xref: /openbmc/linux/drivers/net/dsa/microchip/ksz8795.c (revision f8b04488b060b155f8b6769aa70412c3630b03f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
32 }
33 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
53 	if (!ret)
54 		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
ksz8_reset_switch(struct ksz_device * dev)61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81 	u8 ctrl2 = 0;
82 
83 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87 
88 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91 
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94 	u8 ctrl1 = 0, ctrl2 = 0;
95 	int ret;
96 
97 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 		ctrl1 |= SW_HUGE_PACKET;
101 
102 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103 	if (ret)
104 		return ret;
105 
106 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108 
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111 	u16 frame_size;
112 
113 	if (!dsa_is_cpu_port(dev->ds, port))
114 		return 0;
115 
116 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117 
118 	switch (dev->chip_id) {
119 	case KSZ8795_CHIP_ID:
120 	case KSZ8794_CHIP_ID:
121 	case KSZ8765_CHIP_ID:
122 		return ksz8795_change_mtu(dev, frame_size);
123 	case KSZ8830_CHIP_ID:
124 		return ksz8863_change_mtu(dev, frame_size);
125 	}
126 
127 	return -EOPNOTSUPP;
128 }
129 
ksz8795_set_prio_queue(struct ksz_device * dev,int port,int queue)130 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131 {
132 	u8 hi, lo;
133 
134 	/* Number of queues can only be 1, 2, or 4. */
135 	switch (queue) {
136 	case 4:
137 	case 3:
138 		queue = PORT_QUEUE_SPLIT_4;
139 		break;
140 	case 2:
141 		queue = PORT_QUEUE_SPLIT_2;
142 		break;
143 	default:
144 		queue = PORT_QUEUE_SPLIT_1;
145 	}
146 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148 	lo &= ~PORT_QUEUE_SPLIT_L;
149 	if (queue & PORT_QUEUE_SPLIT_2)
150 		lo |= PORT_QUEUE_SPLIT_L;
151 	hi &= ~PORT_QUEUE_SPLIT_H;
152 	if (queue & PORT_QUEUE_SPLIT_4)
153 		hi |= PORT_QUEUE_SPLIT_H;
154 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156 
157 	/* Default is port based for egress rate limit. */
158 	if (queue != PORT_QUEUE_SPLIT_1)
159 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160 			true);
161 }
162 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)163 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164 {
165 	const u32 *masks;
166 	const u16 *regs;
167 	u16 ctrl_addr;
168 	u32 data;
169 	u8 check;
170 	int loop;
171 
172 	masks = dev->info->masks;
173 	regs = dev->info->regs;
174 
175 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177 
178 	mutex_lock(&dev->alu_mutex);
179 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180 
181 	/* It is almost guaranteed to always read the valid bit because of
182 	 * slow SPI speed.
183 	 */
184 	for (loop = 2; loop > 0; loop--) {
185 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186 
187 		if (check & masks[MIB_COUNTER_VALID]) {
188 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189 			if (check & masks[MIB_COUNTER_OVERFLOW])
190 				*cnt += MIB_COUNTER_VALUE + 1;
191 			*cnt += data & MIB_COUNTER_VALUE;
192 			break;
193 		}
194 	}
195 	mutex_unlock(&dev->alu_mutex);
196 }
197 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)198 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199 			      u64 *dropped, u64 *cnt)
200 {
201 	const u32 *masks;
202 	const u16 *regs;
203 	u16 ctrl_addr;
204 	u32 data;
205 	u8 check;
206 	int loop;
207 
208 	masks = dev->info->masks;
209 	regs = dev->info->regs;
210 
211 	addr -= dev->info->reg_mib_cnt;
212 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 
219 	/* It is almost guaranteed to always read the valid bit because of
220 	 * slow SPI speed.
221 	 */
222 	for (loop = 2; loop > 0; loop--) {
223 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224 
225 		if (check & masks[MIB_COUNTER_VALID]) {
226 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227 			if (addr < 2) {
228 				u64 total;
229 
230 				total = check & MIB_TOTAL_BYTES_H;
231 				total <<= 32;
232 				*cnt += total;
233 				*cnt += data;
234 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 					total = MIB_TOTAL_BYTES_H + 1;
236 					total <<= 32;
237 					*cnt += total;
238 				}
239 			} else {
240 				if (check & masks[MIB_COUNTER_OVERFLOW])
241 					*cnt += MIB_PACKET_DROPPED + 1;
242 				*cnt += data & MIB_PACKET_DROPPED;
243 			}
244 			break;
245 		}
246 	}
247 	mutex_unlock(&dev->alu_mutex);
248 }
249 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)250 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251 			      u64 *dropped, u64 *cnt)
252 {
253 	u32 *last = (u32 *)dropped;
254 	const u16 *regs;
255 	u16 ctrl_addr;
256 	u32 data;
257 	u32 cur;
258 
259 	regs = dev->info->regs;
260 
261 	addr -= dev->info->reg_mib_cnt;
262 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
264 	ctrl_addr += port;
265 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266 
267 	mutex_lock(&dev->alu_mutex);
268 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270 	mutex_unlock(&dev->alu_mutex);
271 
272 	data &= MIB_PACKET_DROPPED;
273 	cur = last[addr];
274 	if (data != cur) {
275 		last[addr] = data;
276 		if (data < cur)
277 			data += MIB_PACKET_DROPPED + 1;
278 		data -= cur;
279 		*cnt += data;
280 	}
281 }
282 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)283 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284 		    u64 *dropped, u64 *cnt)
285 {
286 	if (ksz_is_ksz88x3(dev))
287 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288 	else
289 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290 }
291 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)292 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293 {
294 	if (ksz_is_ksz88x3(dev))
295 		return;
296 
297 	/* enable the port for flush/freeze function */
298 	if (freeze)
299 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301 
302 	/* disable the port after freeze is done */
303 	if (!freeze)
304 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305 }
306 
ksz8_port_init_cnt(struct ksz_device * dev,int port)307 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 {
309 	struct ksz_port_mib *mib = &dev->ports[port].mib;
310 	u64 *dropped;
311 
312 	if (!ksz_is_ksz88x3(dev)) {
313 		/* flush all enabled port MIB counters */
314 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317 	}
318 
319 	mib->cnt_ptr = 0;
320 
321 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324 					&mib->counters[mib->cnt_ptr]);
325 		++mib->cnt_ptr;
326 	}
327 
328 	/* last one in storage */
329 	dropped = &mib->counters[dev->info->mib_cnt];
330 
331 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332 	while (mib->cnt_ptr < dev->info->mib_cnt) {
333 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334 					dropped, &mib->counters[mib->cnt_ptr]);
335 		++mib->cnt_ptr;
336 	}
337 }
338 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)339 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340 {
341 	const u16 *regs;
342 	u16 ctrl_addr;
343 	int ret;
344 
345 	regs = dev->info->regs;
346 
347 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
348 
349 	mutex_lock(&dev->alu_mutex);
350 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
351 	if (ret)
352 		goto unlock_alu;
353 
354 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
355 unlock_alu:
356 	mutex_unlock(&dev->alu_mutex);
357 
358 	return ret;
359 }
360 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)361 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362 {
363 	const u16 *regs;
364 	u16 ctrl_addr;
365 	int ret;
366 
367 	regs = dev->info->regs;
368 
369 	ctrl_addr = IND_ACC_TABLE(table) | addr;
370 
371 	mutex_lock(&dev->alu_mutex);
372 	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
373 	if (ret)
374 		goto unlock_alu;
375 
376 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
377 unlock_alu:
378 	mutex_unlock(&dev->alu_mutex);
379 
380 	return ret;
381 }
382 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)383 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384 {
385 	int timeout = 100;
386 	const u32 *masks;
387 	const u16 *regs;
388 
389 	masks = dev->info->masks;
390 	regs = dev->info->regs;
391 
392 	do {
393 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
394 		timeout--;
395 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396 
397 	/* Entry is not ready for accessing. */
398 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399 		return -EAGAIN;
400 	/* Entry is ready for accessing. */
401 	} else {
402 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
403 
404 		/* There is no valid entry in the table. */
405 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406 			return -ENXIO;
407 	}
408 	return 0;
409 }
410 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u8 * timestamp,u16 * entries)411 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
412 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
413 {
414 	u32 data_hi, data_lo;
415 	const u8 *shifts;
416 	const u32 *masks;
417 	const u16 *regs;
418 	u16 ctrl_addr;
419 	u8 data;
420 	int rc;
421 
422 	shifts = dev->info->shifts;
423 	masks = dev->info->masks;
424 	regs = dev->info->regs;
425 
426 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
427 
428 	mutex_lock(&dev->alu_mutex);
429 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
430 
431 	rc = ksz8_valid_dyn_entry(dev, &data);
432 	if (rc == -EAGAIN) {
433 		if (addr == 0)
434 			*entries = 0;
435 	} else if (rc == -ENXIO) {
436 		*entries = 0;
437 	/* At least one valid entry in the table. */
438 	} else {
439 		u64 buf = 0;
440 		int cnt;
441 
442 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
443 		data_hi = (u32)(buf >> 32);
444 		data_lo = (u32)buf;
445 
446 		/* Check out how many valid entry in the table. */
447 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
448 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
449 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
450 			shifts[DYNAMIC_MAC_ENTRIES];
451 		*entries = cnt + 1;
452 
453 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
454 			shifts[DYNAMIC_MAC_FID];
455 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
456 			shifts[DYNAMIC_MAC_SRC_PORT];
457 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
458 			shifts[DYNAMIC_MAC_TIMESTAMP];
459 
460 		mac_addr[5] = (u8)data_lo;
461 		mac_addr[4] = (u8)(data_lo >> 8);
462 		mac_addr[3] = (u8)(data_lo >> 16);
463 		mac_addr[2] = (u8)(data_lo >> 24);
464 
465 		mac_addr[1] = (u8)data_hi;
466 		mac_addr[0] = (u8)(data_hi >> 8);
467 		rc = 0;
468 	}
469 	mutex_unlock(&dev->alu_mutex);
470 
471 	return rc;
472 }
473 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)474 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475 				struct alu_struct *alu, bool *valid)
476 {
477 	u32 data_hi, data_lo;
478 	const u8 *shifts;
479 	const u32 *masks;
480 	u64 data;
481 	int ret;
482 
483 	shifts = dev->info->shifts;
484 	masks = dev->info->masks;
485 
486 	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
487 	if (ret)
488 		return ret;
489 
490 	data_hi = data >> 32;
491 	data_lo = (u32)data;
492 
493 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
494 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
495 		*valid = false;
496 		return 0;
497 	}
498 
499 	alu->mac[5] = (u8)data_lo;
500 	alu->mac[4] = (u8)(data_lo >> 8);
501 	alu->mac[3] = (u8)(data_lo >> 16);
502 	alu->mac[2] = (u8)(data_lo >> 24);
503 	alu->mac[1] = (u8)data_hi;
504 	alu->mac[0] = (u8)(data_hi >> 8);
505 	alu->port_forward =
506 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
507 			shifts[STATIC_MAC_FWD_PORTS];
508 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509 
510 	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
511 	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
512 	 * static MAC table compared to doing write.
513 	 */
514 	if (ksz_is_ksz87xx(dev))
515 		data_hi >>= 1;
516 	alu->is_static = true;
517 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
518 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
519 		shifts[STATIC_MAC_FID];
520 
521 	*valid = true;
522 
523 	return 0;
524 }
525 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)526 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
527 				struct alu_struct *alu)
528 {
529 	u32 data_hi, data_lo;
530 	const u8 *shifts;
531 	const u32 *masks;
532 	u64 data;
533 
534 	shifts = dev->info->shifts;
535 	masks = dev->info->masks;
536 
537 	data_lo = ((u32)alu->mac[2] << 24) |
538 		((u32)alu->mac[3] << 16) |
539 		((u32)alu->mac[4] << 8) | alu->mac[5];
540 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
541 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
542 
543 	if (alu->is_override)
544 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
545 	if (alu->is_use_fid) {
546 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
547 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
548 	}
549 	if (alu->is_static)
550 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
551 	else
552 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
553 
554 	data = (u64)data_hi << 32 | data_lo;
555 
556 	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
557 }
558 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)559 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
560 			   u8 *member, u8 *valid)
561 {
562 	const u8 *shifts;
563 	const u32 *masks;
564 
565 	shifts = dev->info->shifts;
566 	masks = dev->info->masks;
567 
568 	*fid = vlan & masks[VLAN_TABLE_FID];
569 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
570 			shifts[VLAN_TABLE_MEMBERSHIP_S];
571 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
572 }
573 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)574 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
575 			 u16 *vlan)
576 {
577 	const u8 *shifts;
578 	const u32 *masks;
579 
580 	shifts = dev->info->shifts;
581 	masks = dev->info->masks;
582 
583 	*vlan = fid;
584 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
585 	if (valid)
586 		*vlan |= masks[VLAN_TABLE_VALID];
587 }
588 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)589 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
590 {
591 	const u8 *shifts;
592 	u64 data;
593 	int i;
594 
595 	shifts = dev->info->shifts;
596 
597 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
598 	addr *= 4;
599 	for (i = 0; i < 4; i++) {
600 		dev->vlan_cache[addr + i].table[0] = (u16)data;
601 		data >>= shifts[VLAN_TABLE];
602 	}
603 }
604 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)605 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
606 {
607 	int index;
608 	u16 *data;
609 	u16 addr;
610 	u64 buf;
611 
612 	data = (u16 *)&buf;
613 	addr = vid / 4;
614 	index = vid & 3;
615 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
616 	*vlan = data[index];
617 }
618 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)619 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
620 {
621 	int index;
622 	u16 *data;
623 	u16 addr;
624 	u64 buf;
625 
626 	data = (u16 *)&buf;
627 	addr = vid / 4;
628 	index = vid & 3;
629 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
630 	data[index] = vlan;
631 	dev->vlan_cache[vid].table[0] = vlan;
632 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
633 }
634 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)635 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
636 {
637 	u8 restart, speed, ctrl, link;
638 	int processed = true;
639 	const u16 *regs;
640 	u8 val1, val2;
641 	u16 data = 0;
642 	u8 p = phy;
643 	int ret;
644 
645 	regs = dev->info->regs;
646 
647 	switch (reg) {
648 	case MII_BMCR:
649 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
650 		if (ret)
651 			return ret;
652 
653 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
654 		if (ret)
655 			return ret;
656 
657 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
658 		if (ret)
659 			return ret;
660 
661 		if (restart & PORT_PHY_LOOPBACK)
662 			data |= BMCR_LOOPBACK;
663 		if (ctrl & PORT_FORCE_100_MBIT)
664 			data |= BMCR_SPEED100;
665 		if (ksz_is_ksz88x3(dev)) {
666 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
667 				data |= BMCR_ANENABLE;
668 		} else {
669 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
670 				data |= BMCR_ANENABLE;
671 		}
672 		if (restart & PORT_POWER_DOWN)
673 			data |= BMCR_PDOWN;
674 		if (restart & PORT_AUTO_NEG_RESTART)
675 			data |= BMCR_ANRESTART;
676 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
677 			data |= BMCR_FULLDPLX;
678 		if (speed & PORT_HP_MDIX)
679 			data |= KSZ886X_BMCR_HP_MDIX;
680 		if (restart & PORT_FORCE_MDIX)
681 			data |= KSZ886X_BMCR_FORCE_MDI;
682 		if (restart & PORT_AUTO_MDIX_DISABLE)
683 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
684 		if (restart & PORT_TX_DISABLE)
685 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
686 		if (restart & PORT_LED_OFF)
687 			data |= KSZ886X_BMCR_DISABLE_LED;
688 		break;
689 	case MII_BMSR:
690 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
691 		if (ret)
692 			return ret;
693 
694 		data = BMSR_100FULL |
695 		       BMSR_100HALF |
696 		       BMSR_10FULL |
697 		       BMSR_10HALF |
698 		       BMSR_ANEGCAPABLE;
699 		if (link & PORT_AUTO_NEG_COMPLETE)
700 			data |= BMSR_ANEGCOMPLETE;
701 		if (link & PORT_STAT_LINK_GOOD)
702 			data |= BMSR_LSTATUS;
703 		break;
704 	case MII_PHYSID1:
705 		data = KSZ8795_ID_HI;
706 		break;
707 	case MII_PHYSID2:
708 		if (ksz_is_ksz88x3(dev))
709 			data = KSZ8863_ID_LO;
710 		else
711 			data = KSZ8795_ID_LO;
712 		break;
713 	case MII_ADVERTISE:
714 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
715 		if (ret)
716 			return ret;
717 
718 		data = ADVERTISE_CSMA;
719 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
720 			data |= ADVERTISE_PAUSE_CAP;
721 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
722 			data |= ADVERTISE_100FULL;
723 		if (ctrl & PORT_AUTO_NEG_100BTX)
724 			data |= ADVERTISE_100HALF;
725 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
726 			data |= ADVERTISE_10FULL;
727 		if (ctrl & PORT_AUTO_NEG_10BT)
728 			data |= ADVERTISE_10HALF;
729 		break;
730 	case MII_LPA:
731 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
732 		if (ret)
733 			return ret;
734 
735 		data = LPA_SLCT;
736 		if (link & PORT_REMOTE_SYM_PAUSE)
737 			data |= LPA_PAUSE_CAP;
738 		if (link & PORT_REMOTE_100BTX_FD)
739 			data |= LPA_100FULL;
740 		if (link & PORT_REMOTE_100BTX)
741 			data |= LPA_100HALF;
742 		if (link & PORT_REMOTE_10BT_FD)
743 			data |= LPA_10FULL;
744 		if (link & PORT_REMOTE_10BT)
745 			data |= LPA_10HALF;
746 		if (data & ~LPA_SLCT)
747 			data |= LPA_LPACK;
748 		break;
749 	case PHY_REG_LINK_MD:
750 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
751 		if (ret)
752 			return ret;
753 
754 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
755 		if (ret)
756 			return ret;
757 
758 		if (val1 & PORT_START_CABLE_DIAG)
759 			data |= PHY_START_CABLE_DIAG;
760 
761 		if (val1 & PORT_CABLE_10M_SHORT)
762 			data |= PHY_CABLE_10M_SHORT;
763 
764 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
765 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
766 
767 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
768 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
769 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
770 		break;
771 	case PHY_REG_PHY_CTRL:
772 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
773 		if (ret)
774 			return ret;
775 
776 		if (link & PORT_MDIX_STATUS)
777 			data |= KSZ886X_CTRL_MDIX_STAT;
778 		break;
779 	default:
780 		processed = false;
781 		break;
782 	}
783 	if (processed)
784 		*val = data;
785 
786 	return 0;
787 }
788 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)789 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
790 {
791 	u8 restart, speed, ctrl, data;
792 	const u16 *regs;
793 	u8 p = phy;
794 	int ret;
795 
796 	regs = dev->info->regs;
797 
798 	switch (reg) {
799 	case MII_BMCR:
800 
801 		/* Do not support PHY reset function. */
802 		if (val & BMCR_RESET)
803 			break;
804 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
805 		if (ret)
806 			return ret;
807 
808 		data = speed;
809 		if (val & KSZ886X_BMCR_HP_MDIX)
810 			data |= PORT_HP_MDIX;
811 		else
812 			data &= ~PORT_HP_MDIX;
813 
814 		if (data != speed) {
815 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
816 			if (ret)
817 				return ret;
818 		}
819 
820 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
821 		if (ret)
822 			return ret;
823 
824 		data = ctrl;
825 		if (ksz_is_ksz88x3(dev)) {
826 			if ((val & BMCR_ANENABLE))
827 				data |= PORT_AUTO_NEG_ENABLE;
828 			else
829 				data &= ~PORT_AUTO_NEG_ENABLE;
830 		} else {
831 			if (!(val & BMCR_ANENABLE))
832 				data |= PORT_AUTO_NEG_DISABLE;
833 			else
834 				data &= ~PORT_AUTO_NEG_DISABLE;
835 
836 			/* Fiber port does not support auto-negotiation. */
837 			if (dev->ports[p].fiber)
838 				data |= PORT_AUTO_NEG_DISABLE;
839 		}
840 
841 		if (val & BMCR_SPEED100)
842 			data |= PORT_FORCE_100_MBIT;
843 		else
844 			data &= ~PORT_FORCE_100_MBIT;
845 		if (val & BMCR_FULLDPLX)
846 			data |= PORT_FORCE_FULL_DUPLEX;
847 		else
848 			data &= ~PORT_FORCE_FULL_DUPLEX;
849 
850 		if (data != ctrl) {
851 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
852 			if (ret)
853 				return ret;
854 		}
855 
856 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
857 		if (ret)
858 			return ret;
859 
860 		data = restart;
861 		if (val & KSZ886X_BMCR_DISABLE_LED)
862 			data |= PORT_LED_OFF;
863 		else
864 			data &= ~PORT_LED_OFF;
865 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
866 			data |= PORT_TX_DISABLE;
867 		else
868 			data &= ~PORT_TX_DISABLE;
869 		if (val & BMCR_ANRESTART)
870 			data |= PORT_AUTO_NEG_RESTART;
871 		else
872 			data &= ~(PORT_AUTO_NEG_RESTART);
873 		if (val & BMCR_PDOWN)
874 			data |= PORT_POWER_DOWN;
875 		else
876 			data &= ~PORT_POWER_DOWN;
877 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
878 			data |= PORT_AUTO_MDIX_DISABLE;
879 		else
880 			data &= ~PORT_AUTO_MDIX_DISABLE;
881 		if (val & KSZ886X_BMCR_FORCE_MDI)
882 			data |= PORT_FORCE_MDIX;
883 		else
884 			data &= ~PORT_FORCE_MDIX;
885 		if (val & BMCR_LOOPBACK)
886 			data |= PORT_PHY_LOOPBACK;
887 		else
888 			data &= ~PORT_PHY_LOOPBACK;
889 
890 		if (data != restart) {
891 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
892 					  data);
893 			if (ret)
894 				return ret;
895 		}
896 		break;
897 	case MII_ADVERTISE:
898 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
899 		if (ret)
900 			return ret;
901 
902 		data = ctrl;
903 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
904 			  PORT_AUTO_NEG_100BTX_FD |
905 			  PORT_AUTO_NEG_100BTX |
906 			  PORT_AUTO_NEG_10BT_FD |
907 			  PORT_AUTO_NEG_10BT);
908 		if (val & ADVERTISE_PAUSE_CAP)
909 			data |= PORT_AUTO_NEG_SYM_PAUSE;
910 		if (val & ADVERTISE_100FULL)
911 			data |= PORT_AUTO_NEG_100BTX_FD;
912 		if (val & ADVERTISE_100HALF)
913 			data |= PORT_AUTO_NEG_100BTX;
914 		if (val & ADVERTISE_10FULL)
915 			data |= PORT_AUTO_NEG_10BT_FD;
916 		if (val & ADVERTISE_10HALF)
917 			data |= PORT_AUTO_NEG_10BT;
918 
919 		if (data != ctrl) {
920 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
921 			if (ret)
922 				return ret;
923 		}
924 		break;
925 	case PHY_REG_LINK_MD:
926 		if (val & PHY_START_CABLE_DIAG)
927 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
928 		break;
929 	default:
930 		break;
931 	}
932 
933 	return 0;
934 }
935 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)936 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
937 {
938 	u8 data;
939 
940 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
941 	data &= ~PORT_VLAN_MEMBERSHIP;
942 	data |= (member & dev->port_mask);
943 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
944 }
945 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)946 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
947 {
948 	u8 learn[DSA_MAX_PORTS];
949 	int first, index, cnt;
950 	const u16 *regs;
951 
952 	regs = dev->info->regs;
953 
954 	if ((uint)port < dev->info->port_cnt) {
955 		first = port;
956 		cnt = port + 1;
957 	} else {
958 		/* Flush all ports. */
959 		first = 0;
960 		cnt = dev->info->port_cnt;
961 	}
962 	for (index = first; index < cnt; index++) {
963 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
964 		if (!(learn[index] & PORT_LEARN_DISABLE))
965 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
966 				    learn[index] | PORT_LEARN_DISABLE);
967 	}
968 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
969 	for (index = first; index < cnt; index++) {
970 		if (!(learn[index] & PORT_LEARN_DISABLE))
971 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
972 	}
973 }
974 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)975 int ksz8_fdb_dump(struct ksz_device *dev, int port,
976 		  dsa_fdb_dump_cb_t *cb, void *data)
977 {
978 	int ret = 0;
979 	u16 i = 0;
980 	u16 entries = 0;
981 	u8 timestamp = 0;
982 	u8 fid;
983 	u8 src_port;
984 	u8 mac[ETH_ALEN];
985 
986 	do {
987 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
988 					   &timestamp, &entries);
989 		if (!ret && port == src_port) {
990 			ret = cb(mac, fid, false, data);
991 			if (ret)
992 				break;
993 		}
994 		i++;
995 	} while (i < entries);
996 	if (i >= entries)
997 		ret = 0;
998 
999 	return ret;
1000 }
1001 
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1002 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1003 			    const unsigned char *addr, u16 vid)
1004 {
1005 	struct alu_struct alu;
1006 	int index, ret;
1007 	int empty = 0;
1008 
1009 	alu.port_forward = 0;
1010 	for (index = 0; index < dev->info->num_statics; index++) {
1011 		bool valid;
1012 
1013 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1014 		if (ret)
1015 			return ret;
1016 		if (!valid) {
1017 			/* Remember the first empty entry. */
1018 			if (!empty)
1019 				empty = index + 1;
1020 			continue;
1021 		}
1022 
1023 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1024 			break;
1025 	}
1026 
1027 	/* no available entry */
1028 	if (index == dev->info->num_statics && !empty)
1029 		return -ENOSPC;
1030 
1031 	/* add entry */
1032 	if (index == dev->info->num_statics) {
1033 		index = empty - 1;
1034 		memset(&alu, 0, sizeof(alu));
1035 		memcpy(alu.mac, addr, ETH_ALEN);
1036 		alu.is_static = true;
1037 	}
1038 	alu.port_forward |= BIT(port);
1039 	if (vid) {
1040 		alu.is_use_fid = true;
1041 
1042 		/* Need a way to map VID to FID. */
1043 		alu.fid = vid;
1044 	}
1045 
1046 	return ksz8_w_sta_mac_table(dev, index, &alu);
1047 }
1048 
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1049 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1050 			    const unsigned char *addr, u16 vid)
1051 {
1052 	struct alu_struct alu;
1053 	int index, ret;
1054 
1055 	for (index = 0; index < dev->info->num_statics; index++) {
1056 		bool valid;
1057 
1058 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1059 		if (ret)
1060 			return ret;
1061 		if (!valid)
1062 			continue;
1063 
1064 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1065 			break;
1066 	}
1067 
1068 	/* no available entry */
1069 	if (index == dev->info->num_statics)
1070 		return 0;
1071 
1072 	/* clear port */
1073 	alu.port_forward &= ~BIT(port);
1074 	if (!alu.port_forward)
1075 		alu.is_static = false;
1076 
1077 	return ksz8_w_sta_mac_table(dev, index, &alu);
1078 }
1079 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1080 int ksz8_mdb_add(struct ksz_device *dev, int port,
1081 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1082 {
1083 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1084 }
1085 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1086 int ksz8_mdb_del(struct ksz_device *dev, int port,
1087 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1088 {
1089 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1090 }
1091 
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1092 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1093 		 u16 vid, struct dsa_db db)
1094 {
1095 	return ksz8_add_sta_mac(dev, port, addr, vid);
1096 }
1097 
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1098 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1099 		 u16 vid, struct dsa_db db)
1100 {
1101 	return ksz8_del_sta_mac(dev, port, addr, vid);
1102 }
1103 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1104 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1105 			     struct netlink_ext_ack *extack)
1106 {
1107 	if (ksz_is_ksz88x3(dev))
1108 		return -ENOTSUPP;
1109 
1110 	/* Discard packets with VID not enabled on the switch */
1111 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1112 
1113 	/* Discard packets with VID not enabled on the ingress port */
1114 	for (port = 0; port < dev->phy_port_cnt; ++port)
1115 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1116 			     flag);
1117 
1118 	return 0;
1119 }
1120 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1121 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1122 {
1123 	if (ksz_is_ksz88x3(dev)) {
1124 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1125 			0x03 << (4 - 2 * port), state);
1126 	} else {
1127 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1128 	}
1129 }
1130 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1131 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1132 		       const struct switchdev_obj_port_vlan *vlan,
1133 		       struct netlink_ext_ack *extack)
1134 {
1135 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1136 	struct ksz_port *p = &dev->ports[port];
1137 	u16 data, new_pvid = 0;
1138 	u8 fid, member, valid;
1139 
1140 	if (ksz_is_ksz88x3(dev))
1141 		return -ENOTSUPP;
1142 
1143 	/* If a VLAN is added with untagged flag different from the
1144 	 * port's Remove Tag flag, we need to change the latter.
1145 	 * Ignore VID 0, which is always untagged.
1146 	 * Ignore CPU port, which will always be tagged.
1147 	 */
1148 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1149 	    port != dev->cpu_port) {
1150 		unsigned int vid;
1151 
1152 		/* Reject attempts to add a VLAN that requires the
1153 		 * Remove Tag flag to be changed, unless there are no
1154 		 * other VLANs currently configured.
1155 		 */
1156 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1157 			/* Skip the VID we are going to add or reconfigure */
1158 			if (vid == vlan->vid)
1159 				continue;
1160 
1161 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1162 				       &fid, &member, &valid);
1163 			if (valid && (member & BIT(port)))
1164 				return -EINVAL;
1165 		}
1166 
1167 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1168 		p->remove_tag = untagged;
1169 	}
1170 
1171 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1172 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1173 
1174 	/* First time to setup the VLAN entry. */
1175 	if (!valid) {
1176 		/* Need to find a way to map VID to FID. */
1177 		fid = 1;
1178 		valid = 1;
1179 	}
1180 	member |= BIT(port);
1181 
1182 	ksz8_to_vlan(dev, fid, member, valid, &data);
1183 	ksz8_w_vlan_table(dev, vlan->vid, data);
1184 
1185 	/* change PVID */
1186 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1187 		new_pvid = vlan->vid;
1188 
1189 	if (new_pvid) {
1190 		u16 vid;
1191 
1192 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1193 		vid &= ~VLAN_VID_MASK;
1194 		vid |= new_pvid;
1195 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1196 
1197 		ksz8_port_enable_pvid(dev, port, true);
1198 	}
1199 
1200 	return 0;
1201 }
1202 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1203 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1204 		       const struct switchdev_obj_port_vlan *vlan)
1205 {
1206 	u16 data, pvid;
1207 	u8 fid, member, valid;
1208 
1209 	if (ksz_is_ksz88x3(dev))
1210 		return -ENOTSUPP;
1211 
1212 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1213 	pvid = pvid & 0xFFF;
1214 
1215 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1216 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1217 
1218 	member &= ~BIT(port);
1219 
1220 	/* Invalidate the entry if no more member. */
1221 	if (!member) {
1222 		fid = 0;
1223 		valid = 0;
1224 	}
1225 
1226 	ksz8_to_vlan(dev, fid, member, valid, &data);
1227 	ksz8_w_vlan_table(dev, vlan->vid, data);
1228 
1229 	if (pvid == vlan->vid)
1230 		ksz8_port_enable_pvid(dev, port, false);
1231 
1232 	return 0;
1233 }
1234 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1235 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1236 			 struct dsa_mall_mirror_tc_entry *mirror,
1237 			 bool ingress, struct netlink_ext_ack *extack)
1238 {
1239 	if (ingress) {
1240 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1241 		dev->mirror_rx |= BIT(port);
1242 	} else {
1243 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1244 		dev->mirror_tx |= BIT(port);
1245 	}
1246 
1247 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1248 
1249 	/* configure mirror port */
1250 	if (dev->mirror_rx || dev->mirror_tx)
1251 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1252 			     PORT_MIRROR_SNIFFER, true);
1253 
1254 	return 0;
1255 }
1256 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1257 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1258 			  struct dsa_mall_mirror_tc_entry *mirror)
1259 {
1260 	u8 data;
1261 
1262 	if (mirror->ingress) {
1263 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1264 		dev->mirror_rx &= ~BIT(port);
1265 	} else {
1266 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1267 		dev->mirror_tx &= ~BIT(port);
1268 	}
1269 
1270 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1271 
1272 	if (!dev->mirror_rx && !dev->mirror_tx)
1273 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1274 			     PORT_MIRROR_SNIFFER, false);
1275 }
1276 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1277 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1278 {
1279 	struct ksz_port *p = &dev->ports[port];
1280 
1281 	if (!p->interface && dev->compat_interface) {
1282 		dev_warn(dev->dev,
1283 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1284 			 "Please update your device tree.\n",
1285 			 port);
1286 		p->interface = dev->compat_interface;
1287 	}
1288 }
1289 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1290 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1291 {
1292 	struct dsa_switch *ds = dev->ds;
1293 	const u32 *masks;
1294 	u8 member;
1295 
1296 	masks = dev->info->masks;
1297 
1298 	/* enable broadcast storm limit */
1299 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1300 
1301 	if (!ksz_is_ksz88x3(dev))
1302 		ksz8795_set_prio_queue(dev, port, 4);
1303 
1304 	/* disable DiffServ priority */
1305 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1306 
1307 	/* replace priority */
1308 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1309 		     masks[PORT_802_1P_REMAPPING], false);
1310 
1311 	/* enable 802.1p priority */
1312 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1313 
1314 	if (cpu_port) {
1315 		if (!ksz_is_ksz88x3(dev))
1316 			ksz8795_cpu_interface_select(dev, port);
1317 
1318 		member = dsa_user_ports(ds);
1319 	} else {
1320 		member = BIT(dsa_upstream_port(ds, port));
1321 	}
1322 
1323 	ksz8_cfg_port_member(dev, port, member);
1324 }
1325 
ksz8_config_cpu_port(struct dsa_switch * ds)1326 void ksz8_config_cpu_port(struct dsa_switch *ds)
1327 {
1328 	struct ksz_device *dev = ds->priv;
1329 	struct ksz_port *p;
1330 	const u32 *masks;
1331 	const u16 *regs;
1332 	u8 remote;
1333 	int i;
1334 
1335 	masks = dev->info->masks;
1336 	regs = dev->info->regs;
1337 
1338 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1339 
1340 	ksz8_port_setup(dev, dev->cpu_port, true);
1341 
1342 	for (i = 0; i < dev->phy_port_cnt; i++) {
1343 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1344 	}
1345 	for (i = 0; i < dev->phy_port_cnt; i++) {
1346 		p = &dev->ports[i];
1347 
1348 		if (!ksz_is_ksz88x3(dev)) {
1349 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1350 			if (remote & KSZ8_PORT_FIBER_MODE)
1351 				p->fiber = 1;
1352 		}
1353 		if (p->fiber)
1354 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1355 				     PORT_FORCE_FLOW_CTRL, true);
1356 		else
1357 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1358 				     PORT_FORCE_FLOW_CTRL, false);
1359 	}
1360 }
1361 
ksz8_handle_global_errata(struct dsa_switch * ds)1362 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1363 {
1364 	struct ksz_device *dev = ds->priv;
1365 	int ret = 0;
1366 
1367 	/* KSZ87xx Errata DS80000687C.
1368 	 * Module 2: Link drops with some EEE link partners.
1369 	 *   An issue with the EEE next page exchange between the
1370 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1371 	 *   the link dropping.
1372 	 */
1373 	if (dev->info->ksz87xx_eee_link_erratum)
1374 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1375 
1376 	return ret;
1377 }
1378 
ksz8_enable_stp_addr(struct ksz_device * dev)1379 int ksz8_enable_stp_addr(struct ksz_device *dev)
1380 {
1381 	struct alu_struct alu;
1382 
1383 	/* Setup STP address for STP operation. */
1384 	memset(&alu, 0, sizeof(alu));
1385 	ether_addr_copy(alu.mac, eth_stp_addr);
1386 	alu.is_static = true;
1387 	alu.is_override = true;
1388 	alu.port_forward = dev->info->cpu_ports;
1389 
1390 	return ksz8_w_sta_mac_table(dev, 0, &alu);
1391 }
1392 
ksz8_setup(struct dsa_switch * ds)1393 int ksz8_setup(struct dsa_switch *ds)
1394 {
1395 	struct ksz_device *dev = ds->priv;
1396 	int i;
1397 
1398 	ds->mtu_enforcement_ingress = true;
1399 
1400 	/* We rely on software untagging on the CPU port, so that we
1401 	 * can support both tagged and untagged VLANs
1402 	 */
1403 	ds->untag_bridge_pvid = true;
1404 
1405 	/* VLAN filtering is partly controlled by the global VLAN
1406 	 * Enable flag
1407 	 */
1408 	ds->vlan_filtering_is_global = true;
1409 
1410 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1411 
1412 	/* Enable automatic fast aging when link changed detected. */
1413 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1414 
1415 	/* Enable aggressive back off algorithm in half duplex mode. */
1416 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1417 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1418 
1419 	/*
1420 	 * Make sure unicast VLAN boundary is set as default and
1421 	 * enable no excessive collision drop.
1422 	 */
1423 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1424 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1425 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1426 
1427 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1428 
1429 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1430 
1431 	if (!ksz_is_ksz88x3(dev))
1432 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1433 
1434 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1435 		ksz8_r_vlan_entries(dev, i);
1436 
1437 	return ksz8_handle_global_errata(ds);
1438 }
1439 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1440 void ksz8_get_caps(struct ksz_device *dev, int port,
1441 		   struct phylink_config *config)
1442 {
1443 	config->mac_capabilities = MAC_10 | MAC_100;
1444 
1445 	/* Silicon Errata Sheet (DS80000830A):
1446 	 * "Port 1 does not respond to received flow control PAUSE frames"
1447 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1448 	 * switches.
1449 	 */
1450 	if (!ksz_is_ksz88x3(dev) || port)
1451 		config->mac_capabilities |= MAC_SYM_PAUSE;
1452 
1453 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1454 	if (!ksz_is_ksz88x3(dev))
1455 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1456 }
1457 
ksz8_get_port_addr(int port,int offset)1458 u32 ksz8_get_port_addr(int port, int offset)
1459 {
1460 	return PORT_CTRL_ADDR(port, offset);
1461 }
1462 
ksz8_switch_init(struct ksz_device * dev)1463 int ksz8_switch_init(struct ksz_device *dev)
1464 {
1465 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1466 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1467 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1468 
1469 	return 0;
1470 }
1471 
ksz8_switch_exit(struct ksz_device * dev)1472 void ksz8_switch_exit(struct ksz_device *dev)
1473 {
1474 	ksz8_reset_switch(dev);
1475 }
1476 
1477 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1478 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1479 MODULE_LICENSE("GPL");
1480