1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2020 Invensense, Inc.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/device.h>
8 #include <linux/mutex.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/regmap.h>
11 #include <linux/delay.h>
12 #include <linux/math64.h>
13
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/common/inv_sensors_timestamp.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/kfifo_buf.h>
18
19 #include "inv_icm42600.h"
20 #include "inv_icm42600_temp.h"
21 #include "inv_icm42600_buffer.h"
22
23 #define INV_ICM42600_GYRO_CHAN(_modifier, _index, _ext_info) \
24 { \
25 .type = IIO_ANGL_VEL, \
26 .modified = 1, \
27 .channel2 = _modifier, \
28 .info_mask_separate = \
29 BIT(IIO_CHAN_INFO_RAW) | \
30 BIT(IIO_CHAN_INFO_CALIBBIAS), \
31 .info_mask_shared_by_type = \
32 BIT(IIO_CHAN_INFO_SCALE), \
33 .info_mask_shared_by_type_available = \
34 BIT(IIO_CHAN_INFO_SCALE) | \
35 BIT(IIO_CHAN_INFO_CALIBBIAS), \
36 .info_mask_shared_by_all = \
37 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
38 .info_mask_shared_by_all_available = \
39 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
40 .scan_index = _index, \
41 .scan_type = { \
42 .sign = 's', \
43 .realbits = 16, \
44 .storagebits = 16, \
45 .endianness = IIO_BE, \
46 }, \
47 .ext_info = _ext_info, \
48 }
49
50 enum inv_icm42600_gyro_scan {
51 INV_ICM42600_GYRO_SCAN_X,
52 INV_ICM42600_GYRO_SCAN_Y,
53 INV_ICM42600_GYRO_SCAN_Z,
54 INV_ICM42600_GYRO_SCAN_TEMP,
55 INV_ICM42600_GYRO_SCAN_TIMESTAMP,
56 };
57
58 static const struct iio_chan_spec_ext_info inv_icm42600_gyro_ext_infos[] = {
59 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, inv_icm42600_get_mount_matrix),
60 {},
61 };
62
63 static const struct iio_chan_spec inv_icm42600_gyro_channels[] = {
64 INV_ICM42600_GYRO_CHAN(IIO_MOD_X, INV_ICM42600_GYRO_SCAN_X,
65 inv_icm42600_gyro_ext_infos),
66 INV_ICM42600_GYRO_CHAN(IIO_MOD_Y, INV_ICM42600_GYRO_SCAN_Y,
67 inv_icm42600_gyro_ext_infos),
68 INV_ICM42600_GYRO_CHAN(IIO_MOD_Z, INV_ICM42600_GYRO_SCAN_Z,
69 inv_icm42600_gyro_ext_infos),
70 INV_ICM42600_TEMP_CHAN(INV_ICM42600_GYRO_SCAN_TEMP),
71 IIO_CHAN_SOFT_TIMESTAMP(INV_ICM42600_GYRO_SCAN_TIMESTAMP),
72 };
73
74 /*
75 * IIO buffer data: size must be a power of 2 and timestamp aligned
76 * 16 bytes: 6 bytes angular velocity, 2 bytes temperature, 8 bytes timestamp
77 */
78 struct inv_icm42600_gyro_buffer {
79 struct inv_icm42600_fifo_sensor_data gyro;
80 int16_t temp;
81 int64_t timestamp __aligned(8);
82 };
83
84 #define INV_ICM42600_SCAN_MASK_GYRO_3AXIS \
85 (BIT(INV_ICM42600_GYRO_SCAN_X) | \
86 BIT(INV_ICM42600_GYRO_SCAN_Y) | \
87 BIT(INV_ICM42600_GYRO_SCAN_Z))
88
89 #define INV_ICM42600_SCAN_MASK_TEMP BIT(INV_ICM42600_GYRO_SCAN_TEMP)
90
91 static const unsigned long inv_icm42600_gyro_scan_masks[] = {
92 /* 3-axis gyro + temperature */
93 INV_ICM42600_SCAN_MASK_GYRO_3AXIS | INV_ICM42600_SCAN_MASK_TEMP,
94 0,
95 };
96
97 /* enable gyroscope sensor and FIFO write */
inv_icm42600_gyro_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)98 static int inv_icm42600_gyro_update_scan_mode(struct iio_dev *indio_dev,
99 const unsigned long *scan_mask)
100 {
101 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
102 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
103 unsigned int fifo_en = 0;
104 unsigned int sleep_gyro = 0;
105 unsigned int sleep_temp = 0;
106 unsigned int sleep;
107 int ret;
108
109 mutex_lock(&st->lock);
110
111 if (*scan_mask & INV_ICM42600_SCAN_MASK_TEMP) {
112 /* enable temp sensor */
113 ret = inv_icm42600_set_temp_conf(st, true, &sleep_temp);
114 if (ret)
115 goto out_unlock;
116 fifo_en |= INV_ICM42600_SENSOR_TEMP;
117 }
118
119 if (*scan_mask & INV_ICM42600_SCAN_MASK_GYRO_3AXIS) {
120 /* enable gyro sensor */
121 conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
122 ret = inv_icm42600_set_gyro_conf(st, &conf, &sleep_gyro);
123 if (ret)
124 goto out_unlock;
125 fifo_en |= INV_ICM42600_SENSOR_GYRO;
126 }
127
128 /* update data FIFO write */
129 ret = inv_icm42600_buffer_set_fifo_en(st, fifo_en | st->fifo.en);
130
131 out_unlock:
132 mutex_unlock(&st->lock);
133 /* sleep maximum required time */
134 if (sleep_gyro > sleep_temp)
135 sleep = sleep_gyro;
136 else
137 sleep = sleep_temp;
138 if (sleep)
139 msleep(sleep);
140 return ret;
141 }
142
inv_icm42600_gyro_read_sensor(struct inv_icm42600_state * st,struct iio_chan_spec const * chan,int16_t * val)143 static int inv_icm42600_gyro_read_sensor(struct inv_icm42600_state *st,
144 struct iio_chan_spec const *chan,
145 int16_t *val)
146 {
147 struct device *dev = regmap_get_device(st->map);
148 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
149 unsigned int reg;
150 __be16 *data;
151 int ret;
152
153 if (chan->type != IIO_ANGL_VEL)
154 return -EINVAL;
155
156 switch (chan->channel2) {
157 case IIO_MOD_X:
158 reg = INV_ICM42600_REG_GYRO_DATA_X;
159 break;
160 case IIO_MOD_Y:
161 reg = INV_ICM42600_REG_GYRO_DATA_Y;
162 break;
163 case IIO_MOD_Z:
164 reg = INV_ICM42600_REG_GYRO_DATA_Z;
165 break;
166 default:
167 return -EINVAL;
168 }
169
170 pm_runtime_get_sync(dev);
171 mutex_lock(&st->lock);
172
173 /* enable gyro sensor */
174 conf.mode = INV_ICM42600_SENSOR_MODE_LOW_NOISE;
175 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
176 if (ret)
177 goto exit;
178
179 /* read gyro register data */
180 data = (__be16 *)&st->buffer[0];
181 ret = regmap_bulk_read(st->map, reg, data, sizeof(*data));
182 if (ret)
183 goto exit;
184
185 *val = (int16_t)be16_to_cpup(data);
186 if (*val == INV_ICM42600_DATA_INVALID)
187 ret = -EINVAL;
188 exit:
189 mutex_unlock(&st->lock);
190 pm_runtime_mark_last_busy(dev);
191 pm_runtime_put_autosuspend(dev);
192 return ret;
193 }
194
195 /* IIO format int + nano */
196 static const int inv_icm42600_gyro_scale[] = {
197 /* +/- 2000dps => 0.001065264 rad/s */
198 [2 * INV_ICM42600_GYRO_FS_2000DPS] = 0,
199 [2 * INV_ICM42600_GYRO_FS_2000DPS + 1] = 1065264,
200 /* +/- 1000dps => 0.000532632 rad/s */
201 [2 * INV_ICM42600_GYRO_FS_1000DPS] = 0,
202 [2 * INV_ICM42600_GYRO_FS_1000DPS + 1] = 532632,
203 /* +/- 500dps => 0.000266316 rad/s */
204 [2 * INV_ICM42600_GYRO_FS_500DPS] = 0,
205 [2 * INV_ICM42600_GYRO_FS_500DPS + 1] = 266316,
206 /* +/- 250dps => 0.000133158 rad/s */
207 [2 * INV_ICM42600_GYRO_FS_250DPS] = 0,
208 [2 * INV_ICM42600_GYRO_FS_250DPS + 1] = 133158,
209 /* +/- 125dps => 0.000066579 rad/s */
210 [2 * INV_ICM42600_GYRO_FS_125DPS] = 0,
211 [2 * INV_ICM42600_GYRO_FS_125DPS + 1] = 66579,
212 /* +/- 62.5dps => 0.000033290 rad/s */
213 [2 * INV_ICM42600_GYRO_FS_62_5DPS] = 0,
214 [2 * INV_ICM42600_GYRO_FS_62_5DPS + 1] = 33290,
215 /* +/- 31.25dps => 0.000016645 rad/s */
216 [2 * INV_ICM42600_GYRO_FS_31_25DPS] = 0,
217 [2 * INV_ICM42600_GYRO_FS_31_25DPS + 1] = 16645,
218 /* +/- 15.625dps => 0.000008322 rad/s */
219 [2 * INV_ICM42600_GYRO_FS_15_625DPS] = 0,
220 [2 * INV_ICM42600_GYRO_FS_15_625DPS + 1] = 8322,
221 };
222
inv_icm42600_gyro_read_scale(struct inv_icm42600_state * st,int * val,int * val2)223 static int inv_icm42600_gyro_read_scale(struct inv_icm42600_state *st,
224 int *val, int *val2)
225 {
226 unsigned int idx;
227
228 idx = st->conf.gyro.fs;
229
230 *val = inv_icm42600_gyro_scale[2 * idx];
231 *val2 = inv_icm42600_gyro_scale[2 * idx + 1];
232 return IIO_VAL_INT_PLUS_NANO;
233 }
234
inv_icm42600_gyro_write_scale(struct inv_icm42600_state * st,int val,int val2)235 static int inv_icm42600_gyro_write_scale(struct inv_icm42600_state *st,
236 int val, int val2)
237 {
238 struct device *dev = regmap_get_device(st->map);
239 unsigned int idx;
240 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
241 int ret;
242
243 for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_scale); idx += 2) {
244 if (val == inv_icm42600_gyro_scale[idx] &&
245 val2 == inv_icm42600_gyro_scale[idx + 1])
246 break;
247 }
248 if (idx >= ARRAY_SIZE(inv_icm42600_gyro_scale))
249 return -EINVAL;
250
251 conf.fs = idx / 2;
252
253 pm_runtime_get_sync(dev);
254 mutex_lock(&st->lock);
255
256 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
257
258 mutex_unlock(&st->lock);
259 pm_runtime_mark_last_busy(dev);
260 pm_runtime_put_autosuspend(dev);
261
262 return ret;
263 }
264
265 /* IIO format int + micro */
266 static const int inv_icm42600_gyro_odr[] = {
267 /* 12.5Hz */
268 12, 500000,
269 /* 25Hz */
270 25, 0,
271 /* 50Hz */
272 50, 0,
273 /* 100Hz */
274 100, 0,
275 /* 200Hz */
276 200, 0,
277 /* 1kHz */
278 1000, 0,
279 /* 2kHz */
280 2000, 0,
281 /* 4kHz */
282 4000, 0,
283 };
284
285 static const int inv_icm42600_gyro_odr_conv[] = {
286 INV_ICM42600_ODR_12_5HZ,
287 INV_ICM42600_ODR_25HZ,
288 INV_ICM42600_ODR_50HZ,
289 INV_ICM42600_ODR_100HZ,
290 INV_ICM42600_ODR_200HZ,
291 INV_ICM42600_ODR_1KHZ_LN,
292 INV_ICM42600_ODR_2KHZ_LN,
293 INV_ICM42600_ODR_4KHZ_LN,
294 };
295
inv_icm42600_gyro_read_odr(struct inv_icm42600_state * st,int * val,int * val2)296 static int inv_icm42600_gyro_read_odr(struct inv_icm42600_state *st,
297 int *val, int *val2)
298 {
299 unsigned int odr;
300 unsigned int i;
301
302 odr = st->conf.gyro.odr;
303
304 for (i = 0; i < ARRAY_SIZE(inv_icm42600_gyro_odr_conv); ++i) {
305 if (inv_icm42600_gyro_odr_conv[i] == odr)
306 break;
307 }
308 if (i >= ARRAY_SIZE(inv_icm42600_gyro_odr_conv))
309 return -EINVAL;
310
311 *val = inv_icm42600_gyro_odr[2 * i];
312 *val2 = inv_icm42600_gyro_odr[2 * i + 1];
313
314 return IIO_VAL_INT_PLUS_MICRO;
315 }
316
inv_icm42600_gyro_write_odr(struct iio_dev * indio_dev,int val,int val2)317 static int inv_icm42600_gyro_write_odr(struct iio_dev *indio_dev,
318 int val, int val2)
319 {
320 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
321 struct inv_sensors_timestamp *ts = iio_priv(indio_dev);
322 struct device *dev = regmap_get_device(st->map);
323 unsigned int idx;
324 struct inv_icm42600_sensor_conf conf = INV_ICM42600_SENSOR_CONF_INIT;
325 int ret;
326
327 for (idx = 0; idx < ARRAY_SIZE(inv_icm42600_gyro_odr); idx += 2) {
328 if (val == inv_icm42600_gyro_odr[idx] &&
329 val2 == inv_icm42600_gyro_odr[idx + 1])
330 break;
331 }
332 if (idx >= ARRAY_SIZE(inv_icm42600_gyro_odr))
333 return -EINVAL;
334
335 conf.odr = inv_icm42600_gyro_odr_conv[idx / 2];
336
337 pm_runtime_get_sync(dev);
338 mutex_lock(&st->lock);
339
340 ret = inv_sensors_timestamp_update_odr(ts, inv_icm42600_odr_to_period(conf.odr),
341 iio_buffer_enabled(indio_dev));
342 if (ret)
343 goto out_unlock;
344
345 ret = inv_icm42600_set_gyro_conf(st, &conf, NULL);
346 if (ret)
347 goto out_unlock;
348 inv_icm42600_buffer_update_fifo_period(st);
349 inv_icm42600_buffer_update_watermark(st);
350
351 out_unlock:
352 mutex_unlock(&st->lock);
353 pm_runtime_mark_last_busy(dev);
354 pm_runtime_put_autosuspend(dev);
355
356 return ret;
357 }
358
359 /*
360 * Calibration bias values, IIO range format int + nano.
361 * Value is limited to +/-64dps coded on 12 bits signed. Step is 1/32 dps.
362 */
363 static int inv_icm42600_gyro_calibbias[] = {
364 -1, 117010721, /* min: -1.117010721 rad/s */
365 0, 545415, /* step: 0.000545415 rad/s */
366 1, 116465306, /* max: 1.116465306 rad/s */
367 };
368
inv_icm42600_gyro_read_offset(struct inv_icm42600_state * st,struct iio_chan_spec const * chan,int * val,int * val2)369 static int inv_icm42600_gyro_read_offset(struct inv_icm42600_state *st,
370 struct iio_chan_spec const *chan,
371 int *val, int *val2)
372 {
373 struct device *dev = regmap_get_device(st->map);
374 int64_t val64;
375 int32_t bias;
376 unsigned int reg;
377 int16_t offset;
378 uint8_t data[2];
379 int ret;
380
381 if (chan->type != IIO_ANGL_VEL)
382 return -EINVAL;
383
384 switch (chan->channel2) {
385 case IIO_MOD_X:
386 reg = INV_ICM42600_REG_OFFSET_USER0;
387 break;
388 case IIO_MOD_Y:
389 reg = INV_ICM42600_REG_OFFSET_USER1;
390 break;
391 case IIO_MOD_Z:
392 reg = INV_ICM42600_REG_OFFSET_USER3;
393 break;
394 default:
395 return -EINVAL;
396 }
397
398 pm_runtime_get_sync(dev);
399 mutex_lock(&st->lock);
400
401 ret = regmap_bulk_read(st->map, reg, st->buffer, sizeof(data));
402 memcpy(data, st->buffer, sizeof(data));
403
404 mutex_unlock(&st->lock);
405 pm_runtime_mark_last_busy(dev);
406 pm_runtime_put_autosuspend(dev);
407 if (ret)
408 return ret;
409
410 /* 12 bits signed value */
411 switch (chan->channel2) {
412 case IIO_MOD_X:
413 offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
414 break;
415 case IIO_MOD_Y:
416 offset = sign_extend32(((data[0] & 0xF0) << 4) | data[1], 11);
417 break;
418 case IIO_MOD_Z:
419 offset = sign_extend32(((data[1] & 0x0F) << 8) | data[0], 11);
420 break;
421 default:
422 return -EINVAL;
423 }
424
425 /*
426 * convert raw offset to dps then to rad/s
427 * 12 bits signed raw max 64 to dps: 64 / 2048
428 * dps to rad: Pi / 180
429 * result in nano (1000000000)
430 * (offset * 64 * Pi * 1000000000) / (2048 * 180)
431 */
432 val64 = (int64_t)offset * 64LL * 3141592653LL;
433 /* for rounding, add + or - divisor (2048 * 180) divided by 2 */
434 if (val64 >= 0)
435 val64 += 2048 * 180 / 2;
436 else
437 val64 -= 2048 * 180 / 2;
438 bias = div_s64(val64, 2048 * 180);
439 *val = bias / 1000000000L;
440 *val2 = bias % 1000000000L;
441
442 return IIO_VAL_INT_PLUS_NANO;
443 }
444
inv_icm42600_gyro_write_offset(struct inv_icm42600_state * st,struct iio_chan_spec const * chan,int val,int val2)445 static int inv_icm42600_gyro_write_offset(struct inv_icm42600_state *st,
446 struct iio_chan_spec const *chan,
447 int val, int val2)
448 {
449 struct device *dev = regmap_get_device(st->map);
450 int64_t val64, min, max;
451 unsigned int reg, regval;
452 int16_t offset;
453 int ret;
454
455 if (chan->type != IIO_ANGL_VEL)
456 return -EINVAL;
457
458 switch (chan->channel2) {
459 case IIO_MOD_X:
460 reg = INV_ICM42600_REG_OFFSET_USER0;
461 break;
462 case IIO_MOD_Y:
463 reg = INV_ICM42600_REG_OFFSET_USER1;
464 break;
465 case IIO_MOD_Z:
466 reg = INV_ICM42600_REG_OFFSET_USER3;
467 break;
468 default:
469 return -EINVAL;
470 }
471
472 /* inv_icm42600_gyro_calibbias: min - step - max in nano */
473 min = (int64_t)inv_icm42600_gyro_calibbias[0] * 1000000000LL +
474 (int64_t)inv_icm42600_gyro_calibbias[1];
475 max = (int64_t)inv_icm42600_gyro_calibbias[4] * 1000000000LL +
476 (int64_t)inv_icm42600_gyro_calibbias[5];
477 val64 = (int64_t)val * 1000000000LL + (int64_t)val2;
478 if (val64 < min || val64 > max)
479 return -EINVAL;
480
481 /*
482 * convert rad/s to dps then to raw value
483 * rad to dps: 180 / Pi
484 * dps to raw 12 bits signed, max 64: 2048 / 64
485 * val in nano (1000000000)
486 * val * 180 * 2048 / (Pi * 1000000000 * 64)
487 */
488 val64 = val64 * 180LL * 2048LL;
489 /* for rounding, add + or - divisor (3141592653 * 64) divided by 2 */
490 if (val64 >= 0)
491 val64 += 3141592653LL * 64LL / 2LL;
492 else
493 val64 -= 3141592653LL * 64LL / 2LL;
494 offset = div64_s64(val64, 3141592653LL * 64LL);
495
496 /* clamp value limited to 12 bits signed */
497 if (offset < -2048)
498 offset = -2048;
499 else if (offset > 2047)
500 offset = 2047;
501
502 pm_runtime_get_sync(dev);
503 mutex_lock(&st->lock);
504
505 switch (chan->channel2) {
506 case IIO_MOD_X:
507 /* OFFSET_USER1 register is shared */
508 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
509 ®val);
510 if (ret)
511 goto out_unlock;
512 st->buffer[0] = offset & 0xFF;
513 st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
514 break;
515 case IIO_MOD_Y:
516 /* OFFSET_USER1 register is shared */
517 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER1,
518 ®val);
519 if (ret)
520 goto out_unlock;
521 st->buffer[0] = ((offset & 0xF00) >> 4) | (regval & 0x0F);
522 st->buffer[1] = offset & 0xFF;
523 break;
524 case IIO_MOD_Z:
525 /* OFFSET_USER4 register is shared */
526 ret = regmap_read(st->map, INV_ICM42600_REG_OFFSET_USER4,
527 ®val);
528 if (ret)
529 goto out_unlock;
530 st->buffer[0] = offset & 0xFF;
531 st->buffer[1] = (regval & 0xF0) | ((offset & 0xF00) >> 8);
532 break;
533 default:
534 ret = -EINVAL;
535 goto out_unlock;
536 }
537
538 ret = regmap_bulk_write(st->map, reg, st->buffer, 2);
539
540 out_unlock:
541 mutex_unlock(&st->lock);
542 pm_runtime_mark_last_busy(dev);
543 pm_runtime_put_autosuspend(dev);
544 return ret;
545 }
546
inv_icm42600_gyro_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)547 static int inv_icm42600_gyro_read_raw(struct iio_dev *indio_dev,
548 struct iio_chan_spec const *chan,
549 int *val, int *val2, long mask)
550 {
551 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
552 int16_t data;
553 int ret;
554
555 switch (chan->type) {
556 case IIO_ANGL_VEL:
557 break;
558 case IIO_TEMP:
559 return inv_icm42600_temp_read_raw(indio_dev, chan, val, val2, mask);
560 default:
561 return -EINVAL;
562 }
563
564 switch (mask) {
565 case IIO_CHAN_INFO_RAW:
566 ret = iio_device_claim_direct_mode(indio_dev);
567 if (ret)
568 return ret;
569 ret = inv_icm42600_gyro_read_sensor(st, chan, &data);
570 iio_device_release_direct_mode(indio_dev);
571 if (ret)
572 return ret;
573 *val = data;
574 return IIO_VAL_INT;
575 case IIO_CHAN_INFO_SCALE:
576 return inv_icm42600_gyro_read_scale(st, val, val2);
577 case IIO_CHAN_INFO_SAMP_FREQ:
578 return inv_icm42600_gyro_read_odr(st, val, val2);
579 case IIO_CHAN_INFO_CALIBBIAS:
580 return inv_icm42600_gyro_read_offset(st, chan, val, val2);
581 default:
582 return -EINVAL;
583 }
584 }
585
inv_icm42600_gyro_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)586 static int inv_icm42600_gyro_read_avail(struct iio_dev *indio_dev,
587 struct iio_chan_spec const *chan,
588 const int **vals,
589 int *type, int *length, long mask)
590 {
591 if (chan->type != IIO_ANGL_VEL)
592 return -EINVAL;
593
594 switch (mask) {
595 case IIO_CHAN_INFO_SCALE:
596 *vals = inv_icm42600_gyro_scale;
597 *type = IIO_VAL_INT_PLUS_NANO;
598 *length = ARRAY_SIZE(inv_icm42600_gyro_scale);
599 return IIO_AVAIL_LIST;
600 case IIO_CHAN_INFO_SAMP_FREQ:
601 *vals = inv_icm42600_gyro_odr;
602 *type = IIO_VAL_INT_PLUS_MICRO;
603 *length = ARRAY_SIZE(inv_icm42600_gyro_odr);
604 return IIO_AVAIL_LIST;
605 case IIO_CHAN_INFO_CALIBBIAS:
606 *vals = inv_icm42600_gyro_calibbias;
607 *type = IIO_VAL_INT_PLUS_NANO;
608 return IIO_AVAIL_RANGE;
609 default:
610 return -EINVAL;
611 }
612 }
613
inv_icm42600_gyro_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)614 static int inv_icm42600_gyro_write_raw(struct iio_dev *indio_dev,
615 struct iio_chan_spec const *chan,
616 int val, int val2, long mask)
617 {
618 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
619 int ret;
620
621 if (chan->type != IIO_ANGL_VEL)
622 return -EINVAL;
623
624 switch (mask) {
625 case IIO_CHAN_INFO_SCALE:
626 ret = iio_device_claim_direct_mode(indio_dev);
627 if (ret)
628 return ret;
629 ret = inv_icm42600_gyro_write_scale(st, val, val2);
630 iio_device_release_direct_mode(indio_dev);
631 return ret;
632 case IIO_CHAN_INFO_SAMP_FREQ:
633 return inv_icm42600_gyro_write_odr(indio_dev, val, val2);
634 case IIO_CHAN_INFO_CALIBBIAS:
635 ret = iio_device_claim_direct_mode(indio_dev);
636 if (ret)
637 return ret;
638 ret = inv_icm42600_gyro_write_offset(st, chan, val, val2);
639 iio_device_release_direct_mode(indio_dev);
640 return ret;
641 default:
642 return -EINVAL;
643 }
644 }
645
inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)646 static int inv_icm42600_gyro_write_raw_get_fmt(struct iio_dev *indio_dev,
647 struct iio_chan_spec const *chan,
648 long mask)
649 {
650 if (chan->type != IIO_ANGL_VEL)
651 return -EINVAL;
652
653 switch (mask) {
654 case IIO_CHAN_INFO_SCALE:
655 return IIO_VAL_INT_PLUS_NANO;
656 case IIO_CHAN_INFO_SAMP_FREQ:
657 return IIO_VAL_INT_PLUS_MICRO;
658 case IIO_CHAN_INFO_CALIBBIAS:
659 return IIO_VAL_INT_PLUS_NANO;
660 default:
661 return -EINVAL;
662 }
663 }
664
inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev * indio_dev,unsigned int val)665 static int inv_icm42600_gyro_hwfifo_set_watermark(struct iio_dev *indio_dev,
666 unsigned int val)
667 {
668 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
669 int ret;
670
671 mutex_lock(&st->lock);
672
673 st->fifo.watermark.gyro = val;
674 ret = inv_icm42600_buffer_update_watermark(st);
675
676 mutex_unlock(&st->lock);
677
678 return ret;
679 }
680
inv_icm42600_gyro_hwfifo_flush(struct iio_dev * indio_dev,unsigned int count)681 static int inv_icm42600_gyro_hwfifo_flush(struct iio_dev *indio_dev,
682 unsigned int count)
683 {
684 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
685 int ret;
686
687 if (count == 0)
688 return 0;
689
690 mutex_lock(&st->lock);
691
692 ret = inv_icm42600_buffer_hwfifo_flush(st, count);
693 if (!ret)
694 ret = st->fifo.nb.gyro;
695
696 mutex_unlock(&st->lock);
697
698 return ret;
699 }
700
701 static const struct iio_info inv_icm42600_gyro_info = {
702 .read_raw = inv_icm42600_gyro_read_raw,
703 .read_avail = inv_icm42600_gyro_read_avail,
704 .write_raw = inv_icm42600_gyro_write_raw,
705 .write_raw_get_fmt = inv_icm42600_gyro_write_raw_get_fmt,
706 .debugfs_reg_access = inv_icm42600_debugfs_reg,
707 .update_scan_mode = inv_icm42600_gyro_update_scan_mode,
708 .hwfifo_set_watermark = inv_icm42600_gyro_hwfifo_set_watermark,
709 .hwfifo_flush_to_buffer = inv_icm42600_gyro_hwfifo_flush,
710 };
711
inv_icm42600_gyro_init(struct inv_icm42600_state * st)712 struct iio_dev *inv_icm42600_gyro_init(struct inv_icm42600_state *st)
713 {
714 struct device *dev = regmap_get_device(st->map);
715 const char *name;
716 struct inv_sensors_timestamp_chip ts_chip;
717 struct inv_sensors_timestamp *ts;
718 struct iio_dev *indio_dev;
719 int ret;
720
721 name = devm_kasprintf(dev, GFP_KERNEL, "%s-gyro", st->name);
722 if (!name)
723 return ERR_PTR(-ENOMEM);
724
725 indio_dev = devm_iio_device_alloc(dev, sizeof(*ts));
726 if (!indio_dev)
727 return ERR_PTR(-ENOMEM);
728
729 /*
730 * clock period is 32kHz (31250ns)
731 * jitter is +/- 2% (20 per mille)
732 */
733 ts_chip.clock_period = 31250;
734 ts_chip.jitter = 20;
735 ts_chip.init_period = inv_icm42600_odr_to_period(st->conf.accel.odr);
736 ts = iio_priv(indio_dev);
737 inv_sensors_timestamp_init(ts, &ts_chip);
738
739 iio_device_set_drvdata(indio_dev, st);
740 indio_dev->name = name;
741 indio_dev->info = &inv_icm42600_gyro_info;
742 indio_dev->modes = INDIO_DIRECT_MODE;
743 indio_dev->channels = inv_icm42600_gyro_channels;
744 indio_dev->num_channels = ARRAY_SIZE(inv_icm42600_gyro_channels);
745 indio_dev->available_scan_masks = inv_icm42600_gyro_scan_masks;
746 indio_dev->setup_ops = &inv_icm42600_buffer_ops;
747
748 ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
749 &inv_icm42600_buffer_ops);
750 if (ret)
751 return ERR_PTR(ret);
752
753 ret = devm_iio_device_register(dev, indio_dev);
754 if (ret)
755 return ERR_PTR(ret);
756
757 return indio_dev;
758 }
759
inv_icm42600_gyro_parse_fifo(struct iio_dev * indio_dev)760 int inv_icm42600_gyro_parse_fifo(struct iio_dev *indio_dev)
761 {
762 struct inv_icm42600_state *st = iio_device_get_drvdata(indio_dev);
763 struct inv_sensors_timestamp *ts = iio_priv(indio_dev);
764 ssize_t i, size;
765 unsigned int no;
766 const void *accel, *gyro, *timestamp;
767 const int8_t *temp;
768 unsigned int odr;
769 int64_t ts_val;
770 struct inv_icm42600_gyro_buffer buffer;
771
772 /* parse all fifo packets */
773 for (i = 0, no = 0; i < st->fifo.count; i += size, ++no) {
774 size = inv_icm42600_fifo_decode_packet(&st->fifo.data[i],
775 &accel, &gyro, &temp, ×tamp, &odr);
776 /* quit if error or FIFO is empty */
777 if (size <= 0)
778 return size;
779
780 /* skip packet if no gyro data or data is invalid */
781 if (gyro == NULL || !inv_icm42600_fifo_is_data_valid(gyro))
782 continue;
783
784 /* update odr */
785 if (odr & INV_ICM42600_SENSOR_GYRO)
786 inv_sensors_timestamp_apply_odr(ts, st->fifo.period,
787 st->fifo.nb.total, no);
788
789 /* buffer is copied to userspace, zeroing it to avoid any data leak */
790 memset(&buffer, 0, sizeof(buffer));
791 memcpy(&buffer.gyro, gyro, sizeof(buffer.gyro));
792 /* convert 8 bits FIFO temperature in high resolution format */
793 buffer.temp = temp ? (*temp * 64) : 0;
794 ts_val = inv_sensors_timestamp_pop(ts);
795 iio_push_to_buffers_with_timestamp(indio_dev, &buffer, ts_val);
796 }
797
798 return 0;
799 }
800