xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v9.c (revision 5804c19b80bf625c6a9925317f845e497434d6d3)
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41 #include <uapi/linux/kfd_ioctl.h>
42 
43 enum hqd_dequeue_request_type {
44 	NO_ACTION = 0,
45 	DRAIN_PIPE,
46 	RESET_WAVES,
47 	SAVE_WAVES
48 };
49 
kgd_gfx_v9_lock_srbm(struct amdgpu_device * adev,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid,uint32_t inst)50 static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
51 			uint32_t queue, uint32_t vmid, uint32_t inst)
52 {
53 	mutex_lock(&adev->srbm_mutex);
54 	soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
55 }
56 
kgd_gfx_v9_unlock_srbm(struct amdgpu_device * adev,uint32_t inst)57 static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
58 {
59 	soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
60 	mutex_unlock(&adev->srbm_mutex);
61 }
62 
kgd_gfx_v9_acquire_queue(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)63 void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
64 				uint32_t queue_id, uint32_t inst)
65 {
66 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
67 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
68 
69 	kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
70 }
71 
kgd_gfx_v9_get_queue_mask(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)72 uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
73 			       uint32_t pipe_id, uint32_t queue_id)
74 {
75 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
76 			queue_id;
77 
78 	return 1ull << bit;
79 }
80 
kgd_gfx_v9_release_queue(struct amdgpu_device * adev,uint32_t inst)81 void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
82 {
83 	kgd_gfx_v9_unlock_srbm(adev, inst);
84 }
85 
kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device * adev,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases,uint32_t inst)86 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
87 					uint32_t sh_mem_config,
88 					uint32_t sh_mem_ape1_base,
89 					uint32_t sh_mem_ape1_limit,
90 					uint32_t sh_mem_bases, uint32_t inst)
91 {
92 	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
93 
94 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG), sh_mem_config);
95 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_BASES), sh_mem_bases);
96 	/* APE1 no longer exists on GFX9 */
97 
98 	kgd_gfx_v9_unlock_srbm(adev, inst);
99 }
100 
kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device * adev,u32 pasid,unsigned int vmid,uint32_t inst)101 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
102 					unsigned int vmid, uint32_t inst)
103 {
104 	/*
105 	 * We have to assume that there is no outstanding mapping.
106 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107 	 * a mapping is in progress or because a mapping finished
108 	 * and the SW cleared it.
109 	 * So the protocol is to always wait & clear.
110 	 */
111 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
113 
114 	/*
115 	 * need to do this twice, once for gfx and once for mmhub
116 	 * for ATC add 16 to VMID for mmhub, for IH different registers.
117 	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
118 	 */
119 
120 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
121 	       pasid_mapping);
122 
123 	while (!(RREG32(SOC15_REG_OFFSET(
124 				ATHUB, 0,
125 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
126 		 (1U << vmid)))
127 		cpu_relax();
128 
129 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
130 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
131 	       1U << vmid);
132 
133 	/* Mapping vmid to pasid also for IH block */
134 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
135 	       pasid_mapping);
136 
137 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
138 	       pasid_mapping);
139 
140 	while (!(RREG32(SOC15_REG_OFFSET(
141 				ATHUB, 0,
142 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
143 		 (1U << (vmid + 16))))
144 		cpu_relax();
145 
146 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
147 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
148 	       1U << (vmid + 16));
149 
150 	/* Mapping vmid to pasid also for IH block */
151 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
152 	       pasid_mapping);
153 	return 0;
154 }
155 
156 /* TODO - RING0 form of field is obsolete, seems to date back to SI
157  * but still works
158  */
159 
kgd_gfx_v9_init_interrupts(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t inst)160 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
161 				uint32_t inst)
162 {
163 	uint32_t mec;
164 	uint32_t pipe;
165 
166 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
167 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
168 
169 	kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
170 
171 	WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
172 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
173 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
174 
175 	kgd_gfx_v9_unlock_srbm(adev, inst);
176 
177 	return 0;
178 }
179 
get_sdma_rlc_reg_offset(struct amdgpu_device * adev,unsigned int engine_id,unsigned int queue_id)180 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
181 				unsigned int engine_id,
182 				unsigned int queue_id)
183 {
184 	uint32_t sdma_engine_reg_base = 0;
185 	uint32_t sdma_rlc_reg_offset;
186 
187 	switch (engine_id) {
188 	default:
189 		dev_warn(adev->dev,
190 			 "Invalid sdma engine id (%d), using engine id 0\n",
191 			 engine_id);
192 		fallthrough;
193 	case 0:
194 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
195 				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
196 		break;
197 	case 1:
198 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
199 				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
200 		break;
201 	}
202 
203 	sdma_rlc_reg_offset = sdma_engine_reg_base
204 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
205 
206 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
207 		 queue_id, sdma_rlc_reg_offset);
208 
209 	return sdma_rlc_reg_offset;
210 }
211 
get_mqd(void * mqd)212 static inline struct v9_mqd *get_mqd(void *mqd)
213 {
214 	return (struct v9_mqd *)mqd;
215 }
216 
get_sdma_mqd(void * mqd)217 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
218 {
219 	return (struct v9_sdma_mqd *)mqd;
220 }
221 
kgd_gfx_v9_hqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm,uint32_t inst)222 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
223 			uint32_t pipe_id, uint32_t queue_id,
224 			uint32_t __user *wptr, uint32_t wptr_shift,
225 			uint32_t wptr_mask, struct mm_struct *mm,
226 			uint32_t inst)
227 {
228 	struct v9_mqd *m;
229 	uint32_t *mqd_hqd;
230 	uint32_t reg, hqd_base, data;
231 
232 	m = get_mqd(mqd);
233 
234 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
235 
236 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237 	mqd_hqd = &m->cp_mqd_base_addr_lo;
238 	hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
239 
240 	for (reg = hqd_base;
241 	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
242 		WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
243 
244 
245 	/* Activate doorbell logic before triggering WPTR poll. */
246 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL),
249 					data);
250 
251 	if (wptr) {
252 		/* Don't read wptr with get_user because the user
253 		 * context may not be accessible (if this function
254 		 * runs in a work queue). Instead trigger a one-shot
255 		 * polling read from memory in the CP. This assumes
256 		 * that wptr is GPU-accessible in the queue's VMID via
257 		 * ATC or SVM. WPTR==RPTR before starting the poll so
258 		 * the CP starts fetching new commands from the right
259 		 * place.
260 		 *
261 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
262 		 * tricky. Assume that the queue didn't overflow. The
263 		 * number of valid bits in the 32-bit RPTR depends on
264 		 * the queue size. The remaining bits are taken from
265 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
266 		 * queue size.
267 		 */
268 		uint32_t queue_size =
269 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
270 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
271 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
272 
273 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
274 			guessed_wptr += queue_size;
275 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
276 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
277 
278 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO),
279 		       lower_32_bits(guessed_wptr));
280 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI),
281 		       upper_32_bits(guessed_wptr));
282 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR),
283 		       lower_32_bits((uintptr_t)wptr));
284 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
285 		       upper_32_bits((uintptr_t)wptr));
286 		WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
287 		       (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
288 	}
289 
290 	/* Start the EOP fetcher */
291 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR),
292 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
293 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
294 
295 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
296 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE), data);
297 
298 	kgd_gfx_v9_release_queue(adev, inst);
299 
300 	return 0;
301 }
302 
kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device * adev,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t doorbell_off,uint32_t inst)303 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
304 			    uint32_t pipe_id, uint32_t queue_id,
305 			    uint32_t doorbell_off, uint32_t inst)
306 {
307 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
308 	struct v9_mqd *m;
309 	uint32_t mec, pipe;
310 	int r;
311 
312 	m = get_mqd(mqd);
313 
314 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
315 
316 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
317 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
318 
319 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
320 		 mec, pipe, queue_id);
321 
322 	spin_lock(&adev->gfx.kiq[inst].ring_lock);
323 	r = amdgpu_ring_alloc(kiq_ring, 7);
324 	if (r) {
325 		pr_err("Failed to alloc KIQ (%d).\n", r);
326 		goto out_unlock;
327 	}
328 
329 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
330 	amdgpu_ring_write(kiq_ring,
331 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
332 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
333 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
334 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
335 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
336 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
337 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
338 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
339 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
340 	amdgpu_ring_write(kiq_ring,
341 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
342 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
343 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
344 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
345 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
346 	amdgpu_ring_commit(kiq_ring);
347 
348 out_unlock:
349 	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
350 	kgd_gfx_v9_release_queue(adev, inst);
351 
352 	return r;
353 }
354 
kgd_gfx_v9_hqd_dump(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs,uint32_t inst)355 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
356 			uint32_t pipe_id, uint32_t queue_id,
357 			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
358 {
359 	uint32_t i = 0, reg;
360 #define HQD_N_REGS 56
361 #define DUMP_REG(addr) do {				\
362 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
363 			break;				\
364 		(*dump)[i][0] = (addr) << 2;		\
365 		(*dump)[i++][1] = RREG32(addr);		\
366 	} while (0)
367 
368 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
369 	if (*dump == NULL)
370 		return -ENOMEM;
371 
372 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
373 
374 	for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
375 	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
376 		DUMP_REG(reg);
377 
378 	kgd_gfx_v9_release_queue(adev, inst);
379 
380 	WARN_ON_ONCE(i != HQD_N_REGS);
381 	*n_regs = i;
382 
383 	return 0;
384 }
385 
kgd_hqd_sdma_load(struct amdgpu_device * adev,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)386 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
387 			     uint32_t __user *wptr, struct mm_struct *mm)
388 {
389 	struct v9_sdma_mqd *m;
390 	uint32_t sdma_rlc_reg_offset;
391 	unsigned long end_jiffies;
392 	uint32_t data;
393 	uint64_t data64;
394 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
395 
396 	m = get_sdma_mqd(mqd);
397 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
398 					    m->sdma_queue_id);
399 
400 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
401 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
402 
403 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
404 	while (true) {
405 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
406 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
407 			break;
408 		if (time_after(jiffies, end_jiffies)) {
409 			pr_err("SDMA RLC not idle in %s\n", __func__);
410 			return -ETIME;
411 		}
412 		usleep_range(500, 1000);
413 	}
414 
415 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
416 	       m->sdmax_rlcx_doorbell_offset);
417 
418 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
419 			     ENABLE, 1);
420 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
421 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
422 				m->sdmax_rlcx_rb_rptr);
423 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
424 				m->sdmax_rlcx_rb_rptr_hi);
425 
426 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
427 	if (read_user_wptr(mm, wptr64, data64)) {
428 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
429 		       lower_32_bits(data64));
430 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
431 		       upper_32_bits(data64));
432 	} else {
433 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
434 		       m->sdmax_rlcx_rb_rptr);
435 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
436 		       m->sdmax_rlcx_rb_rptr_hi);
437 	}
438 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
439 
440 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
441 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
442 			m->sdmax_rlcx_rb_base_hi);
443 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
444 			m->sdmax_rlcx_rb_rptr_addr_lo);
445 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
446 			m->sdmax_rlcx_rb_rptr_addr_hi);
447 
448 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
449 			     RB_ENABLE, 1);
450 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
451 
452 	return 0;
453 }
454 
kgd_hqd_sdma_dump(struct amdgpu_device * adev,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)455 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
456 			     uint32_t engine_id, uint32_t queue_id,
457 			     uint32_t (**dump)[2], uint32_t *n_regs)
458 {
459 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
460 			engine_id, queue_id);
461 	uint32_t i = 0, reg;
462 #undef HQD_N_REGS
463 #define HQD_N_REGS (19+6+7+10)
464 
465 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
466 	if (*dump == NULL)
467 		return -ENOMEM;
468 
469 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
470 		DUMP_REG(sdma_rlc_reg_offset + reg);
471 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
472 		DUMP_REG(sdma_rlc_reg_offset + reg);
473 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
474 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
475 		DUMP_REG(sdma_rlc_reg_offset + reg);
476 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
477 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
478 		DUMP_REG(sdma_rlc_reg_offset + reg);
479 
480 	WARN_ON_ONCE(i != HQD_N_REGS);
481 	*n_regs = i;
482 
483 	return 0;
484 }
485 
kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device * adev,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)486 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
487 				uint64_t queue_address, uint32_t pipe_id,
488 				uint32_t queue_id, uint32_t inst)
489 {
490 	uint32_t act;
491 	bool retval = false;
492 	uint32_t low, high;
493 
494 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
495 	act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
496 	if (act) {
497 		low = lower_32_bits(queue_address >> 8);
498 		high = upper_32_bits(queue_address >> 8);
499 
500 		if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
501 		   high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
502 			retval = true;
503 	}
504 	kgd_gfx_v9_release_queue(adev, inst);
505 	return retval;
506 }
507 
kgd_hqd_sdma_is_occupied(struct amdgpu_device * adev,void * mqd)508 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
509 {
510 	struct v9_sdma_mqd *m;
511 	uint32_t sdma_rlc_reg_offset;
512 	uint32_t sdma_rlc_rb_cntl;
513 
514 	m = get_sdma_mqd(mqd);
515 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
516 					    m->sdma_queue_id);
517 
518 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
519 
520 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
521 		return true;
522 
523 	return false;
524 }
525 
kgd_gfx_v9_hqd_destroy(struct amdgpu_device * adev,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id,uint32_t inst)526 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
527 				enum kfd_preempt_type reset_type,
528 				unsigned int utimeout, uint32_t pipe_id,
529 				uint32_t queue_id, uint32_t inst)
530 {
531 	enum hqd_dequeue_request_type type;
532 	unsigned long end_jiffies;
533 	uint32_t temp;
534 	struct v9_mqd *m = get_mqd(mqd);
535 
536 	if (amdgpu_in_reset(adev))
537 		return -EIO;
538 
539 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
540 
541 	if (m->cp_hqd_vmid == 0)
542 		WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
543 
544 	switch (reset_type) {
545 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
546 		type = DRAIN_PIPE;
547 		break;
548 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
549 		type = RESET_WAVES;
550 		break;
551 	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
552 		type = SAVE_WAVES;
553 		break;
554 	default:
555 		type = DRAIN_PIPE;
556 		break;
557 	}
558 
559 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST), type);
560 
561 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
562 	while (true) {
563 		temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
564 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
565 			break;
566 		if (time_after(jiffies, end_jiffies)) {
567 			pr_err("cp queue preemption time out.\n");
568 			kgd_gfx_v9_release_queue(adev, inst);
569 			return -ETIME;
570 		}
571 		usleep_range(500, 1000);
572 	}
573 
574 	kgd_gfx_v9_release_queue(adev, inst);
575 	return 0;
576 }
577 
kgd_hqd_sdma_destroy(struct amdgpu_device * adev,void * mqd,unsigned int utimeout)578 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
579 				unsigned int utimeout)
580 {
581 	struct v9_sdma_mqd *m;
582 	uint32_t sdma_rlc_reg_offset;
583 	uint32_t temp;
584 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
585 
586 	m = get_sdma_mqd(mqd);
587 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
588 					    m->sdma_queue_id);
589 
590 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
591 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
592 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
593 
594 	while (true) {
595 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
596 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
597 			break;
598 		if (time_after(jiffies, end_jiffies)) {
599 			pr_err("SDMA RLC not idle in %s\n", __func__);
600 			return -ETIME;
601 		}
602 		usleep_range(500, 1000);
603 	}
604 
605 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
606 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
607 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
608 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
609 
610 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
611 	m->sdmax_rlcx_rb_rptr_hi =
612 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
613 
614 	return 0;
615 }
616 
kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device * adev,uint8_t vmid,uint16_t * p_pasid)617 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
618 					uint8_t vmid, uint16_t *p_pasid)
619 {
620 	uint32_t value;
621 
622 	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
623 		     + vmid);
624 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
625 
626 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
627 }
628 
kgd_gfx_v9_wave_control_execute(struct amdgpu_device * adev,uint32_t gfx_index_val,uint32_t sq_cmd,uint32_t inst)629 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
630 					uint32_t gfx_index_val,
631 					uint32_t sq_cmd, uint32_t inst)
632 {
633 	uint32_t data = 0;
634 
635 	mutex_lock(&adev->grbm_idx_mutex);
636 
637 	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
638 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
639 
640 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641 		INSTANCE_BROADCAST_WRITES, 1);
642 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
643 		SH_BROADCAST_WRITES, 1);
644 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
645 		SE_BROADCAST_WRITES, 1);
646 
647 	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
648 	mutex_unlock(&adev->grbm_idx_mutex);
649 
650 	return 0;
651 }
652 
653 /*
654  * GFX9 helper for wave launch stall requirements on debug trap setting.
655  *
656  * vmid:
657  *   Target VMID to stall/unstall.
658  *
659  * stall:
660  *   0-unstall wave launch (enable), 1-stall wave launch (disable).
661  *   After wavefront launch has been stalled, allocated waves must drain from
662  *   SPI in order for debug trap settings to take effect on those waves.
663  *   This is roughly a ~96 clock cycle wait on SPI where a read on
664  *   SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
665  *   KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
666  *
667  *   NOTE: We can afford to clear the entire STALL_VMID field on unstall
668  *   because GFX9.4.1 cannot support multi-process debugging due to trap
669  *   configuration and masking being limited to global scope.  Always assume
670  *   single process conditions.
671  */
672 #define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY	3
kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device * adev,uint32_t vmid,bool stall)673 void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
674 					uint32_t vmid,
675 					bool stall)
676 {
677 	int i;
678 	uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
679 
680 	if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 1))
681 		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
682 							stall ? 1 << vmid : 0);
683 	else
684 		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
685 							stall ? 1 : 0);
686 
687 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
688 
689 	if (!stall)
690 		return;
691 
692 	for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
693 		RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
694 }
695 
696 /*
697  * restore_dbg_registers is ignored here but is a general interface requirement
698  * for devices that support GFXOFF and where the RLC save/restore list
699  * does not support hw registers for debugging i.e. the driver has to manually
700  * initialize the debug mode registers after it has disabled GFX off during the
701  * debug session.
702  */
kgd_gfx_v9_enable_debug_trap(struct amdgpu_device * adev,bool restore_dbg_registers,uint32_t vmid)703 uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
704 				bool restore_dbg_registers,
705 				uint32_t vmid)
706 {
707 	mutex_lock(&adev->grbm_idx_mutex);
708 
709 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
710 
711 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
712 
713 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
714 
715 	mutex_unlock(&adev->grbm_idx_mutex);
716 
717 	return 0;
718 }
719 
720 /*
721  * keep_trap_enabled is ignored here but is a general interface requirement
722  * for devices that support multi-process debugging where the performance
723  * overhead from trap temporary setup needs to be bypassed when the debug
724  * session has ended.
725  */
kgd_gfx_v9_disable_debug_trap(struct amdgpu_device * adev,bool keep_trap_enabled,uint32_t vmid)726 uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
727 					bool keep_trap_enabled,
728 					uint32_t vmid)
729 {
730 	mutex_lock(&adev->grbm_idx_mutex);
731 
732 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
733 
734 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
735 
736 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
737 
738 	mutex_unlock(&adev->grbm_idx_mutex);
739 
740 	return 0;
741 }
742 
kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device * adev,uint32_t trap_override,uint32_t * trap_mask_supported)743 int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
744 					uint32_t trap_override,
745 					uint32_t *trap_mask_supported)
746 {
747 	*trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
748 
749 	/* The SPI_GDBG_TRAP_MASK register is global and affects all
750 	 * processes. Only allow OR-ing the address-watch bit, since
751 	 * this only affects processes under the debugger. Other bits
752 	 * should stay 0 to avoid the debugger interfering with other
753 	 * processes.
754 	 */
755 	if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
756 		return -EINVAL;
757 
758 	return 0;
759 }
760 
kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device * adev,uint32_t vmid,uint32_t trap_override,uint32_t trap_mask_bits,uint32_t trap_mask_request,uint32_t * trap_mask_prev,uint32_t kfd_dbg_cntl_prev)761 uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
762 					     uint32_t vmid,
763 					     uint32_t trap_override,
764 					     uint32_t trap_mask_bits,
765 					     uint32_t trap_mask_request,
766 					     uint32_t *trap_mask_prev,
767 					     uint32_t kfd_dbg_cntl_prev)
768 {
769 	uint32_t data, wave_cntl_prev;
770 
771 	mutex_lock(&adev->grbm_idx_mutex);
772 
773 	wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
774 
775 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
776 
777 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
778 	*trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
779 
780 	trap_mask_bits = (trap_mask_bits & trap_mask_request) |
781 		(*trap_mask_prev & ~trap_mask_request);
782 
783 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
784 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
785 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
786 
787 	/* We need to preserve wave launch mode stall settings. */
788 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
789 
790 	mutex_unlock(&adev->grbm_idx_mutex);
791 
792 	return 0;
793 }
794 
kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device * adev,uint8_t wave_launch_mode,uint32_t vmid)795 uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
796 					uint8_t wave_launch_mode,
797 					uint32_t vmid)
798 {
799 	uint32_t data = 0;
800 	bool is_mode_set = !!wave_launch_mode;
801 
802 	mutex_lock(&adev->grbm_idx_mutex);
803 
804 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
805 
806 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
807 		VMID_MASK, is_mode_set ? 1 << vmid : 0);
808 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
809 		MODE, is_mode_set ? wave_launch_mode : 0);
810 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
811 
812 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
813 
814 	mutex_unlock(&adev->grbm_idx_mutex);
815 
816 	return 0;
817 }
818 
819 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
kgd_gfx_v9_set_address_watch(struct amdgpu_device * adev,uint64_t watch_address,uint32_t watch_address_mask,uint32_t watch_id,uint32_t watch_mode,uint32_t debug_vmid,uint32_t inst)820 uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
821 					uint64_t watch_address,
822 					uint32_t watch_address_mask,
823 					uint32_t watch_id,
824 					uint32_t watch_mode,
825 					uint32_t debug_vmid,
826 					uint32_t inst)
827 {
828 	uint32_t watch_address_high;
829 	uint32_t watch_address_low;
830 	uint32_t watch_address_cntl;
831 
832 	watch_address_cntl = 0;
833 
834 	watch_address_low = lower_32_bits(watch_address);
835 	watch_address_high = upper_32_bits(watch_address) & 0xffff;
836 
837 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
838 			TCP_WATCH0_CNTL,
839 			VMID,
840 			debug_vmid);
841 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
842 			TCP_WATCH0_CNTL,
843 			MODE,
844 			watch_mode);
845 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
846 			TCP_WATCH0_CNTL,
847 			MASK,
848 			watch_address_mask >> 6);
849 
850 	/* Turning off this watch point until we set all the registers */
851 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
852 			TCP_WATCH0_CNTL,
853 			VALID,
854 			0);
855 
856 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
857 			(watch_id * TCP_WATCH_STRIDE)),
858 			watch_address_cntl);
859 
860 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
861 			(watch_id * TCP_WATCH_STRIDE)),
862 			watch_address_high);
863 
864 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
865 			(watch_id * TCP_WATCH_STRIDE)),
866 			watch_address_low);
867 
868 	/* Enable the watch point */
869 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
870 			TCP_WATCH0_CNTL,
871 			VALID,
872 			1);
873 
874 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
875 			(watch_id * TCP_WATCH_STRIDE)),
876 			watch_address_cntl);
877 
878 	return 0;
879 }
880 
kgd_gfx_v9_clear_address_watch(struct amdgpu_device * adev,uint32_t watch_id)881 uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
882 					uint32_t watch_id)
883 {
884 	uint32_t watch_address_cntl;
885 
886 	watch_address_cntl = 0;
887 
888 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
889 			(watch_id * TCP_WATCH_STRIDE)),
890 			watch_address_cntl);
891 
892 	return 0;
893 }
894 
895 /* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
896  * The values read are:
897  *     ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
898  *     atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
899  *     wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
900  *     gws_wait_time            -- Wait Count for Global Wave Syncs.
901  *     que_sleep_wait_time      -- Wait Count for Dequeue Retry.
902  *     sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
903  *     sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
904  *     deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
905  */
kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device * adev,uint32_t * wait_times,uint32_t inst)906 void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
907 					uint32_t *wait_times,
908 					uint32_t inst)
909 
910 {
911 	*wait_times = RREG32(SOC15_REG_OFFSET(GC, GET_INST(GC, inst),
912 			mmCP_IQ_WAIT_TIME2));
913 }
914 
kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device * adev,uint32_t vmid,uint64_t page_table_base)915 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
916 			uint32_t vmid, uint64_t page_table_base)
917 {
918 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
919 		pr_err("trying to set page table base for wrong VMID %u\n",
920 		       vmid);
921 		return;
922 	}
923 
924 	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
925 
926 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
927 }
928 
lock_spi_csq_mutexes(struct amdgpu_device * adev)929 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
930 {
931 	mutex_lock(&adev->srbm_mutex);
932 	mutex_lock(&adev->grbm_idx_mutex);
933 
934 }
935 
unlock_spi_csq_mutexes(struct amdgpu_device * adev)936 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
937 {
938 	mutex_unlock(&adev->grbm_idx_mutex);
939 	mutex_unlock(&adev->srbm_mutex);
940 }
941 
942 /**
943  * get_wave_count: Read device registers to get number of waves in flight for
944  * a particular queue. The method also returns the VMID associated with the
945  * queue.
946  *
947  * @adev: Handle of device whose registers are to be read
948  * @queue_idx: Index of queue in the queue-map bit-field
949  * @wave_cnt: Output parameter updated with number of waves in flight
950  * @vmid: Output parameter updated with VMID of queue whose wave count
951  *        is being collected
952  * @inst: xcc's instance number on a multi-XCC setup
953  */
get_wave_count(struct amdgpu_device * adev,int queue_idx,int * wave_cnt,int * vmid,uint32_t inst)954 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
955 		int *wave_cnt, int *vmid, uint32_t inst)
956 {
957 	int pipe_idx;
958 	int queue_slot;
959 	unsigned int reg_val;
960 
961 	/*
962 	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
963 	 * parameters to read out waves in flight. Get VMID if there are
964 	 * non-zero waves in flight.
965 	 */
966 	*vmid = 0xFF;
967 	*wave_cnt = 0;
968 	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
969 	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
970 	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
971 	reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
972 			 queue_slot);
973 	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
974 	if (*wave_cnt != 0)
975 		*vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
976 			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
977 }
978 
979 /**
980  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
981  * shader engine and aggregates the number of waves that are in flight for the
982  * process whose pasid is provided as a parameter. The process could have ZERO
983  * or more queues running and submitting waves to compute units.
984  *
985  * @adev: Handle of device from which to get number of waves in flight
986  * @pasid: Identifies the process for which this query call is invoked
987  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
988  *                  belong to process with given pasid
989  * @max_waves_per_cu: Output parameter updated with maximum number of waves
990  *                    possible per Compute Unit
991  * @inst: xcc's instance number on a multi-XCC setup
992  *
993  * Note: It's possible that the device has too many queues (oversubscription)
994  * in which case a VMID could be remapped to a different PASID. This could lead
995  * to an inaccurate wave count. Following is a high-level sequence:
996  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
997  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
998  * In the sequence above wave count obtained from time T1 will be incorrectly
999  * lost or added to total wave count.
1000  *
1001  * The registers that provide the waves in flight are:
1002  *
1003  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
1004  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
1005  *  more queues slotted and submitting waves to be run on compute units. Even
1006  *  when there is a queue it is possible there could be zero wave fronts, this
1007  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
1008  *  command
1009  *
1010  *  For each bit that is ON from above:
1011  *
1012  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
1013  *    number of waves that are in flight for the queue at specified index. The
1014  *    index ranges from 0 to 7.
1015  *
1016  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
1017  *    of the wave(s).
1018  *
1019  *    Determine if VMID from above step maps to pasid provided as parameter. If
1020  *    it matches agrregate the wave count. That the VMID will not match pasid is
1021  *    a normal condition i.e. a device is expected to support multiple queues
1022  *    from multiple proceses.
1023  *
1024  *  Reading registers referenced above involves programming GRBM appropriately
1025  */
kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device * adev,int pasid,int * pasid_wave_cnt,int * max_waves_per_cu,uint32_t inst)1026 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
1027 		int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
1028 {
1029 	int qidx;
1030 	int vmid;
1031 	int se_idx;
1032 	int sh_idx;
1033 	int se_cnt;
1034 	int sh_cnt;
1035 	int wave_cnt;
1036 	int queue_map;
1037 	int pasid_tmp;
1038 	int max_queue_cnt;
1039 	int vmid_wave_cnt = 0;
1040 	DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
1041 
1042 	lock_spi_csq_mutexes(adev);
1043 	soc15_grbm_select(adev, 1, 0, 0, 0, inst);
1044 
1045 	/*
1046 	 * Iterate through the shader engines and arrays of the device
1047 	 * to get number of waves in flight
1048 	 */
1049 	bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
1050 			  KGD_MAX_QUEUES);
1051 	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
1052 			adev->gfx.mec.num_queue_per_pipe;
1053 	sh_cnt = adev->gfx.config.max_sh_per_se;
1054 	se_cnt = adev->gfx.config.max_shader_engines;
1055 	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
1056 		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
1057 
1058 			amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
1059 			queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
1060 
1061 			/*
1062 			 * Assumption: queue map encodes following schema: four
1063 			 * pipes per each micro-engine, with each pipe mapping
1064 			 * eight queues. This schema is true for GFX9 devices
1065 			 * and must be verified for newer device families
1066 			 */
1067 			for (qidx = 0; qidx < max_queue_cnt; qidx++) {
1068 
1069 				/* Skip qeueus that are not associated with
1070 				 * compute functions
1071 				 */
1072 				if (!test_bit(qidx, cp_queue_bitmap))
1073 					continue;
1074 
1075 				if (!(queue_map & (1 << qidx)))
1076 					continue;
1077 
1078 				/* Get number of waves in flight and aggregate them */
1079 				get_wave_count(adev, qidx, &wave_cnt, &vmid,
1080 						inst);
1081 				if (wave_cnt != 0) {
1082 					pasid_tmp =
1083 					  RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
1084 						 mmIH_VMID_0_LUT) + vmid);
1085 					if (pasid_tmp == pasid)
1086 						vmid_wave_cnt += wave_cnt;
1087 				}
1088 			}
1089 		}
1090 	}
1091 
1092 	amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
1093 	soc15_grbm_select(adev, 0, 0, 0, 0, inst);
1094 	unlock_spi_csq_mutexes(adev);
1095 
1096 	/* Update the output parameters and return */
1097 	*pasid_wave_cnt = vmid_wave_cnt;
1098 	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
1099 				adev->gfx.cu_info.max_waves_per_simd;
1100 }
1101 
kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device * adev,uint32_t wait_times,uint32_t grace_period,uint32_t * reg_offset,uint32_t * reg_data)1102 void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
1103 		uint32_t wait_times,
1104 		uint32_t grace_period,
1105 		uint32_t *reg_offset,
1106 		uint32_t *reg_data)
1107 {
1108 	*reg_data = wait_times;
1109 
1110 	/*
1111 	 * The CP cannot handle a 0 grace period input and will result in
1112 	 * an infinite grace period being set so set to 1 to prevent this.
1113 	 */
1114 	if (grace_period == 0)
1115 		grace_period = 1;
1116 
1117 	*reg_data = REG_SET_FIELD(*reg_data,
1118 			CP_IQ_WAIT_TIME2,
1119 			SCH_WAVE,
1120 			grace_period);
1121 
1122 	*reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1123 }
1124 
kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device * adev,uint32_t vmid,uint64_t tba_addr,uint64_t tma_addr,uint32_t inst)1125 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
1126 		uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
1127 {
1128 	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
1129 
1130 	/*
1131 	 * Program TBA registers
1132 	 */
1133 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
1134 			lower_32_bits(tba_addr >> 8));
1135 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
1136 			upper_32_bits(tba_addr >> 8));
1137 
1138 	/*
1139 	 * Program TMA registers
1140 	 */
1141 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
1142 			lower_32_bits(tma_addr >> 8));
1143 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
1144 			upper_32_bits(tma_addr >> 8));
1145 
1146 	kgd_gfx_v9_unlock_srbm(adev, inst);
1147 }
1148 
1149 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
1150 	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
1151 	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
1152 	.init_interrupts = kgd_gfx_v9_init_interrupts,
1153 	.hqd_load = kgd_gfx_v9_hqd_load,
1154 	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
1155 	.hqd_sdma_load = kgd_hqd_sdma_load,
1156 	.hqd_dump = kgd_gfx_v9_hqd_dump,
1157 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
1158 	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
1159 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1160 	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
1161 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1162 	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
1163 	.get_atc_vmid_pasid_mapping_info =
1164 			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
1165 	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
1166 	.enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
1167 	.disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
1168 	.validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
1169 	.set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
1170 	.set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
1171 	.set_address_watch = kgd_gfx_v9_set_address_watch,
1172 	.clear_address_watch = kgd_gfx_v9_clear_address_watch,
1173 	.get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
1174 	.build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
1175 	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
1176 	.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
1177 };
1178