xref: /openbmc/linux/fs/kernfs/mount.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21 
22 #include "kernfs-internal.h"
23 
24 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
25 struct kernfs_global_locks *kernfs_locks;
26 
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)27 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
28 {
29 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
30 	struct kernfs_syscall_ops *scops = root->syscall_ops;
31 
32 	if (scops && scops->show_options)
33 		return scops->show_options(sf, root);
34 	return 0;
35 }
36 
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)37 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
38 {
39 	struct kernfs_node *node = kernfs_dentry_node(dentry);
40 	struct kernfs_root *root = kernfs_root(node);
41 	struct kernfs_syscall_ops *scops = root->syscall_ops;
42 
43 	if (scops && scops->show_path)
44 		return scops->show_path(sf, node, root);
45 
46 	seq_dentry(sf, dentry, " \t\n\\");
47 	return 0;
48 }
49 
kernfs_statfs(struct dentry * dentry,struct kstatfs * buf)50 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
51 {
52 	simple_statfs(dentry, buf);
53 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
54 	return 0;
55 }
56 
57 const struct super_operations kernfs_sops = {
58 	.statfs		= kernfs_statfs,
59 	.drop_inode	= generic_delete_inode,
60 	.evict_inode	= kernfs_evict_inode,
61 
62 	.show_options	= kernfs_sop_show_options,
63 	.show_path	= kernfs_sop_show_path,
64 };
65 
kernfs_encode_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)66 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
67 			    struct inode *parent)
68 {
69 	struct kernfs_node *kn = inode->i_private;
70 
71 	if (*max_len < 2) {
72 		*max_len = 2;
73 		return FILEID_INVALID;
74 	}
75 
76 	*max_len = 2;
77 	*(u64 *)fh = kn->id;
78 	return FILEID_KERNFS;
79 }
80 
__kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,bool get_parent)81 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
82 					    struct fid *fid, int fh_len,
83 					    int fh_type, bool get_parent)
84 {
85 	struct kernfs_super_info *info = kernfs_info(sb);
86 	struct kernfs_node *kn;
87 	struct inode *inode;
88 	u64 id;
89 
90 	if (fh_len < 2)
91 		return NULL;
92 
93 	switch (fh_type) {
94 	case FILEID_KERNFS:
95 		id = *(u64 *)fid;
96 		break;
97 	case FILEID_INO32_GEN:
98 	case FILEID_INO32_GEN_PARENT:
99 		/*
100 		 * blk_log_action() exposes "LOW32,HIGH32" pair without
101 		 * type and userland can call us with generic fid
102 		 * constructed from them.  Combine it back to ID.  See
103 		 * blk_log_action().
104 		 */
105 		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
106 		break;
107 	default:
108 		return NULL;
109 	}
110 
111 	kn = kernfs_find_and_get_node_by_id(info->root, id);
112 	if (!kn)
113 		return ERR_PTR(-ESTALE);
114 
115 	if (get_parent) {
116 		struct kernfs_node *parent;
117 
118 		parent = kernfs_get_parent(kn);
119 		kernfs_put(kn);
120 		kn = parent;
121 		if (!kn)
122 			return ERR_PTR(-ESTALE);
123 	}
124 
125 	inode = kernfs_get_inode(sb, kn);
126 	kernfs_put(kn);
127 	if (!inode)
128 		return ERR_PTR(-ESTALE);
129 
130 	return d_obtain_alias(inode);
131 }
132 
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)133 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
134 					  struct fid *fid, int fh_len,
135 					  int fh_type)
136 {
137 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
138 }
139 
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)140 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
141 					  struct fid *fid, int fh_len,
142 					  int fh_type)
143 {
144 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
145 }
146 
kernfs_get_parent_dentry(struct dentry * child)147 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
148 {
149 	struct kernfs_node *kn = kernfs_dentry_node(child);
150 
151 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
152 }
153 
154 static const struct export_operations kernfs_export_ops = {
155 	.encode_fh	= kernfs_encode_fh,
156 	.fh_to_dentry	= kernfs_fh_to_dentry,
157 	.fh_to_parent	= kernfs_fh_to_parent,
158 	.get_parent	= kernfs_get_parent_dentry,
159 };
160 
161 /**
162  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
163  * @sb: the super_block in question
164  *
165  * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
166  * %NULL is returned.
167  */
kernfs_root_from_sb(struct super_block * sb)168 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
169 {
170 	if (sb->s_op == &kernfs_sops)
171 		return kernfs_info(sb)->root;
172 	return NULL;
173 }
174 
175 /*
176  * find the next ancestor in the path down to @child, where @parent was the
177  * ancestor whose descendant we want to find.
178  *
179  * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
180  * node.  If @parent is b, then we return the node for c.
181  * Passing in d as @parent is not ok.
182  */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)183 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
184 					      struct kernfs_node *parent)
185 {
186 	if (child == parent) {
187 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
188 		return NULL;
189 	}
190 
191 	while (child->parent != parent) {
192 		if (!child->parent)
193 			return NULL;
194 		child = child->parent;
195 	}
196 
197 	return child;
198 }
199 
200 /**
201  * kernfs_node_dentry - get a dentry for the given kernfs_node
202  * @kn: kernfs_node for which a dentry is needed
203  * @sb: the kernfs super_block
204  *
205  * Return: the dentry pointer
206  */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)207 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
208 				  struct super_block *sb)
209 {
210 	struct dentry *dentry;
211 	struct kernfs_node *knparent = NULL;
212 
213 	BUG_ON(sb->s_op != &kernfs_sops);
214 
215 	dentry = dget(sb->s_root);
216 
217 	/* Check if this is the root kernfs_node */
218 	if (!kn->parent)
219 		return dentry;
220 
221 	knparent = find_next_ancestor(kn, NULL);
222 	if (WARN_ON(!knparent)) {
223 		dput(dentry);
224 		return ERR_PTR(-EINVAL);
225 	}
226 
227 	do {
228 		struct dentry *dtmp;
229 		struct kernfs_node *kntmp;
230 
231 		if (kn == knparent)
232 			return dentry;
233 		kntmp = find_next_ancestor(kn, knparent);
234 		if (WARN_ON(!kntmp)) {
235 			dput(dentry);
236 			return ERR_PTR(-EINVAL);
237 		}
238 		dtmp = lookup_positive_unlocked(kntmp->name, dentry,
239 					       strlen(kntmp->name));
240 		dput(dentry);
241 		if (IS_ERR(dtmp))
242 			return dtmp;
243 		knparent = kntmp;
244 		dentry = dtmp;
245 	} while (true);
246 }
247 
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)248 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
249 {
250 	struct kernfs_super_info *info = kernfs_info(sb);
251 	struct kernfs_root *kf_root = kfc->root;
252 	struct inode *inode;
253 	struct dentry *root;
254 
255 	info->sb = sb;
256 	/* Userspace would break if executables or devices appear on sysfs */
257 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
258 	sb->s_blocksize = PAGE_SIZE;
259 	sb->s_blocksize_bits = PAGE_SHIFT;
260 	sb->s_magic = kfc->magic;
261 	sb->s_op = &kernfs_sops;
262 	sb->s_xattr = kernfs_xattr_handlers;
263 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
264 		sb->s_export_op = &kernfs_export_ops;
265 	sb->s_time_gran = 1;
266 
267 	/* sysfs dentries and inodes don't require IO to create */
268 	sb->s_shrink.seeks = 0;
269 
270 	/* get root inode, initialize and unlock it */
271 	down_read(&kf_root->kernfs_rwsem);
272 	inode = kernfs_get_inode(sb, info->root->kn);
273 	up_read(&kf_root->kernfs_rwsem);
274 	if (!inode) {
275 		pr_debug("kernfs: could not get root inode\n");
276 		return -ENOMEM;
277 	}
278 
279 	/* instantiate and link root dentry */
280 	root = d_make_root(inode);
281 	if (!root) {
282 		pr_debug("%s: could not get root dentry!\n", __func__);
283 		return -ENOMEM;
284 	}
285 	sb->s_root = root;
286 	sb->s_d_op = &kernfs_dops;
287 	return 0;
288 }
289 
kernfs_test_super(struct super_block * sb,struct fs_context * fc)290 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
291 {
292 	struct kernfs_super_info *sb_info = kernfs_info(sb);
293 	struct kernfs_super_info *info = fc->s_fs_info;
294 
295 	return sb_info->root == info->root && sb_info->ns == info->ns;
296 }
297 
kernfs_set_super(struct super_block * sb,struct fs_context * fc)298 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
299 {
300 	struct kernfs_fs_context *kfc = fc->fs_private;
301 
302 	kfc->ns_tag = NULL;
303 	return set_anon_super_fc(sb, fc);
304 }
305 
306 /**
307  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
308  * @sb: super_block of interest
309  *
310  * Return: the namespace tag associated with kernfs super_block @sb.
311  */
kernfs_super_ns(struct super_block * sb)312 const void *kernfs_super_ns(struct super_block *sb)
313 {
314 	struct kernfs_super_info *info = kernfs_info(sb);
315 
316 	return info->ns;
317 }
318 
319 /**
320  * kernfs_get_tree - kernfs filesystem access/retrieval helper
321  * @fc: The filesystem context.
322  *
323  * This is to be called from each kernfs user's fs_context->ops->get_tree()
324  * implementation, which should set the specified ->@fs_type and ->@flags, and
325  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
326  * respectively.
327  *
328  * Return: %0 on success, -errno on failure.
329  */
kernfs_get_tree(struct fs_context * fc)330 int kernfs_get_tree(struct fs_context *fc)
331 {
332 	struct kernfs_fs_context *kfc = fc->fs_private;
333 	struct super_block *sb;
334 	struct kernfs_super_info *info;
335 	int error;
336 
337 	info = kzalloc(sizeof(*info), GFP_KERNEL);
338 	if (!info)
339 		return -ENOMEM;
340 
341 	info->root = kfc->root;
342 	info->ns = kfc->ns_tag;
343 	INIT_LIST_HEAD(&info->node);
344 
345 	fc->s_fs_info = info;
346 	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
347 	if (IS_ERR(sb))
348 		return PTR_ERR(sb);
349 
350 	if (!sb->s_root) {
351 		struct kernfs_super_info *info = kernfs_info(sb);
352 		struct kernfs_root *root = kfc->root;
353 
354 		kfc->new_sb_created = true;
355 
356 		error = kernfs_fill_super(sb, kfc);
357 		if (error) {
358 			deactivate_locked_super(sb);
359 			return error;
360 		}
361 		sb->s_flags |= SB_ACTIVE;
362 
363 		uuid_gen(&sb->s_uuid);
364 
365 		down_write(&root->kernfs_supers_rwsem);
366 		list_add(&info->node, &info->root->supers);
367 		up_write(&root->kernfs_supers_rwsem);
368 	}
369 
370 	fc->root = dget(sb->s_root);
371 	return 0;
372 }
373 
kernfs_free_fs_context(struct fs_context * fc)374 void kernfs_free_fs_context(struct fs_context *fc)
375 {
376 	/* Note that we don't deal with kfc->ns_tag here. */
377 	kfree(fc->s_fs_info);
378 	fc->s_fs_info = NULL;
379 }
380 
381 /**
382  * kernfs_kill_sb - kill_sb for kernfs
383  * @sb: super_block being killed
384  *
385  * This can be used directly for file_system_type->kill_sb().  If a kernfs
386  * user needs extra cleanup, it can implement its own kill_sb() and call
387  * this function at the end.
388  */
kernfs_kill_sb(struct super_block * sb)389 void kernfs_kill_sb(struct super_block *sb)
390 {
391 	struct kernfs_super_info *info = kernfs_info(sb);
392 	struct kernfs_root *root = info->root;
393 
394 	down_write(&root->kernfs_supers_rwsem);
395 	list_del(&info->node);
396 	up_write(&root->kernfs_supers_rwsem);
397 
398 	/*
399 	 * Remove the superblock from fs_supers/s_instances
400 	 * so we can't find it, before freeing kernfs_super_info.
401 	 */
402 	kill_anon_super(sb);
403 	kfree(info);
404 }
405 
kernfs_mutex_init(void)406 static void __init kernfs_mutex_init(void)
407 {
408 	int count;
409 
410 	for (count = 0; count < NR_KERNFS_LOCKS; count++)
411 		mutex_init(&kernfs_locks->open_file_mutex[count]);
412 }
413 
kernfs_lock_init(void)414 static void __init kernfs_lock_init(void)
415 {
416 	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
417 	WARN_ON(!kernfs_locks);
418 
419 	kernfs_mutex_init();
420 }
421 
kernfs_init(void)422 void __init kernfs_init(void)
423 {
424 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
425 					      sizeof(struct kernfs_node),
426 					      0, SLAB_PANIC, NULL);
427 
428 	/* Creates slab cache for kernfs inode attributes */
429 	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
430 					      sizeof(struct kernfs_iattrs),
431 					      0, SLAB_PANIC, NULL);
432 
433 	kernfs_lock_init();
434 }
435