1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_svm.h"
40 #include "kfd_debug.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 uint32_t proximity_domain)
54 {
55 struct kfd_topology_device *top_dev;
56 struct kfd_topology_device *device = NULL;
57
58 list_for_each_entry(top_dev, &topology_device_list, list)
59 if (top_dev->proximity_domain == proximity_domain) {
60 device = top_dev;
61 break;
62 }
63
64 return device;
65 }
66
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 uint32_t proximity_domain)
69 {
70 struct kfd_topology_device *device = NULL;
71
72 down_read(&topology_lock);
73
74 device = kfd_topology_device_by_proximity_domain_no_lock(
75 proximity_domain);
76 up_read(&topology_lock);
77
78 return device;
79 }
80
kfd_topology_device_by_id(uint32_t gpu_id)81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83 struct kfd_topology_device *top_dev = NULL;
84 struct kfd_topology_device *ret = NULL;
85
86 down_read(&topology_lock);
87
88 list_for_each_entry(top_dev, &topology_device_list, list)
89 if (top_dev->gpu_id == gpu_id) {
90 ret = top_dev;
91 break;
92 }
93
94 up_read(&topology_lock);
95
96 return ret;
97 }
98
kfd_device_by_id(uint32_t gpu_id)99 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100 {
101 struct kfd_topology_device *top_dev;
102
103 top_dev = kfd_topology_device_by_id(gpu_id);
104 if (!top_dev)
105 return NULL;
106
107 return top_dev->gpu;
108 }
109
kfd_device_by_pci_dev(const struct pci_dev * pdev)110 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112 struct kfd_topology_device *top_dev;
113 struct kfd_node *device = NULL;
114
115 down_read(&topology_lock);
116
117 list_for_each_entry(top_dev, &topology_device_list, list)
118 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119 device = top_dev->gpu;
120 break;
121 }
122
123 up_read(&topology_lock);
124
125 return device;
126 }
127
128 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)129 static void kfd_release_topology_device(struct kfd_topology_device *dev)
130 {
131 struct kfd_mem_properties *mem;
132 struct kfd_cache_properties *cache;
133 struct kfd_iolink_properties *iolink;
134 struct kfd_iolink_properties *p2plink;
135 struct kfd_perf_properties *perf;
136
137 list_del(&dev->list);
138
139 while (dev->mem_props.next != &dev->mem_props) {
140 mem = container_of(dev->mem_props.next,
141 struct kfd_mem_properties, list);
142 list_del(&mem->list);
143 kfree(mem);
144 }
145
146 while (dev->cache_props.next != &dev->cache_props) {
147 cache = container_of(dev->cache_props.next,
148 struct kfd_cache_properties, list);
149 list_del(&cache->list);
150 kfree(cache);
151 }
152
153 while (dev->io_link_props.next != &dev->io_link_props) {
154 iolink = container_of(dev->io_link_props.next,
155 struct kfd_iolink_properties, list);
156 list_del(&iolink->list);
157 kfree(iolink);
158 }
159
160 while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161 p2plink = container_of(dev->p2p_link_props.next,
162 struct kfd_iolink_properties, list);
163 list_del(&p2plink->list);
164 kfree(p2plink);
165 }
166
167 while (dev->perf_props.next != &dev->perf_props) {
168 perf = container_of(dev->perf_props.next,
169 struct kfd_perf_properties, list);
170 list_del(&perf->list);
171 kfree(perf);
172 }
173
174 kfree(dev);
175 }
176
kfd_release_topology_device_list(struct list_head * device_list)177 void kfd_release_topology_device_list(struct list_head *device_list)
178 {
179 struct kfd_topology_device *dev;
180
181 while (!list_empty(device_list)) {
182 dev = list_first_entry(device_list,
183 struct kfd_topology_device, list);
184 kfd_release_topology_device(dev);
185 }
186 }
187
kfd_release_live_view(void)188 static void kfd_release_live_view(void)
189 {
190 kfd_release_topology_device_list(&topology_device_list);
191 memset(&sys_props, 0, sizeof(sys_props));
192 }
193
kfd_create_topology_device(struct list_head * device_list)194 struct kfd_topology_device *kfd_create_topology_device(
195 struct list_head *device_list)
196 {
197 struct kfd_topology_device *dev;
198
199 dev = kfd_alloc_struct(dev);
200 if (!dev) {
201 pr_err("No memory to allocate a topology device");
202 return NULL;
203 }
204
205 INIT_LIST_HEAD(&dev->mem_props);
206 INIT_LIST_HEAD(&dev->cache_props);
207 INIT_LIST_HEAD(&dev->io_link_props);
208 INIT_LIST_HEAD(&dev->p2p_link_props);
209 INIT_LIST_HEAD(&dev->perf_props);
210
211 list_add_tail(&dev->list, device_list);
212
213 return dev;
214 }
215
216
217 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
218 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
219 fmt, __VA_ARGS__))
220 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
221 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
223 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224 #define sysfs_show_32bit_val(buffer, offs, value) \
225 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226 #define sysfs_show_str_val(buffer, offs, value) \
227 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)229 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230 char *buffer)
231 {
232 int offs = 0;
233
234 /* Making sure that the buffer is an empty string */
235 buffer[0] = 0;
236
237 if (attr == &sys_props.attr_genid) {
238 sysfs_show_32bit_val(buffer, offs,
239 sys_props.generation_count);
240 } else if (attr == &sys_props.attr_props) {
241 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242 sys_props.platform_oem);
243 sysfs_show_64bit_prop(buffer, offs, "platform_id",
244 sys_props.platform_id);
245 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246 sys_props.platform_rev);
247 } else {
248 offs = -EINVAL;
249 }
250
251 return offs;
252 }
253
kfd_topology_kobj_release(struct kobject * kobj)254 static void kfd_topology_kobj_release(struct kobject *kobj)
255 {
256 kfree(kobj);
257 }
258
259 static const struct sysfs_ops sysprops_ops = {
260 .show = sysprops_show,
261 };
262
263 static const struct kobj_type sysprops_type = {
264 .release = kfd_topology_kobj_release,
265 .sysfs_ops = &sysprops_ops,
266 };
267
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)268 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269 char *buffer)
270 {
271 int offs = 0;
272 struct kfd_iolink_properties *iolink;
273
274 /* Making sure that the buffer is an empty string */
275 buffer[0] = 0;
276
277 iolink = container_of(attr, struct kfd_iolink_properties, attr);
278 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279 return -EPERM;
280 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289 iolink->min_bandwidth);
290 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291 iolink->max_bandwidth);
292 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293 iolink->rec_transfer_size);
294 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295
296 return offs;
297 }
298
299 static const struct sysfs_ops iolink_ops = {
300 .show = iolink_show,
301 };
302
303 static const struct kobj_type iolink_type = {
304 .release = kfd_topology_kobj_release,
305 .sysfs_ops = &iolink_ops,
306 };
307
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)308 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309 char *buffer)
310 {
311 int offs = 0;
312 struct kfd_mem_properties *mem;
313
314 /* Making sure that the buffer is an empty string */
315 buffer[0] = 0;
316
317 mem = container_of(attr, struct kfd_mem_properties, attr);
318 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319 return -EPERM;
320 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322 mem->size_in_bytes);
323 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324 sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326 mem->mem_clk_max);
327
328 return offs;
329 }
330
331 static const struct sysfs_ops mem_ops = {
332 .show = mem_show,
333 };
334
335 static const struct kobj_type mem_type = {
336 .release = kfd_topology_kobj_release,
337 .sysfs_ops = &mem_ops,
338 };
339
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)340 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341 char *buffer)
342 {
343 int offs = 0;
344 uint32_t i, j;
345 struct kfd_cache_properties *cache;
346
347 /* Making sure that the buffer is an empty string */
348 buffer[0] = 0;
349 cache = container_of(attr, struct kfd_cache_properties, attr);
350 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351 return -EPERM;
352 sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353 cache->processor_id_low);
354 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356 sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357 cache->cacheline_size);
358 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359 cache->cachelines_per_tag);
360 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363
364 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365 for (i = 0; i < cache->sibling_map_size; i++)
366 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367 /* Check each bit */
368 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369 (cache->sibling_map[i] >> j) & 1);
370
371 /* Replace the last "," with end of line */
372 buffer[offs-1] = '\n';
373 return offs;
374 }
375
376 static const struct sysfs_ops cache_ops = {
377 .show = kfd_cache_show,
378 };
379
380 static const struct kobj_type cache_type = {
381 .release = kfd_topology_kobj_release,
382 .sysfs_ops = &cache_ops,
383 };
384
385 /****** Sysfs of Performance Counters ******/
386
387 struct kfd_perf_attr {
388 struct kobj_attribute attr;
389 uint32_t data;
390 };
391
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)392 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393 char *buf)
394 {
395 int offs = 0;
396 struct kfd_perf_attr *attr;
397
398 buf[0] = 0;
399 attr = container_of(attrs, struct kfd_perf_attr, attr);
400 if (!attr->data) /* invalid data for PMC */
401 return 0;
402 else
403 return sysfs_show_32bit_val(buf, offs, attr->data);
404 }
405
406 #define KFD_PERF_DESC(_name, _data) \
407 { \
408 .attr = __ATTR(_name, 0444, perf_show, NULL), \
409 .data = _data, \
410 }
411
412 static struct kfd_perf_attr perf_attr_iommu[] = {
413 KFD_PERF_DESC(max_concurrent, 0),
414 KFD_PERF_DESC(num_counters, 0),
415 KFD_PERF_DESC(counter_ids, 0),
416 };
417 /****************************************/
418
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)419 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420 char *buffer)
421 {
422 int offs = 0;
423 struct kfd_topology_device *dev;
424 uint32_t log_max_watch_addr;
425
426 /* Making sure that the buffer is an empty string */
427 buffer[0] = 0;
428
429 if (strcmp(attr->name, "gpu_id") == 0) {
430 dev = container_of(attr, struct kfd_topology_device,
431 attr_gpuid);
432 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433 return -EPERM;
434 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435 }
436
437 if (strcmp(attr->name, "name") == 0) {
438 dev = container_of(attr, struct kfd_topology_device,
439 attr_name);
440
441 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442 return -EPERM;
443 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444 }
445
446 dev = container_of(attr, struct kfd_topology_device,
447 attr_props);
448 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449 return -EPERM;
450 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451 dev->node_props.cpu_cores_count);
452 sysfs_show_32bit_prop(buffer, offs, "simd_count",
453 dev->gpu ? dev->node_props.simd_count : 0);
454 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
455 dev->node_props.mem_banks_count);
456 sysfs_show_32bit_prop(buffer, offs, "caches_count",
457 dev->node_props.caches_count);
458 sysfs_show_32bit_prop(buffer, offs, "io_links_count",
459 dev->node_props.io_links_count);
460 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
461 dev->node_props.p2p_links_count);
462 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
463 dev->node_props.cpu_core_id_base);
464 sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
465 dev->node_props.simd_id_base);
466 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
467 dev->node_props.max_waves_per_simd);
468 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
469 dev->node_props.lds_size_in_kb);
470 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
471 dev->node_props.gds_size_in_kb);
472 sysfs_show_32bit_prop(buffer, offs, "num_gws",
473 dev->node_props.num_gws);
474 sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
475 dev->node_props.wave_front_size);
476 sysfs_show_32bit_prop(buffer, offs, "array_count",
477 dev->gpu ? (dev->node_props.array_count *
478 NUM_XCC(dev->gpu->xcc_mask)) : 0);
479 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
480 dev->node_props.simd_arrays_per_engine);
481 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
482 dev->node_props.cu_per_simd_array);
483 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
484 dev->node_props.simd_per_cu);
485 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
486 dev->node_props.max_slots_scratch_cu);
487 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
488 dev->node_props.gfx_target_version);
489 sysfs_show_32bit_prop(buffer, offs, "vendor_id",
490 dev->node_props.vendor_id);
491 sysfs_show_32bit_prop(buffer, offs, "device_id",
492 dev->node_props.device_id);
493 sysfs_show_32bit_prop(buffer, offs, "location_id",
494 dev->node_props.location_id);
495 sysfs_show_32bit_prop(buffer, offs, "domain",
496 dev->node_props.domain);
497 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
498 dev->node_props.drm_render_minor);
499 sysfs_show_64bit_prop(buffer, offs, "hive_id",
500 dev->node_props.hive_id);
501 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
502 dev->node_props.num_sdma_engines);
503 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
504 dev->node_props.num_sdma_xgmi_engines);
505 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
506 dev->node_props.num_sdma_queues_per_engine);
507 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
508 dev->node_props.num_cp_queues);
509
510 if (dev->gpu) {
511 log_max_watch_addr =
512 __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
513
514 if (log_max_watch_addr) {
515 dev->node_props.capability |=
516 HSA_CAP_WATCH_POINTS_SUPPORTED;
517
518 dev->node_props.capability |=
519 ((log_max_watch_addr <<
520 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
521 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
522 }
523
524 if (dev->gpu->adev->asic_type == CHIP_TONGA)
525 dev->node_props.capability |=
526 HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
527
528 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
529 dev->node_props.max_engine_clk_fcompute);
530
531 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
532
533 sysfs_show_32bit_prop(buffer, offs, "fw_version",
534 dev->gpu->kfd->mec_fw_version);
535 sysfs_show_32bit_prop(buffer, offs, "capability",
536 dev->node_props.capability);
537 sysfs_show_64bit_prop(buffer, offs, "debug_prop",
538 dev->node_props.debug_prop);
539 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
540 dev->gpu->kfd->sdma_fw_version);
541 sysfs_show_64bit_prop(buffer, offs, "unique_id",
542 dev->gpu->adev->unique_id);
543 sysfs_show_32bit_prop(buffer, offs, "num_xcc",
544 NUM_XCC(dev->gpu->xcc_mask));
545 }
546
547 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
548 cpufreq_quick_get_max(0)/1000);
549 }
550
551 static const struct sysfs_ops node_ops = {
552 .show = node_show,
553 };
554
555 static const struct kobj_type node_type = {
556 .release = kfd_topology_kobj_release,
557 .sysfs_ops = &node_ops,
558 };
559
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)560 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
561 {
562 sysfs_remove_file(kobj, attr);
563 kobject_del(kobj);
564 kobject_put(kobj);
565 }
566
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)567 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
568 {
569 struct kfd_iolink_properties *p2plink;
570 struct kfd_iolink_properties *iolink;
571 struct kfd_cache_properties *cache;
572 struct kfd_mem_properties *mem;
573 struct kfd_perf_properties *perf;
574
575 if (dev->kobj_iolink) {
576 list_for_each_entry(iolink, &dev->io_link_props, list)
577 if (iolink->kobj) {
578 kfd_remove_sysfs_file(iolink->kobj,
579 &iolink->attr);
580 iolink->kobj = NULL;
581 }
582 kobject_del(dev->kobj_iolink);
583 kobject_put(dev->kobj_iolink);
584 dev->kobj_iolink = NULL;
585 }
586
587 if (dev->kobj_p2plink) {
588 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
589 if (p2plink->kobj) {
590 kfd_remove_sysfs_file(p2plink->kobj,
591 &p2plink->attr);
592 p2plink->kobj = NULL;
593 }
594 kobject_del(dev->kobj_p2plink);
595 kobject_put(dev->kobj_p2plink);
596 dev->kobj_p2plink = NULL;
597 }
598
599 if (dev->kobj_cache) {
600 list_for_each_entry(cache, &dev->cache_props, list)
601 if (cache->kobj) {
602 kfd_remove_sysfs_file(cache->kobj,
603 &cache->attr);
604 cache->kobj = NULL;
605 }
606 kobject_del(dev->kobj_cache);
607 kobject_put(dev->kobj_cache);
608 dev->kobj_cache = NULL;
609 }
610
611 if (dev->kobj_mem) {
612 list_for_each_entry(mem, &dev->mem_props, list)
613 if (mem->kobj) {
614 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
615 mem->kobj = NULL;
616 }
617 kobject_del(dev->kobj_mem);
618 kobject_put(dev->kobj_mem);
619 dev->kobj_mem = NULL;
620 }
621
622 if (dev->kobj_perf) {
623 list_for_each_entry(perf, &dev->perf_props, list) {
624 kfree(perf->attr_group);
625 perf->attr_group = NULL;
626 }
627 kobject_del(dev->kobj_perf);
628 kobject_put(dev->kobj_perf);
629 dev->kobj_perf = NULL;
630 }
631
632 if (dev->kobj_node) {
633 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
634 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
635 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
636 kobject_del(dev->kobj_node);
637 kobject_put(dev->kobj_node);
638 dev->kobj_node = NULL;
639 }
640 }
641
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)642 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
643 uint32_t id)
644 {
645 struct kfd_iolink_properties *p2plink;
646 struct kfd_iolink_properties *iolink;
647 struct kfd_cache_properties *cache;
648 struct kfd_mem_properties *mem;
649 struct kfd_perf_properties *perf;
650 int ret;
651 uint32_t i, num_attrs;
652 struct attribute **attrs;
653
654 if (WARN_ON(dev->kobj_node))
655 return -EEXIST;
656
657 /*
658 * Creating the sysfs folders
659 */
660 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
661 if (!dev->kobj_node)
662 return -ENOMEM;
663
664 ret = kobject_init_and_add(dev->kobj_node, &node_type,
665 sys_props.kobj_nodes, "%d", id);
666 if (ret < 0) {
667 kobject_put(dev->kobj_node);
668 return ret;
669 }
670
671 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
672 if (!dev->kobj_mem)
673 return -ENOMEM;
674
675 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
676 if (!dev->kobj_cache)
677 return -ENOMEM;
678
679 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
680 if (!dev->kobj_iolink)
681 return -ENOMEM;
682
683 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
684 if (!dev->kobj_p2plink)
685 return -ENOMEM;
686
687 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
688 if (!dev->kobj_perf)
689 return -ENOMEM;
690
691 /*
692 * Creating sysfs files for node properties
693 */
694 dev->attr_gpuid.name = "gpu_id";
695 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
696 sysfs_attr_init(&dev->attr_gpuid);
697 dev->attr_name.name = "name";
698 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
699 sysfs_attr_init(&dev->attr_name);
700 dev->attr_props.name = "properties";
701 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
702 sysfs_attr_init(&dev->attr_props);
703 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
704 if (ret < 0)
705 return ret;
706 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
707 if (ret < 0)
708 return ret;
709 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
710 if (ret < 0)
711 return ret;
712
713 i = 0;
714 list_for_each_entry(mem, &dev->mem_props, list) {
715 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
716 if (!mem->kobj)
717 return -ENOMEM;
718 ret = kobject_init_and_add(mem->kobj, &mem_type,
719 dev->kobj_mem, "%d", i);
720 if (ret < 0) {
721 kobject_put(mem->kobj);
722 return ret;
723 }
724
725 mem->attr.name = "properties";
726 mem->attr.mode = KFD_SYSFS_FILE_MODE;
727 sysfs_attr_init(&mem->attr);
728 ret = sysfs_create_file(mem->kobj, &mem->attr);
729 if (ret < 0)
730 return ret;
731 i++;
732 }
733
734 i = 0;
735 list_for_each_entry(cache, &dev->cache_props, list) {
736 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
737 if (!cache->kobj)
738 return -ENOMEM;
739 ret = kobject_init_and_add(cache->kobj, &cache_type,
740 dev->kobj_cache, "%d", i);
741 if (ret < 0) {
742 kobject_put(cache->kobj);
743 return ret;
744 }
745
746 cache->attr.name = "properties";
747 cache->attr.mode = KFD_SYSFS_FILE_MODE;
748 sysfs_attr_init(&cache->attr);
749 ret = sysfs_create_file(cache->kobj, &cache->attr);
750 if (ret < 0)
751 return ret;
752 i++;
753 }
754
755 i = 0;
756 list_for_each_entry(iolink, &dev->io_link_props, list) {
757 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
758 if (!iolink->kobj)
759 return -ENOMEM;
760 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
761 dev->kobj_iolink, "%d", i);
762 if (ret < 0) {
763 kobject_put(iolink->kobj);
764 return ret;
765 }
766
767 iolink->attr.name = "properties";
768 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
769 sysfs_attr_init(&iolink->attr);
770 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
771 if (ret < 0)
772 return ret;
773 i++;
774 }
775
776 i = 0;
777 list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
778 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
779 if (!p2plink->kobj)
780 return -ENOMEM;
781 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
782 dev->kobj_p2plink, "%d", i);
783 if (ret < 0) {
784 kobject_put(p2plink->kobj);
785 return ret;
786 }
787
788 p2plink->attr.name = "properties";
789 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
790 sysfs_attr_init(&p2plink->attr);
791 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
792 if (ret < 0)
793 return ret;
794 i++;
795 }
796
797 /* All hardware blocks have the same number of attributes. */
798 num_attrs = ARRAY_SIZE(perf_attr_iommu);
799 list_for_each_entry(perf, &dev->perf_props, list) {
800 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
801 * num_attrs + sizeof(struct attribute_group),
802 GFP_KERNEL);
803 if (!perf->attr_group)
804 return -ENOMEM;
805
806 attrs = (struct attribute **)(perf->attr_group + 1);
807 if (!strcmp(perf->block_name, "iommu")) {
808 /* Information of IOMMU's num_counters and counter_ids is shown
809 * under /sys/bus/event_source/devices/amd_iommu. We don't
810 * duplicate here.
811 */
812 perf_attr_iommu[0].data = perf->max_concurrent;
813 for (i = 0; i < num_attrs; i++)
814 attrs[i] = &perf_attr_iommu[i].attr.attr;
815 }
816 perf->attr_group->name = perf->block_name;
817 perf->attr_group->attrs = attrs;
818 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
819 if (ret < 0)
820 return ret;
821 }
822
823 return 0;
824 }
825
826 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)827 static int kfd_build_sysfs_node_tree(void)
828 {
829 struct kfd_topology_device *dev;
830 int ret;
831 uint32_t i = 0;
832
833 list_for_each_entry(dev, &topology_device_list, list) {
834 ret = kfd_build_sysfs_node_entry(dev, i);
835 if (ret < 0)
836 return ret;
837 i++;
838 }
839
840 return 0;
841 }
842
843 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)844 static void kfd_remove_sysfs_node_tree(void)
845 {
846 struct kfd_topology_device *dev;
847
848 list_for_each_entry(dev, &topology_device_list, list)
849 kfd_remove_sysfs_node_entry(dev);
850 }
851
kfd_topology_update_sysfs(void)852 static int kfd_topology_update_sysfs(void)
853 {
854 int ret;
855
856 if (!sys_props.kobj_topology) {
857 sys_props.kobj_topology =
858 kfd_alloc_struct(sys_props.kobj_topology);
859 if (!sys_props.kobj_topology)
860 return -ENOMEM;
861
862 ret = kobject_init_and_add(sys_props.kobj_topology,
863 &sysprops_type, &kfd_device->kobj,
864 "topology");
865 if (ret < 0) {
866 kobject_put(sys_props.kobj_topology);
867 return ret;
868 }
869
870 sys_props.kobj_nodes = kobject_create_and_add("nodes",
871 sys_props.kobj_topology);
872 if (!sys_props.kobj_nodes)
873 return -ENOMEM;
874
875 sys_props.attr_genid.name = "generation_id";
876 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
877 sysfs_attr_init(&sys_props.attr_genid);
878 ret = sysfs_create_file(sys_props.kobj_topology,
879 &sys_props.attr_genid);
880 if (ret < 0)
881 return ret;
882
883 sys_props.attr_props.name = "system_properties";
884 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
885 sysfs_attr_init(&sys_props.attr_props);
886 ret = sysfs_create_file(sys_props.kobj_topology,
887 &sys_props.attr_props);
888 if (ret < 0)
889 return ret;
890 }
891
892 kfd_remove_sysfs_node_tree();
893
894 return kfd_build_sysfs_node_tree();
895 }
896
kfd_topology_release_sysfs(void)897 static void kfd_topology_release_sysfs(void)
898 {
899 kfd_remove_sysfs_node_tree();
900 if (sys_props.kobj_topology) {
901 sysfs_remove_file(sys_props.kobj_topology,
902 &sys_props.attr_genid);
903 sysfs_remove_file(sys_props.kobj_topology,
904 &sys_props.attr_props);
905 if (sys_props.kobj_nodes) {
906 kobject_del(sys_props.kobj_nodes);
907 kobject_put(sys_props.kobj_nodes);
908 sys_props.kobj_nodes = NULL;
909 }
910 kobject_del(sys_props.kobj_topology);
911 kobject_put(sys_props.kobj_topology);
912 sys_props.kobj_topology = NULL;
913 }
914 }
915
916 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)917 static void kfd_topology_update_device_list(struct list_head *temp_list,
918 struct list_head *master_list)
919 {
920 while (!list_empty(temp_list)) {
921 list_move_tail(temp_list->next, master_list);
922 sys_props.num_devices++;
923 }
924 }
925
kfd_debug_print_topology(void)926 static void kfd_debug_print_topology(void)
927 {
928 struct kfd_topology_device *dev;
929
930 down_read(&topology_lock);
931
932 dev = list_last_entry(&topology_device_list,
933 struct kfd_topology_device, list);
934 if (dev) {
935 if (dev->node_props.cpu_cores_count &&
936 dev->node_props.simd_count) {
937 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
938 dev->node_props.device_id,
939 dev->node_props.vendor_id);
940 } else if (dev->node_props.cpu_cores_count)
941 pr_info("Topology: Add CPU node\n");
942 else if (dev->node_props.simd_count)
943 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
944 dev->node_props.device_id,
945 dev->node_props.vendor_id);
946 }
947 up_read(&topology_lock);
948 }
949
950 /* Helper function for intializing platform_xx members of
951 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
952 */
kfd_update_system_properties(void)953 static void kfd_update_system_properties(void)
954 {
955 struct kfd_topology_device *dev;
956
957 down_read(&topology_lock);
958 dev = list_last_entry(&topology_device_list,
959 struct kfd_topology_device, list);
960 if (dev) {
961 sys_props.platform_id = dev->oem_id64;
962 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
963 sys_props.platform_rev = dev->oem_revision;
964 }
965 up_read(&topology_lock);
966 }
967
find_system_memory(const struct dmi_header * dm,void * private)968 static void find_system_memory(const struct dmi_header *dm,
969 void *private)
970 {
971 struct kfd_mem_properties *mem;
972 u16 mem_width, mem_clock;
973 struct kfd_topology_device *kdev =
974 (struct kfd_topology_device *)private;
975 const u8 *dmi_data = (const u8 *)(dm + 1);
976
977 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
978 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
979 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
980 list_for_each_entry(mem, &kdev->mem_props, list) {
981 if (mem_width != 0xFFFF && mem_width != 0)
982 mem->width = mem_width;
983 if (mem_clock != 0)
984 mem->mem_clk_max = mem_clock;
985 }
986 }
987 }
988
989 /* kfd_add_non_crat_information - Add information that is not currently
990 * defined in CRAT but is necessary for KFD topology
991 * @dev - topology device to which addition info is added
992 */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)993 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
994 {
995 /* Check if CPU only node. */
996 if (!kdev->gpu) {
997 /* Add system memory information */
998 dmi_walk(find_system_memory, kdev);
999 }
1000 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1001 }
1002
kfd_topology_init(void)1003 int kfd_topology_init(void)
1004 {
1005 void *crat_image = NULL;
1006 size_t image_size = 0;
1007 int ret;
1008 struct list_head temp_topology_device_list;
1009 int cpu_only_node = 0;
1010 struct kfd_topology_device *kdev;
1011 int proximity_domain;
1012
1013 /* topology_device_list - Master list of all topology devices
1014 * temp_topology_device_list - temporary list created while parsing CRAT
1015 * or VCRAT. Once parsing is complete the contents of list is moved to
1016 * topology_device_list
1017 */
1018
1019 /* Initialize the head for the both the lists */
1020 INIT_LIST_HEAD(&topology_device_list);
1021 INIT_LIST_HEAD(&temp_topology_device_list);
1022 init_rwsem(&topology_lock);
1023
1024 memset(&sys_props, 0, sizeof(sys_props));
1025
1026 /* Proximity domains in ACPI CRAT tables start counting at
1027 * 0. The same should be true for virtual CRAT tables created
1028 * at this stage. GPUs added later in kfd_topology_add_device
1029 * use a counter.
1030 */
1031 proximity_domain = 0;
1032
1033 ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1034 COMPUTE_UNIT_CPU, NULL,
1035 proximity_domain);
1036 cpu_only_node = 1;
1037 if (ret) {
1038 pr_err("Error creating VCRAT table for CPU\n");
1039 return ret;
1040 }
1041
1042 ret = kfd_parse_crat_table(crat_image,
1043 &temp_topology_device_list,
1044 proximity_domain);
1045 if (ret) {
1046 pr_err("Error parsing VCRAT table for CPU\n");
1047 goto err;
1048 }
1049
1050 kdev = list_first_entry(&temp_topology_device_list,
1051 struct kfd_topology_device, list);
1052
1053 down_write(&topology_lock);
1054 kfd_topology_update_device_list(&temp_topology_device_list,
1055 &topology_device_list);
1056 topology_crat_proximity_domain = sys_props.num_devices-1;
1057 ret = kfd_topology_update_sysfs();
1058 up_write(&topology_lock);
1059
1060 if (!ret) {
1061 sys_props.generation_count++;
1062 kfd_update_system_properties();
1063 kfd_debug_print_topology();
1064 } else
1065 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1066
1067 /* For nodes with GPU, this information gets added
1068 * when GPU is detected (kfd_topology_add_device).
1069 */
1070 if (cpu_only_node) {
1071 /* Add additional information to CPU only node created above */
1072 down_write(&topology_lock);
1073 kdev = list_first_entry(&topology_device_list,
1074 struct kfd_topology_device, list);
1075 up_write(&topology_lock);
1076 kfd_add_non_crat_information(kdev);
1077 }
1078
1079 err:
1080 kfd_destroy_crat_image(crat_image);
1081 return ret;
1082 }
1083
kfd_topology_shutdown(void)1084 void kfd_topology_shutdown(void)
1085 {
1086 down_write(&topology_lock);
1087 kfd_topology_release_sysfs();
1088 kfd_release_live_view();
1089 up_write(&topology_lock);
1090 }
1091
kfd_generate_gpu_id(struct kfd_node * gpu)1092 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1093 {
1094 uint32_t hashout;
1095 uint32_t buf[8];
1096 uint64_t local_mem_size;
1097 int i;
1098
1099 if (!gpu)
1100 return 0;
1101
1102 local_mem_size = gpu->local_mem_info.local_mem_size_private +
1103 gpu->local_mem_info.local_mem_size_public;
1104 buf[0] = gpu->adev->pdev->devfn;
1105 buf[1] = gpu->adev->pdev->subsystem_vendor |
1106 (gpu->adev->pdev->subsystem_device << 16);
1107 buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1108 buf[3] = gpu->adev->pdev->device;
1109 buf[4] = gpu->adev->pdev->bus->number;
1110 buf[5] = lower_32_bits(local_mem_size);
1111 buf[6] = upper_32_bits(local_mem_size);
1112 buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1113
1114 for (i = 0, hashout = 0; i < 8; i++)
1115 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1116
1117 return hashout;
1118 }
1119 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1120 * the GPU device is not already present in the topology device
1121 * list then return NULL. This means a new topology device has to
1122 * be created for this GPU.
1123 */
kfd_assign_gpu(struct kfd_node * gpu)1124 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1125 {
1126 struct kfd_topology_device *dev;
1127 struct kfd_topology_device *out_dev = NULL;
1128 struct kfd_mem_properties *mem;
1129 struct kfd_cache_properties *cache;
1130 struct kfd_iolink_properties *iolink;
1131 struct kfd_iolink_properties *p2plink;
1132
1133 list_for_each_entry(dev, &topology_device_list, list) {
1134 /* Discrete GPUs need their own topology device list
1135 * entries. Don't assign them to CPU/APU nodes.
1136 */
1137 if (dev->node_props.cpu_cores_count)
1138 continue;
1139
1140 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1141 dev->gpu = gpu;
1142 out_dev = dev;
1143
1144 list_for_each_entry(mem, &dev->mem_props, list)
1145 mem->gpu = dev->gpu;
1146 list_for_each_entry(cache, &dev->cache_props, list)
1147 cache->gpu = dev->gpu;
1148 list_for_each_entry(iolink, &dev->io_link_props, list)
1149 iolink->gpu = dev->gpu;
1150 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1151 p2plink->gpu = dev->gpu;
1152 break;
1153 }
1154 }
1155 return out_dev;
1156 }
1157
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1158 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1159 {
1160 /*
1161 * TODO: Generate an event for thunk about the arrival/removal
1162 * of the GPU
1163 */
1164 }
1165
1166 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1167 * patch this after CRAT parsing.
1168 */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1169 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1170 {
1171 struct kfd_mem_properties *mem;
1172 struct kfd_local_mem_info local_mem_info;
1173
1174 if (!dev)
1175 return;
1176
1177 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1178 * single bank of VRAM local memory.
1179 * for dGPUs - VCRAT reports only one bank of Local Memory
1180 * for APUs - If CRAT from ACPI reports more than one bank, then
1181 * all the banks will report the same mem_clk_max information
1182 */
1183 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1184 dev->gpu->xcp);
1185
1186 list_for_each_entry(mem, &dev->mem_props, list)
1187 mem->mem_clk_max = local_mem_info.mem_clk_max;
1188 }
1189
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1190 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1191 struct kfd_topology_device *target_gpu_dev,
1192 struct kfd_iolink_properties *link)
1193 {
1194 /* xgmi always supports atomics between links. */
1195 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1196 return;
1197
1198 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1199 if (target_gpu_dev) {
1200 uint32_t cap;
1201
1202 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1203 PCI_EXP_DEVCAP2, &cap);
1204
1205 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1206 PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1207 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1208 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1209 /* set gpu (dev) flags. */
1210 } else {
1211 if (!dev->gpu->kfd->pci_atomic_requested ||
1212 dev->gpu->adev->asic_type == CHIP_HAWAII)
1213 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1214 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1215 }
1216 }
1217
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1218 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1219 struct kfd_iolink_properties *outbound_link,
1220 struct kfd_iolink_properties *inbound_link)
1221 {
1222 /* CPU -> GPU with PCIe */
1223 if (!to_dev->gpu &&
1224 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1225 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1226
1227 if (to_dev->gpu) {
1228 /* GPU <-> GPU with PCIe and
1229 * Vega20 with XGMI
1230 */
1231 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1232 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1233 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1234 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1235 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236 }
1237 }
1238 }
1239
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1240 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1241 {
1242 struct kfd_iolink_properties *link, *inbound_link;
1243 struct kfd_topology_device *peer_dev;
1244
1245 if (!dev || !dev->gpu)
1246 return;
1247
1248 /* GPU only creates direct links so apply flags setting to all */
1249 list_for_each_entry(link, &dev->io_link_props, list) {
1250 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1251 kfd_set_iolink_no_atomics(dev, NULL, link);
1252 peer_dev = kfd_topology_device_by_proximity_domain(
1253 link->node_to);
1254
1255 if (!peer_dev)
1256 continue;
1257
1258 /* Include the CPU peer in GPU hive if connected over xGMI. */
1259 if (!peer_dev->gpu &&
1260 link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1261 /*
1262 * If the GPU is not part of a GPU hive, use its pci
1263 * device location as the hive ID to bind with the CPU.
1264 */
1265 if (!dev->node_props.hive_id)
1266 dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1267 peer_dev->node_props.hive_id = dev->node_props.hive_id;
1268 }
1269
1270 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1271 list) {
1272 if (inbound_link->node_to != link->node_from)
1273 continue;
1274
1275 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1276 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1277 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1278 }
1279 }
1280
1281 /* Create indirect links so apply flags setting to all */
1282 list_for_each_entry(link, &dev->p2p_link_props, list) {
1283 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1284 kfd_set_iolink_no_atomics(dev, NULL, link);
1285 peer_dev = kfd_topology_device_by_proximity_domain(
1286 link->node_to);
1287
1288 if (!peer_dev)
1289 continue;
1290
1291 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1292 list) {
1293 if (inbound_link->node_to != link->node_from)
1294 continue;
1295
1296 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1297 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1298 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1299 }
1300 }
1301 }
1302
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1303 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1304 struct kfd_iolink_properties *p2plink)
1305 {
1306 int ret;
1307
1308 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1309 if (!p2plink->kobj)
1310 return -ENOMEM;
1311
1312 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1313 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1314 if (ret < 0) {
1315 kobject_put(p2plink->kobj);
1316 return ret;
1317 }
1318
1319 p2plink->attr.name = "properties";
1320 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1321 sysfs_attr_init(&p2plink->attr);
1322 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1323 if (ret < 0)
1324 return ret;
1325
1326 return 0;
1327 }
1328
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1329 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1330 {
1331 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1332 struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1333 struct kfd_topology_device *cpu_dev;
1334 int ret = 0;
1335 int i, num_cpu;
1336
1337 num_cpu = 0;
1338 list_for_each_entry(cpu_dev, &topology_device_list, list) {
1339 if (cpu_dev->gpu)
1340 break;
1341 num_cpu++;
1342 }
1343
1344 if (list_empty(&kdev->io_link_props))
1345 return -ENODATA;
1346
1347 gpu_link = list_first_entry(&kdev->io_link_props,
1348 struct kfd_iolink_properties, list);
1349
1350 for (i = 0; i < num_cpu; i++) {
1351 /* CPU <--> GPU */
1352 if (gpu_link->node_to == i)
1353 continue;
1354
1355 /* find CPU <--> CPU links */
1356 cpu_link = NULL;
1357 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1358 if (cpu_dev) {
1359 list_for_each_entry(tmp_link,
1360 &cpu_dev->io_link_props, list) {
1361 if (tmp_link->node_to == gpu_link->node_to) {
1362 cpu_link = tmp_link;
1363 break;
1364 }
1365 }
1366 }
1367
1368 if (!cpu_link)
1369 return -ENOMEM;
1370
1371 /* CPU <--> CPU <--> GPU, GPU node*/
1372 props = kfd_alloc_struct(props);
1373 if (!props)
1374 return -ENOMEM;
1375
1376 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1377 props->weight = gpu_link->weight + cpu_link->weight;
1378 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1379 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1380 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1381 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1382
1383 props->node_from = gpu_node;
1384 props->node_to = i;
1385 kdev->node_props.p2p_links_count++;
1386 list_add_tail(&props->list, &kdev->p2p_link_props);
1387 ret = kfd_build_p2p_node_entry(kdev, props);
1388 if (ret < 0)
1389 return ret;
1390
1391 /* for small Bar, no CPU --> GPU in-direct links */
1392 if (kfd_dev_is_large_bar(kdev->gpu)) {
1393 /* CPU <--> CPU <--> GPU, CPU node*/
1394 props2 = kfd_alloc_struct(props2);
1395 if (!props2)
1396 return -ENOMEM;
1397
1398 memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1399 props2->node_from = i;
1400 props2->node_to = gpu_node;
1401 props2->kobj = NULL;
1402 cpu_dev->node_props.p2p_links_count++;
1403 list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1404 ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1405 if (ret < 0)
1406 return ret;
1407 }
1408 }
1409 return ret;
1410 }
1411
1412 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1413 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1414 struct kfd_topology_device *peer, int from, int to)
1415 {
1416 struct kfd_iolink_properties *props = NULL;
1417 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1418 struct kfd_topology_device *cpu_dev;
1419 int ret = 0;
1420
1421 if (!amdgpu_device_is_peer_accessible(
1422 kdev->gpu->adev,
1423 peer->gpu->adev))
1424 return ret;
1425
1426 if (list_empty(&kdev->io_link_props))
1427 return -ENODATA;
1428
1429 iolink1 = list_first_entry(&kdev->io_link_props,
1430 struct kfd_iolink_properties, list);
1431
1432 if (list_empty(&peer->io_link_props))
1433 return -ENODATA;
1434
1435 iolink2 = list_first_entry(&peer->io_link_props,
1436 struct kfd_iolink_properties, list);
1437
1438 props = kfd_alloc_struct(props);
1439 if (!props)
1440 return -ENOMEM;
1441
1442 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1443
1444 props->weight = iolink1->weight + iolink2->weight;
1445 props->min_latency = iolink1->min_latency + iolink2->min_latency;
1446 props->max_latency = iolink1->max_latency + iolink2->max_latency;
1447 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1448 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1449
1450 if (iolink1->node_to != iolink2->node_to) {
1451 /* CPU->CPU link*/
1452 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1453 if (cpu_dev) {
1454 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1455 if (iolink3->node_to != iolink2->node_to)
1456 continue;
1457
1458 props->weight += iolink3->weight;
1459 props->min_latency += iolink3->min_latency;
1460 props->max_latency += iolink3->max_latency;
1461 props->min_bandwidth = min(props->min_bandwidth,
1462 iolink3->min_bandwidth);
1463 props->max_bandwidth = min(props->max_bandwidth,
1464 iolink3->max_bandwidth);
1465 break;
1466 }
1467 } else {
1468 WARN(1, "CPU node not found");
1469 }
1470 }
1471
1472 props->node_from = from;
1473 props->node_to = to;
1474 peer->node_props.p2p_links_count++;
1475 list_add_tail(&props->list, &peer->p2p_link_props);
1476 ret = kfd_build_p2p_node_entry(peer, props);
1477
1478 return ret;
1479 }
1480 #endif
1481
kfd_dev_create_p2p_links(void)1482 static int kfd_dev_create_p2p_links(void)
1483 {
1484 struct kfd_topology_device *dev;
1485 struct kfd_topology_device *new_dev;
1486 #if defined(CONFIG_HSA_AMD_P2P)
1487 uint32_t i;
1488 #endif
1489 uint32_t k;
1490 int ret = 0;
1491
1492 k = 0;
1493 list_for_each_entry(dev, &topology_device_list, list)
1494 k++;
1495 if (k < 2)
1496 return 0;
1497
1498 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1499 if (WARN_ON(!new_dev->gpu))
1500 return 0;
1501
1502 k--;
1503
1504 /* create in-direct links */
1505 ret = kfd_create_indirect_link_prop(new_dev, k);
1506 if (ret < 0)
1507 goto out;
1508
1509 /* create p2p links */
1510 #if defined(CONFIG_HSA_AMD_P2P)
1511 i = 0;
1512 list_for_each_entry(dev, &topology_device_list, list) {
1513 if (dev == new_dev)
1514 break;
1515 if (!dev->gpu || !dev->gpu->adev ||
1516 (dev->gpu->kfd->hive_id &&
1517 dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1518 goto next;
1519
1520 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1521 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1522 if (ret < 0)
1523 goto out;
1524
1525 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1526 if (ret < 0)
1527 goto out;
1528 next:
1529 i++;
1530 }
1531 #endif
1532
1533 out:
1534 return ret;
1535 }
1536
1537 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1538 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1539 struct kfd_gpu_cache_info *pcache_info,
1540 int cu_bitmask,
1541 int cache_type, unsigned int cu_processor_id,
1542 int cu_block)
1543 {
1544 unsigned int cu_sibling_map_mask;
1545 int first_active_cu;
1546 struct kfd_cache_properties *pcache = NULL;
1547
1548 cu_sibling_map_mask = cu_bitmask;
1549 cu_sibling_map_mask >>= cu_block;
1550 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1551 first_active_cu = ffs(cu_sibling_map_mask);
1552
1553 /* CU could be inactive. In case of shared cache find the first active
1554 * CU. and incase of non-shared cache check if the CU is inactive. If
1555 * inactive active skip it
1556 */
1557 if (first_active_cu) {
1558 pcache = kfd_alloc_struct(pcache);
1559 if (!pcache)
1560 return -ENOMEM;
1561
1562 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1563 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1564 pcache->cache_level = pcache_info[cache_type].cache_level;
1565 pcache->cache_size = pcache_info[cache_type].cache_size;
1566
1567 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1568 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1569 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1570 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1571 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1572 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1573 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1574 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1575
1576 /* Sibling map is w.r.t processor_id_low, so shift out
1577 * inactive CU
1578 */
1579 cu_sibling_map_mask =
1580 cu_sibling_map_mask >> (first_active_cu - 1);
1581
1582 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1583 pcache->sibling_map[1] =
1584 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1585 pcache->sibling_map[2] =
1586 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1587 pcache->sibling_map[3] =
1588 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1589
1590 pcache->sibling_map_size = 4;
1591 *props_ext = pcache;
1592
1593 return 0;
1594 }
1595 return 1;
1596 }
1597
1598 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct amdgpu_cu_info * cu_info,struct amdgpu_gfx_config * gfx_info,int cache_type,unsigned int cu_processor_id,struct kfd_node * knode)1599 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1600 struct kfd_gpu_cache_info *pcache_info,
1601 struct amdgpu_cu_info *cu_info,
1602 struct amdgpu_gfx_config *gfx_info,
1603 int cache_type, unsigned int cu_processor_id,
1604 struct kfd_node *knode)
1605 {
1606 unsigned int cu_sibling_map_mask;
1607 int first_active_cu;
1608 int i, j, k, xcc, start, end;
1609 struct kfd_cache_properties *pcache = NULL;
1610
1611 start = ffs(knode->xcc_mask) - 1;
1612 end = start + NUM_XCC(knode->xcc_mask);
1613 cu_sibling_map_mask = cu_info->bitmap[start][0][0];
1614 cu_sibling_map_mask &=
1615 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1616 first_active_cu = ffs(cu_sibling_map_mask);
1617
1618 /* CU could be inactive. In case of shared cache find the first active
1619 * CU. and incase of non-shared cache check if the CU is inactive. If
1620 * inactive active skip it
1621 */
1622 if (first_active_cu) {
1623 pcache = kfd_alloc_struct(pcache);
1624 if (!pcache)
1625 return -ENOMEM;
1626
1627 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1628 pcache->processor_id_low = cu_processor_id
1629 + (first_active_cu - 1);
1630 pcache->cache_level = pcache_info[cache_type].cache_level;
1631 pcache->cache_size = pcache_info[cache_type].cache_size;
1632
1633 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1634 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1635 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1636 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1637 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1638 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1639 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1640 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1641
1642 /* Sibling map is w.r.t processor_id_low, so shift out
1643 * inactive CU
1644 */
1645 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1646 k = 0;
1647
1648 for (xcc = start; xcc < end; xcc++) {
1649 for (i = 0; i < gfx_info->max_shader_engines; i++) {
1650 for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1651 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1652 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1653 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1654 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1655 k += 4;
1656
1657 cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1658 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1659 }
1660 }
1661 }
1662 pcache->sibling_map_size = k;
1663 *props_ext = pcache;
1664 return 0;
1665 }
1666 return 1;
1667 }
1668
1669 #define KFD_MAX_CACHE_TYPES 6
1670
1671 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1672 * tables
1673 */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_node * kdev)1674 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1675 {
1676 struct kfd_gpu_cache_info *pcache_info = NULL;
1677 int i, j, k, xcc, start, end;
1678 int ct = 0;
1679 unsigned int cu_processor_id;
1680 int ret;
1681 unsigned int num_cu_shared;
1682 struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1683 struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1684 int gpu_processor_id;
1685 struct kfd_cache_properties *props_ext;
1686 int num_of_entries = 0;
1687 int num_of_cache_types = 0;
1688 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1689
1690
1691 gpu_processor_id = dev->node_props.simd_id_base;
1692
1693 pcache_info = cache_info;
1694 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1695 if (!num_of_cache_types) {
1696 pr_warn("no cache info found\n");
1697 return;
1698 }
1699
1700 /* For each type of cache listed in the kfd_gpu_cache_info table,
1701 * go through all available Compute Units.
1702 * The [i,j,k] loop will
1703 * if kfd_gpu_cache_info.num_cu_shared = 1
1704 * will parse through all available CU
1705 * If (kfd_gpu_cache_info.num_cu_shared != 1)
1706 * then it will consider only one CU from
1707 * the shared unit
1708 */
1709 start = ffs(kdev->xcc_mask) - 1;
1710 end = start + NUM_XCC(kdev->xcc_mask);
1711
1712 for (ct = 0; ct < num_of_cache_types; ct++) {
1713 cu_processor_id = gpu_processor_id;
1714 if (pcache_info[ct].cache_level == 1) {
1715 for (xcc = start; xcc < end; xcc++) {
1716 for (i = 0; i < gfx_info->max_shader_engines; i++) {
1717 for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1718 for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1719
1720 ret = fill_in_l1_pcache(&props_ext, pcache_info,
1721 cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1722 cu_processor_id, k);
1723
1724 if (ret < 0)
1725 break;
1726
1727 if (!ret) {
1728 num_of_entries++;
1729 list_add_tail(&props_ext->list, &dev->cache_props);
1730 }
1731
1732 /* Move to next CU block */
1733 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1734 gfx_info->max_cu_per_sh) ?
1735 pcache_info[ct].num_cu_shared :
1736 (gfx_info->max_cu_per_sh - k);
1737 cu_processor_id += num_cu_shared;
1738 }
1739 }
1740 }
1741 }
1742 } else {
1743 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1744 cu_info, gfx_info, ct, cu_processor_id, kdev);
1745
1746 if (ret < 0)
1747 break;
1748
1749 if (!ret) {
1750 num_of_entries++;
1751 list_add_tail(&props_ext->list, &dev->cache_props);
1752 }
1753 }
1754 }
1755 dev->node_props.caches_count += num_of_entries;
1756 pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1757 }
1758
kfd_topology_add_device_locked(struct kfd_node * gpu,uint32_t gpu_id,struct kfd_topology_device ** dev)1759 static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1760 struct kfd_topology_device **dev)
1761 {
1762 int proximity_domain = ++topology_crat_proximity_domain;
1763 struct list_head temp_topology_device_list;
1764 void *crat_image = NULL;
1765 size_t image_size = 0;
1766 int res;
1767
1768 res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1769 COMPUTE_UNIT_GPU, gpu,
1770 proximity_domain);
1771 if (res) {
1772 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1773 gpu_id);
1774 topology_crat_proximity_domain--;
1775 goto err;
1776 }
1777
1778 INIT_LIST_HEAD(&temp_topology_device_list);
1779
1780 res = kfd_parse_crat_table(crat_image,
1781 &temp_topology_device_list,
1782 proximity_domain);
1783 if (res) {
1784 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1785 gpu_id);
1786 topology_crat_proximity_domain--;
1787 goto err;
1788 }
1789
1790 kfd_topology_update_device_list(&temp_topology_device_list,
1791 &topology_device_list);
1792
1793 *dev = kfd_assign_gpu(gpu);
1794 if (WARN_ON(!*dev)) {
1795 res = -ENODEV;
1796 goto err;
1797 }
1798
1799 /* Fill the cache affinity information here for the GPUs
1800 * using VCRAT
1801 */
1802 kfd_fill_cache_non_crat_info(*dev, gpu);
1803
1804 /* Update the SYSFS tree, since we added another topology
1805 * device
1806 */
1807 res = kfd_topology_update_sysfs();
1808 if (!res)
1809 sys_props.generation_count++;
1810 else
1811 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1812 gpu_id, res);
1813
1814 err:
1815 kfd_destroy_crat_image(crat_image);
1816 return res;
1817 }
1818
kfd_topology_set_dbg_firmware_support(struct kfd_topology_device * dev)1819 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1820 {
1821 bool firmware_supported = true;
1822
1823 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1824 KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1825 uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1826 AMDGPU_MES_API_VERSION_MASK) >>
1827 AMDGPU_MES_API_VERSION_SHIFT;
1828 uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1829 AMDGPU_MES_VERSION_MASK;
1830
1831 firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1832 goto out;
1833 }
1834
1835 /*
1836 * Note: Any unlisted devices here are assumed to support exception handling.
1837 * Add additional checks here as needed.
1838 */
1839 switch (KFD_GC_VERSION(dev->gpu)) {
1840 case IP_VERSION(9, 0, 1):
1841 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1842 break;
1843 case IP_VERSION(9, 1, 0):
1844 case IP_VERSION(9, 2, 1):
1845 case IP_VERSION(9, 2, 2):
1846 case IP_VERSION(9, 3, 0):
1847 case IP_VERSION(9, 4, 0):
1848 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1849 break;
1850 case IP_VERSION(9, 4, 1):
1851 firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1852 break;
1853 case IP_VERSION(9, 4, 2):
1854 firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1855 break;
1856 case IP_VERSION(10, 1, 10):
1857 case IP_VERSION(10, 1, 2):
1858 case IP_VERSION(10, 1, 1):
1859 firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1860 break;
1861 case IP_VERSION(10, 3, 0):
1862 case IP_VERSION(10, 3, 2):
1863 case IP_VERSION(10, 3, 1):
1864 case IP_VERSION(10, 3, 4):
1865 case IP_VERSION(10, 3, 5):
1866 firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1867 break;
1868 case IP_VERSION(10, 1, 3):
1869 case IP_VERSION(10, 3, 3):
1870 firmware_supported = false;
1871 break;
1872 default:
1873 break;
1874 }
1875
1876 out:
1877 if (firmware_supported)
1878 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1879 }
1880
kfd_topology_set_capabilities(struct kfd_topology_device * dev)1881 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1882 {
1883 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1884 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1885 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1886
1887 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1888 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1889 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1890
1891 if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1892 dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1893
1894 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1895 if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1896 dev->node_props.debug_prop |=
1897 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1898 HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1899 else
1900 dev->node_props.debug_prop |=
1901 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1902 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1903
1904 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1905 dev->node_props.capability |=
1906 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1907 } else {
1908 dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1909 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1910
1911 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1912 dev->node_props.capability |=
1913 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1914 }
1915
1916 kfd_topology_set_dbg_firmware_support(dev);
1917 }
1918
kfd_topology_add_device(struct kfd_node * gpu)1919 int kfd_topology_add_device(struct kfd_node *gpu)
1920 {
1921 uint32_t gpu_id;
1922 struct kfd_topology_device *dev;
1923 int res = 0;
1924 int i;
1925 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1926 struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
1927 struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
1928
1929 gpu_id = kfd_generate_gpu_id(gpu);
1930 if (gpu->xcp && !gpu->xcp->ddev) {
1931 dev_warn(gpu->adev->dev,
1932 "Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1933 gpu_id);
1934 return 0;
1935 } else {
1936 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1937 }
1938
1939 /* Check to see if this gpu device exists in the topology_device_list.
1940 * If so, assign the gpu to that device,
1941 * else create a Virtual CRAT for this gpu device and then parse that
1942 * CRAT to create a new topology device. Once created assign the gpu to
1943 * that topology device
1944 */
1945 down_write(&topology_lock);
1946 dev = kfd_assign_gpu(gpu);
1947 if (!dev)
1948 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1949 up_write(&topology_lock);
1950 if (res)
1951 return res;
1952
1953 dev->gpu_id = gpu_id;
1954 gpu->id = gpu_id;
1955
1956 kfd_dev_create_p2p_links();
1957
1958 /* TODO: Move the following lines to function
1959 * kfd_add_non_crat_information
1960 */
1961
1962 /* Fill-in additional information that is not available in CRAT but
1963 * needed for the topology
1964 */
1965 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1966 dev->node_props.name[i] = __tolower(asic_name[i]);
1967 if (asic_name[i] == '\0')
1968 break;
1969 }
1970 dev->node_props.name[i] = '\0';
1971
1972 dev->node_props.simd_arrays_per_engine =
1973 gfx_info->max_sh_per_se;
1974
1975 dev->node_props.gfx_target_version =
1976 gpu->kfd->device_info.gfx_target_version;
1977 dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1978 dev->node_props.device_id = gpu->adev->pdev->device;
1979 dev->node_props.capability |=
1980 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1981 HSA_CAP_ASIC_REVISION_MASK);
1982
1983 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1984 if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
1985 dev->node_props.location_id |= dev->gpu->node_id;
1986
1987 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1988 dev->node_props.max_engine_clk_fcompute =
1989 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1990 dev->node_props.max_engine_clk_ccompute =
1991 cpufreq_quick_get_max(0) / 1000;
1992
1993 if (gpu->xcp)
1994 dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
1995 else
1996 dev->node_props.drm_render_minor =
1997 gpu->kfd->shared_resources.drm_render_minor;
1998
1999 dev->node_props.hive_id = gpu->kfd->hive_id;
2000 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2001 dev->node_props.num_sdma_xgmi_engines =
2002 kfd_get_num_xgmi_sdma_engines(gpu);
2003 dev->node_props.num_sdma_queues_per_engine =
2004 gpu->kfd->device_info.num_sdma_queues_per_engine -
2005 gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2006 dev->node_props.num_gws = (dev->gpu->gws &&
2007 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2008 dev->gpu->adev->gds.gws_size : 0;
2009 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2010
2011 kfd_fill_mem_clk_max_info(dev);
2012 kfd_fill_iolink_non_crat_info(dev);
2013
2014 switch (dev->gpu->adev->asic_type) {
2015 case CHIP_KAVERI:
2016 case CHIP_HAWAII:
2017 case CHIP_TONGA:
2018 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2019 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2020 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2021 break;
2022 case CHIP_CARRIZO:
2023 case CHIP_FIJI:
2024 case CHIP_POLARIS10:
2025 case CHIP_POLARIS11:
2026 case CHIP_POLARIS12:
2027 case CHIP_VEGAM:
2028 pr_debug("Adding doorbell packet type capability\n");
2029 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2030 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2031 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2032 break;
2033 default:
2034 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2035 WARN(1, "Unexpected ASIC family %u",
2036 dev->gpu->adev->asic_type);
2037 else
2038 kfd_topology_set_capabilities(dev);
2039 }
2040
2041 /*
2042 * Overwrite ATS capability according to needs_iommu_device to fix
2043 * potential missing corresponding bit in CRAT of BIOS.
2044 */
2045 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2046
2047 /* Fix errors in CZ CRAT.
2048 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2049 * because it doesn't consider masked out CUs
2050 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2051 */
2052 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2053 dev->node_props.simd_count =
2054 cu_info->simd_per_cu * cu_info->number;
2055 dev->node_props.max_waves_per_simd = 10;
2056 }
2057
2058 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2059 dev->node_props.capability |=
2060 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2061 HSA_CAP_SRAM_EDCSUPPORTED : 0;
2062 dev->node_props.capability |=
2063 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2064 HSA_CAP_MEM_EDCSUPPORTED : 0;
2065
2066 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2067 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2068 HSA_CAP_RASEVENTNOTIFY : 0;
2069
2070 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2071 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2072
2073 if (dev->gpu->adev->gmc.is_app_apu ||
2074 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2075 dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2076
2077 kfd_debug_print_topology();
2078
2079 kfd_notify_gpu_change(gpu_id, 1);
2080
2081 return 0;
2082 }
2083
2084 /**
2085 * kfd_topology_update_io_links() - Update IO links after device removal.
2086 * @proximity_domain: Proximity domain value of the dev being removed.
2087 *
2088 * The topology list currently is arranged in increasing order of
2089 * proximity domain.
2090 *
2091 * Two things need to be done when a device is removed:
2092 * 1. All the IO links to this device need to be removed.
2093 * 2. All nodes after the current device node need to move
2094 * up once this device node is removed from the topology
2095 * list. As a result, the proximity domain values for
2096 * all nodes after the node being deleted reduce by 1.
2097 * This would also cause the proximity domain values for
2098 * io links to be updated based on new proximity domain
2099 * values.
2100 *
2101 * Context: The caller must hold write topology_lock.
2102 */
kfd_topology_update_io_links(int proximity_domain)2103 static void kfd_topology_update_io_links(int proximity_domain)
2104 {
2105 struct kfd_topology_device *dev;
2106 struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2107
2108 list_for_each_entry(dev, &topology_device_list, list) {
2109 if (dev->proximity_domain > proximity_domain)
2110 dev->proximity_domain--;
2111
2112 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2113 /*
2114 * If there is an io link to the dev being deleted
2115 * then remove that IO link also.
2116 */
2117 if (iolink->node_to == proximity_domain) {
2118 list_del(&iolink->list);
2119 dev->node_props.io_links_count--;
2120 } else {
2121 if (iolink->node_from > proximity_domain)
2122 iolink->node_from--;
2123 if (iolink->node_to > proximity_domain)
2124 iolink->node_to--;
2125 }
2126 }
2127
2128 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2129 /*
2130 * If there is a p2p link to the dev being deleted
2131 * then remove that p2p link also.
2132 */
2133 if (p2plink->node_to == proximity_domain) {
2134 list_del(&p2plink->list);
2135 dev->node_props.p2p_links_count--;
2136 } else {
2137 if (p2plink->node_from > proximity_domain)
2138 p2plink->node_from--;
2139 if (p2plink->node_to > proximity_domain)
2140 p2plink->node_to--;
2141 }
2142 }
2143 }
2144 }
2145
kfd_topology_remove_device(struct kfd_node * gpu)2146 int kfd_topology_remove_device(struct kfd_node *gpu)
2147 {
2148 struct kfd_topology_device *dev, *tmp;
2149 uint32_t gpu_id;
2150 int res = -ENODEV;
2151 int i = 0;
2152
2153 down_write(&topology_lock);
2154
2155 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2156 if (dev->gpu == gpu) {
2157 gpu_id = dev->gpu_id;
2158 kfd_remove_sysfs_node_entry(dev);
2159 kfd_release_topology_device(dev);
2160 sys_props.num_devices--;
2161 kfd_topology_update_io_links(i);
2162 topology_crat_proximity_domain = sys_props.num_devices-1;
2163 sys_props.generation_count++;
2164 res = 0;
2165 if (kfd_topology_update_sysfs() < 0)
2166 kfd_topology_release_sysfs();
2167 break;
2168 }
2169 i++;
2170 }
2171
2172 up_write(&topology_lock);
2173
2174 if (!res)
2175 kfd_notify_gpu_change(gpu_id, 0);
2176
2177 return res;
2178 }
2179
2180 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2181 * topology. If GPU device is found @idx, then valid kfd_dev pointer is
2182 * returned through @kdev
2183 * Return - 0: On success (@kdev will be NULL for non GPU nodes)
2184 * -1: If end of list
2185 */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_node ** kdev)2186 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2187 {
2188
2189 struct kfd_topology_device *top_dev;
2190 uint8_t device_idx = 0;
2191
2192 *kdev = NULL;
2193 down_read(&topology_lock);
2194
2195 list_for_each_entry(top_dev, &topology_device_list, list) {
2196 if (device_idx == idx) {
2197 *kdev = top_dev->gpu;
2198 up_read(&topology_lock);
2199 return 0;
2200 }
2201
2202 device_idx++;
2203 }
2204
2205 up_read(&topology_lock);
2206
2207 return -1;
2208
2209 }
2210
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2211 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2212 {
2213 int first_cpu_of_numa_node;
2214
2215 if (!cpumask || cpumask == cpu_none_mask)
2216 return -1;
2217 first_cpu_of_numa_node = cpumask_first(cpumask);
2218 if (first_cpu_of_numa_node >= nr_cpu_ids)
2219 return -1;
2220 #ifdef CONFIG_X86_64
2221 return cpu_data(first_cpu_of_numa_node).apicid;
2222 #else
2223 return first_cpu_of_numa_node;
2224 #endif
2225 }
2226
2227 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2228 * of the given NUMA node (numa_node_id)
2229 * Return -1 on failure
2230 */
kfd_numa_node_to_apic_id(int numa_node_id)2231 int kfd_numa_node_to_apic_id(int numa_node_id)
2232 {
2233 if (numa_node_id == -1) {
2234 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2235 return kfd_cpumask_to_apic_id(cpu_online_mask);
2236 }
2237 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2238 }
2239
2240 #if defined(CONFIG_DEBUG_FS)
2241
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2242 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2243 {
2244 struct kfd_topology_device *dev;
2245 unsigned int i = 0;
2246 int r = 0;
2247
2248 down_read(&topology_lock);
2249
2250 list_for_each_entry(dev, &topology_device_list, list) {
2251 if (!dev->gpu) {
2252 i++;
2253 continue;
2254 }
2255
2256 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2257 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2258 if (r)
2259 break;
2260 }
2261
2262 up_read(&topology_lock);
2263
2264 return r;
2265 }
2266
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2267 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2268 {
2269 struct kfd_topology_device *dev;
2270 unsigned int i = 0;
2271 int r = 0;
2272
2273 down_read(&topology_lock);
2274
2275 list_for_each_entry(dev, &topology_device_list, list) {
2276 if (!dev->gpu) {
2277 i++;
2278 continue;
2279 }
2280
2281 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2282 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2283 if (r)
2284 break;
2285 }
2286
2287 up_read(&topology_lock);
2288
2289 return r;
2290 }
2291
2292 #endif
2293