 * nanosecond time, offset, and write, so if TSCs are in
2698 * sync, we can match exact offset, and if not, we can match
2699 * exact software computation in compute_guest_tsc()
2700 *
2701 * These values are tracked in kvm->arch.cur_xxx variables.
2702 */
2703 kvm->arch.cur_tsc_generation++;
2704 kvm->arch.cur_tsc_nsec = ns;
2705 kvm->arch.cur_tsc_write = tsc;
2706 kvm->arch.cur_tsc_offset = offset;
2707 kvm->arch.nr_vcpus_matched_tsc = 0;
2708 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709 kvm->arch.nr_vcpus_matched_tsc++;
2710 }
2711
2712 /* Keep track of which generation this VCPU has synchronized to */
2713 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716
2717 kvm_track_tsc_matching(vcpu);
2718 }
2719
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2721 {
2722 struct kvm *kvm = vcpu->kvm;
2723 u64 offset, ns, elapsed;
2724 unsigned long flags;
2725 bool matched = false;
2726 bool synchronizing = false;
2727
2728 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2729 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2730 ns = get_kvmclock_base_ns();
2731 elapsed = ns - kvm->arch.last_tsc_nsec;
2732
2733 if (vcpu->arch.virtual_tsc_khz) {
2734 if (data == 0) {
2735 /*
2736 * detection of vcpu initialization -- need to sync
2737 * with other vCPUs. This particularly helps to keep
2738 * kvm_clock stable after CPU hotplug
2739 */
2740 synchronizing = true;
2741 } else {
2742 u64 tsc_exp = kvm->arch.last_tsc_write +
2743 nsec_to_cycles(vcpu, elapsed);
2744 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745 /*
2746 * Special case: TSC write with a small delta (1 second)
2747 * of virtual cycle time against real time is
2748 * interpreted as an attempt to synchronize the CPU.
2749 */
2750 synchronizing = data < tsc_exp + tsc_hz &&
2751 data + tsc_hz > tsc_exp;
2752 }
2753 }
2754
2755 /*
2756 * For a reliable TSC, we can match TSC offsets, and for an unstable
2757 * TSC, we add elapsed time in this computation. We could let the
2758 * compensation code attempt to catch up if we fall behind, but
2759 * it's better to try to match offsets from the beginning.
2760 */
2761 if (synchronizing &&
2762 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2763 if (!kvm_check_tsc_unstable()) {
2764 offset = kvm->arch.cur_tsc_offset;
2765 } else {
2766 u64 delta = nsec_to_cycles(vcpu, elapsed);
2767 data += delta;
2768 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2769 }
2770 matched = true;
2771 }
2772
2773 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2774 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2775 }
2776
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2777 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2778 s64 adjustment)
2779 {
2780 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2781 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2782 }
2783
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2784 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2785 {
2786 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2787 WARN_ON(adjustment < 0);
2788 adjustment = kvm_scale_tsc((u64) adjustment,
2789 vcpu->arch.l1_tsc_scaling_ratio);
2790 adjust_tsc_offset_guest(vcpu, adjustment);
2791 }
2792
2793 #ifdef CONFIG_X86_64
2794
read_tsc(void)2795 static u64 read_tsc(void)
2796 {
2797 u64 ret = (u64)rdtsc_ordered();
2798 u64 last = pvclock_gtod_data.clock.cycle_last;
2799
2800 if (likely(ret >= last))
2801 return ret;
2802
2803 /*
2804 * GCC likes to generate cmov here, but this branch is extremely
2805 * predictable (it's just a function of time and the likely is
2806 * very likely) and there's a data dependence, so force GCC
2807 * to generate a branch instead. I don't barrier() because
2808 * we don't actually need a barrier, and if this function
2809 * ever gets inlined it will generate worse code.
2810 */
2811 asm volatile ("");
2812 return last;
2813 }
2814
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2815 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2816 int *mode)
2817 {
2818 u64 tsc_pg_val;
2819 long v;
2820
2821 switch (clock->vclock_mode) {
2822 case VDSO_CLOCKMODE_HVCLOCK:
2823 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2824 tsc_timestamp, &tsc_pg_val)) {
2825 /* TSC page valid */
2826 *mode = VDSO_CLOCKMODE_HVCLOCK;
2827 v = (tsc_pg_val - clock->cycle_last) &
2828 clock->mask;
2829 } else {
2830 /* TSC page invalid */
2831 *mode = VDSO_CLOCKMODE_NONE;
2832 }
2833 break;
2834 case VDSO_CLOCKMODE_TSC:
2835 *mode = VDSO_CLOCKMODE_TSC;
2836 *tsc_timestamp = read_tsc();
2837 v = (*tsc_timestamp - clock->cycle_last) &
2838 clock->mask;
2839 break;
2840 default:
2841 *mode = VDSO_CLOCKMODE_NONE;
2842 }
2843
2844 if (*mode == VDSO_CLOCKMODE_NONE)
2845 *tsc_timestamp = v = 0;
2846
2847 return v * clock->mult;
2848 }
2849
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2850 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2851 {
2852 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2853 unsigned long seq;
2854 int mode;
2855 u64 ns;
2856
2857 do {
2858 seq = read_seqcount_begin(>od->seq);
2859 ns = gtod->raw_clock.base_cycles;
2860 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2861 ns >>= gtod->raw_clock.shift;
2862 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2863 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2864 *t = ns;
2865
2866 return mode;
2867 }
2868
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2869 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2870 {
2871 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2872 unsigned long seq;
2873 int mode;
2874 u64 ns;
2875
2876 do {
2877 seq = read_seqcount_begin(>od->seq);
2878 ts->tv_sec = gtod->wall_time_sec;
2879 ns = gtod->clock.base_cycles;
2880 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2881 ns >>= gtod->clock.shift;
2882 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2883
2884 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2885 ts->tv_nsec = ns;
2886
2887 return mode;
2888 }
2889
2890 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2891 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2892 {
2893 /* checked again under seqlock below */
2894 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2895 return false;
2896
2897 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2898 tsc_timestamp));
2899 }
2900
2901 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2902 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2903 u64 *tsc_timestamp)
2904 {
2905 /* checked again under seqlock below */
2906 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2907 return false;
2908
2909 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2910 }
2911 #endif
2912
2913 /*
2914 *
2915 * Assuming a stable TSC across physical CPUS, and a stable TSC
2916 * across virtual CPUs, the following condition is possible.
2917 * Each numbered line represents an event visible to both
2918 * CPUs at the next numbered event.
2919 *
2920 * "timespecX" represents host monotonic time. "tscX" represents
2921 * RDTSC value.
2922 *
2923 * VCPU0 on CPU0 | VCPU1 on CPU1
2924 *
2925 * 1. read timespec0,tsc0
2926 * 2. | timespec1 = timespec0 + N
2927 * | tsc1 = tsc0 + M
2928 * 3. transition to guest | transition to guest
2929 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2930 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2931 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2932 *
2933 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2934 *
2935 * - ret0 < ret1
2936 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2937 * ...
2938 * - 0 < N - M => M < N
2939 *
2940 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2941 * always the case (the difference between two distinct xtime instances
2942 * might be smaller then the difference between corresponding TSC reads,
2943 * when updating guest vcpus pvclock areas).
2944 *
2945 * To avoid that problem, do not allow visibility of distinct
2946 * system_timestamp/tsc_timestamp values simultaneously: use a master
2947 * copy of host monotonic time values. Update that master copy
2948 * in lockstep.
2949 *
2950 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2951 *
2952 */
2953
pvclock_update_vm_gtod_copy(struct kvm * kvm)2954 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2955 {
2956 #ifdef CONFIG_X86_64
2957 struct kvm_arch *ka = &kvm->arch;
2958 int vclock_mode;
2959 bool host_tsc_clocksource, vcpus_matched;
2960
2961 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2962 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2963 atomic_read(&kvm->online_vcpus));
2964
2965 /*
2966 * If the host uses TSC clock, then passthrough TSC as stable
2967 * to the guest.
2968 */
2969 host_tsc_clocksource = kvm_get_time_and_clockread(
2970 &ka->master_kernel_ns,
2971 &ka->master_cycle_now);
2972
2973 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2974 && !ka->backwards_tsc_observed
2975 && !ka->boot_vcpu_runs_old_kvmclock;
2976
2977 if (ka->use_master_clock)
2978 atomic_set(&kvm_guest_has_master_clock, 1);
2979
2980 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2981 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2982 vcpus_matched);
2983 #endif
2984 }
2985
kvm_make_mclock_inprogress_request(struct kvm * kvm)2986 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2987 {
2988 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2989 }
2990
__kvm_start_pvclock_update(struct kvm * kvm)2991 static void __kvm_start_pvclock_update(struct kvm *kvm)
2992 {
2993 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2994 write_seqcount_begin(&kvm->arch.pvclock_sc);
2995 }
2996
kvm_start_pvclock_update(struct kvm * kvm)2997 static void kvm_start_pvclock_update(struct kvm *kvm)
2998 {
2999 kvm_make_mclock_inprogress_request(kvm);
3000
3001 /* no guest entries from this point */
3002 __kvm_start_pvclock_update(kvm);
3003 }
3004
kvm_end_pvclock_update(struct kvm * kvm)3005 static void kvm_end_pvclock_update(struct kvm *kvm)
3006 {
3007 struct kvm_arch *ka = &kvm->arch;
3008 struct kvm_vcpu *vcpu;
3009 unsigned long i;
3010
3011 write_seqcount_end(&ka->pvclock_sc);
3012 raw_spin_unlock_irq(&ka->tsc_write_lock);
3013 kvm_for_each_vcpu(i, vcpu, kvm)
3014 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3015
3016 /* guest entries allowed */
3017 kvm_for_each_vcpu(i, vcpu, kvm)
3018 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3019 }
3020
kvm_update_masterclock(struct kvm * kvm)3021 static void kvm_update_masterclock(struct kvm *kvm)
3022 {
3023 kvm_hv_request_tsc_page_update(kvm);
3024 kvm_start_pvclock_update(kvm);
3025 pvclock_update_vm_gtod_copy(kvm);
3026 kvm_end_pvclock_update(kvm);
3027 }
3028
3029 /*
3030 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3031 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3032 * can change during boot even if the TSC is constant, as it's possible for KVM
3033 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3034 * notification when calibration completes, but practically speaking calibration
3035 * will complete before userspace is alive enough to create VMs.
3036 */
get_cpu_tsc_khz(void)3037 static unsigned long get_cpu_tsc_khz(void)
3038 {
3039 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3040 return tsc_khz;
3041 else
3042 return __this_cpu_read(cpu_tsc_khz);
3043 }
3044
3045 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3046 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3047 {
3048 struct kvm_arch *ka = &kvm->arch;
3049 struct pvclock_vcpu_time_info hv_clock;
3050
3051 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3052 get_cpu();
3053
3054 data->flags = 0;
3055 if (ka->use_master_clock &&
3056 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3057 #ifdef CONFIG_X86_64
3058 struct timespec64 ts;
3059
3060 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3061 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3062 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3063 } else
3064 #endif
3065 data->host_tsc = rdtsc();
3066
3067 data->flags |= KVM_CLOCK_TSC_STABLE;
3068 hv_clock.tsc_timestamp = ka->master_cycle_now;
3069 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3070 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3071 &hv_clock.tsc_shift,
3072 &hv_clock.tsc_to_system_mul);
3073 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3074 } else {
3075 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3076 }
3077
3078 put_cpu();
3079 }
3080
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3081 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3082 {
3083 struct kvm_arch *ka = &kvm->arch;
3084 unsigned seq;
3085
3086 do {
3087 seq = read_seqcount_begin(&ka->pvclock_sc);
3088 __get_kvmclock(kvm, data);
3089 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3090 }
3091
get_kvmclock_ns(struct kvm * kvm)3092 u64 get_kvmclock_ns(struct kvm *kvm)
3093 {
3094 struct kvm_clock_data data;
3095
3096 get_kvmclock(kvm, &data);
3097 return data.clock;
3098 }
3099
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3100 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3101 struct gfn_to_pfn_cache *gpc,
3102 unsigned int offset)
3103 {
3104 struct kvm_vcpu_arch *vcpu = &v->arch;
3105 struct pvclock_vcpu_time_info *guest_hv_clock;
3106 unsigned long flags;
3107
3108 read_lock_irqsave(&gpc->lock, flags);
3109 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3110 read_unlock_irqrestore(&gpc->lock, flags);
3111
3112 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3113 return;
3114
3115 read_lock_irqsave(&gpc->lock, flags);
3116 }
3117
3118 guest_hv_clock = (void *)(gpc->khva + offset);
3119
3120 /*
3121 * This VCPU is paused, but it's legal for a guest to read another
3122 * VCPU's kvmclock, so we really have to follow the specification where
3123 * it says that version is odd if data is being modified, and even after
3124 * it is consistent.
3125 */
3126
3127 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3128 smp_wmb();
3129
3130 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3131 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3132
3133 if (vcpu->pvclock_set_guest_stopped_request) {
3134 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3135 vcpu->pvclock_set_guest_stopped_request = false;
3136 }
3137
3138 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3139 smp_wmb();
3140
3141 guest_hv_clock->version = ++vcpu->hv_clock.version;
3142
3143 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3144 read_unlock_irqrestore(&gpc->lock, flags);
3145
3146 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3147 }
3148
kvm_guest_time_update(struct kvm_vcpu * v)3149 static int kvm_guest_time_update(struct kvm_vcpu *v)
3150 {
3151 unsigned long flags, tgt_tsc_khz;
3152 unsigned seq;
3153 struct kvm_vcpu_arch *vcpu = &v->arch;
3154 struct kvm_arch *ka = &v->kvm->arch;
3155 s64 kernel_ns;
3156 u64 tsc_timestamp, host_tsc;
3157 u8 pvclock_flags;
3158 bool use_master_clock;
3159
3160 kernel_ns = 0;
3161 host_tsc = 0;
3162
3163 /*
3164 * If the host uses TSC clock, then passthrough TSC as stable
3165 * to the guest.
3166 */
3167 do {
3168 seq = read_seqcount_begin(&ka->pvclock_sc);
3169 use_master_clock = ka->use_master_clock;
3170 if (use_master_clock) {
3171 host_tsc = ka->master_cycle_now;
3172 kernel_ns = ka->master_kernel_ns;
3173 }
3174 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3175
3176 /* Keep irq disabled to prevent changes to the clock */
3177 local_irq_save(flags);
3178 tgt_tsc_khz = get_cpu_tsc_khz();
3179 if (unlikely(tgt_tsc_khz == 0)) {
3180 local_irq_restore(flags);
3181 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3182 return 1;
3183 }
3184 if (!use_master_clock) {
3185 host_tsc = rdtsc();
3186 kernel_ns = get_kvmclock_base_ns();
3187 }
3188
3189 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3190
3191 /*
3192 * We may have to catch up the TSC to match elapsed wall clock
3193 * time for two reasons, even if kvmclock is used.
3194 * 1) CPU could have been running below the maximum TSC rate
3195 * 2) Broken TSC compensation resets the base at each VCPU
3196 * entry to avoid unknown leaps of TSC even when running
3197 * again on the same CPU. This may cause apparent elapsed
3198 * time to disappear, and the guest to stand still or run
3199 * very slowly.
3200 */
3201 if (vcpu->tsc_catchup) {
3202 u64 tsc = compute_guest_tsc(v, kernel_ns);
3203 if (tsc > tsc_timestamp) {
3204 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3205 tsc_timestamp = tsc;
3206 }
3207 }
3208
3209 local_irq_restore(flags);
3210
3211 /* With all the info we got, fill in the values */
3212
3213 if (kvm_caps.has_tsc_control)
3214 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3215 v->arch.l1_tsc_scaling_ratio);
3216
3217 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3218 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3219 &vcpu->hv_clock.tsc_shift,
3220 &vcpu->hv_clock.tsc_to_system_mul);
3221 vcpu->hw_tsc_khz = tgt_tsc_khz;
3222 kvm_xen_update_tsc_info(v);
3223 }
3224
3225 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3226 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3227 vcpu->last_guest_tsc = tsc_timestamp;
3228
3229 /* If the host uses TSC clocksource, then it is stable */
3230 pvclock_flags = 0;
3231 if (use_master_clock)
3232 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3233
3234 vcpu->hv_clock.flags = pvclock_flags;
3235
3236 if (vcpu->pv_time.active)
3237 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3238 if (vcpu->xen.vcpu_info_cache.active)
3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3240 offsetof(struct compat_vcpu_info, time));
3241 if (vcpu->xen.vcpu_time_info_cache.active)
3242 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3243 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3244 return 0;
3245 }
3246
3247 /*
3248 * kvmclock updates which are isolated to a given vcpu, such as
3249 * vcpu->cpu migration, should not allow system_timestamp from
3250 * the rest of the vcpus to remain static. Otherwise ntp frequency
3251 * correction applies to one vcpu's system_timestamp but not
3252 * the others.
3253 *
3254 * So in those cases, request a kvmclock update for all vcpus.
3255 * We need to rate-limit these requests though, as they can
3256 * considerably slow guests that have a large number of vcpus.
3257 * The time for a remote vcpu to update its kvmclock is bound
3258 * by the delay we use to rate-limit the updates.
3259 */
3260
3261 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3262
kvmclock_update_fn(struct work_struct * work)3263 static void kvmclock_update_fn(struct work_struct *work)
3264 {
3265 unsigned long i;
3266 struct delayed_work *dwork = to_delayed_work(work);
3267 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3268 kvmclock_update_work);
3269 struct kvm *kvm = container_of(ka, struct kvm, arch);
3270 struct kvm_vcpu *vcpu;
3271
3272 kvm_for_each_vcpu(i, vcpu, kvm) {
3273 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3274 kvm_vcpu_kick(vcpu);
3275 }
3276 }
3277
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3278 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3279 {
3280 struct kvm *kvm = v->kvm;
3281
3282 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3283 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3284 KVMCLOCK_UPDATE_DELAY);
3285 }
3286
3287 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3288
kvmclock_sync_fn(struct work_struct * work)3289 static void kvmclock_sync_fn(struct work_struct *work)
3290 {
3291 struct delayed_work *dwork = to_delayed_work(work);
3292 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3293 kvmclock_sync_work);
3294 struct kvm *kvm = container_of(ka, struct kvm, arch);
3295
3296 if (!kvmclock_periodic_sync)
3297 return;
3298
3299 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3300 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3301 KVMCLOCK_SYNC_PERIOD);
3302 }
3303
3304 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3305 static bool is_mci_control_msr(u32 msr)
3306 {
3307 return (msr & 3) == 0;
3308 }
is_mci_status_msr(u32 msr)3309 static bool is_mci_status_msr(u32 msr)
3310 {
3311 return (msr & 3) == 1;
3312 }
3313
3314 /*
3315 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3316 */
can_set_mci_status(struct kvm_vcpu * vcpu)3317 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3318 {
3319 /* McStatusWrEn enabled? */
3320 if (guest_cpuid_is_amd_compatible(vcpu))
3321 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3322
3323 return false;
3324 }
3325
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3326 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3327 {
3328 u64 mcg_cap = vcpu->arch.mcg_cap;
3329 unsigned bank_num = mcg_cap & 0xff;
3330 u32 msr = msr_info->index;
3331 u64 data = msr_info->data;
3332 u32 offset, last_msr;
3333
3334 switch (msr) {
3335 case MSR_IA32_MCG_STATUS:
3336 vcpu->arch.mcg_status = data;
3337 break;
3338 case MSR_IA32_MCG_CTL:
3339 if (!(mcg_cap & MCG_CTL_P) &&
3340 (data || !msr_info->host_initiated))
3341 return 1;
3342 if (data != 0 && data != ~(u64)0)
3343 return 1;
3344 vcpu->arch.mcg_ctl = data;
3345 break;
3346 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3347 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3348 if (msr > last_msr)
3349 return 1;
3350
3351 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3352 return 1;
3353 /* An attempt to write a 1 to a reserved bit raises #GP */
3354 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3355 return 1;
3356 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3357 last_msr + 1 - MSR_IA32_MC0_CTL2);
3358 vcpu->arch.mci_ctl2_banks[offset] = data;
3359 break;
3360 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3361 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3362 if (msr > last_msr)
3363 return 1;
3364
3365 /*
3366 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3367 * values are architecturally undefined. But, some Linux
3368 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3369 * issue on AMD K8s, allow bit 10 to be clear when setting all
3370 * other bits in order to avoid an uncaught #GP in the guest.
3371 *
3372 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3373 * single-bit ECC data errors.
3374 */
3375 if (is_mci_control_msr(msr) &&
3376 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3377 return 1;
3378
3379 /*
3380 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3381 * AMD-based CPUs allow non-zero values, but if and only if
3382 * HWCR[McStatusWrEn] is set.
3383 */
3384 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3385 data != 0 && !can_set_mci_status(vcpu))
3386 return 1;
3387
3388 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3389 last_msr + 1 - MSR_IA32_MC0_CTL);
3390 vcpu->arch.mce_banks[offset] = data;
3391 break;
3392 default:
3393 return 1;
3394 }
3395 return 0;
3396 }
3397
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3398 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3399 {
3400 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3401
3402 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3403 }
3404
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3406 {
3407 gpa_t gpa = data & ~0x3f;
3408
3409 /* Bits 4:5 are reserved, Should be zero */
3410 if (data & 0x30)
3411 return 1;
3412
3413 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3414 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3415 return 1;
3416
3417 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3418 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3419 return 1;
3420
3421 if (!lapic_in_kernel(vcpu))
3422 return data ? 1 : 0;
3423
3424 vcpu->arch.apf.msr_en_val = data;
3425
3426 if (!kvm_pv_async_pf_enabled(vcpu)) {
3427 kvm_clear_async_pf_completion_queue(vcpu);
3428 kvm_async_pf_hash_reset(vcpu);
3429 return 0;
3430 }
3431
3432 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3433 sizeof(u64)))
3434 return 1;
3435
3436 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3437 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3438
3439 kvm_async_pf_wakeup_all(vcpu);
3440
3441 return 0;
3442 }
3443
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3444 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3445 {
3446 /* Bits 8-63 are reserved */
3447 if (data >> 8)
3448 return 1;
3449
3450 if (!lapic_in_kernel(vcpu))
3451 return 1;
3452
3453 vcpu->arch.apf.msr_int_val = data;
3454
3455 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3456
3457 return 0;
3458 }
3459
kvmclock_reset(struct kvm_vcpu * vcpu)3460 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3461 {
3462 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3463 vcpu->arch.time = 0;
3464 }
3465
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3466 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3467 {
3468 ++vcpu->stat.tlb_flush;
3469 static_call(kvm_x86_flush_tlb_all)(vcpu);
3470
3471 /* Flushing all ASIDs flushes the current ASID... */
3472 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3473 }
3474
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3475 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3476 {
3477 ++vcpu->stat.tlb_flush;
3478
3479 if (!tdp_enabled) {
3480 /*
3481 * A TLB flush on behalf of the guest is equivalent to
3482 * INVPCID(all), toggling CR4.PGE, etc., which requires
3483 * a forced sync of the shadow page tables. Ensure all the
3484 * roots are synced and the guest TLB in hardware is clean.
3485 */
3486 kvm_mmu_sync_roots(vcpu);
3487 kvm_mmu_sync_prev_roots(vcpu);
3488 }
3489
3490 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3491
3492 /*
3493 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3494 * grained flushing.
3495 */
3496 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3497 }
3498
3499
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3500 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3501 {
3502 ++vcpu->stat.tlb_flush;
3503 static_call(kvm_x86_flush_tlb_current)(vcpu);
3504 }
3505
3506 /*
3507 * Service "local" TLB flush requests, which are specific to the current MMU
3508 * context. In addition to the generic event handling in vcpu_enter_guest(),
3509 * TLB flushes that are targeted at an MMU context also need to be serviced
3510 * prior before nested VM-Enter/VM-Exit.
3511 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3512 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3513 {
3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3515 kvm_vcpu_flush_tlb_current(vcpu);
3516
3517 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3518 kvm_vcpu_flush_tlb_guest(vcpu);
3519 }
3520 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3521
record_steal_time(struct kvm_vcpu * vcpu)3522 static void record_steal_time(struct kvm_vcpu *vcpu)
3523 {
3524 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3525 struct kvm_steal_time __user *st;
3526 struct kvm_memslots *slots;
3527 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3528 u64 steal;
3529 u32 version;
3530
3531 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3532 kvm_xen_runstate_set_running(vcpu);
3533 return;
3534 }
3535
3536 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3537 return;
3538
3539 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3540 return;
3541
3542 slots = kvm_memslots(vcpu->kvm);
3543
3544 if (unlikely(slots->generation != ghc->generation ||
3545 gpa != ghc->gpa ||
3546 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3547 /* We rely on the fact that it fits in a single page. */
3548 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3549
3550 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3551 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3552 return;
3553 }
3554
3555 st = (struct kvm_steal_time __user *)ghc->hva;
3556 /*
3557 * Doing a TLB flush here, on the guest's behalf, can avoid
3558 * expensive IPIs.
3559 */
3560 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3561 u8 st_preempted = 0;
3562 int err = -EFAULT;
3563
3564 if (!user_access_begin(st, sizeof(*st)))
3565 return;
3566
3567 asm volatile("1: xchgb %0, %2\n"
3568 "xor %1, %1\n"
3569 "2:\n"
3570 _ASM_EXTABLE_UA(1b, 2b)
3571 : "+q" (st_preempted),
3572 "+&r" (err),
3573 "+m" (st->preempted));
3574 if (err)
3575 goto out;
3576
3577 user_access_end();
3578
3579 vcpu->arch.st.preempted = 0;
3580
3581 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3582 st_preempted & KVM_VCPU_FLUSH_TLB);
3583 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3584 kvm_vcpu_flush_tlb_guest(vcpu);
3585
3586 if (!user_access_begin(st, sizeof(*st)))
3587 goto dirty;
3588 } else {
3589 if (!user_access_begin(st, sizeof(*st)))
3590 return;
3591
3592 unsafe_put_user(0, &st->preempted, out);
3593 vcpu->arch.st.preempted = 0;
3594 }
3595
3596 unsafe_get_user(version, &st->version, out);
3597 if (version & 1)
3598 version += 1; /* first time write, random junk */
3599
3600 version += 1;
3601 unsafe_put_user(version, &st->version, out);
3602
3603 smp_wmb();
3604
3605 unsafe_get_user(steal, &st->steal, out);
3606 steal += current->sched_info.run_delay -
3607 vcpu->arch.st.last_steal;
3608 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3609 unsafe_put_user(steal, &st->steal, out);
3610
3611 version += 1;
3612 unsafe_put_user(version, &st->version, out);
3613
3614 out:
3615 user_access_end();
3616 dirty:
3617 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3618 }
3619
kvm_is_msr_to_save(u32 msr_index)3620 static bool kvm_is_msr_to_save(u32 msr_index)
3621 {
3622 unsigned int i;
3623
3624 for (i = 0; i < num_msrs_to_save; i++) {
3625 if (msrs_to_save[i] == msr_index)
3626 return true;
3627 }
3628
3629 return false;
3630 }
3631
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3632 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3633 {
3634 u32 msr = msr_info->index;
3635 u64 data = msr_info->data;
3636
3637 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3638 return kvm_xen_write_hypercall_page(vcpu, data);
3639
3640 switch (msr) {
3641 case MSR_AMD64_NB_CFG:
3642 case MSR_IA32_UCODE_WRITE:
3643 case MSR_VM_HSAVE_PA:
3644 case MSR_AMD64_PATCH_LOADER:
3645 case MSR_AMD64_BU_CFG2:
3646 case MSR_AMD64_DC_CFG:
3647 case MSR_AMD64_TW_CFG:
3648 case MSR_F15H_EX_CFG:
3649 break;
3650
3651 case MSR_IA32_UCODE_REV:
3652 if (msr_info->host_initiated)
3653 vcpu->arch.microcode_version = data;
3654 break;
3655 case MSR_IA32_ARCH_CAPABILITIES:
3656 if (!msr_info->host_initiated)
3657 return 1;
3658 vcpu->arch.arch_capabilities = data;
3659 break;
3660 case MSR_IA32_PERF_CAPABILITIES:
3661 if (!msr_info->host_initiated)
3662 return 1;
3663 if (data & ~kvm_caps.supported_perf_cap)
3664 return 1;
3665
3666 /*
3667 * Note, this is not just a performance optimization! KVM
3668 * disallows changing feature MSRs after the vCPU has run; PMU
3669 * refresh will bug the VM if called after the vCPU has run.
3670 */
3671 if (vcpu->arch.perf_capabilities == data)
3672 break;
3673
3674 vcpu->arch.perf_capabilities = data;
3675 kvm_pmu_refresh(vcpu);
3676 break;
3677 case MSR_IA32_PRED_CMD:
3678 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3679 return 1;
3680
3681 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3682 return 1;
3683 if (!data)
3684 break;
3685
3686 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3687 break;
3688 case MSR_IA32_FLUSH_CMD:
3689 if (!msr_info->host_initiated &&
3690 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3691 return 1;
3692
3693 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3694 return 1;
3695 if (!data)
3696 break;
3697
3698 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3699 break;
3700 case MSR_EFER:
3701 return set_efer(vcpu, msr_info);
3702 case MSR_K7_HWCR:
3703 data &= ~(u64)0x40; /* ignore flush filter disable */
3704 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3705 data &= ~(u64)0x8; /* ignore TLB cache disable */
3706
3707 /* Handle McStatusWrEn */
3708 if (data == BIT_ULL(18)) {
3709 vcpu->arch.msr_hwcr = data;
3710 } else if (data != 0) {
3711 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3712 return 1;
3713 }
3714 break;
3715 case MSR_FAM10H_MMIO_CONF_BASE:
3716 if (data != 0) {
3717 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3718 return 1;
3719 }
3720 break;
3721 case MSR_IA32_CR_PAT:
3722 if (!kvm_pat_valid(data))
3723 return 1;
3724
3725 vcpu->arch.pat = data;
3726 break;
3727 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3728 case MSR_MTRRdefType:
3729 return kvm_mtrr_set_msr(vcpu, msr, data);
3730 case MSR_IA32_APICBASE:
3731 return kvm_set_apic_base(vcpu, msr_info);
3732 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3733 return kvm_x2apic_msr_write(vcpu, msr, data);
3734 case MSR_IA32_TSC_DEADLINE:
3735 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3736 break;
3737 case MSR_IA32_TSC_ADJUST:
3738 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3739 if (!msr_info->host_initiated) {
3740 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3741 adjust_tsc_offset_guest(vcpu, adj);
3742 /* Before back to guest, tsc_timestamp must be adjusted
3743 * as well, otherwise guest's percpu pvclock time could jump.
3744 */
3745 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3746 }
3747 vcpu->arch.ia32_tsc_adjust_msr = data;
3748 }
3749 break;
3750 case MSR_IA32_MISC_ENABLE: {
3751 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3752
3753 if (!msr_info->host_initiated) {
3754 /* RO bits */
3755 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3756 return 1;
3757
3758 /* R bits, i.e. writes are ignored, but don't fault. */
3759 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3760 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3761 }
3762
3763 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3764 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3765 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3766 return 1;
3767 vcpu->arch.ia32_misc_enable_msr = data;
3768 kvm_update_cpuid_runtime(vcpu);
3769 } else {
3770 vcpu->arch.ia32_misc_enable_msr = data;
3771 }
3772 break;
3773 }
3774 case MSR_IA32_SMBASE:
3775 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3776 return 1;
3777 vcpu->arch.smbase = data;
3778 break;
3779 case MSR_IA32_POWER_CTL:
3780 vcpu->arch.msr_ia32_power_ctl = data;
3781 break;
3782 case MSR_IA32_TSC:
3783 if (msr_info->host_initiated) {
3784 kvm_synchronize_tsc(vcpu, data);
3785 } else {
3786 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3787 adjust_tsc_offset_guest(vcpu, adj);
3788 vcpu->arch.ia32_tsc_adjust_msr += adj;
3789 }
3790 break;
3791 case MSR_IA32_XSS:
3792 if (!msr_info->host_initiated &&
3793 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3794 return 1;
3795 /*
3796 * KVM supports exposing PT to the guest, but does not support
3797 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3798 * XSAVES/XRSTORS to save/restore PT MSRs.
3799 */
3800 if (data & ~kvm_caps.supported_xss)
3801 return 1;
3802 vcpu->arch.ia32_xss = data;
3803 kvm_update_cpuid_runtime(vcpu);
3804 break;
3805 case MSR_SMI_COUNT:
3806 if (!msr_info->host_initiated)
3807 return 1;
3808 vcpu->arch.smi_count = data;
3809 break;
3810 case MSR_KVM_WALL_CLOCK_NEW:
3811 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3812 return 1;
3813
3814 vcpu->kvm->arch.wall_clock = data;
3815 kvm_write_wall_clock(vcpu->kvm, data, 0);
3816 break;
3817 case MSR_KVM_WALL_CLOCK:
3818 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3819 return 1;
3820
3821 vcpu->kvm->arch.wall_clock = data;
3822 kvm_write_wall_clock(vcpu->kvm, data, 0);
3823 break;
3824 case MSR_KVM_SYSTEM_TIME_NEW:
3825 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3826 return 1;
3827
3828 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3829 break;
3830 case MSR_KVM_SYSTEM_TIME:
3831 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3832 return 1;
3833
3834 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3835 break;
3836 case MSR_KVM_ASYNC_PF_EN:
3837 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3838 return 1;
3839
3840 if (kvm_pv_enable_async_pf(vcpu, data))
3841 return 1;
3842 break;
3843 case MSR_KVM_ASYNC_PF_INT:
3844 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3845 return 1;
3846
3847 if (kvm_pv_enable_async_pf_int(vcpu, data))
3848 return 1;
3849 break;
3850 case MSR_KVM_ASYNC_PF_ACK:
3851 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3852 return 1;
3853 if (data & 0x1) {
3854 vcpu->arch.apf.pageready_pending = false;
3855 kvm_check_async_pf_completion(vcpu);
3856 }
3857 break;
3858 case MSR_KVM_STEAL_TIME:
3859 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3860 return 1;
3861
3862 if (unlikely(!sched_info_on()))
3863 return 1;
3864
3865 if (data & KVM_STEAL_RESERVED_MASK)
3866 return 1;
3867
3868 vcpu->arch.st.msr_val = data;
3869
3870 if (!(data & KVM_MSR_ENABLED))
3871 break;
3872
3873 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3874
3875 break;
3876 case MSR_KVM_PV_EOI_EN:
3877 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3878 return 1;
3879
3880 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3881 return 1;
3882 break;
3883
3884 case MSR_KVM_POLL_CONTROL:
3885 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3886 return 1;
3887
3888 /* only enable bit supported */
3889 if (data & (-1ULL << 1))
3890 return 1;
3891
3892 vcpu->arch.msr_kvm_poll_control = data;
3893 break;
3894
3895 case MSR_IA32_MCG_CTL:
3896 case MSR_IA32_MCG_STATUS:
3897 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3898 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3899 return set_msr_mce(vcpu, msr_info);
3900
3901 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3902 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3903 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3904 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3905 if (kvm_pmu_is_valid_msr(vcpu, msr))
3906 return kvm_pmu_set_msr(vcpu, msr_info);
3907
3908 if (data)
3909 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3910 break;
3911 case MSR_K7_CLK_CTL:
3912 /*
3913 * Ignore all writes to this no longer documented MSR.
3914 * Writes are only relevant for old K7 processors,
3915 * all pre-dating SVM, but a recommended workaround from
3916 * AMD for these chips. It is possible to specify the
3917 * affected processor models on the command line, hence
3918 * the need to ignore the workaround.
3919 */
3920 break;
3921 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3922 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3923 case HV_X64_MSR_SYNDBG_OPTIONS:
3924 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3925 case HV_X64_MSR_CRASH_CTL:
3926 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3927 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3928 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3929 case HV_X64_MSR_TSC_EMULATION_STATUS:
3930 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3931 return kvm_hv_set_msr_common(vcpu, msr, data,
3932 msr_info->host_initiated);
3933 case MSR_IA32_BBL_CR_CTL3:
3934 /* Drop writes to this legacy MSR -- see rdmsr
3935 * counterpart for further detail.
3936 */
3937 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3938 break;
3939 case MSR_AMD64_OSVW_ID_LENGTH:
3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3941 return 1;
3942 vcpu->arch.osvw.length = data;
3943 break;
3944 case MSR_AMD64_OSVW_STATUS:
3945 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3946 return 1;
3947 vcpu->arch.osvw.status = data;
3948 break;
3949 case MSR_PLATFORM_INFO:
3950 if (!msr_info->host_initiated ||
3951 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3952 cpuid_fault_enabled(vcpu)))
3953 return 1;
3954 vcpu->arch.msr_platform_info = data;
3955 break;
3956 case MSR_MISC_FEATURES_ENABLES:
3957 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3958 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3959 !supports_cpuid_fault(vcpu)))
3960 return 1;
3961 vcpu->arch.msr_misc_features_enables = data;
3962 break;
3963 #ifdef CONFIG_X86_64
3964 case MSR_IA32_XFD:
3965 if (!msr_info->host_initiated &&
3966 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3967 return 1;
3968
3969 if (data & ~kvm_guest_supported_xfd(vcpu))
3970 return 1;
3971
3972 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3973 break;
3974 case MSR_IA32_XFD_ERR:
3975 if (!msr_info->host_initiated &&
3976 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3977 return 1;
3978
3979 if (data & ~kvm_guest_supported_xfd(vcpu))
3980 return 1;
3981
3982 vcpu->arch.guest_fpu.xfd_err = data;
3983 break;
3984 #endif
3985 default:
3986 if (kvm_pmu_is_valid_msr(vcpu, msr))
3987 return kvm_pmu_set_msr(vcpu, msr_info);
3988
3989 /*
3990 * Userspace is allowed to write '0' to MSRs that KVM reports
3991 * as to-be-saved, even if an MSRs isn't fully supported.
3992 */
3993 if (msr_info->host_initiated && !data &&
3994 kvm_is_msr_to_save(msr))
3995 break;
3996
3997 return KVM_MSR_RET_INVALID;
3998 }
3999 return 0;
4000 }
4001 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4002
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4003 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4004 {
4005 u64 data;
4006 u64 mcg_cap = vcpu->arch.mcg_cap;
4007 unsigned bank_num = mcg_cap & 0xff;
4008 u32 offset, last_msr;
4009
4010 switch (msr) {
4011 case MSR_IA32_P5_MC_ADDR:
4012 case MSR_IA32_P5_MC_TYPE:
4013 data = 0;
4014 break;
4015 case MSR_IA32_MCG_CAP:
4016 data = vcpu->arch.mcg_cap;
4017 break;
4018 case MSR_IA32_MCG_CTL:
4019 if (!(mcg_cap & MCG_CTL_P) && !host)
4020 return 1;
4021 data = vcpu->arch.mcg_ctl;
4022 break;
4023 case MSR_IA32_MCG_STATUS:
4024 data = vcpu->arch.mcg_status;
4025 break;
4026 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4027 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4028 if (msr > last_msr)
4029 return 1;
4030
4031 if (!(mcg_cap & MCG_CMCI_P) && !host)
4032 return 1;
4033 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4034 last_msr + 1 - MSR_IA32_MC0_CTL2);
4035 data = vcpu->arch.mci_ctl2_banks[offset];
4036 break;
4037 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4038 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4039 if (msr > last_msr)
4040 return 1;
4041
4042 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4043 last_msr + 1 - MSR_IA32_MC0_CTL);
4044 data = vcpu->arch.mce_banks[offset];
4045 break;
4046 default:
4047 return 1;
4048 }
4049 *pdata = data;
4050 return 0;
4051 }
4052
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4053 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4054 {
4055 switch (msr_info->index) {
4056 case MSR_IA32_PLATFORM_ID:
4057 case MSR_IA32_EBL_CR_POWERON:
4058 case MSR_IA32_LASTBRANCHFROMIP:
4059 case MSR_IA32_LASTBRANCHTOIP:
4060 case MSR_IA32_LASTINTFROMIP:
4061 case MSR_IA32_LASTINTTOIP:
4062 case MSR_AMD64_SYSCFG:
4063 case MSR_K8_TSEG_ADDR:
4064 case MSR_K8_TSEG_MASK:
4065 case MSR_VM_HSAVE_PA:
4066 case MSR_K8_INT_PENDING_MSG:
4067 case MSR_AMD64_NB_CFG:
4068 case MSR_FAM10H_MMIO_CONF_BASE:
4069 case MSR_AMD64_BU_CFG2:
4070 case MSR_IA32_PERF_CTL:
4071 case MSR_AMD64_DC_CFG:
4072 case MSR_AMD64_TW_CFG:
4073 case MSR_F15H_EX_CFG:
4074 /*
4075 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4076 * limit) MSRs. Just return 0, as we do not want to expose the host
4077 * data here. Do not conditionalize this on CPUID, as KVM does not do
4078 * so for existing CPU-specific MSRs.
4079 */
4080 case MSR_RAPL_POWER_UNIT:
4081 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4082 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4083 case MSR_PKG_ENERGY_STATUS: /* Total package */
4084 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4085 msr_info->data = 0;
4086 break;
4087 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4088 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4089 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4090 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4091 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4092 return kvm_pmu_get_msr(vcpu, msr_info);
4093 msr_info->data = 0;
4094 break;
4095 case MSR_IA32_UCODE_REV:
4096 msr_info->data = vcpu->arch.microcode_version;
4097 break;
4098 case MSR_IA32_ARCH_CAPABILITIES:
4099 if (!msr_info->host_initiated &&
4100 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4101 return 1;
4102 msr_info->data = vcpu->arch.arch_capabilities;
4103 break;
4104 case MSR_IA32_PERF_CAPABILITIES:
4105 if (!msr_info->host_initiated &&
4106 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4107 return 1;
4108 msr_info->data = vcpu->arch.perf_capabilities;
4109 break;
4110 case MSR_IA32_POWER_CTL:
4111 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4112 break;
4113 case MSR_IA32_TSC: {
4114 /*
4115 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4116 * even when not intercepted. AMD manual doesn't explicitly
4117 * state this but appears to behave the same.
4118 *
4119 * On userspace reads and writes, however, we unconditionally
4120 * return L1's TSC value to ensure backwards-compatible
4121 * behavior for migration.
4122 */
4123 u64 offset, ratio;
4124
4125 if (msr_info->host_initiated) {
4126 offset = vcpu->arch.l1_tsc_offset;
4127 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4128 } else {
4129 offset = vcpu->arch.tsc_offset;
4130 ratio = vcpu->arch.tsc_scaling_ratio;
4131 }
4132
4133 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4134 break;
4135 }
4136 case MSR_IA32_CR_PAT:
4137 msr_info->data = vcpu->arch.pat;
4138 break;
4139 case MSR_MTRRcap:
4140 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4141 case MSR_MTRRdefType:
4142 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4143 case 0xcd: /* fsb frequency */
4144 msr_info->data = 3;
4145 break;
4146 /*
4147 * MSR_EBC_FREQUENCY_ID
4148 * Conservative value valid for even the basic CPU models.
4149 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4150 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4151 * and 266MHz for model 3, or 4. Set Core Clock
4152 * Frequency to System Bus Frequency Ratio to 1 (bits
4153 * 31:24) even though these are only valid for CPU
4154 * models > 2, however guests may end up dividing or
4155 * multiplying by zero otherwise.
4156 */
4157 case MSR_EBC_FREQUENCY_ID:
4158 msr_info->data = 1 << 24;
4159 break;
4160 case MSR_IA32_APICBASE:
4161 msr_info->data = kvm_get_apic_base(vcpu);
4162 break;
4163 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4164 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4165 case MSR_IA32_TSC_DEADLINE:
4166 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4167 break;
4168 case MSR_IA32_TSC_ADJUST:
4169 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4170 break;
4171 case MSR_IA32_MISC_ENABLE:
4172 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4173 break;
4174 case MSR_IA32_SMBASE:
4175 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4176 return 1;
4177 msr_info->data = vcpu->arch.smbase;
4178 break;
4179 case MSR_SMI_COUNT:
4180 msr_info->data = vcpu->arch.smi_count;
4181 break;
4182 case MSR_IA32_PERF_STATUS:
4183 /* TSC increment by tick */
4184 msr_info->data = 1000ULL;
4185 /* CPU multiplier */
4186 msr_info->data |= (((uint64_t)4ULL) << 40);
4187 break;
4188 case MSR_EFER:
4189 msr_info->data = vcpu->arch.efer;
4190 break;
4191 case MSR_KVM_WALL_CLOCK:
4192 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4193 return 1;
4194
4195 msr_info->data = vcpu->kvm->arch.wall_clock;
4196 break;
4197 case MSR_KVM_WALL_CLOCK_NEW:
4198 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4199 return 1;
4200
4201 msr_info->data = vcpu->kvm->arch.wall_clock;
4202 break;
4203 case MSR_KVM_SYSTEM_TIME:
4204 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4205 return 1;
4206
4207 msr_info->data = vcpu->arch.time;
4208 break;
4209 case MSR_KVM_SYSTEM_TIME_NEW:
4210 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4211 return 1;
4212
4213 msr_info->data = vcpu->arch.time;
4214 break;
4215 case MSR_KVM_ASYNC_PF_EN:
4216 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4217 return 1;
4218
4219 msr_info->data = vcpu->arch.apf.msr_en_val;
4220 break;
4221 case MSR_KVM_ASYNC_PF_INT:
4222 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4223 return 1;
4224
4225 msr_info->data = vcpu->arch.apf.msr_int_val;
4226 break;
4227 case MSR_KVM_ASYNC_PF_ACK:
4228 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4229 return 1;
4230
4231 msr_info->data = 0;
4232 break;
4233 case MSR_KVM_STEAL_TIME:
4234 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4235 return 1;
4236
4237 msr_info->data = vcpu->arch.st.msr_val;
4238 break;
4239 case MSR_KVM_PV_EOI_EN:
4240 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4241 return 1;
4242
4243 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4244 break;
4245 case MSR_KVM_POLL_CONTROL:
4246 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4247 return 1;
4248
4249 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4250 break;
4251 case MSR_IA32_P5_MC_ADDR:
4252 case MSR_IA32_P5_MC_TYPE:
4253 case MSR_IA32_MCG_CAP:
4254 case MSR_IA32_MCG_CTL:
4255 case MSR_IA32_MCG_STATUS:
4256 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4257 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4258 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4259 msr_info->host_initiated);
4260 case MSR_IA32_XSS:
4261 if (!msr_info->host_initiated &&
4262 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4263 return 1;
4264 msr_info->data = vcpu->arch.ia32_xss;
4265 break;
4266 case MSR_K7_CLK_CTL:
4267 /*
4268 * Provide expected ramp-up count for K7. All other
4269 * are set to zero, indicating minimum divisors for
4270 * every field.
4271 *
4272 * This prevents guest kernels on AMD host with CPU
4273 * type 6, model 8 and higher from exploding due to
4274 * the rdmsr failing.
4275 */
4276 msr_info->data = 0x20000000;
4277 break;
4278 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4279 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4280 case HV_X64_MSR_SYNDBG_OPTIONS:
4281 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4282 case HV_X64_MSR_CRASH_CTL:
4283 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4284 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4285 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4286 case HV_X64_MSR_TSC_EMULATION_STATUS:
4287 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4288 return kvm_hv_get_msr_common(vcpu,
4289 msr_info->index, &msr_info->data,
4290 msr_info->host_initiated);
4291 case MSR_IA32_BBL_CR_CTL3:
4292 /* This legacy MSR exists but isn't fully documented in current
4293 * silicon. It is however accessed by winxp in very narrow
4294 * scenarios where it sets bit #19, itself documented as
4295 * a "reserved" bit. Best effort attempt to source coherent
4296 * read data here should the balance of the register be
4297 * interpreted by the guest:
4298 *
4299 * L2 cache control register 3: 64GB range, 256KB size,
4300 * enabled, latency 0x1, configured
4301 */
4302 msr_info->data = 0xbe702111;
4303 break;
4304 case MSR_AMD64_OSVW_ID_LENGTH:
4305 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4306 return 1;
4307 msr_info->data = vcpu->arch.osvw.length;
4308 break;
4309 case MSR_AMD64_OSVW_STATUS:
4310 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4311 return 1;
4312 msr_info->data = vcpu->arch.osvw.status;
4313 break;
4314 case MSR_PLATFORM_INFO:
4315 if (!msr_info->host_initiated &&
4316 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4317 return 1;
4318 msr_info->data = vcpu->arch.msr_platform_info;
4319 break;
4320 case MSR_MISC_FEATURES_ENABLES:
4321 msr_info->data = vcpu->arch.msr_misc_features_enables;
4322 break;
4323 case MSR_K7_HWCR:
4324 msr_info->data = vcpu->arch.msr_hwcr;
4325 break;
4326 #ifdef CONFIG_X86_64
4327 case MSR_IA32_XFD:
4328 if (!msr_info->host_initiated &&
4329 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4330 return 1;
4331
4332 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4333 break;
4334 case MSR_IA32_XFD_ERR:
4335 if (!msr_info->host_initiated &&
4336 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4337 return 1;
4338
4339 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4340 break;
4341 #endif
4342 default:
4343 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4344 return kvm_pmu_get_msr(vcpu, msr_info);
4345
4346 /*
4347 * Userspace is allowed to read MSRs that KVM reports as
4348 * to-be-saved, even if an MSR isn't fully supported.
4349 */
4350 if (msr_info->host_initiated &&
4351 kvm_is_msr_to_save(msr_info->index)) {
4352 msr_info->data = 0;
4353 break;
4354 }
4355
4356 return KVM_MSR_RET_INVALID;
4357 }
4358 return 0;
4359 }
4360 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4361
4362 /*
4363 * Read or write a bunch of msrs. All parameters are kernel addresses.
4364 *
4365 * @return number of msrs set successfully.
4366 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4367 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4368 struct kvm_msr_entry *entries,
4369 int (*do_msr)(struct kvm_vcpu *vcpu,
4370 unsigned index, u64 *data))
4371 {
4372 int i;
4373
4374 for (i = 0; i < msrs->nmsrs; ++i)
4375 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4376 break;
4377
4378 return i;
4379 }
4380
4381 /*
4382 * Read or write a bunch of msrs. Parameters are user addresses.
4383 *
4384 * @return number of msrs set successfully.
4385 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4386 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4387 int (*do_msr)(struct kvm_vcpu *vcpu,
4388 unsigned index, u64 *data),
4389 int writeback)
4390 {
4391 struct kvm_msrs msrs;
4392 struct kvm_msr_entry *entries;
4393 unsigned size;
4394 int r;
4395
4396 r = -EFAULT;
4397 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4398 goto out;
4399
4400 r = -E2BIG;
4401 if (msrs.nmsrs >= MAX_IO_MSRS)
4402 goto out;
4403
4404 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4405 entries = memdup_user(user_msrs->entries, size);
4406 if (IS_ERR(entries)) {
4407 r = PTR_ERR(entries);
4408 goto out;
4409 }
4410
4411 r = __msr_io(vcpu, &msrs, entries, do_msr);
4412
4413 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4414 r = -EFAULT;
4415
4416 kfree(entries);
4417 out:
4418 return r;
4419 }
4420
kvm_can_mwait_in_guest(void)4421 static inline bool kvm_can_mwait_in_guest(void)
4422 {
4423 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4424 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4425 boot_cpu_has(X86_FEATURE_ARAT);
4426 }
4427
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4428 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4429 struct kvm_cpuid2 __user *cpuid_arg)
4430 {
4431 struct kvm_cpuid2 cpuid;
4432 int r;
4433
4434 r = -EFAULT;
4435 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436 return r;
4437
4438 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4439 if (r)
4440 return r;
4441
4442 r = -EFAULT;
4443 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4444 return r;
4445
4446 return 0;
4447 }
4448
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4449 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4450 {
4451 int r = 0;
4452
4453 switch (ext) {
4454 case KVM_CAP_IRQCHIP:
4455 case KVM_CAP_HLT:
4456 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4457 case KVM_CAP_SET_TSS_ADDR:
4458 case KVM_CAP_EXT_CPUID:
4459 case KVM_CAP_EXT_EMUL_CPUID:
4460 case KVM_CAP_CLOCKSOURCE:
4461 case KVM_CAP_PIT:
4462 case KVM_CAP_NOP_IO_DELAY:
4463 case KVM_CAP_MP_STATE:
4464 case KVM_CAP_SYNC_MMU:
4465 case KVM_CAP_USER_NMI:
4466 case KVM_CAP_REINJECT_CONTROL:
4467 case KVM_CAP_IRQ_INJECT_STATUS:
4468 case KVM_CAP_IOEVENTFD:
4469 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4470 case KVM_CAP_PIT2:
4471 case KVM_CAP_PIT_STATE2:
4472 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4473 case KVM_CAP_VCPU_EVENTS:
4474 case KVM_CAP_HYPERV:
4475 case KVM_CAP_HYPERV_VAPIC:
4476 case KVM_CAP_HYPERV_SPIN:
4477 case KVM_CAP_HYPERV_SYNIC:
4478 case KVM_CAP_HYPERV_SYNIC2:
4479 case KVM_CAP_HYPERV_VP_INDEX:
4480 case KVM_CAP_HYPERV_EVENTFD:
4481 case KVM_CAP_HYPERV_TLBFLUSH:
4482 case KVM_CAP_HYPERV_SEND_IPI:
4483 case KVM_CAP_HYPERV_CPUID:
4484 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4485 case KVM_CAP_SYS_HYPERV_CPUID:
4486 case KVM_CAP_PCI_SEGMENT:
4487 case KVM_CAP_DEBUGREGS:
4488 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4489 case KVM_CAP_XSAVE:
4490 case KVM_CAP_ASYNC_PF:
4491 case KVM_CAP_ASYNC_PF_INT:
4492 case KVM_CAP_GET_TSC_KHZ:
4493 case KVM_CAP_KVMCLOCK_CTRL:
4494 case KVM_CAP_READONLY_MEM:
4495 case KVM_CAP_HYPERV_TIME:
4496 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4497 case KVM_CAP_TSC_DEADLINE_TIMER:
4498 case KVM_CAP_DISABLE_QUIRKS:
4499 case KVM_CAP_SET_BOOT_CPU_ID:
4500 case KVM_CAP_SPLIT_IRQCHIP:
4501 case KVM_CAP_IMMEDIATE_EXIT:
4502 case KVM_CAP_PMU_EVENT_FILTER:
4503 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4504 case KVM_CAP_GET_MSR_FEATURES:
4505 case KVM_CAP_MSR_PLATFORM_INFO:
4506 case KVM_CAP_EXCEPTION_PAYLOAD:
4507 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4508 case KVM_CAP_SET_GUEST_DEBUG:
4509 case KVM_CAP_LAST_CPU:
4510 case KVM_CAP_X86_USER_SPACE_MSR:
4511 case KVM_CAP_X86_MSR_FILTER:
4512 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4513 #ifdef CONFIG_X86_SGX_KVM
4514 case KVM_CAP_SGX_ATTRIBUTE:
4515 #endif
4516 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4517 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4518 case KVM_CAP_SREGS2:
4519 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4520 case KVM_CAP_VCPU_ATTRIBUTES:
4521 case KVM_CAP_SYS_ATTRIBUTES:
4522 case KVM_CAP_VAPIC:
4523 case KVM_CAP_ENABLE_CAP:
4524 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4525 case KVM_CAP_IRQFD_RESAMPLE:
4526 r = 1;
4527 break;
4528 case KVM_CAP_EXIT_HYPERCALL:
4529 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4530 break;
4531 case KVM_CAP_SET_GUEST_DEBUG2:
4532 return KVM_GUESTDBG_VALID_MASK;
4533 #ifdef CONFIG_KVM_XEN
4534 case KVM_CAP_XEN_HVM:
4535 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4536 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4537 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4538 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4539 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4540 if (sched_info_on())
4541 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4542 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4543 break;
4544 #endif
4545 case KVM_CAP_SYNC_REGS:
4546 r = KVM_SYNC_X86_VALID_FIELDS;
4547 break;
4548 case KVM_CAP_ADJUST_CLOCK:
4549 r = KVM_CLOCK_VALID_FLAGS;
4550 break;
4551 case KVM_CAP_X86_DISABLE_EXITS:
4552 r = KVM_X86_DISABLE_EXITS_PAUSE;
4553
4554 if (!mitigate_smt_rsb) {
4555 r |= KVM_X86_DISABLE_EXITS_HLT |
4556 KVM_X86_DISABLE_EXITS_CSTATE;
4557
4558 if (kvm_can_mwait_in_guest())
4559 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4560 }
4561 break;
4562 case KVM_CAP_X86_SMM:
4563 if (!IS_ENABLED(CONFIG_KVM_SMM))
4564 break;
4565
4566 /* SMBASE is usually relocated above 1M on modern chipsets,
4567 * and SMM handlers might indeed rely on 4G segment limits,
4568 * so do not report SMM to be available if real mode is
4569 * emulated via vm86 mode. Still, do not go to great lengths
4570 * to avoid userspace's usage of the feature, because it is a
4571 * fringe case that is not enabled except via specific settings
4572 * of the module parameters.
4573 */
4574 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4575 break;
4576 case KVM_CAP_NR_VCPUS:
4577 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4578 break;
4579 case KVM_CAP_MAX_VCPUS:
4580 r = KVM_MAX_VCPUS;
4581 break;
4582 case KVM_CAP_MAX_VCPU_ID:
4583 r = KVM_MAX_VCPU_IDS;
4584 break;
4585 case KVM_CAP_PV_MMU: /* obsolete */
4586 r = 0;
4587 break;
4588 case KVM_CAP_MCE:
4589 r = KVM_MAX_MCE_BANKS;
4590 break;
4591 case KVM_CAP_XCRS:
4592 r = boot_cpu_has(X86_FEATURE_XSAVE);
4593 break;
4594 case KVM_CAP_TSC_CONTROL:
4595 case KVM_CAP_VM_TSC_CONTROL:
4596 r = kvm_caps.has_tsc_control;
4597 break;
4598 case KVM_CAP_X2APIC_API:
4599 r = KVM_X2APIC_API_VALID_FLAGS;
4600 break;
4601 case KVM_CAP_NESTED_STATE:
4602 r = kvm_x86_ops.nested_ops->get_state ?
4603 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4604 break;
4605 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4606 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4607 break;
4608 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4609 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4610 break;
4611 case KVM_CAP_SMALLER_MAXPHYADDR:
4612 r = (int) allow_smaller_maxphyaddr;
4613 break;
4614 case KVM_CAP_STEAL_TIME:
4615 r = sched_info_on();
4616 break;
4617 case KVM_CAP_X86_BUS_LOCK_EXIT:
4618 if (kvm_caps.has_bus_lock_exit)
4619 r = KVM_BUS_LOCK_DETECTION_OFF |
4620 KVM_BUS_LOCK_DETECTION_EXIT;
4621 else
4622 r = 0;
4623 break;
4624 case KVM_CAP_XSAVE2: {
4625 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4626 if (r < sizeof(struct kvm_xsave))
4627 r = sizeof(struct kvm_xsave);
4628 break;
4629 }
4630 case KVM_CAP_PMU_CAPABILITY:
4631 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4632 break;
4633 case KVM_CAP_DISABLE_QUIRKS2:
4634 r = KVM_X86_VALID_QUIRKS;
4635 break;
4636 case KVM_CAP_X86_NOTIFY_VMEXIT:
4637 r = kvm_caps.has_notify_vmexit;
4638 break;
4639 default:
4640 break;
4641 }
4642 return r;
4643 }
4644
kvm_get_attr_addr(struct kvm_device_attr * attr)4645 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4646 {
4647 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4648
4649 if ((u64)(unsigned long)uaddr != attr->addr)
4650 return ERR_PTR_USR(-EFAULT);
4651 return uaddr;
4652 }
4653
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4654 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4655 {
4656 u64 __user *uaddr = kvm_get_attr_addr(attr);
4657
4658 if (attr->group)
4659 return -ENXIO;
4660
4661 if (IS_ERR(uaddr))
4662 return PTR_ERR(uaddr);
4663
4664 switch (attr->attr) {
4665 case KVM_X86_XCOMP_GUEST_SUPP:
4666 if (put_user(kvm_caps.supported_xcr0, uaddr))
4667 return -EFAULT;
4668 return 0;
4669 default:
4670 return -ENXIO;
4671 }
4672 }
4673
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4674 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4675 {
4676 if (attr->group)
4677 return -ENXIO;
4678
4679 switch (attr->attr) {
4680 case KVM_X86_XCOMP_GUEST_SUPP:
4681 return 0;
4682 default:
4683 return -ENXIO;
4684 }
4685 }
4686
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4687 long kvm_arch_dev_ioctl(struct file *filp,
4688 unsigned int ioctl, unsigned long arg)
4689 {
4690 void __user *argp = (void __user *)arg;
4691 long r;
4692
4693 switch (ioctl) {
4694 case KVM_GET_MSR_INDEX_LIST: {
4695 struct kvm_msr_list __user *user_msr_list = argp;
4696 struct kvm_msr_list msr_list;
4697 unsigned n;
4698
4699 r = -EFAULT;
4700 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4701 goto out;
4702 n = msr_list.nmsrs;
4703 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4704 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4705 goto out;
4706 r = -E2BIG;
4707 if (n < msr_list.nmsrs)
4708 goto out;
4709 r = -EFAULT;
4710 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4711 num_msrs_to_save * sizeof(u32)))
4712 goto out;
4713 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4714 &emulated_msrs,
4715 num_emulated_msrs * sizeof(u32)))
4716 goto out;
4717 r = 0;
4718 break;
4719 }
4720 case KVM_GET_SUPPORTED_CPUID:
4721 case KVM_GET_EMULATED_CPUID: {
4722 struct kvm_cpuid2 __user *cpuid_arg = argp;
4723 struct kvm_cpuid2 cpuid;
4724
4725 r = -EFAULT;
4726 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4727 goto out;
4728
4729 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4730 ioctl);
4731 if (r)
4732 goto out;
4733
4734 r = -EFAULT;
4735 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4736 goto out;
4737 r = 0;
4738 break;
4739 }
4740 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4741 r = -EFAULT;
4742 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4743 sizeof(kvm_caps.supported_mce_cap)))
4744 goto out;
4745 r = 0;
4746 break;
4747 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4748 struct kvm_msr_list __user *user_msr_list = argp;
4749 struct kvm_msr_list msr_list;
4750 unsigned int n;
4751
4752 r = -EFAULT;
4753 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4754 goto out;
4755 n = msr_list.nmsrs;
4756 msr_list.nmsrs = num_msr_based_features;
4757 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4758 goto out;
4759 r = -E2BIG;
4760 if (n < msr_list.nmsrs)
4761 goto out;
4762 r = -EFAULT;
4763 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4764 num_msr_based_features * sizeof(u32)))
4765 goto out;
4766 r = 0;
4767 break;
4768 }
4769 case KVM_GET_MSRS:
4770 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4771 break;
4772 case KVM_GET_SUPPORTED_HV_CPUID:
4773 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4774 break;
4775 case KVM_GET_DEVICE_ATTR: {
4776 struct kvm_device_attr attr;
4777 r = -EFAULT;
4778 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4779 break;
4780 r = kvm_x86_dev_get_attr(&attr);
4781 break;
4782 }
4783 case KVM_HAS_DEVICE_ATTR: {
4784 struct kvm_device_attr attr;
4785 r = -EFAULT;
4786 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4787 break;
4788 r = kvm_x86_dev_has_attr(&attr);
4789 break;
4790 }
4791 default:
4792 r = -EINVAL;
4793 break;
4794 }
4795 out:
4796 return r;
4797 }
4798
wbinvd_ipi(void * garbage)4799 static void wbinvd_ipi(void *garbage)
4800 {
4801 wbinvd();
4802 }
4803
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4804 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4805 {
4806 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4807 }
4808
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4809 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4810 {
4811 /* Address WBINVD may be executed by guest */
4812 if (need_emulate_wbinvd(vcpu)) {
4813 if (static_call(kvm_x86_has_wbinvd_exit)())
4814 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4815 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4816 smp_call_function_single(vcpu->cpu,
4817 wbinvd_ipi, NULL, 1);
4818 }
4819
4820 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4821
4822 /* Save host pkru register if supported */
4823 vcpu->arch.host_pkru = read_pkru();
4824
4825 /* Apply any externally detected TSC adjustments (due to suspend) */
4826 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4827 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4828 vcpu->arch.tsc_offset_adjustment = 0;
4829 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4830 }
4831
4832 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4833 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4834 rdtsc() - vcpu->arch.last_host_tsc;
4835 if (tsc_delta < 0)
4836 mark_tsc_unstable("KVM discovered backwards TSC");
4837
4838 if (kvm_check_tsc_unstable()) {
4839 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4840 vcpu->arch.last_guest_tsc);
4841 kvm_vcpu_write_tsc_offset(vcpu, offset);
4842 vcpu->arch.tsc_catchup = 1;
4843 }
4844
4845 if (kvm_lapic_hv_timer_in_use(vcpu))
4846 kvm_lapic_restart_hv_timer(vcpu);
4847
4848 /*
4849 * On a host with synchronized TSC, there is no need to update
4850 * kvmclock on vcpu->cpu migration
4851 */
4852 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4853 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4854 if (vcpu->cpu != cpu)
4855 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4856 vcpu->cpu = cpu;
4857 }
4858
4859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4860 }
4861
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4862 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4863 {
4864 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4865 struct kvm_steal_time __user *st;
4866 struct kvm_memslots *slots;
4867 static const u8 preempted = KVM_VCPU_PREEMPTED;
4868 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4869
4870 /*
4871 * The vCPU can be marked preempted if and only if the VM-Exit was on
4872 * an instruction boundary and will not trigger guest emulation of any
4873 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4874 * when this is true, for example allowing the vCPU to be marked
4875 * preempted if and only if the VM-Exit was due to a host interrupt.
4876 */
4877 if (!vcpu->arch.at_instruction_boundary) {
4878 vcpu->stat.preemption_other++;
4879 return;
4880 }
4881
4882 vcpu->stat.preemption_reported++;
4883 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4884 return;
4885
4886 if (vcpu->arch.st.preempted)
4887 return;
4888
4889 /* This happens on process exit */
4890 if (unlikely(current->mm != vcpu->kvm->mm))
4891 return;
4892
4893 slots = kvm_memslots(vcpu->kvm);
4894
4895 if (unlikely(slots->generation != ghc->generation ||
4896 gpa != ghc->gpa ||
4897 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4898 return;
4899
4900 st = (struct kvm_steal_time __user *)ghc->hva;
4901 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4902
4903 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4904 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4905
4906 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4907 }
4908
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4909 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4910 {
4911 int idx;
4912
4913 if (vcpu->preempted) {
4914 if (!vcpu->arch.guest_state_protected)
4915 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4916
4917 /*
4918 * Take the srcu lock as memslots will be accessed to check the gfn
4919 * cache generation against the memslots generation.
4920 */
4921 idx = srcu_read_lock(&vcpu->kvm->srcu);
4922 if (kvm_xen_msr_enabled(vcpu->kvm))
4923 kvm_xen_runstate_set_preempted(vcpu);
4924 else
4925 kvm_steal_time_set_preempted(vcpu);
4926 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4927 }
4928
4929 static_call(kvm_x86_vcpu_put)(vcpu);
4930 vcpu->arch.last_host_tsc = rdtsc();
4931 }
4932
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4933 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4934 struct kvm_lapic_state *s)
4935 {
4936 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4937
4938 return kvm_apic_get_state(vcpu, s);
4939 }
4940
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4941 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4942 struct kvm_lapic_state *s)
4943 {
4944 int r;
4945
4946 r = kvm_apic_set_state(vcpu, s);
4947 if (r)
4948 return r;
4949 update_cr8_intercept(vcpu);
4950
4951 return 0;
4952 }
4953
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4954 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4955 {
4956 /*
4957 * We can accept userspace's request for interrupt injection
4958 * as long as we have a place to store the interrupt number.
4959 * The actual injection will happen when the CPU is able to
4960 * deliver the interrupt.
4961 */
4962 if (kvm_cpu_has_extint(vcpu))
4963 return false;
4964
4965 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4966 return (!lapic_in_kernel(vcpu) ||
4967 kvm_apic_accept_pic_intr(vcpu));
4968 }
4969
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4970 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4971 {
4972 /*
4973 * Do not cause an interrupt window exit if an exception
4974 * is pending or an event needs reinjection; userspace
4975 * might want to inject the interrupt manually using KVM_SET_REGS
4976 * or KVM_SET_SREGS. For that to work, we must be at an
4977 * instruction boundary and with no events half-injected.
4978 */
4979 return (kvm_arch_interrupt_allowed(vcpu) &&
4980 kvm_cpu_accept_dm_intr(vcpu) &&
4981 !kvm_event_needs_reinjection(vcpu) &&
4982 !kvm_is_exception_pending(vcpu));
4983 }
4984
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4986 struct kvm_interrupt *irq)
4987 {
4988 if (irq->irq >= KVM_NR_INTERRUPTS)
4989 return -EINVAL;
4990
4991 if (!irqchip_in_kernel(vcpu->kvm)) {
4992 kvm_queue_interrupt(vcpu, irq->irq, false);
4993 kvm_make_request(KVM_REQ_EVENT, vcpu);
4994 return 0;
4995 }
4996
4997 /*
4998 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4999 * fail for in-kernel 8259.
5000 */
5001 if (pic_in_kernel(vcpu->kvm))
5002 return -ENXIO;
5003
5004 if (vcpu->arch.pending_external_vector != -1)
5005 return -EEXIST;
5006
5007 vcpu->arch.pending_external_vector = irq->irq;
5008 kvm_make_request(KVM_REQ_EVENT, vcpu);
5009 return 0;
5010 }
5011
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5013 {
5014 kvm_inject_nmi(vcpu);
5015
5016 return 0;
5017 }
5018
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5019 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5020 struct kvm_tpr_access_ctl *tac)
5021 {
5022 if (tac->flags)
5023 return -EINVAL;
5024 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5025 return 0;
5026 }
5027
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5028 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5029 u64 mcg_cap)
5030 {
5031 int r;
5032 unsigned bank_num = mcg_cap & 0xff, bank;
5033
5034 r = -EINVAL;
5035 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5036 goto out;
5037 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5038 goto out;
5039 r = 0;
5040 vcpu->arch.mcg_cap = mcg_cap;
5041 /* Init IA32_MCG_CTL to all 1s */
5042 if (mcg_cap & MCG_CTL_P)
5043 vcpu->arch.mcg_ctl = ~(u64)0;
5044 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5045 for (bank = 0; bank < bank_num; bank++) {
5046 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5047 if (mcg_cap & MCG_CMCI_P)
5048 vcpu->arch.mci_ctl2_banks[bank] = 0;
5049 }
5050
5051 kvm_apic_after_set_mcg_cap(vcpu);
5052
5053 static_call(kvm_x86_setup_mce)(vcpu);
5054 out:
5055 return r;
5056 }
5057
5058 /*
5059 * Validate this is an UCNA (uncorrectable no action) error by checking the
5060 * MCG_STATUS and MCi_STATUS registers:
5061 * - none of the bits for Machine Check Exceptions are set
5062 * - both the VAL (valid) and UC (uncorrectable) bits are set
5063 * MCI_STATUS_PCC - Processor Context Corrupted
5064 * MCI_STATUS_S - Signaled as a Machine Check Exception
5065 * MCI_STATUS_AR - Software recoverable Action Required
5066 */
is_ucna(struct kvm_x86_mce * mce)5067 static bool is_ucna(struct kvm_x86_mce *mce)
5068 {
5069 return !mce->mcg_status &&
5070 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5071 (mce->status & MCI_STATUS_VAL) &&
5072 (mce->status & MCI_STATUS_UC);
5073 }
5074
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5075 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5076 {
5077 u64 mcg_cap = vcpu->arch.mcg_cap;
5078
5079 banks[1] = mce->status;
5080 banks[2] = mce->addr;
5081 banks[3] = mce->misc;
5082 vcpu->arch.mcg_status = mce->mcg_status;
5083
5084 if (!(mcg_cap & MCG_CMCI_P) ||
5085 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5086 return 0;
5087
5088 if (lapic_in_kernel(vcpu))
5089 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5090
5091 return 0;
5092 }
5093
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5094 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5095 struct kvm_x86_mce *mce)
5096 {
5097 u64 mcg_cap = vcpu->arch.mcg_cap;
5098 unsigned bank_num = mcg_cap & 0xff;
5099 u64 *banks = vcpu->arch.mce_banks;
5100
5101 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5102 return -EINVAL;
5103
5104 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5105
5106 if (is_ucna(mce))
5107 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5108
5109 /*
5110 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5111 * reporting is disabled
5112 */
5113 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5114 vcpu->arch.mcg_ctl != ~(u64)0)
5115 return 0;
5116 /*
5117 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5118 * reporting is disabled for the bank
5119 */
5120 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5121 return 0;
5122 if (mce->status & MCI_STATUS_UC) {
5123 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5124 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5125 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5126 return 0;
5127 }
5128 if (banks[1] & MCI_STATUS_VAL)
5129 mce->status |= MCI_STATUS_OVER;
5130 banks[2] = mce->addr;
5131 banks[3] = mce->misc;
5132 vcpu->arch.mcg_status = mce->mcg_status;
5133 banks[1] = mce->status;
5134 kvm_queue_exception(vcpu, MC_VECTOR);
5135 } else if (!(banks[1] & MCI_STATUS_VAL)
5136 || !(banks[1] & MCI_STATUS_UC)) {
5137 if (banks[1] & MCI_STATUS_VAL)
5138 mce->status |= MCI_STATUS_OVER;
5139 banks[2] = mce->addr;
5140 banks[3] = mce->misc;
5141 banks[1] = mce->status;
5142 } else
5143 banks[1] |= MCI_STATUS_OVER;
5144 return 0;
5145 }
5146
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5147 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5148 struct kvm_vcpu_events *events)
5149 {
5150 struct kvm_queued_exception *ex;
5151
5152 process_nmi(vcpu);
5153
5154 #ifdef CONFIG_KVM_SMM
5155 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5156 process_smi(vcpu);
5157 #endif
5158
5159 /*
5160 * KVM's ABI only allows for one exception to be migrated. Luckily,
5161 * the only time there can be two queued exceptions is if there's a
5162 * non-exiting _injected_ exception, and a pending exiting exception.
5163 * In that case, ignore the VM-Exiting exception as it's an extension
5164 * of the injected exception.
5165 */
5166 if (vcpu->arch.exception_vmexit.pending &&
5167 !vcpu->arch.exception.pending &&
5168 !vcpu->arch.exception.injected)
5169 ex = &vcpu->arch.exception_vmexit;
5170 else
5171 ex = &vcpu->arch.exception;
5172
5173 /*
5174 * In guest mode, payload delivery should be deferred if the exception
5175 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5176 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5177 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5178 * propagate the payload and so it cannot be safely deferred. Deliver
5179 * the payload if the capability hasn't been requested.
5180 */
5181 if (!vcpu->kvm->arch.exception_payload_enabled &&
5182 ex->pending && ex->has_payload)
5183 kvm_deliver_exception_payload(vcpu, ex);
5184
5185 memset(events, 0, sizeof(*events));
5186
5187 /*
5188 * The API doesn't provide the instruction length for software
5189 * exceptions, so don't report them. As long as the guest RIP
5190 * isn't advanced, we should expect to encounter the exception
5191 * again.
5192 */
5193 if (!kvm_exception_is_soft(ex->vector)) {
5194 events->exception.injected = ex->injected;
5195 events->exception.pending = ex->pending;
5196 /*
5197 * For ABI compatibility, deliberately conflate
5198 * pending and injected exceptions when
5199 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5200 */
5201 if (!vcpu->kvm->arch.exception_payload_enabled)
5202 events->exception.injected |= ex->pending;
5203 }
5204 events->exception.nr = ex->vector;
5205 events->exception.has_error_code = ex->has_error_code;
5206 events->exception.error_code = ex->error_code;
5207 events->exception_has_payload = ex->has_payload;
5208 events->exception_payload = ex->payload;
5209
5210 events->interrupt.injected =
5211 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5212 events->interrupt.nr = vcpu->arch.interrupt.nr;
5213 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5214
5215 events->nmi.injected = vcpu->arch.nmi_injected;
5216 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5217 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5218
5219 /* events->sipi_vector is never valid when reporting to user space */
5220
5221 #ifdef CONFIG_KVM_SMM
5222 events->smi.smm = is_smm(vcpu);
5223 events->smi.pending = vcpu->arch.smi_pending;
5224 events->smi.smm_inside_nmi =
5225 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5226 #endif
5227 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5228
5229 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5230 | KVM_VCPUEVENT_VALID_SHADOW
5231 | KVM_VCPUEVENT_VALID_SMM);
5232 if (vcpu->kvm->arch.exception_payload_enabled)
5233 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5234 if (vcpu->kvm->arch.triple_fault_event) {
5235 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5236 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5237 }
5238 }
5239
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5240 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5241 struct kvm_vcpu_events *events)
5242 {
5243 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5244 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5245 | KVM_VCPUEVENT_VALID_SHADOW
5246 | KVM_VCPUEVENT_VALID_SMM
5247 | KVM_VCPUEVENT_VALID_PAYLOAD
5248 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5249 return -EINVAL;
5250
5251 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5252 if (!vcpu->kvm->arch.exception_payload_enabled)
5253 return -EINVAL;
5254 if (events->exception.pending)
5255 events->exception.injected = 0;
5256 else
5257 events->exception_has_payload = 0;
5258 } else {
5259 events->exception.pending = 0;
5260 events->exception_has_payload = 0;
5261 }
5262
5263 if ((events->exception.injected || events->exception.pending) &&
5264 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5265 return -EINVAL;
5266
5267 /* INITs are latched while in SMM */
5268 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5269 (events->smi.smm || events->smi.pending) &&
5270 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5271 return -EINVAL;
5272
5273 process_nmi(vcpu);
5274
5275 /*
5276 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5277 * morph the exception to a VM-Exit if appropriate. Do this only for
5278 * pending exceptions, already-injected exceptions are not subject to
5279 * intercpetion. Note, userspace that conflates pending and injected
5280 * is hosed, and will incorrectly convert an injected exception into a
5281 * pending exception, which in turn may cause a spurious VM-Exit.
5282 */
5283 vcpu->arch.exception_from_userspace = events->exception.pending;
5284
5285 vcpu->arch.exception_vmexit.pending = false;
5286
5287 vcpu->arch.exception.injected = events->exception.injected;
5288 vcpu->arch.exception.pending = events->exception.pending;
5289 vcpu->arch.exception.vector = events->exception.nr;
5290 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5291 vcpu->arch.exception.error_code = events->exception.error_code;
5292 vcpu->arch.exception.has_payload = events->exception_has_payload;
5293 vcpu->arch.exception.payload = events->exception_payload;
5294
5295 vcpu->arch.interrupt.injected = events->interrupt.injected;
5296 vcpu->arch.interrupt.nr = events->interrupt.nr;
5297 vcpu->arch.interrupt.soft = events->interrupt.soft;
5298 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5299 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5300 events->interrupt.shadow);
5301
5302 vcpu->arch.nmi_injected = events->nmi.injected;
5303 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5304 vcpu->arch.nmi_pending = 0;
5305 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5306 if (events->nmi.pending)
5307 kvm_make_request(KVM_REQ_NMI, vcpu);
5308 }
5309 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5310
5311 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5312 lapic_in_kernel(vcpu))
5313 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5314
5315 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5316 #ifdef CONFIG_KVM_SMM
5317 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5318 kvm_leave_nested(vcpu);
5319 kvm_smm_changed(vcpu, events->smi.smm);
5320 }
5321
5322 vcpu->arch.smi_pending = events->smi.pending;
5323
5324 if (events->smi.smm) {
5325 if (events->smi.smm_inside_nmi)
5326 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5327 else
5328 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5329 }
5330
5331 #else
5332 if (events->smi.smm || events->smi.pending ||
5333 events->smi.smm_inside_nmi)
5334 return -EINVAL;
5335 #endif
5336
5337 if (lapic_in_kernel(vcpu)) {
5338 if (events->smi.latched_init)
5339 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5340 else
5341 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5342 }
5343 }
5344
5345 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5346 if (!vcpu->kvm->arch.triple_fault_event)
5347 return -EINVAL;
5348 if (events->triple_fault.pending)
5349 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5350 else
5351 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5352 }
5353
5354 kvm_make_request(KVM_REQ_EVENT, vcpu);
5355
5356 return 0;
5357 }
5358
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5359 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5360 struct kvm_debugregs *dbgregs)
5361 {
5362 unsigned long val;
5363
5364 memset(dbgregs, 0, sizeof(*dbgregs));
5365 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5366 kvm_get_dr(vcpu, 6, &val);
5367 dbgregs->dr6 = val;
5368 dbgregs->dr7 = vcpu->arch.dr7;
5369 }
5370
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5372 struct kvm_debugregs *dbgregs)
5373 {
5374 if (dbgregs->flags)
5375 return -EINVAL;
5376
5377 if (!kvm_dr6_valid(dbgregs->dr6))
5378 return -EINVAL;
5379 if (!kvm_dr7_valid(dbgregs->dr7))
5380 return -EINVAL;
5381
5382 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5383 kvm_update_dr0123(vcpu);
5384 vcpu->arch.dr6 = dbgregs->dr6;
5385 vcpu->arch.dr7 = dbgregs->dr7;
5386 kvm_update_dr7(vcpu);
5387
5388 return 0;
5389 }
5390
5391
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5392 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5393 u8 *state, unsigned int size)
5394 {
5395 /*
5396 * Only copy state for features that are enabled for the guest. The
5397 * state itself isn't problematic, but setting bits in the header for
5398 * features that are supported in *this* host but not exposed to the
5399 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5400 * compatible host without the features that are NOT exposed to the
5401 * guest.
5402 *
5403 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5404 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5405 * supported by the host.
5406 */
5407 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5408 XFEATURE_MASK_FPSSE;
5409
5410 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5411 return;
5412
5413 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5414 supported_xcr0, vcpu->arch.pkru);
5415 }
5416
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5417 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5418 struct kvm_xsave *guest_xsave)
5419 {
5420 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5421 sizeof(guest_xsave->region));
5422 }
5423
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5424 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5425 struct kvm_xsave *guest_xsave)
5426 {
5427 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5428 return 0;
5429
5430 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5431 guest_xsave->region,
5432 kvm_caps.supported_xcr0,
5433 &vcpu->arch.pkru);
5434 }
5435
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5436 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5437 struct kvm_xcrs *guest_xcrs)
5438 {
5439 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5440 guest_xcrs->nr_xcrs = 0;
5441 return;
5442 }
5443
5444 guest_xcrs->nr_xcrs = 1;
5445 guest_xcrs->flags = 0;
5446 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5447 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5448 }
5449
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5450 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5451 struct kvm_xcrs *guest_xcrs)
5452 {
5453 int i, r = 0;
5454
5455 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5456 return -EINVAL;
5457
5458 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5459 return -EINVAL;
5460
5461 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5462 /* Only support XCR0 currently */
5463 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5464 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5465 guest_xcrs->xcrs[i].value);
5466 break;
5467 }
5468 if (r)
5469 r = -EINVAL;
5470 return r;
5471 }
5472
5473 /*
5474 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5475 * stopped by the hypervisor. This function will be called from the host only.
5476 * EINVAL is returned when the host attempts to set the flag for a guest that
5477 * does not support pv clocks.
5478 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5479 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5480 {
5481 if (!vcpu->arch.pv_time.active)
5482 return -EINVAL;
5483 vcpu->arch.pvclock_set_guest_stopped_request = true;
5484 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5485 return 0;
5486 }
5487
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5488 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5489 struct kvm_device_attr *attr)
5490 {
5491 int r;
5492
5493 switch (attr->attr) {
5494 case KVM_VCPU_TSC_OFFSET:
5495 r = 0;
5496 break;
5497 default:
5498 r = -ENXIO;
5499 }
5500
5501 return r;
5502 }
5503
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5504 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5505 struct kvm_device_attr *attr)
5506 {
5507 u64 __user *uaddr = kvm_get_attr_addr(attr);
5508 int r;
5509
5510 if (IS_ERR(uaddr))
5511 return PTR_ERR(uaddr);
5512
5513 switch (attr->attr) {
5514 case KVM_VCPU_TSC_OFFSET:
5515 r = -EFAULT;
5516 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5517 break;
5518 r = 0;
5519 break;
5520 default:
5521 r = -ENXIO;
5522 }
5523
5524 return r;
5525 }
5526
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5527 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5528 struct kvm_device_attr *attr)
5529 {
5530 u64 __user *uaddr = kvm_get_attr_addr(attr);
5531 struct kvm *kvm = vcpu->kvm;
5532 int r;
5533
5534 if (IS_ERR(uaddr))
5535 return PTR_ERR(uaddr);
5536
5537 switch (attr->attr) {
5538 case KVM_VCPU_TSC_OFFSET: {
5539 u64 offset, tsc, ns;
5540 unsigned long flags;
5541 bool matched;
5542
5543 r = -EFAULT;
5544 if (get_user(offset, uaddr))
5545 break;
5546
5547 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5548
5549 matched = (vcpu->arch.virtual_tsc_khz &&
5550 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5551 kvm->arch.last_tsc_offset == offset);
5552
5553 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5554 ns = get_kvmclock_base_ns();
5555
5556 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5557 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5558
5559 r = 0;
5560 break;
5561 }
5562 default:
5563 r = -ENXIO;
5564 }
5565
5566 return r;
5567 }
5568
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5569 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5570 unsigned int ioctl,
5571 void __user *argp)
5572 {
5573 struct kvm_device_attr attr;
5574 int r;
5575
5576 if (copy_from_user(&attr, argp, sizeof(attr)))
5577 return -EFAULT;
5578
5579 if (attr.group != KVM_VCPU_TSC_CTRL)
5580 return -ENXIO;
5581
5582 switch (ioctl) {
5583 case KVM_HAS_DEVICE_ATTR:
5584 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5585 break;
5586 case KVM_GET_DEVICE_ATTR:
5587 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5588 break;
5589 case KVM_SET_DEVICE_ATTR:
5590 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5591 break;
5592 }
5593
5594 return r;
5595 }
5596
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5597 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5598 struct kvm_enable_cap *cap)
5599 {
5600 int r;
5601 uint16_t vmcs_version;
5602 void __user *user_ptr;
5603
5604 if (cap->flags)
5605 return -EINVAL;
5606
5607 switch (cap->cap) {
5608 case KVM_CAP_HYPERV_SYNIC2:
5609 if (cap->args[0])
5610 return -EINVAL;
5611 fallthrough;
5612
5613 case KVM_CAP_HYPERV_SYNIC:
5614 if (!irqchip_in_kernel(vcpu->kvm))
5615 return -EINVAL;
5616 return kvm_hv_activate_synic(vcpu, cap->cap ==
5617 KVM_CAP_HYPERV_SYNIC2);
5618 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5619 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5620 return -ENOTTY;
5621 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5622 if (!r) {
5623 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5624 if (copy_to_user(user_ptr, &vmcs_version,
5625 sizeof(vmcs_version)))
5626 r = -EFAULT;
5627 }
5628 return r;
5629 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5630 if (!kvm_x86_ops.enable_l2_tlb_flush)
5631 return -ENOTTY;
5632
5633 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5634
5635 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5636 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5637
5638 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5639 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5640 if (vcpu->arch.pv_cpuid.enforce)
5641 kvm_update_pv_runtime(vcpu);
5642
5643 return 0;
5644 default:
5645 return -EINVAL;
5646 }
5647 }
5648
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5649 long kvm_arch_vcpu_ioctl(struct file *filp,
5650 unsigned int ioctl, unsigned long arg)
5651 {
5652 struct kvm_vcpu *vcpu = filp->private_data;
5653 void __user *argp = (void __user *)arg;
5654 int r;
5655 union {
5656 struct kvm_sregs2 *sregs2;
5657 struct kvm_lapic_state *lapic;
5658 struct kvm_xsave *xsave;
5659 struct kvm_xcrs *xcrs;
5660 void *buffer;
5661 } u;
5662
5663 vcpu_load(vcpu);
5664
5665 u.buffer = NULL;
5666 switch (ioctl) {
5667 case KVM_GET_LAPIC: {
5668 r = -EINVAL;
5669 if (!lapic_in_kernel(vcpu))
5670 goto out;
5671 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5672 GFP_KERNEL_ACCOUNT);
5673
5674 r = -ENOMEM;
5675 if (!u.lapic)
5676 goto out;
5677 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5678 if (r)
5679 goto out;
5680 r = -EFAULT;
5681 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5682 goto out;
5683 r = 0;
5684 break;
5685 }
5686 case KVM_SET_LAPIC: {
5687 r = -EINVAL;
5688 if (!lapic_in_kernel(vcpu))
5689 goto out;
5690 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5691 if (IS_ERR(u.lapic)) {
5692 r = PTR_ERR(u.lapic);
5693 goto out_nofree;
5694 }
5695
5696 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5697 break;
5698 }
5699 case KVM_INTERRUPT: {
5700 struct kvm_interrupt irq;
5701
5702 r = -EFAULT;
5703 if (copy_from_user(&irq, argp, sizeof(irq)))
5704 goto out;
5705 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5706 break;
5707 }
5708 case KVM_NMI: {
5709 r = kvm_vcpu_ioctl_nmi(vcpu);
5710 break;
5711 }
5712 case KVM_SMI: {
5713 r = kvm_inject_smi(vcpu);
5714 break;
5715 }
5716 case KVM_SET_CPUID: {
5717 struct kvm_cpuid __user *cpuid_arg = argp;
5718 struct kvm_cpuid cpuid;
5719
5720 r = -EFAULT;
5721 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5722 goto out;
5723 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5724 break;
5725 }
5726 case KVM_SET_CPUID2: {
5727 struct kvm_cpuid2 __user *cpuid_arg = argp;
5728 struct kvm_cpuid2 cpuid;
5729
5730 r = -EFAULT;
5731 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5732 goto out;
5733 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5734 cpuid_arg->entries);
5735 break;
5736 }
5737 case KVM_GET_CPUID2: {
5738 struct kvm_cpuid2 __user *cpuid_arg = argp;
5739 struct kvm_cpuid2 cpuid;
5740
5741 r = -EFAULT;
5742 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5743 goto out;
5744 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5745 cpuid_arg->entries);
5746 if (r)
5747 goto out;
5748 r = -EFAULT;
5749 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5750 goto out;
5751 r = 0;
5752 break;
5753 }
5754 case KVM_GET_MSRS: {
5755 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5756 r = msr_io(vcpu, argp, do_get_msr, 1);
5757 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5758 break;
5759 }
5760 case KVM_SET_MSRS: {
5761 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5762 r = msr_io(vcpu, argp, do_set_msr, 0);
5763 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5764 break;
5765 }
5766 case KVM_TPR_ACCESS_REPORTING: {
5767 struct kvm_tpr_access_ctl tac;
5768
5769 r = -EFAULT;
5770 if (copy_from_user(&tac, argp, sizeof(tac)))
5771 goto out;
5772 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5773 if (r)
5774 goto out;
5775 r = -EFAULT;
5776 if (copy_to_user(argp, &tac, sizeof(tac)))
5777 goto out;
5778 r = 0;
5779 break;
5780 };
5781 case KVM_SET_VAPIC_ADDR: {
5782 struct kvm_vapic_addr va;
5783 int idx;
5784
5785 r = -EINVAL;
5786 if (!lapic_in_kernel(vcpu))
5787 goto out;
5788 r = -EFAULT;
5789 if (copy_from_user(&va, argp, sizeof(va)))
5790 goto out;
5791 idx = srcu_read_lock(&vcpu->kvm->srcu);
5792 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5793 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5794 break;
5795 }
5796 case KVM_X86_SETUP_MCE: {
5797 u64 mcg_cap;
5798
5799 r = -EFAULT;
5800 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5801 goto out;
5802 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5803 break;
5804 }
5805 case KVM_X86_SET_MCE: {
5806 struct kvm_x86_mce mce;
5807
5808 r = -EFAULT;
5809 if (copy_from_user(&mce, argp, sizeof(mce)))
5810 goto out;
5811 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5812 break;
5813 }
5814 case KVM_GET_VCPU_EVENTS: {
5815 struct kvm_vcpu_events events;
5816
5817 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5818
5819 r = -EFAULT;
5820 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5821 break;
5822 r = 0;
5823 break;
5824 }
5825 case KVM_SET_VCPU_EVENTS: {
5826 struct kvm_vcpu_events events;
5827
5828 r = -EFAULT;
5829 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5830 break;
5831
5832 kvm_vcpu_srcu_read_lock(vcpu);
5833 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5834 kvm_vcpu_srcu_read_unlock(vcpu);
5835 break;
5836 }
5837 case KVM_GET_DEBUGREGS: {
5838 struct kvm_debugregs dbgregs;
5839
5840 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5841
5842 r = -EFAULT;
5843 if (copy_to_user(argp, &dbgregs,
5844 sizeof(struct kvm_debugregs)))
5845 break;
5846 r = 0;
5847 break;
5848 }
5849 case KVM_SET_DEBUGREGS: {
5850 struct kvm_debugregs dbgregs;
5851
5852 r = -EFAULT;
5853 if (copy_from_user(&dbgregs, argp,
5854 sizeof(struct kvm_debugregs)))
5855 break;
5856
5857 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5858 break;
5859 }
5860 case KVM_GET_XSAVE: {
5861 r = -EINVAL;
5862 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5863 break;
5864
5865 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5866 r = -ENOMEM;
5867 if (!u.xsave)
5868 break;
5869
5870 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5871
5872 r = -EFAULT;
5873 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5874 break;
5875 r = 0;
5876 break;
5877 }
5878 case KVM_SET_XSAVE: {
5879 int size = vcpu->arch.guest_fpu.uabi_size;
5880
5881 u.xsave = memdup_user(argp, size);
5882 if (IS_ERR(u.xsave)) {
5883 r = PTR_ERR(u.xsave);
5884 goto out_nofree;
5885 }
5886
5887 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5888 break;
5889 }
5890
5891 case KVM_GET_XSAVE2: {
5892 int size = vcpu->arch.guest_fpu.uabi_size;
5893
5894 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5895 r = -ENOMEM;
5896 if (!u.xsave)
5897 break;
5898
5899 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5900
5901 r = -EFAULT;
5902 if (copy_to_user(argp, u.xsave, size))
5903 break;
5904
5905 r = 0;
5906 break;
5907 }
5908
5909 case KVM_GET_XCRS: {
5910 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5911 r = -ENOMEM;
5912 if (!u.xcrs)
5913 break;
5914
5915 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5916
5917 r = -EFAULT;
5918 if (copy_to_user(argp, u.xcrs,
5919 sizeof(struct kvm_xcrs)))
5920 break;
5921 r = 0;
5922 break;
5923 }
5924 case KVM_SET_XCRS: {
5925 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5926 if (IS_ERR(u.xcrs)) {
5927 r = PTR_ERR(u.xcrs);
5928 goto out_nofree;
5929 }
5930
5931 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5932 break;
5933 }
5934 case KVM_SET_TSC_KHZ: {
5935 u32 user_tsc_khz;
5936
5937 r = -EINVAL;
5938 user_tsc_khz = (u32)arg;
5939
5940 if (kvm_caps.has_tsc_control &&
5941 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5942 goto out;
5943
5944 if (user_tsc_khz == 0)
5945 user_tsc_khz = tsc_khz;
5946
5947 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5948 r = 0;
5949
5950 goto out;
5951 }
5952 case KVM_GET_TSC_KHZ: {
5953 r = vcpu->arch.virtual_tsc_khz;
5954 goto out;
5955 }
5956 case KVM_KVMCLOCK_CTRL: {
5957 r = kvm_set_guest_paused(vcpu);
5958 goto out;
5959 }
5960 case KVM_ENABLE_CAP: {
5961 struct kvm_enable_cap cap;
5962
5963 r = -EFAULT;
5964 if (copy_from_user(&cap, argp, sizeof(cap)))
5965 goto out;
5966 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5967 break;
5968 }
5969 case KVM_GET_NESTED_STATE: {
5970 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5971 u32 user_data_size;
5972
5973 r = -EINVAL;
5974 if (!kvm_x86_ops.nested_ops->get_state)
5975 break;
5976
5977 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5978 r = -EFAULT;
5979 if (get_user(user_data_size, &user_kvm_nested_state->size))
5980 break;
5981
5982 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5983 user_data_size);
5984 if (r < 0)
5985 break;
5986
5987 if (r > user_data_size) {
5988 if (put_user(r, &user_kvm_nested_state->size))
5989 r = -EFAULT;
5990 else
5991 r = -E2BIG;
5992 break;
5993 }
5994
5995 r = 0;
5996 break;
5997 }
5998 case KVM_SET_NESTED_STATE: {
5999 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6000 struct kvm_nested_state kvm_state;
6001 int idx;
6002
6003 r = -EINVAL;
6004 if (!kvm_x86_ops.nested_ops->set_state)
6005 break;
6006
6007 r = -EFAULT;
6008 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6009 break;
6010
6011 r = -EINVAL;
6012 if (kvm_state.size < sizeof(kvm_state))
6013 break;
6014
6015 if (kvm_state.flags &
6016 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6017 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6018 | KVM_STATE_NESTED_GIF_SET))
6019 break;
6020
6021 /* nested_run_pending implies guest_mode. */
6022 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6023 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6024 break;
6025
6026 idx = srcu_read_lock(&vcpu->kvm->srcu);
6027 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6028 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6029 break;
6030 }
6031 case KVM_GET_SUPPORTED_HV_CPUID:
6032 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6033 break;
6034 #ifdef CONFIG_KVM_XEN
6035 case KVM_XEN_VCPU_GET_ATTR: {
6036 struct kvm_xen_vcpu_attr xva;
6037
6038 r = -EFAULT;
6039 if (copy_from_user(&xva, argp, sizeof(xva)))
6040 goto out;
6041 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6042 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6043 r = -EFAULT;
6044 break;
6045 }
6046 case KVM_XEN_VCPU_SET_ATTR: {
6047 struct kvm_xen_vcpu_attr xva;
6048
6049 r = -EFAULT;
6050 if (copy_from_user(&xva, argp, sizeof(xva)))
6051 goto out;
6052 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6053 break;
6054 }
6055 #endif
6056 case KVM_GET_SREGS2: {
6057 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6058 r = -ENOMEM;
6059 if (!u.sregs2)
6060 goto out;
6061 __get_sregs2(vcpu, u.sregs2);
6062 r = -EFAULT;
6063 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6064 goto out;
6065 r = 0;
6066 break;
6067 }
6068 case KVM_SET_SREGS2: {
6069 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6070 if (IS_ERR(u.sregs2)) {
6071 r = PTR_ERR(u.sregs2);
6072 u.sregs2 = NULL;
6073 goto out;
6074 }
6075 r = __set_sregs2(vcpu, u.sregs2);
6076 break;
6077 }
6078 case KVM_HAS_DEVICE_ATTR:
6079 case KVM_GET_DEVICE_ATTR:
6080 case KVM_SET_DEVICE_ATTR:
6081 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6082 break;
6083 default:
6084 r = -EINVAL;
6085 }
6086 out:
6087 kfree(u.buffer);
6088 out_nofree:
6089 vcpu_put(vcpu);
6090 return r;
6091 }
6092
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6093 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6094 {
6095 return VM_FAULT_SIGBUS;
6096 }
6097
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6098 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6099 {
6100 int ret;
6101
6102 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6103 return -EINVAL;
6104 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6105 return ret;
6106 }
6107
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6108 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6109 u64 ident_addr)
6110 {
6111 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6112 }
6113
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6114 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6115 unsigned long kvm_nr_mmu_pages)
6116 {
6117 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6118 return -EINVAL;
6119
6120 mutex_lock(&kvm->slots_lock);
6121
6122 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6123 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6124
6125 mutex_unlock(&kvm->slots_lock);
6126 return 0;
6127 }
6128
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6129 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6130 {
6131 struct kvm_pic *pic = kvm->arch.vpic;
6132 int r;
6133
6134 r = 0;
6135 switch (chip->chip_id) {
6136 case KVM_IRQCHIP_PIC_MASTER:
6137 memcpy(&chip->chip.pic, &pic->pics[0],
6138 sizeof(struct kvm_pic_state));
6139 break;
6140 case KVM_IRQCHIP_PIC_SLAVE:
6141 memcpy(&chip->chip.pic, &pic->pics[1],
6142 sizeof(struct kvm_pic_state));
6143 break;
6144 case KVM_IRQCHIP_IOAPIC:
6145 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6146 break;
6147 default:
6148 r = -EINVAL;
6149 break;
6150 }
6151 return r;
6152 }
6153
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6154 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6155 {
6156 struct kvm_pic *pic = kvm->arch.vpic;
6157 int r;
6158
6159 r = 0;
6160 switch (chip->chip_id) {
6161 case KVM_IRQCHIP_PIC_MASTER:
6162 spin_lock(&pic->lock);
6163 memcpy(&pic->pics[0], &chip->chip.pic,
6164 sizeof(struct kvm_pic_state));
6165 spin_unlock(&pic->lock);
6166 break;
6167 case KVM_IRQCHIP_PIC_SLAVE:
6168 spin_lock(&pic->lock);
6169 memcpy(&pic->pics[1], &chip->chip.pic,
6170 sizeof(struct kvm_pic_state));
6171 spin_unlock(&pic->lock);
6172 break;
6173 case KVM_IRQCHIP_IOAPIC:
6174 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6175 break;
6176 default:
6177 r = -EINVAL;
6178 break;
6179 }
6180 kvm_pic_update_irq(pic);
6181 return r;
6182 }
6183
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6184 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6185 {
6186 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6187
6188 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6189
6190 mutex_lock(&kps->lock);
6191 memcpy(ps, &kps->channels, sizeof(*ps));
6192 mutex_unlock(&kps->lock);
6193 return 0;
6194 }
6195
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6196 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6197 {
6198 int i;
6199 struct kvm_pit *pit = kvm->arch.vpit;
6200
6201 mutex_lock(&pit->pit_state.lock);
6202 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6203 for (i = 0; i < 3; i++)
6204 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6205 mutex_unlock(&pit->pit_state.lock);
6206 return 0;
6207 }
6208
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6209 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6210 {
6211 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6212 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6213 sizeof(ps->channels));
6214 ps->flags = kvm->arch.vpit->pit_state.flags;
6215 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6216 memset(&ps->reserved, 0, sizeof(ps->reserved));
6217 return 0;
6218 }
6219
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6220 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6221 {
6222 int start = 0;
6223 int i;
6224 u32 prev_legacy, cur_legacy;
6225 struct kvm_pit *pit = kvm->arch.vpit;
6226
6227 mutex_lock(&pit->pit_state.lock);
6228 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6229 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6230 if (!prev_legacy && cur_legacy)
6231 start = 1;
6232 memcpy(&pit->pit_state.channels, &ps->channels,
6233 sizeof(pit->pit_state.channels));
6234 pit->pit_state.flags = ps->flags;
6235 for (i = 0; i < 3; i++)
6236 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6237 start && i == 0);
6238 mutex_unlock(&pit->pit_state.lock);
6239 return 0;
6240 }
6241
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6242 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6243 struct kvm_reinject_control *control)
6244 {
6245 struct kvm_pit *pit = kvm->arch.vpit;
6246
6247 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6248 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6249 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6250 */
6251 mutex_lock(&pit->pit_state.lock);
6252 kvm_pit_set_reinject(pit, control->pit_reinject);
6253 mutex_unlock(&pit->pit_state.lock);
6254
6255 return 0;
6256 }
6257
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6258 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6259 {
6260
6261 /*
6262 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6263 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6264 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6265 * VM-Exit.
6266 */
6267 struct kvm_vcpu *vcpu;
6268 unsigned long i;
6269
6270 kvm_for_each_vcpu(i, vcpu, kvm)
6271 kvm_vcpu_kick(vcpu);
6272 }
6273
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6274 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6275 bool line_status)
6276 {
6277 if (!irqchip_in_kernel(kvm))
6278 return -ENXIO;
6279
6280 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6281 irq_event->irq, irq_event->level,
6282 line_status);
6283 return 0;
6284 }
6285
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6286 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6287 struct kvm_enable_cap *cap)
6288 {
6289 int r;
6290
6291 if (cap->flags)
6292 return -EINVAL;
6293
6294 switch (cap->cap) {
6295 case KVM_CAP_DISABLE_QUIRKS2:
6296 r = -EINVAL;
6297 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6298 break;
6299 fallthrough;
6300 case KVM_CAP_DISABLE_QUIRKS:
6301 kvm->arch.disabled_quirks = cap->args[0];
6302 r = 0;
6303 break;
6304 case KVM_CAP_SPLIT_IRQCHIP: {
6305 mutex_lock(&kvm->lock);
6306 r = -EINVAL;
6307 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6308 goto split_irqchip_unlock;
6309 r = -EEXIST;
6310 if (irqchip_in_kernel(kvm))
6311 goto split_irqchip_unlock;
6312 if (kvm->created_vcpus)
6313 goto split_irqchip_unlock;
6314 r = kvm_setup_empty_irq_routing(kvm);
6315 if (r)
6316 goto split_irqchip_unlock;
6317 /* Pairs with irqchip_in_kernel. */
6318 smp_wmb();
6319 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6320 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6321 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6322 r = 0;
6323 split_irqchip_unlock:
6324 mutex_unlock(&kvm->lock);
6325 break;
6326 }
6327 case KVM_CAP_X2APIC_API:
6328 r = -EINVAL;
6329 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6330 break;
6331
6332 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6333 kvm->arch.x2apic_format = true;
6334 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6335 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6336
6337 r = 0;
6338 break;
6339 case KVM_CAP_X86_DISABLE_EXITS:
6340 r = -EINVAL;
6341 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6342 break;
6343
6344 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6345 kvm->arch.pause_in_guest = true;
6346
6347 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6348 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6349
6350 if (!mitigate_smt_rsb) {
6351 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6352 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6353 pr_warn_once(SMT_RSB_MSG);
6354
6355 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6356 kvm_can_mwait_in_guest())
6357 kvm->arch.mwait_in_guest = true;
6358 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6359 kvm->arch.hlt_in_guest = true;
6360 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6361 kvm->arch.cstate_in_guest = true;
6362 }
6363
6364 r = 0;
6365 break;
6366 case KVM_CAP_MSR_PLATFORM_INFO:
6367 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6368 r = 0;
6369 break;
6370 case KVM_CAP_EXCEPTION_PAYLOAD:
6371 kvm->arch.exception_payload_enabled = cap->args[0];
6372 r = 0;
6373 break;
6374 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6375 kvm->arch.triple_fault_event = cap->args[0];
6376 r = 0;
6377 break;
6378 case KVM_CAP_X86_USER_SPACE_MSR:
6379 r = -EINVAL;
6380 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6381 break;
6382 kvm->arch.user_space_msr_mask = cap->args[0];
6383 r = 0;
6384 break;
6385 case KVM_CAP_X86_BUS_LOCK_EXIT:
6386 r = -EINVAL;
6387 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6388 break;
6389
6390 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6391 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6392 break;
6393
6394 if (kvm_caps.has_bus_lock_exit &&
6395 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6396 kvm->arch.bus_lock_detection_enabled = true;
6397 r = 0;
6398 break;
6399 #ifdef CONFIG_X86_SGX_KVM
6400 case KVM_CAP_SGX_ATTRIBUTE: {
6401 unsigned long allowed_attributes = 0;
6402
6403 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6404 if (r)
6405 break;
6406
6407 /* KVM only supports the PROVISIONKEY privileged attribute. */
6408 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6409 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6410 kvm->arch.sgx_provisioning_allowed = true;
6411 else
6412 r = -EINVAL;
6413 break;
6414 }
6415 #endif
6416 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6417 r = -EINVAL;
6418 if (!kvm_x86_ops.vm_copy_enc_context_from)
6419 break;
6420
6421 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6422 break;
6423 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6424 r = -EINVAL;
6425 if (!kvm_x86_ops.vm_move_enc_context_from)
6426 break;
6427
6428 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6429 break;
6430 case KVM_CAP_EXIT_HYPERCALL:
6431 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6432 r = -EINVAL;
6433 break;
6434 }
6435 kvm->arch.hypercall_exit_enabled = cap->args[0];
6436 r = 0;
6437 break;
6438 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6439 r = -EINVAL;
6440 if (cap->args[0] & ~1)
6441 break;
6442 kvm->arch.exit_on_emulation_error = cap->args[0];
6443 r = 0;
6444 break;
6445 case KVM_CAP_PMU_CAPABILITY:
6446 r = -EINVAL;
6447 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6448 break;
6449
6450 mutex_lock(&kvm->lock);
6451 if (!kvm->created_vcpus) {
6452 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6453 r = 0;
6454 }
6455 mutex_unlock(&kvm->lock);
6456 break;
6457 case KVM_CAP_MAX_VCPU_ID:
6458 r = -EINVAL;
6459 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6460 break;
6461
6462 mutex_lock(&kvm->lock);
6463 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6464 r = 0;
6465 } else if (!kvm->arch.max_vcpu_ids) {
6466 kvm->arch.max_vcpu_ids = cap->args[0];
6467 r = 0;
6468 }
6469 mutex_unlock(&kvm->lock);
6470 break;
6471 case KVM_CAP_X86_NOTIFY_VMEXIT:
6472 r = -EINVAL;
6473 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6474 break;
6475 if (!kvm_caps.has_notify_vmexit)
6476 break;
6477 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6478 break;
6479 mutex_lock(&kvm->lock);
6480 if (!kvm->created_vcpus) {
6481 kvm->arch.notify_window = cap->args[0] >> 32;
6482 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6483 r = 0;
6484 }
6485 mutex_unlock(&kvm->lock);
6486 break;
6487 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6488 r = -EINVAL;
6489
6490 /*
6491 * Since the risk of disabling NX hugepages is a guest crashing
6492 * the system, ensure the userspace process has permission to
6493 * reboot the system.
6494 *
6495 * Note that unlike the reboot() syscall, the process must have
6496 * this capability in the root namespace because exposing
6497 * /dev/kvm into a container does not limit the scope of the
6498 * iTLB multihit bug to that container. In other words,
6499 * this must use capable(), not ns_capable().
6500 */
6501 if (!capable(CAP_SYS_BOOT)) {
6502 r = -EPERM;
6503 break;
6504 }
6505
6506 if (cap->args[0])
6507 break;
6508
6509 mutex_lock(&kvm->lock);
6510 if (!kvm->created_vcpus) {
6511 kvm->arch.disable_nx_huge_pages = true;
6512 r = 0;
6513 }
6514 mutex_unlock(&kvm->lock);
6515 break;
6516 default:
6517 r = -EINVAL;
6518 break;
6519 }
6520 return r;
6521 }
6522
kvm_alloc_msr_filter(bool default_allow)6523 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6524 {
6525 struct kvm_x86_msr_filter *msr_filter;
6526
6527 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6528 if (!msr_filter)
6529 return NULL;
6530
6531 msr_filter->default_allow = default_allow;
6532 return msr_filter;
6533 }
6534
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6535 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6536 {
6537 u32 i;
6538
6539 if (!msr_filter)
6540 return;
6541
6542 for (i = 0; i < msr_filter->count; i++)
6543 kfree(msr_filter->ranges[i].bitmap);
6544
6545 kfree(msr_filter);
6546 }
6547
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6548 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6549 struct kvm_msr_filter_range *user_range)
6550 {
6551 unsigned long *bitmap;
6552 size_t bitmap_size;
6553
6554 if (!user_range->nmsrs)
6555 return 0;
6556
6557 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6558 return -EINVAL;
6559
6560 if (!user_range->flags)
6561 return -EINVAL;
6562
6563 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6564 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6565 return -EINVAL;
6566
6567 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6568 if (IS_ERR(bitmap))
6569 return PTR_ERR(bitmap);
6570
6571 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6572 .flags = user_range->flags,
6573 .base = user_range->base,
6574 .nmsrs = user_range->nmsrs,
6575 .bitmap = bitmap,
6576 };
6577
6578 msr_filter->count++;
6579 return 0;
6580 }
6581
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6582 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6583 struct kvm_msr_filter *filter)
6584 {
6585 struct kvm_x86_msr_filter *new_filter, *old_filter;
6586 bool default_allow;
6587 bool empty = true;
6588 int r;
6589 u32 i;
6590
6591 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6592 return -EINVAL;
6593
6594 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6595 empty &= !filter->ranges[i].nmsrs;
6596
6597 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6598 if (empty && !default_allow)
6599 return -EINVAL;
6600
6601 new_filter = kvm_alloc_msr_filter(default_allow);
6602 if (!new_filter)
6603 return -ENOMEM;
6604
6605 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6606 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6607 if (r) {
6608 kvm_free_msr_filter(new_filter);
6609 return r;
6610 }
6611 }
6612
6613 mutex_lock(&kvm->lock);
6614 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6615 mutex_is_locked(&kvm->lock));
6616 mutex_unlock(&kvm->lock);
6617 synchronize_srcu(&kvm->srcu);
6618
6619 kvm_free_msr_filter(old_filter);
6620
6621 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6622
6623 return 0;
6624 }
6625
6626 #ifdef CONFIG_KVM_COMPAT
6627 /* for KVM_X86_SET_MSR_FILTER */
6628 struct kvm_msr_filter_range_compat {
6629 __u32 flags;
6630 __u32 nmsrs;
6631 __u32 base;
6632 __u32 bitmap;
6633 };
6634
6635 struct kvm_msr_filter_compat {
6636 __u32 flags;
6637 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6638 };
6639
6640 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6641
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6642 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6643 unsigned long arg)
6644 {
6645 void __user *argp = (void __user *)arg;
6646 struct kvm *kvm = filp->private_data;
6647 long r = -ENOTTY;
6648
6649 switch (ioctl) {
6650 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6651 struct kvm_msr_filter __user *user_msr_filter = argp;
6652 struct kvm_msr_filter_compat filter_compat;
6653 struct kvm_msr_filter filter;
6654 int i;
6655
6656 if (copy_from_user(&filter_compat, user_msr_filter,
6657 sizeof(filter_compat)))
6658 return -EFAULT;
6659
6660 filter.flags = filter_compat.flags;
6661 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6662 struct kvm_msr_filter_range_compat *cr;
6663
6664 cr = &filter_compat.ranges[i];
6665 filter.ranges[i] = (struct kvm_msr_filter_range) {
6666 .flags = cr->flags,
6667 .nmsrs = cr->nmsrs,
6668 .base = cr->base,
6669 .bitmap = (__u8 *)(ulong)cr->bitmap,
6670 };
6671 }
6672
6673 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6674 break;
6675 }
6676 }
6677
6678 return r;
6679 }
6680 #endif
6681
6682 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6683 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6684 {
6685 struct kvm_vcpu *vcpu;
6686 unsigned long i;
6687 int ret = 0;
6688
6689 mutex_lock(&kvm->lock);
6690 kvm_for_each_vcpu(i, vcpu, kvm) {
6691 if (!vcpu->arch.pv_time.active)
6692 continue;
6693
6694 ret = kvm_set_guest_paused(vcpu);
6695 if (ret) {
6696 kvm_err("Failed to pause guest VCPU%d: %d\n",
6697 vcpu->vcpu_id, ret);
6698 break;
6699 }
6700 }
6701 mutex_unlock(&kvm->lock);
6702
6703 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6704 }
6705
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6706 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6707 {
6708 switch (state) {
6709 case PM_HIBERNATION_PREPARE:
6710 case PM_SUSPEND_PREPARE:
6711 return kvm_arch_suspend_notifier(kvm);
6712 }
6713
6714 return NOTIFY_DONE;
6715 }
6716 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6717
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6718 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6719 {
6720 struct kvm_clock_data data = { 0 };
6721
6722 get_kvmclock(kvm, &data);
6723 if (copy_to_user(argp, &data, sizeof(data)))
6724 return -EFAULT;
6725
6726 return 0;
6727 }
6728
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6729 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6730 {
6731 struct kvm_arch *ka = &kvm->arch;
6732 struct kvm_clock_data data;
6733 u64 now_raw_ns;
6734
6735 if (copy_from_user(&data, argp, sizeof(data)))
6736 return -EFAULT;
6737
6738 /*
6739 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6740 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6741 */
6742 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6743 return -EINVAL;
6744
6745 kvm_hv_request_tsc_page_update(kvm);
6746 kvm_start_pvclock_update(kvm);
6747 pvclock_update_vm_gtod_copy(kvm);
6748
6749 /*
6750 * This pairs with kvm_guest_time_update(): when masterclock is
6751 * in use, we use master_kernel_ns + kvmclock_offset to set
6752 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6753 * is slightly ahead) here we risk going negative on unsigned
6754 * 'system_time' when 'data.clock' is very small.
6755 */
6756 if (data.flags & KVM_CLOCK_REALTIME) {
6757 u64 now_real_ns = ktime_get_real_ns();
6758
6759 /*
6760 * Avoid stepping the kvmclock backwards.
6761 */
6762 if (now_real_ns > data.realtime)
6763 data.clock += now_real_ns - data.realtime;
6764 }
6765
6766 if (ka->use_master_clock)
6767 now_raw_ns = ka->master_kernel_ns;
6768 else
6769 now_raw_ns = get_kvmclock_base_ns();
6770 ka->kvmclock_offset = data.clock - now_raw_ns;
6771 kvm_end_pvclock_update(kvm);
6772 return 0;
6773 }
6774
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6775 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6776 {
6777 struct kvm *kvm = filp->private_data;
6778 void __user *argp = (void __user *)arg;
6779 int r = -ENOTTY;
6780 /*
6781 * This union makes it completely explicit to gcc-3.x
6782 * that these two variables' stack usage should be
6783 * combined, not added together.
6784 */
6785 union {
6786 struct kvm_pit_state ps;
6787 struct kvm_pit_state2 ps2;
6788 struct kvm_pit_config pit_config;
6789 } u;
6790
6791 switch (ioctl) {
6792 case KVM_SET_TSS_ADDR:
6793 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6794 break;
6795 case KVM_SET_IDENTITY_MAP_ADDR: {
6796 u64 ident_addr;
6797
6798 mutex_lock(&kvm->lock);
6799 r = -EINVAL;
6800 if (kvm->created_vcpus)
6801 goto set_identity_unlock;
6802 r = -EFAULT;
6803 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6804 goto set_identity_unlock;
6805 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6806 set_identity_unlock:
6807 mutex_unlock(&kvm->lock);
6808 break;
6809 }
6810 case KVM_SET_NR_MMU_PAGES:
6811 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6812 break;
6813 case KVM_CREATE_IRQCHIP: {
6814 mutex_lock(&kvm->lock);
6815
6816 r = -EEXIST;
6817 if (irqchip_in_kernel(kvm))
6818 goto create_irqchip_unlock;
6819
6820 r = -EINVAL;
6821 if (kvm->created_vcpus)
6822 goto create_irqchip_unlock;
6823
6824 r = kvm_pic_init(kvm);
6825 if (r)
6826 goto create_irqchip_unlock;
6827
6828 r = kvm_ioapic_init(kvm);
6829 if (r) {
6830 kvm_pic_destroy(kvm);
6831 goto create_irqchip_unlock;
6832 }
6833
6834 r = kvm_setup_default_irq_routing(kvm);
6835 if (r) {
6836 kvm_ioapic_destroy(kvm);
6837 kvm_pic_destroy(kvm);
6838 goto create_irqchip_unlock;
6839 }
6840 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6841 smp_wmb();
6842 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6843 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6844 create_irqchip_unlock:
6845 mutex_unlock(&kvm->lock);
6846 break;
6847 }
6848 case KVM_CREATE_PIT:
6849 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6850 goto create_pit;
6851 case KVM_CREATE_PIT2:
6852 r = -EFAULT;
6853 if (copy_from_user(&u.pit_config, argp,
6854 sizeof(struct kvm_pit_config)))
6855 goto out;
6856 create_pit:
6857 mutex_lock(&kvm->lock);
6858 r = -EEXIST;
6859 if (kvm->arch.vpit)
6860 goto create_pit_unlock;
6861 r = -ENOMEM;
6862 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6863 if (kvm->arch.vpit)
6864 r = 0;
6865 create_pit_unlock:
6866 mutex_unlock(&kvm->lock);
6867 break;
6868 case KVM_GET_IRQCHIP: {
6869 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6870 struct kvm_irqchip *chip;
6871
6872 chip = memdup_user(argp, sizeof(*chip));
6873 if (IS_ERR(chip)) {
6874 r = PTR_ERR(chip);
6875 goto out;
6876 }
6877
6878 r = -ENXIO;
6879 if (!irqchip_kernel(kvm))
6880 goto get_irqchip_out;
6881 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6882 if (r)
6883 goto get_irqchip_out;
6884 r = -EFAULT;
6885 if (copy_to_user(argp, chip, sizeof(*chip)))
6886 goto get_irqchip_out;
6887 r = 0;
6888 get_irqchip_out:
6889 kfree(chip);
6890 break;
6891 }
6892 case KVM_SET_IRQCHIP: {
6893 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6894 struct kvm_irqchip *chip;
6895
6896 chip = memdup_user(argp, sizeof(*chip));
6897 if (IS_ERR(chip)) {
6898 r = PTR_ERR(chip);
6899 goto out;
6900 }
6901
6902 r = -ENXIO;
6903 if (!irqchip_kernel(kvm))
6904 goto set_irqchip_out;
6905 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6906 set_irqchip_out:
6907 kfree(chip);
6908 break;
6909 }
6910 case KVM_GET_PIT: {
6911 r = -EFAULT;
6912 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6913 goto out;
6914 r = -ENXIO;
6915 if (!kvm->arch.vpit)
6916 goto out;
6917 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6918 if (r)
6919 goto out;
6920 r = -EFAULT;
6921 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6922 goto out;
6923 r = 0;
6924 break;
6925 }
6926 case KVM_SET_PIT: {
6927 r = -EFAULT;
6928 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6929 goto out;
6930 mutex_lock(&kvm->lock);
6931 r = -ENXIO;
6932 if (!kvm->arch.vpit)
6933 goto set_pit_out;
6934 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6935 set_pit_out:
6936 mutex_unlock(&kvm->lock);
6937 break;
6938 }
6939 case KVM_GET_PIT2: {
6940 r = -ENXIO;
6941 if (!kvm->arch.vpit)
6942 goto out;
6943 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6944 if (r)
6945 goto out;
6946 r = -EFAULT;
6947 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6948 goto out;
6949 r = 0;
6950 break;
6951 }
6952 case KVM_SET_PIT2: {
6953 r = -EFAULT;
6954 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6955 goto out;
6956 mutex_lock(&kvm->lock);
6957 r = -ENXIO;
6958 if (!kvm->arch.vpit)
6959 goto set_pit2_out;
6960 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6961 set_pit2_out:
6962 mutex_unlock(&kvm->lock);
6963 break;
6964 }
6965 case KVM_REINJECT_CONTROL: {
6966 struct kvm_reinject_control control;
6967 r = -EFAULT;
6968 if (copy_from_user(&control, argp, sizeof(control)))
6969 goto out;
6970 r = -ENXIO;
6971 if (!kvm->arch.vpit)
6972 goto out;
6973 r = kvm_vm_ioctl_reinject(kvm, &control);
6974 break;
6975 }
6976 case KVM_SET_BOOT_CPU_ID:
6977 r = 0;
6978 mutex_lock(&kvm->lock);
6979 if (kvm->created_vcpus)
6980 r = -EBUSY;
6981 else
6982 kvm->arch.bsp_vcpu_id = arg;
6983 mutex_unlock(&kvm->lock);
6984 break;
6985 #ifdef CONFIG_KVM_XEN
6986 case KVM_XEN_HVM_CONFIG: {
6987 struct kvm_xen_hvm_config xhc;
6988 r = -EFAULT;
6989 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6990 goto out;
6991 r = kvm_xen_hvm_config(kvm, &xhc);
6992 break;
6993 }
6994 case KVM_XEN_HVM_GET_ATTR: {
6995 struct kvm_xen_hvm_attr xha;
6996
6997 r = -EFAULT;
6998 if (copy_from_user(&xha, argp, sizeof(xha)))
6999 goto out;
7000 r = kvm_xen_hvm_get_attr(kvm, &xha);
7001 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7002 r = -EFAULT;
7003 break;
7004 }
7005 case KVM_XEN_HVM_SET_ATTR: {
7006 struct kvm_xen_hvm_attr xha;
7007
7008 r = -EFAULT;
7009 if (copy_from_user(&xha, argp, sizeof(xha)))
7010 goto out;
7011 r = kvm_xen_hvm_set_attr(kvm, &xha);
7012 break;
7013 }
7014 case KVM_XEN_HVM_EVTCHN_SEND: {
7015 struct kvm_irq_routing_xen_evtchn uxe;
7016
7017 r = -EFAULT;
7018 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7019 goto out;
7020 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7021 break;
7022 }
7023 #endif
7024 case KVM_SET_CLOCK:
7025 r = kvm_vm_ioctl_set_clock(kvm, argp);
7026 break;
7027 case KVM_GET_CLOCK:
7028 r = kvm_vm_ioctl_get_clock(kvm, argp);
7029 break;
7030 case KVM_SET_TSC_KHZ: {
7031 u32 user_tsc_khz;
7032
7033 r = -EINVAL;
7034 user_tsc_khz = (u32)arg;
7035
7036 if (kvm_caps.has_tsc_control &&
7037 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7038 goto out;
7039
7040 if (user_tsc_khz == 0)
7041 user_tsc_khz = tsc_khz;
7042
7043 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7044 r = 0;
7045
7046 goto out;
7047 }
7048 case KVM_GET_TSC_KHZ: {
7049 r = READ_ONCE(kvm->arch.default_tsc_khz);
7050 goto out;
7051 }
7052 case KVM_MEMORY_ENCRYPT_OP: {
7053 r = -ENOTTY;
7054 if (!kvm_x86_ops.mem_enc_ioctl)
7055 goto out;
7056
7057 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7058 break;
7059 }
7060 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7061 struct kvm_enc_region region;
7062
7063 r = -EFAULT;
7064 if (copy_from_user(®ion, argp, sizeof(region)))
7065 goto out;
7066
7067 r = -ENOTTY;
7068 if (!kvm_x86_ops.mem_enc_register_region)
7069 goto out;
7070
7071 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7072 break;
7073 }
7074 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7075 struct kvm_enc_region region;
7076
7077 r = -EFAULT;
7078 if (copy_from_user(®ion, argp, sizeof(region)))
7079 goto out;
7080
7081 r = -ENOTTY;
7082 if (!kvm_x86_ops.mem_enc_unregister_region)
7083 goto out;
7084
7085 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7086 break;
7087 }
7088 case KVM_HYPERV_EVENTFD: {
7089 struct kvm_hyperv_eventfd hvevfd;
7090
7091 r = -EFAULT;
7092 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7093 goto out;
7094 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7095 break;
7096 }
7097 case KVM_SET_PMU_EVENT_FILTER:
7098 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7099 break;
7100 case KVM_X86_SET_MSR_FILTER: {
7101 struct kvm_msr_filter __user *user_msr_filter = argp;
7102 struct kvm_msr_filter filter;
7103
7104 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7105 return -EFAULT;
7106
7107 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7108 break;
7109 }
7110 default:
7111 r = -ENOTTY;
7112 }
7113 out:
7114 return r;
7115 }
7116
kvm_probe_feature_msr(u32 msr_index)7117 static void kvm_probe_feature_msr(u32 msr_index)
7118 {
7119 struct kvm_msr_entry msr = {
7120 .index = msr_index,
7121 };
7122
7123 if (kvm_get_msr_feature(&msr))
7124 return;
7125
7126 msr_based_features[num_msr_based_features++] = msr_index;
7127 }
7128
kvm_probe_msr_to_save(u32 msr_index)7129 static void kvm_probe_msr_to_save(u32 msr_index)
7130 {
7131 u32 dummy[2];
7132
7133 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7134 return;
7135
7136 /*
7137 * Even MSRs that are valid in the host may not be exposed to guests in
7138 * some cases.
7139 */
7140 switch (msr_index) {
7141 case MSR_IA32_BNDCFGS:
7142 if (!kvm_mpx_supported())
7143 return;
7144 break;
7145 case MSR_TSC_AUX:
7146 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7147 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7148 return;
7149 break;
7150 case MSR_IA32_UMWAIT_CONTROL:
7151 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7152 return;
7153 break;
7154 case MSR_IA32_RTIT_CTL:
7155 case MSR_IA32_RTIT_STATUS:
7156 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7157 return;
7158 break;
7159 case MSR_IA32_RTIT_CR3_MATCH:
7160 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7161 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7162 return;
7163 break;
7164 case MSR_IA32_RTIT_OUTPUT_BASE:
7165 case MSR_IA32_RTIT_OUTPUT_MASK:
7166 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7167 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7168 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7169 return;
7170 break;
7171 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7172 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7173 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7174 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7175 return;
7176 break;
7177 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7178 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7179 kvm_pmu_cap.num_counters_gp)
7180 return;
7181 break;
7182 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7183 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7184 kvm_pmu_cap.num_counters_gp)
7185 return;
7186 break;
7187 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7188 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7189 kvm_pmu_cap.num_counters_fixed)
7190 return;
7191 break;
7192 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7193 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7194 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7195 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7196 return;
7197 break;
7198 case MSR_IA32_XFD:
7199 case MSR_IA32_XFD_ERR:
7200 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7201 return;
7202 break;
7203 case MSR_IA32_TSX_CTRL:
7204 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7205 return;
7206 break;
7207 default:
7208 break;
7209 }
7210
7211 msrs_to_save[num_msrs_to_save++] = msr_index;
7212 }
7213
kvm_init_msr_lists(void)7214 static void kvm_init_msr_lists(void)
7215 {
7216 unsigned i;
7217
7218 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7219 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7220
7221 num_msrs_to_save = 0;
7222 num_emulated_msrs = 0;
7223 num_msr_based_features = 0;
7224
7225 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7226 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7227
7228 if (enable_pmu) {
7229 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7230 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7231 }
7232
7233 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7234 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7235 continue;
7236
7237 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7238 }
7239
7240 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7241 kvm_probe_feature_msr(i);
7242
7243 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7244 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7245 }
7246
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7247 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7248 const void *v)
7249 {
7250 int handled = 0;
7251 int n;
7252
7253 do {
7254 n = min(len, 8);
7255 if (!(lapic_in_kernel(vcpu) &&
7256 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7257 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7258 break;
7259 handled += n;
7260 addr += n;
7261 len -= n;
7262 v += n;
7263 } while (len);
7264
7265 return handled;
7266 }
7267
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7268 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7269 {
7270 int handled = 0;
7271 int n;
7272
7273 do {
7274 n = min(len, 8);
7275 if (!(lapic_in_kernel(vcpu) &&
7276 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7277 addr, n, v))
7278 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7279 break;
7280 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7281 handled += n;
7282 addr += n;
7283 len -= n;
7284 v += n;
7285 } while (len);
7286
7287 return handled;
7288 }
7289
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7290 void kvm_set_segment(struct kvm_vcpu *vcpu,
7291 struct kvm_segment *var, int seg)
7292 {
7293 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7294 }
7295
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7296 void kvm_get_segment(struct kvm_vcpu *vcpu,
7297 struct kvm_segment *var, int seg)
7298 {
7299 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7300 }
7301
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7302 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7303 struct x86_exception *exception)
7304 {
7305 struct kvm_mmu *mmu = vcpu->arch.mmu;
7306 gpa_t t_gpa;
7307
7308 BUG_ON(!mmu_is_nested(vcpu));
7309
7310 /* NPT walks are always user-walks */
7311 access |= PFERR_USER_MASK;
7312 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7313
7314 return t_gpa;
7315 }
7316
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7317 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7318 struct x86_exception *exception)
7319 {
7320 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7321
7322 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7323 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7324 }
7325 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7326
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7327 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7328 struct x86_exception *exception)
7329 {
7330 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7331
7332 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7333 access |= PFERR_WRITE_MASK;
7334 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7335 }
7336 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7337
7338 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7339 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7340 struct x86_exception *exception)
7341 {
7342 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7343
7344 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7345 }
7346
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7347 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7348 struct kvm_vcpu *vcpu, u64 access,
7349 struct x86_exception *exception)
7350 {
7351 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7352 void *data = val;
7353 int r = X86EMUL_CONTINUE;
7354
7355 while (bytes) {
7356 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7357 unsigned offset = addr & (PAGE_SIZE-1);
7358 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7359 int ret;
7360
7361 if (gpa == INVALID_GPA)
7362 return X86EMUL_PROPAGATE_FAULT;
7363 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7364 offset, toread);
7365 if (ret < 0) {
7366 r = X86EMUL_IO_NEEDED;
7367 goto out;
7368 }
7369
7370 bytes -= toread;
7371 data += toread;
7372 addr += toread;
7373 }
7374 out:
7375 return r;
7376 }
7377
7378 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7379 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7380 gva_t addr, void *val, unsigned int bytes,
7381 struct x86_exception *exception)
7382 {
7383 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7384 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7385 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7386 unsigned offset;
7387 int ret;
7388
7389 /* Inline kvm_read_guest_virt_helper for speed. */
7390 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7391 exception);
7392 if (unlikely(gpa == INVALID_GPA))
7393 return X86EMUL_PROPAGATE_FAULT;
7394
7395 offset = addr & (PAGE_SIZE-1);
7396 if (WARN_ON(offset + bytes > PAGE_SIZE))
7397 bytes = (unsigned)PAGE_SIZE - offset;
7398 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7399 offset, bytes);
7400 if (unlikely(ret < 0))
7401 return X86EMUL_IO_NEEDED;
7402
7403 return X86EMUL_CONTINUE;
7404 }
7405
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7406 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7407 gva_t addr, void *val, unsigned int bytes,
7408 struct x86_exception *exception)
7409 {
7410 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7411
7412 /*
7413 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7414 * is returned, but our callers are not ready for that and they blindly
7415 * call kvm_inject_page_fault. Ensure that they at least do not leak
7416 * uninitialized kernel stack memory into cr2 and error code.
7417 */
7418 memset(exception, 0, sizeof(*exception));
7419 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7420 exception);
7421 }
7422 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7423
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7424 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7425 gva_t addr, void *val, unsigned int bytes,
7426 struct x86_exception *exception, bool system)
7427 {
7428 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7429 u64 access = 0;
7430
7431 if (system)
7432 access |= PFERR_IMPLICIT_ACCESS;
7433 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7434 access |= PFERR_USER_MASK;
7435
7436 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7437 }
7438
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7439 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7440 struct kvm_vcpu *vcpu, u64 access,
7441 struct x86_exception *exception)
7442 {
7443 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7444 void *data = val;
7445 int r = X86EMUL_CONTINUE;
7446
7447 while (bytes) {
7448 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7449 unsigned offset = addr & (PAGE_SIZE-1);
7450 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7451 int ret;
7452
7453 if (gpa == INVALID_GPA)
7454 return X86EMUL_PROPAGATE_FAULT;
7455 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7456 if (ret < 0) {
7457 r = X86EMUL_IO_NEEDED;
7458 goto out;
7459 }
7460
7461 bytes -= towrite;
7462 data += towrite;
7463 addr += towrite;
7464 }
7465 out:
7466 return r;
7467 }
7468
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7469 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7470 unsigned int bytes, struct x86_exception *exception,
7471 bool system)
7472 {
7473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7474 u64 access = PFERR_WRITE_MASK;
7475
7476 if (system)
7477 access |= PFERR_IMPLICIT_ACCESS;
7478 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7479 access |= PFERR_USER_MASK;
7480
7481 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7482 access, exception);
7483 }
7484
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7485 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7486 unsigned int bytes, struct x86_exception *exception)
7487 {
7488 /* kvm_write_guest_virt_system can pull in tons of pages. */
7489 vcpu->arch.l1tf_flush_l1d = true;
7490
7491 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7492 PFERR_WRITE_MASK, exception);
7493 }
7494 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7495
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7496 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7497 void *insn, int insn_len)
7498 {
7499 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7500 insn, insn_len);
7501 }
7502
handle_ud(struct kvm_vcpu * vcpu)7503 int handle_ud(struct kvm_vcpu *vcpu)
7504 {
7505 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7506 int fep_flags = READ_ONCE(force_emulation_prefix);
7507 int emul_type = EMULTYPE_TRAP_UD;
7508 char sig[5]; /* ud2; .ascii "kvm" */
7509 struct x86_exception e;
7510
7511 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7512 return 1;
7513
7514 if (fep_flags &&
7515 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7516 sig, sizeof(sig), &e) == 0 &&
7517 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7518 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7519 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7520 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7521 emul_type = EMULTYPE_TRAP_UD_FORCED;
7522 }
7523
7524 return kvm_emulate_instruction(vcpu, emul_type);
7525 }
7526 EXPORT_SYMBOL_GPL(handle_ud);
7527
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7528 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7529 gpa_t gpa, bool write)
7530 {
7531 /* For APIC access vmexit */
7532 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7533 return 1;
7534
7535 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7536 trace_vcpu_match_mmio(gva, gpa, write, true);
7537 return 1;
7538 }
7539
7540 return 0;
7541 }
7542
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7543 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7544 gpa_t *gpa, struct x86_exception *exception,
7545 bool write)
7546 {
7547 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7548 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7549 | (write ? PFERR_WRITE_MASK : 0);
7550
7551 /*
7552 * currently PKRU is only applied to ept enabled guest so
7553 * there is no pkey in EPT page table for L1 guest or EPT
7554 * shadow page table for L2 guest.
7555 */
7556 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7557 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7558 vcpu->arch.mmio_access, 0, access))) {
7559 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7560 (gva & (PAGE_SIZE - 1));
7561 trace_vcpu_match_mmio(gva, *gpa, write, false);
7562 return 1;
7563 }
7564
7565 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7566
7567 if (*gpa == INVALID_GPA)
7568 return -1;
7569
7570 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7571 }
7572
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7573 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7574 const void *val, int bytes)
7575 {
7576 int ret;
7577
7578 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7579 if (ret < 0)
7580 return 0;
7581 kvm_page_track_write(vcpu, gpa, val, bytes);
7582 return 1;
7583 }
7584
7585 struct read_write_emulator_ops {
7586 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7587 int bytes);
7588 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7589 void *val, int bytes);
7590 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7591 int bytes, void *val);
7592 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7593 void *val, int bytes);
7594 bool write;
7595 };
7596
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7597 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7598 {
7599 if (vcpu->mmio_read_completed) {
7600 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7601 vcpu->mmio_fragments[0].gpa, val);
7602 vcpu->mmio_read_completed = 0;
7603 return 1;
7604 }
7605
7606 return 0;
7607 }
7608
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7609 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7610 void *val, int bytes)
7611 {
7612 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7613 }
7614
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7615 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7616 void *val, int bytes)
7617 {
7618 return emulator_write_phys(vcpu, gpa, val, bytes);
7619 }
7620
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7621 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7622 {
7623 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7624 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7625 }
7626
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7627 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7628 void *val, int bytes)
7629 {
7630 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7631 return X86EMUL_IO_NEEDED;
7632 }
7633
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7634 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7635 void *val, int bytes)
7636 {
7637 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7638
7639 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7640 return X86EMUL_CONTINUE;
7641 }
7642
7643 static const struct read_write_emulator_ops read_emultor = {
7644 .read_write_prepare = read_prepare,
7645 .read_write_emulate = read_emulate,
7646 .read_write_mmio = vcpu_mmio_read,
7647 .read_write_exit_mmio = read_exit_mmio,
7648 };
7649
7650 static const struct read_write_emulator_ops write_emultor = {
7651 .read_write_emulate = write_emulate,
7652 .read_write_mmio = write_mmio,
7653 .read_write_exit_mmio = write_exit_mmio,
7654 .write = true,
7655 };
7656
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7657 static int emulator_read_write_onepage(unsigned long addr, void *val,
7658 unsigned int bytes,
7659 struct x86_exception *exception,
7660 struct kvm_vcpu *vcpu,
7661 const struct read_write_emulator_ops *ops)
7662 {
7663 gpa_t gpa;
7664 int handled, ret;
7665 bool write = ops->write;
7666 struct kvm_mmio_fragment *frag;
7667 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7668
7669 /*
7670 * If the exit was due to a NPF we may already have a GPA.
7671 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7672 * Note, this cannot be used on string operations since string
7673 * operation using rep will only have the initial GPA from the NPF
7674 * occurred.
7675 */
7676 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7677 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7678 gpa = ctxt->gpa_val;
7679 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7680 } else {
7681 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7682 if (ret < 0)
7683 return X86EMUL_PROPAGATE_FAULT;
7684 }
7685
7686 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7687 return X86EMUL_CONTINUE;
7688
7689 /*
7690 * Is this MMIO handled locally?
7691 */
7692 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7693 if (handled == bytes)
7694 return X86EMUL_CONTINUE;
7695
7696 gpa += handled;
7697 bytes -= handled;
7698 val += handled;
7699
7700 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7701 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7702 frag->gpa = gpa;
7703 frag->data = val;
7704 frag->len = bytes;
7705 return X86EMUL_CONTINUE;
7706 }
7707
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7708 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7709 unsigned long addr,
7710 void *val, unsigned int bytes,
7711 struct x86_exception *exception,
7712 const struct read_write_emulator_ops *ops)
7713 {
7714 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7715 gpa_t gpa;
7716 int rc;
7717
7718 if (ops->read_write_prepare &&
7719 ops->read_write_prepare(vcpu, val, bytes))
7720 return X86EMUL_CONTINUE;
7721
7722 vcpu->mmio_nr_fragments = 0;
7723
7724 /* Crossing a page boundary? */
7725 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7726 int now;
7727
7728 now = -addr & ~PAGE_MASK;
7729 rc = emulator_read_write_onepage(addr, val, now, exception,
7730 vcpu, ops);
7731
7732 if (rc != X86EMUL_CONTINUE)
7733 return rc;
7734 addr += now;
7735 if (ctxt->mode != X86EMUL_MODE_PROT64)
7736 addr = (u32)addr;
7737 val += now;
7738 bytes -= now;
7739 }
7740
7741 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7742 vcpu, ops);
7743 if (rc != X86EMUL_CONTINUE)
7744 return rc;
7745
7746 if (!vcpu->mmio_nr_fragments)
7747 return rc;
7748
7749 gpa = vcpu->mmio_fragments[0].gpa;
7750
7751 vcpu->mmio_needed = 1;
7752 vcpu->mmio_cur_fragment = 0;
7753
7754 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7755 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7756 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7757 vcpu->run->mmio.phys_addr = gpa;
7758
7759 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7760 }
7761
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7762 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7763 unsigned long addr,
7764 void *val,
7765 unsigned int bytes,
7766 struct x86_exception *exception)
7767 {
7768 return emulator_read_write(ctxt, addr, val, bytes,
7769 exception, &read_emultor);
7770 }
7771
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7772 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7773 unsigned long addr,
7774 const void *val,
7775 unsigned int bytes,
7776 struct x86_exception *exception)
7777 {
7778 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7779 exception, &write_emultor);
7780 }
7781
7782 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7783 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7784
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7785 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7786 unsigned long addr,
7787 const void *old,
7788 const void *new,
7789 unsigned int bytes,
7790 struct x86_exception *exception)
7791 {
7792 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7793 u64 page_line_mask;
7794 unsigned long hva;
7795 gpa_t gpa;
7796 int r;
7797
7798 /* guests cmpxchg8b have to be emulated atomically */
7799 if (bytes > 8 || (bytes & (bytes - 1)))
7800 goto emul_write;
7801
7802 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7803
7804 if (gpa == INVALID_GPA ||
7805 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7806 goto emul_write;
7807
7808 /*
7809 * Emulate the atomic as a straight write to avoid #AC if SLD is
7810 * enabled in the host and the access splits a cache line.
7811 */
7812 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7813 page_line_mask = ~(cache_line_size() - 1);
7814 else
7815 page_line_mask = PAGE_MASK;
7816
7817 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7818 goto emul_write;
7819
7820 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7821 if (kvm_is_error_hva(hva))
7822 goto emul_write;
7823
7824 hva += offset_in_page(gpa);
7825
7826 switch (bytes) {
7827 case 1:
7828 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7829 break;
7830 case 2:
7831 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7832 break;
7833 case 4:
7834 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7835 break;
7836 case 8:
7837 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7838 break;
7839 default:
7840 BUG();
7841 }
7842
7843 if (r < 0)
7844 return X86EMUL_UNHANDLEABLE;
7845
7846 /*
7847 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
7848 * successful, as the old value is written back on failure. Note, for
7849 * live migration, this is unnecessarily conservative as CMPXCHG writes
7850 * back the original value and the access is atomic, but KVM's ABI is
7851 * that all writes are dirty logged, regardless of the value written.
7852 */
7853 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
7854
7855 if (r)
7856 return X86EMUL_CMPXCHG_FAILED;
7857
7858 kvm_page_track_write(vcpu, gpa, new, bytes);
7859
7860 return X86EMUL_CONTINUE;
7861
7862 emul_write:
7863 pr_warn_once("emulating exchange as write\n");
7864
7865 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7866 }
7867
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)7868 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7869 unsigned short port, void *data,
7870 unsigned int count, bool in)
7871 {
7872 unsigned i;
7873 int r;
7874
7875 WARN_ON_ONCE(vcpu->arch.pio.count);
7876 for (i = 0; i < count; i++) {
7877 if (in)
7878 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7879 else
7880 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7881
7882 if (r) {
7883 if (i == 0)
7884 goto userspace_io;
7885
7886 /*
7887 * Userspace must have unregistered the device while PIO
7888 * was running. Drop writes / read as 0.
7889 */
7890 if (in)
7891 memset(data, 0, size * (count - i));
7892 break;
7893 }
7894
7895 data += size;
7896 }
7897 return 1;
7898
7899 userspace_io:
7900 vcpu->arch.pio.port = port;
7901 vcpu->arch.pio.in = in;
7902 vcpu->arch.pio.count = count;
7903 vcpu->arch.pio.size = size;
7904
7905 if (in)
7906 memset(vcpu->arch.pio_data, 0, size * count);
7907 else
7908 memcpy(vcpu->arch.pio_data, data, size * count);
7909
7910 vcpu->run->exit_reason = KVM_EXIT_IO;
7911 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7912 vcpu->run->io.size = size;
7913 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7914 vcpu->run->io.count = count;
7915 vcpu->run->io.port = port;
7916 return 0;
7917 }
7918
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7919 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7920 unsigned short port, void *val, unsigned int count)
7921 {
7922 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7923 if (r)
7924 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7925
7926 return r;
7927 }
7928
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7929 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7930 {
7931 int size = vcpu->arch.pio.size;
7932 unsigned int count = vcpu->arch.pio.count;
7933 memcpy(val, vcpu->arch.pio_data, size * count);
7934 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7935 vcpu->arch.pio.count = 0;
7936 }
7937
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7938 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7939 int size, unsigned short port, void *val,
7940 unsigned int count)
7941 {
7942 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7943 if (vcpu->arch.pio.count) {
7944 /*
7945 * Complete a previous iteration that required userspace I/O.
7946 * Note, @count isn't guaranteed to match pio.count as userspace
7947 * can modify ECX before rerunning the vCPU. Ignore any such
7948 * shenanigans as KVM doesn't support modifying the rep count,
7949 * and the emulator ensures @count doesn't overflow the buffer.
7950 */
7951 complete_emulator_pio_in(vcpu, val);
7952 return 1;
7953 }
7954
7955 return emulator_pio_in(vcpu, size, port, val, count);
7956 }
7957
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7958 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7959 unsigned short port, const void *val,
7960 unsigned int count)
7961 {
7962 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7963 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7964 }
7965
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7966 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7967 int size, unsigned short port,
7968 const void *val, unsigned int count)
7969 {
7970 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7971 }
7972
get_segment_base(struct kvm_vcpu * vcpu,int seg)7973 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7974 {
7975 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7976 }
7977
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7978 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7979 {
7980 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7981 }
7982
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7983 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7984 {
7985 if (!need_emulate_wbinvd(vcpu))
7986 return X86EMUL_CONTINUE;
7987
7988 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7989 int cpu = get_cpu();
7990
7991 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7992 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7993 wbinvd_ipi, NULL, 1);
7994 put_cpu();
7995 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7996 } else
7997 wbinvd();
7998 return X86EMUL_CONTINUE;
7999 }
8000
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8001 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8002 {
8003 kvm_emulate_wbinvd_noskip(vcpu);
8004 return kvm_skip_emulated_instruction(vcpu);
8005 }
8006 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8007
8008
8009
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8010 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8011 {
8012 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8013 }
8014
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)8015 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8016 unsigned long *dest)
8017 {
8018 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8019 }
8020
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8021 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8022 unsigned long value)
8023 {
8024
8025 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8026 }
8027
mk_cr_64(u64 curr_cr,u32 new_val)8028 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8029 {
8030 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8031 }
8032
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8033 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8034 {
8035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8036 unsigned long value;
8037
8038 switch (cr) {
8039 case 0:
8040 value = kvm_read_cr0(vcpu);
8041 break;
8042 case 2:
8043 value = vcpu->arch.cr2;
8044 break;
8045 case 3:
8046 value = kvm_read_cr3(vcpu);
8047 break;
8048 case 4:
8049 value = kvm_read_cr4(vcpu);
8050 break;
8051 case 8:
8052 value = kvm_get_cr8(vcpu);
8053 break;
8054 default:
8055 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8056 return 0;
8057 }
8058
8059 return value;
8060 }
8061
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8062 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8063 {
8064 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8065 int res = 0;
8066
8067 switch (cr) {
8068 case 0:
8069 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8070 break;
8071 case 2:
8072 vcpu->arch.cr2 = val;
8073 break;
8074 case 3:
8075 res = kvm_set_cr3(vcpu, val);
8076 break;
8077 case 4:
8078 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8079 break;
8080 case 8:
8081 res = kvm_set_cr8(vcpu, val);
8082 break;
8083 default:
8084 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8085 res = -1;
8086 }
8087
8088 return res;
8089 }
8090
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8091 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8092 {
8093 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8094 }
8095
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8096 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8097 {
8098 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8099 }
8100
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8101 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8102 {
8103 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8104 }
8105
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8106 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8107 {
8108 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8109 }
8110
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8111 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8112 {
8113 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8114 }
8115
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8116 static unsigned long emulator_get_cached_segment_base(
8117 struct x86_emulate_ctxt *ctxt, int seg)
8118 {
8119 return get_segment_base(emul_to_vcpu(ctxt), seg);
8120 }
8121
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8122 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8123 struct desc_struct *desc, u32 *base3,
8124 int seg)
8125 {
8126 struct kvm_segment var;
8127
8128 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8129 *selector = var.selector;
8130
8131 if (var.unusable) {
8132 memset(desc, 0, sizeof(*desc));
8133 if (base3)
8134 *base3 = 0;
8135 return false;
8136 }
8137
8138 if (var.g)
8139 var.limit >>= 12;
8140 set_desc_limit(desc, var.limit);
8141 set_desc_base(desc, (unsigned long)var.base);
8142 #ifdef CONFIG_X86_64
8143 if (base3)
8144 *base3 = var.base >> 32;
8145 #endif
8146 desc->type = var.type;
8147 desc->s = var.s;
8148 desc->dpl = var.dpl;
8149 desc->p = var.present;
8150 desc->avl = var.avl;
8151 desc->l = var.l;
8152 desc->d = var.db;
8153 desc->g = var.g;
8154
8155 return true;
8156 }
8157
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8158 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8159 struct desc_struct *desc, u32 base3,
8160 int seg)
8161 {
8162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8163 struct kvm_segment var;
8164
8165 var.selector = selector;
8166 var.base = get_desc_base(desc);
8167 #ifdef CONFIG_X86_64
8168 var.base |= ((u64)base3) << 32;
8169 #endif
8170 var.limit = get_desc_limit(desc);
8171 if (desc->g)
8172 var.limit = (var.limit << 12) | 0xfff;
8173 var.type = desc->type;
8174 var.dpl = desc->dpl;
8175 var.db = desc->d;
8176 var.s = desc->s;
8177 var.l = desc->l;
8178 var.g = desc->g;
8179 var.avl = desc->avl;
8180 var.present = desc->p;
8181 var.unusable = !var.present;
8182 var.padding = 0;
8183
8184 kvm_set_segment(vcpu, &var, seg);
8185 return;
8186 }
8187
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8188 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8189 u32 msr_index, u64 *pdata)
8190 {
8191 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8192 int r;
8193
8194 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8195 if (r < 0)
8196 return X86EMUL_UNHANDLEABLE;
8197
8198 if (r) {
8199 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8200 complete_emulated_rdmsr, r))
8201 return X86EMUL_IO_NEEDED;
8202
8203 trace_kvm_msr_read_ex(msr_index);
8204 return X86EMUL_PROPAGATE_FAULT;
8205 }
8206
8207 trace_kvm_msr_read(msr_index, *pdata);
8208 return X86EMUL_CONTINUE;
8209 }
8210
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8211 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8212 u32 msr_index, u64 data)
8213 {
8214 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8215 int r;
8216
8217 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8218 if (r < 0)
8219 return X86EMUL_UNHANDLEABLE;
8220
8221 if (r) {
8222 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8223 complete_emulated_msr_access, r))
8224 return X86EMUL_IO_NEEDED;
8225
8226 trace_kvm_msr_write_ex(msr_index, data);
8227 return X86EMUL_PROPAGATE_FAULT;
8228 }
8229
8230 trace_kvm_msr_write(msr_index, data);
8231 return X86EMUL_CONTINUE;
8232 }
8233
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8234 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8235 u32 msr_index, u64 *pdata)
8236 {
8237 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8238 }
8239
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)8240 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8241 u32 pmc)
8242 {
8243 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8244 return 0;
8245 return -EINVAL;
8246 }
8247
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8248 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8249 u32 pmc, u64 *pdata)
8250 {
8251 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8252 }
8253
emulator_halt(struct x86_emulate_ctxt * ctxt)8254 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8255 {
8256 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8257 }
8258
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8259 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8260 struct x86_instruction_info *info,
8261 enum x86_intercept_stage stage)
8262 {
8263 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8264 &ctxt->exception);
8265 }
8266
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8267 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8268 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8269 bool exact_only)
8270 {
8271 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8272 }
8273
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8274 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8275 {
8276 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8277 }
8278
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8279 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8280 {
8281 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8282 }
8283
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8284 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8285 {
8286 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8287 }
8288
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8289 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8290 {
8291 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8292 }
8293
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8294 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8295 {
8296 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8297 }
8298
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8299 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8300 {
8301 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8302 }
8303
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8304 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8305 {
8306 return is_smm(emul_to_vcpu(ctxt));
8307 }
8308
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8309 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8310 {
8311 return is_guest_mode(emul_to_vcpu(ctxt));
8312 }
8313
8314 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8315 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8316 {
8317 WARN_ON_ONCE(1);
8318 return X86EMUL_UNHANDLEABLE;
8319 }
8320 #endif
8321
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8322 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8323 {
8324 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8325 }
8326
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8327 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8328 {
8329 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8330 }
8331
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8332 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8333 {
8334 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8335
8336 if (!kvm->vm_bugged)
8337 kvm_vm_bugged(kvm);
8338 }
8339
8340 static const struct x86_emulate_ops emulate_ops = {
8341 .vm_bugged = emulator_vm_bugged,
8342 .read_gpr = emulator_read_gpr,
8343 .write_gpr = emulator_write_gpr,
8344 .read_std = emulator_read_std,
8345 .write_std = emulator_write_std,
8346 .fetch = kvm_fetch_guest_virt,
8347 .read_emulated = emulator_read_emulated,
8348 .write_emulated = emulator_write_emulated,
8349 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8350 .invlpg = emulator_invlpg,
8351 .pio_in_emulated = emulator_pio_in_emulated,
8352 .pio_out_emulated = emulator_pio_out_emulated,
8353 .get_segment = emulator_get_segment,
8354 .set_segment = emulator_set_segment,
8355 .get_cached_segment_base = emulator_get_cached_segment_base,
8356 .get_gdt = emulator_get_gdt,
8357 .get_idt = emulator_get_idt,
8358 .set_gdt = emulator_set_gdt,
8359 .set_idt = emulator_set_idt,
8360 .get_cr = emulator_get_cr,
8361 .set_cr = emulator_set_cr,
8362 .cpl = emulator_get_cpl,
8363 .get_dr = emulator_get_dr,
8364 .set_dr = emulator_set_dr,
8365 .set_msr_with_filter = emulator_set_msr_with_filter,
8366 .get_msr_with_filter = emulator_get_msr_with_filter,
8367 .get_msr = emulator_get_msr,
8368 .check_pmc = emulator_check_pmc,
8369 .read_pmc = emulator_read_pmc,
8370 .halt = emulator_halt,
8371 .wbinvd = emulator_wbinvd,
8372 .fix_hypercall = emulator_fix_hypercall,
8373 .intercept = emulator_intercept,
8374 .get_cpuid = emulator_get_cpuid,
8375 .guest_has_movbe = emulator_guest_has_movbe,
8376 .guest_has_fxsr = emulator_guest_has_fxsr,
8377 .guest_has_rdpid = emulator_guest_has_rdpid,
8378 .set_nmi_mask = emulator_set_nmi_mask,
8379 .is_smm = emulator_is_smm,
8380 .is_guest_mode = emulator_is_guest_mode,
8381 .leave_smm = emulator_leave_smm,
8382 .triple_fault = emulator_triple_fault,
8383 .set_xcr = emulator_set_xcr,
8384 };
8385
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8386 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8387 {
8388 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8389 /*
8390 * an sti; sti; sequence only disable interrupts for the first
8391 * instruction. So, if the last instruction, be it emulated or
8392 * not, left the system with the INT_STI flag enabled, it
8393 * means that the last instruction is an sti. We should not
8394 * leave the flag on in this case. The same goes for mov ss
8395 */
8396 if (int_shadow & mask)
8397 mask = 0;
8398 if (unlikely(int_shadow || mask)) {
8399 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8400 if (!mask)
8401 kvm_make_request(KVM_REQ_EVENT, vcpu);
8402 }
8403 }
8404
inject_emulated_exception(struct kvm_vcpu * vcpu)8405 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8406 {
8407 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8408
8409 if (ctxt->exception.vector == PF_VECTOR)
8410 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8411 else if (ctxt->exception.error_code_valid)
8412 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8413 ctxt->exception.error_code);
8414 else
8415 kvm_queue_exception(vcpu, ctxt->exception.vector);
8416 }
8417
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8418 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8419 {
8420 struct x86_emulate_ctxt *ctxt;
8421
8422 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8423 if (!ctxt) {
8424 pr_err("failed to allocate vcpu's emulator\n");
8425 return NULL;
8426 }
8427
8428 ctxt->vcpu = vcpu;
8429 ctxt->ops = &emulate_ops;
8430 vcpu->arch.emulate_ctxt = ctxt;
8431
8432 return ctxt;
8433 }
8434
init_emulate_ctxt(struct kvm_vcpu * vcpu)8435 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8436 {
8437 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8438 int cs_db, cs_l;
8439
8440 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8441
8442 ctxt->gpa_available = false;
8443 ctxt->eflags = kvm_get_rflags(vcpu);
8444 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8445
8446 ctxt->eip = kvm_rip_read(vcpu);
8447 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8448 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8449 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8450 cs_db ? X86EMUL_MODE_PROT32 :
8451 X86EMUL_MODE_PROT16;
8452 ctxt->interruptibility = 0;
8453 ctxt->have_exception = false;
8454 ctxt->exception.vector = -1;
8455 ctxt->perm_ok = false;
8456
8457 init_decode_cache(ctxt);
8458 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8459 }
8460
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8461 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8462 {
8463 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8464 int ret;
8465
8466 init_emulate_ctxt(vcpu);
8467
8468 ctxt->op_bytes = 2;
8469 ctxt->ad_bytes = 2;
8470 ctxt->_eip = ctxt->eip + inc_eip;
8471 ret = emulate_int_real(ctxt, irq);
8472
8473 if (ret != X86EMUL_CONTINUE) {
8474 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8475 } else {
8476 ctxt->eip = ctxt->_eip;
8477 kvm_rip_write(vcpu, ctxt->eip);
8478 kvm_set_rflags(vcpu, ctxt->eflags);
8479 }
8480 }
8481 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8482
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8483 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8484 u8 ndata, u8 *insn_bytes, u8 insn_size)
8485 {
8486 struct kvm_run *run = vcpu->run;
8487 u64 info[5];
8488 u8 info_start;
8489
8490 /*
8491 * Zero the whole array used to retrieve the exit info, as casting to
8492 * u32 for select entries will leave some chunks uninitialized.
8493 */
8494 memset(&info, 0, sizeof(info));
8495
8496 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8497 &info[2], (u32 *)&info[3],
8498 (u32 *)&info[4]);
8499
8500 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8501 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8502
8503 /*
8504 * There's currently space for 13 entries, but 5 are used for the exit
8505 * reason and info. Restrict to 4 to reduce the maintenance burden
8506 * when expanding kvm_run.emulation_failure in the future.
8507 */
8508 if (WARN_ON_ONCE(ndata > 4))
8509 ndata = 4;
8510
8511 /* Always include the flags as a 'data' entry. */
8512 info_start = 1;
8513 run->emulation_failure.flags = 0;
8514
8515 if (insn_size) {
8516 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8517 sizeof(run->emulation_failure.insn_bytes) != 16));
8518 info_start += 2;
8519 run->emulation_failure.flags |=
8520 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8521 run->emulation_failure.insn_size = insn_size;
8522 memset(run->emulation_failure.insn_bytes, 0x90,
8523 sizeof(run->emulation_failure.insn_bytes));
8524 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8525 }
8526
8527 memcpy(&run->internal.data[info_start], info, sizeof(info));
8528 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8529 ndata * sizeof(data[0]));
8530
8531 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8532 }
8533
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8534 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8535 {
8536 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8537
8538 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8539 ctxt->fetch.end - ctxt->fetch.data);
8540 }
8541
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8542 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8543 u8 ndata)
8544 {
8545 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8546 }
8547 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8548
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8549 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8550 {
8551 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8552 }
8553 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8554
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8555 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8556 {
8557 struct kvm *kvm = vcpu->kvm;
8558
8559 ++vcpu->stat.insn_emulation_fail;
8560 trace_kvm_emulate_insn_failed(vcpu);
8561
8562 if (emulation_type & EMULTYPE_VMWARE_GP) {
8563 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8564 return 1;
8565 }
8566
8567 if (kvm->arch.exit_on_emulation_error ||
8568 (emulation_type & EMULTYPE_SKIP)) {
8569 prepare_emulation_ctxt_failure_exit(vcpu);
8570 return 0;
8571 }
8572
8573 kvm_queue_exception(vcpu, UD_VECTOR);
8574
8575 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8576 prepare_emulation_ctxt_failure_exit(vcpu);
8577 return 0;
8578 }
8579
8580 return 1;
8581 }
8582
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8583 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8584 int emulation_type)
8585 {
8586 gpa_t gpa = cr2_or_gpa;
8587 kvm_pfn_t pfn;
8588
8589 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8590 return false;
8591
8592 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8593 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8594 return false;
8595
8596 if (!vcpu->arch.mmu->root_role.direct) {
8597 /*
8598 * Write permission should be allowed since only
8599 * write access need to be emulated.
8600 */
8601 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8602
8603 /*
8604 * If the mapping is invalid in guest, let cpu retry
8605 * it to generate fault.
8606 */
8607 if (gpa == INVALID_GPA)
8608 return true;
8609 }
8610
8611 /*
8612 * Do not retry the unhandleable instruction if it faults on the
8613 * readonly host memory, otherwise it will goto a infinite loop:
8614 * retry instruction -> write #PF -> emulation fail -> retry
8615 * instruction -> ...
8616 */
8617 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8618
8619 /*
8620 * If the instruction failed on the error pfn, it can not be fixed,
8621 * report the error to userspace.
8622 */
8623 if (is_error_noslot_pfn(pfn))
8624 return false;
8625
8626 kvm_release_pfn_clean(pfn);
8627
8628 /* The instructions are well-emulated on direct mmu. */
8629 if (vcpu->arch.mmu->root_role.direct) {
8630 unsigned int indirect_shadow_pages;
8631
8632 write_lock(&vcpu->kvm->mmu_lock);
8633 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8634 write_unlock(&vcpu->kvm->mmu_lock);
8635
8636 if (indirect_shadow_pages)
8637 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8638
8639 return true;
8640 }
8641
8642 /*
8643 * if emulation was due to access to shadowed page table
8644 * and it failed try to unshadow page and re-enter the
8645 * guest to let CPU execute the instruction.
8646 */
8647 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8648
8649 /*
8650 * If the access faults on its page table, it can not
8651 * be fixed by unprotecting shadow page and it should
8652 * be reported to userspace.
8653 */
8654 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8655 }
8656
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8657 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8658 gpa_t cr2_or_gpa, int emulation_type)
8659 {
8660 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8661 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8662
8663 last_retry_eip = vcpu->arch.last_retry_eip;
8664 last_retry_addr = vcpu->arch.last_retry_addr;
8665
8666 /*
8667 * If the emulation is caused by #PF and it is non-page_table
8668 * writing instruction, it means the VM-EXIT is caused by shadow
8669 * page protected, we can zap the shadow page and retry this
8670 * instruction directly.
8671 *
8672 * Note: if the guest uses a non-page-table modifying instruction
8673 * on the PDE that points to the instruction, then we will unmap
8674 * the instruction and go to an infinite loop. So, we cache the
8675 * last retried eip and the last fault address, if we meet the eip
8676 * and the address again, we can break out of the potential infinite
8677 * loop.
8678 */
8679 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8680
8681 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8682 return false;
8683
8684 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8685 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8686 return false;
8687
8688 if (x86_page_table_writing_insn(ctxt))
8689 return false;
8690
8691 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8692 return false;
8693
8694 vcpu->arch.last_retry_eip = ctxt->eip;
8695 vcpu->arch.last_retry_addr = cr2_or_gpa;
8696
8697 if (!vcpu->arch.mmu->root_role.direct)
8698 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8699
8700 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8701
8702 return true;
8703 }
8704
8705 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8706 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8707
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8708 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8709 unsigned long *db)
8710 {
8711 u32 dr6 = 0;
8712 int i;
8713 u32 enable, rwlen;
8714
8715 enable = dr7;
8716 rwlen = dr7 >> 16;
8717 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8718 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8719 dr6 |= (1 << i);
8720 return dr6;
8721 }
8722
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8723 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8724 {
8725 struct kvm_run *kvm_run = vcpu->run;
8726
8727 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8728 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8729 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8730 kvm_run->debug.arch.exception = DB_VECTOR;
8731 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8732 return 0;
8733 }
8734 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8735 return 1;
8736 }
8737
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8738 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8739 {
8740 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8741 int r;
8742
8743 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8744 if (unlikely(!r))
8745 return 0;
8746
8747 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8748
8749 /*
8750 * rflags is the old, "raw" value of the flags. The new value has
8751 * not been saved yet.
8752 *
8753 * This is correct even for TF set by the guest, because "the
8754 * processor will not generate this exception after the instruction
8755 * that sets the TF flag".
8756 */
8757 if (unlikely(rflags & X86_EFLAGS_TF))
8758 r = kvm_vcpu_do_singlestep(vcpu);
8759 return r;
8760 }
8761 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8762
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8763 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8764 {
8765 u32 shadow;
8766
8767 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8768 return true;
8769
8770 /*
8771 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8772 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8773 * to avoid the relatively expensive CPUID lookup.
8774 */
8775 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8776 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8777 guest_cpuid_is_intel(vcpu);
8778 }
8779
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8780 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8781 int emulation_type, int *r)
8782 {
8783 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8784
8785 /*
8786 * Do not check for code breakpoints if hardware has already done the
8787 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8788 * the instruction has passed all exception checks, and all intercepted
8789 * exceptions that trigger emulation have lower priority than code
8790 * breakpoints, i.e. the fact that the intercepted exception occurred
8791 * means any code breakpoints have already been serviced.
8792 *
8793 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8794 * hardware has checked the RIP of the magic prefix, but not the RIP of
8795 * the instruction being emulated. The intent of forced emulation is
8796 * to behave as if KVM intercepted the instruction without an exception
8797 * and without a prefix.
8798 */
8799 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8800 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8801 return false;
8802
8803 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8804 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8805 struct kvm_run *kvm_run = vcpu->run;
8806 unsigned long eip = kvm_get_linear_rip(vcpu);
8807 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8808 vcpu->arch.guest_debug_dr7,
8809 vcpu->arch.eff_db);
8810
8811 if (dr6 != 0) {
8812 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8813 kvm_run->debug.arch.pc = eip;
8814 kvm_run->debug.arch.exception = DB_VECTOR;
8815 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8816 *r = 0;
8817 return true;
8818 }
8819 }
8820
8821 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8822 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8823 unsigned long eip = kvm_get_linear_rip(vcpu);
8824 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8825 vcpu->arch.dr7,
8826 vcpu->arch.db);
8827
8828 if (dr6 != 0) {
8829 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8830 *r = 1;
8831 return true;
8832 }
8833 }
8834
8835 return false;
8836 }
8837
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8838 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8839 {
8840 switch (ctxt->opcode_len) {
8841 case 1:
8842 switch (ctxt->b) {
8843 case 0xe4: /* IN */
8844 case 0xe5:
8845 case 0xec:
8846 case 0xed:
8847 case 0xe6: /* OUT */
8848 case 0xe7:
8849 case 0xee:
8850 case 0xef:
8851 case 0x6c: /* INS */
8852 case 0x6d:
8853 case 0x6e: /* OUTS */
8854 case 0x6f:
8855 return true;
8856 }
8857 break;
8858 case 2:
8859 switch (ctxt->b) {
8860 case 0x33: /* RDPMC */
8861 return true;
8862 }
8863 break;
8864 }
8865
8866 return false;
8867 }
8868
8869 /*
8870 * Decode an instruction for emulation. The caller is responsible for handling
8871 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8872 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8873 * code breakpoints have higher priority and thus have already been done by
8874 * hardware.
8875 *
8876 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8877 * response to a machine check.
8878 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8879 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8880 void *insn, int insn_len)
8881 {
8882 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8883 int r;
8884
8885 init_emulate_ctxt(vcpu);
8886
8887 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8888
8889 trace_kvm_emulate_insn_start(vcpu);
8890 ++vcpu->stat.insn_emulation;
8891
8892 return r;
8893 }
8894 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8895
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8896 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8897 int emulation_type, void *insn, int insn_len)
8898 {
8899 int r;
8900 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8901 bool writeback = true;
8902
8903 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8904 return 1;
8905
8906 vcpu->arch.l1tf_flush_l1d = true;
8907
8908 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8909 kvm_clear_exception_queue(vcpu);
8910
8911 /*
8912 * Return immediately if RIP hits a code breakpoint, such #DBs
8913 * are fault-like and are higher priority than any faults on
8914 * the code fetch itself.
8915 */
8916 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8917 return r;
8918
8919 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8920 insn, insn_len);
8921 if (r != EMULATION_OK) {
8922 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8923 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8924 kvm_queue_exception(vcpu, UD_VECTOR);
8925 return 1;
8926 }
8927 if (reexecute_instruction(vcpu, cr2_or_gpa,
8928 emulation_type))
8929 return 1;
8930
8931 if (ctxt->have_exception &&
8932 !(emulation_type & EMULTYPE_SKIP)) {
8933 /*
8934 * #UD should result in just EMULATION_FAILED, and trap-like
8935 * exception should not be encountered during decode.
8936 */
8937 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8938 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8939 inject_emulated_exception(vcpu);
8940 return 1;
8941 }
8942 return handle_emulation_failure(vcpu, emulation_type);
8943 }
8944 }
8945
8946 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8947 !is_vmware_backdoor_opcode(ctxt)) {
8948 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8949 return 1;
8950 }
8951
8952 /*
8953 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8954 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8955 * The caller is responsible for updating interruptibility state and
8956 * injecting single-step #DBs.
8957 */
8958 if (emulation_type & EMULTYPE_SKIP) {
8959 if (ctxt->mode != X86EMUL_MODE_PROT64)
8960 ctxt->eip = (u32)ctxt->_eip;
8961 else
8962 ctxt->eip = ctxt->_eip;
8963
8964 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8965 r = 1;
8966 goto writeback;
8967 }
8968
8969 kvm_rip_write(vcpu, ctxt->eip);
8970 if (ctxt->eflags & X86_EFLAGS_RF)
8971 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8972 return 1;
8973 }
8974
8975 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8976 return 1;
8977
8978 /* this is needed for vmware backdoor interface to work since it
8979 changes registers values during IO operation */
8980 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8981 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8982 emulator_invalidate_register_cache(ctxt);
8983 }
8984
8985 restart:
8986 if (emulation_type & EMULTYPE_PF) {
8987 /* Save the faulting GPA (cr2) in the address field */
8988 ctxt->exception.address = cr2_or_gpa;
8989
8990 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8991 if (vcpu->arch.mmu->root_role.direct) {
8992 ctxt->gpa_available = true;
8993 ctxt->gpa_val = cr2_or_gpa;
8994 }
8995 } else {
8996 /* Sanitize the address out of an abundance of paranoia. */
8997 ctxt->exception.address = 0;
8998 }
8999
9000 r = x86_emulate_insn(ctxt);
9001
9002 if (r == EMULATION_INTERCEPTED)
9003 return 1;
9004
9005 if (r == EMULATION_FAILED) {
9006 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9007 return 1;
9008
9009 return handle_emulation_failure(vcpu, emulation_type);
9010 }
9011
9012 if (ctxt->have_exception) {
9013 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9014 vcpu->mmio_needed = false;
9015 r = 1;
9016 inject_emulated_exception(vcpu);
9017 } else if (vcpu->arch.pio.count) {
9018 if (!vcpu->arch.pio.in) {
9019 /* FIXME: return into emulator if single-stepping. */
9020 vcpu->arch.pio.count = 0;
9021 } else {
9022 writeback = false;
9023 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9024 }
9025 r = 0;
9026 } else if (vcpu->mmio_needed) {
9027 ++vcpu->stat.mmio_exits;
9028
9029 if (!vcpu->mmio_is_write)
9030 writeback = false;
9031 r = 0;
9032 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9033 } else if (vcpu->arch.complete_userspace_io) {
9034 writeback = false;
9035 r = 0;
9036 } else if (r == EMULATION_RESTART)
9037 goto restart;
9038 else
9039 r = 1;
9040
9041 writeback:
9042 if (writeback) {
9043 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9044 toggle_interruptibility(vcpu, ctxt->interruptibility);
9045 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9046
9047 /*
9048 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9049 * only supports code breakpoints and general detect #DB, both
9050 * of which are fault-like.
9051 */
9052 if (!ctxt->have_exception ||
9053 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9054 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9055 if (ctxt->is_branch)
9056 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9057 kvm_rip_write(vcpu, ctxt->eip);
9058 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9059 r = kvm_vcpu_do_singlestep(vcpu);
9060 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9061 __kvm_set_rflags(vcpu, ctxt->eflags);
9062 }
9063
9064 /*
9065 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9066 * do nothing, and it will be requested again as soon as
9067 * the shadow expires. But we still need to check here,
9068 * because POPF has no interrupt shadow.
9069 */
9070 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9071 kvm_make_request(KVM_REQ_EVENT, vcpu);
9072 } else
9073 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9074
9075 return r;
9076 }
9077
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9078 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9079 {
9080 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9081 }
9082 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9083
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9084 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9085 void *insn, int insn_len)
9086 {
9087 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9088 }
9089 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9090
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9091 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9092 {
9093 vcpu->arch.pio.count = 0;
9094 return 1;
9095 }
9096
complete_fast_pio_out(struct kvm_vcpu * vcpu)9097 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9098 {
9099 vcpu->arch.pio.count = 0;
9100
9101 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9102 return 1;
9103
9104 return kvm_skip_emulated_instruction(vcpu);
9105 }
9106
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9107 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9108 unsigned short port)
9109 {
9110 unsigned long val = kvm_rax_read(vcpu);
9111 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9112
9113 if (ret)
9114 return ret;
9115
9116 /*
9117 * Workaround userspace that relies on old KVM behavior of %rip being
9118 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9119 */
9120 if (port == 0x7e &&
9121 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9122 vcpu->arch.complete_userspace_io =
9123 complete_fast_pio_out_port_0x7e;
9124 kvm_skip_emulated_instruction(vcpu);
9125 } else {
9126 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9127 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9128 }
9129 return 0;
9130 }
9131
complete_fast_pio_in(struct kvm_vcpu * vcpu)9132 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9133 {
9134 unsigned long val;
9135
9136 /* We should only ever be called with arch.pio.count equal to 1 */
9137 BUG_ON(vcpu->arch.pio.count != 1);
9138
9139 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9140 vcpu->arch.pio.count = 0;
9141 return 1;
9142 }
9143
9144 /* For size less than 4 we merge, else we zero extend */
9145 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9146
9147 complete_emulator_pio_in(vcpu, &val);
9148 kvm_rax_write(vcpu, val);
9149
9150 return kvm_skip_emulated_instruction(vcpu);
9151 }
9152
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9153 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9154 unsigned short port)
9155 {
9156 unsigned long val;
9157 int ret;
9158
9159 /* For size less than 4 we merge, else we zero extend */
9160 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9161
9162 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9163 if (ret) {
9164 kvm_rax_write(vcpu, val);
9165 return ret;
9166 }
9167
9168 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9169 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9170
9171 return 0;
9172 }
9173
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9174 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9175 {
9176 int ret;
9177
9178 if (in)
9179 ret = kvm_fast_pio_in(vcpu, size, port);
9180 else
9181 ret = kvm_fast_pio_out(vcpu, size, port);
9182 return ret && kvm_skip_emulated_instruction(vcpu);
9183 }
9184 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9185
kvmclock_cpu_down_prep(unsigned int cpu)9186 static int kvmclock_cpu_down_prep(unsigned int cpu)
9187 {
9188 __this_cpu_write(cpu_tsc_khz, 0);
9189 return 0;
9190 }
9191
tsc_khz_changed(void * data)9192 static void tsc_khz_changed(void *data)
9193 {
9194 struct cpufreq_freqs *freq = data;
9195 unsigned long khz;
9196
9197 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9198
9199 if (data)
9200 khz = freq->new;
9201 else
9202 khz = cpufreq_quick_get(raw_smp_processor_id());
9203 if (!khz)
9204 khz = tsc_khz;
9205 __this_cpu_write(cpu_tsc_khz, khz);
9206 }
9207
9208 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9209 static void kvm_hyperv_tsc_notifier(void)
9210 {
9211 struct kvm *kvm;
9212 int cpu;
9213
9214 mutex_lock(&kvm_lock);
9215 list_for_each_entry(kvm, &vm_list, vm_list)
9216 kvm_make_mclock_inprogress_request(kvm);
9217
9218 /* no guest entries from this point */
9219 hyperv_stop_tsc_emulation();
9220
9221 /* TSC frequency always matches when on Hyper-V */
9222 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9223 for_each_present_cpu(cpu)
9224 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9225 }
9226 kvm_caps.max_guest_tsc_khz = tsc_khz;
9227
9228 list_for_each_entry(kvm, &vm_list, vm_list) {
9229 __kvm_start_pvclock_update(kvm);
9230 pvclock_update_vm_gtod_copy(kvm);
9231 kvm_end_pvclock_update(kvm);
9232 }
9233
9234 mutex_unlock(&kvm_lock);
9235 }
9236 #endif
9237
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9238 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9239 {
9240 struct kvm *kvm;
9241 struct kvm_vcpu *vcpu;
9242 int send_ipi = 0;
9243 unsigned long i;
9244
9245 /*
9246 * We allow guests to temporarily run on slowing clocks,
9247 * provided we notify them after, or to run on accelerating
9248 * clocks, provided we notify them before. Thus time never
9249 * goes backwards.
9250 *
9251 * However, we have a problem. We can't atomically update
9252 * the frequency of a given CPU from this function; it is
9253 * merely a notifier, which can be called from any CPU.
9254 * Changing the TSC frequency at arbitrary points in time
9255 * requires a recomputation of local variables related to
9256 * the TSC for each VCPU. We must flag these local variables
9257 * to be updated and be sure the update takes place with the
9258 * new frequency before any guests proceed.
9259 *
9260 * Unfortunately, the combination of hotplug CPU and frequency
9261 * change creates an intractable locking scenario; the order
9262 * of when these callouts happen is undefined with respect to
9263 * CPU hotplug, and they can race with each other. As such,
9264 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9265 * undefined; you can actually have a CPU frequency change take
9266 * place in between the computation of X and the setting of the
9267 * variable. To protect against this problem, all updates of
9268 * the per_cpu tsc_khz variable are done in an interrupt
9269 * protected IPI, and all callers wishing to update the value
9270 * must wait for a synchronous IPI to complete (which is trivial
9271 * if the caller is on the CPU already). This establishes the
9272 * necessary total order on variable updates.
9273 *
9274 * Note that because a guest time update may take place
9275 * anytime after the setting of the VCPU's request bit, the
9276 * correct TSC value must be set before the request. However,
9277 * to ensure the update actually makes it to any guest which
9278 * starts running in hardware virtualization between the set
9279 * and the acquisition of the spinlock, we must also ping the
9280 * CPU after setting the request bit.
9281 *
9282 */
9283
9284 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9285
9286 mutex_lock(&kvm_lock);
9287 list_for_each_entry(kvm, &vm_list, vm_list) {
9288 kvm_for_each_vcpu(i, vcpu, kvm) {
9289 if (vcpu->cpu != cpu)
9290 continue;
9291 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9292 if (vcpu->cpu != raw_smp_processor_id())
9293 send_ipi = 1;
9294 }
9295 }
9296 mutex_unlock(&kvm_lock);
9297
9298 if (freq->old < freq->new && send_ipi) {
9299 /*
9300 * We upscale the frequency. Must make the guest
9301 * doesn't see old kvmclock values while running with
9302 * the new frequency, otherwise we risk the guest sees
9303 * time go backwards.
9304 *
9305 * In case we update the frequency for another cpu
9306 * (which might be in guest context) send an interrupt
9307 * to kick the cpu out of guest context. Next time
9308 * guest context is entered kvmclock will be updated,
9309 * so the guest will not see stale values.
9310 */
9311 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9312 }
9313 }
9314
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9315 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9316 void *data)
9317 {
9318 struct cpufreq_freqs *freq = data;
9319 int cpu;
9320
9321 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9322 return 0;
9323 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9324 return 0;
9325
9326 for_each_cpu(cpu, freq->policy->cpus)
9327 __kvmclock_cpufreq_notifier(freq, cpu);
9328
9329 return 0;
9330 }
9331
9332 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9333 .notifier_call = kvmclock_cpufreq_notifier
9334 };
9335
kvmclock_cpu_online(unsigned int cpu)9336 static int kvmclock_cpu_online(unsigned int cpu)
9337 {
9338 tsc_khz_changed(NULL);
9339 return 0;
9340 }
9341
kvm_timer_init(void)9342 static void kvm_timer_init(void)
9343 {
9344 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9345 max_tsc_khz = tsc_khz;
9346
9347 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9348 struct cpufreq_policy *policy;
9349 int cpu;
9350
9351 cpu = get_cpu();
9352 policy = cpufreq_cpu_get(cpu);
9353 if (policy) {
9354 if (policy->cpuinfo.max_freq)
9355 max_tsc_khz = policy->cpuinfo.max_freq;
9356 cpufreq_cpu_put(policy);
9357 }
9358 put_cpu();
9359 }
9360 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9361 CPUFREQ_TRANSITION_NOTIFIER);
9362
9363 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9364 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9365 }
9366 }
9367
9368 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9369 static void pvclock_gtod_update_fn(struct work_struct *work)
9370 {
9371 struct kvm *kvm;
9372 struct kvm_vcpu *vcpu;
9373 unsigned long i;
9374
9375 mutex_lock(&kvm_lock);
9376 list_for_each_entry(kvm, &vm_list, vm_list)
9377 kvm_for_each_vcpu(i, vcpu, kvm)
9378 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9379 atomic_set(&kvm_guest_has_master_clock, 0);
9380 mutex_unlock(&kvm_lock);
9381 }
9382
9383 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9384
9385 /*
9386 * Indirection to move queue_work() out of the tk_core.seq write held
9387 * region to prevent possible deadlocks against time accessors which
9388 * are invoked with work related locks held.
9389 */
pvclock_irq_work_fn(struct irq_work * w)9390 static void pvclock_irq_work_fn(struct irq_work *w)
9391 {
9392 queue_work(system_long_wq, &pvclock_gtod_work);
9393 }
9394
9395 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9396
9397 /*
9398 * Notification about pvclock gtod data update.
9399 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9400 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9401 void *priv)
9402 {
9403 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9404 struct timekeeper *tk = priv;
9405
9406 update_pvclock_gtod(tk);
9407
9408 /*
9409 * Disable master clock if host does not trust, or does not use,
9410 * TSC based clocksource. Delegate queue_work() to irq_work as
9411 * this is invoked with tk_core.seq write held.
9412 */
9413 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9414 atomic_read(&kvm_guest_has_master_clock) != 0)
9415 irq_work_queue(&pvclock_irq_work);
9416 return 0;
9417 }
9418
9419 static struct notifier_block pvclock_gtod_notifier = {
9420 .notifier_call = pvclock_gtod_notify,
9421 };
9422 #endif
9423
kvm_ops_update(struct kvm_x86_init_ops * ops)9424 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9425 {
9426 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9427
9428 #define __KVM_X86_OP(func) \
9429 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9430 #define KVM_X86_OP(func) \
9431 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9432 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9433 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9434 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9435 (void *)__static_call_return0);
9436 #include <asm/kvm-x86-ops.h>
9437 #undef __KVM_X86_OP
9438
9439 kvm_pmu_ops_update(ops->pmu_ops);
9440 }
9441
kvm_x86_check_processor_compatibility(void)9442 static int kvm_x86_check_processor_compatibility(void)
9443 {
9444 int cpu = smp_processor_id();
9445 struct cpuinfo_x86 *c = &cpu_data(cpu);
9446
9447 /*
9448 * Compatibility checks are done when loading KVM and when enabling
9449 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9450 * compatible, i.e. KVM should never perform a compatibility check on
9451 * an offline CPU.
9452 */
9453 WARN_ON(!cpu_online(cpu));
9454
9455 if (__cr4_reserved_bits(cpu_has, c) !=
9456 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9457 return -EIO;
9458
9459 return static_call(kvm_x86_check_processor_compatibility)();
9460 }
9461
kvm_x86_check_cpu_compat(void * ret)9462 static void kvm_x86_check_cpu_compat(void *ret)
9463 {
9464 *(int *)ret = kvm_x86_check_processor_compatibility();
9465 }
9466
__kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9467 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9468 {
9469 u64 host_pat;
9470 int r, cpu;
9471
9472 if (kvm_x86_ops.hardware_enable) {
9473 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9474 return -EEXIST;
9475 }
9476
9477 /*
9478 * KVM explicitly assumes that the guest has an FPU and
9479 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9480 * vCPU's FPU state as a fxregs_state struct.
9481 */
9482 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9483 pr_err("inadequate fpu\n");
9484 return -EOPNOTSUPP;
9485 }
9486
9487 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9488 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9489 return -EOPNOTSUPP;
9490 }
9491
9492 /*
9493 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9494 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9495 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9496 * with an exception. PAT[0] is set to WB on RESET and also by the
9497 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9498 */
9499 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9500 (host_pat & GENMASK(2, 0)) != 6) {
9501 pr_err("host PAT[0] is not WB\n");
9502 return -EIO;
9503 }
9504
9505 x86_emulator_cache = kvm_alloc_emulator_cache();
9506 if (!x86_emulator_cache) {
9507 pr_err("failed to allocate cache for x86 emulator\n");
9508 return -ENOMEM;
9509 }
9510
9511 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9512 if (!user_return_msrs) {
9513 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9514 r = -ENOMEM;
9515 goto out_free_x86_emulator_cache;
9516 }
9517 kvm_nr_uret_msrs = 0;
9518
9519 r = kvm_mmu_vendor_module_init();
9520 if (r)
9521 goto out_free_percpu;
9522
9523 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9524 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9525 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9526 }
9527
9528 rdmsrl_safe(MSR_EFER, &host_efer);
9529
9530 if (boot_cpu_has(X86_FEATURE_XSAVES))
9531 rdmsrl(MSR_IA32_XSS, host_xss);
9532
9533 kvm_init_pmu_capability(ops->pmu_ops);
9534
9535 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9536 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9537
9538 r = ops->hardware_setup();
9539 if (r != 0)
9540 goto out_mmu_exit;
9541
9542 kvm_ops_update(ops);
9543
9544 for_each_online_cpu(cpu) {
9545 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9546 if (r < 0)
9547 goto out_unwind_ops;
9548 }
9549
9550 /*
9551 * Point of no return! DO NOT add error paths below this point unless
9552 * absolutely necessary, as most operations from this point forward
9553 * require unwinding.
9554 */
9555 kvm_timer_init();
9556
9557 if (pi_inject_timer == -1)
9558 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9559 #ifdef CONFIG_X86_64
9560 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9561
9562 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9563 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9564 #endif
9565
9566 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9567
9568 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9569 kvm_caps.supported_xss = 0;
9570
9571 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9572 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9573 #undef __kvm_cpu_cap_has
9574
9575 if (kvm_caps.has_tsc_control) {
9576 /*
9577 * Make sure the user can only configure tsc_khz values that
9578 * fit into a signed integer.
9579 * A min value is not calculated because it will always
9580 * be 1 on all machines.
9581 */
9582 u64 max = min(0x7fffffffULL,
9583 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9584 kvm_caps.max_guest_tsc_khz = max;
9585 }
9586 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9587 kvm_init_msr_lists();
9588 return 0;
9589
9590 out_unwind_ops:
9591 kvm_x86_ops.hardware_enable = NULL;
9592 static_call(kvm_x86_hardware_unsetup)();
9593 out_mmu_exit:
9594 kvm_mmu_vendor_module_exit();
9595 out_free_percpu:
9596 free_percpu(user_return_msrs);
9597 out_free_x86_emulator_cache:
9598 kmem_cache_destroy(x86_emulator_cache);
9599 return r;
9600 }
9601
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9602 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9603 {
9604 int r;
9605
9606 mutex_lock(&vendor_module_lock);
9607 r = __kvm_x86_vendor_init(ops);
9608 mutex_unlock(&vendor_module_lock);
9609
9610 return r;
9611 }
9612 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9613
kvm_x86_vendor_exit(void)9614 void kvm_x86_vendor_exit(void)
9615 {
9616 kvm_unregister_perf_callbacks();
9617
9618 #ifdef CONFIG_X86_64
9619 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9620 clear_hv_tscchange_cb();
9621 #endif
9622 kvm_lapic_exit();
9623
9624 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9625 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9626 CPUFREQ_TRANSITION_NOTIFIER);
9627 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9628 }
9629 #ifdef CONFIG_X86_64
9630 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9631 irq_work_sync(&pvclock_irq_work);
9632 cancel_work_sync(&pvclock_gtod_work);
9633 #endif
9634 static_call(kvm_x86_hardware_unsetup)();
9635 kvm_mmu_vendor_module_exit();
9636 free_percpu(user_return_msrs);
9637 kmem_cache_destroy(x86_emulator_cache);
9638 #ifdef CONFIG_KVM_XEN
9639 static_key_deferred_flush(&kvm_xen_enabled);
9640 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9641 #endif
9642 mutex_lock(&vendor_module_lock);
9643 kvm_x86_ops.hardware_enable = NULL;
9644 mutex_unlock(&vendor_module_lock);
9645 }
9646 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9647
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9648 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9649 {
9650 /*
9651 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9652 * local APIC is in-kernel, the run loop will detect the non-runnable
9653 * state and halt the vCPU. Exit to userspace if the local APIC is
9654 * managed by userspace, in which case userspace is responsible for
9655 * handling wake events.
9656 */
9657 ++vcpu->stat.halt_exits;
9658 if (lapic_in_kernel(vcpu)) {
9659 vcpu->arch.mp_state = state;
9660 return 1;
9661 } else {
9662 vcpu->run->exit_reason = reason;
9663 return 0;
9664 }
9665 }
9666
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9667 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9668 {
9669 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9670 }
9671 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9672
kvm_emulate_halt(struct kvm_vcpu * vcpu)9673 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9674 {
9675 int ret = kvm_skip_emulated_instruction(vcpu);
9676 /*
9677 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9678 * KVM_EXIT_DEBUG here.
9679 */
9680 return kvm_emulate_halt_noskip(vcpu) && ret;
9681 }
9682 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9683
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9684 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9685 {
9686 int ret = kvm_skip_emulated_instruction(vcpu);
9687
9688 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9689 KVM_EXIT_AP_RESET_HOLD) && ret;
9690 }
9691 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9692
9693 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9694 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9695 unsigned long clock_type)
9696 {
9697 struct kvm_clock_pairing clock_pairing;
9698 struct timespec64 ts;
9699 u64 cycle;
9700 int ret;
9701
9702 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9703 return -KVM_EOPNOTSUPP;
9704
9705 /*
9706 * When tsc is in permanent catchup mode guests won't be able to use
9707 * pvclock_read_retry loop to get consistent view of pvclock
9708 */
9709 if (vcpu->arch.tsc_always_catchup)
9710 return -KVM_EOPNOTSUPP;
9711
9712 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9713 return -KVM_EOPNOTSUPP;
9714
9715 clock_pairing.sec = ts.tv_sec;
9716 clock_pairing.nsec = ts.tv_nsec;
9717 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9718 clock_pairing.flags = 0;
9719 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9720
9721 ret = 0;
9722 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9723 sizeof(struct kvm_clock_pairing)))
9724 ret = -KVM_EFAULT;
9725
9726 return ret;
9727 }
9728 #endif
9729
9730 /*
9731 * kvm_pv_kick_cpu_op: Kick a vcpu.
9732 *
9733 * @apicid - apicid of vcpu to be kicked.
9734 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9735 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9736 {
9737 /*
9738 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9739 * common code, e.g. for tracing. Defer initialization to the compiler.
9740 */
9741 struct kvm_lapic_irq lapic_irq = {
9742 .delivery_mode = APIC_DM_REMRD,
9743 .dest_mode = APIC_DEST_PHYSICAL,
9744 .shorthand = APIC_DEST_NOSHORT,
9745 .dest_id = apicid,
9746 };
9747
9748 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9749 }
9750
kvm_apicv_activated(struct kvm * kvm)9751 bool kvm_apicv_activated(struct kvm *kvm)
9752 {
9753 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9754 }
9755 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9756
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9757 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9758 {
9759 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9760 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9761
9762 return (vm_reasons | vcpu_reasons) == 0;
9763 }
9764 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9765
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9766 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9767 enum kvm_apicv_inhibit reason, bool set)
9768 {
9769 if (set)
9770 __set_bit(reason, inhibits);
9771 else
9772 __clear_bit(reason, inhibits);
9773
9774 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9775 }
9776
kvm_apicv_init(struct kvm * kvm)9777 static void kvm_apicv_init(struct kvm *kvm)
9778 {
9779 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9780
9781 init_rwsem(&kvm->arch.apicv_update_lock);
9782
9783 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9784
9785 if (!enable_apicv)
9786 set_or_clear_apicv_inhibit(inhibits,
9787 APICV_INHIBIT_REASON_DISABLE, true);
9788 }
9789
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9790 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9791 {
9792 struct kvm_vcpu *target = NULL;
9793 struct kvm_apic_map *map;
9794
9795 vcpu->stat.directed_yield_attempted++;
9796
9797 if (single_task_running())
9798 goto no_yield;
9799
9800 rcu_read_lock();
9801 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9802
9803 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9804 target = map->phys_map[dest_id]->vcpu;
9805
9806 rcu_read_unlock();
9807
9808 if (!target || !READ_ONCE(target->ready))
9809 goto no_yield;
9810
9811 /* Ignore requests to yield to self */
9812 if (vcpu == target)
9813 goto no_yield;
9814
9815 if (kvm_vcpu_yield_to(target) <= 0)
9816 goto no_yield;
9817
9818 vcpu->stat.directed_yield_successful++;
9819
9820 no_yield:
9821 return;
9822 }
9823
complete_hypercall_exit(struct kvm_vcpu * vcpu)9824 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9825 {
9826 u64 ret = vcpu->run->hypercall.ret;
9827
9828 if (!is_64_bit_hypercall(vcpu))
9829 ret = (u32)ret;
9830 kvm_rax_write(vcpu, ret);
9831 ++vcpu->stat.hypercalls;
9832 return kvm_skip_emulated_instruction(vcpu);
9833 }
9834
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9835 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9836 {
9837 unsigned long nr, a0, a1, a2, a3, ret;
9838 int op_64_bit;
9839
9840 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9841 return kvm_xen_hypercall(vcpu);
9842
9843 if (kvm_hv_hypercall_enabled(vcpu))
9844 return kvm_hv_hypercall(vcpu);
9845
9846 nr = kvm_rax_read(vcpu);
9847 a0 = kvm_rbx_read(vcpu);
9848 a1 = kvm_rcx_read(vcpu);
9849 a2 = kvm_rdx_read(vcpu);
9850 a3 = kvm_rsi_read(vcpu);
9851
9852 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9853
9854 op_64_bit = is_64_bit_hypercall(vcpu);
9855 if (!op_64_bit) {
9856 nr &= 0xFFFFFFFF;
9857 a0 &= 0xFFFFFFFF;
9858 a1 &= 0xFFFFFFFF;
9859 a2 &= 0xFFFFFFFF;
9860 a3 &= 0xFFFFFFFF;
9861 }
9862
9863 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9864 ret = -KVM_EPERM;
9865 goto out;
9866 }
9867
9868 ret = -KVM_ENOSYS;
9869
9870 switch (nr) {
9871 case KVM_HC_VAPIC_POLL_IRQ:
9872 ret = 0;
9873 break;
9874 case KVM_HC_KICK_CPU:
9875 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9876 break;
9877
9878 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9879 kvm_sched_yield(vcpu, a1);
9880 ret = 0;
9881 break;
9882 #ifdef CONFIG_X86_64
9883 case KVM_HC_CLOCK_PAIRING:
9884 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9885 break;
9886 #endif
9887 case KVM_HC_SEND_IPI:
9888 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9889 break;
9890
9891 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9892 break;
9893 case KVM_HC_SCHED_YIELD:
9894 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9895 break;
9896
9897 kvm_sched_yield(vcpu, a0);
9898 ret = 0;
9899 break;
9900 case KVM_HC_MAP_GPA_RANGE: {
9901 u64 gpa = a0, npages = a1, attrs = a2;
9902
9903 ret = -KVM_ENOSYS;
9904 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9905 break;
9906
9907 if (!PAGE_ALIGNED(gpa) || !npages ||
9908 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9909 ret = -KVM_EINVAL;
9910 break;
9911 }
9912
9913 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9914 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9915 vcpu->run->hypercall.args[0] = gpa;
9916 vcpu->run->hypercall.args[1] = npages;
9917 vcpu->run->hypercall.args[2] = attrs;
9918 vcpu->run->hypercall.flags = 0;
9919 if (op_64_bit)
9920 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9921
9922 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9923 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9924 return 0;
9925 }
9926 default:
9927 ret = -KVM_ENOSYS;
9928 break;
9929 }
9930 out:
9931 if (!op_64_bit)
9932 ret = (u32)ret;
9933 kvm_rax_write(vcpu, ret);
9934
9935 ++vcpu->stat.hypercalls;
9936 return kvm_skip_emulated_instruction(vcpu);
9937 }
9938 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9939
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9940 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9941 {
9942 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9943 char instruction[3];
9944 unsigned long rip = kvm_rip_read(vcpu);
9945
9946 /*
9947 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9948 * the pieces.
9949 */
9950 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9951 ctxt->exception.error_code_valid = false;
9952 ctxt->exception.vector = UD_VECTOR;
9953 ctxt->have_exception = true;
9954 return X86EMUL_PROPAGATE_FAULT;
9955 }
9956
9957 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9958
9959 return emulator_write_emulated(ctxt, rip, instruction, 3,
9960 &ctxt->exception);
9961 }
9962
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9963 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9964 {
9965 return vcpu->run->request_interrupt_window &&
9966 likely(!pic_in_kernel(vcpu->kvm));
9967 }
9968
9969 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)9970 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9971 {
9972 struct kvm_run *kvm_run = vcpu->run;
9973
9974 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9975 kvm_run->cr8 = kvm_get_cr8(vcpu);
9976 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9977
9978 kvm_run->ready_for_interrupt_injection =
9979 pic_in_kernel(vcpu->kvm) ||
9980 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9981
9982 if (is_smm(vcpu))
9983 kvm_run->flags |= KVM_RUN_X86_SMM;
9984 }
9985
update_cr8_intercept(struct kvm_vcpu * vcpu)9986 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9987 {
9988 int max_irr, tpr;
9989
9990 if (!kvm_x86_ops.update_cr8_intercept)
9991 return;
9992
9993 if (!lapic_in_kernel(vcpu))
9994 return;
9995
9996 if (vcpu->arch.apic->apicv_active)
9997 return;
9998
9999 if (!vcpu->arch.apic->vapic_addr)
10000 max_irr = kvm_lapic_find_highest_irr(vcpu);
10001 else
10002 max_irr = -1;
10003
10004 if (max_irr != -1)
10005 max_irr >>= 4;
10006
10007 tpr = kvm_lapic_get_cr8(vcpu);
10008
10009 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10010 }
10011
10012
kvm_check_nested_events(struct kvm_vcpu * vcpu)10013 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10014 {
10015 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10016 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10017 return 1;
10018 }
10019
10020 return kvm_x86_ops.nested_ops->check_events(vcpu);
10021 }
10022
kvm_inject_exception(struct kvm_vcpu * vcpu)10023 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10024 {
10025 /*
10026 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10027 * exceptions don't report error codes. The presence of an error code
10028 * is carried with the exception and only stripped when the exception
10029 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10030 * report an error code despite the CPU being in Real Mode.
10031 */
10032 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10033
10034 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10035 vcpu->arch.exception.has_error_code,
10036 vcpu->arch.exception.error_code,
10037 vcpu->arch.exception.injected);
10038
10039 static_call(kvm_x86_inject_exception)(vcpu);
10040 }
10041
10042 /*
10043 * Check for any event (interrupt or exception) that is ready to be injected,
10044 * and if there is at least one event, inject the event with the highest
10045 * priority. This handles both "pending" events, i.e. events that have never
10046 * been injected into the guest, and "injected" events, i.e. events that were
10047 * injected as part of a previous VM-Enter, but weren't successfully delivered
10048 * and need to be re-injected.
10049 *
10050 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10051 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10052 * be able to inject exceptions in the "middle" of an instruction, and so must
10053 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10054 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10055 * boundaries is necessary and correct.
10056 *
10057 * For simplicity, KVM uses a single path to inject all events (except events
10058 * that are injected directly from L1 to L2) and doesn't explicitly track
10059 * instruction boundaries for asynchronous events. However, because VM-Exits
10060 * that can occur during instruction execution typically result in KVM skipping
10061 * the instruction or injecting an exception, e.g. instruction and exception
10062 * intercepts, and because pending exceptions have higher priority than pending
10063 * interrupts, KVM still honors instruction boundaries in most scenarios.
10064 *
10065 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10066 * the instruction or inject an exception, then KVM can incorrecty inject a new
10067 * asynchrounous event if the event became pending after the CPU fetched the
10068 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10069 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10070 * injected on the restarted instruction instead of being deferred until the
10071 * instruction completes.
10072 *
10073 * In practice, this virtualization hole is unlikely to be observed by the
10074 * guest, and even less likely to cause functional problems. To detect the
10075 * hole, the guest would have to trigger an event on a side effect of an early
10076 * phase of instruction execution, e.g. on the instruction fetch from memory.
10077 * And for it to be a functional problem, the guest would need to depend on the
10078 * ordering between that side effect, the instruction completing, _and_ the
10079 * delivery of the asynchronous event.
10080 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10081 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10082 bool *req_immediate_exit)
10083 {
10084 bool can_inject;
10085 int r;
10086
10087 /*
10088 * Process nested events first, as nested VM-Exit supercedes event
10089 * re-injection. If there's an event queued for re-injection, it will
10090 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10091 */
10092 if (is_guest_mode(vcpu))
10093 r = kvm_check_nested_events(vcpu);
10094 else
10095 r = 0;
10096
10097 /*
10098 * Re-inject exceptions and events *especially* if immediate entry+exit
10099 * to/from L2 is needed, as any event that has already been injected
10100 * into L2 needs to complete its lifecycle before injecting a new event.
10101 *
10102 * Don't re-inject an NMI or interrupt if there is a pending exception.
10103 * This collision arises if an exception occurred while vectoring the
10104 * injected event, KVM intercepted said exception, and KVM ultimately
10105 * determined the fault belongs to the guest and queues the exception
10106 * for injection back into the guest.
10107 *
10108 * "Injected" interrupts can also collide with pending exceptions if
10109 * userspace ignores the "ready for injection" flag and blindly queues
10110 * an interrupt. In that case, prioritizing the exception is correct,
10111 * as the exception "occurred" before the exit to userspace. Trap-like
10112 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10113 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10114 * priority, they're only generated (pended) during instruction
10115 * execution, and interrupts are recognized at instruction boundaries.
10116 * Thus a pending fault-like exception means the fault occurred on the
10117 * *previous* instruction and must be serviced prior to recognizing any
10118 * new events in order to fully complete the previous instruction.
10119 */
10120 if (vcpu->arch.exception.injected)
10121 kvm_inject_exception(vcpu);
10122 else if (kvm_is_exception_pending(vcpu))
10123 ; /* see above */
10124 else if (vcpu->arch.nmi_injected)
10125 static_call(kvm_x86_inject_nmi)(vcpu);
10126 else if (vcpu->arch.interrupt.injected)
10127 static_call(kvm_x86_inject_irq)(vcpu, true);
10128
10129 /*
10130 * Exceptions that morph to VM-Exits are handled above, and pending
10131 * exceptions on top of injected exceptions that do not VM-Exit should
10132 * either morph to #DF or, sadly, override the injected exception.
10133 */
10134 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10135 vcpu->arch.exception.pending);
10136
10137 /*
10138 * Bail if immediate entry+exit to/from the guest is needed to complete
10139 * nested VM-Enter or event re-injection so that a different pending
10140 * event can be serviced (or if KVM needs to exit to userspace).
10141 *
10142 * Otherwise, continue processing events even if VM-Exit occurred. The
10143 * VM-Exit will have cleared exceptions that were meant for L2, but
10144 * there may now be events that can be injected into L1.
10145 */
10146 if (r < 0)
10147 goto out;
10148
10149 /*
10150 * A pending exception VM-Exit should either result in nested VM-Exit
10151 * or force an immediate re-entry and exit to/from L2, and exception
10152 * VM-Exits cannot be injected (flag should _never_ be set).
10153 */
10154 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10155 vcpu->arch.exception_vmexit.pending);
10156
10157 /*
10158 * New events, other than exceptions, cannot be injected if KVM needs
10159 * to re-inject a previous event. See above comments on re-injecting
10160 * for why pending exceptions get priority.
10161 */
10162 can_inject = !kvm_event_needs_reinjection(vcpu);
10163
10164 if (vcpu->arch.exception.pending) {
10165 /*
10166 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10167 * value pushed on the stack. Trap-like exception and all #DBs
10168 * leave RF as-is (KVM follows Intel's behavior in this regard;
10169 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10170 *
10171 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10172 * describe the behavior of General Detect #DBs, which are
10173 * fault-like. They do _not_ set RF, a la code breakpoints.
10174 */
10175 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10176 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10177 X86_EFLAGS_RF);
10178
10179 if (vcpu->arch.exception.vector == DB_VECTOR) {
10180 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10181 if (vcpu->arch.dr7 & DR7_GD) {
10182 vcpu->arch.dr7 &= ~DR7_GD;
10183 kvm_update_dr7(vcpu);
10184 }
10185 }
10186
10187 kvm_inject_exception(vcpu);
10188
10189 vcpu->arch.exception.pending = false;
10190 vcpu->arch.exception.injected = true;
10191
10192 can_inject = false;
10193 }
10194
10195 /* Don't inject interrupts if the user asked to avoid doing so */
10196 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10197 return 0;
10198
10199 /*
10200 * Finally, inject interrupt events. If an event cannot be injected
10201 * due to architectural conditions (e.g. IF=0) a window-open exit
10202 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10203 * and can architecturally be injected, but we cannot do it right now:
10204 * an interrupt could have arrived just now and we have to inject it
10205 * as a vmexit, or there could already an event in the queue, which is
10206 * indicated by can_inject. In that case we request an immediate exit
10207 * in order to make progress and get back here for another iteration.
10208 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10209 */
10210 #ifdef CONFIG_KVM_SMM
10211 if (vcpu->arch.smi_pending) {
10212 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10213 if (r < 0)
10214 goto out;
10215 if (r) {
10216 vcpu->arch.smi_pending = false;
10217 ++vcpu->arch.smi_count;
10218 enter_smm(vcpu);
10219 can_inject = false;
10220 } else
10221 static_call(kvm_x86_enable_smi_window)(vcpu);
10222 }
10223 #endif
10224
10225 if (vcpu->arch.nmi_pending) {
10226 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10227 if (r < 0)
10228 goto out;
10229 if (r) {
10230 --vcpu->arch.nmi_pending;
10231 vcpu->arch.nmi_injected = true;
10232 static_call(kvm_x86_inject_nmi)(vcpu);
10233 can_inject = false;
10234 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10235 }
10236 if (vcpu->arch.nmi_pending)
10237 static_call(kvm_x86_enable_nmi_window)(vcpu);
10238 }
10239
10240 if (kvm_cpu_has_injectable_intr(vcpu)) {
10241 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10242 if (r < 0)
10243 goto out;
10244 if (r) {
10245 int irq = kvm_cpu_get_interrupt(vcpu);
10246
10247 if (!WARN_ON_ONCE(irq == -1)) {
10248 kvm_queue_interrupt(vcpu, irq, false);
10249 static_call(kvm_x86_inject_irq)(vcpu, false);
10250 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10251 }
10252 }
10253 if (kvm_cpu_has_injectable_intr(vcpu))
10254 static_call(kvm_x86_enable_irq_window)(vcpu);
10255 }
10256
10257 if (is_guest_mode(vcpu) &&
10258 kvm_x86_ops.nested_ops->has_events &&
10259 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10260 *req_immediate_exit = true;
10261
10262 /*
10263 * KVM must never queue a new exception while injecting an event; KVM
10264 * is done emulating and should only propagate the to-be-injected event
10265 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10266 * infinite loop as KVM will bail from VM-Enter to inject the pending
10267 * exception and start the cycle all over.
10268 *
10269 * Exempt triple faults as they have special handling and won't put the
10270 * vCPU into an infinite loop. Triple fault can be queued when running
10271 * VMX without unrestricted guest, as that requires KVM to emulate Real
10272 * Mode events (see kvm_inject_realmode_interrupt()).
10273 */
10274 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10275 vcpu->arch.exception_vmexit.pending);
10276 return 0;
10277
10278 out:
10279 if (r == -EBUSY) {
10280 *req_immediate_exit = true;
10281 r = 0;
10282 }
10283 return r;
10284 }
10285
process_nmi(struct kvm_vcpu * vcpu)10286 static void process_nmi(struct kvm_vcpu *vcpu)
10287 {
10288 unsigned int limit;
10289
10290 /*
10291 * x86 is limited to one NMI pending, but because KVM can't react to
10292 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10293 * scheduled out, KVM needs to play nice with two queued NMIs showing
10294 * up at the same time. To handle this scenario, allow two NMIs to be
10295 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10296 * waiting for a previous NMI injection to complete (which effectively
10297 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10298 * will request an NMI window to handle the second NMI.
10299 */
10300 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10301 limit = 1;
10302 else
10303 limit = 2;
10304
10305 /*
10306 * Adjust the limit to account for pending virtual NMIs, which aren't
10307 * tracked in vcpu->arch.nmi_pending.
10308 */
10309 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10310 limit--;
10311
10312 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10313 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10314
10315 if (vcpu->arch.nmi_pending &&
10316 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10317 vcpu->arch.nmi_pending--;
10318
10319 if (vcpu->arch.nmi_pending)
10320 kvm_make_request(KVM_REQ_EVENT, vcpu);
10321 }
10322
10323 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10324 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10325 {
10326 return vcpu->arch.nmi_pending +
10327 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10328 }
10329
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10330 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10331 unsigned long *vcpu_bitmap)
10332 {
10333 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10334 }
10335
kvm_make_scan_ioapic_request(struct kvm * kvm)10336 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10337 {
10338 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10339 }
10340
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10341 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10342 {
10343 struct kvm_lapic *apic = vcpu->arch.apic;
10344 bool activate;
10345
10346 if (!lapic_in_kernel(vcpu))
10347 return;
10348
10349 down_read(&vcpu->kvm->arch.apicv_update_lock);
10350 preempt_disable();
10351
10352 /* Do not activate APICV when APIC is disabled */
10353 activate = kvm_vcpu_apicv_activated(vcpu) &&
10354 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10355
10356 if (apic->apicv_active == activate)
10357 goto out;
10358
10359 apic->apicv_active = activate;
10360 kvm_apic_update_apicv(vcpu);
10361 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10362
10363 /*
10364 * When APICv gets disabled, we may still have injected interrupts
10365 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10366 * still active when the interrupt got accepted. Make sure
10367 * kvm_check_and_inject_events() is called to check for that.
10368 */
10369 if (!apic->apicv_active)
10370 kvm_make_request(KVM_REQ_EVENT, vcpu);
10371
10372 out:
10373 preempt_enable();
10374 up_read(&vcpu->kvm->arch.apicv_update_lock);
10375 }
10376 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10377
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10378 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10379 {
10380 if (!lapic_in_kernel(vcpu))
10381 return;
10382
10383 /*
10384 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10385 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10386 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10387 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10388 * this case so that KVM can the AVIC doorbell to inject interrupts to
10389 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10390 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10391 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10392 * access page is sticky.
10393 */
10394 if (apic_x2apic_mode(vcpu->arch.apic) &&
10395 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10396 kvm_inhibit_apic_access_page(vcpu);
10397
10398 __kvm_vcpu_update_apicv(vcpu);
10399 }
10400
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10401 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10402 enum kvm_apicv_inhibit reason, bool set)
10403 {
10404 unsigned long old, new;
10405
10406 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10407
10408 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10409 return;
10410
10411 old = new = kvm->arch.apicv_inhibit_reasons;
10412
10413 set_or_clear_apicv_inhibit(&new, reason, set);
10414
10415 if (!!old != !!new) {
10416 /*
10417 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10418 * false positives in the sanity check WARN in svm_vcpu_run().
10419 * This task will wait for all vCPUs to ack the kick IRQ before
10420 * updating apicv_inhibit_reasons, and all other vCPUs will
10421 * block on acquiring apicv_update_lock so that vCPUs can't
10422 * redo svm_vcpu_run() without seeing the new inhibit state.
10423 *
10424 * Note, holding apicv_update_lock and taking it in the read
10425 * side (handling the request) also prevents other vCPUs from
10426 * servicing the request with a stale apicv_inhibit_reasons.
10427 */
10428 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10429 kvm->arch.apicv_inhibit_reasons = new;
10430 if (new) {
10431 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10432 int idx = srcu_read_lock(&kvm->srcu);
10433
10434 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10435 srcu_read_unlock(&kvm->srcu, idx);
10436 }
10437 } else {
10438 kvm->arch.apicv_inhibit_reasons = new;
10439 }
10440 }
10441
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10442 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10443 enum kvm_apicv_inhibit reason, bool set)
10444 {
10445 if (!enable_apicv)
10446 return;
10447
10448 down_write(&kvm->arch.apicv_update_lock);
10449 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10450 up_write(&kvm->arch.apicv_update_lock);
10451 }
10452 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10453
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10454 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10455 {
10456 if (!kvm_apic_present(vcpu))
10457 return;
10458
10459 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10460
10461 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10462
10463 if (irqchip_split(vcpu->kvm))
10464 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10465 else if (ioapic_in_kernel(vcpu->kvm))
10466 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10467
10468 if (is_guest_mode(vcpu))
10469 vcpu->arch.load_eoi_exitmap_pending = true;
10470 else
10471 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10472 }
10473
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10474 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10475 {
10476 u64 eoi_exit_bitmap[4];
10477
10478 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10479 return;
10480
10481 if (to_hv_vcpu(vcpu)) {
10482 bitmap_or((ulong *)eoi_exit_bitmap,
10483 vcpu->arch.ioapic_handled_vectors,
10484 to_hv_synic(vcpu)->vec_bitmap, 256);
10485 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10486 return;
10487 }
10488
10489 static_call_cond(kvm_x86_load_eoi_exitmap)(
10490 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10491 }
10492
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10493 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10494 {
10495 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10496 }
10497
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10498 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10499 {
10500 if (!lapic_in_kernel(vcpu))
10501 return;
10502
10503 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10504 }
10505
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10506 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10507 {
10508 smp_send_reschedule(vcpu->cpu);
10509 }
10510 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10511
10512 /*
10513 * Called within kvm->srcu read side.
10514 * Returns 1 to let vcpu_run() continue the guest execution loop without
10515 * exiting to the userspace. Otherwise, the value will be returned to the
10516 * userspace.
10517 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10518 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10519 {
10520 int r;
10521 bool req_int_win =
10522 dm_request_for_irq_injection(vcpu) &&
10523 kvm_cpu_accept_dm_intr(vcpu);
10524 fastpath_t exit_fastpath;
10525
10526 bool req_immediate_exit = false;
10527
10528 if (kvm_request_pending(vcpu)) {
10529 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10530 r = -EIO;
10531 goto out;
10532 }
10533
10534 if (kvm_dirty_ring_check_request(vcpu)) {
10535 r = 0;
10536 goto out;
10537 }
10538
10539 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10540 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10541 r = 0;
10542 goto out;
10543 }
10544 }
10545 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10546 kvm_mmu_free_obsolete_roots(vcpu);
10547 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10548 __kvm_migrate_timers(vcpu);
10549 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10550 kvm_update_masterclock(vcpu->kvm);
10551 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10552 kvm_gen_kvmclock_update(vcpu);
10553 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10554 r = kvm_guest_time_update(vcpu);
10555 if (unlikely(r))
10556 goto out;
10557 }
10558 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10559 kvm_mmu_sync_roots(vcpu);
10560 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10561 kvm_mmu_load_pgd(vcpu);
10562
10563 /*
10564 * Note, the order matters here, as flushing "all" TLB entries
10565 * also flushes the "current" TLB entries, i.e. servicing the
10566 * flush "all" will clear any request to flush "current".
10567 */
10568 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10569 kvm_vcpu_flush_tlb_all(vcpu);
10570
10571 kvm_service_local_tlb_flush_requests(vcpu);
10572
10573 /*
10574 * Fall back to a "full" guest flush if Hyper-V's precise
10575 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10576 * the flushes are considered "remote" and not "local" because
10577 * the requests can be initiated from other vCPUs.
10578 */
10579 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10580 kvm_hv_vcpu_flush_tlb(vcpu))
10581 kvm_vcpu_flush_tlb_guest(vcpu);
10582
10583 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10584 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10585 r = 0;
10586 goto out;
10587 }
10588 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10589 if (is_guest_mode(vcpu))
10590 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10591
10592 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10593 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10594 vcpu->mmio_needed = 0;
10595 r = 0;
10596 goto out;
10597 }
10598 }
10599 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10600 /* Page is swapped out. Do synthetic halt */
10601 vcpu->arch.apf.halted = true;
10602 r = 1;
10603 goto out;
10604 }
10605 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10606 record_steal_time(vcpu);
10607 #ifdef CONFIG_KVM_SMM
10608 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10609 process_smi(vcpu);
10610 #endif
10611 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10612 process_nmi(vcpu);
10613 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10614 kvm_pmu_handle_event(vcpu);
10615 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10616 kvm_pmu_deliver_pmi(vcpu);
10617 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10618 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10619 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10620 vcpu->arch.ioapic_handled_vectors)) {
10621 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10622 vcpu->run->eoi.vector =
10623 vcpu->arch.pending_ioapic_eoi;
10624 r = 0;
10625 goto out;
10626 }
10627 }
10628 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10629 vcpu_scan_ioapic(vcpu);
10630 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10631 vcpu_load_eoi_exitmap(vcpu);
10632 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10633 kvm_vcpu_reload_apic_access_page(vcpu);
10634 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10635 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10636 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10637 vcpu->run->system_event.ndata = 0;
10638 r = 0;
10639 goto out;
10640 }
10641 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10642 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10643 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10644 vcpu->run->system_event.ndata = 0;
10645 r = 0;
10646 goto out;
10647 }
10648 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10649 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10650
10651 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10652 vcpu->run->hyperv = hv_vcpu->exit;
10653 r = 0;
10654 goto out;
10655 }
10656
10657 /*
10658 * KVM_REQ_HV_STIMER has to be processed after
10659 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10660 * depend on the guest clock being up-to-date
10661 */
10662 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10663 kvm_hv_process_stimers(vcpu);
10664 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10665 kvm_vcpu_update_apicv(vcpu);
10666 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10667 kvm_check_async_pf_completion(vcpu);
10668 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10669 static_call(kvm_x86_msr_filter_changed)(vcpu);
10670
10671 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10672 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10673 }
10674
10675 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10676 kvm_xen_has_interrupt(vcpu)) {
10677 ++vcpu->stat.req_event;
10678 r = kvm_apic_accept_events(vcpu);
10679 if (r < 0) {
10680 r = 0;
10681 goto out;
10682 }
10683 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10684 r = 1;
10685 goto out;
10686 }
10687
10688 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10689 if (r < 0) {
10690 r = 0;
10691 goto out;
10692 }
10693 if (req_int_win)
10694 static_call(kvm_x86_enable_irq_window)(vcpu);
10695
10696 if (kvm_lapic_enabled(vcpu)) {
10697 update_cr8_intercept(vcpu);
10698 kvm_lapic_sync_to_vapic(vcpu);
10699 }
10700 }
10701
10702 r = kvm_mmu_reload(vcpu);
10703 if (unlikely(r)) {
10704 goto cancel_injection;
10705 }
10706
10707 preempt_disable();
10708
10709 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10710
10711 /*
10712 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10713 * IPI are then delayed after guest entry, which ensures that they
10714 * result in virtual interrupt delivery.
10715 */
10716 local_irq_disable();
10717
10718 /* Store vcpu->apicv_active before vcpu->mode. */
10719 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10720
10721 kvm_vcpu_srcu_read_unlock(vcpu);
10722
10723 /*
10724 * 1) We should set ->mode before checking ->requests. Please see
10725 * the comment in kvm_vcpu_exiting_guest_mode().
10726 *
10727 * 2) For APICv, we should set ->mode before checking PID.ON. This
10728 * pairs with the memory barrier implicit in pi_test_and_set_on
10729 * (see vmx_deliver_posted_interrupt).
10730 *
10731 * 3) This also orders the write to mode from any reads to the page
10732 * tables done while the VCPU is running. Please see the comment
10733 * in kvm_flush_remote_tlbs.
10734 */
10735 smp_mb__after_srcu_read_unlock();
10736
10737 /*
10738 * Process pending posted interrupts to handle the case where the
10739 * notification IRQ arrived in the host, or was never sent (because the
10740 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10741 * status, KVM doesn't update assigned devices when APICv is inhibited,
10742 * i.e. they can post interrupts even if APICv is temporarily disabled.
10743 */
10744 if (kvm_lapic_enabled(vcpu))
10745 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10746
10747 if (kvm_vcpu_exit_request(vcpu)) {
10748 vcpu->mode = OUTSIDE_GUEST_MODE;
10749 smp_wmb();
10750 local_irq_enable();
10751 preempt_enable();
10752 kvm_vcpu_srcu_read_lock(vcpu);
10753 r = 1;
10754 goto cancel_injection;
10755 }
10756
10757 if (req_immediate_exit) {
10758 kvm_make_request(KVM_REQ_EVENT, vcpu);
10759 static_call(kvm_x86_request_immediate_exit)(vcpu);
10760 }
10761
10762 fpregs_assert_state_consistent();
10763 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10764 switch_fpu_return();
10765
10766 if (vcpu->arch.guest_fpu.xfd_err)
10767 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10768
10769 if (unlikely(vcpu->arch.switch_db_regs)) {
10770 set_debugreg(0, 7);
10771 set_debugreg(vcpu->arch.eff_db[0], 0);
10772 set_debugreg(vcpu->arch.eff_db[1], 1);
10773 set_debugreg(vcpu->arch.eff_db[2], 2);
10774 set_debugreg(vcpu->arch.eff_db[3], 3);
10775 } else if (unlikely(hw_breakpoint_active())) {
10776 set_debugreg(0, 7);
10777 }
10778
10779 guest_timing_enter_irqoff();
10780
10781 for (;;) {
10782 /*
10783 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10784 * update must kick and wait for all vCPUs before toggling the
10785 * per-VM state, and responsing vCPUs must wait for the update
10786 * to complete before servicing KVM_REQ_APICV_UPDATE.
10787 */
10788 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10789 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10790
10791 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10792 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10793 break;
10794
10795 if (kvm_lapic_enabled(vcpu))
10796 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10797
10798 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10799 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10800 break;
10801 }
10802
10803 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10804 ++vcpu->stat.exits;
10805 }
10806
10807 /*
10808 * Do this here before restoring debug registers on the host. And
10809 * since we do this before handling the vmexit, a DR access vmexit
10810 * can (a) read the correct value of the debug registers, (b) set
10811 * KVM_DEBUGREG_WONT_EXIT again.
10812 */
10813 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10814 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10815 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10816 kvm_update_dr0123(vcpu);
10817 kvm_update_dr7(vcpu);
10818 }
10819
10820 /*
10821 * If the guest has used debug registers, at least dr7
10822 * will be disabled while returning to the host.
10823 * If we don't have active breakpoints in the host, we don't
10824 * care about the messed up debug address registers. But if
10825 * we have some of them active, restore the old state.
10826 */
10827 if (hw_breakpoint_active())
10828 hw_breakpoint_restore();
10829
10830 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10831 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10832
10833 vcpu->mode = OUTSIDE_GUEST_MODE;
10834 smp_wmb();
10835
10836 /*
10837 * Sync xfd before calling handle_exit_irqoff() which may
10838 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10839 * in #NM irqoff handler).
10840 */
10841 if (vcpu->arch.xfd_no_write_intercept)
10842 fpu_sync_guest_vmexit_xfd_state();
10843
10844 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10845
10846 if (vcpu->arch.guest_fpu.xfd_err)
10847 wrmsrl(MSR_IA32_XFD_ERR, 0);
10848
10849 /*
10850 * Consume any pending interrupts, including the possible source of
10851 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10852 * An instruction is required after local_irq_enable() to fully unblock
10853 * interrupts on processors that implement an interrupt shadow, the
10854 * stat.exits increment will do nicely.
10855 */
10856 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10857 local_irq_enable();
10858 ++vcpu->stat.exits;
10859 local_irq_disable();
10860 kvm_after_interrupt(vcpu);
10861
10862 /*
10863 * Wait until after servicing IRQs to account guest time so that any
10864 * ticks that occurred while running the guest are properly accounted
10865 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10866 * of accounting via context tracking, but the loss of accuracy is
10867 * acceptable for all known use cases.
10868 */
10869 guest_timing_exit_irqoff();
10870
10871 local_irq_enable();
10872 preempt_enable();
10873
10874 kvm_vcpu_srcu_read_lock(vcpu);
10875
10876 /*
10877 * Profile KVM exit RIPs:
10878 */
10879 if (unlikely(prof_on == KVM_PROFILING)) {
10880 unsigned long rip = kvm_rip_read(vcpu);
10881 profile_hit(KVM_PROFILING, (void *)rip);
10882 }
10883
10884 if (unlikely(vcpu->arch.tsc_always_catchup))
10885 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10886
10887 if (vcpu->arch.apic_attention)
10888 kvm_lapic_sync_from_vapic(vcpu);
10889
10890 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10891 return r;
10892
10893 cancel_injection:
10894 if (req_immediate_exit)
10895 kvm_make_request(KVM_REQ_EVENT, vcpu);
10896 static_call(kvm_x86_cancel_injection)(vcpu);
10897 if (unlikely(vcpu->arch.apic_attention))
10898 kvm_lapic_sync_from_vapic(vcpu);
10899 out:
10900 return r;
10901 }
10902
10903 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)10904 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10905 {
10906 bool hv_timer;
10907
10908 if (!kvm_arch_vcpu_runnable(vcpu)) {
10909 /*
10910 * Switch to the software timer before halt-polling/blocking as
10911 * the guest's timer may be a break event for the vCPU, and the
10912 * hypervisor timer runs only when the CPU is in guest mode.
10913 * Switch before halt-polling so that KVM recognizes an expired
10914 * timer before blocking.
10915 */
10916 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10917 if (hv_timer)
10918 kvm_lapic_switch_to_sw_timer(vcpu);
10919
10920 kvm_vcpu_srcu_read_unlock(vcpu);
10921 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10922 kvm_vcpu_halt(vcpu);
10923 else
10924 kvm_vcpu_block(vcpu);
10925 kvm_vcpu_srcu_read_lock(vcpu);
10926
10927 if (hv_timer)
10928 kvm_lapic_switch_to_hv_timer(vcpu);
10929
10930 /*
10931 * If the vCPU is not runnable, a signal or another host event
10932 * of some kind is pending; service it without changing the
10933 * vCPU's activity state.
10934 */
10935 if (!kvm_arch_vcpu_runnable(vcpu))
10936 return 1;
10937 }
10938
10939 /*
10940 * Evaluate nested events before exiting the halted state. This allows
10941 * the halt state to be recorded properly in the VMCS12's activity
10942 * state field (AMD does not have a similar field and a VM-Exit always
10943 * causes a spurious wakeup from HLT).
10944 */
10945 if (is_guest_mode(vcpu)) {
10946 if (kvm_check_nested_events(vcpu) < 0)
10947 return 0;
10948 }
10949
10950 if (kvm_apic_accept_events(vcpu) < 0)
10951 return 0;
10952 switch(vcpu->arch.mp_state) {
10953 case KVM_MP_STATE_HALTED:
10954 case KVM_MP_STATE_AP_RESET_HOLD:
10955 vcpu->arch.pv.pv_unhalted = false;
10956 vcpu->arch.mp_state =
10957 KVM_MP_STATE_RUNNABLE;
10958 fallthrough;
10959 case KVM_MP_STATE_RUNNABLE:
10960 vcpu->arch.apf.halted = false;
10961 break;
10962 case KVM_MP_STATE_INIT_RECEIVED:
10963 break;
10964 default:
10965 WARN_ON_ONCE(1);
10966 break;
10967 }
10968 return 1;
10969 }
10970
kvm_vcpu_running(struct kvm_vcpu * vcpu)10971 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10972 {
10973 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10974 !vcpu->arch.apf.halted);
10975 }
10976
10977 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)10978 static int vcpu_run(struct kvm_vcpu *vcpu)
10979 {
10980 int r;
10981
10982 vcpu->arch.l1tf_flush_l1d = true;
10983
10984 for (;;) {
10985 /*
10986 * If another guest vCPU requests a PV TLB flush in the middle
10987 * of instruction emulation, the rest of the emulation could
10988 * use a stale page translation. Assume that any code after
10989 * this point can start executing an instruction.
10990 */
10991 vcpu->arch.at_instruction_boundary = false;
10992 if (kvm_vcpu_running(vcpu)) {
10993 r = vcpu_enter_guest(vcpu);
10994 } else {
10995 r = vcpu_block(vcpu);
10996 }
10997
10998 if (r <= 0)
10999 break;
11000
11001 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11002 if (kvm_xen_has_pending_events(vcpu))
11003 kvm_xen_inject_pending_events(vcpu);
11004
11005 if (kvm_cpu_has_pending_timer(vcpu))
11006 kvm_inject_pending_timer_irqs(vcpu);
11007
11008 if (dm_request_for_irq_injection(vcpu) &&
11009 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11010 r = 0;
11011 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11012 ++vcpu->stat.request_irq_exits;
11013 break;
11014 }
11015
11016 if (__xfer_to_guest_mode_work_pending()) {
11017 kvm_vcpu_srcu_read_unlock(vcpu);
11018 r = xfer_to_guest_mode_handle_work(vcpu);
11019 kvm_vcpu_srcu_read_lock(vcpu);
11020 if (r)
11021 return r;
11022 }
11023 }
11024
11025 return r;
11026 }
11027
complete_emulated_io(struct kvm_vcpu * vcpu)11028 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11029 {
11030 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11031 }
11032
complete_emulated_pio(struct kvm_vcpu * vcpu)11033 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11034 {
11035 BUG_ON(!vcpu->arch.pio.count);
11036
11037 return complete_emulated_io(vcpu);
11038 }
11039
11040 /*
11041 * Implements the following, as a state machine:
11042 *
11043 * read:
11044 * for each fragment
11045 * for each mmio piece in the fragment
11046 * write gpa, len
11047 * exit
11048 * copy data
11049 * execute insn
11050 *
11051 * write:
11052 * for each fragment
11053 * for each mmio piece in the fragment
11054 * write gpa, len
11055 * copy data
11056 * exit
11057 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11058 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11059 {
11060 struct kvm_run *run = vcpu->run;
11061 struct kvm_mmio_fragment *frag;
11062 unsigned len;
11063
11064 BUG_ON(!vcpu->mmio_needed);
11065
11066 /* Complete previous fragment */
11067 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11068 len = min(8u, frag->len);
11069 if (!vcpu->mmio_is_write)
11070 memcpy(frag->data, run->mmio.data, len);
11071
11072 if (frag->len <= 8) {
11073 /* Switch to the next fragment. */
11074 frag++;
11075 vcpu->mmio_cur_fragment++;
11076 } else {
11077 /* Go forward to the next mmio piece. */
11078 frag->data += len;
11079 frag->gpa += len;
11080 frag->len -= len;
11081 }
11082
11083 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11084 vcpu->mmio_needed = 0;
11085
11086 /* FIXME: return into emulator if single-stepping. */
11087 if (vcpu->mmio_is_write)
11088 return 1;
11089 vcpu->mmio_read_completed = 1;
11090 return complete_emulated_io(vcpu);
11091 }
11092
11093 run->exit_reason = KVM_EXIT_MMIO;
11094 run->mmio.phys_addr = frag->gpa;
11095 if (vcpu->mmio_is_write)
11096 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11097 run->mmio.len = min(8u, frag->len);
11098 run->mmio.is_write = vcpu->mmio_is_write;
11099 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11100 return 0;
11101 }
11102
11103 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11104 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11105 {
11106 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11107 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11108 trace_kvm_fpu(1);
11109 }
11110
11111 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11112 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11113 {
11114 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11115 ++vcpu->stat.fpu_reload;
11116 trace_kvm_fpu(0);
11117 }
11118
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11119 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11120 {
11121 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11122 struct kvm_run *kvm_run = vcpu->run;
11123 int r;
11124
11125 vcpu_load(vcpu);
11126 kvm_sigset_activate(vcpu);
11127 kvm_run->flags = 0;
11128 kvm_load_guest_fpu(vcpu);
11129
11130 kvm_vcpu_srcu_read_lock(vcpu);
11131 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11132 if (kvm_run->immediate_exit) {
11133 r = -EINTR;
11134 goto out;
11135 }
11136
11137 /*
11138 * Don't bother switching APIC timer emulation from the
11139 * hypervisor timer to the software timer, the only way for the
11140 * APIC timer to be active is if userspace stuffed vCPU state,
11141 * i.e. put the vCPU into a nonsensical state. Only an INIT
11142 * will transition the vCPU out of UNINITIALIZED (without more
11143 * state stuffing from userspace), which will reset the local
11144 * APIC and thus cancel the timer or drop the IRQ (if the timer
11145 * already expired).
11146 */
11147 kvm_vcpu_srcu_read_unlock(vcpu);
11148 kvm_vcpu_block(vcpu);
11149 kvm_vcpu_srcu_read_lock(vcpu);
11150
11151 if (kvm_apic_accept_events(vcpu) < 0) {
11152 r = 0;
11153 goto out;
11154 }
11155 r = -EAGAIN;
11156 if (signal_pending(current)) {
11157 r = -EINTR;
11158 kvm_run->exit_reason = KVM_EXIT_INTR;
11159 ++vcpu->stat.signal_exits;
11160 }
11161 goto out;
11162 }
11163
11164 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11165 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11166 r = -EINVAL;
11167 goto out;
11168 }
11169
11170 if (kvm_run->kvm_dirty_regs) {
11171 r = sync_regs(vcpu);
11172 if (r != 0)
11173 goto out;
11174 }
11175
11176 /* re-sync apic's tpr */
11177 if (!lapic_in_kernel(vcpu)) {
11178 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11179 r = -EINVAL;
11180 goto out;
11181 }
11182 }
11183
11184 /*
11185 * If userspace set a pending exception and L2 is active, convert it to
11186 * a pending VM-Exit if L1 wants to intercept the exception.
11187 */
11188 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11189 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11190 ex->error_code)) {
11191 kvm_queue_exception_vmexit(vcpu, ex->vector,
11192 ex->has_error_code, ex->error_code,
11193 ex->has_payload, ex->payload);
11194 ex->injected = false;
11195 ex->pending = false;
11196 }
11197 vcpu->arch.exception_from_userspace = false;
11198
11199 if (unlikely(vcpu->arch.complete_userspace_io)) {
11200 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11201 vcpu->arch.complete_userspace_io = NULL;
11202 r = cui(vcpu);
11203 if (r <= 0)
11204 goto out;
11205 } else {
11206 WARN_ON_ONCE(vcpu->arch.pio.count);
11207 WARN_ON_ONCE(vcpu->mmio_needed);
11208 }
11209
11210 if (kvm_run->immediate_exit) {
11211 r = -EINTR;
11212 goto out;
11213 }
11214
11215 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11216 if (r <= 0)
11217 goto out;
11218
11219 r = vcpu_run(vcpu);
11220
11221 out:
11222 kvm_put_guest_fpu(vcpu);
11223 if (kvm_run->kvm_valid_regs)
11224 store_regs(vcpu);
11225 post_kvm_run_save(vcpu);
11226 kvm_vcpu_srcu_read_unlock(vcpu);
11227
11228 kvm_sigset_deactivate(vcpu);
11229 vcpu_put(vcpu);
11230 return r;
11231 }
11232
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11233 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11234 {
11235 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11236 /*
11237 * We are here if userspace calls get_regs() in the middle of
11238 * instruction emulation. Registers state needs to be copied
11239 * back from emulation context to vcpu. Userspace shouldn't do
11240 * that usually, but some bad designed PV devices (vmware
11241 * backdoor interface) need this to work
11242 */
11243 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11244 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11245 }
11246 regs->rax = kvm_rax_read(vcpu);
11247 regs->rbx = kvm_rbx_read(vcpu);
11248 regs->rcx = kvm_rcx_read(vcpu);
11249 regs->rdx = kvm_rdx_read(vcpu);
11250 regs->rsi = kvm_rsi_read(vcpu);
11251 regs->rdi = kvm_rdi_read(vcpu);
11252 regs->rsp = kvm_rsp_read(vcpu);
11253 regs->rbp = kvm_rbp_read(vcpu);
11254 #ifdef CONFIG_X86_64
11255 regs->r8 = kvm_r8_read(vcpu);
11256 regs->r9 = kvm_r9_read(vcpu);
11257 regs->r10 = kvm_r10_read(vcpu);
11258 regs->r11 = kvm_r11_read(vcpu);
11259 regs->r12 = kvm_r12_read(vcpu);
11260 regs->r13 = kvm_r13_read(vcpu);
11261 regs->r14 = kvm_r14_read(vcpu);
11262 regs->r15 = kvm_r15_read(vcpu);
11263 #endif
11264
11265 regs->rip = kvm_rip_read(vcpu);
11266 regs->rflags = kvm_get_rflags(vcpu);
11267 }
11268
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11269 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11270 {
11271 vcpu_load(vcpu);
11272 __get_regs(vcpu, regs);
11273 vcpu_put(vcpu);
11274 return 0;
11275 }
11276
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11277 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11278 {
11279 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11280 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11281
11282 kvm_rax_write(vcpu, regs->rax);
11283 kvm_rbx_write(vcpu, regs->rbx);
11284 kvm_rcx_write(vcpu, regs->rcx);
11285 kvm_rdx_write(vcpu, regs->rdx);
11286 kvm_rsi_write(vcpu, regs->rsi);
11287 kvm_rdi_write(vcpu, regs->rdi);
11288 kvm_rsp_write(vcpu, regs->rsp);
11289 kvm_rbp_write(vcpu, regs->rbp);
11290 #ifdef CONFIG_X86_64
11291 kvm_r8_write(vcpu, regs->r8);
11292 kvm_r9_write(vcpu, regs->r9);
11293 kvm_r10_write(vcpu, regs->r10);
11294 kvm_r11_write(vcpu, regs->r11);
11295 kvm_r12_write(vcpu, regs->r12);
11296 kvm_r13_write(vcpu, regs->r13);
11297 kvm_r14_write(vcpu, regs->r14);
11298 kvm_r15_write(vcpu, regs->r15);
11299 #endif
11300
11301 kvm_rip_write(vcpu, regs->rip);
11302 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11303
11304 vcpu->arch.exception.pending = false;
11305 vcpu->arch.exception_vmexit.pending = false;
11306
11307 kvm_make_request(KVM_REQ_EVENT, vcpu);
11308 }
11309
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11310 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11311 {
11312 vcpu_load(vcpu);
11313 __set_regs(vcpu, regs);
11314 vcpu_put(vcpu);
11315 return 0;
11316 }
11317
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11318 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11319 {
11320 struct desc_ptr dt;
11321
11322 if (vcpu->arch.guest_state_protected)
11323 goto skip_protected_regs;
11324
11325 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11326 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11327 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11328 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11329 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11330 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11331
11332 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11333 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11334
11335 static_call(kvm_x86_get_idt)(vcpu, &dt);
11336 sregs->idt.limit = dt.size;
11337 sregs->idt.base = dt.address;
11338 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11339 sregs->gdt.limit = dt.size;
11340 sregs->gdt.base = dt.address;
11341
11342 sregs->cr2 = vcpu->arch.cr2;
11343 sregs->cr3 = kvm_read_cr3(vcpu);
11344
11345 skip_protected_regs:
11346 sregs->cr0 = kvm_read_cr0(vcpu);
11347 sregs->cr4 = kvm_read_cr4(vcpu);
11348 sregs->cr8 = kvm_get_cr8(vcpu);
11349 sregs->efer = vcpu->arch.efer;
11350 sregs->apic_base = kvm_get_apic_base(vcpu);
11351 }
11352
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11353 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11354 {
11355 __get_sregs_common(vcpu, sregs);
11356
11357 if (vcpu->arch.guest_state_protected)
11358 return;
11359
11360 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11361 set_bit(vcpu->arch.interrupt.nr,
11362 (unsigned long *)sregs->interrupt_bitmap);
11363 }
11364
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11365 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11366 {
11367 int i;
11368
11369 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11370
11371 if (vcpu->arch.guest_state_protected)
11372 return;
11373
11374 if (is_pae_paging(vcpu)) {
11375 for (i = 0 ; i < 4 ; i++)
11376 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11377 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11378 }
11379 }
11380
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11381 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11382 struct kvm_sregs *sregs)
11383 {
11384 vcpu_load(vcpu);
11385 __get_sregs(vcpu, sregs);
11386 vcpu_put(vcpu);
11387 return 0;
11388 }
11389
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11390 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11391 struct kvm_mp_state *mp_state)
11392 {
11393 int r;
11394
11395 vcpu_load(vcpu);
11396 if (kvm_mpx_supported())
11397 kvm_load_guest_fpu(vcpu);
11398
11399 r = kvm_apic_accept_events(vcpu);
11400 if (r < 0)
11401 goto out;
11402 r = 0;
11403
11404 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11405 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11406 vcpu->arch.pv.pv_unhalted)
11407 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11408 else
11409 mp_state->mp_state = vcpu->arch.mp_state;
11410
11411 out:
11412 if (kvm_mpx_supported())
11413 kvm_put_guest_fpu(vcpu);
11414 vcpu_put(vcpu);
11415 return r;
11416 }
11417
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11418 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11419 struct kvm_mp_state *mp_state)
11420 {
11421 int ret = -EINVAL;
11422
11423 vcpu_load(vcpu);
11424
11425 switch (mp_state->mp_state) {
11426 case KVM_MP_STATE_UNINITIALIZED:
11427 case KVM_MP_STATE_HALTED:
11428 case KVM_MP_STATE_AP_RESET_HOLD:
11429 case KVM_MP_STATE_INIT_RECEIVED:
11430 case KVM_MP_STATE_SIPI_RECEIVED:
11431 if (!lapic_in_kernel(vcpu))
11432 goto out;
11433 break;
11434
11435 case KVM_MP_STATE_RUNNABLE:
11436 break;
11437
11438 default:
11439 goto out;
11440 }
11441
11442 /*
11443 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11444 * forcing the guest into INIT/SIPI if those events are supposed to be
11445 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11446 * if an SMI is pending as well.
11447 */
11448 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11449 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11450 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11451 goto out;
11452
11453 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11454 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11455 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11456 } else
11457 vcpu->arch.mp_state = mp_state->mp_state;
11458 kvm_make_request(KVM_REQ_EVENT, vcpu);
11459
11460 ret = 0;
11461 out:
11462 vcpu_put(vcpu);
11463 return ret;
11464 }
11465
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11466 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11467 int reason, bool has_error_code, u32 error_code)
11468 {
11469 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11470 int ret;
11471
11472 init_emulate_ctxt(vcpu);
11473
11474 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11475 has_error_code, error_code);
11476 if (ret) {
11477 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11478 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11479 vcpu->run->internal.ndata = 0;
11480 return 0;
11481 }
11482
11483 kvm_rip_write(vcpu, ctxt->eip);
11484 kvm_set_rflags(vcpu, ctxt->eflags);
11485 return 1;
11486 }
11487 EXPORT_SYMBOL_GPL(kvm_task_switch);
11488
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11489 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11490 {
11491 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11492 /*
11493 * When EFER.LME and CR0.PG are set, the processor is in
11494 * 64-bit mode (though maybe in a 32-bit code segment).
11495 * CR4.PAE and EFER.LMA must be set.
11496 */
11497 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11498 return false;
11499 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11500 return false;
11501 } else {
11502 /*
11503 * Not in 64-bit mode: EFER.LMA is clear and the code
11504 * segment cannot be 64-bit.
11505 */
11506 if (sregs->efer & EFER_LMA || sregs->cs.l)
11507 return false;
11508 }
11509
11510 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11511 kvm_is_valid_cr0(vcpu, sregs->cr0);
11512 }
11513
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11514 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11515 int *mmu_reset_needed, bool update_pdptrs)
11516 {
11517 struct msr_data apic_base_msr;
11518 int idx;
11519 struct desc_ptr dt;
11520
11521 if (!kvm_is_valid_sregs(vcpu, sregs))
11522 return -EINVAL;
11523
11524 apic_base_msr.data = sregs->apic_base;
11525 apic_base_msr.host_initiated = true;
11526 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11527 return -EINVAL;
11528
11529 if (vcpu->arch.guest_state_protected)
11530 return 0;
11531
11532 dt.size = sregs->idt.limit;
11533 dt.address = sregs->idt.base;
11534 static_call(kvm_x86_set_idt)(vcpu, &dt);
11535 dt.size = sregs->gdt.limit;
11536 dt.address = sregs->gdt.base;
11537 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11538
11539 vcpu->arch.cr2 = sregs->cr2;
11540 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11541 vcpu->arch.cr3 = sregs->cr3;
11542 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11543 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11544
11545 kvm_set_cr8(vcpu, sregs->cr8);
11546
11547 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11548 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11549
11550 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11551 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11552 vcpu->arch.cr0 = sregs->cr0;
11553
11554 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11555 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11556
11557 if (update_pdptrs) {
11558 idx = srcu_read_lock(&vcpu->kvm->srcu);
11559 if (is_pae_paging(vcpu)) {
11560 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11561 *mmu_reset_needed = 1;
11562 }
11563 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11564 }
11565
11566 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11567 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11568 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11569 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11570 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11571 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11572
11573 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11574 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11575
11576 update_cr8_intercept(vcpu);
11577
11578 /* Older userspace won't unhalt the vcpu on reset. */
11579 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11580 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11581 !is_protmode(vcpu))
11582 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11583
11584 return 0;
11585 }
11586
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11587 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11588 {
11589 int pending_vec, max_bits;
11590 int mmu_reset_needed = 0;
11591 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11592
11593 if (ret)
11594 return ret;
11595
11596 if (mmu_reset_needed)
11597 kvm_mmu_reset_context(vcpu);
11598
11599 max_bits = KVM_NR_INTERRUPTS;
11600 pending_vec = find_first_bit(
11601 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11602
11603 if (pending_vec < max_bits) {
11604 kvm_queue_interrupt(vcpu, pending_vec, false);
11605 pr_debug("Set back pending irq %d\n", pending_vec);
11606 kvm_make_request(KVM_REQ_EVENT, vcpu);
11607 }
11608 return 0;
11609 }
11610
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11611 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11612 {
11613 int mmu_reset_needed = 0;
11614 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11615 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11616 !(sregs2->efer & EFER_LMA);
11617 int i, ret;
11618
11619 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11620 return -EINVAL;
11621
11622 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11623 return -EINVAL;
11624
11625 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11626 &mmu_reset_needed, !valid_pdptrs);
11627 if (ret)
11628 return ret;
11629
11630 if (valid_pdptrs) {
11631 for (i = 0; i < 4 ; i++)
11632 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11633
11634 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11635 mmu_reset_needed = 1;
11636 vcpu->arch.pdptrs_from_userspace = true;
11637 }
11638 if (mmu_reset_needed)
11639 kvm_mmu_reset_context(vcpu);
11640 return 0;
11641 }
11642
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11643 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11644 struct kvm_sregs *sregs)
11645 {
11646 int ret;
11647
11648 vcpu_load(vcpu);
11649 ret = __set_sregs(vcpu, sregs);
11650 vcpu_put(vcpu);
11651 return ret;
11652 }
11653
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11654 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11655 {
11656 bool set = false;
11657 struct kvm_vcpu *vcpu;
11658 unsigned long i;
11659
11660 if (!enable_apicv)
11661 return;
11662
11663 down_write(&kvm->arch.apicv_update_lock);
11664
11665 kvm_for_each_vcpu(i, vcpu, kvm) {
11666 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11667 set = true;
11668 break;
11669 }
11670 }
11671 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11672 up_write(&kvm->arch.apicv_update_lock);
11673 }
11674
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11675 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11676 struct kvm_guest_debug *dbg)
11677 {
11678 unsigned long rflags;
11679 int i, r;
11680
11681 if (vcpu->arch.guest_state_protected)
11682 return -EINVAL;
11683
11684 vcpu_load(vcpu);
11685
11686 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11687 r = -EBUSY;
11688 if (kvm_is_exception_pending(vcpu))
11689 goto out;
11690 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11691 kvm_queue_exception(vcpu, DB_VECTOR);
11692 else
11693 kvm_queue_exception(vcpu, BP_VECTOR);
11694 }
11695
11696 /*
11697 * Read rflags as long as potentially injected trace flags are still
11698 * filtered out.
11699 */
11700 rflags = kvm_get_rflags(vcpu);
11701
11702 vcpu->guest_debug = dbg->control;
11703 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11704 vcpu->guest_debug = 0;
11705
11706 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11707 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11708 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11709 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11710 } else {
11711 for (i = 0; i < KVM_NR_DB_REGS; i++)
11712 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11713 }
11714 kvm_update_dr7(vcpu);
11715
11716 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11717 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11718
11719 /*
11720 * Trigger an rflags update that will inject or remove the trace
11721 * flags.
11722 */
11723 kvm_set_rflags(vcpu, rflags);
11724
11725 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11726
11727 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11728
11729 r = 0;
11730
11731 out:
11732 vcpu_put(vcpu);
11733 return r;
11734 }
11735
11736 /*
11737 * Translate a guest virtual address to a guest physical address.
11738 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11739 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11740 struct kvm_translation *tr)
11741 {
11742 unsigned long vaddr = tr->linear_address;
11743 gpa_t gpa;
11744 int idx;
11745
11746 vcpu_load(vcpu);
11747
11748 idx = srcu_read_lock(&vcpu->kvm->srcu);
11749 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11750 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11751 tr->physical_address = gpa;
11752 tr->valid = gpa != INVALID_GPA;
11753 tr->writeable = 1;
11754 tr->usermode = 0;
11755
11756 vcpu_put(vcpu);
11757 return 0;
11758 }
11759
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11760 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11761 {
11762 struct fxregs_state *fxsave;
11763
11764 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11765 return 0;
11766
11767 vcpu_load(vcpu);
11768
11769 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11770 memcpy(fpu->fpr, fxsave->st_space, 128);
11771 fpu->fcw = fxsave->cwd;
11772 fpu->fsw = fxsave->swd;
11773 fpu->ftwx = fxsave->twd;
11774 fpu->last_opcode = fxsave->fop;
11775 fpu->last_ip = fxsave->rip;
11776 fpu->last_dp = fxsave->rdp;
11777 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11778
11779 vcpu_put(vcpu);
11780 return 0;
11781 }
11782
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11783 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11784 {
11785 struct fxregs_state *fxsave;
11786
11787 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11788 return 0;
11789
11790 vcpu_load(vcpu);
11791
11792 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11793
11794 memcpy(fxsave->st_space, fpu->fpr, 128);
11795 fxsave->cwd = fpu->fcw;
11796 fxsave->swd = fpu->fsw;
11797 fxsave->twd = fpu->ftwx;
11798 fxsave->fop = fpu->last_opcode;
11799 fxsave->rip = fpu->last_ip;
11800 fxsave->rdp = fpu->last_dp;
11801 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11802
11803 vcpu_put(vcpu);
11804 return 0;
11805 }
11806
store_regs(struct kvm_vcpu * vcpu)11807 static void store_regs(struct kvm_vcpu *vcpu)
11808 {
11809 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11810
11811 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11812 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11813
11814 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11815 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11816
11817 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11818 kvm_vcpu_ioctl_x86_get_vcpu_events(
11819 vcpu, &vcpu->run->s.regs.events);
11820 }
11821
sync_regs(struct kvm_vcpu * vcpu)11822 static int sync_regs(struct kvm_vcpu *vcpu)
11823 {
11824 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11825 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11826 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11827 }
11828
11829 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11830 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11831
11832 if (__set_sregs(vcpu, &sregs))
11833 return -EINVAL;
11834
11835 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11836 }
11837
11838 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11839 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11840
11841 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11842 return -EINVAL;
11843
11844 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11845 }
11846
11847 return 0;
11848 }
11849
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11850 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11851 {
11852 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11853 pr_warn_once("SMP vm created on host with unstable TSC; "
11854 "guest TSC will not be reliable\n");
11855
11856 if (!kvm->arch.max_vcpu_ids)
11857 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11858
11859 if (id >= kvm->arch.max_vcpu_ids)
11860 return -EINVAL;
11861
11862 return static_call(kvm_x86_vcpu_precreate)(kvm);
11863 }
11864
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11865 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11866 {
11867 struct page *page;
11868 int r;
11869
11870 vcpu->arch.last_vmentry_cpu = -1;
11871 vcpu->arch.regs_avail = ~0;
11872 vcpu->arch.regs_dirty = ~0;
11873
11874 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11875
11876 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11877 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11878 else
11879 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11880
11881 r = kvm_mmu_create(vcpu);
11882 if (r < 0)
11883 return r;
11884
11885 if (irqchip_in_kernel(vcpu->kvm)) {
11886 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11887 if (r < 0)
11888 goto fail_mmu_destroy;
11889
11890 /*
11891 * Defer evaluating inhibits until the vCPU is first run, as
11892 * this vCPU will not get notified of any changes until this
11893 * vCPU is visible to other vCPUs (marked online and added to
11894 * the set of vCPUs). Opportunistically mark APICv active as
11895 * VMX in particularly is highly unlikely to have inhibits.
11896 * Ignore the current per-VM APICv state so that vCPU creation
11897 * is guaranteed to run with a deterministic value, the request
11898 * will ensure the vCPU gets the correct state before VM-Entry.
11899 */
11900 if (enable_apicv) {
11901 vcpu->arch.apic->apicv_active = true;
11902 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11903 }
11904 } else
11905 static_branch_inc(&kvm_has_noapic_vcpu);
11906
11907 r = -ENOMEM;
11908
11909 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11910 if (!page)
11911 goto fail_free_lapic;
11912 vcpu->arch.pio_data = page_address(page);
11913
11914 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11915 GFP_KERNEL_ACCOUNT);
11916 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11917 GFP_KERNEL_ACCOUNT);
11918 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11919 goto fail_free_mce_banks;
11920 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11921
11922 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11923 GFP_KERNEL_ACCOUNT))
11924 goto fail_free_mce_banks;
11925
11926 if (!alloc_emulate_ctxt(vcpu))
11927 goto free_wbinvd_dirty_mask;
11928
11929 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11930 pr_err("failed to allocate vcpu's fpu\n");
11931 goto free_emulate_ctxt;
11932 }
11933
11934 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11935 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11936
11937 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11938
11939 kvm_async_pf_hash_reset(vcpu);
11940
11941 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11942 kvm_pmu_init(vcpu);
11943
11944 vcpu->arch.pending_external_vector = -1;
11945 vcpu->arch.preempted_in_kernel = false;
11946
11947 #if IS_ENABLED(CONFIG_HYPERV)
11948 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11949 #endif
11950
11951 r = static_call(kvm_x86_vcpu_create)(vcpu);
11952 if (r)
11953 goto free_guest_fpu;
11954
11955 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11956 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11957 kvm_xen_init_vcpu(vcpu);
11958 kvm_vcpu_mtrr_init(vcpu);
11959 vcpu_load(vcpu);
11960 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11961 kvm_vcpu_reset(vcpu, false);
11962 kvm_init_mmu(vcpu);
11963 vcpu_put(vcpu);
11964 return 0;
11965
11966 free_guest_fpu:
11967 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11968 free_emulate_ctxt:
11969 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11970 free_wbinvd_dirty_mask:
11971 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11972 fail_free_mce_banks:
11973 kfree(vcpu->arch.mce_banks);
11974 kfree(vcpu->arch.mci_ctl2_banks);
11975 free_page((unsigned long)vcpu->arch.pio_data);
11976 fail_free_lapic:
11977 kvm_free_lapic(vcpu);
11978 fail_mmu_destroy:
11979 kvm_mmu_destroy(vcpu);
11980 return r;
11981 }
11982
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11984 {
11985 struct kvm *kvm = vcpu->kvm;
11986
11987 if (mutex_lock_killable(&vcpu->mutex))
11988 return;
11989 vcpu_load(vcpu);
11990 kvm_synchronize_tsc(vcpu, 0);
11991 vcpu_put(vcpu);
11992
11993 /* poll control enabled by default */
11994 vcpu->arch.msr_kvm_poll_control = 1;
11995
11996 mutex_unlock(&vcpu->mutex);
11997
11998 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11999 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12000 KVMCLOCK_SYNC_PERIOD);
12001 }
12002
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12003 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12004 {
12005 int idx;
12006
12007 kvmclock_reset(vcpu);
12008
12009 static_call(kvm_x86_vcpu_free)(vcpu);
12010
12011 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12012 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12013 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12014
12015 kvm_xen_destroy_vcpu(vcpu);
12016 kvm_hv_vcpu_uninit(vcpu);
12017 kvm_pmu_destroy(vcpu);
12018 kfree(vcpu->arch.mce_banks);
12019 kfree(vcpu->arch.mci_ctl2_banks);
12020 kvm_free_lapic(vcpu);
12021 idx = srcu_read_lock(&vcpu->kvm->srcu);
12022 kvm_mmu_destroy(vcpu);
12023 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12024 free_page((unsigned long)vcpu->arch.pio_data);
12025 kvfree(vcpu->arch.cpuid_entries);
12026 if (!lapic_in_kernel(vcpu))
12027 static_branch_dec(&kvm_has_noapic_vcpu);
12028 }
12029
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12030 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12031 {
12032 struct kvm_cpuid_entry2 *cpuid_0x1;
12033 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12034 unsigned long new_cr0;
12035
12036 /*
12037 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12038 * to handle side effects. RESET emulation hits those flows and relies
12039 * on emulated/virtualized registers, including those that are loaded
12040 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12041 * to detect improper or missing initialization.
12042 */
12043 WARN_ON_ONCE(!init_event &&
12044 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12045
12046 /*
12047 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12048 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12049 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12050 * bits), i.e. virtualization is disabled.
12051 */
12052 if (is_guest_mode(vcpu))
12053 kvm_leave_nested(vcpu);
12054
12055 kvm_lapic_reset(vcpu, init_event);
12056
12057 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12058 vcpu->arch.hflags = 0;
12059
12060 vcpu->arch.smi_pending = 0;
12061 vcpu->arch.smi_count = 0;
12062 atomic_set(&vcpu->arch.nmi_queued, 0);
12063 vcpu->arch.nmi_pending = 0;
12064 vcpu->arch.nmi_injected = false;
12065 kvm_clear_interrupt_queue(vcpu);
12066 kvm_clear_exception_queue(vcpu);
12067
12068 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12069 kvm_update_dr0123(vcpu);
12070 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12071 vcpu->arch.dr7 = DR7_FIXED_1;
12072 kvm_update_dr7(vcpu);
12073
12074 vcpu->arch.cr2 = 0;
12075
12076 kvm_make_request(KVM_REQ_EVENT, vcpu);
12077 vcpu->arch.apf.msr_en_val = 0;
12078 vcpu->arch.apf.msr_int_val = 0;
12079 vcpu->arch.st.msr_val = 0;
12080
12081 kvmclock_reset(vcpu);
12082
12083 kvm_clear_async_pf_completion_queue(vcpu);
12084 kvm_async_pf_hash_reset(vcpu);
12085 vcpu->arch.apf.halted = false;
12086
12087 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12088 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12089
12090 /*
12091 * All paths that lead to INIT are required to load the guest's
12092 * FPU state (because most paths are buried in KVM_RUN).
12093 */
12094 if (init_event)
12095 kvm_put_guest_fpu(vcpu);
12096
12097 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12098 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12099
12100 if (init_event)
12101 kvm_load_guest_fpu(vcpu);
12102 }
12103
12104 if (!init_event) {
12105 kvm_pmu_reset(vcpu);
12106 vcpu->arch.smbase = 0x30000;
12107
12108 vcpu->arch.msr_misc_features_enables = 0;
12109 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12110 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12111
12112 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12113 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12114 }
12115
12116 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12117 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12118 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12119
12120 /*
12121 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12122 * if no CPUID match is found. Note, it's impossible to get a match at
12123 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12124 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12125 * on RESET. But, go through the motions in case that's ever remedied.
12126 */
12127 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12128 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12129
12130 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12131
12132 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12133 kvm_rip_write(vcpu, 0xfff0);
12134
12135 vcpu->arch.cr3 = 0;
12136 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12137
12138 /*
12139 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12140 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12141 * (or qualify) that with a footnote stating that CD/NW are preserved.
12142 */
12143 new_cr0 = X86_CR0_ET;
12144 if (init_event)
12145 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12146 else
12147 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12148
12149 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12150 static_call(kvm_x86_set_cr4)(vcpu, 0);
12151 static_call(kvm_x86_set_efer)(vcpu, 0);
12152 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12153
12154 /*
12155 * On the standard CR0/CR4/EFER modification paths, there are several
12156 * complex conditions determining whether the MMU has to be reset and/or
12157 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12158 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12159 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12160 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12161 */
12162 if (old_cr0 & X86_CR0_PG) {
12163 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12164 kvm_mmu_reset_context(vcpu);
12165 }
12166
12167 /*
12168 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12169 * APM states the TLBs are untouched by INIT, but it also states that
12170 * the TLBs are flushed on "External initialization of the processor."
12171 * Flush the guest TLB regardless of vendor, there is no meaningful
12172 * benefit in relying on the guest to flush the TLB immediately after
12173 * INIT. A spurious TLB flush is benign and likely negligible from a
12174 * performance perspective.
12175 */
12176 if (init_event)
12177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12178 }
12179 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12180
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12181 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12182 {
12183 struct kvm_segment cs;
12184
12185 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12186 cs.selector = vector << 8;
12187 cs.base = vector << 12;
12188 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12189 kvm_rip_write(vcpu, 0);
12190 }
12191 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12192
kvm_arch_hardware_enable(void)12193 int kvm_arch_hardware_enable(void)
12194 {
12195 struct kvm *kvm;
12196 struct kvm_vcpu *vcpu;
12197 unsigned long i;
12198 int ret;
12199 u64 local_tsc;
12200 u64 max_tsc = 0;
12201 bool stable, backwards_tsc = false;
12202
12203 kvm_user_return_msr_cpu_online();
12204
12205 ret = kvm_x86_check_processor_compatibility();
12206 if (ret)
12207 return ret;
12208
12209 ret = static_call(kvm_x86_hardware_enable)();
12210 if (ret != 0)
12211 return ret;
12212
12213 local_tsc = rdtsc();
12214 stable = !kvm_check_tsc_unstable();
12215 list_for_each_entry(kvm, &vm_list, vm_list) {
12216 kvm_for_each_vcpu(i, vcpu, kvm) {
12217 if (!stable && vcpu->cpu == smp_processor_id())
12218 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12219 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12220 backwards_tsc = true;
12221 if (vcpu->arch.last_host_tsc > max_tsc)
12222 max_tsc = vcpu->arch.last_host_tsc;
12223 }
12224 }
12225 }
12226
12227 /*
12228 * Sometimes, even reliable TSCs go backwards. This happens on
12229 * platforms that reset TSC during suspend or hibernate actions, but
12230 * maintain synchronization. We must compensate. Fortunately, we can
12231 * detect that condition here, which happens early in CPU bringup,
12232 * before any KVM threads can be running. Unfortunately, we can't
12233 * bring the TSCs fully up to date with real time, as we aren't yet far
12234 * enough into CPU bringup that we know how much real time has actually
12235 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12236 * variables that haven't been updated yet.
12237 *
12238 * So we simply find the maximum observed TSC above, then record the
12239 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12240 * the adjustment will be applied. Note that we accumulate
12241 * adjustments, in case multiple suspend cycles happen before some VCPU
12242 * gets a chance to run again. In the event that no KVM threads get a
12243 * chance to run, we will miss the entire elapsed period, as we'll have
12244 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12245 * loose cycle time. This isn't too big a deal, since the loss will be
12246 * uniform across all VCPUs (not to mention the scenario is extremely
12247 * unlikely). It is possible that a second hibernate recovery happens
12248 * much faster than a first, causing the observed TSC here to be
12249 * smaller; this would require additional padding adjustment, which is
12250 * why we set last_host_tsc to the local tsc observed here.
12251 *
12252 * N.B. - this code below runs only on platforms with reliable TSC,
12253 * as that is the only way backwards_tsc is set above. Also note
12254 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12255 * have the same delta_cyc adjustment applied if backwards_tsc
12256 * is detected. Note further, this adjustment is only done once,
12257 * as we reset last_host_tsc on all VCPUs to stop this from being
12258 * called multiple times (one for each physical CPU bringup).
12259 *
12260 * Platforms with unreliable TSCs don't have to deal with this, they
12261 * will be compensated by the logic in vcpu_load, which sets the TSC to
12262 * catchup mode. This will catchup all VCPUs to real time, but cannot
12263 * guarantee that they stay in perfect synchronization.
12264 */
12265 if (backwards_tsc) {
12266 u64 delta_cyc = max_tsc - local_tsc;
12267 list_for_each_entry(kvm, &vm_list, vm_list) {
12268 kvm->arch.backwards_tsc_observed = true;
12269 kvm_for_each_vcpu(i, vcpu, kvm) {
12270 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12271 vcpu->arch.last_host_tsc = local_tsc;
12272 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12273 }
12274
12275 /*
12276 * We have to disable TSC offset matching.. if you were
12277 * booting a VM while issuing an S4 host suspend....
12278 * you may have some problem. Solving this issue is
12279 * left as an exercise to the reader.
12280 */
12281 kvm->arch.last_tsc_nsec = 0;
12282 kvm->arch.last_tsc_write = 0;
12283 }
12284
12285 }
12286 return 0;
12287 }
12288
kvm_arch_hardware_disable(void)12289 void kvm_arch_hardware_disable(void)
12290 {
12291 static_call(kvm_x86_hardware_disable)();
12292 drop_user_return_notifiers();
12293 }
12294
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12295 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12296 {
12297 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12298 }
12299
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12300 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12301 {
12302 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12303 }
12304
12305 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12306 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12307
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)12308 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12309 {
12310 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12311
12312 vcpu->arch.l1tf_flush_l1d = true;
12313 if (pmu->version && unlikely(pmu->event_count)) {
12314 pmu->need_cleanup = true;
12315 kvm_make_request(KVM_REQ_PMU, vcpu);
12316 }
12317 static_call(kvm_x86_sched_in)(vcpu, cpu);
12318 }
12319
kvm_arch_free_vm(struct kvm * kvm)12320 void kvm_arch_free_vm(struct kvm *kvm)
12321 {
12322 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12323 __kvm_arch_free_vm(kvm);
12324 }
12325
12326
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12327 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12328 {
12329 int ret;
12330 unsigned long flags;
12331
12332 if (type)
12333 return -EINVAL;
12334
12335 ret = kvm_page_track_init(kvm);
12336 if (ret)
12337 goto out;
12338
12339 kvm_mmu_init_vm(kvm);
12340
12341 ret = static_call(kvm_x86_vm_init)(kvm);
12342 if (ret)
12343 goto out_uninit_mmu;
12344
12345 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12346 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12347 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12348
12349 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12350 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12351 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12352 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12353 &kvm->arch.irq_sources_bitmap);
12354
12355 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12356 mutex_init(&kvm->arch.apic_map_lock);
12357 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12358 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12359
12360 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12361 pvclock_update_vm_gtod_copy(kvm);
12362 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12363
12364 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12365 kvm->arch.guest_can_read_msr_platform_info = true;
12366 kvm->arch.enable_pmu = enable_pmu;
12367
12368 #if IS_ENABLED(CONFIG_HYPERV)
12369 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12370 kvm->arch.hv_root_tdp = INVALID_PAGE;
12371 #endif
12372
12373 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12374 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12375
12376 kvm_apicv_init(kvm);
12377 kvm_hv_init_vm(kvm);
12378 kvm_xen_init_vm(kvm);
12379
12380 return 0;
12381
12382 out_uninit_mmu:
12383 kvm_mmu_uninit_vm(kvm);
12384 kvm_page_track_cleanup(kvm);
12385 out:
12386 return ret;
12387 }
12388
kvm_arch_post_init_vm(struct kvm * kvm)12389 int kvm_arch_post_init_vm(struct kvm *kvm)
12390 {
12391 return kvm_mmu_post_init_vm(kvm);
12392 }
12393
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12394 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12395 {
12396 vcpu_load(vcpu);
12397 kvm_mmu_unload(vcpu);
12398 vcpu_put(vcpu);
12399 }
12400
kvm_unload_vcpu_mmus(struct kvm * kvm)12401 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12402 {
12403 unsigned long i;
12404 struct kvm_vcpu *vcpu;
12405
12406 kvm_for_each_vcpu(i, vcpu, kvm) {
12407 kvm_clear_async_pf_completion_queue(vcpu);
12408 kvm_unload_vcpu_mmu(vcpu);
12409 }
12410 }
12411
kvm_arch_sync_events(struct kvm * kvm)12412 void kvm_arch_sync_events(struct kvm *kvm)
12413 {
12414 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12415 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12416 kvm_free_pit(kvm);
12417 }
12418
12419 /**
12420 * __x86_set_memory_region: Setup KVM internal memory slot
12421 *
12422 * @kvm: the kvm pointer to the VM.
12423 * @id: the slot ID to setup.
12424 * @gpa: the GPA to install the slot (unused when @size == 0).
12425 * @size: the size of the slot. Set to zero to uninstall a slot.
12426 *
12427 * This function helps to setup a KVM internal memory slot. Specify
12428 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12429 * slot. The return code can be one of the following:
12430 *
12431 * HVA: on success (uninstall will return a bogus HVA)
12432 * -errno: on error
12433 *
12434 * The caller should always use IS_ERR() to check the return value
12435 * before use. Note, the KVM internal memory slots are guaranteed to
12436 * remain valid and unchanged until the VM is destroyed, i.e., the
12437 * GPA->HVA translation will not change. However, the HVA is a user
12438 * address, i.e. its accessibility is not guaranteed, and must be
12439 * accessed via __copy_{to,from}_user().
12440 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12441 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12442 u32 size)
12443 {
12444 int i, r;
12445 unsigned long hva, old_npages;
12446 struct kvm_memslots *slots = kvm_memslots(kvm);
12447 struct kvm_memory_slot *slot;
12448
12449 /* Called with kvm->slots_lock held. */
12450 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12451 return ERR_PTR_USR(-EINVAL);
12452
12453 slot = id_to_memslot(slots, id);
12454 if (size) {
12455 if (slot && slot->npages)
12456 return ERR_PTR_USR(-EEXIST);
12457
12458 /*
12459 * MAP_SHARED to prevent internal slot pages from being moved
12460 * by fork()/COW.
12461 */
12462 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12463 MAP_SHARED | MAP_ANONYMOUS, 0);
12464 if (IS_ERR_VALUE(hva))
12465 return (void __user *)hva;
12466 } else {
12467 if (!slot || !slot->npages)
12468 return NULL;
12469
12470 old_npages = slot->npages;
12471 hva = slot->userspace_addr;
12472 }
12473
12474 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12475 struct kvm_userspace_memory_region m;
12476
12477 m.slot = id | (i << 16);
12478 m.flags = 0;
12479 m.guest_phys_addr = gpa;
12480 m.userspace_addr = hva;
12481 m.memory_size = size;
12482 r = __kvm_set_memory_region(kvm, &m);
12483 if (r < 0)
12484 return ERR_PTR_USR(r);
12485 }
12486
12487 if (!size)
12488 vm_munmap(hva, old_npages * PAGE_SIZE);
12489
12490 return (void __user *)hva;
12491 }
12492 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12493
kvm_arch_pre_destroy_vm(struct kvm * kvm)12494 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12495 {
12496 kvm_mmu_pre_destroy_vm(kvm);
12497 }
12498
kvm_arch_destroy_vm(struct kvm * kvm)12499 void kvm_arch_destroy_vm(struct kvm *kvm)
12500 {
12501 if (current->mm == kvm->mm) {
12502 /*
12503 * Free memory regions allocated on behalf of userspace,
12504 * unless the memory map has changed due to process exit
12505 * or fd copying.
12506 */
12507 mutex_lock(&kvm->slots_lock);
12508 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12509 0, 0);
12510 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12511 0, 0);
12512 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12513 mutex_unlock(&kvm->slots_lock);
12514 }
12515 kvm_unload_vcpu_mmus(kvm);
12516 static_call_cond(kvm_x86_vm_destroy)(kvm);
12517 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12518 kvm_pic_destroy(kvm);
12519 kvm_ioapic_destroy(kvm);
12520 kvm_destroy_vcpus(kvm);
12521 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12522 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12523 kvm_mmu_uninit_vm(kvm);
12524 kvm_page_track_cleanup(kvm);
12525 kvm_xen_destroy_vm(kvm);
12526 kvm_hv_destroy_vm(kvm);
12527 }
12528
memslot_rmap_free(struct kvm_memory_slot * slot)12529 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12530 {
12531 int i;
12532
12533 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12534 kvfree(slot->arch.rmap[i]);
12535 slot->arch.rmap[i] = NULL;
12536 }
12537 }
12538
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12539 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12540 {
12541 int i;
12542
12543 memslot_rmap_free(slot);
12544
12545 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12546 kvfree(slot->arch.lpage_info[i - 1]);
12547 slot->arch.lpage_info[i - 1] = NULL;
12548 }
12549
12550 kvm_page_track_free_memslot(slot);
12551 }
12552
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12553 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12554 {
12555 const int sz = sizeof(*slot->arch.rmap[0]);
12556 int i;
12557
12558 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12559 int level = i + 1;
12560 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12561
12562 if (slot->arch.rmap[i])
12563 continue;
12564
12565 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12566 if (!slot->arch.rmap[i]) {
12567 memslot_rmap_free(slot);
12568 return -ENOMEM;
12569 }
12570 }
12571
12572 return 0;
12573 }
12574
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12575 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12576 struct kvm_memory_slot *slot)
12577 {
12578 unsigned long npages = slot->npages;
12579 int i, r;
12580
12581 /*
12582 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12583 * old arrays will be freed by __kvm_set_memory_region() if installing
12584 * the new memslot is successful.
12585 */
12586 memset(&slot->arch, 0, sizeof(slot->arch));
12587
12588 if (kvm_memslots_have_rmaps(kvm)) {
12589 r = memslot_rmap_alloc(slot, npages);
12590 if (r)
12591 return r;
12592 }
12593
12594 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12595 struct kvm_lpage_info *linfo;
12596 unsigned long ugfn;
12597 int lpages;
12598 int level = i + 1;
12599
12600 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12601
12602 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12603 if (!linfo)
12604 goto out_free;
12605
12606 slot->arch.lpage_info[i - 1] = linfo;
12607
12608 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12609 linfo[0].disallow_lpage = 1;
12610 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12611 linfo[lpages - 1].disallow_lpage = 1;
12612 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12613 /*
12614 * If the gfn and userspace address are not aligned wrt each
12615 * other, disable large page support for this slot.
12616 */
12617 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12618 unsigned long j;
12619
12620 for (j = 0; j < lpages; ++j)
12621 linfo[j].disallow_lpage = 1;
12622 }
12623 }
12624
12625 if (kvm_page_track_create_memslot(kvm, slot, npages))
12626 goto out_free;
12627
12628 return 0;
12629
12630 out_free:
12631 memslot_rmap_free(slot);
12632
12633 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12634 kvfree(slot->arch.lpage_info[i - 1]);
12635 slot->arch.lpage_info[i - 1] = NULL;
12636 }
12637 return -ENOMEM;
12638 }
12639
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12640 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12641 {
12642 struct kvm_vcpu *vcpu;
12643 unsigned long i;
12644
12645 /*
12646 * memslots->generation has been incremented.
12647 * mmio generation may have reached its maximum value.
12648 */
12649 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12650
12651 /* Force re-initialization of steal_time cache */
12652 kvm_for_each_vcpu(i, vcpu, kvm)
12653 kvm_vcpu_kick(vcpu);
12654 }
12655
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12656 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12657 const struct kvm_memory_slot *old,
12658 struct kvm_memory_slot *new,
12659 enum kvm_mr_change change)
12660 {
12661 /*
12662 * KVM doesn't support moving memslots when there are external page
12663 * trackers attached to the VM, i.e. if KVMGT is in use.
12664 */
12665 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12666 return -EINVAL;
12667
12668 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12669 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12670 return -EINVAL;
12671
12672 return kvm_alloc_memslot_metadata(kvm, new);
12673 }
12674
12675 if (change == KVM_MR_FLAGS_ONLY)
12676 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12677 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12678 return -EIO;
12679
12680 return 0;
12681 }
12682
12683
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12684 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12685 {
12686 int nr_slots;
12687
12688 if (!kvm_x86_ops.cpu_dirty_log_size)
12689 return;
12690
12691 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12692 if ((enable && nr_slots == 1) || !nr_slots)
12693 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12694 }
12695
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12696 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12697 struct kvm_memory_slot *old,
12698 const struct kvm_memory_slot *new,
12699 enum kvm_mr_change change)
12700 {
12701 u32 old_flags = old ? old->flags : 0;
12702 u32 new_flags = new ? new->flags : 0;
12703 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12704
12705 /*
12706 * Update CPU dirty logging if dirty logging is being toggled. This
12707 * applies to all operations.
12708 */
12709 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12710 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12711
12712 /*
12713 * Nothing more to do for RO slots (which can't be dirtied and can't be
12714 * made writable) or CREATE/MOVE/DELETE of a slot.
12715 *
12716 * For a memslot with dirty logging disabled:
12717 * CREATE: No dirty mappings will already exist.
12718 * MOVE/DELETE: The old mappings will already have been cleaned up by
12719 * kvm_arch_flush_shadow_memslot()
12720 *
12721 * For a memslot with dirty logging enabled:
12722 * CREATE: No shadow pages exist, thus nothing to write-protect
12723 * and no dirty bits to clear.
12724 * MOVE/DELETE: The old mappings will already have been cleaned up by
12725 * kvm_arch_flush_shadow_memslot().
12726 */
12727 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12728 return;
12729
12730 /*
12731 * READONLY and non-flags changes were filtered out above, and the only
12732 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12733 * logging isn't being toggled on or off.
12734 */
12735 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12736 return;
12737
12738 if (!log_dirty_pages) {
12739 /*
12740 * Dirty logging tracks sptes in 4k granularity, meaning that
12741 * large sptes have to be split. If live migration succeeds,
12742 * the guest in the source machine will be destroyed and large
12743 * sptes will be created in the destination. However, if the
12744 * guest continues to run in the source machine (for example if
12745 * live migration fails), small sptes will remain around and
12746 * cause bad performance.
12747 *
12748 * Scan sptes if dirty logging has been stopped, dropping those
12749 * which can be collapsed into a single large-page spte. Later
12750 * page faults will create the large-page sptes.
12751 */
12752 kvm_mmu_zap_collapsible_sptes(kvm, new);
12753 } else {
12754 /*
12755 * Initially-all-set does not require write protecting any page,
12756 * because they're all assumed to be dirty.
12757 */
12758 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12759 return;
12760
12761 if (READ_ONCE(eager_page_split))
12762 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12763
12764 if (kvm_x86_ops.cpu_dirty_log_size) {
12765 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12766 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12767 } else {
12768 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12769 }
12770
12771 /*
12772 * Unconditionally flush the TLBs after enabling dirty logging.
12773 * A flush is almost always going to be necessary (see below),
12774 * and unconditionally flushing allows the helpers to omit
12775 * the subtly complex checks when removing write access.
12776 *
12777 * Do the flush outside of mmu_lock to reduce the amount of
12778 * time mmu_lock is held. Flushing after dropping mmu_lock is
12779 * safe as KVM only needs to guarantee the slot is fully
12780 * write-protected before returning to userspace, i.e. before
12781 * userspace can consume the dirty status.
12782 *
12783 * Flushing outside of mmu_lock requires KVM to be careful when
12784 * making decisions based on writable status of an SPTE, e.g. a
12785 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12786 *
12787 * Specifically, KVM also write-protects guest page tables to
12788 * monitor changes when using shadow paging, and must guarantee
12789 * no CPUs can write to those page before mmu_lock is dropped.
12790 * Because CPUs may have stale TLB entries at this point, a
12791 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12792 *
12793 * KVM also allows making SPTES writable outside of mmu_lock,
12794 * e.g. to allow dirty logging without taking mmu_lock.
12795 *
12796 * To handle these scenarios, KVM uses a separate software-only
12797 * bit (MMU-writable) to track if a SPTE is !writable due to
12798 * a guest page table being write-protected (KVM clears the
12799 * MMU-writable flag when write-protecting for shadow paging).
12800 *
12801 * The use of MMU-writable is also the primary motivation for
12802 * the unconditional flush. Because KVM must guarantee that a
12803 * CPU doesn't contain stale, writable TLB entries for a
12804 * !MMU-writable SPTE, KVM must flush if it encounters any
12805 * MMU-writable SPTE regardless of whether the actual hardware
12806 * writable bit was set. I.e. KVM is almost guaranteed to need
12807 * to flush, while unconditionally flushing allows the "remove
12808 * write access" helpers to ignore MMU-writable entirely.
12809 *
12810 * See is_writable_pte() for more details (the case involving
12811 * access-tracked SPTEs is particularly relevant).
12812 */
12813 kvm_flush_remote_tlbs_memslot(kvm, new);
12814 }
12815 }
12816
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12817 void kvm_arch_commit_memory_region(struct kvm *kvm,
12818 struct kvm_memory_slot *old,
12819 const struct kvm_memory_slot *new,
12820 enum kvm_mr_change change)
12821 {
12822 if (change == KVM_MR_DELETE)
12823 kvm_page_track_delete_slot(kvm, old);
12824
12825 if (!kvm->arch.n_requested_mmu_pages &&
12826 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12827 unsigned long nr_mmu_pages;
12828
12829 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12830 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12831 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12832 }
12833
12834 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12835
12836 /* Free the arrays associated with the old memslot. */
12837 if (change == KVM_MR_MOVE)
12838 kvm_arch_free_memslot(kvm, old);
12839 }
12840
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12841 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12842 {
12843 return (is_guest_mode(vcpu) &&
12844 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12845 }
12846
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12847 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12848 {
12849 if (!list_empty_careful(&vcpu->async_pf.done))
12850 return true;
12851
12852 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12853 kvm_apic_init_sipi_allowed(vcpu))
12854 return true;
12855
12856 if (vcpu->arch.pv.pv_unhalted)
12857 return true;
12858
12859 if (kvm_is_exception_pending(vcpu))
12860 return true;
12861
12862 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12863 (vcpu->arch.nmi_pending &&
12864 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12865 return true;
12866
12867 #ifdef CONFIG_KVM_SMM
12868 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12869 (vcpu->arch.smi_pending &&
12870 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12871 return true;
12872 #endif
12873
12874 if (kvm_test_request(KVM_REQ_PMI, vcpu))
12875 return true;
12876
12877 if (kvm_arch_interrupt_allowed(vcpu) &&
12878 (kvm_cpu_has_interrupt(vcpu) ||
12879 kvm_guest_apic_has_interrupt(vcpu)))
12880 return true;
12881
12882 if (kvm_hv_has_stimer_pending(vcpu))
12883 return true;
12884
12885 if (is_guest_mode(vcpu) &&
12886 kvm_x86_ops.nested_ops->has_events &&
12887 kvm_x86_ops.nested_ops->has_events(vcpu, false))
12888 return true;
12889
12890 if (kvm_xen_has_pending_events(vcpu))
12891 return true;
12892
12893 return false;
12894 }
12895
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12896 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12897 {
12898 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12899 }
12900
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12901 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12902 {
12903 if (kvm_vcpu_apicv_active(vcpu) &&
12904 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12905 return true;
12906
12907 return false;
12908 }
12909
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12910 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12911 {
12912 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12913 return true;
12914
12915 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12916 #ifdef CONFIG_KVM_SMM
12917 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12918 #endif
12919 kvm_test_request(KVM_REQ_EVENT, vcpu))
12920 return true;
12921
12922 return kvm_arch_dy_has_pending_interrupt(vcpu);
12923 }
12924
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12925 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12926 {
12927 if (vcpu->arch.guest_state_protected)
12928 return true;
12929
12930 return vcpu->arch.preempted_in_kernel;
12931 }
12932
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12933 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12934 {
12935 return kvm_rip_read(vcpu);
12936 }
12937
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12938 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12939 {
12940 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12941 }
12942
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12943 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12944 {
12945 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12946 }
12947
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12948 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12949 {
12950 /* Can't read the RIP when guest state is protected, just return 0 */
12951 if (vcpu->arch.guest_state_protected)
12952 return 0;
12953
12954 if (is_64_bit_mode(vcpu))
12955 return kvm_rip_read(vcpu);
12956 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12957 kvm_rip_read(vcpu));
12958 }
12959 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12960
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12961 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12962 {
12963 return kvm_get_linear_rip(vcpu) == linear_rip;
12964 }
12965 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12966
kvm_get_rflags(struct kvm_vcpu * vcpu)12967 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12968 {
12969 unsigned long rflags;
12970
12971 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12972 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12973 rflags &= ~X86_EFLAGS_TF;
12974 return rflags;
12975 }
12976 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12977
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12978 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12979 {
12980 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12981 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12982 rflags |= X86_EFLAGS_TF;
12983 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12984 }
12985
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12986 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12987 {
12988 __kvm_set_rflags(vcpu, rflags);
12989 kvm_make_request(KVM_REQ_EVENT, vcpu);
12990 }
12991 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12992
kvm_async_pf_hash_fn(gfn_t gfn)12993 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12994 {
12995 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12996
12997 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12998 }
12999
kvm_async_pf_next_probe(u32 key)13000 static inline u32 kvm_async_pf_next_probe(u32 key)
13001 {
13002 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13003 }
13004
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13005 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13006 {
13007 u32 key = kvm_async_pf_hash_fn(gfn);
13008
13009 while (vcpu->arch.apf.gfns[key] != ~0)
13010 key = kvm_async_pf_next_probe(key);
13011
13012 vcpu->arch.apf.gfns[key] = gfn;
13013 }
13014
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13015 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13016 {
13017 int i;
13018 u32 key = kvm_async_pf_hash_fn(gfn);
13019
13020 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13021 (vcpu->arch.apf.gfns[key] != gfn &&
13022 vcpu->arch.apf.gfns[key] != ~0); i++)
13023 key = kvm_async_pf_next_probe(key);
13024
13025 return key;
13026 }
13027
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13028 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13029 {
13030 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13031 }
13032
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13033 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13034 {
13035 u32 i, j, k;
13036
13037 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13038
13039 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13040 return;
13041
13042 while (true) {
13043 vcpu->arch.apf.gfns[i] = ~0;
13044 do {
13045 j = kvm_async_pf_next_probe(j);
13046 if (vcpu->arch.apf.gfns[j] == ~0)
13047 return;
13048 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13049 /*
13050 * k lies cyclically in ]i,j]
13051 * | i.k.j |
13052 * |....j i.k.| or |.k..j i...|
13053 */
13054 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13055 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13056 i = j;
13057 }
13058 }
13059
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13060 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13061 {
13062 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13063
13064 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13065 sizeof(reason));
13066 }
13067
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13068 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13069 {
13070 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13071
13072 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13073 &token, offset, sizeof(token));
13074 }
13075
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13076 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13077 {
13078 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13079 u32 val;
13080
13081 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13082 &val, offset, sizeof(val)))
13083 return false;
13084
13085 return !val;
13086 }
13087
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13088 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13089 {
13090
13091 if (!kvm_pv_async_pf_enabled(vcpu))
13092 return false;
13093
13094 if (vcpu->arch.apf.send_user_only &&
13095 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13096 return false;
13097
13098 if (is_guest_mode(vcpu)) {
13099 /*
13100 * L1 needs to opt into the special #PF vmexits that are
13101 * used to deliver async page faults.
13102 */
13103 return vcpu->arch.apf.delivery_as_pf_vmexit;
13104 } else {
13105 /*
13106 * Play it safe in case the guest temporarily disables paging.
13107 * The real mode IDT in particular is unlikely to have a #PF
13108 * exception setup.
13109 */
13110 return is_paging(vcpu);
13111 }
13112 }
13113
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13114 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13115 {
13116 if (unlikely(!lapic_in_kernel(vcpu) ||
13117 kvm_event_needs_reinjection(vcpu) ||
13118 kvm_is_exception_pending(vcpu)))
13119 return false;
13120
13121 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13122 return false;
13123
13124 /*
13125 * If interrupts are off we cannot even use an artificial
13126 * halt state.
13127 */
13128 return kvm_arch_interrupt_allowed(vcpu);
13129 }
13130
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13131 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13132 struct kvm_async_pf *work)
13133 {
13134 struct x86_exception fault;
13135
13136 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13137 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13138
13139 if (kvm_can_deliver_async_pf(vcpu) &&
13140 !apf_put_user_notpresent(vcpu)) {
13141 fault.vector = PF_VECTOR;
13142 fault.error_code_valid = true;
13143 fault.error_code = 0;
13144 fault.nested_page_fault = false;
13145 fault.address = work->arch.token;
13146 fault.async_page_fault = true;
13147 kvm_inject_page_fault(vcpu, &fault);
13148 return true;
13149 } else {
13150 /*
13151 * It is not possible to deliver a paravirtualized asynchronous
13152 * page fault, but putting the guest in an artificial halt state
13153 * can be beneficial nevertheless: if an interrupt arrives, we
13154 * can deliver it timely and perhaps the guest will schedule
13155 * another process. When the instruction that triggered a page
13156 * fault is retried, hopefully the page will be ready in the host.
13157 */
13158 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13159 return false;
13160 }
13161 }
13162
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13163 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13164 struct kvm_async_pf *work)
13165 {
13166 struct kvm_lapic_irq irq = {
13167 .delivery_mode = APIC_DM_FIXED,
13168 .vector = vcpu->arch.apf.vec
13169 };
13170
13171 if (work->wakeup_all)
13172 work->arch.token = ~0; /* broadcast wakeup */
13173 else
13174 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13175 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13176
13177 if ((work->wakeup_all || work->notpresent_injected) &&
13178 kvm_pv_async_pf_enabled(vcpu) &&
13179 !apf_put_user_ready(vcpu, work->arch.token)) {
13180 vcpu->arch.apf.pageready_pending = true;
13181 kvm_apic_set_irq(vcpu, &irq, NULL);
13182 }
13183
13184 vcpu->arch.apf.halted = false;
13185 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13186 }
13187
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13188 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13189 {
13190 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13191 if (!vcpu->arch.apf.pageready_pending)
13192 kvm_vcpu_kick(vcpu);
13193 }
13194
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13195 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13196 {
13197 if (!kvm_pv_async_pf_enabled(vcpu))
13198 return true;
13199 else
13200 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13201 }
13202
kvm_arch_start_assignment(struct kvm * kvm)13203 void kvm_arch_start_assignment(struct kvm *kvm)
13204 {
13205 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13206 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13207 }
13208 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13209
kvm_arch_end_assignment(struct kvm * kvm)13210 void kvm_arch_end_assignment(struct kvm *kvm)
13211 {
13212 atomic_dec(&kvm->arch.assigned_device_count);
13213 }
13214 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13215
kvm_arch_has_assigned_device(struct kvm * kvm)13216 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13217 {
13218 return raw_atomic_read(&kvm->arch.assigned_device_count);
13219 }
13220 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13221
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13222 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13223 {
13224 atomic_inc(&kvm->arch.noncoherent_dma_count);
13225 }
13226 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13227
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13228 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13229 {
13230 atomic_dec(&kvm->arch.noncoherent_dma_count);
13231 }
13232 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13233
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13234 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13235 {
13236 return atomic_read(&kvm->arch.noncoherent_dma_count);
13237 }
13238 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13239
kvm_arch_has_irq_bypass(void)13240 bool kvm_arch_has_irq_bypass(void)
13241 {
13242 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13243 }
13244
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13245 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13246 struct irq_bypass_producer *prod)
13247 {
13248 struct kvm_kernel_irqfd *irqfd =
13249 container_of(cons, struct kvm_kernel_irqfd, consumer);
13250 int ret;
13251
13252 irqfd->producer = prod;
13253 kvm_arch_start_assignment(irqfd->kvm);
13254 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13255 prod->irq, irqfd->gsi, 1);
13256
13257 if (ret)
13258 kvm_arch_end_assignment(irqfd->kvm);
13259
13260 return ret;
13261 }
13262
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13263 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13264 struct irq_bypass_producer *prod)
13265 {
13266 int ret;
13267 struct kvm_kernel_irqfd *irqfd =
13268 container_of(cons, struct kvm_kernel_irqfd, consumer);
13269
13270 WARN_ON(irqfd->producer != prod);
13271 irqfd->producer = NULL;
13272
13273 /*
13274 * When producer of consumer is unregistered, we change back to
13275 * remapped mode, so we can re-use the current implementation
13276 * when the irq is masked/disabled or the consumer side (KVM
13277 * int this case doesn't want to receive the interrupts.
13278 */
13279 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13280 if (ret)
13281 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13282 " fails: %d\n", irqfd->consumer.token, ret);
13283
13284 kvm_arch_end_assignment(irqfd->kvm);
13285 }
13286
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13287 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13288 uint32_t guest_irq, bool set)
13289 {
13290 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13291 }
13292
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13293 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13294 struct kvm_kernel_irq_routing_entry *new)
13295 {
13296 if (new->type != KVM_IRQ_ROUTING_MSI)
13297 return true;
13298
13299 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13300 }
13301
kvm_vector_hashing_enabled(void)13302 bool kvm_vector_hashing_enabled(void)
13303 {
13304 return vector_hashing;
13305 }
13306
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13307 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13308 {
13309 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13310 }
13311 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13312
13313
kvm_spec_ctrl_test_value(u64 value)13314 int kvm_spec_ctrl_test_value(u64 value)
13315 {
13316 /*
13317 * test that setting IA32_SPEC_CTRL to given value
13318 * is allowed by the host processor
13319 */
13320
13321 u64 saved_value;
13322 unsigned long flags;
13323 int ret = 0;
13324
13325 local_irq_save(flags);
13326
13327 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13328 ret = 1;
13329 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13330 ret = 1;
13331 else
13332 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13333
13334 local_irq_restore(flags);
13335
13336 return ret;
13337 }
13338 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13339
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13340 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13341 {
13342 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13343 struct x86_exception fault;
13344 u64 access = error_code &
13345 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13346
13347 if (!(error_code & PFERR_PRESENT_MASK) ||
13348 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13349 /*
13350 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13351 * tables probably do not match the TLB. Just proceed
13352 * with the error code that the processor gave.
13353 */
13354 fault.vector = PF_VECTOR;
13355 fault.error_code_valid = true;
13356 fault.error_code = error_code;
13357 fault.nested_page_fault = false;
13358 fault.address = gva;
13359 fault.async_page_fault = false;
13360 }
13361 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13362 }
13363 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13364
13365 /*
13366 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13367 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13368 * indicates whether exit to userspace is needed.
13369 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13370 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13371 struct x86_exception *e)
13372 {
13373 if (r == X86EMUL_PROPAGATE_FAULT) {
13374 if (KVM_BUG_ON(!e, vcpu->kvm))
13375 return -EIO;
13376
13377 kvm_inject_emulated_page_fault(vcpu, e);
13378 return 1;
13379 }
13380
13381 /*
13382 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13383 * while handling a VMX instruction KVM could've handled the request
13384 * correctly by exiting to userspace and performing I/O but there
13385 * doesn't seem to be a real use-case behind such requests, just return
13386 * KVM_EXIT_INTERNAL_ERROR for now.
13387 */
13388 kvm_prepare_emulation_failure_exit(vcpu);
13389
13390 return 0;
13391 }
13392 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13393
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13394 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13395 {
13396 bool pcid_enabled;
13397 struct x86_exception e;
13398 struct {
13399 u64 pcid;
13400 u64 gla;
13401 } operand;
13402 int r;
13403
13404 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13405 if (r != X86EMUL_CONTINUE)
13406 return kvm_handle_memory_failure(vcpu, r, &e);
13407
13408 if (operand.pcid >> 12 != 0) {
13409 kvm_inject_gp(vcpu, 0);
13410 return 1;
13411 }
13412
13413 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13414
13415 switch (type) {
13416 case INVPCID_TYPE_INDIV_ADDR:
13417 if ((!pcid_enabled && (operand.pcid != 0)) ||
13418 is_noncanonical_address(operand.gla, vcpu)) {
13419 kvm_inject_gp(vcpu, 0);
13420 return 1;
13421 }
13422 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13423 return kvm_skip_emulated_instruction(vcpu);
13424
13425 case INVPCID_TYPE_SINGLE_CTXT:
13426 if (!pcid_enabled && (operand.pcid != 0)) {
13427 kvm_inject_gp(vcpu, 0);
13428 return 1;
13429 }
13430
13431 kvm_invalidate_pcid(vcpu, operand.pcid);
13432 return kvm_skip_emulated_instruction(vcpu);
13433
13434 case INVPCID_TYPE_ALL_NON_GLOBAL:
13435 /*
13436 * Currently, KVM doesn't mark global entries in the shadow
13437 * page tables, so a non-global flush just degenerates to a
13438 * global flush. If needed, we could optimize this later by
13439 * keeping track of global entries in shadow page tables.
13440 */
13441
13442 fallthrough;
13443 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13444 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13445 return kvm_skip_emulated_instruction(vcpu);
13446
13447 default:
13448 kvm_inject_gp(vcpu, 0);
13449 return 1;
13450 }
13451 }
13452 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13453
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13454 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13455 {
13456 struct kvm_run *run = vcpu->run;
13457 struct kvm_mmio_fragment *frag;
13458 unsigned int len;
13459
13460 BUG_ON(!vcpu->mmio_needed);
13461
13462 /* Complete previous fragment */
13463 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13464 len = min(8u, frag->len);
13465 if (!vcpu->mmio_is_write)
13466 memcpy(frag->data, run->mmio.data, len);
13467
13468 if (frag->len <= 8) {
13469 /* Switch to the next fragment. */
13470 frag++;
13471 vcpu->mmio_cur_fragment++;
13472 } else {
13473 /* Go forward to the next mmio piece. */
13474 frag->data += len;
13475 frag->gpa += len;
13476 frag->len -= len;
13477 }
13478
13479 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13480 vcpu->mmio_needed = 0;
13481
13482 // VMG change, at this point, we're always done
13483 // RIP has already been advanced
13484 return 1;
13485 }
13486
13487 // More MMIO is needed
13488 run->mmio.phys_addr = frag->gpa;
13489 run->mmio.len = min(8u, frag->len);
13490 run->mmio.is_write = vcpu->mmio_is_write;
13491 if (run->mmio.is_write)
13492 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13493 run->exit_reason = KVM_EXIT_MMIO;
13494
13495 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13496
13497 return 0;
13498 }
13499
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13500 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13501 void *data)
13502 {
13503 int handled;
13504 struct kvm_mmio_fragment *frag;
13505
13506 if (!data)
13507 return -EINVAL;
13508
13509 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13510 if (handled == bytes)
13511 return 1;
13512
13513 bytes -= handled;
13514 gpa += handled;
13515 data += handled;
13516
13517 /*TODO: Check if need to increment number of frags */
13518 frag = vcpu->mmio_fragments;
13519 vcpu->mmio_nr_fragments = 1;
13520 frag->len = bytes;
13521 frag->gpa = gpa;
13522 frag->data = data;
13523
13524 vcpu->mmio_needed = 1;
13525 vcpu->mmio_cur_fragment = 0;
13526
13527 vcpu->run->mmio.phys_addr = gpa;
13528 vcpu->run->mmio.len = min(8u, frag->len);
13529 vcpu->run->mmio.is_write = 1;
13530 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13531 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13532
13533 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13534
13535 return 0;
13536 }
13537 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13538
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13539 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13540 void *data)
13541 {
13542 int handled;
13543 struct kvm_mmio_fragment *frag;
13544
13545 if (!data)
13546 return -EINVAL;
13547
13548 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13549 if (handled == bytes)
13550 return 1;
13551
13552 bytes -= handled;
13553 gpa += handled;
13554 data += handled;
13555
13556 /*TODO: Check if need to increment number of frags */
13557 frag = vcpu->mmio_fragments;
13558 vcpu->mmio_nr_fragments = 1;
13559 frag->len = bytes;
13560 frag->gpa = gpa;
13561 frag->data = data;
13562
13563 vcpu->mmio_needed = 1;
13564 vcpu->mmio_cur_fragment = 0;
13565
13566 vcpu->run->mmio.phys_addr = gpa;
13567 vcpu->run->mmio.len = min(8u, frag->len);
13568 vcpu->run->mmio.is_write = 0;
13569 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13570
13571 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13572
13573 return 0;
13574 }
13575 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13576
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13577 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13578 {
13579 vcpu->arch.sev_pio_count -= count;
13580 vcpu->arch.sev_pio_data += count * size;
13581 }
13582
13583 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13584 unsigned int port);
13585
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13586 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13587 {
13588 int size = vcpu->arch.pio.size;
13589 int port = vcpu->arch.pio.port;
13590
13591 vcpu->arch.pio.count = 0;
13592 if (vcpu->arch.sev_pio_count)
13593 return kvm_sev_es_outs(vcpu, size, port);
13594 return 1;
13595 }
13596
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13597 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13598 unsigned int port)
13599 {
13600 for (;;) {
13601 unsigned int count =
13602 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13603 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13604
13605 /* memcpy done already by emulator_pio_out. */
13606 advance_sev_es_emulated_pio(vcpu, count, size);
13607 if (!ret)
13608 break;
13609
13610 /* Emulation done by the kernel. */
13611 if (!vcpu->arch.sev_pio_count)
13612 return 1;
13613 }
13614
13615 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13616 return 0;
13617 }
13618
13619 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13620 unsigned int port);
13621
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13622 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13623 {
13624 unsigned count = vcpu->arch.pio.count;
13625 int size = vcpu->arch.pio.size;
13626 int port = vcpu->arch.pio.port;
13627
13628 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13629 advance_sev_es_emulated_pio(vcpu, count, size);
13630 if (vcpu->arch.sev_pio_count)
13631 return kvm_sev_es_ins(vcpu, size, port);
13632 return 1;
13633 }
13634
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13635 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13636 unsigned int port)
13637 {
13638 for (;;) {
13639 unsigned int count =
13640 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13641 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13642 break;
13643
13644 /* Emulation done by the kernel. */
13645 advance_sev_es_emulated_pio(vcpu, count, size);
13646 if (!vcpu->arch.sev_pio_count)
13647 return 1;
13648 }
13649
13650 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13651 return 0;
13652 }
13653
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13654 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13655 unsigned int port, void *data, unsigned int count,
13656 int in)
13657 {
13658 vcpu->arch.sev_pio_data = data;
13659 vcpu->arch.sev_pio_count = count;
13660 return in ? kvm_sev_es_ins(vcpu, size, port)
13661 : kvm_sev_es_outs(vcpu, size, port);
13662 }
13663 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13664
13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13694
kvm_x86_init(void)13695 static int __init kvm_x86_init(void)
13696 {
13697 kvm_init_xstate_sizes();
13698
13699 kvm_mmu_x86_module_init();
13700 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13701 return 0;
13702 }
13703 module_init(kvm_x86_init);
13704
kvm_x86_exit(void)13705 static void __exit kvm_x86_exit(void)
13706 {
13707 /*
13708 * If module_init() is implemented, module_exit() must also be
13709 * implemented to allow module unload.
13710 */
13711 }
13712 module_exit(kvm_x86_exit);
13713