1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 #include <asm/debugreg.h>
27
28 #include "mmu.h"
29 #include "x86.h"
30 #include "svm.h"
31 #include "svm_ops.h"
32 #include "cpuid.h"
33 #include "trace.h"
34
35 #ifndef CONFIG_KVM_AMD_SEV
36 /*
37 * When this config is not defined, SEV feature is not supported and APIs in
38 * this file are not used but this file still gets compiled into the KVM AMD
39 * module.
40 *
41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42 * misc_res_type {} defined in linux/misc_cgroup.h.
43 *
44 * Below macros allow compilation to succeed.
45 */
46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48 #endif
49
50 #ifdef CONFIG_KVM_AMD_SEV
51 /* enable/disable SEV support */
52 static bool sev_enabled = true;
53 module_param_named(sev, sev_enabled, bool, 0444);
54
55 /* enable/disable SEV-ES support */
56 static bool sev_es_enabled = true;
57 module_param_named(sev_es, sev_es_enabled, bool, 0444);
58
59 /* enable/disable SEV-ES DebugSwap support */
60 static bool sev_es_debug_swap_enabled = false;
61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62 #else
63 #define sev_enabled false
64 #define sev_es_enabled false
65 #define sev_es_debug_swap_enabled false
66 #endif /* CONFIG_KVM_AMD_SEV */
67
68 static u8 sev_enc_bit;
69 static DECLARE_RWSEM(sev_deactivate_lock);
70 static DEFINE_MUTEX(sev_bitmap_lock);
71 unsigned int max_sev_asid;
72 static unsigned int min_sev_asid;
73 static unsigned long sev_me_mask;
74 static unsigned int nr_asids;
75 static unsigned long *sev_asid_bitmap;
76 static unsigned long *sev_reclaim_asid_bitmap;
77
78 struct enc_region {
79 struct list_head list;
80 unsigned long npages;
81 struct page **pages;
82 unsigned long uaddr;
83 unsigned long size;
84 };
85
86 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)87 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
88 {
89 int ret, error = 0;
90 unsigned int asid;
91
92 /* Check if there are any ASIDs to reclaim before performing a flush */
93 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
94 if (asid > max_asid)
95 return -EBUSY;
96
97 /*
98 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
99 * so it must be guarded.
100 */
101 down_write(&sev_deactivate_lock);
102
103 wbinvd_on_all_cpus();
104 ret = sev_guest_df_flush(&error);
105
106 up_write(&sev_deactivate_lock);
107
108 if (ret)
109 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
110
111 return ret;
112 }
113
is_mirroring_enc_context(struct kvm * kvm)114 static inline bool is_mirroring_enc_context(struct kvm *kvm)
115 {
116 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
117 }
118
119 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)120 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
121 {
122 if (sev_flush_asids(min_asid, max_asid))
123 return false;
124
125 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
126 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
127 nr_asids);
128 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
129
130 return true;
131 }
132
sev_misc_cg_try_charge(struct kvm_sev_info * sev)133 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
134 {
135 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
136 return misc_cg_try_charge(type, sev->misc_cg, 1);
137 }
138
sev_misc_cg_uncharge(struct kvm_sev_info * sev)139 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
140 {
141 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
142 misc_cg_uncharge(type, sev->misc_cg, 1);
143 }
144
sev_asid_new(struct kvm_sev_info * sev)145 static int sev_asid_new(struct kvm_sev_info *sev)
146 {
147 /*
148 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
149 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
150 * Note: min ASID can end up larger than the max if basic SEV support is
151 * effectively disabled by disallowing use of ASIDs for SEV guests.
152 */
153 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
154 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
155 unsigned int asid;
156 bool retry = true;
157 int ret;
158
159 if (min_asid > max_asid)
160 return -ENOTTY;
161
162 WARN_ON(sev->misc_cg);
163 sev->misc_cg = get_current_misc_cg();
164 ret = sev_misc_cg_try_charge(sev);
165 if (ret) {
166 put_misc_cg(sev->misc_cg);
167 sev->misc_cg = NULL;
168 return ret;
169 }
170
171 mutex_lock(&sev_bitmap_lock);
172
173 again:
174 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
175 if (asid > max_asid) {
176 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
177 retry = false;
178 goto again;
179 }
180 mutex_unlock(&sev_bitmap_lock);
181 ret = -EBUSY;
182 goto e_uncharge;
183 }
184
185 __set_bit(asid, sev_asid_bitmap);
186
187 mutex_unlock(&sev_bitmap_lock);
188
189 return asid;
190 e_uncharge:
191 sev_misc_cg_uncharge(sev);
192 put_misc_cg(sev->misc_cg);
193 sev->misc_cg = NULL;
194 return ret;
195 }
196
sev_get_asid(struct kvm * kvm)197 static unsigned int sev_get_asid(struct kvm *kvm)
198 {
199 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
200
201 return sev->asid;
202 }
203
sev_asid_free(struct kvm_sev_info * sev)204 static void sev_asid_free(struct kvm_sev_info *sev)
205 {
206 struct svm_cpu_data *sd;
207 int cpu;
208
209 mutex_lock(&sev_bitmap_lock);
210
211 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
212
213 for_each_possible_cpu(cpu) {
214 sd = per_cpu_ptr(&svm_data, cpu);
215 sd->sev_vmcbs[sev->asid] = NULL;
216 }
217
218 mutex_unlock(&sev_bitmap_lock);
219
220 sev_misc_cg_uncharge(sev);
221 put_misc_cg(sev->misc_cg);
222 sev->misc_cg = NULL;
223 }
224
sev_decommission(unsigned int handle)225 static void sev_decommission(unsigned int handle)
226 {
227 struct sev_data_decommission decommission;
228
229 if (!handle)
230 return;
231
232 decommission.handle = handle;
233 sev_guest_decommission(&decommission, NULL);
234 }
235
sev_unbind_asid(struct kvm * kvm,unsigned int handle)236 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
237 {
238 struct sev_data_deactivate deactivate;
239
240 if (!handle)
241 return;
242
243 deactivate.handle = handle;
244
245 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
246 down_read(&sev_deactivate_lock);
247 sev_guest_deactivate(&deactivate, NULL);
248 up_read(&sev_deactivate_lock);
249
250 sev_decommission(handle);
251 }
252
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)253 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
254 {
255 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
256 int asid, ret;
257
258 if (kvm->created_vcpus)
259 return -EINVAL;
260
261 ret = -EBUSY;
262 if (unlikely(sev->active))
263 return ret;
264
265 sev->active = true;
266 sev->es_active = argp->id == KVM_SEV_ES_INIT;
267 asid = sev_asid_new(sev);
268 if (asid < 0)
269 goto e_no_asid;
270 sev->asid = asid;
271
272 ret = sev_platform_init(&argp->error);
273 if (ret)
274 goto e_free;
275
276 INIT_LIST_HEAD(&sev->regions_list);
277 INIT_LIST_HEAD(&sev->mirror_vms);
278
279 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
280
281 return 0;
282
283 e_free:
284 sev_asid_free(sev);
285 sev->asid = 0;
286 e_no_asid:
287 sev->es_active = false;
288 sev->active = false;
289 return ret;
290 }
291
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)292 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
293 {
294 unsigned int asid = sev_get_asid(kvm);
295 struct sev_data_activate activate;
296 int ret;
297
298 /* activate ASID on the given handle */
299 activate.handle = handle;
300 activate.asid = asid;
301 ret = sev_guest_activate(&activate, error);
302
303 return ret;
304 }
305
__sev_issue_cmd(int fd,int id,void * data,int * error)306 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
307 {
308 struct fd f;
309 int ret;
310
311 f = fdget(fd);
312 if (!f.file)
313 return -EBADF;
314
315 ret = sev_issue_cmd_external_user(f.file, id, data, error);
316
317 fdput(f);
318 return ret;
319 }
320
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)321 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
322 {
323 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
324
325 return __sev_issue_cmd(sev->fd, id, data, error);
326 }
327
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)328 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
329 {
330 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
331 struct sev_data_launch_start start;
332 struct kvm_sev_launch_start params;
333 void *dh_blob, *session_blob;
334 int *error = &argp->error;
335 int ret;
336
337 if (!sev_guest(kvm))
338 return -ENOTTY;
339
340 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
341 return -EFAULT;
342
343 memset(&start, 0, sizeof(start));
344
345 dh_blob = NULL;
346 if (params.dh_uaddr) {
347 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
348 if (IS_ERR(dh_blob))
349 return PTR_ERR(dh_blob);
350
351 start.dh_cert_address = __sme_set(__pa(dh_blob));
352 start.dh_cert_len = params.dh_len;
353 }
354
355 session_blob = NULL;
356 if (params.session_uaddr) {
357 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
358 if (IS_ERR(session_blob)) {
359 ret = PTR_ERR(session_blob);
360 goto e_free_dh;
361 }
362
363 start.session_address = __sme_set(__pa(session_blob));
364 start.session_len = params.session_len;
365 }
366
367 start.handle = params.handle;
368 start.policy = params.policy;
369
370 /* create memory encryption context */
371 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
372 if (ret)
373 goto e_free_session;
374
375 /* Bind ASID to this guest */
376 ret = sev_bind_asid(kvm, start.handle, error);
377 if (ret) {
378 sev_decommission(start.handle);
379 goto e_free_session;
380 }
381
382 /* return handle to userspace */
383 params.handle = start.handle;
384 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
385 sev_unbind_asid(kvm, start.handle);
386 ret = -EFAULT;
387 goto e_free_session;
388 }
389
390 sev->handle = start.handle;
391 sev->fd = argp->sev_fd;
392
393 e_free_session:
394 kfree(session_blob);
395 e_free_dh:
396 kfree(dh_blob);
397 return ret;
398 }
399
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)400 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
401 unsigned long ulen, unsigned long *n,
402 int write)
403 {
404 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
405 unsigned long npages, size;
406 int npinned;
407 unsigned long locked, lock_limit;
408 struct page **pages;
409 unsigned long first, last;
410 int ret;
411
412 lockdep_assert_held(&kvm->lock);
413
414 if (ulen == 0 || uaddr + ulen < uaddr)
415 return ERR_PTR(-EINVAL);
416
417 /* Calculate number of pages. */
418 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
419 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
420 npages = (last - first + 1);
421
422 locked = sev->pages_locked + npages;
423 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
424 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
425 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
426 return ERR_PTR(-ENOMEM);
427 }
428
429 if (WARN_ON_ONCE(npages > INT_MAX))
430 return ERR_PTR(-EINVAL);
431
432 /* Avoid using vmalloc for smaller buffers. */
433 size = npages * sizeof(struct page *);
434 if (size > PAGE_SIZE)
435 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
436 else
437 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
438
439 if (!pages)
440 return ERR_PTR(-ENOMEM);
441
442 /* Pin the user virtual address. */
443 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
444 if (npinned != npages) {
445 pr_err("SEV: Failure locking %lu pages.\n", npages);
446 ret = -ENOMEM;
447 goto err;
448 }
449
450 *n = npages;
451 sev->pages_locked = locked;
452
453 return pages;
454
455 err:
456 if (npinned > 0)
457 unpin_user_pages(pages, npinned);
458
459 kvfree(pages);
460 return ERR_PTR(ret);
461 }
462
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)463 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
464 unsigned long npages)
465 {
466 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
467
468 unpin_user_pages(pages, npages);
469 kvfree(pages);
470 sev->pages_locked -= npages;
471 }
472
sev_clflush_pages(struct page * pages[],unsigned long npages)473 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
474 {
475 uint8_t *page_virtual;
476 unsigned long i;
477
478 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
479 pages == NULL)
480 return;
481
482 for (i = 0; i < npages; i++) {
483 page_virtual = kmap_local_page(pages[i]);
484 clflush_cache_range(page_virtual, PAGE_SIZE);
485 kunmap_local(page_virtual);
486 cond_resched();
487 }
488 }
489
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)490 static unsigned long get_num_contig_pages(unsigned long idx,
491 struct page **inpages, unsigned long npages)
492 {
493 unsigned long paddr, next_paddr;
494 unsigned long i = idx + 1, pages = 1;
495
496 /* find the number of contiguous pages starting from idx */
497 paddr = __sme_page_pa(inpages[idx]);
498 while (i < npages) {
499 next_paddr = __sme_page_pa(inpages[i++]);
500 if ((paddr + PAGE_SIZE) == next_paddr) {
501 pages++;
502 paddr = next_paddr;
503 continue;
504 }
505 break;
506 }
507
508 return pages;
509 }
510
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)511 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
512 {
513 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
514 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
515 struct kvm_sev_launch_update_data params;
516 struct sev_data_launch_update_data data;
517 struct page **inpages;
518 int ret;
519
520 if (!sev_guest(kvm))
521 return -ENOTTY;
522
523 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
524 return -EFAULT;
525
526 vaddr = params.uaddr;
527 size = params.len;
528 vaddr_end = vaddr + size;
529
530 /* Lock the user memory. */
531 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
532 if (IS_ERR(inpages))
533 return PTR_ERR(inpages);
534
535 /*
536 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
537 * place; the cache may contain the data that was written unencrypted.
538 */
539 sev_clflush_pages(inpages, npages);
540
541 data.reserved = 0;
542 data.handle = sev->handle;
543
544 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
545 int offset, len;
546
547 /*
548 * If the user buffer is not page-aligned, calculate the offset
549 * within the page.
550 */
551 offset = vaddr & (PAGE_SIZE - 1);
552
553 /* Calculate the number of pages that can be encrypted in one go. */
554 pages = get_num_contig_pages(i, inpages, npages);
555
556 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
557
558 data.len = len;
559 data.address = __sme_page_pa(inpages[i]) + offset;
560 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
561 if (ret)
562 goto e_unpin;
563
564 size -= len;
565 next_vaddr = vaddr + len;
566 }
567
568 e_unpin:
569 /* content of memory is updated, mark pages dirty */
570 for (i = 0; i < npages; i++) {
571 set_page_dirty_lock(inpages[i]);
572 mark_page_accessed(inpages[i]);
573 }
574 /* unlock the user pages */
575 sev_unpin_memory(kvm, inpages, npages);
576 return ret;
577 }
578
sev_es_sync_vmsa(struct vcpu_svm * svm)579 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
580 {
581 struct sev_es_save_area *save = svm->sev_es.vmsa;
582
583 /* Check some debug related fields before encrypting the VMSA */
584 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
585 return -EINVAL;
586
587 /*
588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
589 * the traditional VMSA that is part of the VMCB. Copy the
590 * traditional VMSA as it has been built so far (in prep
591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
592 */
593 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
594
595 /* Sync registgers */
596 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
597 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
598 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
599 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
600 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
601 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
602 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
603 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
604 #ifdef CONFIG_X86_64
605 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
606 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
607 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
608 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
609 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
610 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
611 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
612 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
613 #endif
614 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
615
616 /* Sync some non-GPR registers before encrypting */
617 save->xcr0 = svm->vcpu.arch.xcr0;
618 save->pkru = svm->vcpu.arch.pkru;
619 save->xss = svm->vcpu.arch.ia32_xss;
620 save->dr6 = svm->vcpu.arch.dr6;
621
622 if (sev_es_debug_swap_enabled) {
623 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
624 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. "
625 "This will not work starting with Linux 6.10\n");
626 }
627
628 pr_debug("Virtual Machine Save Area (VMSA):\n");
629 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
630
631 return 0;
632 }
633
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)634 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
635 int *error)
636 {
637 struct sev_data_launch_update_vmsa vmsa;
638 struct vcpu_svm *svm = to_svm(vcpu);
639 int ret;
640
641 if (vcpu->guest_debug) {
642 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
643 return -EINVAL;
644 }
645
646 /* Perform some pre-encryption checks against the VMSA */
647 ret = sev_es_sync_vmsa(svm);
648 if (ret)
649 return ret;
650
651 /*
652 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
653 * the VMSA memory content (i.e it will write the same memory region
654 * with the guest's key), so invalidate it first.
655 */
656 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
657
658 vmsa.reserved = 0;
659 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
660 vmsa.address = __sme_pa(svm->sev_es.vmsa);
661 vmsa.len = PAGE_SIZE;
662 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
663 if (ret)
664 return ret;
665
666 vcpu->arch.guest_state_protected = true;
667
668 /*
669 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
670 * only after setting guest_state_protected because KVM_SET_MSRS allows
671 * dynamic toggling of LBRV (for performance reason) on write access to
672 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
673 */
674 svm_enable_lbrv(vcpu);
675 return 0;
676 }
677
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)678 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
679 {
680 struct kvm_vcpu *vcpu;
681 unsigned long i;
682 int ret;
683
684 if (!sev_es_guest(kvm))
685 return -ENOTTY;
686
687 kvm_for_each_vcpu(i, vcpu, kvm) {
688 ret = mutex_lock_killable(&vcpu->mutex);
689 if (ret)
690 return ret;
691
692 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
693
694 mutex_unlock(&vcpu->mutex);
695 if (ret)
696 return ret;
697 }
698
699 return 0;
700 }
701
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)702 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
703 {
704 void __user *measure = (void __user *)(uintptr_t)argp->data;
705 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
706 struct sev_data_launch_measure data;
707 struct kvm_sev_launch_measure params;
708 void __user *p = NULL;
709 void *blob = NULL;
710 int ret;
711
712 if (!sev_guest(kvm))
713 return -ENOTTY;
714
715 if (copy_from_user(¶ms, measure, sizeof(params)))
716 return -EFAULT;
717
718 memset(&data, 0, sizeof(data));
719
720 /* User wants to query the blob length */
721 if (!params.len)
722 goto cmd;
723
724 p = (void __user *)(uintptr_t)params.uaddr;
725 if (p) {
726 if (params.len > SEV_FW_BLOB_MAX_SIZE)
727 return -EINVAL;
728
729 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
730 if (!blob)
731 return -ENOMEM;
732
733 data.address = __psp_pa(blob);
734 data.len = params.len;
735 }
736
737 cmd:
738 data.handle = sev->handle;
739 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
740
741 /*
742 * If we query the session length, FW responded with expected data.
743 */
744 if (!params.len)
745 goto done;
746
747 if (ret)
748 goto e_free_blob;
749
750 if (blob) {
751 if (copy_to_user(p, blob, params.len))
752 ret = -EFAULT;
753 }
754
755 done:
756 params.len = data.len;
757 if (copy_to_user(measure, ¶ms, sizeof(params)))
758 ret = -EFAULT;
759 e_free_blob:
760 kfree(blob);
761 return ret;
762 }
763
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)764 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
765 {
766 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
767 struct sev_data_launch_finish data;
768
769 if (!sev_guest(kvm))
770 return -ENOTTY;
771
772 data.handle = sev->handle;
773 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
774 }
775
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)776 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
777 {
778 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
779 struct kvm_sev_guest_status params;
780 struct sev_data_guest_status data;
781 int ret;
782
783 if (!sev_guest(kvm))
784 return -ENOTTY;
785
786 memset(&data, 0, sizeof(data));
787
788 data.handle = sev->handle;
789 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
790 if (ret)
791 return ret;
792
793 params.policy = data.policy;
794 params.state = data.state;
795 params.handle = data.handle;
796
797 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
798 ret = -EFAULT;
799
800 return ret;
801 }
802
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)803 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
804 unsigned long dst, int size,
805 int *error, bool enc)
806 {
807 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
808 struct sev_data_dbg data;
809
810 data.reserved = 0;
811 data.handle = sev->handle;
812 data.dst_addr = dst;
813 data.src_addr = src;
814 data.len = size;
815
816 return sev_issue_cmd(kvm,
817 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
818 &data, error);
819 }
820
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)821 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
822 unsigned long dst_paddr, int sz, int *err)
823 {
824 int offset;
825
826 /*
827 * Its safe to read more than we are asked, caller should ensure that
828 * destination has enough space.
829 */
830 offset = src_paddr & 15;
831 src_paddr = round_down(src_paddr, 16);
832 sz = round_up(sz + offset, 16);
833
834 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
835 }
836
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)837 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
838 void __user *dst_uaddr,
839 unsigned long dst_paddr,
840 int size, int *err)
841 {
842 struct page *tpage = NULL;
843 int ret, offset;
844
845 /* if inputs are not 16-byte then use intermediate buffer */
846 if (!IS_ALIGNED(dst_paddr, 16) ||
847 !IS_ALIGNED(paddr, 16) ||
848 !IS_ALIGNED(size, 16)) {
849 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
850 if (!tpage)
851 return -ENOMEM;
852
853 dst_paddr = __sme_page_pa(tpage);
854 }
855
856 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
857 if (ret)
858 goto e_free;
859
860 if (tpage) {
861 offset = paddr & 15;
862 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
863 ret = -EFAULT;
864 }
865
866 e_free:
867 if (tpage)
868 __free_page(tpage);
869
870 return ret;
871 }
872
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)873 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
874 void __user *vaddr,
875 unsigned long dst_paddr,
876 void __user *dst_vaddr,
877 int size, int *error)
878 {
879 struct page *src_tpage = NULL;
880 struct page *dst_tpage = NULL;
881 int ret, len = size;
882
883 /* If source buffer is not aligned then use an intermediate buffer */
884 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
885 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
886 if (!src_tpage)
887 return -ENOMEM;
888
889 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
890 __free_page(src_tpage);
891 return -EFAULT;
892 }
893
894 paddr = __sme_page_pa(src_tpage);
895 }
896
897 /*
898 * If destination buffer or length is not aligned then do read-modify-write:
899 * - decrypt destination in an intermediate buffer
900 * - copy the source buffer in an intermediate buffer
901 * - use the intermediate buffer as source buffer
902 */
903 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
904 int dst_offset;
905
906 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
907 if (!dst_tpage) {
908 ret = -ENOMEM;
909 goto e_free;
910 }
911
912 ret = __sev_dbg_decrypt(kvm, dst_paddr,
913 __sme_page_pa(dst_tpage), size, error);
914 if (ret)
915 goto e_free;
916
917 /*
918 * If source is kernel buffer then use memcpy() otherwise
919 * copy_from_user().
920 */
921 dst_offset = dst_paddr & 15;
922
923 if (src_tpage)
924 memcpy(page_address(dst_tpage) + dst_offset,
925 page_address(src_tpage), size);
926 else {
927 if (copy_from_user(page_address(dst_tpage) + dst_offset,
928 vaddr, size)) {
929 ret = -EFAULT;
930 goto e_free;
931 }
932 }
933
934 paddr = __sme_page_pa(dst_tpage);
935 dst_paddr = round_down(dst_paddr, 16);
936 len = round_up(size, 16);
937 }
938
939 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
940
941 e_free:
942 if (src_tpage)
943 __free_page(src_tpage);
944 if (dst_tpage)
945 __free_page(dst_tpage);
946 return ret;
947 }
948
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)949 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
950 {
951 unsigned long vaddr, vaddr_end, next_vaddr;
952 unsigned long dst_vaddr;
953 struct page **src_p, **dst_p;
954 struct kvm_sev_dbg debug;
955 unsigned long n;
956 unsigned int size;
957 int ret;
958
959 if (!sev_guest(kvm))
960 return -ENOTTY;
961
962 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
963 return -EFAULT;
964
965 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
966 return -EINVAL;
967 if (!debug.dst_uaddr)
968 return -EINVAL;
969
970 vaddr = debug.src_uaddr;
971 size = debug.len;
972 vaddr_end = vaddr + size;
973 dst_vaddr = debug.dst_uaddr;
974
975 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
976 int len, s_off, d_off;
977
978 /* lock userspace source and destination page */
979 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
980 if (IS_ERR(src_p))
981 return PTR_ERR(src_p);
982
983 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
984 if (IS_ERR(dst_p)) {
985 sev_unpin_memory(kvm, src_p, n);
986 return PTR_ERR(dst_p);
987 }
988
989 /*
990 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
991 * the pages; flush the destination too so that future accesses do not
992 * see stale data.
993 */
994 sev_clflush_pages(src_p, 1);
995 sev_clflush_pages(dst_p, 1);
996
997 /*
998 * Since user buffer may not be page aligned, calculate the
999 * offset within the page.
1000 */
1001 s_off = vaddr & ~PAGE_MASK;
1002 d_off = dst_vaddr & ~PAGE_MASK;
1003 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1004
1005 if (dec)
1006 ret = __sev_dbg_decrypt_user(kvm,
1007 __sme_page_pa(src_p[0]) + s_off,
1008 (void __user *)dst_vaddr,
1009 __sme_page_pa(dst_p[0]) + d_off,
1010 len, &argp->error);
1011 else
1012 ret = __sev_dbg_encrypt_user(kvm,
1013 __sme_page_pa(src_p[0]) + s_off,
1014 (void __user *)vaddr,
1015 __sme_page_pa(dst_p[0]) + d_off,
1016 (void __user *)dst_vaddr,
1017 len, &argp->error);
1018
1019 sev_unpin_memory(kvm, src_p, n);
1020 sev_unpin_memory(kvm, dst_p, n);
1021
1022 if (ret)
1023 goto err;
1024
1025 next_vaddr = vaddr + len;
1026 dst_vaddr = dst_vaddr + len;
1027 size -= len;
1028 }
1029 err:
1030 return ret;
1031 }
1032
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1033 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1034 {
1035 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1036 struct sev_data_launch_secret data;
1037 struct kvm_sev_launch_secret params;
1038 struct page **pages;
1039 void *blob, *hdr;
1040 unsigned long n, i;
1041 int ret, offset;
1042
1043 if (!sev_guest(kvm))
1044 return -ENOTTY;
1045
1046 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1047 return -EFAULT;
1048
1049 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1050 if (IS_ERR(pages))
1051 return PTR_ERR(pages);
1052
1053 /*
1054 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1055 * place; the cache may contain the data that was written unencrypted.
1056 */
1057 sev_clflush_pages(pages, n);
1058
1059 /*
1060 * The secret must be copied into contiguous memory region, lets verify
1061 * that userspace memory pages are contiguous before we issue command.
1062 */
1063 if (get_num_contig_pages(0, pages, n) != n) {
1064 ret = -EINVAL;
1065 goto e_unpin_memory;
1066 }
1067
1068 memset(&data, 0, sizeof(data));
1069
1070 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1071 data.guest_address = __sme_page_pa(pages[0]) + offset;
1072 data.guest_len = params.guest_len;
1073
1074 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1075 if (IS_ERR(blob)) {
1076 ret = PTR_ERR(blob);
1077 goto e_unpin_memory;
1078 }
1079
1080 data.trans_address = __psp_pa(blob);
1081 data.trans_len = params.trans_len;
1082
1083 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1084 if (IS_ERR(hdr)) {
1085 ret = PTR_ERR(hdr);
1086 goto e_free_blob;
1087 }
1088 data.hdr_address = __psp_pa(hdr);
1089 data.hdr_len = params.hdr_len;
1090
1091 data.handle = sev->handle;
1092 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1093
1094 kfree(hdr);
1095
1096 e_free_blob:
1097 kfree(blob);
1098 e_unpin_memory:
1099 /* content of memory is updated, mark pages dirty */
1100 for (i = 0; i < n; i++) {
1101 set_page_dirty_lock(pages[i]);
1102 mark_page_accessed(pages[i]);
1103 }
1104 sev_unpin_memory(kvm, pages, n);
1105 return ret;
1106 }
1107
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1108 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1109 {
1110 void __user *report = (void __user *)(uintptr_t)argp->data;
1111 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1112 struct sev_data_attestation_report data;
1113 struct kvm_sev_attestation_report params;
1114 void __user *p;
1115 void *blob = NULL;
1116 int ret;
1117
1118 if (!sev_guest(kvm))
1119 return -ENOTTY;
1120
1121 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1122 return -EFAULT;
1123
1124 memset(&data, 0, sizeof(data));
1125
1126 /* User wants to query the blob length */
1127 if (!params.len)
1128 goto cmd;
1129
1130 p = (void __user *)(uintptr_t)params.uaddr;
1131 if (p) {
1132 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1133 return -EINVAL;
1134
1135 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1136 if (!blob)
1137 return -ENOMEM;
1138
1139 data.address = __psp_pa(blob);
1140 data.len = params.len;
1141 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1142 }
1143 cmd:
1144 data.handle = sev->handle;
1145 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1146 /*
1147 * If we query the session length, FW responded with expected data.
1148 */
1149 if (!params.len)
1150 goto done;
1151
1152 if (ret)
1153 goto e_free_blob;
1154
1155 if (blob) {
1156 if (copy_to_user(p, blob, params.len))
1157 ret = -EFAULT;
1158 }
1159
1160 done:
1161 params.len = data.len;
1162 if (copy_to_user(report, ¶ms, sizeof(params)))
1163 ret = -EFAULT;
1164 e_free_blob:
1165 kfree(blob);
1166 return ret;
1167 }
1168
1169 /* Userspace wants to query session length. */
1170 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1171 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1172 struct kvm_sev_send_start *params)
1173 {
1174 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1175 struct sev_data_send_start data;
1176 int ret;
1177
1178 memset(&data, 0, sizeof(data));
1179 data.handle = sev->handle;
1180 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1181
1182 params->session_len = data.session_len;
1183 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1184 sizeof(struct kvm_sev_send_start)))
1185 ret = -EFAULT;
1186
1187 return ret;
1188 }
1189
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1190 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1191 {
1192 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1193 struct sev_data_send_start data;
1194 struct kvm_sev_send_start params;
1195 void *amd_certs, *session_data;
1196 void *pdh_cert, *plat_certs;
1197 int ret;
1198
1199 if (!sev_guest(kvm))
1200 return -ENOTTY;
1201
1202 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1203 sizeof(struct kvm_sev_send_start)))
1204 return -EFAULT;
1205
1206 /* if session_len is zero, userspace wants to query the session length */
1207 if (!params.session_len)
1208 return __sev_send_start_query_session_length(kvm, argp,
1209 ¶ms);
1210
1211 /* some sanity checks */
1212 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1213 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1214 return -EINVAL;
1215
1216 /* allocate the memory to hold the session data blob */
1217 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1218 if (!session_data)
1219 return -ENOMEM;
1220
1221 /* copy the certificate blobs from userspace */
1222 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1223 params.pdh_cert_len);
1224 if (IS_ERR(pdh_cert)) {
1225 ret = PTR_ERR(pdh_cert);
1226 goto e_free_session;
1227 }
1228
1229 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1230 params.plat_certs_len);
1231 if (IS_ERR(plat_certs)) {
1232 ret = PTR_ERR(plat_certs);
1233 goto e_free_pdh;
1234 }
1235
1236 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1237 params.amd_certs_len);
1238 if (IS_ERR(amd_certs)) {
1239 ret = PTR_ERR(amd_certs);
1240 goto e_free_plat_cert;
1241 }
1242
1243 /* populate the FW SEND_START field with system physical address */
1244 memset(&data, 0, sizeof(data));
1245 data.pdh_cert_address = __psp_pa(pdh_cert);
1246 data.pdh_cert_len = params.pdh_cert_len;
1247 data.plat_certs_address = __psp_pa(plat_certs);
1248 data.plat_certs_len = params.plat_certs_len;
1249 data.amd_certs_address = __psp_pa(amd_certs);
1250 data.amd_certs_len = params.amd_certs_len;
1251 data.session_address = __psp_pa(session_data);
1252 data.session_len = params.session_len;
1253 data.handle = sev->handle;
1254
1255 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1256
1257 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1258 session_data, params.session_len)) {
1259 ret = -EFAULT;
1260 goto e_free_amd_cert;
1261 }
1262
1263 params.policy = data.policy;
1264 params.session_len = data.session_len;
1265 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms,
1266 sizeof(struct kvm_sev_send_start)))
1267 ret = -EFAULT;
1268
1269 e_free_amd_cert:
1270 kfree(amd_certs);
1271 e_free_plat_cert:
1272 kfree(plat_certs);
1273 e_free_pdh:
1274 kfree(pdh_cert);
1275 e_free_session:
1276 kfree(session_data);
1277 return ret;
1278 }
1279
1280 /* Userspace wants to query either header or trans length. */
1281 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1282 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1283 struct kvm_sev_send_update_data *params)
1284 {
1285 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1286 struct sev_data_send_update_data data;
1287 int ret;
1288
1289 memset(&data, 0, sizeof(data));
1290 data.handle = sev->handle;
1291 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1292
1293 params->hdr_len = data.hdr_len;
1294 params->trans_len = data.trans_len;
1295
1296 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1297 sizeof(struct kvm_sev_send_update_data)))
1298 ret = -EFAULT;
1299
1300 return ret;
1301 }
1302
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1303 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1304 {
1305 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1306 struct sev_data_send_update_data data;
1307 struct kvm_sev_send_update_data params;
1308 void *hdr, *trans_data;
1309 struct page **guest_page;
1310 unsigned long n;
1311 int ret, offset;
1312
1313 if (!sev_guest(kvm))
1314 return -ENOTTY;
1315
1316 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1317 sizeof(struct kvm_sev_send_update_data)))
1318 return -EFAULT;
1319
1320 /* userspace wants to query either header or trans length */
1321 if (!params.trans_len || !params.hdr_len)
1322 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1323
1324 if (!params.trans_uaddr || !params.guest_uaddr ||
1325 !params.guest_len || !params.hdr_uaddr)
1326 return -EINVAL;
1327
1328 /* Check if we are crossing the page boundary */
1329 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1330 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1331 return -EINVAL;
1332
1333 /* Pin guest memory */
1334 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1335 PAGE_SIZE, &n, 0);
1336 if (IS_ERR(guest_page))
1337 return PTR_ERR(guest_page);
1338
1339 /* allocate memory for header and transport buffer */
1340 ret = -ENOMEM;
1341 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1342 if (!hdr)
1343 goto e_unpin;
1344
1345 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1346 if (!trans_data)
1347 goto e_free_hdr;
1348
1349 memset(&data, 0, sizeof(data));
1350 data.hdr_address = __psp_pa(hdr);
1351 data.hdr_len = params.hdr_len;
1352 data.trans_address = __psp_pa(trans_data);
1353 data.trans_len = params.trans_len;
1354
1355 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1356 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1357 data.guest_address |= sev_me_mask;
1358 data.guest_len = params.guest_len;
1359 data.handle = sev->handle;
1360
1361 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1362
1363 if (ret)
1364 goto e_free_trans_data;
1365
1366 /* copy transport buffer to user space */
1367 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1368 trans_data, params.trans_len)) {
1369 ret = -EFAULT;
1370 goto e_free_trans_data;
1371 }
1372
1373 /* Copy packet header to userspace. */
1374 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1375 params.hdr_len))
1376 ret = -EFAULT;
1377
1378 e_free_trans_data:
1379 kfree(trans_data);
1380 e_free_hdr:
1381 kfree(hdr);
1382 e_unpin:
1383 sev_unpin_memory(kvm, guest_page, n);
1384
1385 return ret;
1386 }
1387
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1388 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1389 {
1390 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1391 struct sev_data_send_finish data;
1392
1393 if (!sev_guest(kvm))
1394 return -ENOTTY;
1395
1396 data.handle = sev->handle;
1397 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1398 }
1399
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1400 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1401 {
1402 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1403 struct sev_data_send_cancel data;
1404
1405 if (!sev_guest(kvm))
1406 return -ENOTTY;
1407
1408 data.handle = sev->handle;
1409 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1410 }
1411
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1412 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1413 {
1414 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1415 struct sev_data_receive_start start;
1416 struct kvm_sev_receive_start params;
1417 int *error = &argp->error;
1418 void *session_data;
1419 void *pdh_data;
1420 int ret;
1421
1422 if (!sev_guest(kvm))
1423 return -ENOTTY;
1424
1425 /* Get parameter from the userspace */
1426 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1427 sizeof(struct kvm_sev_receive_start)))
1428 return -EFAULT;
1429
1430 /* some sanity checks */
1431 if (!params.pdh_uaddr || !params.pdh_len ||
1432 !params.session_uaddr || !params.session_len)
1433 return -EINVAL;
1434
1435 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1436 if (IS_ERR(pdh_data))
1437 return PTR_ERR(pdh_data);
1438
1439 session_data = psp_copy_user_blob(params.session_uaddr,
1440 params.session_len);
1441 if (IS_ERR(session_data)) {
1442 ret = PTR_ERR(session_data);
1443 goto e_free_pdh;
1444 }
1445
1446 memset(&start, 0, sizeof(start));
1447 start.handle = params.handle;
1448 start.policy = params.policy;
1449 start.pdh_cert_address = __psp_pa(pdh_data);
1450 start.pdh_cert_len = params.pdh_len;
1451 start.session_address = __psp_pa(session_data);
1452 start.session_len = params.session_len;
1453
1454 /* create memory encryption context */
1455 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1456 error);
1457 if (ret)
1458 goto e_free_session;
1459
1460 /* Bind ASID to this guest */
1461 ret = sev_bind_asid(kvm, start.handle, error);
1462 if (ret) {
1463 sev_decommission(start.handle);
1464 goto e_free_session;
1465 }
1466
1467 params.handle = start.handle;
1468 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1469 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1470 ret = -EFAULT;
1471 sev_unbind_asid(kvm, start.handle);
1472 goto e_free_session;
1473 }
1474
1475 sev->handle = start.handle;
1476 sev->fd = argp->sev_fd;
1477
1478 e_free_session:
1479 kfree(session_data);
1480 e_free_pdh:
1481 kfree(pdh_data);
1482
1483 return ret;
1484 }
1485
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1486 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1487 {
1488 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1489 struct kvm_sev_receive_update_data params;
1490 struct sev_data_receive_update_data data;
1491 void *hdr = NULL, *trans = NULL;
1492 struct page **guest_page;
1493 unsigned long n;
1494 int ret, offset;
1495
1496 if (!sev_guest(kvm))
1497 return -EINVAL;
1498
1499 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
1500 sizeof(struct kvm_sev_receive_update_data)))
1501 return -EFAULT;
1502
1503 if (!params.hdr_uaddr || !params.hdr_len ||
1504 !params.guest_uaddr || !params.guest_len ||
1505 !params.trans_uaddr || !params.trans_len)
1506 return -EINVAL;
1507
1508 /* Check if we are crossing the page boundary */
1509 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1510 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1511 return -EINVAL;
1512
1513 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1514 if (IS_ERR(hdr))
1515 return PTR_ERR(hdr);
1516
1517 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1518 if (IS_ERR(trans)) {
1519 ret = PTR_ERR(trans);
1520 goto e_free_hdr;
1521 }
1522
1523 memset(&data, 0, sizeof(data));
1524 data.hdr_address = __psp_pa(hdr);
1525 data.hdr_len = params.hdr_len;
1526 data.trans_address = __psp_pa(trans);
1527 data.trans_len = params.trans_len;
1528
1529 /* Pin guest memory */
1530 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1531 PAGE_SIZE, &n, 1);
1532 if (IS_ERR(guest_page)) {
1533 ret = PTR_ERR(guest_page);
1534 goto e_free_trans;
1535 }
1536
1537 /*
1538 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1539 * encrypts the written data with the guest's key, and the cache may
1540 * contain dirty, unencrypted data.
1541 */
1542 sev_clflush_pages(guest_page, n);
1543
1544 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1545 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1546 data.guest_address |= sev_me_mask;
1547 data.guest_len = params.guest_len;
1548 data.handle = sev->handle;
1549
1550 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1551 &argp->error);
1552
1553 sev_unpin_memory(kvm, guest_page, n);
1554
1555 e_free_trans:
1556 kfree(trans);
1557 e_free_hdr:
1558 kfree(hdr);
1559
1560 return ret;
1561 }
1562
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1563 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1564 {
1565 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1566 struct sev_data_receive_finish data;
1567
1568 if (!sev_guest(kvm))
1569 return -ENOTTY;
1570
1571 data.handle = sev->handle;
1572 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1573 }
1574
is_cmd_allowed_from_mirror(u32 cmd_id)1575 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1576 {
1577 /*
1578 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1579 * active mirror VMs. Also allow the debugging and status commands.
1580 */
1581 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1582 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1583 cmd_id == KVM_SEV_DBG_ENCRYPT)
1584 return true;
1585
1586 return false;
1587 }
1588
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1589 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1590 {
1591 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1592 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1593 int r = -EBUSY;
1594
1595 if (dst_kvm == src_kvm)
1596 return -EINVAL;
1597
1598 /*
1599 * Bail if these VMs are already involved in a migration to avoid
1600 * deadlock between two VMs trying to migrate to/from each other.
1601 */
1602 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1603 return -EBUSY;
1604
1605 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1606 goto release_dst;
1607
1608 r = -EINTR;
1609 if (mutex_lock_killable(&dst_kvm->lock))
1610 goto release_src;
1611 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1612 goto unlock_dst;
1613 return 0;
1614
1615 unlock_dst:
1616 mutex_unlock(&dst_kvm->lock);
1617 release_src:
1618 atomic_set_release(&src_sev->migration_in_progress, 0);
1619 release_dst:
1620 atomic_set_release(&dst_sev->migration_in_progress, 0);
1621 return r;
1622 }
1623
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1624 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1625 {
1626 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1627 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1628
1629 mutex_unlock(&dst_kvm->lock);
1630 mutex_unlock(&src_kvm->lock);
1631 atomic_set_release(&dst_sev->migration_in_progress, 0);
1632 atomic_set_release(&src_sev->migration_in_progress, 0);
1633 }
1634
1635 /* vCPU mutex subclasses. */
1636 enum sev_migration_role {
1637 SEV_MIGRATION_SOURCE = 0,
1638 SEV_MIGRATION_TARGET,
1639 SEV_NR_MIGRATION_ROLES,
1640 };
1641
sev_lock_vcpus_for_migration(struct kvm * kvm,enum sev_migration_role role)1642 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1643 enum sev_migration_role role)
1644 {
1645 struct kvm_vcpu *vcpu;
1646 unsigned long i, j;
1647
1648 kvm_for_each_vcpu(i, vcpu, kvm) {
1649 if (mutex_lock_killable_nested(&vcpu->mutex, role))
1650 goto out_unlock;
1651
1652 #ifdef CONFIG_PROVE_LOCKING
1653 if (!i)
1654 /*
1655 * Reset the role to one that avoids colliding with
1656 * the role used for the first vcpu mutex.
1657 */
1658 role = SEV_NR_MIGRATION_ROLES;
1659 else
1660 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1661 #endif
1662 }
1663
1664 return 0;
1665
1666 out_unlock:
1667
1668 kvm_for_each_vcpu(j, vcpu, kvm) {
1669 if (i == j)
1670 break;
1671
1672 #ifdef CONFIG_PROVE_LOCKING
1673 if (j)
1674 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1675 #endif
1676
1677 mutex_unlock(&vcpu->mutex);
1678 }
1679 return -EINTR;
1680 }
1681
sev_unlock_vcpus_for_migration(struct kvm * kvm)1682 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1683 {
1684 struct kvm_vcpu *vcpu;
1685 unsigned long i;
1686 bool first = true;
1687
1688 kvm_for_each_vcpu(i, vcpu, kvm) {
1689 if (first)
1690 first = false;
1691 else
1692 mutex_acquire(&vcpu->mutex.dep_map,
1693 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1694
1695 mutex_unlock(&vcpu->mutex);
1696 }
1697 }
1698
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1699 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1700 {
1701 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1702 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1703 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1704 struct vcpu_svm *dst_svm, *src_svm;
1705 struct kvm_sev_info *mirror;
1706 unsigned long i;
1707
1708 dst->active = true;
1709 dst->asid = src->asid;
1710 dst->handle = src->handle;
1711 dst->pages_locked = src->pages_locked;
1712 dst->enc_context_owner = src->enc_context_owner;
1713 dst->es_active = src->es_active;
1714
1715 src->asid = 0;
1716 src->active = false;
1717 src->handle = 0;
1718 src->pages_locked = 0;
1719 src->enc_context_owner = NULL;
1720 src->es_active = false;
1721
1722 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1723
1724 /*
1725 * If this VM has mirrors, "transfer" each mirror's refcount of the
1726 * source to the destination (this KVM). The caller holds a reference
1727 * to the source, so there's no danger of use-after-free.
1728 */
1729 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1730 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1731 kvm_get_kvm(dst_kvm);
1732 kvm_put_kvm(src_kvm);
1733 mirror->enc_context_owner = dst_kvm;
1734 }
1735
1736 /*
1737 * If this VM is a mirror, remove the old mirror from the owners list
1738 * and add the new mirror to the list.
1739 */
1740 if (is_mirroring_enc_context(dst_kvm)) {
1741 struct kvm_sev_info *owner_sev_info =
1742 &to_kvm_svm(dst->enc_context_owner)->sev_info;
1743
1744 list_del(&src->mirror_entry);
1745 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1746 }
1747
1748 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1749 dst_svm = to_svm(dst_vcpu);
1750
1751 sev_init_vmcb(dst_svm);
1752
1753 if (!dst->es_active)
1754 continue;
1755
1756 /*
1757 * Note, the source is not required to have the same number of
1758 * vCPUs as the destination when migrating a vanilla SEV VM.
1759 */
1760 src_vcpu = kvm_get_vcpu(src_kvm, i);
1761 src_svm = to_svm(src_vcpu);
1762
1763 /*
1764 * Transfer VMSA and GHCB state to the destination. Nullify and
1765 * clear source fields as appropriate, the state now belongs to
1766 * the destination.
1767 */
1768 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1769 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1770 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1771 dst_vcpu->arch.guest_state_protected = true;
1772
1773 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1774 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1775 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1776 src_vcpu->arch.guest_state_protected = false;
1777 }
1778 }
1779
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)1780 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1781 {
1782 struct kvm_vcpu *src_vcpu;
1783 unsigned long i;
1784
1785 if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
1786 dst->created_vcpus != atomic_read(&dst->online_vcpus))
1787 return -EBUSY;
1788
1789 if (!sev_es_guest(src))
1790 return 0;
1791
1792 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1793 return -EINVAL;
1794
1795 kvm_for_each_vcpu(i, src_vcpu, src) {
1796 if (!src_vcpu->arch.guest_state_protected)
1797 return -EINVAL;
1798 }
1799
1800 return 0;
1801 }
1802
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)1803 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1804 {
1805 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1806 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1807 struct fd f = fdget(source_fd);
1808 struct kvm *source_kvm;
1809 bool charged = false;
1810 int ret;
1811
1812 if (!f.file)
1813 return -EBADF;
1814
1815 if (!file_is_kvm(f.file)) {
1816 ret = -EBADF;
1817 goto out_fput;
1818 }
1819
1820 source_kvm = f.file->private_data;
1821 ret = sev_lock_two_vms(kvm, source_kvm);
1822 if (ret)
1823 goto out_fput;
1824
1825 if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1826 ret = -EINVAL;
1827 goto out_unlock;
1828 }
1829
1830 src_sev = &to_kvm_svm(source_kvm)->sev_info;
1831
1832 dst_sev->misc_cg = get_current_misc_cg();
1833 cg_cleanup_sev = dst_sev;
1834 if (dst_sev->misc_cg != src_sev->misc_cg) {
1835 ret = sev_misc_cg_try_charge(dst_sev);
1836 if (ret)
1837 goto out_dst_cgroup;
1838 charged = true;
1839 }
1840
1841 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1842 if (ret)
1843 goto out_dst_cgroup;
1844 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1845 if (ret)
1846 goto out_dst_vcpu;
1847
1848 ret = sev_check_source_vcpus(kvm, source_kvm);
1849 if (ret)
1850 goto out_source_vcpu;
1851
1852 sev_migrate_from(kvm, source_kvm);
1853 kvm_vm_dead(source_kvm);
1854 cg_cleanup_sev = src_sev;
1855 ret = 0;
1856
1857 out_source_vcpu:
1858 sev_unlock_vcpus_for_migration(source_kvm);
1859 out_dst_vcpu:
1860 sev_unlock_vcpus_for_migration(kvm);
1861 out_dst_cgroup:
1862 /* Operates on the source on success, on the destination on failure. */
1863 if (charged)
1864 sev_misc_cg_uncharge(cg_cleanup_sev);
1865 put_misc_cg(cg_cleanup_sev->misc_cg);
1866 cg_cleanup_sev->misc_cg = NULL;
1867 out_unlock:
1868 sev_unlock_two_vms(kvm, source_kvm);
1869 out_fput:
1870 fdput(f);
1871 return ret;
1872 }
1873
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)1874 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1875 {
1876 struct kvm_sev_cmd sev_cmd;
1877 int r;
1878
1879 if (!sev_enabled)
1880 return -ENOTTY;
1881
1882 if (!argp)
1883 return 0;
1884
1885 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1886 return -EFAULT;
1887
1888 mutex_lock(&kvm->lock);
1889
1890 /* Only the enc_context_owner handles some memory enc operations. */
1891 if (is_mirroring_enc_context(kvm) &&
1892 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1893 r = -EINVAL;
1894 goto out;
1895 }
1896
1897 switch (sev_cmd.id) {
1898 case KVM_SEV_ES_INIT:
1899 if (!sev_es_enabled) {
1900 r = -ENOTTY;
1901 goto out;
1902 }
1903 fallthrough;
1904 case KVM_SEV_INIT:
1905 r = sev_guest_init(kvm, &sev_cmd);
1906 break;
1907 case KVM_SEV_LAUNCH_START:
1908 r = sev_launch_start(kvm, &sev_cmd);
1909 break;
1910 case KVM_SEV_LAUNCH_UPDATE_DATA:
1911 r = sev_launch_update_data(kvm, &sev_cmd);
1912 break;
1913 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1914 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1915 break;
1916 case KVM_SEV_LAUNCH_MEASURE:
1917 r = sev_launch_measure(kvm, &sev_cmd);
1918 break;
1919 case KVM_SEV_LAUNCH_FINISH:
1920 r = sev_launch_finish(kvm, &sev_cmd);
1921 break;
1922 case KVM_SEV_GUEST_STATUS:
1923 r = sev_guest_status(kvm, &sev_cmd);
1924 break;
1925 case KVM_SEV_DBG_DECRYPT:
1926 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1927 break;
1928 case KVM_SEV_DBG_ENCRYPT:
1929 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1930 break;
1931 case KVM_SEV_LAUNCH_SECRET:
1932 r = sev_launch_secret(kvm, &sev_cmd);
1933 break;
1934 case KVM_SEV_GET_ATTESTATION_REPORT:
1935 r = sev_get_attestation_report(kvm, &sev_cmd);
1936 break;
1937 case KVM_SEV_SEND_START:
1938 r = sev_send_start(kvm, &sev_cmd);
1939 break;
1940 case KVM_SEV_SEND_UPDATE_DATA:
1941 r = sev_send_update_data(kvm, &sev_cmd);
1942 break;
1943 case KVM_SEV_SEND_FINISH:
1944 r = sev_send_finish(kvm, &sev_cmd);
1945 break;
1946 case KVM_SEV_SEND_CANCEL:
1947 r = sev_send_cancel(kvm, &sev_cmd);
1948 break;
1949 case KVM_SEV_RECEIVE_START:
1950 r = sev_receive_start(kvm, &sev_cmd);
1951 break;
1952 case KVM_SEV_RECEIVE_UPDATE_DATA:
1953 r = sev_receive_update_data(kvm, &sev_cmd);
1954 break;
1955 case KVM_SEV_RECEIVE_FINISH:
1956 r = sev_receive_finish(kvm, &sev_cmd);
1957 break;
1958 default:
1959 r = -EINVAL;
1960 goto out;
1961 }
1962
1963 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1964 r = -EFAULT;
1965
1966 out:
1967 mutex_unlock(&kvm->lock);
1968 return r;
1969 }
1970
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)1971 int sev_mem_enc_register_region(struct kvm *kvm,
1972 struct kvm_enc_region *range)
1973 {
1974 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1975 struct enc_region *region;
1976 int ret = 0;
1977
1978 if (!sev_guest(kvm))
1979 return -ENOTTY;
1980
1981 /* If kvm is mirroring encryption context it isn't responsible for it */
1982 if (is_mirroring_enc_context(kvm))
1983 return -EINVAL;
1984
1985 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1986 return -EINVAL;
1987
1988 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1989 if (!region)
1990 return -ENOMEM;
1991
1992 mutex_lock(&kvm->lock);
1993 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
1994 if (IS_ERR(region->pages)) {
1995 ret = PTR_ERR(region->pages);
1996 mutex_unlock(&kvm->lock);
1997 goto e_free;
1998 }
1999
2000 /*
2001 * The guest may change the memory encryption attribute from C=0 -> C=1
2002 * or vice versa for this memory range. Lets make sure caches are
2003 * flushed to ensure that guest data gets written into memory with
2004 * correct C-bit. Note, this must be done before dropping kvm->lock,
2005 * as region and its array of pages can be freed by a different task
2006 * once kvm->lock is released.
2007 */
2008 sev_clflush_pages(region->pages, region->npages);
2009
2010 region->uaddr = range->addr;
2011 region->size = range->size;
2012
2013 list_add_tail(®ion->list, &sev->regions_list);
2014 mutex_unlock(&kvm->lock);
2015
2016 return ret;
2017
2018 e_free:
2019 kfree(region);
2020 return ret;
2021 }
2022
2023 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2024 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2025 {
2026 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2027 struct list_head *head = &sev->regions_list;
2028 struct enc_region *i;
2029
2030 list_for_each_entry(i, head, list) {
2031 if (i->uaddr == range->addr &&
2032 i->size == range->size)
2033 return i;
2034 }
2035
2036 return NULL;
2037 }
2038
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2039 static void __unregister_enc_region_locked(struct kvm *kvm,
2040 struct enc_region *region)
2041 {
2042 sev_unpin_memory(kvm, region->pages, region->npages);
2043 list_del(®ion->list);
2044 kfree(region);
2045 }
2046
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2047 int sev_mem_enc_unregister_region(struct kvm *kvm,
2048 struct kvm_enc_region *range)
2049 {
2050 struct enc_region *region;
2051 int ret;
2052
2053 /* If kvm is mirroring encryption context it isn't responsible for it */
2054 if (is_mirroring_enc_context(kvm))
2055 return -EINVAL;
2056
2057 mutex_lock(&kvm->lock);
2058
2059 if (!sev_guest(kvm)) {
2060 ret = -ENOTTY;
2061 goto failed;
2062 }
2063
2064 region = find_enc_region(kvm, range);
2065 if (!region) {
2066 ret = -EINVAL;
2067 goto failed;
2068 }
2069
2070 /*
2071 * Ensure that all guest tagged cache entries are flushed before
2072 * releasing the pages back to the system for use. CLFLUSH will
2073 * not do this, so issue a WBINVD.
2074 */
2075 wbinvd_on_all_cpus();
2076
2077 __unregister_enc_region_locked(kvm, region);
2078
2079 mutex_unlock(&kvm->lock);
2080 return 0;
2081
2082 failed:
2083 mutex_unlock(&kvm->lock);
2084 return ret;
2085 }
2086
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2087 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2088 {
2089 struct fd f = fdget(source_fd);
2090 struct kvm *source_kvm;
2091 struct kvm_sev_info *source_sev, *mirror_sev;
2092 int ret;
2093
2094 if (!f.file)
2095 return -EBADF;
2096
2097 if (!file_is_kvm(f.file)) {
2098 ret = -EBADF;
2099 goto e_source_fput;
2100 }
2101
2102 source_kvm = f.file->private_data;
2103 ret = sev_lock_two_vms(kvm, source_kvm);
2104 if (ret)
2105 goto e_source_fput;
2106
2107 /*
2108 * Mirrors of mirrors should work, but let's not get silly. Also
2109 * disallow out-of-band SEV/SEV-ES init if the target is already an
2110 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2111 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2112 */
2113 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2114 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2115 ret = -EINVAL;
2116 goto e_unlock;
2117 }
2118
2119 /*
2120 * The mirror kvm holds an enc_context_owner ref so its asid can't
2121 * disappear until we're done with it
2122 */
2123 source_sev = &to_kvm_svm(source_kvm)->sev_info;
2124 kvm_get_kvm(source_kvm);
2125 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2126 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2127
2128 /* Set enc_context_owner and copy its encryption context over */
2129 mirror_sev->enc_context_owner = source_kvm;
2130 mirror_sev->active = true;
2131 mirror_sev->asid = source_sev->asid;
2132 mirror_sev->fd = source_sev->fd;
2133 mirror_sev->es_active = source_sev->es_active;
2134 mirror_sev->handle = source_sev->handle;
2135 INIT_LIST_HEAD(&mirror_sev->regions_list);
2136 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2137 ret = 0;
2138
2139 /*
2140 * Do not copy ap_jump_table. Since the mirror does not share the same
2141 * KVM contexts as the original, and they may have different
2142 * memory-views.
2143 */
2144
2145 e_unlock:
2146 sev_unlock_two_vms(kvm, source_kvm);
2147 e_source_fput:
2148 fdput(f);
2149 return ret;
2150 }
2151
sev_vm_destroy(struct kvm * kvm)2152 void sev_vm_destroy(struct kvm *kvm)
2153 {
2154 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2155 struct list_head *head = &sev->regions_list;
2156 struct list_head *pos, *q;
2157
2158 if (!sev_guest(kvm))
2159 return;
2160
2161 WARN_ON(!list_empty(&sev->mirror_vms));
2162
2163 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2164 if (is_mirroring_enc_context(kvm)) {
2165 struct kvm *owner_kvm = sev->enc_context_owner;
2166
2167 mutex_lock(&owner_kvm->lock);
2168 list_del(&sev->mirror_entry);
2169 mutex_unlock(&owner_kvm->lock);
2170 kvm_put_kvm(owner_kvm);
2171 return;
2172 }
2173
2174 /*
2175 * Ensure that all guest tagged cache entries are flushed before
2176 * releasing the pages back to the system for use. CLFLUSH will
2177 * not do this, so issue a WBINVD.
2178 */
2179 wbinvd_on_all_cpus();
2180
2181 /*
2182 * if userspace was terminated before unregistering the memory regions
2183 * then lets unpin all the registered memory.
2184 */
2185 if (!list_empty(head)) {
2186 list_for_each_safe(pos, q, head) {
2187 __unregister_enc_region_locked(kvm,
2188 list_entry(pos, struct enc_region, list));
2189 cond_resched();
2190 }
2191 }
2192
2193 sev_unbind_asid(kvm, sev->handle);
2194 sev_asid_free(sev);
2195 }
2196
sev_set_cpu_caps(void)2197 void __init sev_set_cpu_caps(void)
2198 {
2199 if (!sev_enabled)
2200 kvm_cpu_cap_clear(X86_FEATURE_SEV);
2201 if (!sev_es_enabled)
2202 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2203 }
2204
sev_hardware_setup(void)2205 void __init sev_hardware_setup(void)
2206 {
2207 #ifdef CONFIG_KVM_AMD_SEV
2208 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2209 bool sev_es_supported = false;
2210 bool sev_supported = false;
2211
2212 if (!sev_enabled || !npt_enabled || !nrips)
2213 goto out;
2214
2215 /*
2216 * SEV must obviously be supported in hardware. Sanity check that the
2217 * CPU supports decode assists, which is mandatory for SEV guests to
2218 * support instruction emulation.
2219 */
2220 if (!boot_cpu_has(X86_FEATURE_SEV) ||
2221 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2222 goto out;
2223
2224 /* Retrieve SEV CPUID information */
2225 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2226
2227 /* Set encryption bit location for SEV-ES guests */
2228 sev_enc_bit = ebx & 0x3f;
2229
2230 /* Maximum number of encrypted guests supported simultaneously */
2231 max_sev_asid = ecx;
2232 if (!max_sev_asid)
2233 goto out;
2234
2235 /* Minimum ASID value that should be used for SEV guest */
2236 min_sev_asid = edx;
2237 sev_me_mask = 1UL << (ebx & 0x3f);
2238
2239 /*
2240 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2241 * even though it's never used, so that the bitmap is indexed by the
2242 * actual ASID.
2243 */
2244 nr_asids = max_sev_asid + 1;
2245 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2246 if (!sev_asid_bitmap)
2247 goto out;
2248
2249 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2250 if (!sev_reclaim_asid_bitmap) {
2251 bitmap_free(sev_asid_bitmap);
2252 sev_asid_bitmap = NULL;
2253 goto out;
2254 }
2255
2256 if (min_sev_asid <= max_sev_asid) {
2257 sev_asid_count = max_sev_asid - min_sev_asid + 1;
2258 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2259 }
2260 sev_supported = true;
2261
2262 /* SEV-ES support requested? */
2263 if (!sev_es_enabled)
2264 goto out;
2265
2266 /*
2267 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2268 * instruction stream, i.e. can't emulate in response to a #NPF and
2269 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2270 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2271 */
2272 if (!enable_mmio_caching)
2273 goto out;
2274
2275 /* Does the CPU support SEV-ES? */
2276 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2277 goto out;
2278
2279 if (!lbrv) {
2280 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
2281 "LBRV must be present for SEV-ES support");
2282 goto out;
2283 }
2284
2285 /* Has the system been allocated ASIDs for SEV-ES? */
2286 if (min_sev_asid == 1)
2287 goto out;
2288
2289 sev_es_asid_count = min_sev_asid - 1;
2290 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2291 sev_es_supported = true;
2292
2293 out:
2294 if (boot_cpu_has(X86_FEATURE_SEV))
2295 pr_info("SEV %s (ASIDs %u - %u)\n",
2296 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
2297 "unusable" :
2298 "disabled",
2299 min_sev_asid, max_sev_asid);
2300 if (boot_cpu_has(X86_FEATURE_SEV_ES))
2301 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2302 sev_es_supported ? "enabled" : "disabled",
2303 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2304
2305 sev_enabled = sev_supported;
2306 sev_es_enabled = sev_es_supported;
2307 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2308 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2309 sev_es_debug_swap_enabled = false;
2310 #endif
2311 }
2312
sev_hardware_unsetup(void)2313 void sev_hardware_unsetup(void)
2314 {
2315 if (!sev_enabled)
2316 return;
2317
2318 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2319 sev_flush_asids(1, max_sev_asid);
2320
2321 bitmap_free(sev_asid_bitmap);
2322 bitmap_free(sev_reclaim_asid_bitmap);
2323
2324 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2325 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2326 }
2327
sev_cpu_init(struct svm_cpu_data * sd)2328 int sev_cpu_init(struct svm_cpu_data *sd)
2329 {
2330 if (!sev_enabled)
2331 return 0;
2332
2333 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2334 if (!sd->sev_vmcbs)
2335 return -ENOMEM;
2336
2337 return 0;
2338 }
2339
2340 /*
2341 * Pages used by hardware to hold guest encrypted state must be flushed before
2342 * returning them to the system.
2343 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)2344 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2345 {
2346 unsigned int asid = sev_get_asid(vcpu->kvm);
2347
2348 /*
2349 * Note! The address must be a kernel address, as regular page walk
2350 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2351 * address is non-deterministic and unsafe. This function deliberately
2352 * takes a pointer to deter passing in a user address.
2353 */
2354 unsigned long addr = (unsigned long)va;
2355
2356 /*
2357 * If CPU enforced cache coherency for encrypted mappings of the
2358 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2359 * flush is still needed in order to work properly with DMA devices.
2360 */
2361 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2362 clflush_cache_range(va, PAGE_SIZE);
2363 return;
2364 }
2365
2366 /*
2367 * VM Page Flush takes a host virtual address and a guest ASID. Fall
2368 * back to WBINVD if this faults so as not to make any problems worse
2369 * by leaving stale encrypted data in the cache.
2370 */
2371 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2372 goto do_wbinvd;
2373
2374 return;
2375
2376 do_wbinvd:
2377 wbinvd_on_all_cpus();
2378 }
2379
sev_guest_memory_reclaimed(struct kvm * kvm)2380 void sev_guest_memory_reclaimed(struct kvm *kvm)
2381 {
2382 if (!sev_guest(kvm))
2383 return;
2384
2385 wbinvd_on_all_cpus();
2386 }
2387
sev_free_vcpu(struct kvm_vcpu * vcpu)2388 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2389 {
2390 struct vcpu_svm *svm;
2391
2392 if (!sev_es_guest(vcpu->kvm))
2393 return;
2394
2395 svm = to_svm(vcpu);
2396
2397 if (vcpu->arch.guest_state_protected)
2398 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2399
2400 __free_page(virt_to_page(svm->sev_es.vmsa));
2401
2402 if (svm->sev_es.ghcb_sa_free)
2403 kvfree(svm->sev_es.ghcb_sa);
2404 }
2405
dump_ghcb(struct vcpu_svm * svm)2406 static void dump_ghcb(struct vcpu_svm *svm)
2407 {
2408 struct ghcb *ghcb = svm->sev_es.ghcb;
2409 unsigned int nbits;
2410
2411 /* Re-use the dump_invalid_vmcb module parameter */
2412 if (!dump_invalid_vmcb) {
2413 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2414 return;
2415 }
2416
2417 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2418
2419 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2420 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2421 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2422 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2423 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2424 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2425 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2426 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2427 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2428 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2429 }
2430
sev_es_sync_to_ghcb(struct vcpu_svm * svm)2431 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2432 {
2433 struct kvm_vcpu *vcpu = &svm->vcpu;
2434 struct ghcb *ghcb = svm->sev_es.ghcb;
2435
2436 /*
2437 * The GHCB protocol so far allows for the following data
2438 * to be returned:
2439 * GPRs RAX, RBX, RCX, RDX
2440 *
2441 * Copy their values, even if they may not have been written during the
2442 * VM-Exit. It's the guest's responsibility to not consume random data.
2443 */
2444 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2445 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2446 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2447 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2448 }
2449
sev_es_sync_from_ghcb(struct vcpu_svm * svm)2450 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2451 {
2452 struct vmcb_control_area *control = &svm->vmcb->control;
2453 struct kvm_vcpu *vcpu = &svm->vcpu;
2454 struct ghcb *ghcb = svm->sev_es.ghcb;
2455 u64 exit_code;
2456
2457 /*
2458 * The GHCB protocol so far allows for the following data
2459 * to be supplied:
2460 * GPRs RAX, RBX, RCX, RDX
2461 * XCR0
2462 * CPL
2463 *
2464 * VMMCALL allows the guest to provide extra registers. KVM also
2465 * expects RSI for hypercalls, so include that, too.
2466 *
2467 * Copy their values to the appropriate location if supplied.
2468 */
2469 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2470
2471 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2472 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2473
2474 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2475 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2476 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2477 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2478 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2479
2480 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2481
2482 if (kvm_ghcb_xcr0_is_valid(svm)) {
2483 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2484 kvm_update_cpuid_runtime(vcpu);
2485 }
2486
2487 /* Copy the GHCB exit information into the VMCB fields */
2488 exit_code = ghcb_get_sw_exit_code(ghcb);
2489 control->exit_code = lower_32_bits(exit_code);
2490 control->exit_code_hi = upper_32_bits(exit_code);
2491 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2492 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2493 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2494
2495 /* Clear the valid entries fields */
2496 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2497 }
2498
kvm_ghcb_get_sw_exit_code(struct vmcb_control_area * control)2499 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2500 {
2501 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2502 }
2503
sev_es_validate_vmgexit(struct vcpu_svm * svm)2504 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2505 {
2506 struct vmcb_control_area *control = &svm->vmcb->control;
2507 struct kvm_vcpu *vcpu = &svm->vcpu;
2508 u64 exit_code;
2509 u64 reason;
2510
2511 /*
2512 * Retrieve the exit code now even though it may not be marked valid
2513 * as it could help with debugging.
2514 */
2515 exit_code = kvm_ghcb_get_sw_exit_code(control);
2516
2517 /* Only GHCB Usage code 0 is supported */
2518 if (svm->sev_es.ghcb->ghcb_usage) {
2519 reason = GHCB_ERR_INVALID_USAGE;
2520 goto vmgexit_err;
2521 }
2522
2523 reason = GHCB_ERR_MISSING_INPUT;
2524
2525 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2526 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2527 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2528 goto vmgexit_err;
2529
2530 switch (exit_code) {
2531 case SVM_EXIT_READ_DR7:
2532 break;
2533 case SVM_EXIT_WRITE_DR7:
2534 if (!kvm_ghcb_rax_is_valid(svm))
2535 goto vmgexit_err;
2536 break;
2537 case SVM_EXIT_RDTSC:
2538 break;
2539 case SVM_EXIT_RDPMC:
2540 if (!kvm_ghcb_rcx_is_valid(svm))
2541 goto vmgexit_err;
2542 break;
2543 case SVM_EXIT_CPUID:
2544 if (!kvm_ghcb_rax_is_valid(svm) ||
2545 !kvm_ghcb_rcx_is_valid(svm))
2546 goto vmgexit_err;
2547 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2548 if (!kvm_ghcb_xcr0_is_valid(svm))
2549 goto vmgexit_err;
2550 break;
2551 case SVM_EXIT_INVD:
2552 break;
2553 case SVM_EXIT_IOIO:
2554 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2555 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2556 goto vmgexit_err;
2557 } else {
2558 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2559 if (!kvm_ghcb_rax_is_valid(svm))
2560 goto vmgexit_err;
2561 }
2562 break;
2563 case SVM_EXIT_MSR:
2564 if (!kvm_ghcb_rcx_is_valid(svm))
2565 goto vmgexit_err;
2566 if (control->exit_info_1) {
2567 if (!kvm_ghcb_rax_is_valid(svm) ||
2568 !kvm_ghcb_rdx_is_valid(svm))
2569 goto vmgexit_err;
2570 }
2571 break;
2572 case SVM_EXIT_VMMCALL:
2573 if (!kvm_ghcb_rax_is_valid(svm) ||
2574 !kvm_ghcb_cpl_is_valid(svm))
2575 goto vmgexit_err;
2576 break;
2577 case SVM_EXIT_RDTSCP:
2578 break;
2579 case SVM_EXIT_WBINVD:
2580 break;
2581 case SVM_EXIT_MONITOR:
2582 if (!kvm_ghcb_rax_is_valid(svm) ||
2583 !kvm_ghcb_rcx_is_valid(svm) ||
2584 !kvm_ghcb_rdx_is_valid(svm))
2585 goto vmgexit_err;
2586 break;
2587 case SVM_EXIT_MWAIT:
2588 if (!kvm_ghcb_rax_is_valid(svm) ||
2589 !kvm_ghcb_rcx_is_valid(svm))
2590 goto vmgexit_err;
2591 break;
2592 case SVM_VMGEXIT_MMIO_READ:
2593 case SVM_VMGEXIT_MMIO_WRITE:
2594 if (!kvm_ghcb_sw_scratch_is_valid(svm))
2595 goto vmgexit_err;
2596 break;
2597 case SVM_VMGEXIT_NMI_COMPLETE:
2598 case SVM_VMGEXIT_AP_HLT_LOOP:
2599 case SVM_VMGEXIT_AP_JUMP_TABLE:
2600 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2601 break;
2602 default:
2603 reason = GHCB_ERR_INVALID_EVENT;
2604 goto vmgexit_err;
2605 }
2606
2607 return 0;
2608
2609 vmgexit_err:
2610 if (reason == GHCB_ERR_INVALID_USAGE) {
2611 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2612 svm->sev_es.ghcb->ghcb_usage);
2613 } else if (reason == GHCB_ERR_INVALID_EVENT) {
2614 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2615 exit_code);
2616 } else {
2617 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2618 exit_code);
2619 dump_ghcb(svm);
2620 }
2621
2622 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2623 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2624
2625 /* Resume the guest to "return" the error code. */
2626 return 1;
2627 }
2628
sev_es_unmap_ghcb(struct vcpu_svm * svm)2629 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2630 {
2631 if (!svm->sev_es.ghcb)
2632 return;
2633
2634 if (svm->sev_es.ghcb_sa_free) {
2635 /*
2636 * The scratch area lives outside the GHCB, so there is a
2637 * buffer that, depending on the operation performed, may
2638 * need to be synced, then freed.
2639 */
2640 if (svm->sev_es.ghcb_sa_sync) {
2641 kvm_write_guest(svm->vcpu.kvm,
2642 svm->sev_es.sw_scratch,
2643 svm->sev_es.ghcb_sa,
2644 svm->sev_es.ghcb_sa_len);
2645 svm->sev_es.ghcb_sa_sync = false;
2646 }
2647
2648 kvfree(svm->sev_es.ghcb_sa);
2649 svm->sev_es.ghcb_sa = NULL;
2650 svm->sev_es.ghcb_sa_free = false;
2651 }
2652
2653 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2654
2655 sev_es_sync_to_ghcb(svm);
2656
2657 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2658 svm->sev_es.ghcb = NULL;
2659 }
2660
pre_sev_run(struct vcpu_svm * svm,int cpu)2661 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2662 {
2663 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2664 unsigned int asid = sev_get_asid(svm->vcpu.kvm);
2665
2666 /* Assign the asid allocated with this SEV guest */
2667 svm->asid = asid;
2668
2669 /*
2670 * Flush guest TLB:
2671 *
2672 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2673 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2674 */
2675 if (sd->sev_vmcbs[asid] == svm->vmcb &&
2676 svm->vcpu.arch.last_vmentry_cpu == cpu)
2677 return;
2678
2679 sd->sev_vmcbs[asid] = svm->vmcb;
2680 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2681 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2682 }
2683
2684 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)2685 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2686 {
2687 struct vmcb_control_area *control = &svm->vmcb->control;
2688 u64 ghcb_scratch_beg, ghcb_scratch_end;
2689 u64 scratch_gpa_beg, scratch_gpa_end;
2690 void *scratch_va;
2691
2692 scratch_gpa_beg = svm->sev_es.sw_scratch;
2693 if (!scratch_gpa_beg) {
2694 pr_err("vmgexit: scratch gpa not provided\n");
2695 goto e_scratch;
2696 }
2697
2698 scratch_gpa_end = scratch_gpa_beg + len;
2699 if (scratch_gpa_end < scratch_gpa_beg) {
2700 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2701 len, scratch_gpa_beg);
2702 goto e_scratch;
2703 }
2704
2705 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2706 /* Scratch area begins within GHCB */
2707 ghcb_scratch_beg = control->ghcb_gpa +
2708 offsetof(struct ghcb, shared_buffer);
2709 ghcb_scratch_end = control->ghcb_gpa +
2710 offsetof(struct ghcb, reserved_0xff0);
2711
2712 /*
2713 * If the scratch area begins within the GHCB, it must be
2714 * completely contained in the GHCB shared buffer area.
2715 */
2716 if (scratch_gpa_beg < ghcb_scratch_beg ||
2717 scratch_gpa_end > ghcb_scratch_end) {
2718 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2719 scratch_gpa_beg, scratch_gpa_end);
2720 goto e_scratch;
2721 }
2722
2723 scratch_va = (void *)svm->sev_es.ghcb;
2724 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2725 } else {
2726 /*
2727 * The guest memory must be read into a kernel buffer, so
2728 * limit the size
2729 */
2730 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2731 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2732 len, GHCB_SCRATCH_AREA_LIMIT);
2733 goto e_scratch;
2734 }
2735 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2736 if (!scratch_va)
2737 return -ENOMEM;
2738
2739 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2740 /* Unable to copy scratch area from guest */
2741 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2742
2743 kvfree(scratch_va);
2744 return -EFAULT;
2745 }
2746
2747 /*
2748 * The scratch area is outside the GHCB. The operation will
2749 * dictate whether the buffer needs to be synced before running
2750 * the vCPU next time (i.e. a read was requested so the data
2751 * must be written back to the guest memory).
2752 */
2753 svm->sev_es.ghcb_sa_sync = sync;
2754 svm->sev_es.ghcb_sa_free = true;
2755 }
2756
2757 svm->sev_es.ghcb_sa = scratch_va;
2758 svm->sev_es.ghcb_sa_len = len;
2759
2760 return 0;
2761
2762 e_scratch:
2763 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2764 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2765
2766 return 1;
2767 }
2768
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)2769 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2770 unsigned int pos)
2771 {
2772 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2773 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2774 }
2775
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)2776 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2777 {
2778 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2779 }
2780
set_ghcb_msr(struct vcpu_svm * svm,u64 value)2781 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2782 {
2783 svm->vmcb->control.ghcb_gpa = value;
2784 }
2785
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)2786 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2787 {
2788 struct vmcb_control_area *control = &svm->vmcb->control;
2789 struct kvm_vcpu *vcpu = &svm->vcpu;
2790 u64 ghcb_info;
2791 int ret = 1;
2792
2793 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2794
2795 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2796 control->ghcb_gpa);
2797
2798 switch (ghcb_info) {
2799 case GHCB_MSR_SEV_INFO_REQ:
2800 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2801 GHCB_VERSION_MIN,
2802 sev_enc_bit));
2803 break;
2804 case GHCB_MSR_CPUID_REQ: {
2805 u64 cpuid_fn, cpuid_reg, cpuid_value;
2806
2807 cpuid_fn = get_ghcb_msr_bits(svm,
2808 GHCB_MSR_CPUID_FUNC_MASK,
2809 GHCB_MSR_CPUID_FUNC_POS);
2810
2811 /* Initialize the registers needed by the CPUID intercept */
2812 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2813 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2814
2815 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2816 if (!ret) {
2817 /* Error, keep GHCB MSR value as-is */
2818 break;
2819 }
2820
2821 cpuid_reg = get_ghcb_msr_bits(svm,
2822 GHCB_MSR_CPUID_REG_MASK,
2823 GHCB_MSR_CPUID_REG_POS);
2824 if (cpuid_reg == 0)
2825 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2826 else if (cpuid_reg == 1)
2827 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2828 else if (cpuid_reg == 2)
2829 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2830 else
2831 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2832
2833 set_ghcb_msr_bits(svm, cpuid_value,
2834 GHCB_MSR_CPUID_VALUE_MASK,
2835 GHCB_MSR_CPUID_VALUE_POS);
2836
2837 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2838 GHCB_MSR_INFO_MASK,
2839 GHCB_MSR_INFO_POS);
2840 break;
2841 }
2842 case GHCB_MSR_TERM_REQ: {
2843 u64 reason_set, reason_code;
2844
2845 reason_set = get_ghcb_msr_bits(svm,
2846 GHCB_MSR_TERM_REASON_SET_MASK,
2847 GHCB_MSR_TERM_REASON_SET_POS);
2848 reason_code = get_ghcb_msr_bits(svm,
2849 GHCB_MSR_TERM_REASON_MASK,
2850 GHCB_MSR_TERM_REASON_POS);
2851 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2852 reason_set, reason_code);
2853
2854 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2855 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2856 vcpu->run->system_event.ndata = 1;
2857 vcpu->run->system_event.data[0] = control->ghcb_gpa;
2858
2859 return 0;
2860 }
2861 default:
2862 /* Error, keep GHCB MSR value as-is */
2863 break;
2864 }
2865
2866 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2867 control->ghcb_gpa, ret);
2868
2869 return ret;
2870 }
2871
sev_handle_vmgexit(struct kvm_vcpu * vcpu)2872 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2873 {
2874 struct vcpu_svm *svm = to_svm(vcpu);
2875 struct vmcb_control_area *control = &svm->vmcb->control;
2876 u64 ghcb_gpa, exit_code;
2877 int ret;
2878
2879 /* Validate the GHCB */
2880 ghcb_gpa = control->ghcb_gpa;
2881 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2882 return sev_handle_vmgexit_msr_protocol(svm);
2883
2884 if (!ghcb_gpa) {
2885 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2886
2887 /* Without a GHCB, just return right back to the guest */
2888 return 1;
2889 }
2890
2891 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2892 /* Unable to map GHCB from guest */
2893 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2894 ghcb_gpa);
2895
2896 /* Without a GHCB, just return right back to the guest */
2897 return 1;
2898 }
2899
2900 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2901
2902 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2903
2904 sev_es_sync_from_ghcb(svm);
2905 ret = sev_es_validate_vmgexit(svm);
2906 if (ret)
2907 return ret;
2908
2909 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2910 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2911
2912 exit_code = kvm_ghcb_get_sw_exit_code(control);
2913 switch (exit_code) {
2914 case SVM_VMGEXIT_MMIO_READ:
2915 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2916 if (ret)
2917 break;
2918
2919 ret = kvm_sev_es_mmio_read(vcpu,
2920 control->exit_info_1,
2921 control->exit_info_2,
2922 svm->sev_es.ghcb_sa);
2923 break;
2924 case SVM_VMGEXIT_MMIO_WRITE:
2925 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2926 if (ret)
2927 break;
2928
2929 ret = kvm_sev_es_mmio_write(vcpu,
2930 control->exit_info_1,
2931 control->exit_info_2,
2932 svm->sev_es.ghcb_sa);
2933 break;
2934 case SVM_VMGEXIT_NMI_COMPLETE:
2935 ++vcpu->stat.nmi_window_exits;
2936 svm->nmi_masked = false;
2937 kvm_make_request(KVM_REQ_EVENT, vcpu);
2938 ret = 1;
2939 break;
2940 case SVM_VMGEXIT_AP_HLT_LOOP:
2941 ret = kvm_emulate_ap_reset_hold(vcpu);
2942 break;
2943 case SVM_VMGEXIT_AP_JUMP_TABLE: {
2944 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2945
2946 switch (control->exit_info_1) {
2947 case 0:
2948 /* Set AP jump table address */
2949 sev->ap_jump_table = control->exit_info_2;
2950 break;
2951 case 1:
2952 /* Get AP jump table address */
2953 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2954 break;
2955 default:
2956 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2957 control->exit_info_1);
2958 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2959 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2960 }
2961
2962 ret = 1;
2963 break;
2964 }
2965 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2966 vcpu_unimpl(vcpu,
2967 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2968 control->exit_info_1, control->exit_info_2);
2969 ret = -EINVAL;
2970 break;
2971 default:
2972 ret = svm_invoke_exit_handler(vcpu, exit_code);
2973 }
2974
2975 return ret;
2976 }
2977
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)2978 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2979 {
2980 int count;
2981 int bytes;
2982 int r;
2983
2984 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2985 return -EINVAL;
2986
2987 count = svm->vmcb->control.exit_info_2;
2988 if (unlikely(check_mul_overflow(count, size, &bytes)))
2989 return -EINVAL;
2990
2991 r = setup_vmgexit_scratch(svm, in, bytes);
2992 if (r)
2993 return r;
2994
2995 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2996 count, in);
2997 }
2998
sev_es_vcpu_after_set_cpuid(struct vcpu_svm * svm)2999 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3000 {
3001 struct kvm_vcpu *vcpu = &svm->vcpu;
3002
3003 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
3004 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
3005 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
3006
3007 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
3008 }
3009
3010 /*
3011 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
3012 * the host/guest supports its use.
3013 *
3014 * guest_can_use() checks a number of requirements on the host/guest to
3015 * ensure that MSR_IA32_XSS is available, but it might report true even
3016 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
3017 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
3018 * to further check that the guest CPUID actually supports
3019 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
3020 * guests will still get intercepted and caught in the normal
3021 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
3022 */
3023 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3024 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
3026 else
3027 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
3028 }
3029
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)3030 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3031 {
3032 struct kvm_vcpu *vcpu = &svm->vcpu;
3033 struct kvm_cpuid_entry2 *best;
3034
3035 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3036 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3037 if (best)
3038 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3039
3040 if (sev_es_guest(svm->vcpu.kvm))
3041 sev_es_vcpu_after_set_cpuid(svm);
3042 }
3043
sev_es_init_vmcb(struct vcpu_svm * svm)3044 static void sev_es_init_vmcb(struct vcpu_svm *svm)
3045 {
3046 struct vmcb *vmcb = svm->vmcb01.ptr;
3047 struct kvm_vcpu *vcpu = &svm->vcpu;
3048
3049 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3050
3051 /*
3052 * An SEV-ES guest requires a VMSA area that is a separate from the
3053 * VMCB page. Do not include the encryption mask on the VMSA physical
3054 * address since hardware will access it using the guest key. Note,
3055 * the VMSA will be NULL if this vCPU is the destination for intrahost
3056 * migration, and will be copied later.
3057 */
3058 if (svm->sev_es.vmsa)
3059 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3060
3061 /* Can't intercept CR register access, HV can't modify CR registers */
3062 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3063 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3064 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3065 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3066 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3067 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3068
3069 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3070
3071 /* Track EFER/CR register changes */
3072 svm_set_intercept(svm, TRAP_EFER_WRITE);
3073 svm_set_intercept(svm, TRAP_CR0_WRITE);
3074 svm_set_intercept(svm, TRAP_CR4_WRITE);
3075 svm_set_intercept(svm, TRAP_CR8_WRITE);
3076
3077 vmcb->control.intercepts[INTERCEPT_DR] = 0;
3078 if (!sev_es_debug_swap_enabled) {
3079 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3080 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3081 recalc_intercepts(svm);
3082 } else {
3083 /*
3084 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
3085 * allow debugging SEV-ES guests, and enables DebugSwap iff
3086 * NO_NESTED_DATA_BP is supported, so there's no reason to
3087 * intercept #DB when DebugSwap is enabled. For simplicity
3088 * with respect to guest debug, intercept #DB for other VMs
3089 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3090 * guest can't DoS the CPU with infinite #DB vectoring.
3091 */
3092 clr_exception_intercept(svm, DB_VECTOR);
3093 }
3094
3095 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
3096 svm_clr_intercept(svm, INTERCEPT_XSETBV);
3097
3098 /* Clear intercepts on selected MSRs */
3099 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3100 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3101 }
3102
sev_init_vmcb(struct vcpu_svm * svm)3103 void sev_init_vmcb(struct vcpu_svm *svm)
3104 {
3105 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3106 clr_exception_intercept(svm, UD_VECTOR);
3107
3108 /*
3109 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3110 * KVM can't decrypt guest memory to decode the faulting instruction.
3111 */
3112 clr_exception_intercept(svm, GP_VECTOR);
3113
3114 if (sev_es_guest(svm->vcpu.kvm))
3115 sev_es_init_vmcb(svm);
3116 }
3117
sev_es_vcpu_reset(struct vcpu_svm * svm)3118 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3119 {
3120 /*
3121 * Set the GHCB MSR value as per the GHCB specification when emulating
3122 * vCPU RESET for an SEV-ES guest.
3123 */
3124 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3125 GHCB_VERSION_MIN,
3126 sev_enc_bit));
3127 }
3128
sev_es_prepare_switch_to_guest(struct sev_es_save_area * hostsa)3129 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3130 {
3131 /*
3132 * All host state for SEV-ES guests is categorized into three swap types
3133 * based on how it is handled by hardware during a world switch:
3134 *
3135 * A: VMRUN: Host state saved in host save area
3136 * VMEXIT: Host state loaded from host save area
3137 *
3138 * B: VMRUN: Host state _NOT_ saved in host save area
3139 * VMEXIT: Host state loaded from host save area
3140 *
3141 * C: VMRUN: Host state _NOT_ saved in host save area
3142 * VMEXIT: Host state initialized to default(reset) values
3143 *
3144 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3145 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3146 * by common SVM code).
3147 */
3148 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3149 hostsa->pkru = read_pkru();
3150 hostsa->xss = host_xss;
3151
3152 /*
3153 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3154 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3155 * saves and loads debug registers (Type-A).
3156 */
3157 if (sev_es_debug_swap_enabled) {
3158 hostsa->dr0 = native_get_debugreg(0);
3159 hostsa->dr1 = native_get_debugreg(1);
3160 hostsa->dr2 = native_get_debugreg(2);
3161 hostsa->dr3 = native_get_debugreg(3);
3162 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3163 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3164 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3165 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3166 }
3167 }
3168
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)3169 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3170 {
3171 struct vcpu_svm *svm = to_svm(vcpu);
3172
3173 /* First SIPI: Use the values as initially set by the VMM */
3174 if (!svm->sev_es.received_first_sipi) {
3175 svm->sev_es.received_first_sipi = true;
3176 return;
3177 }
3178
3179 /*
3180 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3181 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3182 * non-zero value.
3183 */
3184 if (!svm->sev_es.ghcb)
3185 return;
3186
3187 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3188 }
3189