1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31
32 #include "trace.h"
33 #include "nvme.h"
34
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 /*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44 #define NVME_MAX_KB_SZ 8192
45 #define NVME_MAX_SEGS 128
46 #define NVME_MAX_NR_ALLOCATIONS 5
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72 };
73
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
io_queue_count_set(const char * val,const struct kernel_param * kp)78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(val, 10, &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87 }
88
89 static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92 };
93
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108 struct nvme_dev;
109 struct nvme_queue;
110
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114
115 /*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118 struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144
145 mempool_t *iod_mempool;
146
147 /* shadow doorbell buffer support: */
148 __le32 *dbbuf_dbs;
149 dma_addr_t dbbuf_dbs_dma_addr;
150 __le32 *dbbuf_eis;
151 dma_addr_t dbbuf_eis_dma_addr;
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
156 u32 host_mem_descs_size;
157 dma_addr_t host_mem_descs_dma;
158 struct nvme_host_mem_buf_desc *host_mem_descs;
159 void **host_mem_desc_bufs;
160 unsigned int nr_allocated_queues;
161 unsigned int nr_write_queues;
162 unsigned int nr_poll_queues;
163 };
164
io_queue_depth_set(const char * val,const struct kernel_param * kp)165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 NVME_PCI_MAX_QUEUE_SIZE);
169 }
170
sq_idx(unsigned int qid,u32 stride)171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 return qid * 2 * stride;
174 }
175
cq_idx(unsigned int qid,u32 stride)176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 return (qid * 2 + 1) * stride;
179 }
180
to_nvme_dev(struct nvme_ctrl * ctrl)181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185
186 /*
187 * An NVM Express queue. Each device has at least two (one for admin
188 * commands and one for I/O commands).
189 */
190 struct nvme_queue {
191 struct nvme_dev *dev;
192 spinlock_t sq_lock;
193 void *sq_cmds;
194 /* only used for poll queues: */
195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 struct nvme_completion *cqes;
197 dma_addr_t sq_dma_addr;
198 dma_addr_t cq_dma_addr;
199 u32 __iomem *q_db;
200 u32 q_depth;
201 u16 cq_vector;
202 u16 sq_tail;
203 u16 last_sq_tail;
204 u16 cq_head;
205 u16 qid;
206 u8 cq_phase;
207 u8 sqes;
208 unsigned long flags;
209 #define NVMEQ_ENABLED 0
210 #define NVMEQ_SQ_CMB 1
211 #define NVMEQ_DELETE_ERROR 2
212 #define NVMEQ_POLLED 3
213 __le32 *dbbuf_sq_db;
214 __le32 *dbbuf_cq_db;
215 __le32 *dbbuf_sq_ei;
216 __le32 *dbbuf_cq_ei;
217 struct completion delete_done;
218 };
219
220 union nvme_descriptor {
221 struct nvme_sgl_desc *sg_list;
222 __le64 *prp_list;
223 };
224
225 /*
226 * The nvme_iod describes the data in an I/O.
227 *
228 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229 * to the actual struct scatterlist.
230 */
231 struct nvme_iod {
232 struct nvme_request req;
233 struct nvme_command cmd;
234 bool aborted;
235 s8 nr_allocations; /* PRP list pool allocations. 0 means small
236 pool in use */
237 unsigned int dma_len; /* length of single DMA segment mapping */
238 dma_addr_t first_dma;
239 dma_addr_t meta_dma;
240 struct sg_table sgt;
241 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
242 };
243
nvme_dbbuf_size(struct nvme_dev * dev)244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 {
246 return dev->nr_allocated_queues * 8 * dev->db_stride;
247 }
248
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 {
251 unsigned int mem_size = nvme_dbbuf_size(dev);
252
253 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 return;
255
256 if (dev->dbbuf_dbs) {
257 /*
258 * Clear the dbbuf memory so the driver doesn't observe stale
259 * values from the previous instantiation.
260 */
261 memset(dev->dbbuf_dbs, 0, mem_size);
262 memset(dev->dbbuf_eis, 0, mem_size);
263 return;
264 }
265
266 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 &dev->dbbuf_dbs_dma_addr,
268 GFP_KERNEL);
269 if (!dev->dbbuf_dbs)
270 goto fail;
271 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 &dev->dbbuf_eis_dma_addr,
273 GFP_KERNEL);
274 if (!dev->dbbuf_eis)
275 goto fail_free_dbbuf_dbs;
276 return;
277
278 fail_free_dbbuf_dbs:
279 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 dev->dbbuf_dbs_dma_addr);
281 dev->dbbuf_dbs = NULL;
282 fail:
283 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
284 }
285
nvme_dbbuf_dma_free(struct nvme_dev * dev)286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 {
288 unsigned int mem_size = nvme_dbbuf_size(dev);
289
290 if (dev->dbbuf_dbs) {
291 dma_free_coherent(dev->dev, mem_size,
292 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 dev->dbbuf_dbs = NULL;
294 }
295 if (dev->dbbuf_eis) {
296 dma_free_coherent(dev->dev, mem_size,
297 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 dev->dbbuf_eis = NULL;
299 }
300 }
301
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)302 static void nvme_dbbuf_init(struct nvme_dev *dev,
303 struct nvme_queue *nvmeq, int qid)
304 {
305 if (!dev->dbbuf_dbs || !qid)
306 return;
307
308 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312 }
313
nvme_dbbuf_free(struct nvme_queue * nvmeq)314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315 {
316 if (!nvmeq->qid)
317 return;
318
319 nvmeq->dbbuf_sq_db = NULL;
320 nvmeq->dbbuf_cq_db = NULL;
321 nvmeq->dbbuf_sq_ei = NULL;
322 nvmeq->dbbuf_cq_ei = NULL;
323 }
324
nvme_dbbuf_set(struct nvme_dev * dev)325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 struct nvme_command c = { };
328 unsigned int i;
329
330 if (!dev->dbbuf_dbs)
331 return;
332
333 c.dbbuf.opcode = nvme_admin_dbbuf;
334 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336
337 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 /* Free memory and continue on */
340 nvme_dbbuf_dma_free(dev);
341
342 for (i = 1; i <= dev->online_queues; i++)
343 nvme_dbbuf_free(&dev->queues[i]);
344 }
345 }
346
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 {
349 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350 }
351
352 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,__le32 * dbbuf_db,volatile __le32 * dbbuf_ei)353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 volatile __le32 *dbbuf_ei)
355 {
356 if (dbbuf_db) {
357 u16 old_value, event_idx;
358
359 /*
360 * Ensure that the queue is written before updating
361 * the doorbell in memory
362 */
363 wmb();
364
365 old_value = le32_to_cpu(*dbbuf_db);
366 *dbbuf_db = cpu_to_le32(value);
367
368 /*
369 * Ensure that the doorbell is updated before reading the event
370 * index from memory. The controller needs to provide similar
371 * ordering to ensure the envent index is updated before reading
372 * the doorbell.
373 */
374 mb();
375
376 event_idx = le32_to_cpu(*dbbuf_ei);
377 if (!nvme_dbbuf_need_event(event_idx, value, old_value))
378 return false;
379 }
380
381 return true;
382 }
383
384 /*
385 * Will slightly overestimate the number of pages needed. This is OK
386 * as it only leads to a small amount of wasted memory for the lifetime of
387 * the I/O.
388 */
nvme_pci_npages_prp(void)389 static __always_inline int nvme_pci_npages_prp(void)
390 {
391 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
393 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
394 }
395
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 unsigned int hctx_idx)
398 {
399 struct nvme_dev *dev = to_nvme_dev(data);
400 struct nvme_queue *nvmeq = &dev->queues[0];
401
402 WARN_ON(hctx_idx != 0);
403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404
405 hctx->driver_data = nvmeq;
406 return 0;
407 }
408
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 unsigned int hctx_idx)
411 {
412 struct nvme_dev *dev = to_nvme_dev(data);
413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414
415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 hctx->driver_data = nvmeq;
417 return 0;
418 }
419
nvme_pci_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)420 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 struct request *req, unsigned int hctx_idx,
422 unsigned int numa_node)
423 {
424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425
426 nvme_req(req)->ctrl = set->driver_data;
427 nvme_req(req)->cmd = &iod->cmd;
428 return 0;
429 }
430
queue_irq_offset(struct nvme_dev * dev)431 static int queue_irq_offset(struct nvme_dev *dev)
432 {
433 /* if we have more than 1 vec, admin queue offsets us by 1 */
434 if (dev->num_vecs > 1)
435 return 1;
436
437 return 0;
438 }
439
nvme_pci_map_queues(struct blk_mq_tag_set * set)440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 {
442 struct nvme_dev *dev = to_nvme_dev(set->driver_data);
443 int i, qoff, offset;
444
445 offset = queue_irq_offset(dev);
446 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 struct blk_mq_queue_map *map = &set->map[i];
448
449 map->nr_queues = dev->io_queues[i];
450 if (!map->nr_queues) {
451 BUG_ON(i == HCTX_TYPE_DEFAULT);
452 continue;
453 }
454
455 /*
456 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 * affinity), so use the regular blk-mq cpu mapping
458 */
459 map->queue_offset = qoff;
460 if (i != HCTX_TYPE_POLL && offset)
461 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 else
463 blk_mq_map_queues(map);
464 qoff += map->nr_queues;
465 offset += map->nr_queues;
466 }
467 }
468
469 /*
470 * Write sq tail if we are asked to, or if the next command would wrap.
471 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 if (!write_sq) {
475 u16 next_tail = nvmeq->sq_tail + 1;
476
477 if (next_tail == nvmeq->q_depth)
478 next_tail = 0;
479 if (next_tail != nvmeq->last_sq_tail)
480 return;
481 }
482
483 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 writel(nvmeq->sq_tail, nvmeq->q_db);
486 nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488
nvme_sq_copy_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 struct nvme_command *cmd)
491 {
492 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 absolute_pointer(cmd), sizeof(*cmd));
494 if (++nvmeq->sq_tail == nvmeq->q_depth)
495 nvmeq->sq_tail = 0;
496 }
497
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 struct nvme_queue *nvmeq = hctx->driver_data;
501
502 spin_lock(&nvmeq->sq_lock);
503 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 nvme_write_sq_db(nvmeq, true);
505 spin_unlock(&nvmeq->sq_lock);
506 }
507
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req,int nseg)508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 int nseg)
510 {
511 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
512 unsigned int avg_seg_size;
513
514 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515
516 if (!nvme_ctrl_sgl_supported(&dev->ctrl))
517 return false;
518 if (!nvmeq->qid)
519 return false;
520 if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 return false;
522 return true;
523 }
524
nvme_free_prps(struct nvme_dev * dev,struct request * req)525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 {
527 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
528 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 dma_addr_t dma_addr = iod->first_dma;
530 int i;
531
532 for (i = 0; i < iod->nr_allocations; i++) {
533 __le64 *prp_list = iod->list[i].prp_list;
534 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535
536 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 dma_addr = next_dma_addr;
538 }
539 }
540
nvme_unmap_data(struct nvme_dev * dev,struct request * req)541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 {
543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544
545 if (iod->dma_len) {
546 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 rq_dma_dir(req));
548 return;
549 }
550
551 WARN_ON_ONCE(!iod->sgt.nents);
552
553 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554
555 if (iod->nr_allocations == 0)
556 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 iod->first_dma);
558 else if (iod->nr_allocations == 1)
559 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
560 iod->first_dma);
561 else
562 nvme_free_prps(dev, req);
563 mempool_free(iod->sgt.sgl, dev->iod_mempool);
564 }
565
nvme_print_sgl(struct scatterlist * sgl,int nents)566 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567 {
568 int i;
569 struct scatterlist *sg;
570
571 for_each_sg(sgl, sg, nents, i) {
572 dma_addr_t phys = sg_phys(sg);
573 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 "dma_address:%pad dma_length:%d\n",
575 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 sg_dma_len(sg));
577 }
578 }
579
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 struct request *req, struct nvme_rw_command *cmnd)
582 {
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 struct dma_pool *pool;
585 int length = blk_rq_payload_bytes(req);
586 struct scatterlist *sg = iod->sgt.sgl;
587 int dma_len = sg_dma_len(sg);
588 u64 dma_addr = sg_dma_address(sg);
589 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
590 __le64 *prp_list;
591 dma_addr_t prp_dma;
592 int nprps, i;
593
594 length -= (NVME_CTRL_PAGE_SIZE - offset);
595 if (length <= 0) {
596 iod->first_dma = 0;
597 goto done;
598 }
599
600 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 if (dma_len) {
602 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
603 } else {
604 sg = sg_next(sg);
605 dma_addr = sg_dma_address(sg);
606 dma_len = sg_dma_len(sg);
607 }
608
609 if (length <= NVME_CTRL_PAGE_SIZE) {
610 iod->first_dma = dma_addr;
611 goto done;
612 }
613
614 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
615 if (nprps <= (256 / 8)) {
616 pool = dev->prp_small_pool;
617 iod->nr_allocations = 0;
618 } else {
619 pool = dev->prp_page_pool;
620 iod->nr_allocations = 1;
621 }
622
623 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 if (!prp_list) {
625 iod->nr_allocations = -1;
626 return BLK_STS_RESOURCE;
627 }
628 iod->list[0].prp_list = prp_list;
629 iod->first_dma = prp_dma;
630 i = 0;
631 for (;;) {
632 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
633 __le64 *old_prp_list = prp_list;
634 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
635 if (!prp_list)
636 goto free_prps;
637 iod->list[iod->nr_allocations++].prp_list = prp_list;
638 prp_list[0] = old_prp_list[i - 1];
639 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 i = 1;
641 }
642 prp_list[i++] = cpu_to_le64(dma_addr);
643 dma_len -= NVME_CTRL_PAGE_SIZE;
644 dma_addr += NVME_CTRL_PAGE_SIZE;
645 length -= NVME_CTRL_PAGE_SIZE;
646 if (length <= 0)
647 break;
648 if (dma_len > 0)
649 continue;
650 if (unlikely(dma_len < 0))
651 goto bad_sgl;
652 sg = sg_next(sg);
653 dma_addr = sg_dma_address(sg);
654 dma_len = sg_dma_len(sg);
655 }
656 done:
657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 return BLK_STS_OK;
660 free_prps:
661 nvme_free_prps(dev, req);
662 return BLK_STS_RESOURCE;
663 bad_sgl:
664 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
665 "Invalid SGL for payload:%d nents:%d\n",
666 blk_rq_payload_bytes(req), iod->sgt.nents);
667 return BLK_STS_IOERR;
668 }
669
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 struct scatterlist *sg)
672 {
673 sge->addr = cpu_to_le64(sg_dma_address(sg));
674 sge->length = cpu_to_le32(sg_dma_len(sg));
675 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676 }
677
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 dma_addr_t dma_addr, int entries)
680 {
681 sge->addr = cpu_to_le64(dma_addr);
682 sge->length = cpu_to_le32(entries * sizeof(*sge));
683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 }
685
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd)686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
687 struct request *req, struct nvme_rw_command *cmd)
688 {
689 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
690 struct dma_pool *pool;
691 struct nvme_sgl_desc *sg_list;
692 struct scatterlist *sg = iod->sgt.sgl;
693 unsigned int entries = iod->sgt.nents;
694 dma_addr_t sgl_dma;
695 int i = 0;
696
697 /* setting the transfer type as SGL */
698 cmd->flags = NVME_CMD_SGL_METABUF;
699
700 if (entries == 1) {
701 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 return BLK_STS_OK;
703 }
704
705 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 pool = dev->prp_small_pool;
707 iod->nr_allocations = 0;
708 } else {
709 pool = dev->prp_page_pool;
710 iod->nr_allocations = 1;
711 }
712
713 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 if (!sg_list) {
715 iod->nr_allocations = -1;
716 return BLK_STS_RESOURCE;
717 }
718
719 iod->list[0].sg_list = sg_list;
720 iod->first_dma = sgl_dma;
721
722 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 do {
724 nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 sg = sg_next(sg);
726 } while (--entries > 0);
727
728 return BLK_STS_OK;
729 }
730
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 struct request *req, struct nvme_rw_command *cmnd,
733 struct bio_vec *bv)
734 {
735 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738
739 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 if (dma_mapping_error(dev->dev, iod->first_dma))
741 return BLK_STS_RESOURCE;
742 iod->dma_len = bv->bv_len;
743
744 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 if (bv->bv_len > first_prp_len)
746 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
747 else
748 cmnd->dptr.prp2 = 0;
749 return BLK_STS_OK;
750 }
751
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 struct request *req, struct nvme_rw_command *cmnd,
754 struct bio_vec *bv)
755 {
756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 if (dma_mapping_error(dev->dev, iod->first_dma))
760 return BLK_STS_RESOURCE;
761 iod->dma_len = bv->bv_len;
762
763 cmnd->flags = NVME_CMD_SGL_METABUF;
764 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
767 return BLK_STS_OK;
768 }
769
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
771 struct nvme_command *cmnd)
772 {
773 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
774 blk_status_t ret = BLK_STS_RESOURCE;
775 int rc;
776
777 if (blk_rq_nr_phys_segments(req) == 1) {
778 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
779 struct bio_vec bv = req_bvec(req);
780
781 if (!is_pci_p2pdma_page(bv.bv_page)) {
782 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
783 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
784 return nvme_setup_prp_simple(dev, req,
785 &cmnd->rw, &bv);
786
787 if (nvmeq->qid && sgl_threshold &&
788 nvme_ctrl_sgl_supported(&dev->ctrl))
789 return nvme_setup_sgl_simple(dev, req,
790 &cmnd->rw, &bv);
791 }
792 }
793
794 iod->dma_len = 0;
795 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 if (!iod->sgt.sgl)
797 return BLK_STS_RESOURCE;
798 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 if (!iod->sgt.orig_nents)
801 goto out_free_sg;
802
803 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 DMA_ATTR_NO_WARN);
805 if (rc) {
806 if (rc == -EREMOTEIO)
807 ret = BLK_STS_TARGET;
808 goto out_free_sg;
809 }
810
811 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
812 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 else
814 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
815 if (ret != BLK_STS_OK)
816 goto out_unmap_sg;
817 return BLK_STS_OK;
818
819 out_unmap_sg:
820 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 out_free_sg:
822 mempool_free(iod->sgt.sgl, dev->iod_mempool);
823 return ret;
824 }
825
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 struct nvme_command *cmnd)
828 {
829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 struct bio_vec bv = rq_integrity_vec(req);
831
832 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
833 if (dma_mapping_error(dev->dev, iod->meta_dma))
834 return BLK_STS_IOERR;
835 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
836 return BLK_STS_OK;
837 }
838
nvme_prep_rq(struct nvme_dev * dev,struct request * req)839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 {
841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 blk_status_t ret;
843
844 iod->aborted = false;
845 iod->nr_allocations = -1;
846 iod->sgt.nents = 0;
847
848 ret = nvme_setup_cmd(req->q->queuedata, req);
849 if (ret)
850 return ret;
851
852 if (blk_rq_nr_phys_segments(req)) {
853 ret = nvme_map_data(dev, req, &iod->cmd);
854 if (ret)
855 goto out_free_cmd;
856 }
857
858 if (blk_integrity_rq(req)) {
859 ret = nvme_map_metadata(dev, req, &iod->cmd);
860 if (ret)
861 goto out_unmap_data;
862 }
863
864 nvme_start_request(req);
865 return BLK_STS_OK;
866 out_unmap_data:
867 if (blk_rq_nr_phys_segments(req))
868 nvme_unmap_data(dev, req);
869 out_free_cmd:
870 nvme_cleanup_cmd(req);
871 return ret;
872 }
873
874 /*
875 * NOTE: ns is NULL when called on the admin queue.
876 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)877 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
878 const struct blk_mq_queue_data *bd)
879 {
880 struct nvme_queue *nvmeq = hctx->driver_data;
881 struct nvme_dev *dev = nvmeq->dev;
882 struct request *req = bd->rq;
883 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
884 blk_status_t ret;
885
886 /*
887 * We should not need to do this, but we're still using this to
888 * ensure we can drain requests on a dying queue.
889 */
890 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
891 return BLK_STS_IOERR;
892
893 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
894 return nvme_fail_nonready_command(&dev->ctrl, req);
895
896 ret = nvme_prep_rq(dev, req);
897 if (unlikely(ret))
898 return ret;
899 spin_lock(&nvmeq->sq_lock);
900 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
901 nvme_write_sq_db(nvmeq, bd->last);
902 spin_unlock(&nvmeq->sq_lock);
903 return BLK_STS_OK;
904 }
905
nvme_submit_cmds(struct nvme_queue * nvmeq,struct request ** rqlist)906 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
907 {
908 struct request *req;
909
910 spin_lock(&nvmeq->sq_lock);
911 while ((req = rq_list_pop(rqlist))) {
912 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
913
914 nvme_sq_copy_cmd(nvmeq, &iod->cmd);
915 }
916 nvme_write_sq_db(nvmeq, true);
917 spin_unlock(&nvmeq->sq_lock);
918 }
919
nvme_prep_rq_batch(struct nvme_queue * nvmeq,struct request * req)920 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
921 {
922 /*
923 * We should not need to do this, but we're still using this to
924 * ensure we can drain requests on a dying queue.
925 */
926 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
927 return false;
928 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
929 return false;
930
931 req->mq_hctx->tags->rqs[req->tag] = req;
932 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
933 }
934
nvme_queue_rqs(struct request ** rqlist)935 static void nvme_queue_rqs(struct request **rqlist)
936 {
937 struct request *submit_list = NULL;
938 struct request *requeue_list = NULL;
939 struct request **requeue_lastp = &requeue_list;
940 struct nvme_queue *nvmeq = NULL;
941 struct request *req;
942
943 while ((req = rq_list_pop(rqlist))) {
944 if (nvmeq && nvmeq != req->mq_hctx->driver_data)
945 nvme_submit_cmds(nvmeq, &submit_list);
946 nvmeq = req->mq_hctx->driver_data;
947
948 if (nvme_prep_rq_batch(nvmeq, req))
949 rq_list_add(&submit_list, req); /* reverse order */
950 else
951 rq_list_add_tail(&requeue_lastp, req);
952 }
953
954 if (nvmeq)
955 nvme_submit_cmds(nvmeq, &submit_list);
956 *rqlist = requeue_list;
957 }
958
nvme_pci_unmap_rq(struct request * req)959 static __always_inline void nvme_pci_unmap_rq(struct request *req)
960 {
961 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
962 struct nvme_dev *dev = nvmeq->dev;
963
964 if (blk_integrity_rq(req)) {
965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966
967 dma_unmap_page(dev->dev, iod->meta_dma,
968 rq_integrity_vec(req).bv_len, rq_dma_dir(req));
969 }
970
971 if (blk_rq_nr_phys_segments(req))
972 nvme_unmap_data(dev, req);
973 }
974
nvme_pci_complete_rq(struct request * req)975 static void nvme_pci_complete_rq(struct request *req)
976 {
977 nvme_pci_unmap_rq(req);
978 nvme_complete_rq(req);
979 }
980
nvme_pci_complete_batch(struct io_comp_batch * iob)981 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
982 {
983 nvme_complete_batch(iob, nvme_pci_unmap_rq);
984 }
985
986 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)987 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
988 {
989 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
990
991 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
992 }
993
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)994 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
995 {
996 u16 head = nvmeq->cq_head;
997
998 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
999 nvmeq->dbbuf_cq_ei))
1000 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1001 }
1002
nvme_queue_tagset(struct nvme_queue * nvmeq)1003 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1004 {
1005 if (!nvmeq->qid)
1006 return nvmeq->dev->admin_tagset.tags[0];
1007 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1008 }
1009
nvme_handle_cqe(struct nvme_queue * nvmeq,struct io_comp_batch * iob,u16 idx)1010 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1011 struct io_comp_batch *iob, u16 idx)
1012 {
1013 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1014 __u16 command_id = READ_ONCE(cqe->command_id);
1015 struct request *req;
1016
1017 /*
1018 * AEN requests are special as they don't time out and can
1019 * survive any kind of queue freeze and often don't respond to
1020 * aborts. We don't even bother to allocate a struct request
1021 * for them but rather special case them here.
1022 */
1023 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1024 nvme_complete_async_event(&nvmeq->dev->ctrl,
1025 cqe->status, &cqe->result);
1026 return;
1027 }
1028
1029 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1030 if (unlikely(!req)) {
1031 dev_warn(nvmeq->dev->ctrl.device,
1032 "invalid id %d completed on queue %d\n",
1033 command_id, le16_to_cpu(cqe->sq_id));
1034 return;
1035 }
1036
1037 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1038 if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1039 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1040 nvme_pci_complete_batch))
1041 nvme_pci_complete_rq(req);
1042 }
1043
nvme_update_cq_head(struct nvme_queue * nvmeq)1044 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1045 {
1046 u32 tmp = nvmeq->cq_head + 1;
1047
1048 if (tmp == nvmeq->q_depth) {
1049 nvmeq->cq_head = 0;
1050 nvmeq->cq_phase ^= 1;
1051 } else {
1052 nvmeq->cq_head = tmp;
1053 }
1054 }
1055
nvme_poll_cq(struct nvme_queue * nvmeq,struct io_comp_batch * iob)1056 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1057 struct io_comp_batch *iob)
1058 {
1059 int found = 0;
1060
1061 while (nvme_cqe_pending(nvmeq)) {
1062 found++;
1063 /*
1064 * load-load control dependency between phase and the rest of
1065 * the cqe requires a full read memory barrier
1066 */
1067 dma_rmb();
1068 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1069 nvme_update_cq_head(nvmeq);
1070 }
1071
1072 if (found)
1073 nvme_ring_cq_doorbell(nvmeq);
1074 return found;
1075 }
1076
nvme_irq(int irq,void * data)1077 static irqreturn_t nvme_irq(int irq, void *data)
1078 {
1079 struct nvme_queue *nvmeq = data;
1080 DEFINE_IO_COMP_BATCH(iob);
1081
1082 if (nvme_poll_cq(nvmeq, &iob)) {
1083 if (!rq_list_empty(iob.req_list))
1084 nvme_pci_complete_batch(&iob);
1085 return IRQ_HANDLED;
1086 }
1087 return IRQ_NONE;
1088 }
1089
nvme_irq_check(int irq,void * data)1090 static irqreturn_t nvme_irq_check(int irq, void *data)
1091 {
1092 struct nvme_queue *nvmeq = data;
1093
1094 if (nvme_cqe_pending(nvmeq))
1095 return IRQ_WAKE_THREAD;
1096 return IRQ_NONE;
1097 }
1098
1099 /*
1100 * Poll for completions for any interrupt driven queue
1101 * Can be called from any context.
1102 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1103 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1104 {
1105 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1106
1107 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1108
1109 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1110 spin_lock(&nvmeq->cq_poll_lock);
1111 nvme_poll_cq(nvmeq, NULL);
1112 spin_unlock(&nvmeq->cq_poll_lock);
1113 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114 }
1115
nvme_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1116 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1117 {
1118 struct nvme_queue *nvmeq = hctx->driver_data;
1119 bool found;
1120
1121 if (!nvme_cqe_pending(nvmeq))
1122 return 0;
1123
1124 spin_lock(&nvmeq->cq_poll_lock);
1125 found = nvme_poll_cq(nvmeq, iob);
1126 spin_unlock(&nvmeq->cq_poll_lock);
1127
1128 return found;
1129 }
1130
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1132 {
1133 struct nvme_dev *dev = to_nvme_dev(ctrl);
1134 struct nvme_queue *nvmeq = &dev->queues[0];
1135 struct nvme_command c = { };
1136
1137 c.common.opcode = nvme_admin_async_event;
1138 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1139
1140 spin_lock(&nvmeq->sq_lock);
1141 nvme_sq_copy_cmd(nvmeq, &c);
1142 nvme_write_sq_db(nvmeq, true);
1143 spin_unlock(&nvmeq->sq_lock);
1144 }
1145
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1147 {
1148 struct nvme_command c = { };
1149
1150 c.delete_queue.opcode = opcode;
1151 c.delete_queue.qid = cpu_to_le16(id);
1152
1153 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 }
1155
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1157 struct nvme_queue *nvmeq, s16 vector)
1158 {
1159 struct nvme_command c = { };
1160 int flags = NVME_QUEUE_PHYS_CONTIG;
1161
1162 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1163 flags |= NVME_CQ_IRQ_ENABLED;
1164
1165 /*
1166 * Note: we (ab)use the fact that the prp fields survive if no data
1167 * is attached to the request.
1168 */
1169 c.create_cq.opcode = nvme_admin_create_cq;
1170 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171 c.create_cq.cqid = cpu_to_le16(qid);
1172 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173 c.create_cq.cq_flags = cpu_to_le16(flags);
1174 c.create_cq.irq_vector = cpu_to_le16(vector);
1175
1176 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177 }
1178
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180 struct nvme_queue *nvmeq)
1181 {
1182 struct nvme_ctrl *ctrl = &dev->ctrl;
1183 struct nvme_command c = { };
1184 int flags = NVME_QUEUE_PHYS_CONTIG;
1185
1186 /*
1187 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188 * set. Since URGENT priority is zeroes, it makes all queues
1189 * URGENT.
1190 */
1191 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192 flags |= NVME_SQ_PRIO_MEDIUM;
1193
1194 /*
1195 * Note: we (ab)use the fact that the prp fields survive if no data
1196 * is attached to the request.
1197 */
1198 c.create_sq.opcode = nvme_admin_create_sq;
1199 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200 c.create_sq.sqid = cpu_to_le16(qid);
1201 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202 c.create_sq.sq_flags = cpu_to_le16(flags);
1203 c.create_sq.cqid = cpu_to_le16(qid);
1204
1205 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217
abort_endio(struct request * req,blk_status_t error)1218 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1219 {
1220 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1221
1222 dev_warn(nvmeq->dev->ctrl.device,
1223 "Abort status: 0x%x", nvme_req(req)->status);
1224 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1225 blk_mq_free_request(req);
1226 return RQ_END_IO_NONE;
1227 }
1228
nvme_should_reset(struct nvme_dev * dev,u32 csts)1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231 /* If true, indicates loss of adapter communication, possibly by a
1232 * NVMe Subsystem reset.
1233 */
1234 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235
1236 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237 switch (nvme_ctrl_state(&dev->ctrl)) {
1238 case NVME_CTRL_RESETTING:
1239 case NVME_CTRL_CONNECTING:
1240 return false;
1241 default:
1242 break;
1243 }
1244
1245 /* We shouldn't reset unless the controller is on fatal error state
1246 * _or_ if we lost the communication with it.
1247 */
1248 if (!(csts & NVME_CSTS_CFS) && !nssro)
1249 return false;
1250
1251 return true;
1252 }
1253
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255 {
1256 /* Read a config register to help see what died. */
1257 u16 pci_status;
1258 int result;
1259
1260 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261 &pci_status);
1262 if (result == PCIBIOS_SUCCESSFUL)
1263 dev_warn(dev->ctrl.device,
1264 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265 csts, pci_status);
1266 else
1267 dev_warn(dev->ctrl.device,
1268 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269 csts, result);
1270
1271 if (csts != ~0)
1272 return;
1273
1274 dev_warn(dev->ctrl.device,
1275 "Does your device have a faulty power saving mode enabled?\n");
1276 dev_warn(dev->ctrl.device,
1277 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1278 }
1279
nvme_timeout(struct request * req)1280 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1281 {
1282 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1283 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1284 struct nvme_dev *dev = nvmeq->dev;
1285 struct request *abort_req;
1286 struct nvme_command cmd = { };
1287 struct pci_dev *pdev = to_pci_dev(dev->dev);
1288 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1289
1290 /*
1291 * Shutdown the device immediately if we see it is disconnected. This
1292 * unblocks PCIe error handling if the nvme driver is waiting in
1293 * error_resume for a device that has been removed. We can't unbind the
1294 * driver while the driver's error callback is waiting to complete, so
1295 * we're relying on a timeout to break that deadlock if a removal
1296 * occurs while reset work is running.
1297 */
1298 if (pci_dev_is_disconnected(pdev))
1299 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1300 if (nvme_state_terminal(&dev->ctrl))
1301 goto disable;
1302
1303 /* If PCI error recovery process is happening, we cannot reset or
1304 * the recovery mechanism will surely fail.
1305 */
1306 mb();
1307 if (pci_channel_offline(pdev))
1308 return BLK_EH_RESET_TIMER;
1309
1310 /*
1311 * Reset immediately if the controller is failed
1312 */
1313 if (nvme_should_reset(dev, csts)) {
1314 nvme_warn_reset(dev, csts);
1315 goto disable;
1316 }
1317
1318 /*
1319 * Did we miss an interrupt?
1320 */
1321 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1322 nvme_poll(req->mq_hctx, NULL);
1323 else
1324 nvme_poll_irqdisable(nvmeq);
1325
1326 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1327 dev_warn(dev->ctrl.device,
1328 "I/O %d QID %d timeout, completion polled\n",
1329 req->tag, nvmeq->qid);
1330 return BLK_EH_DONE;
1331 }
1332
1333 /*
1334 * Shutdown immediately if controller times out while starting. The
1335 * reset work will see the pci device disabled when it gets the forced
1336 * cancellation error. All outstanding requests are completed on
1337 * shutdown, so we return BLK_EH_DONE.
1338 */
1339 switch (nvme_ctrl_state(&dev->ctrl)) {
1340 case NVME_CTRL_CONNECTING:
1341 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1342 fallthrough;
1343 case NVME_CTRL_DELETING:
1344 dev_warn_ratelimited(dev->ctrl.device,
1345 "I/O %d QID %d timeout, disable controller\n",
1346 req->tag, nvmeq->qid);
1347 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1348 nvme_dev_disable(dev, true);
1349 return BLK_EH_DONE;
1350 case NVME_CTRL_RESETTING:
1351 return BLK_EH_RESET_TIMER;
1352 default:
1353 break;
1354 }
1355
1356 /*
1357 * Shutdown the controller immediately and schedule a reset if the
1358 * command was already aborted once before and still hasn't been
1359 * returned to the driver, or if this is the admin queue.
1360 */
1361 if (!nvmeq->qid || iod->aborted) {
1362 dev_warn(dev->ctrl.device,
1363 "I/O %d QID %d timeout, reset controller\n",
1364 req->tag, nvmeq->qid);
1365 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1366 goto disable;
1367 }
1368
1369 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1370 atomic_inc(&dev->ctrl.abort_limit);
1371 return BLK_EH_RESET_TIMER;
1372 }
1373 iod->aborted = true;
1374
1375 cmd.abort.opcode = nvme_admin_abort_cmd;
1376 cmd.abort.cid = nvme_cid(req);
1377 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1378
1379 dev_warn(nvmeq->dev->ctrl.device,
1380 "I/O %d (%s) QID %d timeout, aborting\n",
1381 req->tag,
1382 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1383 nvmeq->qid);
1384
1385 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1386 BLK_MQ_REQ_NOWAIT);
1387 if (IS_ERR(abort_req)) {
1388 atomic_inc(&dev->ctrl.abort_limit);
1389 return BLK_EH_RESET_TIMER;
1390 }
1391 nvme_init_request(abort_req, &cmd);
1392
1393 abort_req->end_io = abort_endio;
1394 abort_req->end_io_data = NULL;
1395 blk_execute_rq_nowait(abort_req, false);
1396
1397 /*
1398 * The aborted req will be completed on receiving the abort req.
1399 * We enable the timer again. If hit twice, it'll cause a device reset,
1400 * as the device then is in a faulty state.
1401 */
1402 return BLK_EH_RESET_TIMER;
1403
1404 disable:
1405 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1406 if (nvme_state_terminal(&dev->ctrl))
1407 nvme_dev_disable(dev, true);
1408 return BLK_EH_DONE;
1409 }
1410
1411 nvme_dev_disable(dev, false);
1412 if (nvme_try_sched_reset(&dev->ctrl))
1413 nvme_unquiesce_io_queues(&dev->ctrl);
1414 return BLK_EH_DONE;
1415 }
1416
nvme_free_queue(struct nvme_queue * nvmeq)1417 static void nvme_free_queue(struct nvme_queue *nvmeq)
1418 {
1419 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1420 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1421 if (!nvmeq->sq_cmds)
1422 return;
1423
1424 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1425 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1426 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1427 } else {
1428 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1429 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1430 }
1431 }
1432
nvme_free_queues(struct nvme_dev * dev,int lowest)1433 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1434 {
1435 int i;
1436
1437 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1438 dev->ctrl.queue_count--;
1439 nvme_free_queue(&dev->queues[i]);
1440 }
1441 }
1442
nvme_suspend_queue(struct nvme_dev * dev,unsigned int qid)1443 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1444 {
1445 struct nvme_queue *nvmeq = &dev->queues[qid];
1446
1447 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1448 return;
1449
1450 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1451 mb();
1452
1453 nvmeq->dev->online_queues--;
1454 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1455 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1456 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1457 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1458 }
1459
nvme_suspend_io_queues(struct nvme_dev * dev)1460 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1461 {
1462 int i;
1463
1464 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1465 nvme_suspend_queue(dev, i);
1466 }
1467
1468 /*
1469 * Called only on a device that has been disabled and after all other threads
1470 * that can check this device's completion queues have synced, except
1471 * nvme_poll(). This is the last chance for the driver to see a natural
1472 * completion before nvme_cancel_request() terminates all incomplete requests.
1473 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1474 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1475 {
1476 int i;
1477
1478 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1479 spin_lock(&dev->queues[i].cq_poll_lock);
1480 nvme_poll_cq(&dev->queues[i], NULL);
1481 spin_unlock(&dev->queues[i].cq_poll_lock);
1482 }
1483 }
1484
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1485 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1486 int entry_size)
1487 {
1488 int q_depth = dev->q_depth;
1489 unsigned q_size_aligned = roundup(q_depth * entry_size,
1490 NVME_CTRL_PAGE_SIZE);
1491
1492 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1493 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1494
1495 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1496 q_depth = div_u64(mem_per_q, entry_size);
1497
1498 /*
1499 * Ensure the reduced q_depth is above some threshold where it
1500 * would be better to map queues in system memory with the
1501 * original depth
1502 */
1503 if (q_depth < 64)
1504 return -ENOMEM;
1505 }
1506
1507 return q_depth;
1508 }
1509
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1510 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1511 int qid)
1512 {
1513 struct pci_dev *pdev = to_pci_dev(dev->dev);
1514
1515 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1516 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1517 if (nvmeq->sq_cmds) {
1518 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1519 nvmeq->sq_cmds);
1520 if (nvmeq->sq_dma_addr) {
1521 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1522 return 0;
1523 }
1524
1525 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1526 }
1527 }
1528
1529 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1530 &nvmeq->sq_dma_addr, GFP_KERNEL);
1531 if (!nvmeq->sq_cmds)
1532 return -ENOMEM;
1533 return 0;
1534 }
1535
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1536 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1537 {
1538 struct nvme_queue *nvmeq = &dev->queues[qid];
1539
1540 if (dev->ctrl.queue_count > qid)
1541 return 0;
1542
1543 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1544 nvmeq->q_depth = depth;
1545 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1546 &nvmeq->cq_dma_addr, GFP_KERNEL);
1547 if (!nvmeq->cqes)
1548 goto free_nvmeq;
1549
1550 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1551 goto free_cqdma;
1552
1553 nvmeq->dev = dev;
1554 spin_lock_init(&nvmeq->sq_lock);
1555 spin_lock_init(&nvmeq->cq_poll_lock);
1556 nvmeq->cq_head = 0;
1557 nvmeq->cq_phase = 1;
1558 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1559 nvmeq->qid = qid;
1560 dev->ctrl.queue_count++;
1561
1562 return 0;
1563
1564 free_cqdma:
1565 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1566 nvmeq->cq_dma_addr);
1567 free_nvmeq:
1568 return -ENOMEM;
1569 }
1570
queue_request_irq(struct nvme_queue * nvmeq)1571 static int queue_request_irq(struct nvme_queue *nvmeq)
1572 {
1573 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1574 int nr = nvmeq->dev->ctrl.instance;
1575
1576 if (use_threaded_interrupts) {
1577 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1578 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1579 } else {
1580 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1581 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1582 }
1583 }
1584
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1585 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1586 {
1587 struct nvme_dev *dev = nvmeq->dev;
1588
1589 nvmeq->sq_tail = 0;
1590 nvmeq->last_sq_tail = 0;
1591 nvmeq->cq_head = 0;
1592 nvmeq->cq_phase = 1;
1593 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1594 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1595 nvme_dbbuf_init(dev, nvmeq, qid);
1596 dev->online_queues++;
1597 wmb(); /* ensure the first interrupt sees the initialization */
1598 }
1599
1600 /*
1601 * Try getting shutdown_lock while setting up IO queues.
1602 */
nvme_setup_io_queues_trylock(struct nvme_dev * dev)1603 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1604 {
1605 /*
1606 * Give up if the lock is being held by nvme_dev_disable.
1607 */
1608 if (!mutex_trylock(&dev->shutdown_lock))
1609 return -ENODEV;
1610
1611 /*
1612 * Controller is in wrong state, fail early.
1613 */
1614 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1615 mutex_unlock(&dev->shutdown_lock);
1616 return -ENODEV;
1617 }
1618
1619 return 0;
1620 }
1621
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1622 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1623 {
1624 struct nvme_dev *dev = nvmeq->dev;
1625 int result;
1626 u16 vector = 0;
1627
1628 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1629
1630 /*
1631 * A queue's vector matches the queue identifier unless the controller
1632 * has only one vector available.
1633 */
1634 if (!polled)
1635 vector = dev->num_vecs == 1 ? 0 : qid;
1636 else
1637 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1638
1639 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1640 if (result)
1641 return result;
1642
1643 result = adapter_alloc_sq(dev, qid, nvmeq);
1644 if (result < 0)
1645 return result;
1646 if (result)
1647 goto release_cq;
1648
1649 nvmeq->cq_vector = vector;
1650
1651 result = nvme_setup_io_queues_trylock(dev);
1652 if (result)
1653 return result;
1654 nvme_init_queue(nvmeq, qid);
1655 if (!polled) {
1656 result = queue_request_irq(nvmeq);
1657 if (result < 0)
1658 goto release_sq;
1659 }
1660
1661 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1662 mutex_unlock(&dev->shutdown_lock);
1663 return result;
1664
1665 release_sq:
1666 dev->online_queues--;
1667 mutex_unlock(&dev->shutdown_lock);
1668 adapter_delete_sq(dev, qid);
1669 release_cq:
1670 adapter_delete_cq(dev, qid);
1671 return result;
1672 }
1673
1674 static const struct blk_mq_ops nvme_mq_admin_ops = {
1675 .queue_rq = nvme_queue_rq,
1676 .complete = nvme_pci_complete_rq,
1677 .init_hctx = nvme_admin_init_hctx,
1678 .init_request = nvme_pci_init_request,
1679 .timeout = nvme_timeout,
1680 };
1681
1682 static const struct blk_mq_ops nvme_mq_ops = {
1683 .queue_rq = nvme_queue_rq,
1684 .queue_rqs = nvme_queue_rqs,
1685 .complete = nvme_pci_complete_rq,
1686 .commit_rqs = nvme_commit_rqs,
1687 .init_hctx = nvme_init_hctx,
1688 .init_request = nvme_pci_init_request,
1689 .map_queues = nvme_pci_map_queues,
1690 .timeout = nvme_timeout,
1691 .poll = nvme_poll,
1692 };
1693
nvme_dev_remove_admin(struct nvme_dev * dev)1694 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1695 {
1696 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1697 /*
1698 * If the controller was reset during removal, it's possible
1699 * user requests may be waiting on a stopped queue. Start the
1700 * queue to flush these to completion.
1701 */
1702 nvme_unquiesce_admin_queue(&dev->ctrl);
1703 nvme_remove_admin_tag_set(&dev->ctrl);
1704 }
1705 }
1706
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1707 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1708 {
1709 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1710 }
1711
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1712 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1713 {
1714 struct pci_dev *pdev = to_pci_dev(dev->dev);
1715
1716 if (size <= dev->bar_mapped_size)
1717 return 0;
1718 if (size > pci_resource_len(pdev, 0))
1719 return -ENOMEM;
1720 if (dev->bar)
1721 iounmap(dev->bar);
1722 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1723 if (!dev->bar) {
1724 dev->bar_mapped_size = 0;
1725 return -ENOMEM;
1726 }
1727 dev->bar_mapped_size = size;
1728 dev->dbs = dev->bar + NVME_REG_DBS;
1729
1730 return 0;
1731 }
1732
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1733 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1734 {
1735 int result;
1736 u32 aqa;
1737 struct nvme_queue *nvmeq;
1738
1739 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1740 if (result < 0)
1741 return result;
1742
1743 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1744 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1745
1746 if (dev->subsystem &&
1747 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1748 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1749
1750 /*
1751 * If the device has been passed off to us in an enabled state, just
1752 * clear the enabled bit. The spec says we should set the 'shutdown
1753 * notification bits', but doing so may cause the device to complete
1754 * commands to the admin queue ... and we don't know what memory that
1755 * might be pointing at!
1756 */
1757 result = nvme_disable_ctrl(&dev->ctrl, false);
1758 if (result < 0)
1759 return result;
1760
1761 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1762 if (result)
1763 return result;
1764
1765 dev->ctrl.numa_node = dev_to_node(dev->dev);
1766
1767 nvmeq = &dev->queues[0];
1768 aqa = nvmeq->q_depth - 1;
1769 aqa |= aqa << 16;
1770
1771 writel(aqa, dev->bar + NVME_REG_AQA);
1772 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1773 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1774
1775 result = nvme_enable_ctrl(&dev->ctrl);
1776 if (result)
1777 return result;
1778
1779 nvmeq->cq_vector = 0;
1780 nvme_init_queue(nvmeq, 0);
1781 result = queue_request_irq(nvmeq);
1782 if (result) {
1783 dev->online_queues--;
1784 return result;
1785 }
1786
1787 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1788 return result;
1789 }
1790
nvme_create_io_queues(struct nvme_dev * dev)1791 static int nvme_create_io_queues(struct nvme_dev *dev)
1792 {
1793 unsigned i, max, rw_queues;
1794 int ret = 0;
1795
1796 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1797 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1798 ret = -ENOMEM;
1799 break;
1800 }
1801 }
1802
1803 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1804 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1805 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1806 dev->io_queues[HCTX_TYPE_READ];
1807 } else {
1808 rw_queues = max;
1809 }
1810
1811 for (i = dev->online_queues; i <= max; i++) {
1812 bool polled = i > rw_queues;
1813
1814 ret = nvme_create_queue(&dev->queues[i], i, polled);
1815 if (ret)
1816 break;
1817 }
1818
1819 /*
1820 * Ignore failing Create SQ/CQ commands, we can continue with less
1821 * than the desired amount of queues, and even a controller without
1822 * I/O queues can still be used to issue admin commands. This might
1823 * be useful to upgrade a buggy firmware for example.
1824 */
1825 return ret >= 0 ? 0 : ret;
1826 }
1827
nvme_cmb_size_unit(struct nvme_dev * dev)1828 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1829 {
1830 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1831
1832 return 1ULL << (12 + 4 * szu);
1833 }
1834
nvme_cmb_size(struct nvme_dev * dev)1835 static u32 nvme_cmb_size(struct nvme_dev *dev)
1836 {
1837 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1838 }
1839
nvme_map_cmb(struct nvme_dev * dev)1840 static void nvme_map_cmb(struct nvme_dev *dev)
1841 {
1842 u64 size, offset;
1843 resource_size_t bar_size;
1844 struct pci_dev *pdev = to_pci_dev(dev->dev);
1845 int bar;
1846
1847 if (dev->cmb_size)
1848 return;
1849
1850 if (NVME_CAP_CMBS(dev->ctrl.cap))
1851 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1852
1853 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1854 if (!dev->cmbsz)
1855 return;
1856 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1857
1858 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1859 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1860 bar = NVME_CMB_BIR(dev->cmbloc);
1861 bar_size = pci_resource_len(pdev, bar);
1862
1863 if (offset > bar_size)
1864 return;
1865
1866 /*
1867 * Controllers may support a CMB size larger than their BAR, for
1868 * example, due to being behind a bridge. Reduce the CMB to the
1869 * reported size of the BAR
1870 */
1871 size = min(size, bar_size - offset);
1872
1873 if (!IS_ALIGNED(size, memremap_compat_align()) ||
1874 !IS_ALIGNED(pci_resource_start(pdev, bar),
1875 memremap_compat_align()))
1876 return;
1877
1878 /*
1879 * Tell the controller about the host side address mapping the CMB,
1880 * and enable CMB decoding for the NVMe 1.4+ scheme:
1881 */
1882 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1883 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1884 (pci_bus_address(pdev, bar) + offset),
1885 dev->bar + NVME_REG_CMBMSC);
1886 }
1887
1888 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1889 dev_warn(dev->ctrl.device,
1890 "failed to register the CMB\n");
1891 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
1892 return;
1893 }
1894
1895 dev->cmb_size = size;
1896 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1897
1898 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1899 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1900 pci_p2pmem_publish(pdev, true);
1901
1902 nvme_update_attrs(dev);
1903 }
1904
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1905 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1906 {
1907 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1908 u64 dma_addr = dev->host_mem_descs_dma;
1909 struct nvme_command c = { };
1910 int ret;
1911
1912 c.features.opcode = nvme_admin_set_features;
1913 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1914 c.features.dword11 = cpu_to_le32(bits);
1915 c.features.dword12 = cpu_to_le32(host_mem_size);
1916 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1917 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1918 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1919
1920 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1921 if (ret) {
1922 dev_warn(dev->ctrl.device,
1923 "failed to set host mem (err %d, flags %#x).\n",
1924 ret, bits);
1925 } else
1926 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1927
1928 return ret;
1929 }
1930
nvme_free_host_mem(struct nvme_dev * dev)1931 static void nvme_free_host_mem(struct nvme_dev *dev)
1932 {
1933 int i;
1934
1935 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1936 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1937 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1938
1939 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1940 le64_to_cpu(desc->addr),
1941 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1942 }
1943
1944 kfree(dev->host_mem_desc_bufs);
1945 dev->host_mem_desc_bufs = NULL;
1946 dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1947 dev->host_mem_descs, dev->host_mem_descs_dma);
1948 dev->host_mem_descs = NULL;
1949 dev->host_mem_descs_size = 0;
1950 dev->nr_host_mem_descs = 0;
1951 }
1952
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1953 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1954 u32 chunk_size)
1955 {
1956 struct nvme_host_mem_buf_desc *descs;
1957 u32 max_entries, len, descs_size;
1958 dma_addr_t descs_dma;
1959 int i = 0;
1960 void **bufs;
1961 u64 size, tmp;
1962
1963 tmp = (preferred + chunk_size - 1);
1964 do_div(tmp, chunk_size);
1965 max_entries = tmp;
1966
1967 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1968 max_entries = dev->ctrl.hmmaxd;
1969
1970 descs_size = max_entries * sizeof(*descs);
1971 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1972 GFP_KERNEL);
1973 if (!descs)
1974 goto out;
1975
1976 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1977 if (!bufs)
1978 goto out_free_descs;
1979
1980 for (size = 0; size < preferred && i < max_entries; size += len) {
1981 dma_addr_t dma_addr;
1982
1983 len = min_t(u64, chunk_size, preferred - size);
1984 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1985 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1986 if (!bufs[i])
1987 break;
1988
1989 descs[i].addr = cpu_to_le64(dma_addr);
1990 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1991 i++;
1992 }
1993
1994 if (!size)
1995 goto out_free_bufs;
1996
1997 dev->nr_host_mem_descs = i;
1998 dev->host_mem_size = size;
1999 dev->host_mem_descs = descs;
2000 dev->host_mem_descs_dma = descs_dma;
2001 dev->host_mem_descs_size = descs_size;
2002 dev->host_mem_desc_bufs = bufs;
2003 return 0;
2004
2005 out_free_bufs:
2006 while (--i >= 0) {
2007 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2008
2009 dma_free_attrs(dev->dev, size, bufs[i],
2010 le64_to_cpu(descs[i].addr),
2011 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2012 }
2013
2014 kfree(bufs);
2015 out_free_descs:
2016 dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2017 out:
2018 dev->host_mem_descs = NULL;
2019 return -ENOMEM;
2020 }
2021
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2022 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2023 {
2024 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2025 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2026 u64 chunk_size;
2027
2028 /* start big and work our way down */
2029 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2030 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2031 if (!min || dev->host_mem_size >= min)
2032 return 0;
2033 nvme_free_host_mem(dev);
2034 }
2035 }
2036
2037 return -ENOMEM;
2038 }
2039
nvme_setup_host_mem(struct nvme_dev * dev)2040 static int nvme_setup_host_mem(struct nvme_dev *dev)
2041 {
2042 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2043 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2044 u64 min = (u64)dev->ctrl.hmmin * 4096;
2045 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2046 int ret;
2047
2048 if (!dev->ctrl.hmpre)
2049 return 0;
2050
2051 preferred = min(preferred, max);
2052 if (min > max) {
2053 dev_warn(dev->ctrl.device,
2054 "min host memory (%lld MiB) above limit (%d MiB).\n",
2055 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2056 nvme_free_host_mem(dev);
2057 return 0;
2058 }
2059
2060 /*
2061 * If we already have a buffer allocated check if we can reuse it.
2062 */
2063 if (dev->host_mem_descs) {
2064 if (dev->host_mem_size >= min)
2065 enable_bits |= NVME_HOST_MEM_RETURN;
2066 else
2067 nvme_free_host_mem(dev);
2068 }
2069
2070 if (!dev->host_mem_descs) {
2071 if (nvme_alloc_host_mem(dev, min, preferred)) {
2072 dev_warn(dev->ctrl.device,
2073 "failed to allocate host memory buffer.\n");
2074 return 0; /* controller must work without HMB */
2075 }
2076
2077 dev_info(dev->ctrl.device,
2078 "allocated %lld MiB host memory buffer.\n",
2079 dev->host_mem_size >> ilog2(SZ_1M));
2080 }
2081
2082 ret = nvme_set_host_mem(dev, enable_bits);
2083 if (ret)
2084 nvme_free_host_mem(dev);
2085 return ret;
2086 }
2087
cmb_show(struct device * dev,struct device_attribute * attr,char * buf)2088 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2089 char *buf)
2090 {
2091 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2092
2093 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n",
2094 ndev->cmbloc, ndev->cmbsz);
2095 }
2096 static DEVICE_ATTR_RO(cmb);
2097
cmbloc_show(struct device * dev,struct device_attribute * attr,char * buf)2098 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2099 char *buf)
2100 {
2101 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2102
2103 return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2104 }
2105 static DEVICE_ATTR_RO(cmbloc);
2106
cmbsz_show(struct device * dev,struct device_attribute * attr,char * buf)2107 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2108 char *buf)
2109 {
2110 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2111
2112 return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2113 }
2114 static DEVICE_ATTR_RO(cmbsz);
2115
hmb_show(struct device * dev,struct device_attribute * attr,char * buf)2116 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2117 char *buf)
2118 {
2119 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2120
2121 return sysfs_emit(buf, "%d\n", ndev->hmb);
2122 }
2123
hmb_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2124 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2125 const char *buf, size_t count)
2126 {
2127 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2128 bool new;
2129 int ret;
2130
2131 if (kstrtobool(buf, &new) < 0)
2132 return -EINVAL;
2133
2134 if (new == ndev->hmb)
2135 return count;
2136
2137 if (new) {
2138 ret = nvme_setup_host_mem(ndev);
2139 } else {
2140 ret = nvme_set_host_mem(ndev, 0);
2141 if (!ret)
2142 nvme_free_host_mem(ndev);
2143 }
2144
2145 if (ret < 0)
2146 return ret;
2147
2148 return count;
2149 }
2150 static DEVICE_ATTR_RW(hmb);
2151
nvme_pci_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)2152 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2153 struct attribute *a, int n)
2154 {
2155 struct nvme_ctrl *ctrl =
2156 dev_get_drvdata(container_of(kobj, struct device, kobj));
2157 struct nvme_dev *dev = to_nvme_dev(ctrl);
2158
2159 if (a == &dev_attr_cmb.attr ||
2160 a == &dev_attr_cmbloc.attr ||
2161 a == &dev_attr_cmbsz.attr) {
2162 if (!dev->cmbsz)
2163 return 0;
2164 }
2165 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2166 return 0;
2167
2168 return a->mode;
2169 }
2170
2171 static struct attribute *nvme_pci_attrs[] = {
2172 &dev_attr_cmb.attr,
2173 &dev_attr_cmbloc.attr,
2174 &dev_attr_cmbsz.attr,
2175 &dev_attr_hmb.attr,
2176 NULL,
2177 };
2178
2179 static const struct attribute_group nvme_pci_dev_attrs_group = {
2180 .attrs = nvme_pci_attrs,
2181 .is_visible = nvme_pci_attrs_are_visible,
2182 };
2183
2184 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2185 &nvme_dev_attrs_group,
2186 &nvme_pci_dev_attrs_group,
2187 NULL,
2188 };
2189
nvme_update_attrs(struct nvme_dev * dev)2190 static void nvme_update_attrs(struct nvme_dev *dev)
2191 {
2192 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2193 }
2194
2195 /*
2196 * nirqs is the number of interrupts available for write and read
2197 * queues. The core already reserved an interrupt for the admin queue.
2198 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2199 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2200 {
2201 struct nvme_dev *dev = affd->priv;
2202 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2203
2204 /*
2205 * If there is no interrupt available for queues, ensure that
2206 * the default queue is set to 1. The affinity set size is
2207 * also set to one, but the irq core ignores it for this case.
2208 *
2209 * If only one interrupt is available or 'write_queue' == 0, combine
2210 * write and read queues.
2211 *
2212 * If 'write_queues' > 0, ensure it leaves room for at least one read
2213 * queue.
2214 */
2215 if (!nrirqs) {
2216 nrirqs = 1;
2217 nr_read_queues = 0;
2218 } else if (nrirqs == 1 || !nr_write_queues) {
2219 nr_read_queues = 0;
2220 } else if (nr_write_queues >= nrirqs) {
2221 nr_read_queues = 1;
2222 } else {
2223 nr_read_queues = nrirqs - nr_write_queues;
2224 }
2225
2226 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2227 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2228 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2229 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2230 affd->nr_sets = nr_read_queues ? 2 : 1;
2231 }
2232
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2233 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2234 {
2235 struct pci_dev *pdev = to_pci_dev(dev->dev);
2236 struct irq_affinity affd = {
2237 .pre_vectors = 1,
2238 .calc_sets = nvme_calc_irq_sets,
2239 .priv = dev,
2240 };
2241 unsigned int irq_queues, poll_queues;
2242 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2243
2244 /*
2245 * Poll queues don't need interrupts, but we need at least one I/O queue
2246 * left over for non-polled I/O.
2247 */
2248 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2249 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2250
2251 /*
2252 * Initialize for the single interrupt case, will be updated in
2253 * nvme_calc_irq_sets().
2254 */
2255 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2256 dev->io_queues[HCTX_TYPE_READ] = 0;
2257
2258 /*
2259 * We need interrupts for the admin queue and each non-polled I/O queue,
2260 * but some Apple controllers require all queues to use the first
2261 * vector.
2262 */
2263 irq_queues = 1;
2264 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2265 irq_queues += (nr_io_queues - poll_queues);
2266 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2267 flags &= ~PCI_IRQ_MSI;
2268 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2269 &affd);
2270 }
2271
nvme_max_io_queues(struct nvme_dev * dev)2272 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2273 {
2274 /*
2275 * If tags are shared with admin queue (Apple bug), then
2276 * make sure we only use one IO queue.
2277 */
2278 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2279 return 1;
2280 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2281 }
2282
nvme_setup_io_queues(struct nvme_dev * dev)2283 static int nvme_setup_io_queues(struct nvme_dev *dev)
2284 {
2285 struct nvme_queue *adminq = &dev->queues[0];
2286 struct pci_dev *pdev = to_pci_dev(dev->dev);
2287 unsigned int nr_io_queues;
2288 unsigned long size;
2289 int result;
2290
2291 /*
2292 * Sample the module parameters once at reset time so that we have
2293 * stable values to work with.
2294 */
2295 dev->nr_write_queues = write_queues;
2296 dev->nr_poll_queues = poll_queues;
2297
2298 nr_io_queues = dev->nr_allocated_queues - 1;
2299 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2300 if (result < 0)
2301 return result;
2302
2303 if (nr_io_queues == 0)
2304 return 0;
2305
2306 /*
2307 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2308 * from set to unset. If there is a window to it is truely freed,
2309 * pci_free_irq_vectors() jumping into this window will crash.
2310 * And take lock to avoid racing with pci_free_irq_vectors() in
2311 * nvme_dev_disable() path.
2312 */
2313 result = nvme_setup_io_queues_trylock(dev);
2314 if (result)
2315 return result;
2316 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2317 pci_free_irq(pdev, 0, adminq);
2318
2319 if (dev->cmb_use_sqes) {
2320 result = nvme_cmb_qdepth(dev, nr_io_queues,
2321 sizeof(struct nvme_command));
2322 if (result > 0) {
2323 dev->q_depth = result;
2324 dev->ctrl.sqsize = result - 1;
2325 } else {
2326 dev->cmb_use_sqes = false;
2327 }
2328 }
2329
2330 do {
2331 size = db_bar_size(dev, nr_io_queues);
2332 result = nvme_remap_bar(dev, size);
2333 if (!result)
2334 break;
2335 if (!--nr_io_queues) {
2336 result = -ENOMEM;
2337 goto out_unlock;
2338 }
2339 } while (1);
2340 adminq->q_db = dev->dbs;
2341
2342 retry:
2343 /* Deregister the admin queue's interrupt */
2344 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2345 pci_free_irq(pdev, 0, adminq);
2346
2347 /*
2348 * If we enable msix early due to not intx, disable it again before
2349 * setting up the full range we need.
2350 */
2351 pci_free_irq_vectors(pdev);
2352
2353 result = nvme_setup_irqs(dev, nr_io_queues);
2354 if (result <= 0) {
2355 result = -EIO;
2356 goto out_unlock;
2357 }
2358
2359 dev->num_vecs = result;
2360 result = max(result - 1, 1);
2361 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2362
2363 /*
2364 * Should investigate if there's a performance win from allocating
2365 * more queues than interrupt vectors; it might allow the submission
2366 * path to scale better, even if the receive path is limited by the
2367 * number of interrupts.
2368 */
2369 result = queue_request_irq(adminq);
2370 if (result)
2371 goto out_unlock;
2372 set_bit(NVMEQ_ENABLED, &adminq->flags);
2373 mutex_unlock(&dev->shutdown_lock);
2374
2375 result = nvme_create_io_queues(dev);
2376 if (result || dev->online_queues < 2)
2377 return result;
2378
2379 if (dev->online_queues - 1 < dev->max_qid) {
2380 nr_io_queues = dev->online_queues - 1;
2381 nvme_delete_io_queues(dev);
2382 result = nvme_setup_io_queues_trylock(dev);
2383 if (result)
2384 return result;
2385 nvme_suspend_io_queues(dev);
2386 goto retry;
2387 }
2388 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2389 dev->io_queues[HCTX_TYPE_DEFAULT],
2390 dev->io_queues[HCTX_TYPE_READ],
2391 dev->io_queues[HCTX_TYPE_POLL]);
2392 return 0;
2393 out_unlock:
2394 mutex_unlock(&dev->shutdown_lock);
2395 return result;
2396 }
2397
nvme_del_queue_end(struct request * req,blk_status_t error)2398 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2399 blk_status_t error)
2400 {
2401 struct nvme_queue *nvmeq = req->end_io_data;
2402
2403 blk_mq_free_request(req);
2404 complete(&nvmeq->delete_done);
2405 return RQ_END_IO_NONE;
2406 }
2407
nvme_del_cq_end(struct request * req,blk_status_t error)2408 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2409 blk_status_t error)
2410 {
2411 struct nvme_queue *nvmeq = req->end_io_data;
2412
2413 if (error)
2414 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2415
2416 return nvme_del_queue_end(req, error);
2417 }
2418
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2419 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2420 {
2421 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2422 struct request *req;
2423 struct nvme_command cmd = { };
2424
2425 cmd.delete_queue.opcode = opcode;
2426 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2427
2428 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2429 if (IS_ERR(req))
2430 return PTR_ERR(req);
2431 nvme_init_request(req, &cmd);
2432
2433 if (opcode == nvme_admin_delete_cq)
2434 req->end_io = nvme_del_cq_end;
2435 else
2436 req->end_io = nvme_del_queue_end;
2437 req->end_io_data = nvmeq;
2438
2439 init_completion(&nvmeq->delete_done);
2440 blk_execute_rq_nowait(req, false);
2441 return 0;
2442 }
2443
__nvme_delete_io_queues(struct nvme_dev * dev,u8 opcode)2444 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2445 {
2446 int nr_queues = dev->online_queues - 1, sent = 0;
2447 unsigned long timeout;
2448
2449 retry:
2450 timeout = NVME_ADMIN_TIMEOUT;
2451 while (nr_queues > 0) {
2452 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2453 break;
2454 nr_queues--;
2455 sent++;
2456 }
2457 while (sent) {
2458 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2459
2460 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2461 timeout);
2462 if (timeout == 0)
2463 return false;
2464
2465 sent--;
2466 if (nr_queues)
2467 goto retry;
2468 }
2469 return true;
2470 }
2471
nvme_delete_io_queues(struct nvme_dev * dev)2472 static void nvme_delete_io_queues(struct nvme_dev *dev)
2473 {
2474 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2475 __nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2476 }
2477
nvme_pci_nr_maps(struct nvme_dev * dev)2478 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2479 {
2480 if (dev->io_queues[HCTX_TYPE_POLL])
2481 return 3;
2482 if (dev->io_queues[HCTX_TYPE_READ])
2483 return 2;
2484 return 1;
2485 }
2486
nvme_pci_update_nr_queues(struct nvme_dev * dev)2487 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2488 {
2489 if (!dev->ctrl.tagset) {
2490 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2491 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2492 return true;
2493 }
2494
2495 /* Give up if we are racing with nvme_dev_disable() */
2496 if (!mutex_trylock(&dev->shutdown_lock))
2497 return false;
2498
2499 /* Check if nvme_dev_disable() has been executed already */
2500 if (!dev->online_queues) {
2501 mutex_unlock(&dev->shutdown_lock);
2502 return false;
2503 }
2504
2505 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2506 /* free previously allocated queues that are no longer usable */
2507 nvme_free_queues(dev, dev->online_queues);
2508 mutex_unlock(&dev->shutdown_lock);
2509 return true;
2510 }
2511
nvme_pci_enable(struct nvme_dev * dev)2512 static int nvme_pci_enable(struct nvme_dev *dev)
2513 {
2514 int result = -ENOMEM;
2515 struct pci_dev *pdev = to_pci_dev(dev->dev);
2516 unsigned int flags = PCI_IRQ_ALL_TYPES;
2517
2518 if (pci_enable_device_mem(pdev))
2519 return result;
2520
2521 pci_set_master(pdev);
2522
2523 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2524 result = -ENODEV;
2525 goto disable;
2526 }
2527
2528 /*
2529 * Some devices and/or platforms don't advertise or work with INTx
2530 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2531 * adjust this later.
2532 */
2533 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2534 flags &= ~PCI_IRQ_MSI;
2535 result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2536 if (result < 0)
2537 goto disable;
2538
2539 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2540
2541 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2542 io_queue_depth);
2543 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2544 dev->dbs = dev->bar + 4096;
2545
2546 /*
2547 * Some Apple controllers require a non-standard SQE size.
2548 * Interestingly they also seem to ignore the CC:IOSQES register
2549 * so we don't bother updating it here.
2550 */
2551 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2552 dev->io_sqes = 7;
2553 else
2554 dev->io_sqes = NVME_NVM_IOSQES;
2555
2556 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2557 dev->q_depth = 2;
2558 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2559 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2560 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2561 dev->q_depth = 64;
2562 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2563 "set queue depth=%u\n", dev->q_depth);
2564 }
2565
2566 /*
2567 * Controllers with the shared tags quirk need the IO queue to be
2568 * big enough so that we get 32 tags for the admin queue
2569 */
2570 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2571 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2572 dev->q_depth = NVME_AQ_DEPTH + 2;
2573 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2574 dev->q_depth);
2575 }
2576 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2577
2578 nvme_map_cmb(dev);
2579
2580 pci_save_state(pdev);
2581
2582 result = nvme_pci_configure_admin_queue(dev);
2583 if (result)
2584 goto free_irq;
2585 return result;
2586
2587 free_irq:
2588 pci_free_irq_vectors(pdev);
2589 disable:
2590 pci_disable_device(pdev);
2591 return result;
2592 }
2593
nvme_dev_unmap(struct nvme_dev * dev)2594 static void nvme_dev_unmap(struct nvme_dev *dev)
2595 {
2596 if (dev->bar)
2597 iounmap(dev->bar);
2598 pci_release_mem_regions(to_pci_dev(dev->dev));
2599 }
2600
nvme_pci_ctrl_is_dead(struct nvme_dev * dev)2601 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2602 {
2603 struct pci_dev *pdev = to_pci_dev(dev->dev);
2604 u32 csts;
2605
2606 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2607 return true;
2608 if (pdev->error_state != pci_channel_io_normal)
2609 return true;
2610
2611 csts = readl(dev->bar + NVME_REG_CSTS);
2612 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2613 }
2614
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2615 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2616 {
2617 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2618 struct pci_dev *pdev = to_pci_dev(dev->dev);
2619 bool dead;
2620
2621 mutex_lock(&dev->shutdown_lock);
2622 dead = nvme_pci_ctrl_is_dead(dev);
2623 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2624 if (pci_is_enabled(pdev))
2625 nvme_start_freeze(&dev->ctrl);
2626 /*
2627 * Give the controller a chance to complete all entered requests
2628 * if doing a safe shutdown.
2629 */
2630 if (!dead && shutdown)
2631 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2632 }
2633
2634 nvme_quiesce_io_queues(&dev->ctrl);
2635
2636 if (!dead && dev->ctrl.queue_count > 0) {
2637 nvme_delete_io_queues(dev);
2638 nvme_disable_ctrl(&dev->ctrl, shutdown);
2639 nvme_poll_irqdisable(&dev->queues[0]);
2640 }
2641 nvme_suspend_io_queues(dev);
2642 nvme_suspend_queue(dev, 0);
2643 pci_free_irq_vectors(pdev);
2644 if (pci_is_enabled(pdev))
2645 pci_disable_device(pdev);
2646 nvme_reap_pending_cqes(dev);
2647
2648 nvme_cancel_tagset(&dev->ctrl);
2649 nvme_cancel_admin_tagset(&dev->ctrl);
2650
2651 /*
2652 * The driver will not be starting up queues again if shutting down so
2653 * must flush all entered requests to their failed completion to avoid
2654 * deadlocking blk-mq hot-cpu notifier.
2655 */
2656 if (shutdown) {
2657 nvme_unquiesce_io_queues(&dev->ctrl);
2658 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2659 nvme_unquiesce_admin_queue(&dev->ctrl);
2660 }
2661 mutex_unlock(&dev->shutdown_lock);
2662 }
2663
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2664 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2665 {
2666 if (!nvme_wait_reset(&dev->ctrl))
2667 return -EBUSY;
2668 nvme_dev_disable(dev, shutdown);
2669 return 0;
2670 }
2671
nvme_setup_prp_pools(struct nvme_dev * dev)2672 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2673 {
2674 size_t small_align = 256;
2675
2676 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2677 NVME_CTRL_PAGE_SIZE,
2678 NVME_CTRL_PAGE_SIZE, 0);
2679 if (!dev->prp_page_pool)
2680 return -ENOMEM;
2681
2682 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2683 small_align = 512;
2684
2685 /* Optimisation for I/Os between 4k and 128k */
2686 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2687 256, small_align, 0);
2688 if (!dev->prp_small_pool) {
2689 dma_pool_destroy(dev->prp_page_pool);
2690 return -ENOMEM;
2691 }
2692 return 0;
2693 }
2694
nvme_release_prp_pools(struct nvme_dev * dev)2695 static void nvme_release_prp_pools(struct nvme_dev *dev)
2696 {
2697 dma_pool_destroy(dev->prp_page_pool);
2698 dma_pool_destroy(dev->prp_small_pool);
2699 }
2700
nvme_pci_alloc_iod_mempool(struct nvme_dev * dev)2701 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2702 {
2703 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2704
2705 dev->iod_mempool = mempool_create_node(1,
2706 mempool_kmalloc, mempool_kfree,
2707 (void *)alloc_size, GFP_KERNEL,
2708 dev_to_node(dev->dev));
2709 if (!dev->iod_mempool)
2710 return -ENOMEM;
2711 return 0;
2712 }
2713
nvme_free_tagset(struct nvme_dev * dev)2714 static void nvme_free_tagset(struct nvme_dev *dev)
2715 {
2716 if (dev->tagset.tags)
2717 nvme_remove_io_tag_set(&dev->ctrl);
2718 dev->ctrl.tagset = NULL;
2719 }
2720
2721 /* pairs with nvme_pci_alloc_dev */
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2722 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2723 {
2724 struct nvme_dev *dev = to_nvme_dev(ctrl);
2725
2726 nvme_free_tagset(dev);
2727 put_device(dev->dev);
2728 kfree(dev->queues);
2729 kfree(dev);
2730 }
2731
nvme_reset_work(struct work_struct * work)2732 static void nvme_reset_work(struct work_struct *work)
2733 {
2734 struct nvme_dev *dev =
2735 container_of(work, struct nvme_dev, ctrl.reset_work);
2736 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2737 int result;
2738
2739 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2740 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2741 dev->ctrl.state);
2742 result = -ENODEV;
2743 goto out;
2744 }
2745
2746 /*
2747 * If we're called to reset a live controller first shut it down before
2748 * moving on.
2749 */
2750 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2751 nvme_dev_disable(dev, false);
2752 nvme_sync_queues(&dev->ctrl);
2753
2754 mutex_lock(&dev->shutdown_lock);
2755 result = nvme_pci_enable(dev);
2756 if (result)
2757 goto out_unlock;
2758 nvme_unquiesce_admin_queue(&dev->ctrl);
2759 mutex_unlock(&dev->shutdown_lock);
2760
2761 /*
2762 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2763 * initializing procedure here.
2764 */
2765 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2766 dev_warn(dev->ctrl.device,
2767 "failed to mark controller CONNECTING\n");
2768 result = -EBUSY;
2769 goto out;
2770 }
2771
2772 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2773 if (result)
2774 goto out;
2775
2776 nvme_dbbuf_dma_alloc(dev);
2777
2778 result = nvme_setup_host_mem(dev);
2779 if (result < 0)
2780 goto out;
2781
2782 result = nvme_setup_io_queues(dev);
2783 if (result)
2784 goto out;
2785
2786 /*
2787 * Freeze and update the number of I/O queues as thos might have
2788 * changed. If there are no I/O queues left after this reset, keep the
2789 * controller around but remove all namespaces.
2790 */
2791 if (dev->online_queues > 1) {
2792 nvme_dbbuf_set(dev);
2793 nvme_unquiesce_io_queues(&dev->ctrl);
2794 nvme_wait_freeze(&dev->ctrl);
2795 if (!nvme_pci_update_nr_queues(dev))
2796 goto out;
2797 nvme_unfreeze(&dev->ctrl);
2798 } else {
2799 dev_warn(dev->ctrl.device, "IO queues lost\n");
2800 nvme_mark_namespaces_dead(&dev->ctrl);
2801 nvme_unquiesce_io_queues(&dev->ctrl);
2802 nvme_remove_namespaces(&dev->ctrl);
2803 nvme_free_tagset(dev);
2804 }
2805
2806 /*
2807 * If only admin queue live, keep it to do further investigation or
2808 * recovery.
2809 */
2810 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2811 dev_warn(dev->ctrl.device,
2812 "failed to mark controller live state\n");
2813 result = -ENODEV;
2814 goto out;
2815 }
2816
2817 nvme_start_ctrl(&dev->ctrl);
2818 return;
2819
2820 out_unlock:
2821 mutex_unlock(&dev->shutdown_lock);
2822 out:
2823 /*
2824 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2825 * may be holding this pci_dev's device lock.
2826 */
2827 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2828 result);
2829 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2830 nvme_dev_disable(dev, true);
2831 nvme_sync_queues(&dev->ctrl);
2832 nvme_mark_namespaces_dead(&dev->ctrl);
2833 nvme_unquiesce_io_queues(&dev->ctrl);
2834 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2835 }
2836
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2837 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2838 {
2839 *val = readl(to_nvme_dev(ctrl)->bar + off);
2840 return 0;
2841 }
2842
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2843 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2844 {
2845 writel(val, to_nvme_dev(ctrl)->bar + off);
2846 return 0;
2847 }
2848
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2849 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2850 {
2851 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2852 return 0;
2853 }
2854
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2855 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2856 {
2857 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2858
2859 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2860 }
2861
nvme_pci_print_device_info(struct nvme_ctrl * ctrl)2862 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2863 {
2864 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2865 struct nvme_subsystem *subsys = ctrl->subsys;
2866
2867 dev_err(ctrl->device,
2868 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2869 pdev->vendor, pdev->device,
2870 nvme_strlen(subsys->model, sizeof(subsys->model)),
2871 subsys->model, nvme_strlen(subsys->firmware_rev,
2872 sizeof(subsys->firmware_rev)),
2873 subsys->firmware_rev);
2874 }
2875
nvme_pci_supports_pci_p2pdma(struct nvme_ctrl * ctrl)2876 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2877 {
2878 struct nvme_dev *dev = to_nvme_dev(ctrl);
2879
2880 return dma_pci_p2pdma_supported(dev->dev);
2881 }
2882
2883 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2884 .name = "pcie",
2885 .module = THIS_MODULE,
2886 .flags = NVME_F_METADATA_SUPPORTED,
2887 .dev_attr_groups = nvme_pci_dev_attr_groups,
2888 .reg_read32 = nvme_pci_reg_read32,
2889 .reg_write32 = nvme_pci_reg_write32,
2890 .reg_read64 = nvme_pci_reg_read64,
2891 .free_ctrl = nvme_pci_free_ctrl,
2892 .submit_async_event = nvme_pci_submit_async_event,
2893 .get_address = nvme_pci_get_address,
2894 .print_device_info = nvme_pci_print_device_info,
2895 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2896 };
2897
nvme_dev_map(struct nvme_dev * dev)2898 static int nvme_dev_map(struct nvme_dev *dev)
2899 {
2900 struct pci_dev *pdev = to_pci_dev(dev->dev);
2901
2902 if (pci_request_mem_regions(pdev, "nvme"))
2903 return -ENODEV;
2904
2905 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2906 goto release;
2907
2908 return 0;
2909 release:
2910 pci_release_mem_regions(pdev);
2911 return -ENODEV;
2912 }
2913
check_vendor_combination_bug(struct pci_dev * pdev)2914 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2915 {
2916 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2917 /*
2918 * Several Samsung devices seem to drop off the PCIe bus
2919 * randomly when APST is on and uses the deepest sleep state.
2920 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2921 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2922 * 950 PRO 256GB", but it seems to be restricted to two Dell
2923 * laptops.
2924 */
2925 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2926 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2927 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2928 return NVME_QUIRK_NO_DEEPEST_PS;
2929 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2930 /*
2931 * Samsung SSD 960 EVO drops off the PCIe bus after system
2932 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2933 * within few minutes after bootup on a Coffee Lake board -
2934 * ASUS PRIME Z370-A
2935 */
2936 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2937 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2938 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2939 return NVME_QUIRK_NO_APST;
2940 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2941 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2942 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2943 /*
2944 * Forcing to use host managed nvme power settings for
2945 * lowest idle power with quick resume latency on
2946 * Samsung and Toshiba SSDs based on suspend behavior
2947 * on Coffee Lake board for LENOVO C640
2948 */
2949 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2950 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2951 return NVME_QUIRK_SIMPLE_SUSPEND;
2952 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2953 pdev->device == 0x500f)) {
2954 /*
2955 * Exclude some Kingston NV1 and A2000 devices from
2956 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2957 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2958 */
2959 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2960 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2961 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2962 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2963 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2964 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
2965 /*
2966 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
2967 * because of high power consumption (> 2 Watt) in s2idle
2968 * sleep. Only some boards with Intel CPU are affected.
2969 */
2970 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
2971 dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
2972 dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
2973 dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
2974 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
2975 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
2976 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2977 }
2978
2979 /*
2980 * NVMe SSD drops off the PCIe bus after system idle
2981 * for 10 hours on a Lenovo N60z board.
2982 */
2983 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2984 return NVME_QUIRK_NO_APST;
2985
2986 return 0;
2987 }
2988
nvme_pci_alloc_dev(struct pci_dev * pdev,const struct pci_device_id * id)2989 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2990 const struct pci_device_id *id)
2991 {
2992 unsigned long quirks = id->driver_data;
2993 int node = dev_to_node(&pdev->dev);
2994 struct nvme_dev *dev;
2995 int ret = -ENOMEM;
2996
2997 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2998 if (!dev)
2999 return ERR_PTR(-ENOMEM);
3000 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3001 mutex_init(&dev->shutdown_lock);
3002
3003 dev->nr_write_queues = write_queues;
3004 dev->nr_poll_queues = poll_queues;
3005 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3006 dev->queues = kcalloc_node(dev->nr_allocated_queues,
3007 sizeof(struct nvme_queue), GFP_KERNEL, node);
3008 if (!dev->queues)
3009 goto out_free_dev;
3010
3011 dev->dev = get_device(&pdev->dev);
3012
3013 quirks |= check_vendor_combination_bug(pdev);
3014 if (!noacpi &&
3015 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3016 acpi_storage_d3(&pdev->dev)) {
3017 /*
3018 * Some systems use a bios work around to ask for D3 on
3019 * platforms that support kernel managed suspend.
3020 */
3021 dev_info(&pdev->dev,
3022 "platform quirk: setting simple suspend\n");
3023 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3024 }
3025 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3026 quirks);
3027 if (ret)
3028 goto out_put_device;
3029
3030 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3031 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3032 else
3033 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3034 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3035 dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3036
3037 /*
3038 * Limit the max command size to prevent iod->sg allocations going
3039 * over a single page.
3040 */
3041 dev->ctrl.max_hw_sectors = min_t(u32,
3042 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3043 dev->ctrl.max_segments = NVME_MAX_SEGS;
3044
3045 /*
3046 * There is no support for SGLs for metadata (yet), so we are limited to
3047 * a single integrity segment for the separate metadata pointer.
3048 */
3049 dev->ctrl.max_integrity_segments = 1;
3050 return dev;
3051
3052 out_put_device:
3053 put_device(dev->dev);
3054 kfree(dev->queues);
3055 out_free_dev:
3056 kfree(dev);
3057 return ERR_PTR(ret);
3058 }
3059
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)3060 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3061 {
3062 struct nvme_dev *dev;
3063 int result = -ENOMEM;
3064
3065 dev = nvme_pci_alloc_dev(pdev, id);
3066 if (IS_ERR(dev))
3067 return PTR_ERR(dev);
3068
3069 result = nvme_dev_map(dev);
3070 if (result)
3071 goto out_uninit_ctrl;
3072
3073 result = nvme_setup_prp_pools(dev);
3074 if (result)
3075 goto out_dev_unmap;
3076
3077 result = nvme_pci_alloc_iod_mempool(dev);
3078 if (result)
3079 goto out_release_prp_pools;
3080
3081 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3082
3083 result = nvme_pci_enable(dev);
3084 if (result)
3085 goto out_release_iod_mempool;
3086
3087 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3088 &nvme_mq_admin_ops, sizeof(struct nvme_iod));
3089 if (result)
3090 goto out_disable;
3091
3092 /*
3093 * Mark the controller as connecting before sending admin commands to
3094 * allow the timeout handler to do the right thing.
3095 */
3096 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3097 dev_warn(dev->ctrl.device,
3098 "failed to mark controller CONNECTING\n");
3099 result = -EBUSY;
3100 goto out_disable;
3101 }
3102
3103 result = nvme_init_ctrl_finish(&dev->ctrl, false);
3104 if (result)
3105 goto out_disable;
3106
3107 nvme_dbbuf_dma_alloc(dev);
3108
3109 result = nvme_setup_host_mem(dev);
3110 if (result < 0)
3111 goto out_disable;
3112
3113 result = nvme_setup_io_queues(dev);
3114 if (result)
3115 goto out_disable;
3116
3117 if (dev->online_queues > 1) {
3118 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3119 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3120 nvme_dbbuf_set(dev);
3121 }
3122
3123 if (!dev->ctrl.tagset)
3124 dev_warn(dev->ctrl.device, "IO queues not created\n");
3125
3126 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3127 dev_warn(dev->ctrl.device,
3128 "failed to mark controller live state\n");
3129 result = -ENODEV;
3130 goto out_disable;
3131 }
3132
3133 pci_set_drvdata(pdev, dev);
3134
3135 nvme_start_ctrl(&dev->ctrl);
3136 nvme_put_ctrl(&dev->ctrl);
3137 flush_work(&dev->ctrl.scan_work);
3138 return 0;
3139
3140 out_disable:
3141 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3142 nvme_dev_disable(dev, true);
3143 nvme_free_host_mem(dev);
3144 nvme_dev_remove_admin(dev);
3145 nvme_dbbuf_dma_free(dev);
3146 nvme_free_queues(dev, 0);
3147 out_release_iod_mempool:
3148 mempool_destroy(dev->iod_mempool);
3149 out_release_prp_pools:
3150 nvme_release_prp_pools(dev);
3151 out_dev_unmap:
3152 nvme_dev_unmap(dev);
3153 out_uninit_ctrl:
3154 nvme_uninit_ctrl(&dev->ctrl);
3155 nvme_put_ctrl(&dev->ctrl);
3156 return result;
3157 }
3158
nvme_reset_prepare(struct pci_dev * pdev)3159 static void nvme_reset_prepare(struct pci_dev *pdev)
3160 {
3161 struct nvme_dev *dev = pci_get_drvdata(pdev);
3162
3163 /*
3164 * We don't need to check the return value from waiting for the reset
3165 * state as pci_dev device lock is held, making it impossible to race
3166 * with ->remove().
3167 */
3168 nvme_disable_prepare_reset(dev, false);
3169 nvme_sync_queues(&dev->ctrl);
3170 }
3171
nvme_reset_done(struct pci_dev * pdev)3172 static void nvme_reset_done(struct pci_dev *pdev)
3173 {
3174 struct nvme_dev *dev = pci_get_drvdata(pdev);
3175
3176 if (!nvme_try_sched_reset(&dev->ctrl))
3177 flush_work(&dev->ctrl.reset_work);
3178 }
3179
nvme_shutdown(struct pci_dev * pdev)3180 static void nvme_shutdown(struct pci_dev *pdev)
3181 {
3182 struct nvme_dev *dev = pci_get_drvdata(pdev);
3183
3184 nvme_disable_prepare_reset(dev, true);
3185 }
3186
3187 /*
3188 * The driver's remove may be called on a device in a partially initialized
3189 * state. This function must not have any dependencies on the device state in
3190 * order to proceed.
3191 */
nvme_remove(struct pci_dev * pdev)3192 static void nvme_remove(struct pci_dev *pdev)
3193 {
3194 struct nvme_dev *dev = pci_get_drvdata(pdev);
3195
3196 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3197 pci_set_drvdata(pdev, NULL);
3198
3199 if (!pci_device_is_present(pdev)) {
3200 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3201 nvme_dev_disable(dev, true);
3202 }
3203
3204 flush_work(&dev->ctrl.reset_work);
3205 nvme_stop_ctrl(&dev->ctrl);
3206 nvme_remove_namespaces(&dev->ctrl);
3207 nvme_dev_disable(dev, true);
3208 nvme_free_host_mem(dev);
3209 nvme_dev_remove_admin(dev);
3210 nvme_dbbuf_dma_free(dev);
3211 nvme_free_queues(dev, 0);
3212 mempool_destroy(dev->iod_mempool);
3213 nvme_release_prp_pools(dev);
3214 nvme_dev_unmap(dev);
3215 nvme_uninit_ctrl(&dev->ctrl);
3216 }
3217
3218 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3219 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3220 {
3221 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3222 }
3223
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3224 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3225 {
3226 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3227 }
3228
nvme_resume(struct device * dev)3229 static int nvme_resume(struct device *dev)
3230 {
3231 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3232 struct nvme_ctrl *ctrl = &ndev->ctrl;
3233
3234 if (ndev->last_ps == U32_MAX ||
3235 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3236 goto reset;
3237 if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3238 goto reset;
3239
3240 return 0;
3241 reset:
3242 return nvme_try_sched_reset(ctrl);
3243 }
3244
nvme_suspend(struct device * dev)3245 static int nvme_suspend(struct device *dev)
3246 {
3247 struct pci_dev *pdev = to_pci_dev(dev);
3248 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3249 struct nvme_ctrl *ctrl = &ndev->ctrl;
3250 int ret = -EBUSY;
3251
3252 ndev->last_ps = U32_MAX;
3253
3254 /*
3255 * The platform does not remove power for a kernel managed suspend so
3256 * use host managed nvme power settings for lowest idle power if
3257 * possible. This should have quicker resume latency than a full device
3258 * shutdown. But if the firmware is involved after the suspend or the
3259 * device does not support any non-default power states, shut down the
3260 * device fully.
3261 *
3262 * If ASPM is not enabled for the device, shut down the device and allow
3263 * the PCI bus layer to put it into D3 in order to take the PCIe link
3264 * down, so as to allow the platform to achieve its minimum low-power
3265 * state (which may not be possible if the link is up).
3266 */
3267 if (pm_suspend_via_firmware() || !ctrl->npss ||
3268 !pcie_aspm_enabled(pdev) ||
3269 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3270 return nvme_disable_prepare_reset(ndev, true);
3271
3272 nvme_start_freeze(ctrl);
3273 nvme_wait_freeze(ctrl);
3274 nvme_sync_queues(ctrl);
3275
3276 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3277 goto unfreeze;
3278
3279 /*
3280 * Host memory access may not be successful in a system suspend state,
3281 * but the specification allows the controller to access memory in a
3282 * non-operational power state.
3283 */
3284 if (ndev->hmb) {
3285 ret = nvme_set_host_mem(ndev, 0);
3286 if (ret < 0)
3287 goto unfreeze;
3288 }
3289
3290 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3291 if (ret < 0)
3292 goto unfreeze;
3293
3294 /*
3295 * A saved state prevents pci pm from generically controlling the
3296 * device's power. If we're using protocol specific settings, we don't
3297 * want pci interfering.
3298 */
3299 pci_save_state(pdev);
3300
3301 ret = nvme_set_power_state(ctrl, ctrl->npss);
3302 if (ret < 0)
3303 goto unfreeze;
3304
3305 if (ret) {
3306 /* discard the saved state */
3307 pci_load_saved_state(pdev, NULL);
3308
3309 /*
3310 * Clearing npss forces a controller reset on resume. The
3311 * correct value will be rediscovered then.
3312 */
3313 ret = nvme_disable_prepare_reset(ndev, true);
3314 ctrl->npss = 0;
3315 }
3316 unfreeze:
3317 nvme_unfreeze(ctrl);
3318 return ret;
3319 }
3320
nvme_simple_suspend(struct device * dev)3321 static int nvme_simple_suspend(struct device *dev)
3322 {
3323 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3324
3325 return nvme_disable_prepare_reset(ndev, true);
3326 }
3327
nvme_simple_resume(struct device * dev)3328 static int nvme_simple_resume(struct device *dev)
3329 {
3330 struct pci_dev *pdev = to_pci_dev(dev);
3331 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3332
3333 return nvme_try_sched_reset(&ndev->ctrl);
3334 }
3335
3336 static const struct dev_pm_ops nvme_dev_pm_ops = {
3337 .suspend = nvme_suspend,
3338 .resume = nvme_resume,
3339 .freeze = nvme_simple_suspend,
3340 .thaw = nvme_simple_resume,
3341 .poweroff = nvme_simple_suspend,
3342 .restore = nvme_simple_resume,
3343 };
3344 #endif /* CONFIG_PM_SLEEP */
3345
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3346 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3347 pci_channel_state_t state)
3348 {
3349 struct nvme_dev *dev = pci_get_drvdata(pdev);
3350
3351 /*
3352 * A frozen channel requires a reset. When detected, this method will
3353 * shutdown the controller to quiesce. The controller will be restarted
3354 * after the slot reset through driver's slot_reset callback.
3355 */
3356 switch (state) {
3357 case pci_channel_io_normal:
3358 return PCI_ERS_RESULT_CAN_RECOVER;
3359 case pci_channel_io_frozen:
3360 dev_warn(dev->ctrl.device,
3361 "frozen state error detected, reset controller\n");
3362 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3363 nvme_dev_disable(dev, true);
3364 return PCI_ERS_RESULT_DISCONNECT;
3365 }
3366 nvme_dev_disable(dev, false);
3367 return PCI_ERS_RESULT_NEED_RESET;
3368 case pci_channel_io_perm_failure:
3369 dev_warn(dev->ctrl.device,
3370 "failure state error detected, request disconnect\n");
3371 return PCI_ERS_RESULT_DISCONNECT;
3372 }
3373 return PCI_ERS_RESULT_NEED_RESET;
3374 }
3375
nvme_slot_reset(struct pci_dev * pdev)3376 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3377 {
3378 struct nvme_dev *dev = pci_get_drvdata(pdev);
3379
3380 dev_info(dev->ctrl.device, "restart after slot reset\n");
3381 pci_restore_state(pdev);
3382 if (nvme_try_sched_reset(&dev->ctrl))
3383 nvme_unquiesce_io_queues(&dev->ctrl);
3384 return PCI_ERS_RESULT_RECOVERED;
3385 }
3386
nvme_error_resume(struct pci_dev * pdev)3387 static void nvme_error_resume(struct pci_dev *pdev)
3388 {
3389 struct nvme_dev *dev = pci_get_drvdata(pdev);
3390
3391 flush_work(&dev->ctrl.reset_work);
3392 }
3393
3394 static const struct pci_error_handlers nvme_err_handler = {
3395 .error_detected = nvme_error_detected,
3396 .slot_reset = nvme_slot_reset,
3397 .resume = nvme_error_resume,
3398 .reset_prepare = nvme_reset_prepare,
3399 .reset_done = nvme_reset_done,
3400 };
3401
3402 static const struct pci_device_id nvme_id_table[] = {
3403 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3404 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3405 NVME_QUIRK_DEALLOCATE_ZEROES, },
3406 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3407 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3408 NVME_QUIRK_DEALLOCATE_ZEROES, },
3409 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3410 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3411 NVME_QUIRK_DEALLOCATE_ZEROES |
3412 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3413 NVME_QUIRK_BOGUS_NID, },
3414 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3415 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3416 NVME_QUIRK_DEALLOCATE_ZEROES, },
3417 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3418 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3419 NVME_QUIRK_MEDIUM_PRIO_SQ |
3420 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3421 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3422 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3423 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3424 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3425 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3426 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3427 NVME_QUIRK_BOGUS_NID, },
3428 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3429 .driver_data = NVME_QUIRK_BOGUS_NID, },
3430 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3431 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3432 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */
3433 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3434 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3435 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3436 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3437 NVME_QUIRK_BOGUS_NID, },
3438 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3439 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3440 NVME_QUIRK_BOGUS_NID, },
3441 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3442 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3443 NVME_QUIRK_NO_NS_DESC_LIST, },
3444 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3445 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3446 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3447 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3448 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3449 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3450 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3451 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3452 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3453 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3454 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3455 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3456 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3457 .driver_data = NVME_QUIRK_BROKEN_MSI },
3458 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */
3459 .driver_data = NVME_QUIRK_BROKEN_MSI |
3460 NVME_QUIRK_NO_DEEPEST_PS },
3461 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3462 .driver_data = NVME_QUIRK_BOGUS_NID, },
3463 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3464 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3465 NVME_QUIRK_BOGUS_NID, },
3466 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3467 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3468 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3469 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3470 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3471 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3472 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3473 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3474 .driver_data = NVME_QUIRK_BOGUS_NID, },
3475 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3476 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3477 NVME_QUIRK_BOGUS_NID, },
3478 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3479 .driver_data = NVME_QUIRK_BOGUS_NID, },
3480 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3481 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3482 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3483 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3484 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3485 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3486 .driver_data = NVME_QUIRK_BOGUS_NID, },
3487 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3488 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3489 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3490 .driver_data = NVME_QUIRK_BOGUS_NID, },
3491 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3492 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3493 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3494 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3495 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3496 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3497 NVME_QUIRK_BOGUS_NID, },
3498 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3499 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3501 .driver_data = NVME_QUIRK_BOGUS_NID, },
3502 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3503 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3505 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3507 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3508 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3509 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3510 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3511 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3512 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3513 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3514 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3515 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3516 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3517 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3518 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3519 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3520 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3521 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3522 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3523 .driver_data = NVME_QUIRK_BOGUS_NID, },
3524 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3525 .driver_data = NVME_QUIRK_BOGUS_NID, },
3526 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3527 .driver_data = NVME_QUIRK_BOGUS_NID, },
3528 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3529 .driver_data = NVME_QUIRK_BOGUS_NID, },
3530 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3531 .driver_data = NVME_QUIRK_BOGUS_NID, },
3532 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3533 .driver_data = NVME_QUIRK_BOGUS_NID, },
3534 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3535 .driver_data = NVME_QUIRK_BOGUS_NID, },
3536 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3537 .driver_data = NVME_QUIRK_BOGUS_NID, },
3538 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3539 .driver_data = NVME_QUIRK_BOGUS_NID, },
3540 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3541 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3542 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3543 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3544 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */
3545 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3546 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3547 .driver_data = NVME_QUIRK_BOGUS_NID, },
3548 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3549 .driver_data = NVME_QUIRK_BOGUS_NID, },
3550 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3551 .driver_data = NVME_QUIRK_BOGUS_NID, },
3552 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3553 .driver_data = NVME_QUIRK_BOGUS_NID |
3554 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3555 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3556 .driver_data = NVME_QUIRK_BOGUS_NID, },
3557 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3558 .driver_data = NVME_QUIRK_BOGUS_NID, },
3559 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3560 .driver_data = NVME_QUIRK_BOGUS_NID, },
3561 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3562 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3563 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3564 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3565 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3566 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3567 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3568 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3569 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3570 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3571 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3572 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3573 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3574 /*
3575 * Fix for the Apple controller found in the MacBook8,1 and
3576 * some MacBook7,1 to avoid controller resets and data loss.
3577 */
3578 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3579 NVME_QUIRK_QDEPTH_ONE },
3580 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3581 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3582 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3583 NVME_QUIRK_128_BYTES_SQES |
3584 NVME_QUIRK_SHARED_TAGS |
3585 NVME_QUIRK_SKIP_CID_GEN |
3586 NVME_QUIRK_IDENTIFY_CNS },
3587 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3588 { 0, }
3589 };
3590 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3591
3592 static struct pci_driver nvme_driver = {
3593 .name = "nvme",
3594 .id_table = nvme_id_table,
3595 .probe = nvme_probe,
3596 .remove = nvme_remove,
3597 .shutdown = nvme_shutdown,
3598 .driver = {
3599 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3600 #ifdef CONFIG_PM_SLEEP
3601 .pm = &nvme_dev_pm_ops,
3602 #endif
3603 },
3604 .sriov_configure = pci_sriov_configure_simple,
3605 .err_handler = &nvme_err_handler,
3606 };
3607
nvme_init(void)3608 static int __init nvme_init(void)
3609 {
3610 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3611 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3612 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3613 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3614 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3615 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3616 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3617
3618 return pci_register_driver(&nvme_driver);
3619 }
3620
nvme_exit(void)3621 static void __exit nvme_exit(void)
3622 {
3623 pci_unregister_driver(&nvme_driver);
3624 flush_workqueue(nvme_wq);
3625 }
3626
3627 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3628 MODULE_LICENSE("GPL");
3629 MODULE_VERSION("1.0");
3630 module_init(nvme_init);
3631 module_exit(nvme_exit);
3632