xref: /openbmc/linux/include/linux/mm_types.h (revision d32fd6bb9f2bc8178cdd65ebec1ad670a8bfa241)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 
23 #include <asm/mmu.h>
24 
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29 
30 #define INIT_PASID	0
31 
32 struct address_space;
33 struct mem_cgroup;
34 
35 /*
36  * Each physical page in the system has a struct page associated with
37  * it to keep track of whatever it is we are using the page for at the
38  * moment. Note that we have no way to track which tasks are using
39  * a page, though if it is a pagecache page, rmap structures can tell us
40  * who is mapping it.
41  *
42  * If you allocate the page using alloc_pages(), you can use some of the
43  * space in struct page for your own purposes.  The five words in the main
44  * union are available, except for bit 0 of the first word which must be
45  * kept clear.  Many users use this word to store a pointer to an object
46  * which is guaranteed to be aligned.  If you use the same storage as
47  * page->mapping, you must restore it to NULL before freeing the page.
48  *
49  * If your page will not be mapped to userspace, you can also use the four
50  * bytes in the mapcount union, but you must call page_mapcount_reset()
51  * before freeing it.
52  *
53  * If you want to use the refcount field, it must be used in such a way
54  * that other CPUs temporarily incrementing and then decrementing the
55  * refcount does not cause problems.  On receiving the page from
56  * alloc_pages(), the refcount will be positive.
57  *
58  * If you allocate pages of order > 0, you can use some of the fields
59  * in each subpage, but you may need to restore some of their values
60  * afterwards.
61  *
62  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63  * That requires that freelist & counters in struct slab be adjacent and
64  * double-word aligned. Because struct slab currently just reinterprets the
65  * bits of struct page, we align all struct pages to double-word boundaries,
66  * and ensure that 'freelist' is aligned within struct slab.
67  */
68 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
70 #else
71 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
72 #endif
73 
74 struct page {
75 	unsigned long flags;		/* Atomic flags, some possibly
76 					 * updated asynchronously */
77 	/*
78 	 * Five words (20/40 bytes) are available in this union.
79 	 * WARNING: bit 0 of the first word is used for PageTail(). That
80 	 * means the other users of this union MUST NOT use the bit to
81 	 * avoid collision and false-positive PageTail().
82 	 */
83 	union {
84 		struct {	/* Page cache and anonymous pages */
85 			/**
86 			 * @lru: Pageout list, eg. active_list protected by
87 			 * lruvec->lru_lock.  Sometimes used as a generic list
88 			 * by the page owner.
89 			 */
90 			union {
91 				struct list_head lru;
92 
93 				/* Or, for the Unevictable "LRU list" slot */
94 				struct {
95 					/* Always even, to negate PageTail */
96 					void *__filler;
97 					/* Count page's or folio's mlocks */
98 					unsigned int mlock_count;
99 				};
100 
101 				/* Or, free page */
102 				struct list_head buddy_list;
103 				struct list_head pcp_list;
104 			};
105 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
106 			struct address_space *mapping;
107 			union {
108 				pgoff_t index;		/* Our offset within mapping. */
109 				unsigned long share;	/* share count for fsdax */
110 			};
111 			/**
112 			 * @private: Mapping-private opaque data.
113 			 * Usually used for buffer_heads if PagePrivate.
114 			 * Used for swp_entry_t if PageSwapCache.
115 			 * Indicates order in the buddy system if PageBuddy.
116 			 */
117 			unsigned long private;
118 		};
119 		struct {	/* page_pool used by netstack */
120 			/**
121 			 * @pp_magic: magic value to avoid recycling non
122 			 * page_pool allocated pages.
123 			 */
124 			unsigned long pp_magic;
125 			struct page_pool *pp;
126 			unsigned long _pp_mapping_pad;
127 			unsigned long dma_addr;
128 			union {
129 				/**
130 				 * dma_addr_upper: might require a 64-bit
131 				 * value on 32-bit architectures.
132 				 */
133 				unsigned long dma_addr_upper;
134 				/**
135 				 * For frag page support, not supported in
136 				 * 32-bit architectures with 64-bit DMA.
137 				 */
138 				atomic_long_t pp_frag_count;
139 			};
140 		};
141 		struct {	/* Tail pages of compound page */
142 			unsigned long compound_head;	/* Bit zero is set */
143 		};
144 		struct {	/* ZONE_DEVICE pages */
145 			/** @pgmap: Points to the hosting device page map. */
146 			struct dev_pagemap *pgmap;
147 			void *zone_device_data;
148 			/*
149 			 * ZONE_DEVICE private pages are counted as being
150 			 * mapped so the next 3 words hold the mapping, index,
151 			 * and private fields from the source anonymous or
152 			 * page cache page while the page is migrated to device
153 			 * private memory.
154 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
155 			 * use the mapping, index, and private fields when
156 			 * pmem backed DAX files are mapped.
157 			 */
158 		};
159 
160 		/** @rcu_head: You can use this to free a page by RCU. */
161 		struct rcu_head rcu_head;
162 	};
163 
164 	union {		/* This union is 4 bytes in size. */
165 		/*
166 		 * If the page can be mapped to userspace, encodes the number
167 		 * of times this page is referenced by a page table.
168 		 */
169 		atomic_t _mapcount;
170 
171 		/*
172 		 * If the page is neither PageSlab nor mappable to userspace,
173 		 * the value stored here may help determine what this page
174 		 * is used for.  See page-flags.h for a list of page types
175 		 * which are currently stored here.
176 		 */
177 		unsigned int page_type;
178 	};
179 
180 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
181 	atomic_t _refcount;
182 
183 #ifdef CONFIG_MEMCG
184 	unsigned long memcg_data;
185 #endif
186 
187 	/*
188 	 * On machines where all RAM is mapped into kernel address space,
189 	 * we can simply calculate the virtual address. On machines with
190 	 * highmem some memory is mapped into kernel virtual memory
191 	 * dynamically, so we need a place to store that address.
192 	 * Note that this field could be 16 bits on x86 ... ;)
193 	 *
194 	 * Architectures with slow multiplication can define
195 	 * WANT_PAGE_VIRTUAL in asm/page.h
196 	 */
197 #if defined(WANT_PAGE_VIRTUAL)
198 	void *virtual;			/* Kernel virtual address (NULL if
199 					   not kmapped, ie. highmem) */
200 #endif /* WANT_PAGE_VIRTUAL */
201 
202 #ifdef CONFIG_KMSAN
203 	/*
204 	 * KMSAN metadata for this page:
205 	 *  - shadow page: every bit indicates whether the corresponding
206 	 *    bit of the original page is initialized (0) or not (1);
207 	 *  - origin page: every 4 bytes contain an id of the stack trace
208 	 *    where the uninitialized value was created.
209 	 */
210 	struct page *kmsan_shadow;
211 	struct page *kmsan_origin;
212 #endif
213 
214 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
215 	int _last_cpupid;
216 #endif
217 } _struct_page_alignment;
218 
219 /*
220  * struct encoded_page - a nonexistent type marking this pointer
221  *
222  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
223  * with the low bits of the pointer indicating extra context-dependent
224  * information. Not super-common, but happens in mmu_gather and mlock
225  * handling, and this acts as a type system check on that use.
226  *
227  * We only really have two guaranteed bits in general, although you could
228  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
229  * for more.
230  *
231  * Use the supplied helper functions to endcode/decode the pointer and bits.
232  */
233 struct encoded_page;
234 #define ENCODE_PAGE_BITS 3ul
encode_page(struct page * page,unsigned long flags)235 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
236 {
237 	BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
238 	return (struct encoded_page *)(flags | (unsigned long)page);
239 }
240 
encoded_page_flags(struct encoded_page * page)241 static inline unsigned long encoded_page_flags(struct encoded_page *page)
242 {
243 	return ENCODE_PAGE_BITS & (unsigned long)page;
244 }
245 
encoded_page_ptr(struct encoded_page * page)246 static inline struct page *encoded_page_ptr(struct encoded_page *page)
247 {
248 	return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
249 }
250 
251 /*
252  * A swap entry has to fit into a "unsigned long", as the entry is hidden
253  * in the "index" field of the swapper address space.
254  */
255 typedef struct {
256 	unsigned long val;
257 } swp_entry_t;
258 
259 /**
260  * struct folio - Represents a contiguous set of bytes.
261  * @flags: Identical to the page flags.
262  * @lru: Least Recently Used list; tracks how recently this folio was used.
263  * @mlock_count: Number of times this folio has been pinned by mlock().
264  * @mapping: The file this page belongs to, or refers to the anon_vma for
265  *    anonymous memory.
266  * @index: Offset within the file, in units of pages.  For anonymous memory,
267  *    this is the index from the beginning of the mmap.
268  * @private: Filesystem per-folio data (see folio_attach_private()).
269  * @swap: Used for swp_entry_t if folio_test_swapcache().
270  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
271  *    find out how many times this folio is mapped by userspace.
272  * @_refcount: Do not access this member directly.  Use folio_ref_count()
273  *    to find how many references there are to this folio.
274  * @memcg_data: Memory Control Group data.
275  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
276  * @_nr_pages_mapped: Do not use directly, call folio_mapcount().
277  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
278  * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
279  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
280  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
281  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
282  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
283  * @_deferred_list: Folios to be split under memory pressure.
284  *
285  * A folio is a physically, virtually and logically contiguous set
286  * of bytes.  It is a power-of-two in size, and it is aligned to that
287  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
288  * in the page cache, it is at a file offset which is a multiple of that
289  * power-of-two.  It may be mapped into userspace at an address which is
290  * at an arbitrary page offset, but its kernel virtual address is aligned
291  * to its size.
292  */
293 struct folio {
294 	/* private: don't document the anon union */
295 	union {
296 		struct {
297 	/* public: */
298 			unsigned long flags;
299 			union {
300 				struct list_head lru;
301 	/* private: avoid cluttering the output */
302 				struct {
303 					void *__filler;
304 	/* public: */
305 					unsigned int mlock_count;
306 	/* private: */
307 				};
308 	/* public: */
309 			};
310 			struct address_space *mapping;
311 			pgoff_t index;
312 			union {
313 				void *private;
314 				swp_entry_t swap;
315 			};
316 			atomic_t _mapcount;
317 			atomic_t _refcount;
318 #ifdef CONFIG_MEMCG
319 			unsigned long memcg_data;
320 #endif
321 	/* private: the union with struct page is transitional */
322 		};
323 		struct page page;
324 	};
325 	union {
326 		struct {
327 			unsigned long _flags_1;
328 			unsigned long _head_1;
329 			unsigned long _folio_avail;
330 	/* public: */
331 			atomic_t _entire_mapcount;
332 			atomic_t _nr_pages_mapped;
333 			atomic_t _pincount;
334 #ifdef CONFIG_64BIT
335 			unsigned int _folio_nr_pages;
336 #endif
337 	/* private: the union with struct page is transitional */
338 		};
339 		struct page __page_1;
340 	};
341 	union {
342 		struct {
343 			unsigned long _flags_2;
344 			unsigned long _head_2;
345 	/* public: */
346 			void *_hugetlb_subpool;
347 			void *_hugetlb_cgroup;
348 			void *_hugetlb_cgroup_rsvd;
349 			void *_hugetlb_hwpoison;
350 	/* private: the union with struct page is transitional */
351 		};
352 		struct {
353 			unsigned long _flags_2a;
354 			unsigned long _head_2a;
355 	/* public: */
356 			struct list_head _deferred_list;
357 	/* private: the union with struct page is transitional */
358 		};
359 		struct page __page_2;
360 	};
361 };
362 
363 #define FOLIO_MATCH(pg, fl)						\
364 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
365 FOLIO_MATCH(flags, flags);
366 FOLIO_MATCH(lru, lru);
367 FOLIO_MATCH(mapping, mapping);
368 FOLIO_MATCH(compound_head, lru);
369 FOLIO_MATCH(index, index);
370 FOLIO_MATCH(private, private);
371 FOLIO_MATCH(_mapcount, _mapcount);
372 FOLIO_MATCH(_refcount, _refcount);
373 #ifdef CONFIG_MEMCG
374 FOLIO_MATCH(memcg_data, memcg_data);
375 #endif
376 #undef FOLIO_MATCH
377 #define FOLIO_MATCH(pg, fl)						\
378 	static_assert(offsetof(struct folio, fl) ==			\
379 			offsetof(struct page, pg) + sizeof(struct page))
380 FOLIO_MATCH(flags, _flags_1);
381 FOLIO_MATCH(compound_head, _head_1);
382 #undef FOLIO_MATCH
383 #define FOLIO_MATCH(pg, fl)						\
384 	static_assert(offsetof(struct folio, fl) ==			\
385 			offsetof(struct page, pg) + 2 * sizeof(struct page))
386 FOLIO_MATCH(flags, _flags_2);
387 FOLIO_MATCH(compound_head, _head_2);
388 FOLIO_MATCH(flags, _flags_2a);
389 FOLIO_MATCH(compound_head, _head_2a);
390 #undef FOLIO_MATCH
391 
392 /**
393  * struct ptdesc -    Memory descriptor for page tables.
394  * @__page_flags:     Same as page flags. Unused for page tables.
395  * @pt_rcu_head:      For freeing page table pages.
396  * @pt_list:          List of used page tables. Used for s390 and x86.
397  * @_pt_pad_1:        Padding that aliases with page's compound head.
398  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
399  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
400  * @pt_mm:            Used for x86 pgds.
401  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
402  * @pt_share_count:   Used for HugeTLB PMD page table share count.
403  * @_pt_pad_2:        Padding to ensure proper alignment.
404  * @ptl:              Lock for the page table.
405  * @__page_type:      Same as page->page_type. Unused for page tables.
406  * @_refcount:        Same as page refcount.
407  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
408  *
409  * This struct overlays struct page for now. Do not modify without a good
410  * understanding of the issues.
411  */
412 struct ptdesc {
413 	unsigned long __page_flags;
414 
415 	union {
416 		struct rcu_head pt_rcu_head;
417 		struct list_head pt_list;
418 		struct {
419 			unsigned long _pt_pad_1;
420 			pgtable_t pmd_huge_pte;
421 		};
422 	};
423 	unsigned long __page_mapping;
424 
425 	union {
426 		struct mm_struct *pt_mm;
427 		atomic_t pt_frag_refcount;
428 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
429 		atomic_t pt_share_count;
430 #endif
431 	};
432 
433 	union {
434 		unsigned long _pt_pad_2;
435 #if ALLOC_SPLIT_PTLOCKS
436 		spinlock_t *ptl;
437 #else
438 		spinlock_t ptl;
439 #endif
440 	};
441 	unsigned int __page_type;
442 	atomic_t _refcount;
443 #ifdef CONFIG_MEMCG
444 	unsigned long pt_memcg_data;
445 #endif
446 };
447 
448 #define TABLE_MATCH(pg, pt)						\
449 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
450 TABLE_MATCH(flags, __page_flags);
451 TABLE_MATCH(compound_head, pt_list);
452 TABLE_MATCH(compound_head, _pt_pad_1);
453 TABLE_MATCH(mapping, __page_mapping);
454 TABLE_MATCH(rcu_head, pt_rcu_head);
455 TABLE_MATCH(page_type, __page_type);
456 TABLE_MATCH(_refcount, _refcount);
457 #ifdef CONFIG_MEMCG
458 TABLE_MATCH(memcg_data, pt_memcg_data);
459 #endif
460 #undef TABLE_MATCH
461 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
462 
463 #define ptdesc_page(pt)			(_Generic((pt),			\
464 	const struct ptdesc *:		(const struct page *)(pt),	\
465 	struct ptdesc *:		(struct page *)(pt)))
466 
467 #define ptdesc_folio(pt)		(_Generic((pt),			\
468 	const struct ptdesc *:		(const struct folio *)(pt),	\
469 	struct ptdesc *:		(struct folio *)(pt)))
470 
471 #define page_ptdesc(p)			(_Generic((p),			\
472 	const struct page *:		(const struct ptdesc *)(p),	\
473 	struct page *:			(struct ptdesc *)(p)))
474 
475 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)476 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
477 {
478 	atomic_set(&ptdesc->pt_share_count, 0);
479 }
480 
ptdesc_pmd_pts_inc(struct ptdesc * ptdesc)481 static inline void ptdesc_pmd_pts_inc(struct ptdesc *ptdesc)
482 {
483 	atomic_inc(&ptdesc->pt_share_count);
484 }
485 
ptdesc_pmd_pts_dec(struct ptdesc * ptdesc)486 static inline void ptdesc_pmd_pts_dec(struct ptdesc *ptdesc)
487 {
488 	atomic_dec(&ptdesc->pt_share_count);
489 }
490 
ptdesc_pmd_pts_count(struct ptdesc * ptdesc)491 static inline int ptdesc_pmd_pts_count(struct ptdesc *ptdesc)
492 {
493 	return atomic_read(&ptdesc->pt_share_count);
494 }
495 #else
ptdesc_pmd_pts_init(struct ptdesc * ptdesc)496 static inline void ptdesc_pmd_pts_init(struct ptdesc *ptdesc)
497 {
498 }
499 #endif
500 
501 /*
502  * Used for sizing the vmemmap region on some architectures
503  */
504 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
505 
506 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
507 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
508 
509 /*
510  * page_private can be used on tail pages.  However, PagePrivate is only
511  * checked by the VM on the head page.  So page_private on the tail pages
512  * should be used for data that's ancillary to the head page (eg attaching
513  * buffer heads to tail pages after attaching buffer heads to the head page)
514  */
515 #define page_private(page)		((page)->private)
516 
set_page_private(struct page * page,unsigned long private)517 static inline void set_page_private(struct page *page, unsigned long private)
518 {
519 	page->private = private;
520 }
521 
folio_get_private(struct folio * folio)522 static inline void *folio_get_private(struct folio *folio)
523 {
524 	return folio->private;
525 }
526 
527 struct page_frag_cache {
528 	void * va;
529 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
530 	__u16 offset;
531 	__u16 size;
532 #else
533 	__u32 offset;
534 #endif
535 	/* we maintain a pagecount bias, so that we dont dirty cache line
536 	 * containing page->_refcount every time we allocate a fragment.
537 	 */
538 	unsigned int		pagecnt_bias;
539 	bool pfmemalloc;
540 };
541 
542 typedef unsigned long vm_flags_t;
543 
544 /*
545  * A region containing a mapping of a non-memory backed file under NOMMU
546  * conditions.  These are held in a global tree and are pinned by the VMAs that
547  * map parts of them.
548  */
549 struct vm_region {
550 	struct rb_node	vm_rb;		/* link in global region tree */
551 	vm_flags_t	vm_flags;	/* VMA vm_flags */
552 	unsigned long	vm_start;	/* start address of region */
553 	unsigned long	vm_end;		/* region initialised to here */
554 	unsigned long	vm_top;		/* region allocated to here */
555 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
556 	struct file	*vm_file;	/* the backing file or NULL */
557 
558 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
559 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
560 						* this region */
561 };
562 
563 #ifdef CONFIG_USERFAULTFD
564 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
565 struct vm_userfaultfd_ctx {
566 	struct userfaultfd_ctx *ctx;
567 };
568 #else /* CONFIG_USERFAULTFD */
569 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
570 struct vm_userfaultfd_ctx {};
571 #endif /* CONFIG_USERFAULTFD */
572 
573 struct anon_vma_name {
574 	struct kref kref;
575 	/* The name needs to be at the end because it is dynamically sized. */
576 	char name[];
577 };
578 
579 struct vma_lock {
580 	struct rw_semaphore lock;
581 };
582 
583 struct vma_numab_state {
584 	/*
585 	 * Initialised as time in 'jiffies' after which VMA
586 	 * should be scanned.  Delays first scan of new VMA by at
587 	 * least sysctl_numa_balancing_scan_delay:
588 	 */
589 	unsigned long next_scan;
590 
591 	/*
592 	 * Time in jiffies when pids_active[] is reset to
593 	 * detect phase change behaviour:
594 	 */
595 	unsigned long pids_active_reset;
596 
597 	/*
598 	 * Approximate tracking of PIDs that trapped a NUMA hinting
599 	 * fault. May produce false positives due to hash collisions.
600 	 *
601 	 *   [0] Previous PID tracking
602 	 *   [1] Current PID tracking
603 	 *
604 	 * Window moves after next_pid_reset has expired approximately
605 	 * every VMA_PID_RESET_PERIOD jiffies:
606 	 */
607 	unsigned long pids_active[2];
608 
609 	/* MM scan sequence ID when scan first started after VMA creation */
610 	int start_scan_seq;
611 
612 	/*
613 	 * MM scan sequence ID when the VMA was last completely scanned.
614 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
615 	 */
616 	int prev_scan_seq;
617 };
618 
619 /*
620  * This struct describes a virtual memory area. There is one of these
621  * per VM-area/task. A VM area is any part of the process virtual memory
622  * space that has a special rule for the page-fault handlers (ie a shared
623  * library, the executable area etc).
624  */
625 struct vm_area_struct {
626 	/* The first cache line has the info for VMA tree walking. */
627 
628 	union {
629 		struct {
630 			/* VMA covers [vm_start; vm_end) addresses within mm */
631 			unsigned long vm_start;
632 			unsigned long vm_end;
633 		};
634 #ifdef CONFIG_PER_VMA_LOCK
635 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
636 #endif
637 	};
638 
639 	struct mm_struct *vm_mm;	/* The address space we belong to. */
640 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
641 
642 	/*
643 	 * Flags, see mm.h.
644 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
645 	 */
646 	union {
647 		const vm_flags_t vm_flags;
648 		vm_flags_t __private __vm_flags;
649 	};
650 
651 #ifdef CONFIG_PER_VMA_LOCK
652 	/*
653 	 * Can only be written (using WRITE_ONCE()) while holding both:
654 	 *  - mmap_lock (in write mode)
655 	 *  - vm_lock->lock (in write mode)
656 	 * Can be read reliably while holding one of:
657 	 *  - mmap_lock (in read or write mode)
658 	 *  - vm_lock->lock (in read or write mode)
659 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
660 	 * while holding nothing (except RCU to keep the VMA struct allocated).
661 	 *
662 	 * This sequence counter is explicitly allowed to overflow; sequence
663 	 * counter reuse can only lead to occasional unnecessary use of the
664 	 * slowpath.
665 	 */
666 	int vm_lock_seq;
667 	struct vma_lock *vm_lock;
668 
669 	/* Flag to indicate areas detached from the mm->mm_mt tree */
670 	bool detached;
671 #endif
672 
673 	/*
674 	 * For areas with an address space and backing store,
675 	 * linkage into the address_space->i_mmap interval tree.
676 	 *
677 	 */
678 	struct {
679 		struct rb_node rb;
680 		unsigned long rb_subtree_last;
681 	} shared;
682 
683 	/*
684 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
685 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
686 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
687 	 * or brk vma (with NULL file) can only be in an anon_vma list.
688 	 */
689 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
690 					  * page_table_lock */
691 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
692 
693 	/* Function pointers to deal with this struct. */
694 	const struct vm_operations_struct *vm_ops;
695 
696 	/* Information about our backing store: */
697 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
698 					   units */
699 	struct file * vm_file;		/* File we map to (can be NULL). */
700 	void * vm_private_data;		/* was vm_pte (shared mem) */
701 
702 #ifdef CONFIG_ANON_VMA_NAME
703 	/*
704 	 * For private and shared anonymous mappings, a pointer to a null
705 	 * terminated string containing the name given to the vma, or NULL if
706 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
707 	 */
708 	struct anon_vma_name *anon_name;
709 #endif
710 #ifdef CONFIG_SWAP
711 	atomic_long_t swap_readahead_info;
712 #endif
713 #ifndef CONFIG_MMU
714 	struct vm_region *vm_region;	/* NOMMU mapping region */
715 #endif
716 #ifdef CONFIG_NUMA
717 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
718 #endif
719 #ifdef CONFIG_NUMA_BALANCING
720 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
721 #endif
722 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
723 } __randomize_layout;
724 
725 #ifdef CONFIG_SCHED_MM_CID
726 struct mm_cid {
727 	u64 time;
728 	int cid;
729 };
730 #endif
731 
732 struct kioctx_table;
733 struct mm_struct {
734 	struct {
735 		/*
736 		 * Fields which are often written to are placed in a separate
737 		 * cache line.
738 		 */
739 		struct {
740 			/**
741 			 * @mm_count: The number of references to &struct
742 			 * mm_struct (@mm_users count as 1).
743 			 *
744 			 * Use mmgrab()/mmdrop() to modify. When this drops to
745 			 * 0, the &struct mm_struct is freed.
746 			 */
747 			atomic_t mm_count;
748 		} ____cacheline_aligned_in_smp;
749 
750 		struct maple_tree mm_mt;
751 #ifdef CONFIG_MMU
752 		unsigned long (*get_unmapped_area) (struct file *filp,
753 				unsigned long addr, unsigned long len,
754 				unsigned long pgoff, unsigned long flags);
755 #endif
756 		unsigned long mmap_base;	/* base of mmap area */
757 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
758 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
759 		/* Base addresses for compatible mmap() */
760 		unsigned long mmap_compat_base;
761 		unsigned long mmap_compat_legacy_base;
762 #endif
763 		unsigned long task_size;	/* size of task vm space */
764 		pgd_t * pgd;
765 
766 #ifdef CONFIG_MEMBARRIER
767 		/**
768 		 * @membarrier_state: Flags controlling membarrier behavior.
769 		 *
770 		 * This field is close to @pgd to hopefully fit in the same
771 		 * cache-line, which needs to be touched by switch_mm().
772 		 */
773 		atomic_t membarrier_state;
774 #endif
775 
776 		/**
777 		 * @mm_users: The number of users including userspace.
778 		 *
779 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
780 		 * drops to 0 (i.e. when the task exits and there are no other
781 		 * temporary reference holders), we also release a reference on
782 		 * @mm_count (which may then free the &struct mm_struct if
783 		 * @mm_count also drops to 0).
784 		 */
785 		atomic_t mm_users;
786 
787 #ifdef CONFIG_SCHED_MM_CID
788 		/**
789 		 * @pcpu_cid: Per-cpu current cid.
790 		 *
791 		 * Keep track of the currently allocated mm_cid for each cpu.
792 		 * The per-cpu mm_cid values are serialized by their respective
793 		 * runqueue locks.
794 		 */
795 		struct mm_cid __percpu *pcpu_cid;
796 		/*
797 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
798 		 *
799 		 * When the next mm_cid scan is due (in jiffies).
800 		 */
801 		unsigned long mm_cid_next_scan;
802 #endif
803 #ifdef CONFIG_MMU
804 		atomic_long_t pgtables_bytes;	/* size of all page tables */
805 #endif
806 		int map_count;			/* number of VMAs */
807 
808 		spinlock_t page_table_lock; /* Protects page tables and some
809 					     * counters
810 					     */
811 		/*
812 		 * With some kernel config, the current mmap_lock's offset
813 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
814 		 * its two hot fields 'count' and 'owner' sit in 2 different
815 		 * cachelines,  and when mmap_lock is highly contended, both
816 		 * of the 2 fields will be accessed frequently, current layout
817 		 * will help to reduce cache bouncing.
818 		 *
819 		 * So please be careful with adding new fields before
820 		 * mmap_lock, which can easily push the 2 fields into one
821 		 * cacheline.
822 		 */
823 		struct rw_semaphore mmap_lock;
824 
825 		struct list_head mmlist; /* List of maybe swapped mm's.	These
826 					  * are globally strung together off
827 					  * init_mm.mmlist, and are protected
828 					  * by mmlist_lock
829 					  */
830 #ifdef CONFIG_PER_VMA_LOCK
831 		/*
832 		 * This field has lock-like semantics, meaning it is sometimes
833 		 * accessed with ACQUIRE/RELEASE semantics.
834 		 * Roughly speaking, incrementing the sequence number is
835 		 * equivalent to releasing locks on VMAs; reading the sequence
836 		 * number can be part of taking a read lock on a VMA.
837 		 *
838 		 * Can be modified under write mmap_lock using RELEASE
839 		 * semantics.
840 		 * Can be read with no other protection when holding write
841 		 * mmap_lock.
842 		 * Can be read with ACQUIRE semantics if not holding write
843 		 * mmap_lock.
844 		 */
845 		int mm_lock_seq;
846 #endif
847 
848 
849 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
850 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
851 
852 		unsigned long total_vm;	   /* Total pages mapped */
853 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
854 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
855 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
856 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
857 		unsigned long stack_vm;	   /* VM_STACK */
858 		unsigned long def_flags;
859 
860 		/**
861 		 * @write_protect_seq: Locked when any thread is write
862 		 * protecting pages mapped by this mm to enforce a later COW,
863 		 * for instance during page table copying for fork().
864 		 */
865 		seqcount_t write_protect_seq;
866 
867 		spinlock_t arg_lock; /* protect the below fields */
868 
869 		unsigned long start_code, end_code, start_data, end_data;
870 		unsigned long start_brk, brk, start_stack;
871 		unsigned long arg_start, arg_end, env_start, env_end;
872 
873 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
874 
875 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
876 
877 		struct linux_binfmt *binfmt;
878 
879 		/* Architecture-specific MM context */
880 		mm_context_t context;
881 
882 		unsigned long flags; /* Must use atomic bitops to access */
883 
884 #ifdef CONFIG_AIO
885 		spinlock_t			ioctx_lock;
886 		struct kioctx_table __rcu	*ioctx_table;
887 #endif
888 #ifdef CONFIG_MEMCG
889 		/*
890 		 * "owner" points to a task that is regarded as the canonical
891 		 * user/owner of this mm. All of the following must be true in
892 		 * order for it to be changed:
893 		 *
894 		 * current == mm->owner
895 		 * current->mm != mm
896 		 * new_owner->mm == mm
897 		 * new_owner->alloc_lock is held
898 		 */
899 		struct task_struct __rcu *owner;
900 #endif
901 		struct user_namespace *user_ns;
902 
903 		/* store ref to file /proc/<pid>/exe symlink points to */
904 		struct file __rcu *exe_file;
905 #ifdef CONFIG_MMU_NOTIFIER
906 		struct mmu_notifier_subscriptions *notifier_subscriptions;
907 #endif
908 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
909 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
910 #endif
911 #ifdef CONFIG_NUMA_BALANCING
912 		/*
913 		 * numa_next_scan is the next time that PTEs will be remapped
914 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
915 		 * statistics and migrate pages to new nodes if necessary.
916 		 */
917 		unsigned long numa_next_scan;
918 
919 		/* Restart point for scanning and remapping PTEs. */
920 		unsigned long numa_scan_offset;
921 
922 		/* numa_scan_seq prevents two threads remapping PTEs. */
923 		int numa_scan_seq;
924 #endif
925 		/*
926 		 * An operation with batched TLB flushing is going on. Anything
927 		 * that can move process memory needs to flush the TLB when
928 		 * moving a PROT_NONE mapped page.
929 		 */
930 		atomic_t tlb_flush_pending;
931 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
932 		/* See flush_tlb_batched_pending() */
933 		atomic_t tlb_flush_batched;
934 #endif
935 		struct uprobes_state uprobes_state;
936 #ifdef CONFIG_PREEMPT_RT
937 		struct rcu_head delayed_drop;
938 #endif
939 #ifdef CONFIG_HUGETLB_PAGE
940 		atomic_long_t hugetlb_usage;
941 #endif
942 		struct work_struct async_put_work;
943 
944 #ifdef CONFIG_IOMMU_SVA
945 		u32 pasid;
946 #endif
947 #ifdef CONFIG_KSM
948 		/*
949 		 * Represent how many pages of this process are involved in KSM
950 		 * merging (not including ksm_zero_pages).
951 		 */
952 		unsigned long ksm_merging_pages;
953 		/*
954 		 * Represent how many pages are checked for ksm merging
955 		 * including merged and not merged.
956 		 */
957 		unsigned long ksm_rmap_items;
958 		/*
959 		 * Represent how many empty pages are merged with kernel zero
960 		 * pages when enabling KSM use_zero_pages.
961 		 */
962 		atomic_long_t ksm_zero_pages;
963 #endif /* CONFIG_KSM */
964 #ifdef CONFIG_LRU_GEN
965 		struct {
966 			/* this mm_struct is on lru_gen_mm_list */
967 			struct list_head list;
968 			/*
969 			 * Set when switching to this mm_struct, as a hint of
970 			 * whether it has been used since the last time per-node
971 			 * page table walkers cleared the corresponding bits.
972 			 */
973 			unsigned long bitmap;
974 #ifdef CONFIG_MEMCG
975 			/* points to the memcg of "owner" above */
976 			struct mem_cgroup *memcg;
977 #endif
978 		} lru_gen;
979 #endif /* CONFIG_LRU_GEN */
980 	} __randomize_layout;
981 
982 	/*
983 	 * The mm_cpumask needs to be at the end of mm_struct, because it
984 	 * is dynamically sized based on nr_cpu_ids.
985 	 */
986 	unsigned long cpu_bitmap[];
987 };
988 
989 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
990 			 MT_FLAGS_USE_RCU)
991 extern struct mm_struct init_mm;
992 
993 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)994 static inline void mm_init_cpumask(struct mm_struct *mm)
995 {
996 	unsigned long cpu_bitmap = (unsigned long)mm;
997 
998 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
999 	cpumask_clear((struct cpumask *)cpu_bitmap);
1000 }
1001 
1002 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1003 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1004 {
1005 	return (struct cpumask *)&mm->cpu_bitmap;
1006 }
1007 
1008 #ifdef CONFIG_LRU_GEN
1009 
1010 struct lru_gen_mm_list {
1011 	/* mm_struct list for page table walkers */
1012 	struct list_head fifo;
1013 	/* protects the list above */
1014 	spinlock_t lock;
1015 };
1016 
1017 void lru_gen_add_mm(struct mm_struct *mm);
1018 void lru_gen_del_mm(struct mm_struct *mm);
1019 #ifdef CONFIG_MEMCG
1020 void lru_gen_migrate_mm(struct mm_struct *mm);
1021 #endif
1022 
lru_gen_init_mm(struct mm_struct * mm)1023 static inline void lru_gen_init_mm(struct mm_struct *mm)
1024 {
1025 	INIT_LIST_HEAD(&mm->lru_gen.list);
1026 	mm->lru_gen.bitmap = 0;
1027 #ifdef CONFIG_MEMCG
1028 	mm->lru_gen.memcg = NULL;
1029 #endif
1030 }
1031 
lru_gen_use_mm(struct mm_struct * mm)1032 static inline void lru_gen_use_mm(struct mm_struct *mm)
1033 {
1034 	/*
1035 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1036 	 * used since the last time it cleared the bitmap. So it might be worth
1037 	 * walking the page tables of this mm_struct to clear the accessed bit.
1038 	 */
1039 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1040 }
1041 
1042 #else /* !CONFIG_LRU_GEN */
1043 
lru_gen_add_mm(struct mm_struct * mm)1044 static inline void lru_gen_add_mm(struct mm_struct *mm)
1045 {
1046 }
1047 
lru_gen_del_mm(struct mm_struct * mm)1048 static inline void lru_gen_del_mm(struct mm_struct *mm)
1049 {
1050 }
1051 
1052 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)1053 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1054 {
1055 }
1056 #endif
1057 
lru_gen_init_mm(struct mm_struct * mm)1058 static inline void lru_gen_init_mm(struct mm_struct *mm)
1059 {
1060 }
1061 
lru_gen_use_mm(struct mm_struct * mm)1062 static inline void lru_gen_use_mm(struct mm_struct *mm)
1063 {
1064 }
1065 
1066 #endif /* CONFIG_LRU_GEN */
1067 
1068 struct vma_iterator {
1069 	struct ma_state mas;
1070 };
1071 
1072 #define VMA_ITERATOR(name, __mm, __addr)				\
1073 	struct vma_iterator name = {					\
1074 		.mas = {						\
1075 			.tree = &(__mm)->mm_mt,				\
1076 			.index = __addr,				\
1077 			.node = MAS_START,				\
1078 		},							\
1079 	}
1080 
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1081 static inline void vma_iter_init(struct vma_iterator *vmi,
1082 		struct mm_struct *mm, unsigned long addr)
1083 {
1084 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1085 }
1086 
1087 #ifdef CONFIG_SCHED_MM_CID
1088 
1089 enum mm_cid_state {
1090 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1091 	MM_CID_LAZY_PUT = (1U << 31),
1092 };
1093 
mm_cid_is_unset(int cid)1094 static inline bool mm_cid_is_unset(int cid)
1095 {
1096 	return cid == MM_CID_UNSET;
1097 }
1098 
mm_cid_is_lazy_put(int cid)1099 static inline bool mm_cid_is_lazy_put(int cid)
1100 {
1101 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1102 }
1103 
mm_cid_is_valid(int cid)1104 static inline bool mm_cid_is_valid(int cid)
1105 {
1106 	return !(cid & MM_CID_LAZY_PUT);
1107 }
1108 
mm_cid_set_lazy_put(int cid)1109 static inline int mm_cid_set_lazy_put(int cid)
1110 {
1111 	return cid | MM_CID_LAZY_PUT;
1112 }
1113 
mm_cid_clear_lazy_put(int cid)1114 static inline int mm_cid_clear_lazy_put(int cid)
1115 {
1116 	return cid & ~MM_CID_LAZY_PUT;
1117 }
1118 
1119 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1120 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1121 {
1122 	unsigned long cid_bitmap = (unsigned long)mm;
1123 
1124 	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1125 	/* Skip cpu_bitmap */
1126 	cid_bitmap += cpumask_size();
1127 	return (struct cpumask *)cid_bitmap;
1128 }
1129 
mm_init_cid(struct mm_struct * mm)1130 static inline void mm_init_cid(struct mm_struct *mm)
1131 {
1132 	int i;
1133 
1134 	for_each_possible_cpu(i) {
1135 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1136 
1137 		pcpu_cid->cid = MM_CID_UNSET;
1138 		pcpu_cid->time = 0;
1139 	}
1140 	cpumask_clear(mm_cidmask(mm));
1141 }
1142 
mm_alloc_cid(struct mm_struct * mm)1143 static inline int mm_alloc_cid(struct mm_struct *mm)
1144 {
1145 	mm->pcpu_cid = alloc_percpu(struct mm_cid);
1146 	if (!mm->pcpu_cid)
1147 		return -ENOMEM;
1148 	mm_init_cid(mm);
1149 	return 0;
1150 }
1151 
mm_destroy_cid(struct mm_struct * mm)1152 static inline void mm_destroy_cid(struct mm_struct *mm)
1153 {
1154 	free_percpu(mm->pcpu_cid);
1155 	mm->pcpu_cid = NULL;
1156 }
1157 
mm_cid_size(void)1158 static inline unsigned int mm_cid_size(void)
1159 {
1160 	return cpumask_size();
1161 }
1162 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm)1163 static inline void mm_init_cid(struct mm_struct *mm) { }
mm_alloc_cid(struct mm_struct * mm)1164 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1165 static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1166 static inline unsigned int mm_cid_size(void)
1167 {
1168 	return 0;
1169 }
1170 #endif /* CONFIG_SCHED_MM_CID */
1171 
1172 struct mmu_gather;
1173 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1174 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1175 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1176 
1177 struct vm_fault;
1178 
1179 /**
1180  * typedef vm_fault_t - Return type for page fault handlers.
1181  *
1182  * Page fault handlers return a bitmask of %VM_FAULT values.
1183  */
1184 typedef __bitwise unsigned int vm_fault_t;
1185 
1186 /**
1187  * enum vm_fault_reason - Page fault handlers return a bitmask of
1188  * these values to tell the core VM what happened when handling the
1189  * fault. Used to decide whether a process gets delivered SIGBUS or
1190  * just gets major/minor fault counters bumped up.
1191  *
1192  * @VM_FAULT_OOM:		Out Of Memory
1193  * @VM_FAULT_SIGBUS:		Bad access
1194  * @VM_FAULT_MAJOR:		Page read from storage
1195  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1196  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1197  *				in upper bits
1198  * @VM_FAULT_SIGSEGV:		segmentation fault
1199  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1200  * @VM_FAULT_LOCKED:		->fault locked the returned page
1201  * @VM_FAULT_RETRY:		->fault blocked, must retry
1202  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1203  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1204  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1205  *				fsync() to complete (for synchronous page faults
1206  *				in DAX)
1207  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1208  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1209  *
1210  */
1211 enum vm_fault_reason {
1212 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1213 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1214 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1215 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1216 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1217 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1218 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1219 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1220 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1221 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1222 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1223 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1224 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1225 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1226 };
1227 
1228 /* Encode hstate index for a hwpoisoned large page */
1229 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1230 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1231 
1232 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1233 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1234 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1235 
1236 #define VM_FAULT_RESULT_TRACE \
1237 	{ VM_FAULT_OOM,                 "OOM" },	\
1238 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1239 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1240 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1241 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1242 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1243 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1244 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1245 	{ VM_FAULT_RETRY,               "RETRY" },	\
1246 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1247 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1248 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1249 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1250 
1251 struct vm_special_mapping {
1252 	const char *name;	/* The name, e.g. "[vdso]". */
1253 
1254 	/*
1255 	 * If .fault is not provided, this points to a
1256 	 * NULL-terminated array of pages that back the special mapping.
1257 	 *
1258 	 * This must not be NULL unless .fault is provided.
1259 	 */
1260 	struct page **pages;
1261 
1262 	/*
1263 	 * If non-NULL, then this is called to resolve page faults
1264 	 * on the special mapping.  If used, .pages is not checked.
1265 	 */
1266 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1267 				struct vm_area_struct *vma,
1268 				struct vm_fault *vmf);
1269 
1270 	int (*mremap)(const struct vm_special_mapping *sm,
1271 		     struct vm_area_struct *new_vma);
1272 };
1273 
1274 enum tlb_flush_reason {
1275 	TLB_FLUSH_ON_TASK_SWITCH,
1276 	TLB_REMOTE_SHOOTDOWN,
1277 	TLB_LOCAL_SHOOTDOWN,
1278 	TLB_LOCAL_MM_SHOOTDOWN,
1279 	TLB_REMOTE_SEND_IPI,
1280 	NR_TLB_FLUSH_REASONS,
1281 };
1282 
1283 /**
1284  * enum fault_flag - Fault flag definitions.
1285  * @FAULT_FLAG_WRITE: Fault was a write fault.
1286  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1287  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1288  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1289  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1290  * @FAULT_FLAG_TRIED: The fault has been tried once.
1291  * @FAULT_FLAG_USER: The fault originated in userspace.
1292  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1293  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1294  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1295  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1296  *                      COW mapping, making sure that an exclusive anon page is
1297  *                      mapped after the fault.
1298  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1299  *                        We should only access orig_pte if this flag set.
1300  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1301  *
1302  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1303  * whether we would allow page faults to retry by specifying these two
1304  * fault flags correctly.  Currently there can be three legal combinations:
1305  *
1306  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1307  *                              this is the first try
1308  *
1309  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1310  *                              we've already tried at least once
1311  *
1312  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1313  *
1314  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1315  * be used.  Note that page faults can be allowed to retry for multiple times,
1316  * in which case we'll have an initial fault with flags (a) then later on
1317  * continuous faults with flags (b).  We should always try to detect pending
1318  * signals before a retry to make sure the continuous page faults can still be
1319  * interrupted if necessary.
1320  *
1321  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1322  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1323  * applied to mappings that are not COW mappings.
1324  */
1325 enum fault_flag {
1326 	FAULT_FLAG_WRITE =		1 << 0,
1327 	FAULT_FLAG_MKWRITE =		1 << 1,
1328 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1329 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1330 	FAULT_FLAG_KILLABLE =		1 << 4,
1331 	FAULT_FLAG_TRIED = 		1 << 5,
1332 	FAULT_FLAG_USER =		1 << 6,
1333 	FAULT_FLAG_REMOTE =		1 << 7,
1334 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1335 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1336 	FAULT_FLAG_UNSHARE =		1 << 10,
1337 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1338 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1339 };
1340 
1341 typedef unsigned int __bitwise zap_flags_t;
1342 
1343 /*
1344  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1345  * other. Here is what they mean, and how to use them:
1346  *
1347  *
1348  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1349  * lifetime enforced by the filesystem and we need guarantees that longterm
1350  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1351  * the filesystem.  Ideas for this coordination include revoking the longterm
1352  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1353  * added after the problem with filesystems was found FS DAX VMAs are
1354  * specifically failed.  Filesystem pages are still subject to bugs and use of
1355  * FOLL_LONGTERM should be avoided on those pages.
1356  *
1357  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1358  * that region.  And so, CMA attempts to migrate the page before pinning, when
1359  * FOLL_LONGTERM is specified.
1360  *
1361  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1362  * but an additional pin counting system) will be invoked. This is intended for
1363  * anything that gets a page reference and then touches page data (for example,
1364  * Direct IO). This lets the filesystem know that some non-file-system entity is
1365  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1366  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1367  * a call to unpin_user_page().
1368  *
1369  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1370  * and separate refcounting mechanisms, however, and that means that each has
1371  * its own acquire and release mechanisms:
1372  *
1373  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1374  *
1375  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1376  *
1377  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1378  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1379  * calls applied to them, and that's perfectly OK. This is a constraint on the
1380  * callers, not on the pages.)
1381  *
1382  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1383  * directly by the caller. That's in order to help avoid mismatches when
1384  * releasing pages: get_user_pages*() pages must be released via put_page(),
1385  * while pin_user_pages*() pages must be released via unpin_user_page().
1386  *
1387  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1388  */
1389 
1390 enum {
1391 	/* check pte is writable */
1392 	FOLL_WRITE = 1 << 0,
1393 	/* do get_page on page */
1394 	FOLL_GET = 1 << 1,
1395 	/* give error on hole if it would be zero */
1396 	FOLL_DUMP = 1 << 2,
1397 	/* get_user_pages read/write w/o permission */
1398 	FOLL_FORCE = 1 << 3,
1399 	/*
1400 	 * if a disk transfer is needed, start the IO and return without waiting
1401 	 * upon it
1402 	 */
1403 	FOLL_NOWAIT = 1 << 4,
1404 	/* do not fault in pages */
1405 	FOLL_NOFAULT = 1 << 5,
1406 	/* check page is hwpoisoned */
1407 	FOLL_HWPOISON = 1 << 6,
1408 	/* don't do file mappings */
1409 	FOLL_ANON = 1 << 7,
1410 	/*
1411 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1412 	 * time period _often_ under userspace control.  This is in contrast to
1413 	 * iov_iter_get_pages(), whose usages are transient.
1414 	 */
1415 	FOLL_LONGTERM = 1 << 8,
1416 	/* split huge pmd before returning */
1417 	FOLL_SPLIT_PMD = 1 << 9,
1418 	/* allow returning PCI P2PDMA pages */
1419 	FOLL_PCI_P2PDMA = 1 << 10,
1420 	/* allow interrupts from generic signals */
1421 	FOLL_INTERRUPTIBLE = 1 << 11,
1422 	/*
1423 	 * Always honor (trigger) NUMA hinting faults.
1424 	 *
1425 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1426 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1427 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1428 	 * hinting faults.
1429 	 */
1430 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1431 
1432 	/* See also internal only FOLL flags in mm/internal.h */
1433 };
1434 
1435 #endif /* _LINUX_MM_TYPES_H */
1436