xref: /openbmc/linux/arch/powerpc/perf/isa207-common.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common Performance counter support functions for PowerISA v2.07 processors.
4  *
5  * Copyright 2009 Paul Mackerras, IBM Corporation.
6  * Copyright 2013 Michael Ellerman, IBM Corporation.
7  * Copyright 2016 Madhavan Srinivasan, IBM Corporation.
8  */
9 #include "isa207-common.h"
10 
11 PMU_FORMAT_ATTR(event,		"config:0-49");
12 PMU_FORMAT_ATTR(pmcxsel,	"config:0-7");
13 PMU_FORMAT_ATTR(mark,		"config:8");
14 PMU_FORMAT_ATTR(combine,	"config:11");
15 PMU_FORMAT_ATTR(unit,		"config:12-15");
16 PMU_FORMAT_ATTR(pmc,		"config:16-19");
17 PMU_FORMAT_ATTR(cache_sel,	"config:20-23");
18 PMU_FORMAT_ATTR(sample_mode,	"config:24-28");
19 PMU_FORMAT_ATTR(thresh_sel,	"config:29-31");
20 PMU_FORMAT_ATTR(thresh_stop,	"config:32-35");
21 PMU_FORMAT_ATTR(thresh_start,	"config:36-39");
22 PMU_FORMAT_ATTR(thresh_cmp,	"config:40-49");
23 
24 static struct attribute *isa207_pmu_format_attr[] = {
25 	&format_attr_event.attr,
26 	&format_attr_pmcxsel.attr,
27 	&format_attr_mark.attr,
28 	&format_attr_combine.attr,
29 	&format_attr_unit.attr,
30 	&format_attr_pmc.attr,
31 	&format_attr_cache_sel.attr,
32 	&format_attr_sample_mode.attr,
33 	&format_attr_thresh_sel.attr,
34 	&format_attr_thresh_stop.attr,
35 	&format_attr_thresh_start.attr,
36 	&format_attr_thresh_cmp.attr,
37 	NULL,
38 };
39 
40 const struct attribute_group isa207_pmu_format_group = {
41 	.name = "format",
42 	.attrs = isa207_pmu_format_attr,
43 };
44 
event_is_fab_match(u64 event)45 static inline bool event_is_fab_match(u64 event)
46 {
47 	/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
48 	event &= 0xff0fe;
49 
50 	/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
51 	return (event == 0x30056 || event == 0x4f052);
52 }
53 
is_event_valid(u64 event)54 static bool is_event_valid(u64 event)
55 {
56 	u64 valid_mask = EVENT_VALID_MASK;
57 
58 	if (cpu_has_feature(CPU_FTR_ARCH_31))
59 		valid_mask = p10_EVENT_VALID_MASK;
60 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
61 		valid_mask = p9_EVENT_VALID_MASK;
62 
63 	return !(event & ~valid_mask);
64 }
65 
is_event_marked(u64 event)66 static inline bool is_event_marked(u64 event)
67 {
68 	if (event & EVENT_IS_MARKED)
69 		return true;
70 
71 	return false;
72 }
73 
sdar_mod_val(u64 event)74 static unsigned long sdar_mod_val(u64 event)
75 {
76 	if (cpu_has_feature(CPU_FTR_ARCH_31))
77 		return p10_SDAR_MODE(event);
78 
79 	return p9_SDAR_MODE(event);
80 }
81 
mmcra_sdar_mode(u64 event,unsigned long * mmcra)82 static void mmcra_sdar_mode(u64 event, unsigned long *mmcra)
83 {
84 	/*
85 	 * MMCRA[SDAR_MODE] specifies how the SDAR should be updated in
86 	 * continuous sampling mode.
87 	 *
88 	 * Incase of Power8:
89 	 * MMCRA[SDAR_MODE] will be programmed as "0b01" for continuous sampling
90 	 * mode and will be un-changed when setting MMCRA[63] (Marked events).
91 	 *
92 	 * Incase of Power9/power10:
93 	 * Marked event: MMCRA[SDAR_MODE] will be set to 0b00 ('No Updates'),
94 	 *               or if group already have any marked events.
95 	 * For rest
96 	 *	MMCRA[SDAR_MODE] will be set from event code.
97 	 *      If sdar_mode from event is zero, default to 0b01. Hardware
98 	 *      requires that we set a non-zero value.
99 	 */
100 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
101 		if (is_event_marked(event) || (*mmcra & MMCRA_SAMPLE_ENABLE))
102 			*mmcra &= MMCRA_SDAR_MODE_NO_UPDATES;
103 		else if (sdar_mod_val(event))
104 			*mmcra |= sdar_mod_val(event) << MMCRA_SDAR_MODE_SHIFT;
105 		else
106 			*mmcra |= MMCRA_SDAR_MODE_DCACHE;
107 	} else
108 		*mmcra |= MMCRA_SDAR_MODE_TLB;
109 }
110 
p10_thresh_cmp_val(u64 value)111 static int p10_thresh_cmp_val(u64 value)
112 {
113 	int exp = 0;
114 	u64 result = value;
115 
116 	if (!value)
117 		return value;
118 
119 	/*
120 	 * Incase of P10, thresh_cmp value is not part of raw event code
121 	 * and provided via attr.config1 parameter. To program threshold in MMCRA,
122 	 * take a 18 bit number N and shift right 2 places and increment
123 	 * the exponent E by 1 until the upper 10 bits of N are zero.
124 	 * Write E to the threshold exponent and write the lower 8 bits of N
125 	 * to the threshold mantissa.
126 	 * The max threshold that can be written is 261120.
127 	 */
128 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
129 		if (value > 261120)
130 			value = 261120;
131 		while ((64 - __builtin_clzl(value)) > 8) {
132 			exp++;
133 			value >>= 2;
134 		}
135 
136 		/*
137 		 * Note that it is invalid to write a mantissa with the
138 		 * upper 2 bits of mantissa being zero, unless the
139 		 * exponent is also zero.
140 		 */
141 		if (!(value & 0xC0) && exp)
142 			result = -1;
143 		else
144 			result = (exp << 8) | value;
145 	}
146 	return result;
147 }
148 
thresh_cmp_val(u64 value)149 static u64 thresh_cmp_val(u64 value)
150 {
151 	if (cpu_has_feature(CPU_FTR_ARCH_31))
152 		value = p10_thresh_cmp_val(value);
153 
154 	/*
155 	 * Since location of threshold compare bits in MMCRA
156 	 * is different for p8, using different shift value.
157 	 */
158 	if (cpu_has_feature(CPU_FTR_ARCH_300))
159 		return value << p9_MMCRA_THR_CMP_SHIFT;
160 	else
161 		return value << MMCRA_THR_CMP_SHIFT;
162 }
163 
combine_from_event(u64 event)164 static unsigned long combine_from_event(u64 event)
165 {
166 	if (cpu_has_feature(CPU_FTR_ARCH_300))
167 		return p9_EVENT_COMBINE(event);
168 
169 	return EVENT_COMBINE(event);
170 }
171 
combine_shift(unsigned long pmc)172 static unsigned long combine_shift(unsigned long pmc)
173 {
174 	if (cpu_has_feature(CPU_FTR_ARCH_300))
175 		return p9_MMCR1_COMBINE_SHIFT(pmc);
176 
177 	return MMCR1_COMBINE_SHIFT(pmc);
178 }
179 
event_is_threshold(u64 event)180 static inline bool event_is_threshold(u64 event)
181 {
182 	return (event >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
183 }
184 
is_thresh_cmp_valid(u64 event)185 static bool is_thresh_cmp_valid(u64 event)
186 {
187 	unsigned int cmp, exp;
188 
189 	if (cpu_has_feature(CPU_FTR_ARCH_31))
190 		return p10_thresh_cmp_val(event) >= 0;
191 
192 	/*
193 	 * Check the mantissa upper two bits are not zero, unless the
194 	 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
195 	 */
196 
197 	cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
198 	exp = cmp >> 7;
199 
200 	if (exp && (cmp & 0x60) == 0)
201 		return false;
202 
203 	return true;
204 }
205 
dc_ic_rld_quad_l1_sel(u64 event)206 static unsigned int dc_ic_rld_quad_l1_sel(u64 event)
207 {
208 	unsigned int cache;
209 
210 	cache = (event >> EVENT_CACHE_SEL_SHIFT) & MMCR1_DC_IC_QUAL_MASK;
211 	return cache;
212 }
213 
isa207_find_source(u64 idx,u32 sub_idx)214 static inline u64 isa207_find_source(u64 idx, u32 sub_idx)
215 {
216 	u64 ret = PERF_MEM_NA;
217 
218 	switch(idx) {
219 	case 0:
220 		/* Nothing to do */
221 		break;
222 	case 1:
223 		ret = PH(LVL, L1) | LEVEL(L1) | P(SNOOP, HIT);
224 		break;
225 	case 2:
226 		ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
227 		break;
228 	case 3:
229 		ret = PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
230 		break;
231 	case 4:
232 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
233 			ret = P(SNOOP, HIT);
234 
235 			if (sub_idx == 1)
236 				ret |= PH(LVL, LOC_RAM) | LEVEL(RAM);
237 			else if (sub_idx == 2 || sub_idx == 3)
238 				ret |= P(LVL, HIT) | LEVEL(PMEM);
239 			else if (sub_idx == 4)
240 				ret |= PH(LVL, REM_RAM1) | REM | LEVEL(RAM) | P(HOPS, 2);
241 			else if (sub_idx == 5 || sub_idx == 7)
242 				ret |= P(LVL, HIT) | LEVEL(PMEM) | REM;
243 			else if (sub_idx == 6)
244 				ret |= PH(LVL, REM_RAM2) | REM | LEVEL(RAM) | P(HOPS, 3);
245 		} else {
246 			if (sub_idx <= 1)
247 				ret = PH(LVL, LOC_RAM);
248 			else if (sub_idx > 1 && sub_idx <= 2)
249 				ret = PH(LVL, REM_RAM1);
250 			else
251 				ret = PH(LVL, REM_RAM2);
252 			ret |= P(SNOOP, HIT);
253 		}
254 		break;
255 	case 5:
256 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
257 			ret = REM | P(HOPS, 0);
258 
259 			if (sub_idx == 0 || sub_idx == 4)
260 				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT);
261 			else if (sub_idx == 1 || sub_idx == 5)
262 				ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM);
263 			else if (sub_idx == 2 || sub_idx == 6)
264 				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
265 			else if (sub_idx == 3 || sub_idx == 7)
266 				ret |= PH(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
267 		} else {
268 			if (sub_idx == 0)
269 				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0);
270 			else if (sub_idx == 1)
271 				ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0);
272 			else if (sub_idx == 2 || sub_idx == 4)
273 				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HIT) | P(HOPS, 0);
274 			else if (sub_idx == 3 || sub_idx == 5)
275 				ret = PH(LVL, L3) | LEVEL(L3) | REM | P(SNOOP, HITM) | P(HOPS, 0);
276 		}
277 		break;
278 	case 6:
279 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280 			if (sub_idx == 0)
281 				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
282 					P(SNOOP, HIT) | P(HOPS, 2);
283 			else if (sub_idx == 1)
284 				ret = PH(LVL, REM_CCE1) | LEVEL(ANY_CACHE) | REM |
285 					P(SNOOP, HITM) | P(HOPS, 2);
286 			else if (sub_idx == 2)
287 				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
288 					P(SNOOP, HIT) | P(HOPS, 3);
289 			else if (sub_idx == 3)
290 				ret = PH(LVL, REM_CCE2) | LEVEL(ANY_CACHE) | REM |
291 					P(SNOOP, HITM) | P(HOPS, 3);
292 		} else {
293 			ret = PH(LVL, REM_CCE2);
294 			if (sub_idx == 0 || sub_idx == 2)
295 				ret |= P(SNOOP, HIT);
296 			else if (sub_idx == 1 || sub_idx == 3)
297 				ret |= P(SNOOP, HITM);
298 		}
299 		break;
300 	case 7:
301 		ret = PM(LVL, L1);
302 		break;
303 	}
304 
305 	return ret;
306 }
307 
isa207_get_mem_data_src(union perf_mem_data_src * dsrc,u32 flags,struct pt_regs * regs)308 void isa207_get_mem_data_src(union perf_mem_data_src *dsrc, u32 flags,
309 							struct pt_regs *regs)
310 {
311 	u64 idx;
312 	u32 sub_idx;
313 	u64 sier;
314 	u64 val;
315 
316 	/* Skip if no SIER support */
317 	if (!(flags & PPMU_HAS_SIER)) {
318 		dsrc->val = 0;
319 		return;
320 	}
321 
322 	sier = mfspr(SPRN_SIER);
323 	val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
324 	if (val != 1 && val != 2 && !(val == 7 && cpu_has_feature(CPU_FTR_ARCH_31))) {
325 		dsrc->val = 0;
326 		return;
327 	}
328 
329 	idx = (sier & ISA207_SIER_LDST_MASK) >> ISA207_SIER_LDST_SHIFT;
330 	sub_idx = (sier & ISA207_SIER_DATA_SRC_MASK) >> ISA207_SIER_DATA_SRC_SHIFT;
331 
332 	dsrc->val = isa207_find_source(idx, sub_idx);
333 	if (val == 7) {
334 		u64 mmcra;
335 		u32 op_type;
336 
337 		/*
338 		 * Type 0b111 denotes either larx or stcx instruction. Use the
339 		 * MMCRA sampling bits [57:59] along with the type value
340 		 * to determine the exact instruction type. If the sampling
341 		 * criteria is neither load or store, set the type as default
342 		 * to NA.
343 		 */
344 		mmcra = mfspr(SPRN_MMCRA);
345 
346 		op_type = (mmcra >> MMCRA_SAMP_ELIG_SHIFT) & MMCRA_SAMP_ELIG_MASK;
347 		switch (op_type) {
348 		case 5:
349 			dsrc->val |= P(OP, LOAD);
350 			break;
351 		case 7:
352 			dsrc->val |= P(OP, STORE);
353 			break;
354 		default:
355 			dsrc->val |= P(OP, NA);
356 			break;
357 		}
358 	} else {
359 		dsrc->val |= (val == 1) ? P(OP, LOAD) : P(OP, STORE);
360 	}
361 }
362 
isa207_get_mem_weight(u64 * weight,u64 type)363 void isa207_get_mem_weight(u64 *weight, u64 type)
364 {
365 	union perf_sample_weight *weight_fields;
366 	u64 weight_lat;
367 	u64 mmcra = mfspr(SPRN_MMCRA);
368 	u64 exp = MMCRA_THR_CTR_EXP(mmcra);
369 	u64 mantissa = MMCRA_THR_CTR_MANT(mmcra);
370 	u64 sier = mfspr(SPRN_SIER);
371 	u64 val = (sier & ISA207_SIER_TYPE_MASK) >> ISA207_SIER_TYPE_SHIFT;
372 
373 	if (cpu_has_feature(CPU_FTR_ARCH_31))
374 		mantissa = P10_MMCRA_THR_CTR_MANT(mmcra);
375 
376 	if (val == 0 || (val == 7 && !cpu_has_feature(CPU_FTR_ARCH_31)))
377 		weight_lat = 0;
378 	else
379 		weight_lat = mantissa << (2 * exp);
380 
381 	/*
382 	 * Use 64 bit weight field (full) if sample type is
383 	 * WEIGHT.
384 	 *
385 	 * if sample type is WEIGHT_STRUCT:
386 	 * - store memory latency in the lower 32 bits.
387 	 * - For ISA v3.1, use remaining two 16 bit fields of
388 	 *   perf_sample_weight to store cycle counter values
389 	 *   from sier2.
390 	 */
391 	weight_fields = (union perf_sample_weight *)weight;
392 	if (type & PERF_SAMPLE_WEIGHT)
393 		weight_fields->full = weight_lat;
394 	else {
395 		weight_fields->var1_dw = (u32)weight_lat;
396 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
397 			weight_fields->var2_w = P10_SIER2_FINISH_CYC(mfspr(SPRN_SIER2));
398 			weight_fields->var3_w = P10_SIER2_DISPATCH_CYC(mfspr(SPRN_SIER2));
399 		}
400 	}
401 }
402 
isa207_get_constraint(u64 event,unsigned long * maskp,unsigned long * valp,u64 event_config1)403 int isa207_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1)
404 {
405 	unsigned int unit, pmc, cache, ebb;
406 	unsigned long mask, value;
407 
408 	mask = value = 0;
409 
410 	if (!is_event_valid(event))
411 		return -1;
412 
413 	pmc   = (event >> EVENT_PMC_SHIFT)        & EVENT_PMC_MASK;
414 	unit  = (event >> EVENT_UNIT_SHIFT)       & EVENT_UNIT_MASK;
415 	if (cpu_has_feature(CPU_FTR_ARCH_31))
416 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
417 			p10_EVENT_CACHE_SEL_MASK;
418 	else
419 		cache = (event >> EVENT_CACHE_SEL_SHIFT) &
420 			EVENT_CACHE_SEL_MASK;
421 	ebb   = (event >> EVENT_EBB_SHIFT)        & EVENT_EBB_MASK;
422 
423 	if (pmc) {
424 		u64 base_event;
425 
426 		if (pmc > 6)
427 			return -1;
428 
429 		/* Ignore Linux defined bits when checking event below */
430 		base_event = event & ~EVENT_LINUX_MASK;
431 
432 		if (pmc >= 5 && base_event != 0x500fa &&
433 				base_event != 0x600f4)
434 			return -1;
435 
436 		mask  |= CNST_PMC_MASK(pmc);
437 		value |= CNST_PMC_VAL(pmc);
438 
439 		/*
440 		 * PMC5 and PMC6 are used to count cycles and instructions and
441 		 * they do not support most of the constraint bits. Add a check
442 		 * to exclude PMC5/6 from most of the constraints except for
443 		 * EBB/BHRB.
444 		 */
445 		if (pmc >= 5)
446 			goto ebb_bhrb;
447 	}
448 
449 	if (pmc <= 4) {
450 		/*
451 		 * Add to number of counters in use. Note this includes events with
452 		 * a PMC of 0 - they still need a PMC, it's just assigned later.
453 		 * Don't count events on PMC 5 & 6, there is only one valid event
454 		 * on each of those counters, and they are handled above.
455 		 */
456 		mask  |= CNST_NC_MASK;
457 		value |= CNST_NC_VAL;
458 	}
459 
460 	if (unit >= 6 && unit <= 9) {
461 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
462 			if (unit == 6) {
463 				mask |= CNST_L2L3_GROUP_MASK;
464 				value |= CNST_L2L3_GROUP_VAL(event >> p10_L2L3_EVENT_SHIFT);
465 			}
466 		} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
467 			mask  |= CNST_CACHE_GROUP_MASK;
468 			value |= CNST_CACHE_GROUP_VAL(event & 0xff);
469 
470 			mask |= CNST_CACHE_PMC4_MASK;
471 			if (pmc == 4)
472 				value |= CNST_CACHE_PMC4_VAL;
473 		} else if (cache & 0x7) {
474 			/*
475 			 * L2/L3 events contain a cache selector field, which is
476 			 * supposed to be programmed into MMCRC. However MMCRC is only
477 			 * HV writable, and there is no API for guest kernels to modify
478 			 * it. The solution is for the hypervisor to initialise the
479 			 * field to zeroes, and for us to only ever allow events that
480 			 * have a cache selector of zero. The bank selector (bit 3) is
481 			 * irrelevant, as long as the rest of the value is 0.
482 			 */
483 			return -1;
484 		}
485 
486 	} else if (cpu_has_feature(CPU_FTR_ARCH_300) || (event & EVENT_IS_L1)) {
487 		mask  |= CNST_L1_QUAL_MASK;
488 		value |= CNST_L1_QUAL_VAL(cache);
489 	}
490 
491 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
492 		mask |= CNST_RADIX_SCOPE_GROUP_MASK;
493 		value |= CNST_RADIX_SCOPE_GROUP_VAL(event >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT);
494 	}
495 
496 	if (is_event_marked(event)) {
497 		mask  |= CNST_SAMPLE_MASK;
498 		value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
499 	}
500 
501 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
502 		if (event_is_threshold(event) && is_thresh_cmp_valid(event_config1)) {
503 			mask  |= CNST_THRESH_CTL_SEL_MASK;
504 			value |= CNST_THRESH_CTL_SEL_VAL(event >> EVENT_THRESH_SHIFT);
505 			mask  |= p10_CNST_THRESH_CMP_MASK;
506 			value |= p10_CNST_THRESH_CMP_VAL(p10_thresh_cmp_val(event_config1));
507 		} else if (event_is_threshold(event))
508 			return -1;
509 	} else if (cpu_has_feature(CPU_FTR_ARCH_300))  {
510 		if (event_is_threshold(event) && is_thresh_cmp_valid(event)) {
511 			mask  |= CNST_THRESH_MASK;
512 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
513 		} else if (event_is_threshold(event))
514 			return -1;
515 	} else {
516 		/*
517 		 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
518 		 * the threshold control bits are used for the match value.
519 		 */
520 		if (event_is_fab_match(event)) {
521 			mask  |= CNST_FAB_MATCH_MASK;
522 			value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
523 		} else {
524 			if (!is_thresh_cmp_valid(event))
525 				return -1;
526 
527 			mask  |= CNST_THRESH_MASK;
528 			value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
529 		}
530 	}
531 
532 ebb_bhrb:
533 	if (!pmc && ebb)
534 		/* EBB events must specify the PMC */
535 		return -1;
536 
537 	if (event & EVENT_WANTS_BHRB) {
538 		if (!ebb)
539 			/* Only EBB events can request BHRB */
540 			return -1;
541 
542 		mask  |= CNST_IFM_MASK;
543 		value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
544 	}
545 
546 	/*
547 	 * All events must agree on EBB, either all request it or none.
548 	 * EBB events are pinned & exclusive, so this should never actually
549 	 * hit, but we leave it as a fallback in case.
550 	 */
551 	mask  |= CNST_EBB_MASK;
552 	value |= CNST_EBB_VAL(ebb);
553 
554 	*maskp = mask;
555 	*valp = value;
556 
557 	return 0;
558 }
559 
isa207_compute_mmcr(u64 event[],int n_ev,unsigned int hwc[],struct mmcr_regs * mmcr,struct perf_event * pevents[],u32 flags)560 int isa207_compute_mmcr(u64 event[], int n_ev,
561 			       unsigned int hwc[], struct mmcr_regs *mmcr,
562 			       struct perf_event *pevents[], u32 flags)
563 {
564 	unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
565 	unsigned long mmcr3;
566 	unsigned int pmc, pmc_inuse;
567 	int i;
568 
569 	pmc_inuse = 0;
570 
571 	/* First pass to count resource use */
572 	for (i = 0; i < n_ev; ++i) {
573 		pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
574 		if (pmc)
575 			pmc_inuse |= 1 << pmc;
576 	}
577 
578 	mmcra = mmcr1 = mmcr2 = mmcr3 = 0;
579 
580 	/*
581 	 * Disable bhrb unless explicitly requested
582 	 * by setting MMCRA (BHRBRD) bit.
583 	 */
584 	if (cpu_has_feature(CPU_FTR_ARCH_31))
585 		mmcra |= MMCRA_BHRB_DISABLE;
586 
587 	/* Second pass: assign PMCs, set all MMCR1 fields */
588 	for (i = 0; i < n_ev; ++i) {
589 		pmc     = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
590 		unit    = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
591 		combine = combine_from_event(event[i]);
592 		psel    =  event[i] & EVENT_PSEL_MASK;
593 
594 		if (!pmc) {
595 			for (pmc = 1; pmc <= 4; ++pmc) {
596 				if (!(pmc_inuse & (1 << pmc)))
597 					break;
598 			}
599 
600 			pmc_inuse |= 1 << pmc;
601 		}
602 
603 		if (pmc <= 4) {
604 			mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
605 			mmcr1 |= combine << combine_shift(pmc);
606 			mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
607 		}
608 
609 		/* In continuous sampling mode, update SDAR on TLB miss */
610 		mmcra_sdar_mode(event[i], &mmcra);
611 
612 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
613 			cache = dc_ic_rld_quad_l1_sel(event[i]);
614 			mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
615 		} else {
616 			if (event[i] & EVENT_IS_L1) {
617 				cache = dc_ic_rld_quad_l1_sel(event[i]);
618 				mmcr1 |= (cache) << MMCR1_DC_IC_QUAL_SHIFT;
619 			}
620 		}
621 
622 		/* Set RADIX_SCOPE_QUAL bit */
623 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
624 			val = (event[i] >> p10_EVENT_RADIX_SCOPE_QUAL_SHIFT) &
625 				p10_EVENT_RADIX_SCOPE_QUAL_MASK;
626 			mmcr1 |= val << p10_MMCR1_RADIX_SCOPE_QUAL_SHIFT;
627 		}
628 
629 		if (is_event_marked(event[i])) {
630 			mmcra |= MMCRA_SAMPLE_ENABLE;
631 
632 			val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
633 			if (val) {
634 				mmcra |= (val &  3) << MMCRA_SAMP_MODE_SHIFT;
635 				mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
636 			}
637 		}
638 
639 		/*
640 		 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
641 		 * the threshold bits are used for the match value.
642 		 */
643 		if (!cpu_has_feature(CPU_FTR_ARCH_300) && event_is_fab_match(event[i])) {
644 			mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
645 				  EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
646 		} else {
647 			val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
648 			mmcra |= val << MMCRA_THR_CTL_SHIFT;
649 			val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
650 			mmcra |= val << MMCRA_THR_SEL_SHIFT;
651 			if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
652 				val = (event[i] >> EVENT_THR_CMP_SHIFT) &
653 					EVENT_THR_CMP_MASK;
654 				mmcra |= thresh_cmp_val(val);
655 			} else if (flags & PPMU_HAS_ATTR_CONFIG1) {
656 				val = (pevents[i]->attr.config1 >> p10_EVENT_THR_CMP_SHIFT) &
657 					p10_EVENT_THR_CMP_MASK;
658 				mmcra |= thresh_cmp_val(val);
659 			}
660 		}
661 
662 		if (cpu_has_feature(CPU_FTR_ARCH_31) && (unit == 6)) {
663 			val = (event[i] >> p10_L2L3_EVENT_SHIFT) &
664 				p10_EVENT_L2L3_SEL_MASK;
665 			mmcr2 |= val << p10_L2L3_SEL_SHIFT;
666 		}
667 
668 		if (event[i] & EVENT_WANTS_BHRB) {
669 			val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
670 			mmcra |= val << MMCRA_IFM_SHIFT;
671 		}
672 
673 		/* set MMCRA (BHRBRD) to 0 if there is user request for BHRB */
674 		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
675 				(has_branch_stack(pevents[i]) || (event[i] & EVENT_WANTS_BHRB)))
676 			mmcra &= ~MMCRA_BHRB_DISABLE;
677 
678 		if (pevents[i]->attr.exclude_user)
679 			mmcr2 |= MMCR2_FCP(pmc);
680 
681 		if (pevents[i]->attr.exclude_hv)
682 			mmcr2 |= MMCR2_FCH(pmc);
683 
684 		if (pevents[i]->attr.exclude_kernel) {
685 			if (cpu_has_feature(CPU_FTR_HVMODE))
686 				mmcr2 |= MMCR2_FCH(pmc);
687 			else
688 				mmcr2 |= MMCR2_FCS(pmc);
689 		}
690 
691 		if (pevents[i]->attr.exclude_idle)
692 			mmcr2 |= MMCR2_FCWAIT(pmc);
693 
694 		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
695 			if (pmc <= 4) {
696 				val = (event[i] >> p10_EVENT_MMCR3_SHIFT) &
697 					p10_EVENT_MMCR3_MASK;
698 				mmcr3 |= val << MMCR3_SHIFT(pmc);
699 			}
700 		}
701 
702 		hwc[i] = pmc - 1;
703 	}
704 
705 	/* Return MMCRx values */
706 	mmcr->mmcr0 = 0;
707 
708 	/* pmc_inuse is 1-based */
709 	if (pmc_inuse & 2)
710 		mmcr->mmcr0 = MMCR0_PMC1CE;
711 
712 	if (pmc_inuse & 0x7c)
713 		mmcr->mmcr0 |= MMCR0_PMCjCE;
714 
715 	/* If we're not using PMC 5 or 6, freeze them */
716 	if (!(pmc_inuse & 0x60))
717 		mmcr->mmcr0 |= MMCR0_FC56;
718 
719 	/*
720 	 * Set mmcr0 (PMCCEXT) for p10 which
721 	 * will restrict access to group B registers
722 	 * when MMCR0 PMCC=0b00.
723 	 */
724 	if (cpu_has_feature(CPU_FTR_ARCH_31))
725 		mmcr->mmcr0 |= MMCR0_PMCCEXT;
726 
727 	mmcr->mmcr1 = mmcr1;
728 	mmcr->mmcra = mmcra;
729 	mmcr->mmcr2 = mmcr2;
730 	mmcr->mmcr3 = mmcr3;
731 
732 	return 0;
733 }
734 
isa207_disable_pmc(unsigned int pmc,struct mmcr_regs * mmcr)735 void isa207_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr)
736 {
737 	if (pmc <= 3)
738 		mmcr->mmcr1 &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
739 }
740 
find_alternative(u64 event,const unsigned int ev_alt[][MAX_ALT],int size)741 static int find_alternative(u64 event, const unsigned int ev_alt[][MAX_ALT], int size)
742 {
743 	int i, j;
744 
745 	for (i = 0; i < size; ++i) {
746 		if (event < ev_alt[i][0])
747 			break;
748 
749 		for (j = 0; j < MAX_ALT && ev_alt[i][j]; ++j)
750 			if (event == ev_alt[i][j])
751 				return i;
752 	}
753 
754 	return -1;
755 }
756 
isa207_get_alternatives(u64 event,u64 alt[],int size,unsigned int flags,const unsigned int ev_alt[][MAX_ALT])757 int isa207_get_alternatives(u64 event, u64 alt[], int size, unsigned int flags,
758 					const unsigned int ev_alt[][MAX_ALT])
759 {
760 	int i, j, num_alt = 0;
761 	u64 alt_event;
762 
763 	alt[num_alt++] = event;
764 	i = find_alternative(event, ev_alt, size);
765 	if (i >= 0) {
766 		/* Filter out the original event, it's already in alt[0] */
767 		for (j = 0; j < MAX_ALT; ++j) {
768 			alt_event = ev_alt[i][j];
769 			if (alt_event && alt_event != event)
770 				alt[num_alt++] = alt_event;
771 		}
772 	}
773 
774 	if (flags & PPMU_ONLY_COUNT_RUN) {
775 		/*
776 		 * We're only counting in RUN state, so PM_CYC is equivalent to
777 		 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
778 		 */
779 		j = num_alt;
780 		for (i = 0; i < num_alt; ++i) {
781 			switch (alt[i]) {
782 			case 0x1e:			/* PMC_CYC */
783 				alt[j++] = 0x600f4;	/* PM_RUN_CYC */
784 				break;
785 			case 0x600f4:
786 				alt[j++] = 0x1e;
787 				break;
788 			case 0x2:			/* PM_INST_CMPL */
789 				alt[j++] = 0x500fa;	/* PM_RUN_INST_CMPL */
790 				break;
791 			case 0x500fa:
792 				alt[j++] = 0x2;
793 				break;
794 			}
795 		}
796 		num_alt = j;
797 	}
798 
799 	return num_alt;
800 }
801 
isa3XX_check_attr_config(struct perf_event * ev)802 int isa3XX_check_attr_config(struct perf_event *ev)
803 {
804 	u64 val, sample_mode;
805 	u64 event = ev->attr.config;
806 
807 	val = (event >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
808 	sample_mode = val & 0x3;
809 
810 	/*
811 	 * MMCRA[61:62] is Random Sampling Mode (SM).
812 	 * value of 0b11 is reserved.
813 	 */
814 	if (sample_mode == 0x3)
815 		return -EINVAL;
816 
817 	/*
818 	 * Check for all reserved value
819 	 * Source: Performance Monitoring Unit User Guide
820 	 */
821 	switch (val) {
822 	case 0x5:
823 	case 0x9:
824 	case 0xD:
825 	case 0x19:
826 	case 0x1D:
827 	case 0x1A:
828 	case 0x1E:
829 		return -EINVAL;
830 	}
831 
832 	/*
833 	 * MMCRA[48:51]/[52:55]) Threshold Start/Stop
834 	 * Events Selection.
835 	 * 0b11110000/0b00001111 is reserved.
836 	 */
837 	val = (event >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
838 	if (((val & 0xF0) == 0xF0) || ((val & 0xF) == 0xF))
839 		return -EINVAL;
840 
841 	return 0;
842 }
843